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Vorwort 

Jahresbericht der Deutschen Mathematiker-Vereinigung, 110. Bd. 2008, Nr. 4 

Vorwort 

Das vorliegende Heft schließt den Band 110 und damit das Jahr 2008 ab. Es werden 
darin Themen aus sehr unterschiedlichen Bereichen aufgegriffen. 

In einem historischen Beitrag diskutiert Herr Deiser die verschiedenen Beweise Can-
tors über die Uberabzählbarkeit der reellen Zahlen. Dabei geht es besonders um den er-
sten Beweis, der nur brieflich überliefert ist, aber nicht veröffentlicht wurde. 

Der Artikel von Herrn Deuflhard, Frau Lutz-Westphal und Herrn Nowak geht, 
ebenso wie die im letzten Heft erschienene Arbeit von Herrn Kirchgraber, auf einen 
‚Schnittstellenvortrag" der gemeinsamen Tagung von DMV und GDM im März 2007 
in Berlin zurück. Naturgemäß treffen hier zwei verschiedene Kulturen aufeinander und 
dementsprechend gibt es auch unterschiedliche Ansätze, die von der jeweilig anderen 
Seite nicht immer kritiklos akzeptiert werden. Dennoch erscheint es mir wichtig, diesen 
Dialog zu führen und weiter auszubauen. 

Herr Huckleberry beschreibt in seinem Nachruf auf Karl Stein das Leben und Werk 
dieses bedeutenden Mathematikers, der die Komplexe Analysis nicht nur in Deutsch-
land, sondern weltweit maßgeblich mitgestaltet hat. 

Mit diesem Heft möchte ich mich von den Leserinnen und Lesern des Jahresberichts 
verabschieden. Ab dem nächsten Heft werden Herr Grunau aus Magdeburg und seine 
Mitherausgeber die Herausgabe des Jahresberichts übernehmen. Ich danke allen, die an 
der Gestaltung des Jahresberichts beteiligt waren. Hierzu gehören zunächst die Auto-
rinnen und die Autoren, aber ebenso all jene, die es übernommen haben, Arbeiten aus 
dem Jahresbericht zu referieren. Herzlichen Dank auch an die anderen Mitglieder des 
Herausgebergremiums, vor allem an Frau Gather und an Herrn Lange, die ebenfalls 
mit Ablauf dieses Jahres ausscheiden werden. Die Zusammenarbeit mit Frau Schmick-
ler-Hirzebruch und Frau Rußkamp vom Viehweg+Teubner Verlag war stets äußerst 
kooperativ. Dies gilt ebenso für das Zusammenwirken mit Frau Behrens von Fotosatz 
Behrens. Schließlich gilt mein Dank auch den Sekretärinnen in Hannover, nämlich 
Frau Andrea Wiese und Frau Stefanie Heidemann, deren Mithilfe mir sehr wertvoll 
war. Zum Schluss möchte ich dem neuen Herausgeber, Herrn Grunau und den übrigen 
Herausgebern alles Gute für die Weiterführung des Jahresberichts wünschen. 

K. Hulek 
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Übersichtsartikel 	Historische Beiträge 	Berichte aus der Forschung 	Buchbesprechungen 

„In der Unvollkommenheit 
des ersten Conceptes" 
Die Entdeckung der Oberabzähl- 
barkeit der reellen Zahlen 
Oliver Deiser 

Abstract 

• Mathematics Subject Ciassification: 01-02,01 A55, 03-03 
• Keywords and Phrases: Uberabzählbarkeit, Cantor, Baire'scher Kategoriensatz, 

Diagonalverfahren 

Wir diskutieren die verschiedenen Beweise, die Cantor für die Überabzählbarkeit der 
reellen Zahlen gefunden hat. Ein Hauptaugenmerk liegt dabei auf dem allerersten nur 
brieflich überlieferten Beweis vom 7. Dezember 1873. Wir argumentieren, dass Cantor 
hier im Wesentlichen bereits den Baire'schen Kategoriensatz bewiesen hat. 
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Übersichtsartikel 	Historische Beiträge 	Berichte aus der Forschung 	Buchbesprechungen 

1 Einführung 

Die Geschichte der reellen Zahlen ist von einem großen wiederkehrenden Thema durch-
drungen: Die reellen Zahlen sind komplizierter und reichhaltiger als man annehmen 
möchte. Die Pythagoreer entdeckten im 5. Jh. v. Chr. die Existenz irrationaler Zahlen: 
Das Kontinuum lässt sich also nicht auf eine reine Verhältnislehre reduzieren. Liouvil-
le bewies 1844 stärker die Existenz von transzendenten Zahlen: Nicht jeder Punkt des 
Kontinuums ist Lösung einer algebraischen Gleichung mit rationalen Koeffizienten. 2  
Cantor zeigte 1873 dann noch einmal stärker, dass die reellen Zahlen überabzählbar 
sind: Jede Folge x 0 , x1, x2 , . . . ‚ x, . . . reeller Zahlen lässt reelle Zahlen aus. 3  Die sich an-
schließende eingehende Untersuchung dieses Phänomens ergab zudem, dass wir die An-
zahl der reellen Zahlen im Rahmen der klassischen Mathematik nicht bestimmen kön-
nen: Die Kontinuumshypothese ist weder beweisbar noch widerlegbar. 4  Die Menge der 
reellen Zahlen bleibt in dieser Hinsicht dunkel eine beunruhigende Erkenntnis. 5  

Der Uberabzählbarkeit der reellen Zahlen wohnt ein Zauber inne, der über die ma-
thematische Bedeutung des Resultats weit hinausreicht. Hält man an der Existenz der 
Menge IR fest - wie es ja die klassische, mengentheoretisch axiomatisierte Mathematik 
tut, die IR aus der Potenzmenge der natürlichen Zahlen gewinnt so ergibt sich ein fas-
zinierendes Bild der „Größenunterschiede im Unendlichen", in dem die Mengen N, IR 
und die Menge der reellen Funktionen nur drei von unübersehbar vielen Stufen markie-
ren. Cantor griff in seinen Arbeiten und Briefen die uralte theologische und philosophi-
sche Diskussion über das Unendliche auf, und er sah seine mathematische Forschung 
auch als eine Bereicherung und Vertiefung dieser Diskussion an. Diese Haltung hat der 
modernen Mathematik, die von Cantor entscheidend mitgeprägt wurde, einen gewissen 
„romantischen Charakter" verliehen, der sie seither ebenso befruchtet wie belastet. 

In diesem Artikel zeichnen wir die Entdeckung der Uberabzählbarkeit der reellen 
Zahlen durch Georg Cantor aus rein mathematischer Sicht nach, indem wir die vier von 
Cantor zwischen 1873 und 1895 gefundenen Beweise im Lichte ihrer heutigen Bedeu-
tung studieren. Diese Beweise sind: 

(1) Der brieflich an Dedekind mitgeteilte Beweis vom 7. Dezember 1873. 
(2) Der in „Uber eine Eigenschaft des Inbegriffes aller algebraischen Zahlen" ver-

öffentlichte Beweis von 1874. 
(3) Der auf der Tagung der DMV in Halle 1891 vorgestellte Beweis, der das „Can-

tor'sche Diagonalverfahren" eingeführt hat. 
(4) Der von Cantor nicht explizit notierte Beweis der Uberabzählbarkeit von IR, der 

sich aus seiner ordnungstheoretischen Charakterisierung der rationalen Zahlen 
von 1895 ergibt. 

2 Der erste Beweis vom 7. Dezember 1873 

In einem Brief an Richard Dedekind vom 29. November 1873 stellt Cantor die Frage, 
ob - in späterer Formulierung - die reellen Zahlen abzählbar seien. 6  Dedekind liefert 
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sogleich einen Beweis der Abzählbarkeit der algebraischen Zahlen, kann aber die Frage 
von Cantor nicht beantworten; er billigt auch dem Problem keine allzu große Bedeu-
tung zu, mangels praktischen Interesses. In seinem Antwortschreiben vom 2. Dezember 
bestätigt Cantor Dedekinds Einschätzung, weist aber darauf hin, dass sich aus der Ab-
zählbarkeit der algebraischen Zahlen ein neuer Beweis der Existenz von transzendenten 
Zahlen ergeben würde, wenn man die Uberabzählbarkeit der reellen Zahlen zeigen 
könnte. Diese einfache Folgerung hat Dedekind übersehen. In seinen privaten Auf-
zeichnungen über den Briefwechsel mit Cantor notiert er: 

„Die von mir ausgesprochene Meinung aber, dass die erste Frage [nach der Überabzählbarkeit 
der reellen Zahlen] nicht zuviel Mühe verdiene, weil sie kein besonderes praktisches Interesse habe, 
ist durch den von Cantor gegebenen Beweis für die Existenz von transzendenten Zahlen ... schla-
gend widerlegt." 7  

In der Folge scheint es dann eine Unstimmigkeit zwischen Dedekind und Cantor ge-
geben zu haben. Dedekind wirft Cantor in seinen privaten Aufzeichnungen vor, seinen 
Beweis der Abzählbarkeit der algebraischen Zahlen „fast wörtlich" in der späteren Ver -
öffentlichung von 1874 wiedergegeben zu haben, ohne Referenzen an Dedekind. 8  Ande-
rerseits hatte Cantor bereits in seinem ersten Brief vom 29. November die Abzählbar -
keit der Menge aller endlichen Tupel (ni,. . . ‚ nk) von natürlichen Zahlen erwähnt, aus 
der sich die Abzählbarkeit der algebraischen Zahlen unschwer ergibt. Möglicherweise 
war aber der Vorfall der Grund dafür, dass der Briefwechsel zwischen Cantor und De-
dekind nach 1874 ins Stocken geriet. 9  

In seinem Brief vom 2. Dezember schreibt Cantor auch, dass sich ihm das Problem 
der Uberabzählbarkeit der reellen Zahlen bereits vor mehreren Jahren gestellt habe, er 
sich aber nie ernsthaft damit beschäftigt hätte. Wie Cantor auf die Frage gestoßen ist, 
ist nicht bekannt. Einer Uberlieferung zufolge hat er bereits als Student die Abzählbar -
keit der rationalen Zahlen in einem Seminar von Weierstraß vorgeführt,' 0  und dann ist 
die Frage nach der Abzählbarkeit aller reellen Zahlen nur natürlich. Als eine direkte In-
spirationsquelle kommt Cantors Konstruktion der reellen Zahlen über Fundamental-
folgen rationaler Zahlen von 1872 in Frage. 

Am 7. Dezember 1873 findet Cantor einen ersten Beweis der Uberabzählbarkeit der 
reellen Zahlen. Keine Geschichte der modernen Mathematik kommt an dieser Ent-
deckung vorbei, ohne innezuhalten und ihre Bedeutung zu betrachten. Wir werden den 
Brief vom 7. Dezember gleich vollständig wiedergeben und zu dem Schluss kommen, 
dass Cantor im Wesentlichen bereits 1873 den Baire'schen Kategoriensatz für das Kon-
tinuum bewiesen hat.' 

Der weitere Gang der Geschichte ist, im Uberblick, folgender: Sowohl Cantor als 
auch Dedekind finden unabhängig voneinander Modifikationen des Beweises vom 7. 
Dezember, die ihnen einfacher erscheinen. Dedekind teilt Cantor seinen vereinfachten 
Beweis brieflich am 8. Dezember mit, doch bereits am 9. Dezember, also wohl noch vor 
Ankunft seines eigenen Briefes erreicht ihn seinerseits ein Schreiben von Cantor, in dem 
dieser ebenfalls von einer gefundenen Vereinfachung spricht. Leider teilt Cantor seine 
neue Version nicht explizit mit. Dedekind notiert in seinen Aufzeichnungen, dass seine 
vereinfachte Darstellung „ebenfalls [wie schon sein Beweis der Abzählbarkeit der algeb-
raischen Zahlen] fast wörtlich in Cantors Abhandlung (Crelle Bd. 77) übergegangen 
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[ist]". 12  Möglicherweise waren die beiden von Cantor und Dedekind unabhängig von-
einander gefundenen Modifikationen des Beweises in der Tat sehr ähnlich. Insgesamt 
musste es aber Dedekind irritieren, Teile aus seinen Briefen in Cantors Publikation zu 
finden. Der ganze Vorfall ist umso bedauerlicher, als die veröffentlichte Modifikation 
aus heutiger Sicht den mathematischen Reichtum des Briefbeweises nicht voll zur Gel-
tung bringt. 

Obwohl also Cantor und Dedekind selber von einem vereinfachten Beweis reden, 
lohnt es sich, auf die erste Quelle zurückzugreifen, bei der sich zudem keine urheber-
rechtlichen Fragen ergeben. Wir geben den Brief von Cantor an Dedekind vom 7. De-
zember 1873 vollständig wieder. Er ist auch heute noch gut lesbar, und der darin vor-
gestellte Beweis ist aus heutiger Sicht alles andere als „recht compliziert", wie Dedekind 
in seinen Aufzeichnungen urteilte. Cantor schreibt: 

Hochgeehrter Herr Kollege! 

In den letzten Tagen habe ich die Zeit gehabt, etwas nachhaltiger meine Ihnen gegenüber aus-
gesprochene Vermutung zu verfolgen; erst heute glaube ich mit der Sache fertig geworden zu sein; 
sollte ich mich jedoch täuschen, so finde ich gewiss keinen nachsichtigeren Beurtheiler, als Sie. Ich 
nehme mir also die Freiheit, Ihrem Urtheile zu unterbreiten, was soeben in der Unvollkommenheit 
des ersten Conceptes zu Papier gebracht ist. 

Man nehme an, es könnten alle positiven [reellen] Zahlen ca < 1 in die Reihe gebracht werden: 

Auf (o l  folgend sei caa  das nächst größere Glied, auf dieses folgend cal  das nächst größere, u.s.f. 
Man setze: co1= ca, co a  = co, co = ca u.s.f. und hebe aus (1) die unendliche Reihe aus: 

....... 

In der übrig bleibenden Reihe werde das erste Glied mit ca, das nächst folgende größere mit e 
bezeichnet, u.s.f. so hebe man die zweite Reihe aus: 

....... 

Wird diese Betrachtung fortgesetzt, so erkennt man dass die Reihe (1) sich in die unendlich vie-
len zerlegen lässt: 

(1) .... 

(2) . 

(3) .. ‚ca,... 

in jeder von ihnen wachsen aber die Glieder fortwährend von links nach rechts zu; es ist 

w 1 < ca. 

Man nehme nun ein Intervall (p ... q) so an, dass kein Glied der Reihe (1) in ihm liegt; also etwa 
innerhalb (co{ ... (o); nun könnten auch etwa sämtliche Glieder der zweiten Reihe, oder der dritten 
außerhalb (p . . . q) liegen; es muss jedoch einmal eine Reihe kommen, ich will sagen die kte,  bei wel-
cher nicht alle Glieder außerhalb (p ... q) liegen; (denn sonst würden die innerhalb (p ... q) liegen-
den Zahlen nicht in (1) enthalten sein, gegen die Voraussetzung); dann kann man ein Intervall 
(p'. . . q') innerhalb (p ... q) fixieren, so dass die Glieder der kt Reihe alle außerhalb desselben lie-
gen; von selbst verhält sich dann (p' ... q') in gleicher Weise in Bezug auf die vorhergehenden Rei- 
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hen; im weiteren Verlaufe muss jedoch eine k/te  Reihe erscheinen, deren Glieder nicht sämmtlich 
außerhalb (p'. . . q') liegen und man nehme dann innerhalb (p'.. . q') ein drittes Intervall (p" .. 
an, so dass alle Glieder der kFt  Reihe außerhalb desselben liegen. 

So sieht man, dass es möglich ist, eine unendliche Reihe von Intervallen zu bilden: 

von denen jedes die folgenden einschließt und die zu unsern Reihen (1), (2), (3), ... sich wie folgt 
verhalten: 
Die Glieder der 	2'",..., k - 1te Reihe liegen außerhalb (p... q). 
Die Glieder der k te k'— ltc  Reihe liegen außerhalb (p'. . . q'). 
Die Glieder der kflenk" - it Reihe liegen außerhalb (p" . . 

Es lässt sich nun stets wenigstens eine Zahl, ich will sie 11 nennen, denken, welche im Innern eines je-
den dieser Intervalle liegt; von dieser Zahl 11 ‚ welche offenbar> 0, < 1, sieht man rasch, dass sie in 
keiner unserer Reihen (1), (2).....(n), enthalten sein kann. So würde man, von der Voraussetzung 
ausgehend, dass alle Zahlen > 0, < 1 in (1) enthalten seien, zu dem entgegengesetzten Resultate ge-
langt sein, dass eine bestimmte Zahl 11 > 0, < 1 nicht unter (1) zu finden sei; folglich ist die Voraus-
setzung eine unrichtige gewesen. 

So glaube ich schließlich zu dem Grunde gekommen zu sein, weshalb sich der in meinen frühe-
ren Briefen mit (x) bezeichnete Inbegriff nicht dem mit (n) bezeichneten eindeutig zuordnen lässt. 

Mit den besten Grüßen 

Ihr ergebenster 

Georg Cantor' 3  

Die tragende Struktur dieses Arguments ist die folgende: Wir betrachten Mengen 
M. C JR für n E N (oben: M = {wi E N}). Gesucht ist eine reelle Zahl x" mit 
x M. Um ein solches x 1" zu finden, konstruieren wir eine Folge von abgeschlos-
senen geschachtelten Intervallen I positiver Länge mit I n M = 0 für alle n (oben: 
11 = [p. . . q] ‚ 12 = [p'.. . q'], usw.). Gelingt dies, so ist jedes Element x' ü fl I  (f 0) 
wie gewünscht. Die Konstruktion der Intervalle I ist aber offenbar möglich, wenn für 
alle M = M folgende Bedingung erfüllt ist: 

(+) 	Ist 1 0 ein Intervall positiver Länge, so gibt es ein Intervall J C  1 
positiver Länge mit J fl M = 0. 

Die Bedingung (+)‚ die de facto von Cantor zur Konstruktion der Intervallschachtelung 
benutzt wird, ist heute als M ist nirgendsdicht bekannt. Das Argument von Cantor zeigt 
klar: 

Bai,-e'scher Kategoriensatz für JR 
Ist M eine Folge von nirgendsdichten Teilmengen von IR, so enthält die Vereini-
gung aller M kein Intervall 154 0 positiver Länge. 14  

Es ist müßig zu diskutieren, warum Dedekind und Cantor der originale Beweis als 
kompliziert erschienen ist, und warum sie den vollen mathematischen Gehalt des Argu-
ments nach einer gefundenen Modifikation anscheinend nicht weiter untersucht haben. 
Sicherlich ist die Briefkonstruktion nicht optimal zugeschnitten für einen Beweis, der 
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möglichst direkt die Überabzählbarkeit von JR zeigen will (so spielt etwa die Konstruk-
tion der Matrix w k keine wesentliche Rolle). 15  Wie dem auch sei: Der Beweis vom 7. De-
zember zeigt den Baire'schen Kategoriensatz für das Kontinuum, den Baire erst 1899 
explizit notiert hat.' 6  

Insgesamt können wir den Baire'schen Kategoriensatz sowohl historisch wie inhalt-
lich als eine natürliche Verallgemeinerung der Uberabzählbarkeit jedes nichtleeren offe-
nen Intervalls 1 C JR lesen: Die Uberabzählbarkeit von 1 besagt, dass 1 nicht „klein" ist 
im Sinne einer abzählbaren Vereinigung von einzelnen Punkten. Der Baire'sche Satz be-
sagt stärker, dass 1 nicht „klein" ist im Sinne einer abzählbaren Vereinigung von nir-
gendsdichten Mengen. list, wie man sagt, nicht mager. 

Die Isolation und begriffsbildende Analyse der tragenden Bedingungen eines Bewei-
ses gilt heute allgemein als ein wichtiger Schritt der mathematischen Erkenntnis, und in 
keinem Falle soll hier Cantor ein erst viel später in seiner Bedeutung erkannter Satz zu-
geschrieben werden. Aber wir können Cantor den Beweis des Satzes zuschreiben. Und 
das Schicksal des Arguments ist bemerkenswert: Cantor veröffentlichte nur eine Varia-
nte des Arguments - möglicherweise sogar in Dedekinds Worten. Weiter hat dann das 
spätere Diagonalverfahren auch diese Variante zumindest so weit verdrängt, dass viele 
Mathematiker die Beweise von 1873/74 nicht kennen' 7  und den Baire'schen Kategorien-
satz nicht im Zusammenhang mit der Uberabzählbarkeit der reellen Zahlen sehen. 

Wir betrachten nun die veröffentlichte Cantor-Dedekind'sche Variante des Brief-
beweises genauer. 

3 Der veröffentlichte Beweis von 1874 

Die Veröffentlichung des neuen abstrakten Beweises für die Existenz transzendenten 
Zahlen kam wohl auf Vermittlung von Weierstraß zustande. Cantors Arbeit heißt 
„Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen", greift also 
aus heutiger Sicht nicht die primäre neue Erkenntnis in ihrem Titel auf. Ob die Uber-
abzählbarkeit der reellen Zahlen für sich stehend überhaupt veröffentlicht worden wäre, 
ist zweifelhaft!' 8  

Der veröffentlichte Beweis der Überabzählbarkeit von 1874 verläuft, in modernisier-
ter Notation, wie folgt. Für zwei reelle Zahlen x 74 y sei dabei I(x, y) = [x, y], falls x < y, 
und I(x, y) = [y, x] sonst. 

Der Beweis von 1874 19  

Seien x 1 , x2 .....x, .. . reelle Zahlen, und sei To = [a, b] mit a <b. 
Wir finden ein xK E lo  mit xK  xn  für alle n> 1. Hierzu konstruieren wir rekursiv ge-
schachtelte abgeschlossene Intervalle I positiver Länge: 

Sei In  bereits konstruiert. Im Falle der Existenz seien dann xk und xm  die ersten bei- 
den voneinander verschiedenen Glieder der Folge, die im Inneren von I n  liegen. Wir 
setzen dann 1n+1 = I(Xk,Xm). 

Ist In+ i nicht definiert für ein n, so liegt höchstens ein Glied der Folge im Inneren 
von I, und damit lässt die Folge sogar ein offenes nichtleeres Intervall aus. Sind alle 

168 	 JB 110. Band (2008), Heft 4 



0. Deiser: „In der Unvollkommenheit des ersten Conceptes" 

In  definiert, so ist jedes x im nichtleeren Durchschnitt der I n  verschieden von allen 
Gliedern der Folge, wie eine einfache Uberlegung zeigt. 

Die Verbindung zum Baire'schen Kategoriensatz ist bei diesem schrittweisen Aus-
heben von Intervallen immer noch spürbar, aber bei weitem nicht mehr so deutlich wie 
im Beweis des Briefes. 

Aus heutiger Sicht lässt sich der Beweis vom 7. Dezember leicht in einer Weise notie-
ren, die die Analogie zum Baire'schen Satz klar herausstellt und dabei allen überflüssi-
gen Ballast entfernt: 

Variante des Beweises vom 7. Dezember 
Seien wieder reelle Zahlen x1, x2 ..... x, .. . und jo = [a, b], a < b, gegeben. 
Wir definieren rekursiv Intervalle In  wie folgt: 

= „ein abgeschlossenes Intervall 1 C In  positiver Länge mit x, 	1c20 

Dann ist jedes x E fl n , IN I ( 7~ 0) verschieden von allen x,. 

Hier konstruieren wir Intervalle, die einzelnen Punkten fernbleiben. 2 ' Ersetzt man 
die Punkte x n  durch nirgendsdichte Mengen M 1 , so bleibt die Konstruktion durchführ-
bar: Es existieren immer und überall Intervalle, die den Mengen M fernbleiben. Das 
Argument zeigt dann den Baire'schen Kategoriensatz. 

4 Das Diagonalargument von 1891 

Es ist nicht genau bekannt, wann Cantor sein auf der Tagung der DMV in Halle 1891 
vorgetragenes Diagonalargument gefunden hat. Er zeigt, dass die Menge aller Belegun-
gen von N, d. h. aller Funktionen f: N —* {0, 1 }' überabzählbar ist: 
Beweis der Überabzählbarkeit der Menge F = {f f: N — {O, 1 11   

Seien f 1 , f2 .....f, ... Elemente von F. Wir definieren f * e F durch 
f*(n) = l,fallsf(n) = 0, und f*(n) = 0, falls fa (n) = 1. 
Dann ist f *(n) 54 fr (n) für allen. Also ist f * von jedem fn  verschieden. 

Die Überabzählbarkeit der reellen Zahlen gewinnt man nun aus der Gleichmächtig-
keit von JR und F. 22  

Allgemein zeigt das Diagonalargument, dass für jede Menge M keine Bijektion zwi-
schen M und der Potenzmenge 2(M) von M existiert. In dieser allgemeinen Form wird 
das Ergebnis heute zitiert als: 

Satz von Cantor 
Sei M eine Menge, und sei G eine Funktion mit Definitionsbereich M. 
Dann liegt die Menge 

D={xEMIx e G(x)} 

nicht im Wertebereich von G. 
Insbesondere existiert also kein surjektives G: M — 2(M). 

Denn wäre G(x) = D, so wäre x e D genau dann, wenn x e D, was nicht sein kann. 
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Cantors Diagonalargument spielt dann in der weiteren Geschichte der Mathematik 
in vielen Varianten eine wichtige Rolle. Wir nennen einige Beispiele: 

(1) Angewendet auf eine Folge x 1 , x 2 .....x11 , ... von reellen Zahlen in Dezimaldar-
stellung ergibt sich der bekannte Beweis der Uberabzählbarkeit von JR durch Diagona-
lisierung einer unendlichen Matrix von Nachkommastellen. 

(2) Ein Diagonalargument zeigt folgenden Satz von Julius König und Ernst Zermelo 
von 1904: Sind A 1 , A2 .....A, . . .Teilmengenvon JR derart, dass jedes A0  von kleinerer 
Mächtigkeit ist als IR, so ist auch die Vereinigung aller A von kleinerer Mächtigkeit als 
JR. Für einelementige Mengen Mn  erhalten wir so wieder die Uberabzählbarkeit von JR. 

(3) Das Diagonalargument von Cantor hat Bertrand Russell zur Entdeckung der 
Antinomie der Menge aller Mengen geführt, die sich selbst nicht als Element enthalten. 
Sei nämlich R = {x 1 x ist eine Menge mit x e x}. Dann gilt R e R genau dann, wenn 
R e R, Widerspruch. Die uneingeschränkte Mengenbildung durch Aufsammlung aller 
Objekte mit einer bestimmten Eigenschaft ist also widersprüchlich und muss durch eine 
vorsichtigere Axiomatik ersetzt werden. Auf die Russell'sche Klasse R kommt man 
durch Setzen von M = „die Menge aller Mengen" und G = „die Identität" im Satz von 
Cantor: R = {x e M Ix % x} = D liegt nicht im Wertebereich der Identität auf M, ist also 
keine Menge. 

(4) In der mathematischen Logik tauchen Diagonalargumente an prominenten Stel-
len auf, etwa im Beweis des ersten Gödel'schen Unvollständigkeitssatzes oder im Beweis 
der Existenz einer effektiv aufzählbaren Menge A C N, die nicht berechenbar ist. 23  

(5) Auf Lebesgue (1905) geht ein Diagonalargument zurück, das zeigt, dass die ite-
rierte Anwendung der Operationen der abzählbaren Vereinigung und des abzählbaren 
Durchschnitts ausgehend von den offenen und abgeschlossenen Teilmengen von JR im-
mer wieder neue Mengen hervorbringt (Reichhaltigkeit der sog. Borel-Hierarchie). 

(6) Diagonalisierungen können benutzt werden, um schnell oder langsam wachsende 
Funktionen zu konstruieren. Paul du Bois-Reymond hat bereits 1875 in dieser Weise ge-
zeigt, dass zu jeder Folge von immer langsamer gegen unendlich konvergierenden 
Funktionen immer noch eine Funktion existiert, die langsamer gegen unendlich konver-
giert als alle Glieder der Folge. 24  

5 Die ordnungstheoretische Oberabzahlbarkeit von IRvon 1895 

Im ersten Teil seiner „Beiträge zur Begründung der transfiniten Mengenlehre" von 1895 
zeigt Cantor einen grundlegenden Satz über die rationalen Zahlen: 

Ordnungstheoretische Charakterisierung von Q 
Sei M eine linear (= total) geordnete Menge mit den Eigenschaften: 

(a) M ist abzählbar. 
(b) M hat kein kleinstes und kein größtes Element. 
(c) M ist dicht, d. h. für alle a < b existiert ein c mit a < c < b. 
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Dann ist M ordnungsisomorph zu Q, d. h. es existiert eine Bijektion 
f: M -+ Q sodass für alle a, b e M gilt: a < b genau dann, wenn f(a) <f(b). 25  

Zusammen mit der Existenz von irrationalen Zahlen, d. h. der Unvollständigkeit der 
Ordnung Q, erhalten wir einen neuen Beweis der Uberabzählbarkeit der reellen Zahlen: 

Ordnungstheoretischer Beweis der Überabzählbarkeit von JR 
Annahme, JR ist abzählbar. Dann erfüllt JR die Eigenschaften (a), (b) und (c). 
Nach dem Satz sind also JR und Q ordnungsisomorph. Dies ist aber nicht der Fall, 
da JR vollständig, Q aber unvollständig ist, und da ein Ordnungsisomorphismus die 
Vollständigkeit einer Ordnung erhält. 26  

Dieser Beweis benutzt die pythagoreische Erkenntnis der Existenz von irrationalen 
Zahlen, oder gleichwertig die Existenz von Lücken in Q: Es gibt Dedekind'sche Schnitte 
(L, R) in Q, deren linker Teil L kein Supremum und deren rechter Teil R kein Infimum 
besitzt. Es ist bemerkenswert, dass Cantors Charakterisierungssatz auch dazu geeignet 
ist, die Existenz von Lücken in Q nachzuweisen, und dies ohne jede Arithmetik: Denn 
die Ordnung Q* = + Qi, die aus zwei hintereinander gehängten Kopien von Q be-
steht, 27  hat offenbar die Lücke (Qo, (Qi). Aber Q* erfüllt die Bedingungen des Can-
tor'schen Satzes, ist also isomorph zu Q. Damit hat auch Q Lücken. 

Cantors Charakterisierung liefert also neue ordnungstheoretische Beweise sowohl 
für die Existenz irrationaler Zahlen als auch für die Uberabzählbarkeit der reellen Zah-
len und beleuchtet damit zwei fundamentale und geschichtlich weit auseinanderliegende 
Erkenntnisse über JR noch einmal von einer ganz eigenen Warte. 

6 Zur Bedeutung 

Die Entdeckung der Überabzählbarkeit wirft die Frage auf, wie viele reelle Zahlen es 
nun gebe. Die Cantor'sche Kontinuumshypothese von 1878 gibt die folgende Antwort: 

Ist A C JR überabzählbar, so existiert eine Bijektion zwischen A und JR. 28  

Kurz: Die Mächtigkeit von JR ist die kleinste Unendlichkeitsstufe nach der durch die 
Menge N repräsentierten unendlichen Mächtigkeit - es gibt keine Mächtigkeit zwi-
schen N und JR. 

Die Kontinuumshypothese ist nun aber im Rahmen der klassischen Mathematik 
nachweislich weder beweisbar noch widerlegbar, es sei denn, die klassische Mathematik 
ist selbst widersprüchlich. 29  Dieses metamathematische Ergebnis der sog. Unabhängig-
keit der Kontinuumshypothese haben Kurt Gödel 1938 und Paul Cohen 1963 bewiesen. 
Die Entdeckung der Uberabzählbarkeit der reellen Zahlen hat insgesamt zur Analyse 
der Fundamente der Mathematik und zur Entwicklung von allgemeinen Methoden der 
mathematischen Logik geführt, die solche limitierende Resultate überhaupt ermögli-
chen. Das Ergebnis selbst zeigt, dass wir die so vertraut erscheinenden reellen Zahlen in 
gewisser Hinsicht nicht verstehen. Wie diese Verständnislücke zu interpretieren ist und 
ob und wie sie ausgefüllt werden könnte, ist nach wie vor Gegenstand der Diskussion. 
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Eine ganz andere praktische Bedeutung hat das Phänomen der Überabzählbarkeit 
in der Analysis und Wahrscheinlichkeitstheorie: Die Existenz eines abzählbar-additiven 
Maßes \ auf einer Menge M mit .\(M) > 0, das einzelnen Punkten das Maß 0 zuordnet, 
ist nur möglich, wenn M überabzählbar ist, denn sonst wäre \(M) = xeM )({x}) = 0. 
Die Längenmessung ) auf JR erfüllt aber sicherlich )({x}) = 0 für alle x E JR. Eine Inte-
grationstheorie mit starken Vertauschungssätzen ruht auf einer abzählbar-additiven 
Längenmessung und damit notwendig auf einer überabzählbaren Struktur. 

Diese beiden weit voneinander entfernt liegenden Gesichtspunkte zeigen, wie sehr 
sich sowohl Cantor als auch Dedekind in ihrer spontanen Einschätzung der Bedeutung 
der Frage geirrt haben. 

Anmerkungen 

1 Siehe [Christianidis 2004] für eine Auswahl von Aufsätzen zur Geschichte und Bedeutung der 
Entdeckung der irrationalen Verhältnisse durch die Griechen. 

2 Veröffentlicht in [Liouvillel85l]. 
3 Veröffentlicht in [Cantor 1874, 1879, 1892]. 
4 Die Kontinuumshypothese besagt: Ist A C JR überabzählbar, so gibt es eine Bijektion zwischen 

A und JR. Gödel (1938) und Cohen (1963) zeigten die Unlösbarkeit der Kontinuumshypothese 
in der Axiomatik von Zermelo-Fraenkel, die für die gesamte klassische Mathematik ausreicht. 
Siehe hierzu auch Abschnitt 6 und Fußnote 29. 

5 Zwei weitere Aspekte der Komplexität von JR sind: Erstens die Frage nach der Existenz und 
mathematischen Einbindung infinitesimaler Größen, d. h. die Diskussion um den „korrekten" 
Kontinuumsbegriff selbst. Und zweitens die Untersuchung von einfachen Teilmengen von JR 
innerhalb der deskriptiven Mengenlehre, die gezeigt hat, dass viele hier auftretende Fragen in-
nerhalb des klassischen Rahmens ebenso unlösbar sind wie die Kontinuumshypothese, z. B. die 
Lebesgue-Meßbarkeit der sog. projektiven Teilmengen von JR. Siehe hierzu etwa [Deiser 2007, 
Kapitel 2.6]. 

6 Siehe [Cantorl932], [Cantor / Dedekindl937], [Dugacl976], [Cantor1991] für den Briefwechsel 
zwischen Cantor und Dedekind. Siehe weiter auch [Grattan-Guinness 1974]. 

7 Siehe [Cantor/Dedekind 1937,S. 18]. 
8 Siehe [Cantor/Dedekind 1937,S. 18f]. 
9 Vgl. hierzu speziell auch [Ferreirös 1999, S. 2391]. 

10 Siehe [Fraenkel 1930, S. 199]. 
11 Diese „Baire'sche Lesart" des Briefbeweises scheint in der Literatur bislang nicht diskutiert zu 

werden (vgl. z. B. [Cantor 1991, S. 35f], [Dauben 1979b, S. 501], [Ferreirös 1999, S. 177f], [Grat-
tan-Guinness 2000, S. 88], [Hallett 1984, S. 75f], [Meschkowski 1967, S. 291], [Purkert / Ilgauds 
1987, 5. 451]). 

12 Siehe [Cantor / Dedekind 1937, S. 19]. Eine Bemerkung in einem Brief von Cantor an Dedekind 
vom 25. Dezember 1873 hinterlässt den Eindruck, dass sich Cantor in der Tat bei Dedekind be-
dient hat - und sich gar nicht viel dabei dachte: „Dabei [bei der Abfassung der Publikation von 
1874] kamen mir, wie Sie später finden werden, Ihre, mir so werthen, Bemerkungen und Ihre 
Ausdrucksweise sehr zu statten. Dies wollte ich mir erlauben, Ihnen mitzuteilen." ([Cantor / 
Dedekind 1937, S. 17]). 

13 [Cantor / Dedekind 1937, S. 141] und [Cantor 1991, S. 351]. 
14 Siehe [Baire 1899, S. 65]. In der äquivalenten dualen Form besagt der Satz, dass der Durch-

schnitt abzählbar vieler offener und dichter Teilmengen von JR wieder dicht ist. 
15 Wir geben einen solchen Zuschnitt im nächsten Abschnitt. 
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16 Bei dieser Einschätzung ist auch erwähnenswert, dass die Eigenschaften dicht und überaildicht 
in einem Intervall in Cantors Arbeiten über „Lineare Punktmannigfaltigkeiten" aus den 1880er 
Jahren eine wichtige Rolle spielen (siehe z. B. [Cantor 1879, S. 2f], [Cantor 1880, S. 358], [Can-
tor 1882, S. 114]). Cantor hat aber wohl die Aussage des Baire'schen Satzes nie explizit formu-
liert. 

17 In manchen Lehrbüchern der Analysis wird allerdings der erste Cantor'sche Beweis der Uber-
abzählbarkeit von lR vorgestellt, siehe z.B. [Dieudonn 1985, S. 341. 

18 Vgl. hierzu den Brief von Cantor an Dedekind vom 25. Dezember 1873 ([Cantor / Dedekind 
1937, S. 16f]). 

19 [Cantor 1874, S. 2601] und etwas ausführlicher auch in [Cantor 1879, S. 6-8]. Speziell in der 
ausführlichen Form ist der Beweis nicht mehr kürzer als der Briefbeweis. 

20 Konkret können wir zum Beispiel immer entweder das linke oder rechte Drittelintervall von I 
wählen. Das Auswahlaxiom muss nicht verwendet werden. 

21 Den veröffentlichten Beweis von 1874 können wir auch in dieser Weise lesen, denn auch hier 
gilt für allen > 1, dass x I+i.  Bei obiger Variante wird diese Eigenschaft aber in den Mittel-
punkt gestellt. Cantor hat auf diese Eigenschaft explizit in seiner zweiten Darstellung des Argu-
mentes hingewiesen (siehe [Cantor 1879, S. 6]). 

22 Die Gleichmächtigkeit der Mengen JR und F ist nicht überraschend, wenn man an die Dualdar-
stellungen reeller Zahlen denkt, deren Nachkommaanteile wir ja als Elemente von F lesen kön-
nen. Die Feinheiten sind aber nicht völlig trivial, und zumindest ist die Verwendung des Satzes 
von Cantor-Bernstein hilfreich. Deswegen hat sich für den Beweis der Uberabzählbarkeit von 
JR eine direkte Anwendung der Diagonalmethode verbreitet (siehe Beispiel (1) unten). 

23 Es existiert dann ein Computerprogramm P, das die Elemente von A als Liste ausgibt, aber kein 
Computerprogramm P', das bei Eingabe von n stets in korrekter Weise entscheidet, ob n ein 
Element von A ist oder nicht. 

24 Genauer zeigte er: Seien f: 1R 	JR mit hrn f(x) = m und lim f(x)/f+i(x) = oo für alle n. 
Dann gibt es ein g : 	_ JR mit um g(x) = m und lim f(x)/g(n) = m für alle n (siehe [Bois- 
Reymond 1875, S. 365]). Der Beweis ist die erste bekannte diagonale Konstruktion. Die Arbeit 
ist auf deutsch in den Annalen erschienen und enthält gleich im ersten Absatz Formulierungen 
wie „nachdem ich meine Scheu überwunden, das Wort ‚unendlich' ... substantivisch zu gebrau-
chen", die Cantors Interesse geweckt haben dürften. Es ist gut möglich, dass Cantor die Arbeit 
studiert hat. 

25 Beweisskizze: Seien m 1 , m7.....m, ... und q1, q2 ..... q, ... Aufzählungen von M bzw. Q. 
Wir definieren f: M Q rekursiv durch „f(x,) = q ‚" wobei k minimal ist, sodass die bislang 
definierte Funktion f: {x .....x} -* Q weiterhin ordnungstreu ist. Wir erhalten so einen Iso-
morphismus f: M - Q. 

26 Eine linear geordnete Menge M heißt (linear) vollständig, wenn jede nichtleere nach oben be-
schränkte Teilmenge ein Supremum in der Ordnung besitzt. 

27 Formal sei Qo = Q x {0}, Q = Q x {l}, Q* = Qo uQ 1 , undes sei (q, 1)< (r,j)in Q', fallsi <j 
oder i = j und q < r in 

28 Siehe [Cantor 1878, S. 257f]. 
29 Unter der „klassischen Mathematik" verstehen wir informal das System der heute üblichen 

mathematischen Begriffsbildung und Argumentation. Genauer können wir „beweisbar in der 
klassischen Mathematik" lesen als „beweisbar in der Axiomatik von Zermelo-Fraenkel mit 
Auswahlaxiom". Weiter kann „beweisbar" durch „formal herleitbar in einem syntaktischen 
logischen Kalkül" präzisiert werden. 
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Abstract 

• Mathematics SubjectClassification: 65D20, 65G50, 65Q05, 97A04 
• Keywords and Phrases: Rundungsfehler, Drei-Term-Rekursionen, 

Bessel-Rekursion 

Dieser Artikel berichtet über eine Schüleraktivität, die seit Jahren am Zuse-Institut Ber-
lin (ZIB) bei Besuchen von Schülergruppen erprobt und verfeinert worden ist. Das hier 
zusammengestellte Material ist gedacht als Basis zur weiteren Ausarbeitung für eine 
Unterrichtseinheit in Leistungskursen Mathematik an Gymnasien. Inhaltlich wird von 
einem zwar für Schüler (wie evtl. auch Lehrer) neuen, aber leicht fasslichen Gegenstand 
ausgegangen: der Drei-Term-Rekursion für Besselfunktionen. Die Struktur wird erklärt 
und in ein kleines Programm umgesetzt. Dazu teilen sich die Schüler selbstorganisierend 
in Gruppen ein, die mit unterschiedlichen Taschenrechnern „um die Wette" rechnen. 
Die Schüler und Schülerinnen erfahren unmittelbar die katastrophale Wirkung von an 
sich „kleinen" Rundungsfehlern, sie landen - ebenso wie der Supercomputer des ZIB - 
im „Bessel'schen Irrgarten". Die auftretenden Phänomene werden mathematisch ele-
mentar erklärt, wobei lediglich auf das Konzept der linearen Unabhängigkeit zurückge-
griffen wird. Das dabei gewonnene vertiefte Verständnis fließt ein in die Konstruktion 
eines klassischen Algorithmus sowie eines wesentlich verbesserten Homer-artigen Algo-
rithmus. 
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Einleitung 

Dieser Artikel behandelt das allgemeine Thema „Rundungsfehler müssen nicht klein 
sein" exemplarisch an einem in Leistungskursen am Gymnasium realisierbaren Beispiel, 
der Drei-Term-Rekursion für die Bessel-Funktionen. Das hier beschriebene Vorgehen 
ist seit vielen Jahren bei Besuchen von Schülergruppen am ZIB erprobt und verfeinert 
worden. 

Der Artikel gliedert sich, wie folgt. In Kapitel 1 wird zunächst die Bessel-Rekursion 
eingeführt. Sodann wird die Vorwärtsrekursion numerisch durch einen Algorithmus 
umgesetzt. Die „Kontrolle" der Richtigkeit der Ergebnisse wird anhand der Rückwärts-
rekursion durchgeführt: Es stellt sich heraus, dass fast alle Zahlen falsch sind, die Schü-
ler landen im „Bessel'schen Irrgarten". In Kapitel 2 wird eine elementare Erklärung des 
Phänomens angeboten, die lediglich die Begriffe der linearen Unabhängigkeit und der 
Lösungsmenge benutzt. Auf dieser Basis wird der klassische Algorithmus (J. C. P. Mil-
1er, 1957) zur Berechnung von Bessel-Funktionen dargestellt. Er ist einfach program-
mierbar und kann von Schülern getestet werden. Das letzte Kapitel 3 behandelt einen 
wesentlich verbesserten Algorithmus (P. Deuflhard, 1977) zur Berechnung von Bessel-
Reihen; er ist eine Erweiterung des Horner-Algorithmus zur Auswertung von Poly-
nomen. Auch dieser Algorithmus ist einfach programmierbar, erfordert aber zu seinem 
Verständnis eine mathematische Vertiefung, die auf Matrizen und Vektoren aufbaut 
und für Interessierte in Kapitel 3.3 angefügt ist. Darüberhinaus sind Ubungsaufgaben 
in den Text an den jeweils passenden Stellen eingestreut. 

Friedrich Wilhelm Bessel (1784-1846) 

1 Bessel-Rekursion 

Der Astronom und Mathematiker Friedrich Wilhelm Bessel (1784-1846) hat für astro-
nomische Berechnungen spezielle Funktionen eingeführt, die heute nach ihm benannt 
sind. 
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Diese Funktionen spielen bei technischen Problemen mit Zylinder- oder Kugelsym-
metrie eine natürliche Rolle, heute insbesondere in der Nano-Optik (z. B. bei Glasfaser-
kabeln) und beim GPS, dem satellitengestützten Geo-Positionierungs-System. Bessel-
Funktionen werden üblicherweise geschrieben als Folge {Jk(x)} zum Index k = 0, 1,..., 
wobei wir uns auf reelles Argument x einschränken. Die Funktion Jk  (x) hat für Zylin-
derwellen dieselbe Bedeutung wie die Funktion cos(kx) für ebene Wellen. Bei zylinder-
symmetrischen Problemen repräsentieren die Bessel-Funktionen die „Innenraumlösun-
gen", während die sogenannten Neumann-Funktionen (siehe Abschnitt 1.1) die 
‚.Außenraumlösungen" darstellen. 

Quelle: wikipedla 

Glasfaserkabel: Illustration und Arbeitsprinzip 

Wir wollen und können an dieser Stelle nicht weiter auf diese Anwendungen und die 
Herleitung der Bessel-Funktion eingehen. Dazu müssten wir ausführlicher auf die Dif-
ferentialgleichungen der Elektrodynamik, die Maxwell-Gleichungen, eingehen, was den 
von uns gewählten Rahmen sprengen würde. Zum Verständnis der hier vorgestellten 
Schüleraktivität ist es ausreichend zu konstatieren, dass die hier betrachteten Funktio-
nen aus dem genannten Anwendungskontext stammen, schließlich untersuchen wir 
nicht die Bessel-Funktion selber, sondern wollen lediglich das Verhalten von Rekursio-
nen im Computer untersuchen und dabei insbesondere die entstehenden Rundungsfeh-
1er beobachten. Die 3-Term-Rekursion für die Bessel-Funktionen eignet sich für dieses 
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Experiment besonders gut, da sie von Schülern selber amTaschenrechner realisiert wer-
den kann. 

1.1 Mathematische Struktur 

In diesem Abschnitt wollen wir die wenigen Beziehungen und Begriffe bereitstellen, die 
wir im Folgenden benötigen werden. Unser zentrales Hilfsmittel ist die Eigenschaft, 
dass Bessel-Funktionen einer speziellen sogenannten Drei- Term-Rekursion genügen: 

Jk+!=Jk- Jk-1, k=l,2 	 (1.1) 

Falls, etwa für das Argument x = 2.13 (siehe [11), die beiden Werte 

J0 = 0.149 606 770 448 844, J1 = 0.564 996 980 564 127 	 (1.2) 

auf 15 Stellen genau gegeben sind, so lassen sich aus der Beziehung (1.1) rekursiv die 
Folgewerte 

J2 =--*J1 —J0=0.380906 826 324 984 

=
* .1, - = 0.150 321 003 144 763 

bis hinzu einem Zielwert J (für k = N - 1 in (1.1)) berechnen. 
Falls Werte JN, JN-I vorgegeben sind, so lässt sich daraus durch „Umkehrung" der 

Drei-Term-Rekursion gemäß 

Jk-! = JkJk+I, k=N—1,N-2,...,l, 	 (1.3) 

der Zielwert J0  berechnen. Die Rekursion (1.1) wird als Vorwärtsrekursion bezeichnet, 
entsprechend (1.3) als Rückwärtsrekursion. 

Darüberhinaus genügen die Besselfunktionen noch einer Summenbeziehung der 
Form: 

Jo+2J2k=1. 	 (1.4) 

Es verdient Erwähnung, dass derartige Summenbeziehungen charakteristisch für soge-
nannte Minima/lösungen von Drei-Term-Rekursionen sind. 

In den Anwendungsproblemen ist man meist nicht so sehr an Werten einzelner Bes-
sel-Funktionen interessiert, sondern an Bessel-Reihen, also an Reihen der Form 

S(x) = EAk Jk(X), 	 (1.5) 
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wobei die Koeffizienten {Ak} vorgegeben sind. Wie sich herausstellen wird, gibt es für 
solche Reihen einen Algorithmus (siehe Abschnitt 3.2), der sogar im Allgemeinen noch 
schneller ist, als wenn man erst die n + 1 benötigten Bessel-Funktionen Jk  ausrechnet 
und sie dann mit den Gewichten Ak aufsummiert. 

Ausdrücklich sei noch darauf hingewiesen, dass auch die Neumann-Funktionen 

{ Y,, (x) } der Drei-Term-Rekursion (1.1) genügen. Um sie aus der Vorwärtsrekursion zu 
erhalten, sind natürlich Startwerte l'o, Y1 vorzugeben, während die Rückwärtsrekur-
sion Startwerte YN, YN_1 benötigt. 

Merke: Erst durch zwei Werte ist festgelegt, welche dieser speziellen Funktionen 
man aus der Drei-Term-Rekursion erhält. 

Aufgabe 1. Eine Linearkombination von Bessel- und Neumann-Fumktionen ist durch 

Zk(x) = 0Jk(X) + ßYk(x) 

gegeben. Insbesondere gilt (Argument x weggelassen) 

(zo 

	[ JO 

Yo 

 (01) 

 

k\ z1J 	J1 Y1 
(1.6) 

a) Zeige, dass Zk der Drei-Term-Rekursion (1.1) genügt. 
b) Zeige, dass die Matrix in (1.6) für x=2.13 regulär ist. Was folgt daraus? 

(Yo(2.13) = 0.519600779415332, Y 1 (2.13) = —0.0354907117768913) 
c) Leite für die sogenannte Casorati-Determinante 

D(k,k+1) =JkYk+l Jk+lYk 

eine Zwei- Term-Rekursion her. Welche Folgerung ist daraus zu ziehen? 

1.2 Numerische Rechnungen 

Die im vorigen Abschnitt dargestellte Rekursion eignet sich hervorragend zur Berech-
nung sämtlicher Bessel-Funktionen, wenn zwei Startwerte bekannt sind. Wir gehen zu-
nächst von den Werten aus (1.2) für Jo,Jt  zu x = 2.13 aus und rechnen bis .123. In klei-
nen Schülergruppen (3-4), die sich selbst zusammenfinden, oftmals Schülerinnen gegen 
Schüler, wird dann „um die Wette" gerechnet. Die Schüler schreiben entweder ein klei-
nes Programm oder sie lösen das Problem in der Gruppe durch sukzessives Eintippen 
und Aufschreiben der Zwischenresultate. Gut ist es, wenn verschiedene Gruppen ver-
schiedene Taschenrechner haben. Die ersten beiden fertigen Gruppen dürfen dann ihre 
Resultate an die Tafel schreiben. In aller Regel sind diese Resultate verschieden, oftmals 
sehr verschieden. In Tabelle 1 geben wir die Resultate an, die wir durch Vergleich eines 
Schulrechners mit dem „Supercomputer" des ZIB erzielt haben. 

Frage: Wer hat Recht? 

Natürlich sollen die Schüler nicht lernen, dass der größere Computer immer Recht hat. 
Stattdesssen soll die Rechnung kontrolliert werden. 
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Idee: Kontrolle durch Rückwärtsrekursion. Seien die numerisch erhaltenen Resul-
tate mit J23, J22 bezeichnet. Sie werden in die Rekursion (1.3) für N = 23 eingesetzt, 
um daraus Werte .Jo , J1 zu berechnen. Wenn die Zahlen stimmen, sollte approximativ 
gelten: J0  Jo , J1 J1 . Dies zeigt sich aber keineswegs! Zur Illustration des Effektes 
stellen wir in Abbildung 1 die Resultate einer Wiederholung des Paares „Vorwärts-
rekursion-Rückwärtsrekursion" graphisch dar (logarithmische Skala). Offenbar gibt 
es keine Chance, zu den richtigen Werten zurückzukehren: Wir sind im „Bessel'schen 
Irrgarten" gelandet. 

k 	TI-30Xa Solar 	IBM pSeries 690 

0 149606770 E-01 1.49606770448844 E-01 
1 5.64996981 E-01 5.64996980564127 E-01 
2 3.80906827 E-01 3.80906826324984 E-01 
3 1.50321004 E-01 	1.50321003144764 E-01 
4 4.2532622*  E-02 4.25326191532232 E-02 
5 9.425932**  E-03 9.42592325231867 E-03 
6 1.720581**  E-03 1.72054165578469 E-03 
7 2.67483***  E-04 2.67269174637329 E-04 
8 3.7525****  E-05 3.61571446484618 E-05 
9 1.439*****E-05 433378985815840 E-06 

10 8.4135****  E-05 4.66431617665503 E-07 
II 7.75608 	E-04 4.58497443345861 E-08 
12 7.926841**  E-03 7.13381677623191 E-09 
13 8.8540907*  E-02 	3.45312897638016 E-08 
14 1.072854187E+00 4.14374884565947 E-07 
15 1.401470663E+01 5.41265029138480 E-06 
16 1.963173800E+02 7.58201362616988 E-05 
17 2.935354382E+03 1.13366920903930 E-03 
18 4.665910469E+04 1.80203080831450 E-02 
19 7.586692319E+05 3.03434918111721 E-01 
20 1.396997508E+07 5.39537259719639 E+00 
21 2.615882806E+08 1.01018116202947 E+02 
22 5.144108798E+09 1.98651114408063 E+03 
23 1.060016920E+11 4.09348928413313 E+04 

Tabelle 1. Taschenrechner gegen Supercomputer (* wegen Festkomma-Darstellung auf TI) 

Abbildung 1. N = 23: Bessel'scher Irrgarten (logarithmische Skala) 

Für Abbildung 2 haben wir N = 18 gewählt. Bei dieser Wahl scheint die Rekursion 
in sich zurückzukehren, also alles richtig zu sein. Aber dies ist eine Täuschung, wie sich 
aus den dazu eingetragenen richtigen Werte ergibt! 
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Abbildung 2. N = 18: Heimtückische Falle (logarithmische Skala). Die richtigen Werte sind 
zum Vergleich aufgetragen (Kurve, die nach rechts unten verläuft). 

k 	TI-30Xa Solar 	IBM pSeries 690 	exakt 

0 1.49606770 E-0I 
5.64996981 E-01 

2 3.80906827 E-01 
3 1.50321004 E-01 
4 4.2532622*  E-02 
5 9.425932**  E-03 
6 1.720581**  E-03 
7 2.67483***  E-04 
8 3.7525****  E-05 
9 1.4396" E-05 

10 8.4135****  E-05 

	

II 7.75608° 	E-04 
12 7.926841**  E-03 
13 8.8540907*  E-02 
14 1.072854187 E+00 
15 1.401470663 E+01 
16 1.963173800 E+02 
17 2.935354382 E+03 
18 4.665910469 E+04 
19 7.586692319 E+05 
20 1.396997508 E+07 
21 2.615882806 E+08 
22 5.144108798 E+09 
23 	1.060016920 E+ll 

1.49606770448844 E-01 
5.64996980564127 E-0 1 
3.809068263 24984 E4 1 
1.50321003144764 E-01 
4.25326191532232 E-02 
9.42592325231867 E-03 
1.72054165578469 E-03 
2.67269174637329 E-04 
3.61571446484618 E-05 
4.33378985815840 E-06 
4.6643161 7665503 E-07 
4.58497443345861 E-08 
7.13381677623191 E-09 
3.45312897638016 E-08 
4.14374884565947 E-07 
5.412650291 38480 E46 
7.58201362616988 E-45 
1.13366920903930 E-03 
1.80203080831450 E-02 
3.03434918111721 E-01 
5.39537259719639 E+00 
1.01018116202947 E+02 
1.98651114408063 E+03 
4.09348928413313 E+04 

1.49606770448844 E-0 1 
5.64996980564127 E-01 
3.80906826324984 E--0 1 
1.50321003144763 E-01 
4.25326191532221 E-02 
9.42592325231519 E-03 
1.72054165576939 E-03 
2.67269174554612 E-434 
3.61571441200797 E-05 
4.33378597180825 E-06 
4.66399303652013 E-07 
4.55502127176888 E-08 
4.07237700017248 E-09 
3.35725312423605 E-10 
2.56784566414815 E--1 1 
1.83186408413325 E-12 
1.22445951944503 E-13 
7.69951315506101 E-15 
4.57074943794664 E-16 
2.56971625952894 E-17 
1.37208842176626 E-1 8 
6.97561233257824 E-20 
3.38443254494399 E-21 
1.57037227051201 E-22 

Tabelle 2. Vorwärtsrekursion: Vergleich der berechneten Zahlen mit den „exakten" Zahlen, 
d.h. hier auf 15 Stellen genau. 

In Tabelle 2 vergleichen wir abschließend die richtigen Zahlen mit den Zahlen von 
Tabelle 1, die wir mit den beiden unterschiedlichen Computern in Vorwärtsrekursion 
berechnet hatten. Das Resultat ist klar: Beide Rechner lagen falsch, auch der Supercom-
puter war nicht super! 

Frage: Woher haben wir die richtigen Zahlen? 
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Nachfolgend, in Kap. 2 und 3, werden zwei alternative Algorithmen angegeben, die die-
se Frage beantworten. 

Aufgabe 2. Ver(fiziere, dass für die „exakten" Werte in Tabelle 2 die Beziehung 

Jk(x) 	Jk_1(X), x = 2.13 

gilt und die D(fferenz  mit ',i'achsendem k betragsnäßig kleiner wird. Leite daraus eine ein-
fache asymptotische Formelfür Jk(X)  her, diefürfestes x und großes k gilt. 

2 K'assischer Algorithmus 

Im Jahre 1952 veröffentlichte der englische Mathematiker J. C. P. Miller (1906-1981) 
einen Algorithmus zur Berechnung von Bessel-Funktionen [4], der nun dargestellt wer-
den soll. Er ist einfach programmierbar und eignet sich gut für den Unterricht an Gym-
nasien. 

J.C.P. Miller (1906-1981) 

2.1 Gestörte Bessel-Rekursion 

Miller machte die Beobachtung, dass Bessel-Funktionen sehr wohl in Rückwärts-
richtung korrekt berechenbar sind. Wir zeigen dies in Tabelle 3, wobei wir die Werte 
.J23 , J22  auf 15 Stellen genau vorgegeben haben. 

Eine Erklärung dieses Phänomens ist, dass die Bessel-Rekursion, wie in obigem Ab-
schnitt 1.1 dargestellt, einen zweidimensionalen Lösungsraum hat, mit Basis etwa die 
Bessel-Funktionen {Jk}  und die Neumann-Funktionen { Y}. Asymptotisch gilt: 

limJk=0, limYk=o'c. 	 (2.7) 
k—oc 

Das obige Resultat für die Bessel-Funktionen ergibt sich im Wesentlichen aus der Sum-
menbeziehung (1.4). Es zeigt sehr schön die Bedeutung der Bezeichnung Minimallösung, 
die wir oben bereits erwähnt hatten. 
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k 	berechnet exakt 

23 	1.570372270512014 E-22 1.570372270512014 E-22 
22 	3.384432544943993 E-21 3.384432544943993 E-21 
21 	6.975612332578245 E-20 6.975612332578247 E-20 
20 	1.372088421766259 E-18 1.372088421766260 E-18 
19 	2.569716259528942 E-17 2.569716259528942 E-17 
18 	4.570749437946647 E-16 4.570749437946648 E-16 
17 	7.699513155061015 E-15 7.699513155061018 E-15 
16 	1.224459519445032 E-13 1.224459519445033 E-13 
15 	1.831864084133251 E-12 1.831864084133251 E-12 
14 	2.567845664148156 E-11 2.567845664148157 E-11 
13 	3.357253124236056 E-10 3.357253124236057 E-10 
12 	4.072377000172484 E-09 4.072377000172484 E-09 
11 	4.555021271768889 E-08 4.555021271768890 E-08 
10 	4.663993036520133 E-07 4.663993036520134 E-07 
9 	4.333785971808257 E-06 4.333785971808258 E-06 
8 	3.615714412007974 E-05 3.615714412007974 E-05 
7 	2.672691745546123 E-04 2.672691745546123 E-04 
6 	1.720541655769391 E-03 1.720541655769391 E-03 
5 	9.425923252315197 E-03 9.425923252315197 E-03 
4 	4.253261915322215 E-02 4.253261915322214 E-02 
3 	1.503210031447633 E-01 1.503210031447633 E-01 
2 	3.809068263249844 E-01 3.809068263249842 E-01 
1 	5.649969805641275 E-01 5.649969805641273 E-01 
0 	1.496067704488443 E-01 1.496067704488443 E-01 

Tabelle 3. Rückwärtsrekursion: Vergleich der berechneten Zahlen mit den „exakten" Zahlen, 
d. h. hier auf 15 Stellen genau. 

Bei Darstellung von Startwerten J0 ‚ J1 mit endlicher Genauigkeit im Rechner erhält 
man leicht gestörte Werte Jo, J1, die sich wiederum in die Basiselemente entwickeln las-
sen. So erhält man etwa 

jo = (1 + 6)Jo + E Y0, ji = (1 + 6)J1 + E. Y1 ‚ 	 (2.8) 

wobei für die Störgrößen 6 und 5 gilt: 

6aeps, E2aeps, 

wobei eps die relative Rechnergenauigkeit bezeichnet, die definiert ist als die größte 
Maschinenzahl die bei der Addition zu eins als Resultat wieder eine Eins ergibt: 
float(l + eps) = 1. 

In einer Zeile ist zu zeigen, dass deshalb (unter Weglassung aller Rundungsfehler in 
Zwischenschritten) die tatsächlich berechnete Lösung die Gestalt 

Jk=(l+6)Jk+rYk, k=0,l,... 

hat. Diese Darstellung, zusammen mit der Eigenschaft (2.7), erklärt elementar die Ab-
bildung 11: Offenbar bricht bei Index 12 oder 13 die parasitäre Lösung a - )'o  in Vor-
wärtsrichtung durch, während dies in Rückwärtsrichtung gerade die Lösung (1 + 6)JN 
tut. Der Irrgarten hat also System: In Vorwärtsrichtung dominieren die Neumann-
Funktionen den Verlauf, in Rückwärtsrichtung die Bessel-Funktionen. 
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Aufgabe 3. Zeige, ausgehend von den asymptotischen Darstellungen für die Bessel-
und Neumann-Funktionen [5] 

1 
Jk(x) = 	) 	

Jk(X) fr k 00 

bzw. 

ex -k 
Yk(x) = Yk(X) für k -* 00, 

dass in der Drei-Term-Rekursion (1.1) für k+l  Auslöschung in Vorwärtsrichtung und 
für Yk-1  Auslöschung in Rückwärtsrichtung auftritt. 

a) Durch Aufstellung einer Tabelle für k, 2k jk(x), k-1 (x) bzw. 

kk(x), Yk+l(x). 

b) Durch eine Grenzwertbetrachtung der Quotienten Jk(x)/Jk_l  (x) bzw. 
Yk + 1(x). 

2.2 Details der Realisierung 

Auf der Basis der obigen Einsicht entwickelte Miller einen Algorithmus, der heute sei-
nen Namen trägt. Er sei hier kurz informell angegeben: 

Algorithmus 2.1 Miller-Algorithmus 

1. Wähle einen Abbrechindex N und einen „kleinen" Wert a> 0. Das Argument x sei 
vorgegeben. 

2. Wähle Startwerte 1N = 0 ‚ JN-1 = 
3. Berechne Werte Jk  aus der Rückwärtsrekursion (1.3). 
4. Berechne den Skalierungsfaktor (vergleiche (1.4)) 

[N/2] 
= J0  +2 	J2k. 

5. Berechne Approximationen der Bessel-Funktionen gemäß 

(N)Jk 	k=0,...,n<N. 

Als Approximation der Summenbeziehung (1.4) gilt hierbei offenbar 

j(N) 
 +2J = 1. 

In Tabelle 4 zeigen wir Approximationen J(x) für x = 10.113 und verschiedene Ab-
brechindizes N. Wie zu beobachten, „bleiben die Stellen stehen", wenn N hinreichend 
groß gewählt wird. 
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Frage: Wie groß ist N bei beliebig vorgegebenem x zu wählen? 

Als Strategie wird man die Rechnungen mit wachsendem N so oft wiederholen, bis die 
Resultate ausreichend genau sind, also hinreichend viele Stellen stehen bleiben. Dabei 
ist es störend, dass beim Ubergang von N nach N + 1 immer die gesamte Rückwärts-
rekursion mit etwa 4N Operationen durchgerechnet werden muss. Im folgenden Kapitel 
wird ein neuerer Algorithmus dargestellt, der beim Ubergang von N nach N + 1 nur 
etwa 4 Operationen benötigt. 

3 Ein Horner-artigerAlgorithmus 

Der Horner-Algorithmus zur ökonomischen Auswertung von Polynomen gehört an 
vielen Schulen zum Standardstoff. Der hier vorgelegte Algorithmus für die Auswertung 
von Bessel-Reihen baut darauf unmittelbar auf. 

k 	JÄ(10.13),N=30 	 .Jk(IO.13).N35 	 Jk(10.13),N40 

20 1.44221677720514 E-05 
19 	5.32531113143127 E-05 
18 	1.85342711788055 E-04 
17 6.05417927616585 E-04 
16 1.84666217853415 E-03 
15 5.22806575580816 E-03 
14 1.36362571377783 E-02 
13 3.24634643387418 E-02 
12 6.96855664364851 E-02 
11 1.32635607179091 E-01 
10 2.18368072057097 E-01 
9 2.98495828274211 E-01 
8 3.12029253602903 E-01 
7 1.94344058956435 E-01 
6 -4.34392412248093 E-02 
5 -2.45802192687700 E-01 
4 -1.99208530431360 E-01 
3 8.84805497014330 E-02 
2 2.51615568754025 E-01 
1 1.08740677730093 E-02 
0 -2.49468664948890 E-01 

1.44221681315129 E-05 
5.32531126416038 E-05 
1.85342716407573 E-04 
6.05417942706140 E-04 
1.84666222456071 E-03 
5.22806588611349 E-03 
1.36362574776510 E-02 
3.24634651478676 E-02 
6.96855681733417 E-02 
1.32635610484926 E-01 
2.18368077499746 E01 
2.98495835713980 E-01 
3.12029261379981 E-01 
1.94344063800304 E-01 

-4.34392423074974 E-02 
-2.45802198814121 E-01 
- 1.99208535396472 E-01 

8.84805519067394 E-02 
2.51615575025341 E-01 
1.08740680440368 E-02 

-2.49468671166696 0-01 

1.44221681315540 E-05 
5.32531126417554 E-05 
1.85342716408101 E-04 
6.05417942707864 0-04 
1.84666222456597 E-03 
5.22806588612838 E-03 
1.36362574776898 E-02 
3.24634651479600 E-02 
6.96855681735401 0-02 
1.32635610485304 E-01 
2.18368077500368 E-01 
2.98495835714830 E-01 
3.12029261380870 E-01 
1.94344063800858 E-01 

-4.34392423076210 E-02 
-2.45802198814821 E-01 
- 1.99208535397040 E-01 

8.84805519069914 E-02 
2.51615575026057 0-01 
1.08740680440678 0-02 

-2.49468671167406 0-01 

Tabelle 4. Approximationen aus Miller-Algorithmus für N = 30, 35, 40, jeweils nur für 
k=20..... 0. 

3.1 Horner-Algorithmus als Zwei-Term-Rekursion 

Die Auswertung von Polynomen verlangt die Berechnung von Summen der Form 

S(x) = >Ak xk 

188 	 JB 110. Band (2008), Heft 4 



F. Deuflhard et al.: Bessel'scher lrrgarten - Rundungsfehler müssen nicht klein sT 

Geeignetes Ausklammern führt dabei auf den Horner-Algorithmus, bei dem die Summe 
„von hinten her" ausgewertet wird: 

S(x) = Ao+Aix+...+Aif+A 

= Ao+x(Ai +... +x(Ai +xA)). 

Hier wollen wir den Algorithmus etwas anders herleiten. Wir gehen aus von der Tatsa-
che, dass die Polynome Pk = x' einer Zwei-Term-Rekursion genügen: 

k+1 = x P. 

Mit dem bequemen Startwert P0 = 1 ist dies eine (homogene) Vorwärtsrekursion. Der 
Effekt des Ausklammerns lässt sich darstellen als eine inhomogene Zwei-Term-Rekur-
sion der Form 

U = A n  
= 

U0 = Ao+xU1 

sn 	= Uo. 

Dies ist offenbar eine Rückwärtsrekursion, die in der Literatur als „adjungierte" Rück-
wärtsrekursion bezeichnet wird. Der Horner-Algorithmus lässt sich demnach auch als 
„adjungierte Summation" [3] bezeichnen. 

3.2 Erweiterung auf Drei-Term-Rekursionen 

Die Sichtweise des vorigen Abschnitts liefert den Schlüssel zur Erweiterung des Homer -
Algorithmus auf allgemeine Drei-Term-Rekursionen, die 1977 von P. Deuflhard [2] ge-
leistet worden ist. Für die Konstruktion derartiger Algorithmen wichtig (aber hier nicht 
bewiesen) ist die Tatsache, dass die adjungierte Rückwärtsrekursion numerisch genau 
dann brauchbar ist, wenn dies für die ursprüngliche Drei-Term-Rekursion in Vorwärts-
richtung gilt und umgekehrt. Eine ausführliche theoretische Begründung findet sich in 
der obigen Originalliteratur und, etwas konziser, in dem Lehrbuch [3, Kap. 61. Für Bes-
sel-Reihen werden wir daher die Rückwärtsrekursion nach Miller als Ausgangspunkt 
für eine adjungierte Vorwärtsrekursion nehmen. Mit den Bezeichnungen des Abschnitts 
2.2 haben wir also Summen der folgenden Gestalt zu berechnen: 

!1 

S (N) (X) = 	Ak 
(N) 
k (x), 

k=O 

wobei der Abbrechindex N adaptiv so zu wählen ist, dass &(N)  korrekt auf vorgegebene 
Genauigkeit e ist. Gegeben die Rückwärtsrekursion, wie sie in dem Algorithmus 2.1 rea-
lisiert ist, gelangen wir zu einer adjungierten Summation in Vorwärtsrichtung (Herlei-
tung siehe im nachfolgenden Abschnitt 3.3), also zudem folgenden 

JB 110. Band (2008), Heft 4 	 189 



Ubersichtsarlikel 	Historische Beiträge 	Berichte aus der Forschung 	Buchbesprechungen 

Algorithmus 3.1 Adjungierte Summation von Bessel-Funktionen 

g 	:= 0;f 	-1;u := Ao;N := 1 
repeat 	 - 

»1 :=2mod(N+1,2)f; 
Zu :=fAN_gzu_Jiu; 

g :=i-2N/x+g; 
Lu :=zu/g; 
u 
if(N > n and IA ul < jul - €) then exit; (Lösung S, 	u) 
g 	:=-1/g; 
f :=fg; 
N :=N+1; 

until (N > Nmax ) 

Mit diesem Algorithmus lassen sich sodann beliebige Summen zu vorgegebenen Ko-
effizienten {Ak } auswerten, ohne dazu den Abbrechindex N vorab festzulegen. In Ta-
belle 5 sind einige Beispiele angegeben. Wie schön zu sehen ist, hängt das „Stehenblei-
ben gültiger Ziffern" sowohl vom Argument x also auch von den Koeffizienten in der 
Summe ab. 

Aufgabe 4. Spezialisiere den .4lgorithmus 3.1 für den Fall, dass nur eine einzige Bes-
sel-Funktion J. (x) zu berechnen ist. 

N 
1024 

51 Jf(I0.13) 

1000 9873630161365381 E+05 10 1.722923265030349 E-01 
1010 1.009291691691664 E+06 12 2.273511331914537 E-01 
1020 1.028158041678334 E+06 14 2.203454815320414 E-01 
1030 9.073090336047271 E+05 16 2.185693492939857 E-01 
1040 7.435725532242977 E+05 18 2.183830486762933 E-01 
1050 7.150012371538359 E+05 20 2.183689776345255 E-01 
1060 7.123942230060821 E+05 22 2.183681224273101 E-01 
1070 7.122257868444083 E+05 24 2.183680793897036 E-01 
1080 7.122176541637876 E+05 26 2.183680775681829 E-01 
1090 7.122173576457674 E-1-05 28 2.183680775024694 E-01 
1100 7.122173493609600 E+05 30 2.183680775004246 E-01 
lilO 7.122173491807199 E+05 32 2.183680775003691 E-01 
1120 7.122173491776222 E+05 34 2.183680775003678E-01 
1130 7.122173491775796 E+05 36 2.183680775003678E-01 
1140 	7.122173491775794 E+05 

Tabelle 5. Adjungierte Summation. 
Links: spezielle Bessel-Reihe zu A 0  = l,Ak = k 2 ,x = 1024.13undn = 1024. 
Rechts: Bessel-Funktion J10 zu x = 10.13. 
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3.3 Mathematische Herleitung 

Gesucht sind Approximationen der Form 

SN) = > AkJ(X), 	 (3.9) 

für verschiedene „Abbrechindizes" N > n. Bei Berechnung mittels des Miller-Algorith-
mus wäre der Gesamtaufwand recht groß, da für jedes neue N sämtliche N Werte 
neu berechnet werden müssen. Dies lässt sich durch Verwendung einer sog. adjungier-
ten Summation vermeiden. 

Der Schlüssel zur Herleitung dieses Algorithmus ist, dass wir, zunächst für festes 
N > n, einen Schritt des Miller-Algorithmus durch ein lineares Gleichungssystem dar-
stellen: 

Jo  (N) 
0 

	

—1 CN_I —1 	= 
—1 	C\ 	: 	0 

m0 	... 	... 	... 	mv 	j(N) 	1 

=:Me MatN+j(R) 	
j 

Genauer müssten wir eigentlich MN, 
j(N) 1.(.v) für die Ausdrücke M, J, r schreiben, um 

ihre N-Abhängigkeit zu berücksichtigen, was wir jedoch aus Gründen einer einfacheren 
Schreibweise nicht tun. Elementweise gilt: die ck = 2k/x sind die Koeffizienten der Bes-
sel-Rekursion (1.1), die mk die Gewichte in der Normierungsbedingung (1.4), d.h. 
m0 = 1‚m2k_1 = 0,m2k = 2, k = 0..... 

Führen wir noch den Vektor A := (Ao, . . . ‚ A, 0,.. . j)T e RN  für die Koeffzien-
ten ein, so lässt sich die Summe SN)  als Skalarprodukt 

S(N) = AkJ = (Ä,J) mit MJ = r 

schreiben. Setzen wir voraus, dass M invertierbar ist, so folgt 

SN) = (A,Mr) = (M_TA ,r) . 	 (3.10) 

Hierbei ist MT = (m1 ) die zu M = (m11 ) transponierte Matrix. Definieren wir einen 
Vektor u := M_TA ,  so gilt 

S (N)  = (u, r) = UN 

Wenn wir also für u das adjungierte Gleichungssystem 

MTu = A 
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lösen, so benötigen wir am Schluss lediglich die letzte Komponente UN. In expliziter 
Schreibweise lautet dieses Gleichungssystem 

— 1 	 m0 	u0 	Ao 

C l  

—1 	 = 

C 	—1 
—j CN mN UN 	AN 

Ausführen einer Gauß—Elimination auf der Matrix MT  und der rechten Seite A liefert, 
aufgrund der speziellen Struktur von MT,  das obere Dreieckssystem 

Ru = e, 

mit einer oberen Dreiecksmatrix R der Gestalt 

fo 

R:= 	 . 

1 fv 
fN 

Genaueres Durchrechnen zeigt: Die Komponenten von e = (eo, . . . ‚e) und 
f = (J, . . . 'fv) sind jeweils durch die folgenden 3-Term-Rekursionen gegeben: 
a) e_ 1  := 0, e := —A0 und 

ek := (Ak +ek_2 - ckek_t) für k = 1,... ‚N, 	 (3.11) 

b) fi := 0,fo := —m0 und 

	

fk := — (mk +fk_2 - ckj_l) für k = 1,... ‚N . 	 (3.12) 

Dabei ist Ak := 0 für k > n. Die zu approximierende Summe (3.9) ergibt sich schließlich 
zu 

(N)_ 	eN 

IN 

Mit den Rekursionen (3.11) und (3.12) benötigen wir 0(1) Operationen, um aus SN) 

die nächste Approximation SP'' zu berechnen im Gegensatz zu 0(N) Operationen 
bei dem direkt aus dem Miller-Algorithmus abgeleiteten Verfahren. Außerdem ist der 
Speicherbedarf geringer und nicht von N, sondern nur von n abhängig (falls die Koeffi-
zienten {Ak} als Feld gegeben sind). Wegen (3.10) nennen wir das eben hergeleitete Ver- 
fahren die adjungierte Summation von Minima/lösungen. 

Herleitung des robusten Algorithmus 3.1. Wir wollen einmal anhand dieses Verfah-
rens verdeutlichen, wie man, ausgehend von den Rekursionen (3.11) und (3.12), zu ei-
nem brauchbaren Algorithmus gelangen kann. Zunächst ersetzen wir die Drei-Term-
Rekursion (3.11) für ek durch ein System von Zwei-Term-Rekursionen für 
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(k) 	ek 
/. Uk := Uk = - und Uk := Uk - Uk_I 

1k 

da wir genau an diesen beiden Werten (uk als Lösung, /uk zur Überprüfung der Genau-
igkeit) interessiert sind. Ferner ist zu beachten, dass diefk und ek sehr groß werden und 
aus dem Bereich der im Rechner darstellbaren Zahlen fallen können. Statt der fk  ver-
wenden wir daher die neuen Größen 

g : =L und j =1 
fk 	 fk 

Bei der Transformation der Rekursionen (3.11) und (3.12) auf die neuen Größen 
uk, uk,gk undfk erweist es sich als günstig, zusätzlich noch 

- 	- 	k - Mk  
gk.=—=------ Uflu  mk. 

. 
=mkjk_I= —  

gk 	f--i 	 fk-1 

einzuführen. Aus (3.12) folgt damit (Division durch —fk-1),  dass 

gk=rnk — ck+gk_1 für k> 1, 	 (3.13) 

und aus (3.11) (Division durch —fk-I  und Einsetzen von (3.13)), dass 

gkUk =j_lAk — gk_1uk_1 — mkuk_1 

Ordnen wir die Operationen nun so an, dass wir möglichst wenig Speicherplatz benöti-
gen und lassen wir die dann nicht mehr nötigen Indizes weg, so erhalten wir den obigen 
Algorithmus 3.1, der sich in dieser Form für eine Implementierung eignet. 
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Karl Stein was born on the first ofJanuary 1913 in Hamm in Westfalen, grew up there, 
received his Abitur in 1932 and immediately thereafter began bis studies in Münster. 
Just four years later, under the guidance of Heinrich Behnke, he passed his examina-
tions for teaching in high schools (Staatsexamen), received his doctor's degree and be-
came Behnke's assistant. 

Throughout bis life, complex analysis, primarily in higher dimensions ("mehrere 
Veränderliche"), was the leitmotif of Stein's mathematics. As a fresh Ph.D. in Münster 
in 1936, under the leadership ofthe master Behnke, he had already been exposed to the 
fascinating developments in this area. The brilliant young Peter Thullen was proving 
fundamental theorems, Henri Cartan had visited Münster, and Behnke and Thullen 
bad just written the book on the subject. lt must have been clear to Stein that this was 
the way to go. 

Indeed it was! The amazing phenomenon of analytic continuation in higher dirnen-
sions had already been exemplified more than 20 years before in the works of F. Har-
togs and E. E. Levi. Thullen's recent work had gone much further. In the opposite direc-
tion, Cartan and Thullen had proved their characterization of domains in C which ad-
mit a holomorphic function which can not be continued any further. Behnke himself 
was also an active participant in mathematics research, always bringing new ideas to 
Münster. This was indeed an exciting time for the young researcher, Karl Stein. 

Even though the pest of the Third Reich was already invading acadernia, Behnke 
kept things going for as long as possible. But this phase of the Münster school of com-
plex analysis could not go on forever. Although Stein was taken into the army, during a 
brief stay at home he was able to prepare and submit the paper which contained the re-
sults from his Habilitationsarbeit which was accepted in 1940. At a certain point he was 
sent to the eastern front. Luckily, however, the authorities were informed of his mathe-
matical abilities, and he was called back to Berlin to work until the end of the war in 
some form ofcryptology. Stein told me he was not very good at this. 

Almost immediately after the war, in a setting of total destruction, Behnke began to 
rebuild bis group, and very soon Stein became the mathernatics guru in Münster. At the 
time there were only two professor positions in pure mathematics, those of Behnke and 
F. K. Schmidt. Although it must have been very difficult, Behnke somehow found a Po-
sition for Stein which he held from 1946 until 1955. 

In 1955 Stein took a chair ofmathematics at the Ludwigs-Maximilian-Universität 
in München where he stayed for the remainder of his academic career. There he contin-
ued bis mathematics and built his own group in complex analysis. A number of his doc-
toral students later became professors at universities here in Germany. One of the most 
exciting periods in München was certainly that in the late 1960s with the young Otto 
Forster, who received his doctorate in 1961, leading a group of up-and-coming re-
searchers. 

Not only being an outstanding researcher and teacher, Karl Stein worked tirelessly 
on all sides of academia. Among other activities he was managing editor of Manuscrip-
ta Mathematica from 1969 until 1983, and in 1966 he was president of the DMV. He 
was awarded numerous honors, including membership in the Bavarian and the Aus-
trian Academies of Sciences, and corresponding membership of the Göttingen Acad- 
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emy of Sciences. In 1973 he received an honorary doctor's degree from the faculty of 
mathemetics in Münster, and in 1990, on the occasion of the lOOth anniversary of the 
founding ofthe DMV, he was awarded the inaugural Cantor-Medaille. 

Up until a few years before his death in October of 2000 Stein was still actively 
thinking about and even doing mathematics. 1 remember his taik in Bochum in the fall 
of 1992, just before his 80th birthday. He still radiated his intense interest in discovery 
and the joy of being involved with something so beautiful. Even the youngest of stu-
dents who heard that talk were mesmerized, knowing they had experienced the real 
thing! 

As the reader has certainly noticed we have barely touched upon the mathematics 
that so fascinated Stein and his contributions as a researcher and teacher. Let us devote 
the remainder ofthis article to a chronological sketch ofsome ofthe high points. 

Although Stein's thesis does not reflect his later work, it does reflect one of the main 
directions of that time, namely "analytic continuation", and it also shows that even at 
this beginning stage he was ahead of his time. lt was already known that a function 
which is holomorphic in a neighborhood of the standard Euclidean sphere in C, n> 1, 
extends holomorphically to the full Euclidean ball. In his thesis (see [Si]), under as-
sumptions, e.g., on dimension, which we now know to be inessential, Stein shows that 
such results are in fact local in nature. For example, a function which is holomorphic in 
a neighborhood of a piece of the sphere extends to an open set which only depends on 
that piece. He even realized that such resuits are possible for functions holomorphic in 
neighborhoods of higher-codimensional real manifolds. These results, which represent 
a change in viewpoint, are precursors to the highly developed modern theory of Cau-
chy-Riemann manifolds. 

One group of leading problems of that period revolved around the question of 
whether or not holomorphic or meromorphic functions could be constructed with cer-
tain prescribed properties. The model situations were the theorem of Mittag-Leffier and 
the Weierstrass-theory ofinfinite product expansions on the complex plane. In the for -
mer case, at each point ofa divergent sequence {z} a finite negative part P ofa Laur-
ent series is given and one asks if there is a meromorphic function f on the complex 
plane which is holomorphic everywhere except at points of the sequence with f 
being holomorphic near each z, 2 . Formulated without the details, one asks if one can ar-
bitrarily prescribe the principal parts ofa meromorphic function. 

In the original Weierstrass-theory one prescribes a positive integer m at each of the 
points z, and asks for the existence ofa holomorphic functionf whose zeros only occur 
at points of the sequence and the orders ofthe zerosf at these points should be the given 
integers. More generally one allows m, 7  to be an arbitrary integer and asks for a mero-
morphic function with prescribed zeros and poles. In this case the "principal part" P is 
replaced by D = (z - z)' and the requirement is that f-  is holomorphic near z,. 
Briefly stated, one asks if the "divisor" of a meromorphic function can be arbitrarily 
prescribed. 

Due to the early work of P. Cousin ([C]) one referred to the higher-dimensional ver-
sions of these as the additive and multiplicative Cousin problems or simply Cousin 1 
and II. 
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As Stein was starting out, it was well-known that the appropriate domains for so!-
ving the interesting problems ofthe time, such as the Cousin problems, were the "Regu-
laritätsbereiche". Precisely speaking, they can be defined as domains D in C1  so that gi-
yen any divergent sequence {x} in D there exists a functionf holomorphic an D with 
limf(x) 1 = oo. In fact such a domain possesses a holomorphic function which cannot 
be continued across any boundary point. In other words D is the "region of regularity" 
for that function or its "domain of holomorphy". In the mid 1930s Cartan ([Ca]) and 
Oka ([0]) had already proved definitive resuits for Cousin 1 for domains in C 1 : lfD isa 
domain ofholomorphy, then every Cousin 1 problem an D is solvable! 

Immediately after his thesis Stein turned to the Cousin problems. Later he discov-
ered the correct abstract setting for solving these and many other problems, e.g., an 
complex manifolds or even complex spaces, but at this point his attention was focused 
an Cousin II for domains in 

The situation at the time of Stein's entry inta the subject is beautifully described in 
([S2]). There were already a number of fascinating examples which showed that solving 
this multiplicative problem on D required more than D just being a domain of holomor-
phy. There was a natural way to logarithmically change this to the additive problem, 
je., to Cousin 1, but in the process problems ofwell-definedness arise. This was not un-
known in complex analysis. Monodromy, something in the fundamental group or first 
homology, was well-known, but the obstruction to Cousin II was clearly higher order. 
Nowadays we know that this is the Chern dass ofthe line bundle associated to the divi-
sor and, at least when the ambient manifold is compact, we can regard it as the Poincar 
dual of the divisor itseif. But in those days these concepts were not available. Further-
marc, even had they been an hand, in the noncompact setting which is appropriate for 
Cousin II, relating a deRham- or Cech-class to something geometric is not a simple 
matter. 

In the late 1930s, without modern topological methods, but armed with strang geo-
metric insight, this is exactly what Stein had in mmd: understanding this geometric ob-
struction. Being able ta spend the year 1938 with Seifert in Heidelberg was in this regard 
certainly his good fortune or maybe even fate. In any case he returned to Münster being 
one of the few (perhaps the only) complex analyst who was in the position of applying 
"modern" topological methods to problems such as Cousin II. 

In the work ([S10]), which should be regarded as ane of the most important in this 
early phase of several complex variables, Stein completely solved Cousin II and the re-
lated Poincar problem using methods which opened doors to important new direc-
tions. The Oka principle, that a well-formulated problem in the complex analytic setting 
has a holomorphic solution an a domain of holomorphy if and only if it has a topologi-
cal solution, could be seen in precise form in the hands of Stein. In brief, modulo details 
which are now well-understood, here is what Stein did. 

In its simplest form Causin II amounts to the following: On a domain of holomor-
phy D we are given a l-codimensional subvariety M, i.e., a closed subset which is locally 
defined as the 0-set of a holomorphic function. We ask for a function which is giobaily 
defined and holomorphic an D, which vanishes exactly an M and vanishes there exactly 
of order one. Carefully worrying about triangulations, orientations and all other mat- 
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ters that were known to be delicate in the infant state of the topology of the days, he de-
veloped a theory which led to well-defined intersection numbers M.K, where M is as 
above, or more generally a divisor in D, and K runs through the 2-dimensional homol-
ogy cycies. Under minor technical conditions, even for domains finitely spread over 
domains of holomorphy, he showed that a given divisor is the divisor of a meromorphic 
function if and only if all of these (topologically defined!) intersection numbers vanish. 
Not only did Stein prove this, he could see the topological obstruction! - 1 was fortu-
nate to talk with hirn about this 011 a number of occasions. As was mentioned above, 
nowadays we often only mouth something about the Chern dass, either deRahm or 
Cech, of the associated bundle, and maybe we are not nearly seeing as much as Stein did 
in the late 1930s! 

Stein's, and also Behnke's, interests in Cousin type problems were not only restricted 
to the higher-dimensional setting. Although the questions they were discussing for do-
mains in C', n > 2, had long before been completely handled for domains in the dorn-
piex plane, not much was known for general noncompact Riemann surfaces. On the 
one hand, that situation was simpler, because there were 110 higher order topological 
obstructions. On the other hand, the complex analysis looked quite difficult: Why 
should a noncompact Riernann surface possess even one nonconstant holomorphic 
function? In fact, the likes of Koebe and Caratheodory had attempted without success 
to construct such functions! 

From their experience with higher-dimensional domains, and knowledge of proofs 
of theorems of Mittag-Leffier type for plane domains, Behnke and Stein at least knew 
what to try to do: Extend the Runge approximation theorem to noncompact Riernann 
surfaces and show that a noncompact Riemann surface possesses a Runge exhaustion! 
The Runge condition can be described as follows: Let {U} be an increasing sequence 
of open, relatively compact subsets which exhaust the Riemann surface X. Denote by 
K the topological closure of (Jr . The exhaustion is said tobe Runge if for every n every 
function holomorphic in a neighborhood of K can be abitrarily well approxirnated in 
the sup-norm of K by functions which are holomorphic 011 U1. At the time it was 
well-known that, e.g., for plane domains the condition that U, is Runge in U1 is 
equivalent to the topological condition that the U is relatively simply-connected in 

In ([Si 1]) Behnke and Stein succeeded in proving this in the more general setting, 
thus proving that a noncompact Riemann surface possesses a Runge exhaustion and as 
a consequence it follows that both Cousin 1 and II ([S14]) have positive answers in that 
context. Due to the war-time conditions this work was published long after its comple-
tion. 

Up until the early 1950s Stein was still focused 011 the Cousin problems, particularly 
Cousin II. His last work in this direction ([S15]) may have turned out to be his most fa- 
mous. From this work one sees that Stein has studied the deep and perhaps mysterious 
work of Oka, whom he credits with the theorem that on a domain of holomorphy a 
Cousin II problem is holomorphically solvable if and only ifit is topologically solvable. 

As mentioned above, under a certain assumption which would seem only to be tech- 
nical, Stein had made this precise in terms of his intersection numbers. This assumption 
is that the first homology group of the domain should have a basis. Here Stein observes 
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that (believe it or not!) this is really an assumption, and in order to do away with it he 
must refine his topological condition. Underway he even proves several new results for 
countable Abelian groups! 

Ofcourse ([S15]) isa basic work, but the reason that it may be one of Stein's most fa-
mous is that, without pursuing matters much further, he noted that most resuits of the 
type he had been considering are true for, in Stein's words and notation, domains 05 in 
complex manifolds 9)12  which satisfy the following three axioms: 

1. (Holomorphic convexity) For every compact subset (5 0  of 05 there is a compact subset 
(5 1  which contains it so that for every point P in 05 which is not in (5 1  there is a hob-
morphic functionfp on 05 with 

fp(P)l > Maxfp(Ko). 

2. (Point Separation) For any two different points P1  and P2  in 05 there is a function 
fp 1  p2  which is holomorphic on 05 and which takes on different values at P1  and P2 . 

3. (Coordinates) For every Q in 05 there is a system of n holomorphic functions on 05 
whose functional determinant at Q is nonzero. 
The Cartan-Serre theory, in particular the vanishing theorems for cohomology dc-

fined by coherent sheaves 011 spaces which satisfy these axioms, was announced by Car-
tan at the famous Colloque sur les fonctions de plusieurs variables in Brussels in 1953. 
There he baptized these spaces Variete de Stein, a notation that is still used today. Dur-
ing my very first seminar taik where Stein was present, his manifolds arose and, noticing 
my nervousness, without prompting, he said "1 like to call them holomorphically com-
plete". 

Returning to Münster after participating in the Brussels Colloquium where he an-
nounced his own fundamental work on analytic decompositions, Stein lamented "Die 
Franzosen haben Panzer, wir nur Pfeile und Bogen". To a certain extent this anabogy 
might fit, but in appearance only. Looking back one sees that these "Bows and Arrows" 
were really quite sophisticated and that the accomplishments of the Münsteraner were 
truly extraordinary! 

The most well-known names associated with the early days of the postwar Münster 
school of Heinrich Behnke are Hirzebruch, Grauert, Remmert and Stein. Hirzebruch, 
who was one of the first doctoral students after the war, went on to prove numerous im-
portant results in complex geometry, primarily for compact manifolds. Certain of his 
fundamental works utilize topological methods which go well beyond those employed 
by Stein, but which are of a similar basic spirit in that invariants such as characteristic 
classes or intersection numbers are fundamental topological obstructions to solving 
problems of analytic or algebraic geometric interest. In the early days he and Stein often 
commuted together from Hamm (Hirzebruch also grew up there), sometimes having to 
ride on the outside running board of the train, but nevertheless discussing mathematics. 
1 can imagine that Stein's animated expositions about his intersection numbers, or 

1 Oral communication from R. Remmert. See ([R]) for other recollections of the spirit of those 
times. 
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H. Grauert, K. Stein and R. Remmert 

whether or not the first Betti group has a basis, made a lasting impression on the young 
Hirzebruch! 

Certain of Grauert's early works, e.g., bis Oka principle, can be regarded as taking 
Stein's prewar mathernatics to another universe (see, e.g., our article, Hans Grauert: 
Mathematician Pur, Mitteilung of the DMV, 2008, for a brief summary of Grauert's 
work). Later on (Stein had been retired for a number of years) they had dose common 
interests in understanding the conditions under which the quotient of a complex space 
by an analytic or meromorphic equivalence relation is again a complex space. 1 recall 
several very animated discussions in Oberwolfach! 

In any account of Stein's mathematics after his period ofintense interest in the Cou-
sin problems, in particular in the topological obstructions, bis work with Reinhold 
Remmert must have center stage. This turned the page to a cornpletely new direction! 

Very early in Remmert's studies, Behnke sent hirn to Stein, who at the time had an 
idea that analytic continuation was sornething that applied not only to functions. 
Maybe Thullen's result in the 1-codirnensional case could be proved for general analytic 
sets! Stein bad in mmd that the appropriate elimination theory could be found in Os-
good's book and Remmert should check this. What a daunting task for someone just 
starting out! As it turned out, nothing of this sort could be found in Osgood, and work 
could be started toward what would be the Rernrnert-Stein extension theorem ([S18]). 

Here isa statement ofthe simplest version ofthat result: Let E be an analytic set in a 
domain D in C, i.e., a closed subset which is locally defined as the cornmon 0-set of fi-
nitely many holomorphic functions, and suppose that A is an analytic set in the comple-
mentD \ E which is everywhere of larger dimension than E. Then the topological clo-
sure A of A in D is an analytic subset of D and what one adds to A to obtain this closure 
isjust the lower-dirnensional analytic subset Ä fl E. 

To the ear of the nonspecialist the above may sound overly cornplicated. However, 
considering the following exarnple, which was a starting point for the Remmert-Stein 
discussions, should allay any doubts about its importance. Let D be ' itself and E just 
be the origin. Assurning that A is everywhere at least 1-dimensional, in this case the the- 
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orem just says that Ä = A u{0} is an analytic subset of C and, using resuits that were 
already known at the time, A is the common 0-set of finitely many holomorphic func-
tions which are giobaily defined on C, i.e., convergent power series. 

Preimages A = 	( V) via the standard projection sr: C \ {0} - lPn _ i  ( E) of ana- 
lytic sets V in projective space are examples of analytic sets where the Remmert-Stein 
theorem can be applied. In this case A is invariant by the (-action defined by scalar 
multiplication. Thus, writing the defining power series A as sums of homogeneous 
terms, one shows that A is also the common 0-set offinitely many ofthese homogeneous 
polynomials. Consequently the original variety V is the common 0-set of the same poiy-
nomials and is therefore an algebraic variety. 

The above proof of Chow's theorem was given ahead oftime by Cartan in his lecture 
at the International Congress of Mathematicians in Boston in 1950! This result isa first 
example of a general principle which states that in many algebraic geometrie settings 
there is no difference between algebraic and analytic phenomena. The Remmert-Stein 
theorem is certainly one of the guiding forces behind this principle! 

The theme of holomorphic and meromorphic maps was one of Stein's favorites and 
throughout this area the Remmert-Stein theorem plays a key role. The idea, e.g., for 
analyzing a holomorphic map F: X —a Y, is to throw out the analytic subsets (images 
and preimages) where F degenerates, prove a good result for the restricted map, and 
then obtain the desired result by Remmert-Stein continuation. In several complex van-
ables, meromorphic maps have indeterminacies and thus it is necessary to define such 
via their graphs. In any theory for these set valued maps the Remmert-Stein result is 
used at many steps along the way. Remmert developed this theory for (generically sin-
gle-valued) meromorphic maps, and Stein later generalized this to correspondences 
which are not necessarily generically single-valued (see, e.g. [S34, S35]). 

Remmert's mapping theorem, Irnages of analytic sets underproper holomorphic maps 
are analytic sets, is very much in the spirit of the times. Of course this result is extremely 
useful. However, it is perhaps just as important that it calls our attention to the concept 
"proper", i.e., inverse images ofcompact sets are compact. Its role had already been em-
phasized by Henri Cartan in 1935 in the context of actions automorphism groups on 
bounded domains and some basic results were proved in Bourbaki, but the proper map-
ping theorem and Stein's fundamental paper on analytic decompositions ([S23]) cemen-
ted the position ofproperness in complex analysis. 

Stein's paper contains a wealth of interesting and useful resuits, some even at the 
general topological level (see for example Satz 9), but due to lack of space we will only 
extract the most well-known one. For this it should be recalled that, in Münster, com-
plex spaces were defined as topological spaces which could be locally realized as finite 
ramified covers (with obvious topological assumptions) over domains in C. Stein had 
in fact shown that unramified (even infinite) covers of holomorphically complete spaces 
are holomorphically complete ([S24]), but he had really focused his interests on situa-
tions where some sort ofproperness is available. 

Let us state an example of a result which is an important special case of those in 
([S23]). Suppose F : X - Y is a proper holomorphic mapping of complex spaces. The 
domain space X is assumed to be normal - for our purposes here it is enough to consid- 
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er the smooth case. In order to analyze F, first apply Remmert's theorem so that it may 
be assumed that it is surjective. Then define an equivalence relation on X with two 
points being equivalent whenever they are in the same connected component of an 
F-fiber. The decomposition of X into equivalence ciasses is a special case of what Stein 
called an "analytic decomposition". In this case at hand, he shows that X/ =: X car-
ries a unique structure of a normal complex space such that the quotient map 

X - X is holomorphic and every other holomorphic map which is constant on the 
equivalence ciasses of factors through it. In particular, this induces a holomorphic 
mapf: X -* Y which is a finite ramified cover! The factorization F =f o 1' is what is 
now called the Stein factorization ofF. 

A number of Stein's last published works are devoted to understanding more gener-
al situations where it is possible to construct a universal quotient of the above type. The 
works ([S29, S30]) are typical of this. One exception is ([S27]). In this jewel, given two 
(concrete) domains in (1fl,  Remmert and Stein study the possibilities for proper hob-
mophic maps between them. For two polyhedral domains A and A*  with sufficient 
structure coming from the affine structure of (1211,  they show that proper holomorphic 
maps which respect this structure are in fact affine. In particular, for domains in U2  this 
leads to strong nonexistence (rigidiy) resuits, e.g., that certain very simple explicitly gi-
yen domains have only the identity as proper holomorphic self-maps. Their methods 
even shed new light on situations which were classically "understood". For example, 
Poincar showed that the Euclidean ball B7 := {(z,w) E (122; z 2  + w 2  < l} and the 
polydisk A2 := {(z, w) e fli2; IZI < 1 and lw < 11 are not equivalent by a biholo-
morphic map, because their automorphism groups don't have the same dimensions. Re-
mmert and Stein show that, just as the beginner would like to believe, the reason for the 
inequivalence of these domains is that the boundary of B2 is round and most of the 
boundary of A is fiat! 

We have now come to the end of our tour of what we find to be the highest points of 
Karl Stein's mathematical works and would like to dose this note by expressing our 
greatest respect and admiration, not only for the science of the man, but equally for the 
man behind the science! 

Bibliography 

[Ca] Cartan, H.: Les prob1mes de Poincar et de Cousin pour les fonctions de plusieurs variables 
complexes, C. R. Acad. Sci. 199 (1934) 1284-1287. 

[C] 	Cousin, P.: Surles fonctions den variables complexes, Acta math. 19(1895). 
[0] Oka, K.: Domaines d'holomorphie, Journal of Science of Hiroshima University, Ser. A., 7 

(2) (1937). 
[R] Remmert, R.: Mathematik in Oberwolfach, Erinnerungen an die ersten Jahre, Mathema-

tisches Forschungsinstitut Oberwolfach (2008). 

JB 110. Band (2008), Heft 4 	 203 



L Übersichtsartikel 	Historische Beiträge 	Berichte aus der Forschung 	Buchbesprechungen 

Publications of Karl Stein 

[Sfl Stein, K.: Zur Theorie der Funktionen mehrerer komplexer Veränderlichen. Die Regulari- 
tätshüllen niederdimensionaler Mannigfaltigkeiten, Math. Ann. 114(1937) 543-569. 

[S2] Behnke, H. and Stein, K.: Analytische Funktionen mehrerer Veränderlichen zu vorgegebe-
nen Null- und Polstellenflächen, Jahresber. Deutsch. Math.-Verein. 47 (1937) 177-192. 

[S3] Behnke, H. and Stein, K.: Suites convergentes de domaines d'holomorphie, C.R. Acad. Sei. 
Paris 206 (1938) 1704 - 1706. 

[S4] Behnke, H. and Stein, K.: Konvergente Folgen von Regularitätsbereichen und die Mero-
morphiekonvexität, Math. Ann. 116 (1938) 204-2 16. 

[S5] Behnke, H. and Stein, K.: Approximation analytischer Funktionen in vorgebenen Bereichen 
des Raumes von n komplexen Veränderlichen, Göttinger Nachrichten, Math.-Phys. Klasse, 
Neue Folge, Bd. 1 (1938) 197-202. 

[S6] Stein, K.: Verallgemeinerungen des Picard'schen Satzes in der Funktionentheorie mehrerer 
komplexer Veränderlichen, Semester-Berichte Univ. Münster 14(1939) 83-96. 

[S71 Stein, K.: Uber das zweite Cousin'sche Problem und die Quotientendarstellung meromor-
pher Funktionen mehrerer Veränderlichen, Sitz.-Ber. Math.-Nat. Abt. Bayer. Akad. Wiss. 
Jg. 1939,pp. 139-149. 

[S8] Behnke, H. and Stein, K.: Die Sätze von Weierstraß und Mittag-Leffler auf Riemann'schen 
Flächen, Vierteljahrschr. der Naturf. Ges. Zürich 85, Festschrift Fueter (1940) 178-190. 

[S9] Behnke, H. and Stein, K.: Die Konvexität in der Funktionentheorie mehererer komplexer 
Veränderlichen, Mitt. der Math. Ges. Hamburg 8 Festschrift 11 (1940) 34 — 8 1. 

[Sl 0] Stein, K.: Topologische Bedingungen für die Existenz analytischer Funktionen komplexer 
Veränderlichen zu vorgegebenen Nullstellenflächen, Math. Ann. 117(1941)727-757. 

[Sil] Behnke, H. and Stein, K.: Entwicklung analytischer Funktionen auf Riemann'schen Flä-
chen, Math. Ann. 120 (1948) 430-461. 

[S12] Behnke, H. and Stein, K.: Konvergente Folgen nichtschlichter Regularitätsbereiche, Annali 
di Mat. pura ed appl. 28(1949)317-326. 

[S13] Stein, K.: Primfunktionen und multiplikative automorphe Funktionen auf nichtgeschlosse- 
nen Riemann'schen Flächen und Zylindergebieten, Acta Math. 83 (1950) 165-196. 

[S 14] Behnke, H. and Stein, K.: Elementarfunktionen auf Riemann'schen Flächen als Hilfsmittel 
für die Funktionentheorie mehrerer Veränderlichen, Canadian J. Math. 2 (1950) 152-165. 

[S15] Stein, K.: Analytische Funktionen mehrerer komplexer Veränderlichen zu vorgegebenen 
Periodizitätsmoduln und das zweite Cousin'sche Problem, Math. Ann. 123 (1951) 201-222. 

[S16] Behnke, H. and Stein, K.: Modifikation komplexer Mannigfaltigkeiten und Riemann'scher 
Gebiete, Math. Ann. 124 (1951) 1-16. 

[S 17] Behnke, H. and Stein, K.: Die Singularitäten der analytischen Funktionen mehrerer Verän-
derlichen, Nieuw Arch. v. Wisk: Amsterdam 1952, 97-107. 

[S18] Remmert, R. and Stein, K.: Uber die wesentlichen Singularitäten analytischer Mengen, 
Math. Ann. 126 (1953). 263-306. 

[S19] Stein, K.: Analytische Projektion komplexer Mannigfaltigkeiten, Colloque sur les fonctions 
de plusieurs variables, Bruxelles 1953, pp. 97-107. Georges Thone, Lige; Masson & Cie, 
Paris, 1953. 

[S20] Stein, K.: Un thorme sur le prolongement des ensembles analytiques, Sm. Ecole Norm. 
Sup. Paris 1953/54, Expos6s XIII et XIV. 

[S21] Behnke, H. and Stein, K.: Der Severi'sche Satz über die Fortsetzung von Funktionen meh-
rerer Veränderlichen und der Kontinuitätssatz, Annali di Mat. pura ed appl. Ser. IV, 36 
(1954) 297-313. 

[S22] Stein, K.: Analytische Abbildungen allgemeiner analytischer Räume, Colloque de topologie 
de Strasbourg 1954, 9 pp. Institut de Mathmatique, Universit8 de Strasbourg. 

[S23] Stein, K.: Analytische Zerlegungen komplexer Räume, Math. Ann. 132 (1956) 63-93. 
[S24] Stein, K.: Uberlagerungen holomorph-vollständiger komplexer Räume, Arch. Math. 7 

(1956) 354-361. 

204 	 JB 110. Band (2008), Heft 4 



A. Huckleberry: Karl Stein (1913-2000) 

[S25] Stein, K.: Leons sur la theorie des fonctions dc plusieurs variables complexes, In: Teoria 
delle funzioni di piü variabili complesse e delle funzioni automorfe. Centro Internazionale 
Matematico Estivo, Varenna 1956. 

[S26] Stein, K.: Die Existenz komplexer Basen zu holomorphen Abbildungen, Math. Ann. 136 
(1958) 1-8. 

[S27] Remmert, R. and Stein, K.: Eigentliche holomorphe Abbildungen, Math. Zeitschr. 73 
(1960) 159-189. 

[S28] Ramspott, K. J. and Stein, K.: Uber Runge'sche Paare komplexer Mannigfaltigkeiten, 
Math. Ann. 145 (1962) 444-463. 

[S29] Stein, K.: Maximale holomorphe und meromorphe Abbildungen, 1, Amer. J. Math. 85 
(1963) 298-315. 

[S30] Stein, K.: Maximale holomorphe und meromorphe Abbildungen, II, Amer. J. Math. 86 
(1964) 823-868. 

[S31] Stein, K.: On factorization of holomorphic mappings, Proc of the Conf. on Complex Analy-
sis, Minneapolis 1964, pp. 1-7. 

[S32] Stein, K.: Uber die Aquivalenz meromorpher und rationaler Funktionen, Sitz.-Ber. Bayer. 
Akad. Wiss. Math.-Nat. Ki. Jg. 1966. pp. 87-99. 

[S33] Stein, K.: Meromorphic mappings, L'enseignement mathmatique 14 (1968) 29 — 46. 
[S34] Stein, K.: Fortsetzung holomorpher Korrespondenzen, Invent. Math. 6 (1968) 78 — 90. 
[S35] Stein, K.: Topics on holomorphic correspondences, Rocky Mountain J. Math. 2 (1972) 

443 —463. 
[S36] Stein, K.: Dependence of meromorphic mappings, Proc. Sixth Conference on Analytic 

Functions, Krakow 1974. Ann. Polon. Math. 33 (1976/77) 107-115. 
[S37] Stein, K.: Topological properties of holomorphic and meromorphic mappings, Colloque 

Vari&s Analytiques Compactes, Nice 1977. Springer Lecture Notes in Math. 683 (1978) 
203 —216. 

[S38] Stein, K.: Rank-complete function fields, Several complex variables (Hangzhou 1981), Birk-
häuser 1984, pp. 245-246. 

[S40] Koecher, M. and Stein, K.: Carl Ludwig Siegel, Jahrbuch Bayer. Akad. Wiss. Jg. 1983, 
pp. 1-5. 

[S41] Forster, 0. and Stein, K.: Entwicklungen in der komplexen Analysis mehrerer Veränderli-
chen, Perspectives in mathematics, Birkhäuser 1984, pp. 191-214. 

[S42} Stein, K.: Zur Abbildungstheorie in der komplexen Analysis, Jahresber. Deutsch. Math.-
Verein. 95 (1993) 121 —133. 

Dissertations guicled by Karl Stein 

[Dl] Kerner,Hans: Funktionentheoretische Eigenschaften komplexer Räume, December 17, 
1958. 

[D2] Königsberger, Konrad: Thetafunktionen und multiplikative automorphe Funktionen zu 
vorgegebenen Divisoren in komplexen Mannigfaltigkeiten, July 27, 1960. 

[D3] Pfister, Albrecht: Uber das Koeffizientenproblem der beschränkten Funktionen von zwei 
Veränderlichen, February 22, 1961. 

[D4] Forster, Otto: Banachalgebren stetiger Funktionen auf kompakten Räumen, July 26, 1961. 
[D5] Osörio Vasco Tom, Estevao: Randeigenschaften eigentlicher holomorpher Abbildungen, 

January 31, 1962. 
[D6] Wolfffiardt, Klaus: Existenzbedingungen für maximale holomorphe und meromorphe Ab-

bildungen, July 24, 1963. 
[D7] Wiegmann, Klaus-Werner: Einbettungen komplexer Räume im Sinne von Grauert in Zah-

lenräume, July 28, 1965. 

JB 110. Band (2008), Heft 4 	 205 



L übersichtsarikel 	Historische Beiträge 	Berichte aus der Forschung 	BuchbesprecJ 

[D8] Schmidt, Gunther: Fortsetzung holomorpher Abbildungen unter Erweiterung des Bil-
draumes, February 23, 1966. 

[D9] Knorr, Knut: Uber die Kohärenz von Bildgarben bei eigentlichen Abbildungen in der analy-
tischen Geometrie, February 21, 1968. 

[Dl 0] Schuster, Hans Werner: Infinitesimale Erweiterungen komplexer Räume, February 21, 
1968. 

[Dl 1] Schneider, Michael: Vollständige Durchschnitte in komplexen Mannigfaltigkeiten, January 
22, 1969. 

[Dl 2] Höß, Dietmar: Fortsetzung holomorpher Korrespondenzen in den pseudokonkaven Rand, 
July 8, 1970. 

[D13] Hayes, Sandra: Oka'sche Paare von Garben homogener Räume, February 3, 1971. 
[D 14] Kraus, Günther: Korrespondenzen und meromorphe Abbildungen, February 3, 1971. 
[Dl 5] Correll, Claus: Runge'sche Approximation durch äquivalente Funktionen auf holomorphen 

Familien Riemann'scher Flächen, February 3, 1972. 
[D16] Stiegler, Helmut: Fortsetzung holomorpher kanteneigentlicher Korrespondenzen, February 

3, 1972. 
[D171 Schottenloher, Martin: Analytische Fortsetzung in Banachräumen, February 16, 1972. 
[D18] Duma, Andrei: Der Teichmüller-Raum der Riemann'schen Flächen vom Geschlecht > 2, 

May 5, 1972. 
[D19] Sinzinger, Hans: Zur Faktorisierung holomorpher Korrespondenzen über Abbildungen, 

January23, 1976. 
[D20] Maurer, Joseph: Zur Auflösung der Entartungen gewisser holomorpher Abbildungen, June 

16, 1977. 
[D21] Aurich, Volker: Kontinuitätssätze in Banachräumen, July 29, 1977. 
[D22] Baumann, Johann: Eine gewebetheoretische Methode in der Theorie der holomorphen Ab-

bildungen: Starrheit und Nichtäquivalenz von analytischen Polyedergebieten, February 9, 
1982. 

[D23] Kirch, Ursula: Existenz und topologische Eigenschaften holomorpher Überlagerungskorre-
spondenzen zwischen Riemann'schen Flächen, March 1, 1982. 

206 	 JB 110. Band (2008), Heft 4 



übersichtsartikel 	Historische Beiträge 	Berichte aus der Forschung 	Buchbesprechunge 

T. Lyons, Z. Qian 

System Control and 
RoughPaths 

Oxford University Press, 2002, 228 S., £62,- 

Die grundlegende Fragestellung des Buches 
ist, einen mathematischen Rahmen für die 
Entwicklung von mehrdimensionalen Syste-
men zu entwickeln, die ein nichtlineares Ent-
wicklungsgesetz haben und zusätzlich von 
einem recht irregulären Kontroliprozess ge-
steuert werden. Der Kontrollprozess hat oft 
den Charakter einer Störung. 

Sei zum Beispiel }' ein hochdimensionales 
System, das sich gemäß dY =f(Y 1 ) ent-
wickeln würde, wobei f eine nichtlineare 
Funktion ist. Dann würde man für eine glat-
te Störung X (niedrigdimensional) das Sys-
tem 

t =f(Y 1)+g'(Y) 

betrachten. Die Lösung des Anfangswert-
problems liefert dann die Ito-Abbildung, die 
dem Kontrollpfad X den Lösungspfad Y zu-
ordnet. 

Ein praktisches Kernproblem ist dann na-
türlich stetige Ito-Abbildungen zu bekom-
men, um damit eine gewisse Stabilität des 
Systems nachweisen zu können. Nun hat 
man aber zu berücksichtigen, dass die Pfade 
von X typischerweise nicht glatt sind. Zum 
Beispiel könnte man dY 1  = f ( Y) + dB be-
trachten, wobei B 1  eine Brown'sche Bewe-
gung ist oder ein anderer Pfad mit unend-
licher Variation und nicht differenzierbaren 
Pfaden. In dieser Situation muss zunächst  

einmal der Ausgangsgleichung Sinn gegeben 
werden. Das bedeutet, man schreibt die Glei-
chung in integraler Form und entwickelt eine 
angemessene Integrationstheorie. Dann gilt 
außerdem für Dimensionen größer als eins 
im Allgemeinen keine Stetigkeit in der Su-
premumsnorm für die Pfade. Die nächste 
Frage ist also, wie man eine andere geeignete 
Norm finden kann. Nachdem man die Rau-
higkeit der Pfade von unendlicher Variation 
aber sinnvollerweise in einer geeigneten 
p-Variation beschreibt, verwendet man hier 
die entsprechende Norm. In der Tat erhält 
man eine Stetigkeitseigenschaft der Ito-Ab-
bildung in derp-Variationsnorm. 

Ausgehend von dieser Beobachtung ent-
wickelt das Buch die Mathematik von Syste-
men der Form 

dY 1  =f(t, Y 1 )dX 

für rauhe Pfade X. Damit entsteht insbeson-
dere auch ein neuer Rahmen für eine analyti-
sche Theorie der Ito-Prozesse jenseits der üb-
lichen Ito oder Stratanowitch Integrations-
theorie. Der Ausgangspunkt sind hier iterier-
te Integralrepresentationen der Pfade. 

Das Buch verfolgt diesen Ansatz in sieben 
Kapiteln. In Kapitel 1 werden das Problem 
und die mathematische Struktur vorgestellt. 
Das Kapitel 2 betrachtet dann die Ito-Abbil-
dung und Integrationstheorie zunächst für 
relativ glatte Pfade, genauer Lipschitzpfade 
und schreitet dann in Kapitel 3 fort mit rau-
hen Pfaden. Das Kapitel 4 ist dem wichtigen 
Spezialfall gewidment, dass die Pfade durch 
multidimensionale Brown'sche Bewegungen 
gegeben sind. Im nächsten Kapitel 5 wird 
dann die Pfadintergration entlang rauher 
Pfade entwickelt. Das Kapitel 6 ist das Zen-
trum des Buches und behandelt die Theorie 
von Differentialgleichungen, die von rauhen 
Pfaden getrieben werden und formuliert und 
beweist die zentrale Stetigkeitseigenschaften 
der Ito-Abbildung. Das Schlusskapitel 7 be-
handelt dann Glattheitseingeschaften der 
Ito-Abbildung. Das ist im Geiste der Ideen 
des Malliavin Kalküls. 
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Das Buch ist inhaltsreich, klar strukturiert 
und konzise geschrieben und kann sehr gut 
als Basistext für ein Seminar mit fort-
geschrittenen und guten Studenten der Sto-
chastik oder Analysis dienen. Es muss zu die-
sem Zweck allerdings ergänzt werden durch 
Arbeiten zu Anwendungen, die im Buch nur 
gestreift werden und im Wesentlichen nur 
der Motivation der Mathematik dienen, die 
hier entwickelt wird. 

Erlangen 	 A. Greven 

F. Lemmermeyer, 
P. Roquette 
Helmut Hasse und 
Emmy Noether: 
Die Korrespondenz 
1925-1935 

Universitätsverlag Göttingen, 2006, 301 S., 
€32,- 

Der vorliegende Briefwechsel zwischen H. 
Hasse und E. Noether enthält die 79 Briefe 
von Noether an Hasse, die in der Hand-
schriftenabteilung der Göttinger Univer-
sitätsbibliothek aufbewahrt werden. Die zu-
gehörigen Briefe von Hasse an Noether sind 
verschollen. Der Nachlass von E. Noether 
wurde nach ihrem plötzlichen Tod im Jahre 
1935 wohl an ihren Bruder Fritz Noether 
nach Tomsk, Sibirien, geschickt. Dieser hat 
ihn aber nicht erhalten. Der vorliegende 
Briefwechsel enthält jedoch drei Briefe von 
Hasse an Noether, von denen sich die Ent-
würfe erhalten haben. Emmy Noether 
(1882-1935) verlor 1933 als Jüdin ihre Lehr-
berechtigung an der Göttinger Universität, 
konnte aber eine Foschungsprofessur am 

Frauen-College in Bryn Mawr, Pennsylva-
nia, antreten. Diese Professur wurde gemein-
sam von der Rockefeller-Stiftung und dem 
Komitee „In Aid of Displaced German 
Scholars" bezahlt (Brief 71). Eine Woche 
nach Abfassung ihres letzten Briefes an Has-
se (Brief 82) starb sie an den Folgen einer 
Operation. Fritz Noether emigrierte 1934 
von Breslau aus in die UdSSR nach Tomsk. 
Dort wurde er 1937 als angeblicher deut-
scher Spion verhaftet und 1941 zum Tode 
verurteilt und hingerichtet. Die vorliegende 
Publikation besteht aus folgenden Abschnit-
ten: Teil 1 - Vorspann, 1.1 Introduction, in 
englischer Sprache, alle anderen Abschnitte 
in deutscher Sprache. 1.2 Nachruf von B.L. 
van der Waerden auf E. Noether, 1.3 Nach-
ruf von H.W. Leopoldt auf H. Hasse. Teil 
II - Die 82 Briefe zwischen Noether und 
Hasse und 14 Briefe zwischen Hasse und an-
deren Mathematikern nach dem Tode von 
E. Noether, dazu die Kommentare der He-
rausgeber. 11.1 Briefe 1925 - 1927, 11.2 Briefe 
1927- 1931,11.3 Briefe 1932- 1935, 11.4 Brie-
fe danach. Jedem dieser vier Abschnitte ist 
ein Verzeichnis der jeweiligen Briefe voran-
gestellt mit stichwortartigen Inhaltsangaben 
der Herausgeber. Teil III - Anhang, 111.1 
Namensverzeichnis, 111.2 Stichwortverzeich-
nis, 111.3 Literaturverzeichnis, 111.4 Kurz-
biographien. 

Der mathematische Inhalt der Briefe be-
trifft hauptsächlich Fragen der Algebra und 
algebraischen Zahlentheorie, die sich aus 
laufenden Publikationen von Hasse, Noet-
her und anderer Mathematiker ergeben. 
Hierzu gehören die Idealtheorie von Integri-
tätsbereichen, Galoistheorie, Algebrentheo-
ne über Zahlkörpern und Begründung der 
Klassenkörpertheorie. Eine besondere Rolle 
spielt der berühmte Brauer-Hasse-Noether-
Satz, der besagt, dass jede einfache Algebra 
über einem Zahlkörper zyklisch ist. Einen di-
rekten Bezug zur Entstehung dieses Satzes 
haben die Briefe 33-37. 

Die Bedeutung der vorliegenden Publika-
tion für das Studium der Geschichte der Ma-
thematik ergibt sich aus der zentralen Stel- 
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lung von E. Noether in der Algebra der 20er 
und 30er Jahre des 20. Jahrhunderts. Zusam-
men mit ihrem Kreis, zu dem u.a. E. Artin, 
H. Hasse und B.L. van der Waerden gehör-
ten, ist sie die Schöpferin der „Modernen Al-
gebra", so der Titel der berühmten zweibän-
digen Monographie von van der Waerden 
aus den Jahren 1930 und 1931. In der Nach-
folge entstand in Frankreich nach dem zwei-
ten Weltkrieg die Sammlung „Bourbaki" 
von grundlegenden Darstellungen aller Ge-
biete der reinen Mathematik, die weltweit 
prägend für deren weitere Entwicklung wur-
de. - H. Hasse ist zusammen mit E. Artin der 
führende Vertreter der algebraischen Zah-
lentheorie in der Zeit des vorliegenden Brief-
wechsels, einer Disziplin, die wesentlich zur 
Herausbildung der modernen Algebra bei-
getragen hat. 

Alle Briefe sind von den Verfassern kom-
mentiert und damit für den Leser erschlos-
sen. Oft sind diese Kommentare wesentlich 
umfangreicher als die entsprechenden Briefe, 
die teilweise auf Postkarten geschrieben wur-
den. Die Entzifferung der Briefe durch die 
Verfasser ist schon eine große Leistung. Die 
Kommentare gehen auch ein auf den Inhalt 
der fehlenden Briefe von Hasse an Noether, 
der soweit wie möglich aus der Mathematik 
der Zeit erschlossen wird. Die 14 Briefe, die 
sich an den Briefwechsel Hasse-Noether an-
schließen, stehen in Zusammenhang mit Em-
my Noethers Tod und deren Nachlass. Zu-
sammenfassend kann man sagen, dass die 
vorliegende Publikation für jeden, der einen 
tieferen Einblick in die Mathematik, und ins-
besondere die Algebra der 20er und 30er Jah-
re des 20. Jahrhunderts erhalten möchte, ei-
ne Pflichtlektüre sein sollte. 

Berlin 	 H. Koch 

M. Stroppel 

Locally Compact 
Groups 
EMS Textbooks 

in Mathematics 

Zürich, European Mathematical Socienty, 
2006, 304 S.,€ 52,- 

Lokalkompakte Gruppen treten in den ver-
schiedensten Bereichen der Mathematik in 
sehr natürlicher Weise auf. Zunächst sind 
natürlich alle (endlichdimensionalen) reellen 
oder komplexen Lie-Gruppen lokalkom-
pakt. Darüber hinaus gibt es die in Zahlen-
theorie und Geometrie auftretenden lokal-
kompakten Körper, wie z.B. die p-adischen 
Zahlen IQPund  auch alle abgeschlossenen 
Matrizengruppen über diesen sind lokal-
kompakt. In der harmonischen Analysis bil-
den die lokalkompakten Gruppen die natür-
liche Klasse von zugänglichen topologischen 
Gruppen, da sie invariante Maße besitzen, 
so dass man ihnen (Banach-)Gruppen-Alge-
bren zuordnen kann und dadurch die ent-
sprechende Resultate zum Studium der uni-
tären Darstellungen dieser Gruppen vefüg-
bar werden. Insbesondere die Abel'schen lo-
kalkompakten Gruppen und ihre Dualität 
treten in den verschiedensten Kontexten, wie 
z.B. der Fourier-Analysis, auf. 

Es besteht also ein Bedarf an gut lesbaren 
Lehrbüchern zu diesem Thema, die Studie-
renden schnell an die verschiedensten Aspek-
te der Theorie heranführen. Das vorliegende 
Buch ist ein einführendes Lehrbuch in die 
Theorie der lokalkompakten Gruppen, das 
diesem Anspruch voll und ganz gerecht wird. 
Der Weg, den es einschlägt, führt über die to-
pologischen Gruppen und topologische 
Transformationsgruppen zu den spezifi- 
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schen Aspekten der lokalkompakten Grup-
pen und ihrer Struktur. 

Es ergänzt in natürlicher Weise das schon 
fast enzyklopädische Lehrbuch von K. H. 
Hofmann und S. Morris „The Structure of 
Compact Groups" (Studies in Math., dc 
Gruyter, Berlin, 1998), das sich auf kompak-
te Gruppen konzentriert. Lie-theoretische 
Aspekte spielen in dem vorliegenden Buch 
keine Rolle. Da jede lokalkompakte Gruppe 
eine offene Untergruppe enthält, die ein pro-
jektiver Limes von Lie-Gruppen ist, also 
durch Lie-Gruppen „approximierbar", kann 
man sich auf den Standpunkt stellen, dass 
die lokalkompakten Gruppen eine natürli-
che Erweiterung der Klasse der reellen Lie-
Gruppen bilden, und man sie entsprechend 
behandeln kann. Diesen Zugang, der in der 
Tat weit über die lokalkompakten Gruppen 
hinaus führt und interessante Berührungen 
mit der aktuellen unendlichdimensionalen 
Lie-Theorie aufweist, verfolgen K. H. Hof-
mann und S. Morris in ihrer Monographie 
„The Lie Theory of Connected Pro-Lie 
Groups A Structure Theory for Pro-Lie Al-
gebras, Pro-Lie Groups and Connected Lo-
cally Compact Groups", die in Kürze beim 
EMS Publishing House, Zürich, erscheinen 
wird. 

Das vorliegende Buch wird seinem Lehr-
buchcharakter in vieler Hinsicht sehr ge-
recht. Das „geodätische Lernen" gewisser 
Aspekte wird erleichtert durch einen über-
sichtlichen Abhängigkeitsgraphen der Ab-
schnitte. Darüber hinaus lassen sich mit sei-
ner Hilfe natürlich auch Vorlesungen zu den 
verschiedensten Bereiche der Theorie, wie 
z.B. lokalkompakte Abel'sche Gruppen, 
kompakte Gruppen, oder etwa topologische 
Algebra, zusammenstellen. Jeder Abschnitt 
ist mit reichlich Ubungsaufgaben versehen, 
die für einführende Vorlesungen bestens ge-
eignet sind. 

Das Buch ist grob in 8 Kapitel (A H) ge-
gliedert, die sich insgesamt in 40 Abschnitte 
unterteilen. In Kapitel A werden zunächst 
Grundlagen aus der Topologie behandelt  

und Kapitel B enthält eine Einführung in die 
topologischen Gruppen. Kapitel C stellt 
die wichtigsten Grundlagen über topologi-
sche Transformationsgruppen und Topolo-
gien auf Abbildungsräumen bereit. Das 
Haar'sche Integral wird in Kapitel D behan-
delt. Eine wichtige Anwendung hiervon ist, 
dass für kompakte Gruppen die endlichdi-
mensionalen Darstellungen die Punkte tren-
nen, wozu einige Fakten aus der Funktional-
analysis zusammengetragen werden. 

Kapitel E thematisiert Kategorien topolo-
gischer Gruppen, indem zuerst Kategorien 
und allgemeine Limiten diskutiert werden. 
Dem Studierenden, dem kategorielles Den-
ken neu ist, bietet dieses Kapitel eine hervor-
ragende Gelegenheit, sich anhand konkreter 
Beispiele in diese Begriffswelt einzudenken. 
Zentrales Ergebnis dieses Kapitels ist die Be-
schreibung kompakter Gruppen als projekti-
ver Limes kompakter Matrizengruppen. 

Kapitel F über lokalkompakte Abel'sche 
Gruppen ist das längste Kapitel des Buches. 
Hier wird zunächst die volle Struktur- und 
Dualitätstheorie entwickelt, wobei die wich-
tigsten Beispielklassen ausführlich diskutiert 
werden. Darüber hinaus liegt ein gewisser 
Schwerpunkt auf Automorphismengruppen 
und Topologisierung von Endomorphis-
menringen dieser Gruppen. 

Die letzten beiden Kapitel stellen Ergän-
zungen dar. Kapitel G behandelt lokalkom-
pakte Halbgruppen, ihre Einbettbarkeit in 
Gruppen und automatische Stetigkeit der 
Inversion in Gruppen mit stetiger Multipli-
kation. Das letzte Kapitel H gibt einen Uber-
blick über verschiedene Aspekte des fünften 
Hilbert'schen Problems, d.h., über die 
Approximation lokalkompakter Gruppen 
durch Lie-Gruppen und lokalkompakte 
Gruppen endlicher Dimension. 

Abschließend lässt sich sagen, dass das 
Buch einen sehr breit gefhcherten Einblick in 
die Theorie lokalkompakter Gruppen gibt. 
Die Notation ist zum Teil etwas eigenwillig, 
aber hier hilft der ausführliche Symbolindex 
am Ende des Buches. Es ist ein sehr gelun-
genes Lehrbuch. Experten können es für ge- 
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wisse Subtilitäten der Theorie als Nachschla-
gewerk oder als Begleitlektüre für Vorlesun-
gen sehr gut verwenden und Studierenden 
bietet es sowohl einen schnellen Zugriff zu 
speziellen Themen und eröffnet ihnen Aus-
blicke auf weiterführende Aspekte und An-
wendungen. 

Darmstadt 	 K.-H. Neeb 

J. Seade 

On the Topology of 

Isolated Singularities 

in Analytic Spaces 

Progr. in Math. 241 

Basel, Birkhäuser, 2005, 238 5., €51,36 

Eine der aufregendsten mathematischen 
Entdeckungen des vergangenen Jahrhun-
derts war die Entdeckung von J. Milnor im 
Jahr 1965, dass es auf der 7-dimensionalen 
Sphäre exotische differenzierbare Struktu-
ren gibt. Nach Vorarbeiten von Milnor und 
F. Hirzebruch konnte E. Brieskorn im Jahre 
1966 zeigen, dass man die 28 verschiedenen 
differenzierbaren Strukturen auf der 7-Sphä-
re auf die folgenden Weise erhalten kann. Im 
(n + 1)-dimensionalen komplexen Raum 
ffflSl mit den Koordinaten z0,.. . ‚ z,, be-
trachtet man die Hyperfläche V, die durch 
eine Gleichung der Form 

z o+...+z n=0 

gegeben wird. Unter der Voraussetzung 
ai  > 2füri = 0,..., nhat V in 0 eine isolierte 
Singularität. Eine solche Singularität nennt 
man heutzutage eine Brieskorn-Pham-Sin-
gularität. Schneidet man V mit einer hinrei-
chend kleinen Sphäre um den Nullpunkt, so 

erhält man eine (2n - 1)-dimensionale diffe-
renzierbare Mannigfaltigkeit, die der Umge-
bungsrand der Singularität genannt wird. 
Brieskorn konnte nun zeigen, dass alle diffe-
renzierbaren Strukturen auf der 7-Sphäre 
auf den Umgebungsrändern geeigneter 
Brieskorn-Pham-Singularitäten mit n = 4 
realisiert werden. Damit war die Topologie 
von Singularitäten in den Blickpunkt von 
Mathematikern gerückt. 

Die Topologie von isolierten Singularitä-
ten ist auch der Gegenstand des vorliegenden 
Buches. Mittlerweile hat sich die Singularitä-
tentheorie zu einem eigenständigen, sehr 
ausgedehnten Forschungsgebiet entwickelt. 
Selbst die Darstellung aller Ergebnisse zur 
Topologie von Singularitäten müsste den 
Rahmen eines Buches notgedrungen spren-
gen. Deswegen hat sich der Autor auf einige 
wenige ausgewählte Themen beschränkt. 
In acht Kapiteln werden acht verschiedene 
Themenbereiche behandelt. Dabei geht es in 
den ersten fünf Kapiteln um komplexe Sin-
gularitäten, in den restlichen drei um reelle 
Singularitäten. Die Auswahl erfolgt naturge-
mäß nach den Vorlieben des Autors. Zu fast 
allen Themenkreisen hat der Autor selbst 
Arbeiten beigesteuert. In den letzten vier Ka-
piteln werden im Wesentlichen Arbeiten des 
Verfassers, die teilweise mit Koautoren ent-
standen sind, dargestellt. 

Das erste Kapitel enthält einen Abriss der 
klassischen Theorie. Dazu gehört vor allem 
der Faserungssatz von Milnor, das Haupt-
resultat des klassischen Buchs von Milnor 
„Singular points of complex hypersurfaces" 
(Ann. of Math. Studies, Princeton 1968). 
Dieser Faserungssatz, in seiner komplexen 
und reellen Form, zieht sich wie ein roter Fa-
den durch das ganze Buch. Im ersten Kapitel 
werden auch die eingangs erwähnten klassi-
schen Resultate von Brieskorn, Hirzebruch 
und Milnor dargestellt. 

Im zweiten Kapitel geht es um die 3-di-
mensionalen Brieskornmannigfaltigkeiten. 
Dies sind die Umgebungsränder der zwei-
dimensionalen Brieskorn-Pham-Singularitä-
ten. In gewissen Spezialfällen hatte schon 
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Felix Klein im Jahre 1884 gesehen, dass die 
entsprechenden Gleichungen mit den end-
lichen Untergruppen von SU(2) in Verbin-
dung stehen. Speziell für (a o , a 1  ‚ a2) = 
(2, 3, 5) erhält man die Ikosaedergleichung, 
und die zugehörige Brieskornmannigfaltig-
keit ist die Poincarsphäre. In diesem Kapi-
tel wird ein weiteres Resultat von Milnor 
dargestellt. Milnor konnte zeigen, dass alle 
3-dimensionalen Brieskornmannigfaltigkei-
ten mit Isometriegruppen von ebenen Geo-
metrien in Zusammenhang stehen. 

Das dritte Kapitel hat eine weitreichende 
Verallgemeinerung dieses Resultats zum Ge-
genstand, die auf 1. Dolgachev, Hirzebruch 
und W. Neumann zurückgeht. Es wird eine 
vollständige Antwort auf die Frage gegeben, 
welche isolierten komplexen Flächensingu-
laritäten einen Umgebungsrand besitzen, 
der von der Form G/I' ist, wobei G eine 3-di-
mensionale Liegruppe und 1' eine diskrete 
Untergruppe von G ist. 

Im vierten Kapitel sind Anwendungen des 
Satzes von Hirzebruch-Riemann-Roch und 
des Hirzebruch'schen Signatursatzes auf die 
Topologie von isolierten komplexen Flä-
chensingularitäten dargestellt. Hier geht es 
um die Frage, inwieweit Invarianten der Mil-
norfaser einer Glättung durch die minimale 
Auflösung der Singularität bestimmt sind 
und wie sie sich aus der Auflösung berechnen 
lassen. Dies ist auch ein schönes Beispiel für 
das Zusammenspiel von Topologie und al-
gebraischer Geometrie. 

Das fünfte Kapitel behandelt die Geo-
metrie und Topologie von Quadriken im 
n-dimensionalen komplexen projektiven 
Raum. Hier wird das Thema des zweiten Ka-
pitels noch einmal aufgegriffen und ein zu 
dem Satz von Klein analoges Resultat in hö-
herer Dimension für den Spezialfall einer 
Quadrik bewiesen. In diesem Kapitel werden 
auch zum ersten Mal reell-analytische Me-
thoden verwendet. 

In den letzten drei Kapiteln des Buches 
werden reell-analytische Singularitäten be-
trachtet. Im sechsten Kapitel geht es um das 
Wechselspiel von reell-analytischer und  

komplexer Geometrie. Es dient auch als 
Vorbereitung für die letzten beiden Kapitel, 
in denen reell-analytische Singularitäten be-
trachtet werden, die eine Milnorfaserung be-
sitzen. Im siebten Kapitel werden solche Sin-
gularitäten konstruiert und ihre Topologie 
untersucht. Das letzte Kapitel behandelt 
schließlich reell zweidimensionale Beispiele. 

Das Buch wendet sich vornehmlich an 
fortgeschrittene Studierende, Doktoranden 
und Mathematiker, die sich für Geometrie 
und Topologie interessieren. lii der erste 
Hälfte des Buches werden besonders schöne 
Ergebnisse der Mathematik dargestellt, die 
auch für ein breites Publikum von Interesse 
sind. Es handelt sich um Resultate, die in der 
Literatur in zahlreichen Arbeiten verstreut 
sind und hier in einheitlicher und auch für 
den Nichtexperten verständlicher Form dar-
gestellt werden. Die zweite Hälfte des Buches 
ist spezielleren Themen gewidmet. Das Buch 
hat eine ausführliche Einleitung und jedes 
Kapitel beginnt noch einmal mit einer Uber-
sicht über die behandelten Themen. Es geht 
dem Verfasser darum, die Ideen hervorzuhe-
ben. Manchmal wird deshalb auf die tech-
nischen Einzelheiten verzichtet und kompli-
ziertere Beweise sind schon einmal nur ange-
deutet. Aber immer findet sich dann ein Hin-
weis auf die entsprechende Literatur. 

Insgesamt handelt es sich um ein Buch, 
dass man mit Genuss liest. Es hat den „Fer-
ran Sunyer i Balaguer"-Preis 2005 erhalten 
und ist in der von Birkhäuser herausgebenen 
Reihe der mit diesem Preis gekrönten Bücher 
erschienen. Das Buch ist sehr empfehlens-
wert. 

Hannover 	 W. Ebeling 
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S. Tabachnikov 
Geometry and 

BiItiards 

Providence, Am. Math. Soc., 2005, 176 S., 
$28 

Mathematische Billards sind dynamische 
Systeme, bei denen sich (im einfachsten Fall) 
ein Teilchen mit konstanter Geschwindigkeit 
v E JR' in Q c IR bewegt und beim Auftref-
fen auf x e (99 das Vorzeichen der Normal-
komponente x von v E T(aQ) geändert 
wird (,‚Ausfaliswinkel gleich Einfaliswin-
kel"). Bis auf eine Ausnahmemenge sollte 
daher df eine (n - 1)-dimensionale Man-
nigfaltigkeit sein. 

Dynamische Fragen stehen in enger Bezie-
hung zu geometrischen Eigenschaften der 
Bande DQ. Eine Vielzahl solcher Beziehun-
gen werden im Buch von Serge Tabachnikov 
untersucht. Es ist als Begleitmaterial eines 
Kurses für fortgeschrittene Undergraduates 
an der Penn State University entstanden'. 

In der Theorie geodätischer Flüsse auf 
Riemann'schen Mannigfaltigkeiten sind Dy -
namik und Differentialgeometrie ähnlich 
eng miteinander verwoben. Vom didakti-
schen Standpunkt her haben Billards aber 
den Vorteil, dass elementare Vorkenntnisse 
ausreichen. 

Inder Einleitung wird das Ziel klar formu-
liert: 

"One takes a rapid route to the frontier of 
current research, deferring a more syste- 

'Eine Übersicht über die sehr erfolgreichen 
REU- und MASS-Programme ist unter www. 
math. psu. edu/mass  zu finden. 

matic and 'linear' study offoundations un-
til later." 

Um es kurz zu sagen: Das Buch löst dieses 
Versprechen vollständig ein. Es ist so ele-
mentar gehalten, dass es sich getrost am 
Strand lesen lässt (ich habe das ausprobiert). 
Gleichzeitig ist das Wechselspiel dynami-
scher und geometrischer Fragen sehr unter-
haltsam. Etwa 100 Illustrationen, zahlreiche 
Beispiele und Ubungen unterstützen das 
Verständnis. 

Zum Inhalt: Im einleitenden Kapitel wer-
den mathematische Billards physikalisch 
durch die Bewegung von Billardkugeln so-
wie durch an DQ reflektierten Lichtstrahlen 
motiviert. Die geometrische Optik gibt An-
lass zu einem Exkurs, indem die Finslergeo-
metrie vorgestellt wird; das Reflektions-
gesetz gibt Anlass zur Diskussion einfacher 
Variationsprobleme. 

Kapitel 2 stellt mit Quadrat und Kreis-
scheibe die einfachsten Billardtische vor 
und damit einhergehend die Ergodentheorie 
von Torustranslationen. 

Die Parkettierung der Ebene durch das 
Quadrat ermöglicht eine einfache symboli-
sche Dynamik in zwei Symbolen, und die 
Komplexitätsfunktion p: N - N eines Or -
bits ist als die Anzahl p(n) der Wörter der 
Länge n in seiner Codierung definiert. Es 
wird nun gezeigt, dass die für Billards mit ir-
rationaler Richtung v, also nicht periodi-
scher Codierung Letztere eine Sturmfolge ist 
(p(n) = n + 1), und dass diese Komplexität 
die minimal mögliche für nicht periodische 
Folgen ist. 

Im Fall endlichen Horizonts kann die Dy-
namik durch Restriktion auf den Phasen-
raum über 9f diskretisiert werden. Für 
2 c 1R2  erhält man eine flächenerhaltende 
Abbildung des Zylinders 92 x [-1, 1] (Ka-
pitel 3). Die Länge der Bande 99 ist dann 
nach der Crofton-Formel der Integralgeo-
metrie gleich einem Integral über die Zahl 
der Schnittpunkte von Geraden mit dieser 
Kurve. 

Diese Darstellung wird anschließend zu ei-
nem Beweis der isoperimetrischen Unglei- 
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chung verwendet. Tabachnikov schließt ei-
nen von ihm gefundenen Beweis eines Spezi-
alfalles der so genannten DNA-Ungleichung 
an. Diese besagt für im konvexen Gebiet 
enthaltene nicht notwendig doppelpunkt-
freie Kurven, dass deren mittlere absolute 
Krümmung nicht kleiner als die von Ol ist. 

In Kapitel 4 wird gezeigt, dass auch Bil-
lards in Quadriken integrable Hamilton'sche 
Systeme sind. Hilfsmittel des Beweises ist die 
polare Dualität sternförmiger Hyperflächen 
im lR und der Menge ihrer Tangentialebe-
nen, aufgefasst als Hyperfläche im Dual-
raum. 

In diesem Fall, aber auch allgemein für 
strikt konvexe, glatt berandete Gebiete f, 
treten Kaustiken auf, also Hyperflächen, zu 
denen eine tangentiale Trajektorie nach jeder 
Reflektion an 39 wieder tangential ist. Die 
Untersuchung solcher Kaustiken führt in 
Kapitel 5 zur Entwicklung der Differential-
geometrie von Involute und Evolute. 

Exkurse zur Theorie der Regenbögen, 
zum Vier-Scheitelsatz für Kurven und zur 
reellen projektiven Ebene schließen sich 
zwanglos an. 

Der Beweis des Starrheitssatzes von Mi-
scha Bialy (,‚nur für die Kreisscheiben befin-
den sich fast alle Punkte auf invarianten 
Kreislinien der Billardabbildung") könnte 
aus dem Buch der Beweise stammen. Er ver-
kettet die Ungleichung zwischen arithmeti-
schem und geometrischem Mittel, Cauchy-
Schwarz und isoperimetrische Ungleichung. 

Als nächstes Thema nimmt sich Tabachni-
kov periodische Orbits vor, deren Existenz 
mit globalen Methoden bewiesen wird. Der 
Satz von Birkhoff bestätigt mit einem Sat-
telpunktargument für strikt konvexe, glatt 
berandete Billards in der Ebene die Existenz 
zweier n-periodischer Trajektorien mit zu n 
teilerfremder Rotationszahl p < L(n - l)/2]. 
Ein zweiter Beweis erfolgt unter Verwen-
dung des letzten geometrischen Theorems 
von Poincar. Zur Motivation analoger Re-
sultate in höheren Dimensionen werden 
Grundideen der Morse-Theorie skizziert. 

Polygonale Billards sind das Thema von 
Kapitel 7. Dass selbst für Dreiecke die Exis-
tenz periodischer Orbits nicht bekannt ist, 
zeigt beispielhaft, wie klein die Inseln unse-
ren mathematischen Wissens sind. 

Durch Spiegelung erhält man aus poly-
gonalen Billards (spezielle) Polyederflächen. 
Für Letztere wird im generischen Fall die 
Nichtexistenz doppelpunktfreier geschlosse-
ner Geodäten gezeigt (im Gegensatz zum 
Fall glatter Flächen). Dazu wird eine diskre-
te Variante des Satzes von Gauss-Bonnet be-
wiesen. 

Kapitel 8 über chaotische Billards be-
schreibt die Technik strikt invarianter Kegel-
felder und die auf Wojtkowski zurückgehen-
den Prinzipien für die Konstruktion hyper-
bolischer Billards. Die erheblichen analyti-
schen Probleme, die beim Nachweis der Er-
godizität entstehen, werden nur kurz er-
wähnt2 . 

Den Abschluss bilden duale Billards, bei 
denen die diskrete Bewegung im Außen-
gebiet IR 2  \Q durch Spiegelung am Tangen-
tialpunkt einer Gerade durch x mit 199 defi-
niert ist. Seit Jürgen Moser diese dyna-
mischen Systeme in seinem Buch 3  populari-
sierte, sind viele Resultate erzielt worden, 
von denen einige kurz vorgestellt werden. 

Insgesamt also: ein sehr inhaltsreiches, 
aber gleichzeitig elementares Buch in nicht 
bourbakistischem Stil. Ich meine, dass es 
hilfreich sein kann, um Studierende beispiel-
haft an Fragestellungen und Techniken ma-
thematischer Forschung heranzuführen. 

2Zu diesem Thema sind aber z.B. unter www. 
math . uab . edu/chernov Aufsätze von Nikolai 
Chernov erhältlich. 

3 Stable and random motions in dynamical sys-
tems. Annals of Mathematic Studies. No. 77. 
Princeton 1973 
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Auf der Homepage des Autors (www. 
math.psu.edu/tabachni)  kann man sich 
ein eigenes Bild von den Qualitäten des Bu-
ches machen und ebenso eine mathematisch 
vollständigere Darstellung der Billardtheo-
ne finden. 

Erlangen 	 A. Knauf 

L CrosiIIa, P. Schuster 

From Sets and Types 
to Topology and 
Analysis Towards 
Practicable Founda-
tions tor Constructive 
Mathematics 
Oxford Logic Guides 48 

Oxford, Clarendon Press, 2005, 350 St., 
£70,- 

Der Band ist entstanden aus einer Konferenz 
mit demselben Titel, die 2003 in Venedig 
stattfand. Die besondere Absicht war in bei-
den Fällen, eine Brücke zu schlagen zwischen 
der Praxis der konstruktiven Mathematik 
und den verschiedenen formalen Systemen, 
die zu ihrer Begründung vorgeschlagen wur-
den. Die Spannweite der behandelten Gebie-
te wird am besten durch die Liste der enthal-
tenen Arbeiten beschrieben: 

L.Crosilla and P. Schuster, Introduction 
Part IFoundations 
M. Rathjen, Generalized Inductive Defi-

nition in Constructive Set Theory 
A. Simpson, Constructive Set Theories 

and their Category-Theoretic Models 
N. Gambino, Presheaf Models for Con-

structive Set Theory 
T. Streicher, Universes in Toposes 

M.E. Maietti and G. Sambin, Towards a 
Minimalist Foundation for Constructive 
Mathematics 

P. Hancock and A. Setzer, Interactive 
Programs and Weakly Final Coalgebras in 
Dependent Type Theory 

U. Berger and M. Seisenberger, Applica-
tions of Inductive Definitions and Choice 
Principles to Program Synthesis 

S. Negri and J. v. Plato, The Duality of 
Classical and Constructive Notions and 
Proofs 

Part II Practice 
E. Palmgren, Continuity on the Real Line 

and in Formal Spaces 
P. Aczel and C. Fox, Separation Principles 

in Constructive Topology 
A. Bucalo and G. Rosolini, Spaces as 

Comonoids 
M . E. Maietti, Predicative Exponentiation 

ofLocally Compact Formal Topologies over 
Inductively Generated Topologies 

S. Vickers, Some Constructive Roads to 
Tychonoff 

T. Coquand, H. Lombardi and M.-F. 
Roy, An Elementary Characterization of 
Krull Dimension 

H. Ishihara, Constructive Reverse Mathe-
matics: Compactness Properties 

B. Spitters, Approximating Integrable Sets 
by Compacts Constructively 

H. Takamura, An Introduction to the 
Theory of C*Algebras  in Constructive Ma-
thematics 

D. Bridges and R. Havea, Approximation 
to the Numerical Range of an Element of a 
Banach Algebra 

D. Bridges and L. Vita, The Constructive 
Uniqueness of the Locally Convex Topology 
on 1' 

V. Brattka, Computability on Non-Sepa-
rable Banach Spaces and Landau's Theorem 

Der Band beginnt mit einer sehr lesenswer-
ten Einführung der Herausgeber, in der ver-
sucht wird, die große Vielfalt der Beiträge 
unter gemeinsamen Gesichtspunkten zu dis-
kutieren. 
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In der konstruktiven Mathematik besteht 
eine besondere Notwendigkeit, Grundlagen-
fragen und konkrete Entwicklungen gleich-
zeitig im Blick zu haben. Dies erklärt sich 
durch ihre Sensitivität für verschiedene 
(klassisch äquivalente) Formulierungen von 
zentralen Begriffen, etwa dem der Kompakt-
heit. Es kommt auf genaue Formulierungen 
an, und dafür ist es wichtig, das zugrundelie-
gende formale System zu kennen. 

Unter dem Einfluss des 1967 erschienenen 
Buchs „Constructive Analysis" von E. Bi-
shop wurden in der 70er Jahren verschiedene 
formale Systeme vorgeschlagen, die zur Be-
handlung der konstruktiven Mathematik in 
Bishops Sinn geeignet sind. Am meisten ver-
breitet sind Fefermans explizite Mathema-
tik, Martin-Löfs Typentheorie und intuitio-
nistische (IZF) und konstruktive (CZF) Sys-
teme der Mengenlehre, die auf Friedman, 
Myhill und Aczel zurückgehen. Von der 
Martin-Löf'schen Typentheorie gibt es zahl-
reiche Versionen: extensional oder intensio-
nal, mit oder ohne Universen und induktiv 
definierten Typen. Eine Variante ist der „cal-
culus of inductive constructions", in dem 
auch imprädikative Definitionen zugelassen 
sind. 

Generell ist anzumerken, dass die verwen-
deten formalen Hilfsmittel möglichst all-
gemein und primitiv sein sollten. Bishop 
empfiehlt in einer Arbeit von 1970, mit mini-
malen Systemen zu beginnen und sie erst 
dann zu erweitern, wenn sich eine echte ma-
thematische Notwendigkeit dafür ergibt. 
Wichtig in diesem Zusammenhang ist, dass 
für die meisten mathematischen Begriffe kei-
ne wesentlich imprädikativen Konstruktio-
nen benötigt werden: dies ergibt sich aus Un-
tersuchungen von Feferman und auch von 
Friedman und Simpson im Kontext der 
(klassischen) „reverse mathematics". 

Auf einige besonders interessante Arbei-
ten sei noch extra hingewiesen; die Auswahl 
ist sicherlich durch den Geschmack des Refe-
renten bestimmt. 

Hancock und Setzer betrachten eine Er-
weiterung der Martin-Löf"schen Typentheo- 

ne durch koinduktive Datentypen, und ver-
wenden sie für die Entwicklung von inter-
aktiven Programmen. Koinduktive Daten-
typen sind durch dieselben Konstruktoren 
wie induktive definiert, ihre Elemente sind 
jedoch als unendliche Bäume anzusehen, bei 
denen jeder Knoten durch einen Konstruk-
tor und Zeiger auf die Vorgängerknoten be-
schriftet ist. Die Autoren führen den Begriff 
einer schwachen finalen Koalgebra für poly-
nomiale Funktoren ein, und diskutieren die 
Beziehungen zur „bewachten" Induktion. 

Berger und Seisenberger untersuchen in 
ihrer Arbeit den wichtigen Begriff der Reali-
sierbarkeit, mit dem das für die konstruktive 
Mathematik zentrale Konzept des rechneri-
schen Gehalts eines Beweises präzisiert wird. 
Durch eine verfeinerte Form der Gö-
del'schen Funktionalinterpretation lässt sich 
das Konzept der Realisierbarkeit auch für 
Beweise von schwachen (oder „klassischen") 
Existenzsätzen anwenden. Dies wird am Bei-
spiel von Higmans Lemma demonstriert, 
wobei im Kontext der Funktionalinterpreta-
tion das Axiom der abhängigen Auswahl ei-
ner besonderen Behandlung bedarf. 

Der Beitrag von Coquand, Lombardi und 
Roy repräsentiert eine von den Autoren in-
tensiv verfolgte neue Richtung in der kon-
struktiven Algebra, die enge Beziehungen 
zur formalen Topologie hat. Ein wichtiger 
Aspekt ihres Ansatzes ist die Absicht, Sätze 
konstruktiv auf demselben (niedrigen) Ty-
penniveau zu beweisen auf dem sie formu-
liert sind. Aus diesem Grund müssen sie die 
Komplexität einiger Begriffe reduzieren, et-
wa den der Krull Dimension eines kommuta-
tiven Ringes. Die Quantifikation über belie-
bige Primideale wird ersetzt durch eine in-
duktive Charakterisierung der Krull Dimen-
sion. 

Der vorliegende Band gibt eine hervor-
ragende Ubersicht über den aktuellen Stand 
der Forschung in Theorie und Praxis der 
konstruktiven Mathematik. Er sollte in kei-
ner mathematischen Bibliothek fehlen. 

München 	 H. Schwichtenberg 
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A. C. C. Coolen 

Ttie Mathematical 

Theory 01 Minority 

Garnes 

StatistcaI Mecanics 

of Interacting Agents 

Oxford University Press, 2005, 324 5., £ 62 1- 

Der Grundgedanke der statistischen Mecha-
nik, aus einer Anzahl von Regeln für das 
Verhalten eines Systems auf der mikroskopi-
schen, d.h. molekularen Ebene seine makro-
skopischen Gesetzmäßigkeiten abzuleiten, 
hat sich nicht nur in der Physik bewährt, wo 
es beispielsweise gelang grundlegende ther-
modynamische oder magnetische Eigen-
schaften von Systemen an einfachen Model-
len nachzuvollziehen. Oftmals lassen sich 
dieselben oder sehr ähnliche Modelle auch 
verwenden, um Fragestellungen, beispiels-
weise aus den Wirtschaftswissenschaften 
oder der Soziologie zu untersuchen. So gab 
beispielsweise Föllmer schon 1973 in einer 
grundlegenden Arbeit eine ökonomische In-
terpretation des Ising-Modells aus der Theo-
rie des Ferromagnetismus. 

Das vorliegende Buch betrachtet ein etwas 
komplexeres Szenario, die sogenannten Mi-
nority Garnes, Minoritätenspiele, die ur-
sprünglich entwickelt wurden, um kollektive 
Phänomene und Fluktuationen in finanziel-
len Märkten zu studieren. Tatsächlich lassen 
sich aber durch das Minoritätenspiel eine 
ganze Reihe von Situationen beschreiben, in 
denen Agenten in eigennütziger Weise han-
deln und versuchen, durch Vorhersagen der 
Entscheidungen der anderen Agenten Nut-
zen zu erzielen. Hierbei sind die Spielregeln 
so, dass diejenigen einen Gewinn erzielen, 
die sich mit ihrer (binären) Entscheidung in 
der Minderheit befinden, also beispielsweise  

diejenigen, die eine Aktie verkaufen möch-
ten, wenn eine Mehrheit der anderen Markt-
teilnehmer sie kaufen will. 

Um ein Lernverhalten der Agenten model-
lieren zu können umfasst die mathematische 
Formulierung daher neben den Aktionen 
der einzelnen Agenten auch eine (öffentlich 
zugängliche) Information über die histori-
sche Marktentwicklung und Strategien der 
einzelnen Agenten. Das entsprechende Mo-
dell eines Minoritätenspiels bietet in der Tat 
eine Reihe überraschender Eigenschaften. 
So zeigen beispielsweise Simulationen, dass 
das Verhalten der Agenten von der Länge ih-
res „Gedächtnisses" abhängt, dass sie sich 
zum einen signifikant schlechter verhalten, 
als bei rein zufälliger Entscheidung, wenn 
die Historie über das Marktverhalten, auf 
die sie zugreifen können, zu kurz ist. Die glei-
chen Simulationen zeigen aber auch, dass die 
Qualität der Entscheidung über die einer rein 
zufälligen Entscheidung steigt, wenn man 
ein längeres Gedächtnis der Marktteilneh-
mer annimmt und dass schließlich mit ex-
trem langem Gedächtnis wieder die Qualität 
einer rein zufälligen Entscheidung erreicht 
wird. Interessant ist auch, dass sich das Mo-
dell kaum anders verhält, wenn man das ech-
te Gedächtnis durch ein künstliches Ge-
dächtnis (fake memory) ersetzt. 

Der vorliegende Leitfaden gibt eine Uber-
sicht über verschiedene Spielarten des Mino-
ritätenspiels und ihre mathematische Be-
handlung. Hierbei ist allerdings „mathema-
tisch" im Sinne der theoretischen Physik zu 
verstehen: 

Nicht nur die Modelle erinnern an die Ma-
thematik und Physik ungeordneter Systeme, 
auch die Methoden, allen voran der notori-
sche, nicht-rigorose Replikaansatz, bei dem 
die Zustandssumme eines Systems zunächst 
für n Duplikate des Systems errechnet wird 
und dann der Limes n - 0 genommen wer-
den muss, entstammen diesem Bereich. 

Dennoch halte ich A. C. C. Coolens Buch 
für eine wertvolle Lektüre, die Forschern 
ebenso wie ambitionierten Studierenden der 
theoretischen Physik, angewandten Mathe- 

JB 110. Band (2008), Heft 4 	 45 



Übersichtsartikel 	Historische Beitrage 	Berichte aus der Forschung 	Buchbesprechungen 

matik oder Ökonomie, die Möglichkeit bie-
tet, einen Uberblick über das stets noch ex-
pandierende Feld der Minoritätenspiele zu 
gewinnen, ohne sie dabei in den Dschungel 
von Forschungsarbeiten oder eines enzyklo-
pädischen Werkes zu schicken. Das Werk 
bietet dabei alle Vorteile eines Leitfadens: 
eine konsistente Notation ebenso wie einen 
didaktischen Aufbau, der die Modelle eher 
in der Reihenfolge ihres Schwierigkeitsgra-
des als in chronologischer Ordnung einführt 
und bewusst auf eine vollständige Behand-
lung aller möglichen Varianten verzichtet. 
Es sei daher jedem ans Herz gelegt, der sich 
für ein Gebiet interessiert, das Methoden der 
Physik mit Fragestellungen der Okonomie 
verknüpft und auf der mathematischen Seite 
noch reichlich Forschungspotenzial bietet. 

Münster 	 M. Löwe 

Berlin u.a., Springer, 2006,450 u. 400 S., 
je€79,95 

Viele Probleme aus der Optimierung, der op-
timalen Steuerung oder der Okonomie füh-
ren auf nichtdifferenzierbare Aufgabenstel-
lungen. Dazu gehören nicht selten auch sol-
che Probleme, denen man die Nichtglattheit 
zunächst nicht ansieht, da sie mit Hilfe von 
differenzierbaren Daten definiert werden. 
Eine adäquate Behandlung derartiger Pro-
bleme gelingt dann nur mit den Methoden 

der nichtglatten Analysis. Hierfür gibt es ei-
ne ganze Reihe von verschiedenen Ansätzen. 
Die bekanntesten Vertreter sind vermutlich: 
• das konvexe Subdifferential und der kon- 

vexe Normalenkegel aus der konvexen 
Analysis, vergleiche [4]; 

• das Clarke-Subdifferential und der Clar-
ke'sche Normalenkegel bei lokal Lip-
schitz-stetigen Daten, siehe [2]. 

Die Begriffe von Clarke können dabei als 
Verallgemeinerungen der zugehörigen kon-
vexen Gegenstücke angesehen werden, da sie 
im konvexen Fall mit diesen übereinstim-
men. Tatsächlich waren und sind die Begriffe 
und Hilfsmittel von Clarke von ungeheurem 
Nutzen und im gewissen Sinne nicht weiter 
verbesserbar, wenn man auf die Gültigkeit 
einiger Eigenschaften und die Konvexität 
des zugehörigen Normalenkegels sowie des 
entsprechenden Subdifferentials nicht ver-
zichten will. 

In verschiedenen Anwendungen stellte 
sich allerdings immer wieder heraus, dass der 
Normalenkegel und das Subdifferential von 
Clarke zu groß sind und nicht selten wesent-
lich stärkere Aussagen erzielt werden kön-
nen, wenn man statt des Clarke'schen Kal-
küls den in der Literatur oft als Mordukho-
vich-Normalenkegel bezeichneten Kegel 
bzw. das zugehörige Mordukhovich-Subdif-
ferential verwendet. Hierbei handelt es sich 
um im Allgemeinen nichtkonvexe Objekte, 
für die dennoch zahlreiche Rechenregeln gel-
ten und die im Mittelpunkt des vorliegenden 
Werkes stehen. 

Das Buch ist dabei in zwei Bände geglie-
dert. Sowohl der erste als auch der zweite 
Band enthalten vier Kapitel, wobei sich der 
erste Band mehr mit den theoretischen 
Grundlagen und der zweite Band mit den 
Anwendungen dieser Theorie auf verschie-
dene Problemklassen beschäftigt. 

Das Kapitel 1 führt zunächst die zentralen 
Begriffe ein, und zwar den zuvor schon 
genannten Mordukhovich-Normalenkegel 
(hier schlicht als Normalenkegel bezeichnet), 
das (Mordukhovich-)Subdifferential und die 
(Mordukhovich-)Coderivative für mengen- 
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wertige Abbildungen. Dies sind die wesentli-
chen Begriffe, auf die alle nachfolgenden Ka-
pitel aufbauen. Sämtliche Definitionen und 
Eigenschaften werden dabei gleich in all-
gemeinen Banach-Räumen angegeben. 

Das Kapitel 2 beschäftigt sich mit ver-
schiedenen Extremalprinzipien und ihren 
Zusammenhang mit bekannten Variations-
prinzipien (etwa dem Variationsprinzip von 
Ekeland). Die Resultate werden zunächst in 
beliebigen Banach-Räumen formuliert, teil-
weise auf endlich-dimensionale Räume spe-
zialisiert und führen insbesondere zu Cha-
rakterisierungen von Asplund-Räumen, die 
auch im nachfolgenden Kapitel 3 benötigt 
werden. 

Dieses Kapitel 3 enthält diverse Rechen-
regeln für den praktischen Umgang mit Nor-
malenkegeln, Subdifferentialen und Coderi-
vatives. Sie sind in Asplund-Räumen formu-
liert und gehen weit über die schon im Kapi-
tel 1 vorgestellten elementaren Regeln in Ba-
nach-Räumen hinaus. 

Mit den Kapiteln 1-3 stehen die wesentli-
chen theoretischen Grundlagen bereit. Die 
restlichen Kapitel enthalten Anwendungen 
dieser Theorie auf verschiedene Problem-
klassen. Das formal noch zum Theorie-
Band 1 gehörende Kapitel 4 etwa benutzt die 
bisher erzielten Resultate, um Sensitivitäts-
analysen für gestörte Probleme durchzufüh-
ren, wie sie insbesondere in der Optimierung 
von großem Nutzen sind. 

Der zweite Band behandelt im Kapitel 5 
zunächst diverse Optimalitätskriterien für 
restringierte Optimierungsaufgaben und ver-
schiedene Gleichgewichtsprobleme. Dabei 
werden auch speziell strukturierte Optimie-
rungsprobleme behandelt, so etwa die 
MPECs (Mathematical Programs with 
Equilibrium Constraints) sowie die EPECs 
(Equilibrium Programs with Equilibrium 
Constraints). Gerade die EPECs sind eine 
Aufgabenstellung, in der sich die internatio-
nale Forschung momentan bestenfalls im 
Anfangsstadium befindet. 

Die beiden Kapitel 6 und 7 sind dann der 
optimalen Steuerung gewidmet, einem The- 

ma, das historisch für die Entwicklung der 
nichtglatten Analysis wohl die herausragen-
de Rolle gespielt hat und immer noch spielt. 
Im Kapitel 6 stehen hier insbesondere Opti-
malitätsbedingungen (wie etwa das Maxi-
mumprinzip) bei Problemen mit ODE-Re-
striktionen im Vordergrund, während im 
Kapitel 7 auch PDEs auftreten. 

Im abschließenden Kapitel 8 stehen ver -
schiedene Anwendungen der entwickelten 
Theorie auf einige ökonomische Modelle im 
Mittelpunkt. 

Jedes Kapitel wird außerdem durch einen 
Abschnitt mit Kommentaren ergänzt. Diese 
umfassen im Allgemeinen etwa 15-20 Sei-
ten, im Falle des ersten Kapitels sind es gar 
fast 40 (!) Seiten. Diese sind für den Leser au-
ßerordentlich nützlich, enthalten sie neben 
vielen historischen Kommentaren insbeson-
dere auch umfangreiche Verweise auf die 
entsprechende Originalliteratur (das Buch 
enthält knapp 1400 Referenzen) sowie eine 
Einordnung der jeweiligen Resultate in den 
Forschungszusammenhang. Dabei wird 
auch auf die historisch verschiedenen Ent-
wicklungen in Ost und West eingegangen, da 
diese beiden Teile der Welt bis zur Wende 
1989/1990 auch wissenschaftlich getrennt 
waren. 

Insgesamt enthält das Buch eine Fülle von 
Material, der allergrößte Teil hiervon mit 
dem vorliegenden Werk erstmals in Form ei-
ner Monographie. Nicht selten werden auch 
neueste Forschungsergebnisse mit eingebun-
den, zum Teil sind die Resultate wohl noch 
nirgends publiziert. Das Buch ist auf dem 
Markt daher praktisch konkurrenzlos. Le-
diglich Loewen [3], Rockafellar und Wets [5] 
sowie Borwein und Zhu [1] behandeln zum 
Teil ein ähnliches Themengebiet. Sie be-
schränken sich hierbei aber auf den endlich-
dimensionalen Fall (insbesondere [5]) bzw. 
haben eine eher andere Ausrichtung und 
sind weitaus weniger umfangreich (im Falle 
von [3,1]), in [1] wird nicht selten sogar auf 
die Beweise verzichtet, während Mordukho-
vich alle Beweise ausführt. 
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Das Buch ist sicherlich nicht für den „An-
fänger" geschrieben. Solide (funktional-) 
analytische Grundkenntnisse werden vo-
rausgesetzt. Für den zweiten Band sind au-
ßerdem eine gewisse Vertrautheit mit den 
Grundlagen der Optimierung und optimalen 
Steuerung recht nützlich. Wer diese Voraus-
setzungen mitbringt, wird das vorliegende 
Buch mit großem Gewinn lesen und auf diese 
Weise in ein sehr aktuelles und forschungs-
intensives Gebiet der Mathematik eingeführt 
und auf den neuesten Stand gebracht. Das 
Buch erscheint nicht umsonst in der renom-
mierten Springer-Reihe „Grundlehren der 
mathematischen Wissenschaften" und dürf-
te für viele Jahre, vielleicht sogar Jahrzehnte, 
zu einem Standard- und Referenzwerk im 
Bereich der nichtglatten Analysis und ihren 
Anwendungen werden. 

Literatur 

[1] J.M. Borwein und Q.J. Zhu: Techniques of 
Variational Analysis. Canadian Mathema-
tical Society Books in Mathematics, Sprin-
ger Science+Business Media, New York, 
NY, 2005. 

[2] F. H. Clarke: Optimization andNonsmooth 
Analysis. John Wiley & Sons, New York, 
NY, 1983. 

[31 Ph. D. Loewen: Optimal Control via Non-
smooth Analysis. CRM Proceedings & 
Lecture Notes 2, American Mathematical 
Society, Providence, RI, 1993. 

[41 R. T. Rockafellar: Convex Analysis. Prince- 
ton University Press, Princeton, NJ, 1970. 

[5] R. T. Rockafellar und R.J.-B. Wets: Varia-
tional Analysis. Grundlehren der mathema-
tischen Wissenschaften 317, Springer-Ver-
lag, Berlin, Heidelberg, 1998. 

Würzburg 	 Ch. Kanzow 

Providence, Am. Math. Soc., 2006, 294S., 
$55,- 

Die Anzahl an mittlerweile veröffentlichten 
Büchern, die in die moderne Finanzmathe-
matik oder aber in die ihr zugrundeliegenden 
stochastischen Methoden einführen (sollen), 
ist in den vergangenen Jahren stark ange-
wachsen. Das vorliegende Buch von Sehn 
Dineen, obwohl in der AMS-Serie Graduate 
Studies in Mathematics erschienen, ist ein 
Versuch, rigorose mathematische Grund-
lagen mit Intuition zu verknüpfen, sie teil-
weise auch durch diese zu ersetzen, um so 
auch gerade Studenten aus dem Bereich der 
Okonomie eine für sie erreichbare mathema-
tische Basis zum Verständnis der modernen 
Finanzmathematik zu geben. Hierzu setzt 
der Autor lediglich einen Grundlagenkurs in 
Analysis voraus. Folglich ist eine große Ar-
beit zu leisten, da keinerlei Grundlagen der 
Stochastik als bekannt angenommen werden 
dürfen. 

Das Buch besteht aus einem Vorwort ge-
folgt von den Kapiteln 

Chapter 1: Money and Markets 
Chapter 2: Fair Garnes 
Chapter 3: Set Theory 
Chapter 4: Measurable Functions 
Chapter 5: Probability Spaces 
Chapter 6: Expected Values 
Chapter 7: Continuity and Integrability 
Chapter 8: Conditional Expectation 
Chapter 9: Martingales 
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Chapter 10: The Black-Scholes Formula 
Chapter 11: Stochastic Integration 

sowie einer großen Sammlung von Lösungen 
zu in den Kapiteln gestellten Ubungsauf-
gaben, einer Bibliographie und einem Index. 

Im ersten Kapitel werden eine sehr knappe 
Einführung in die Zinsrechnung gegeben, die 
Exponentialfunktion und der Hauptsatz der 
Integralrechnung (!) eingeführt sowie einige 
Bemerkungen zum Handel an Finanzmärk-
ten gemacht. Im zweiten Kapitel werden 
motivierende Anmerkungen zu fairen Spie-
len gemacht, die über Erwartungswerte er-
klärt werden, ohne dass der Begriff der Er-
wartung überhaupt vorher definiert wurde. 
Das dritte Kapitel beinhaltet mengentheore-
tische Grundlagen der Wahrscheinlichkeits-
rechnung (Mengen, a-Algebra, Partition, 
Filtration) sowie einige eher philosophische 
Anmerkungen zum Umgang mit abstrakter 
Mathematik und mit dem Unendlichen. Die 
Borel-o--Algebra, messbare Funktionen und 
(punktweise) Konvergenz sind die Themen 
des vierten Kapitels, während sich das fünfte 
mit dem Einführen der Begriffe der Wahr-
scheinlichkeit, Unabhängigkeit und Zufalls-
variablen beschäftigt. Hier wird auch bereits 
das Einperioden-Binomial-Modell als ein-
fachstes Beispiel eines Finanzmarkts, in dem 
ein Optionsbewertungsproblem gelöst wer-
den kann, behandelt. Die übliche Definition 
des Erwartungswerts über den Weg von den 
einfachen über die positiven zu integrier-
baren Zufallsvariablen samt der zugehörigen 
Standardresultate wie die Sätze über majori-
sierte und über monotone Konvergenz stel-
len den Inhalt des sechsten Kapitels dar. Un-
abhängige Zufallsvariablen, bedingte Er-
wartungen sowie erste Bemerkungen zum 
Hedgen von Call-Optionen werden in den 
nächsten beiden Kapiteln behandelt. Grund-
lagen aus der Theorie der Martingale bilden 
das neunte Kapitel. Hierbei werden erstaun-
licherweise die Begriffe Sub- und Supermar-
tingal nicht erwähnt und der Begriff Conti-
nuous martingale fälschlicherweise für Mar-
tingale in stetiger Zeit verwendet. In Kapi- 

tel 10 schließlich wird die Black-Scholes-
Formel als zentrales, motivierendes Beispiel 
für finanzmathematische Anwendungen be-
handelt. Neben einer Berechnung des den 
Optionspreis bestimmenden Erwartungs-
werts beinhaltet es auch den Versuch einer 
Motivation der Brown'schen Bewegung als 
Basis der Zufallsmodellierung im Black-
Scholes-Modell über Grenzbetrachtungen. 
Im abschließenden elften Kapitel wird eine 
Einführung in die stochastische Integration 
gegeben sowie ihre nochmalige Anwendung 
auf das Hedgen einer Option im Black-Scho-
les-Modell vorgestellt. 

Der Autor verfolgt mit dem Anspruch ei-
ner rigorosen mathematischen Einführung 
bei gleichzeitiger Annahme minimaler Vor-
kenntnisse seiner Hörer ein hohes Ziel. Aller-
dings leidet das Buch hierunter auch deut-
lich. Es fehlt ihm eine gewisse Ausgewogen-
heit hinsichtlich der Schwierigkeit der einzel-
nen Abschnitte, die auch zusätzlich nicht alle 
eine Länge gemäß ihrer Bedeutung besitzen. 
So wird der Leser in einigen Abschnitten 
sehr detailliert in technischen Grundlagen 
eingeführt (die eigentliche Wahrscheinlich-
keitsrechnung beginnt erst auf Seite 74!), 
während ihm in manch anderen Teilen ein 
recht forsches Vorgehen zugemutet wird. So 
wird der Themenkomplex Central limit theo-
rem auf knapp einer Seite abgehandelt. Na-
hezu unglaublich erscheint es allerdings, dass 
das starke Gesetz der großen Zahlen, wel-
ches gerade die für die Anwendung in der 
Optionsbewertung so wichtige Monte-Car-
lo-Methode motiviert, in einem Buch zum 
Thema Probability Theory überhaupt nicht 
erwähnt wird (was übrigens auch für die 
Monte-Carlo-Methode gilt)! 

Generell besitzt das Buch neben der Prä-
sentation einiger interessanter historischer 
Zusammenhänge und einiger schöner 
Ubungsaufgaben und Beispiele auch Schwä-
chen, die erkennen lassen, dass weder die 
Wahrscheinlichkeitstheorie noch ihre An-
wendung in der modernen Finanzmathema-
tik die eigentlichen Forschungsgebiete des 
Autors sind. So wird der moderne Duplika- 
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tionsansatz der Optionsbewertung nicht er-
wähnt, sondern die Black-Scholes-Formel 
über einen Grenzprozess aus zeitdiskreten 
Modellen hergeleitet, bei denen nicht unbe-
dingt ersichtlich ist, dass der entstehende 
Preis wirklich keine Arbitragemöglichkeit 
zulässt. Auch ein Satz wie lt is generaily ac-
cepted ihm' most share prices at any fixed 
future time are lognormally distributed (S. 
158) ignoriert einen Großteil der empiri-
schen Erkenntnisse und der finanzmathema-
tischen Forschung der letzten 15 Jahre. Des 
weiteren tragen unglückliche Bezeichnungen 
wie z.B. die Verwendung von Continuous 
martingales zu Inkonsistenzen mit der Stan-
dardliteratur bei, die vom Autor auch weit-
gehend ignoriert wurde. 

Im wesentlichen kann das Buch nur als Er-
gänzung zu einführenden Vorlesungen über 
Wahrscheinlichkeitstheorie empfohlen wer-
den. Der Einsteiger in die Gebiete der Fi-
nanzmathematik und der Wahrscheinlich-
keitstheorie sollte aufgrund der Unvollstän-
digkeiten und auch des fehlenden Bezugs zur 
Anwendung für Einführung auf die Stan-
dardliteratur zurück greifen. 

Kaiserslautern 	 R. Korn 
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Springer 

Aktuelles der Mathematik 

B. Bergmann, M. Eppte, Universität Frankfurt 
(Hrsg.) 

Der Band dokumentiert eine Wanderausstellung, 
die im Rahmen des Jahres der Mathematik 2008 
in sieben deutschen Städten gezeigt wird. Die 
Ausstellung führt die Tätigkeit jüdischer 
Mathematiker in Deutschland von der rechtlichen 
und politischen Gleichstellung jüdischer Bürger 
im 19. Jahrhundert bis zur Verfolgung und 
Vertreibung im Nationalsozialismus vor Augen. 
Sie stellt dar, wie im deutschen Kaiserreich und in 
der Weimarer Republik jüdische Mathematiker in 
allen Bereichen der mathematischen Kultur 
zunehmend eine tragende Rolle spielten, und sie 
erinnert an Emigration, Flucht und Ermordung 
nach 1933. 
Die Ausstellung beruht auf bisher unveröffent-
lichtem Material und neuer historischer 
Forschung. 

2008. Etwa 245 S.Geb. 
ISBN 978-3-540-69250-8 

€ (D) 39,95 1 E (A) 41,07 1 sFr 62,00 

Kombinatorische 
Optimierung 

Kornbinatvrische 
Optrmieruvg 	Theorie und 

Algorithmen 

B. Korte, J.Vygen, Univer-

- 	 sität Bonn, Deutschland 

Dieses umfassende 
Lehrbuch ist aus verschiedenen Vorlesungen über 
kombinatorische Optimierung und Spezialvorle-
sungen für Fortgeschrittene hervorgegangen. 
Das Buch enthält vornehmlich theoretische 
Resultate und detaillierte Algorithmen mit 
beweisbar guten Laufzeiten und Ergebnissen, 
aber keine Heuristiken. Es werden vollständige 
Beweise, auch für viele tiefe und neue Resultate 
gegeben, von denen einige bisher in der 
Lehrbuchliteratur noch nicht erschienen sind. 

2008. XX, 675 S. 77 Abb. Brosch. 
ISBN 978-3-540-76918-7 

€ (D) 39,95 1 € (A) 41,07 1 	62,00 

Produktionsfaktor Mathematik 
M. Grötschel, ZIB Berlin; K. Lucas, V. Mehrmann, 
TU Berlin (Hrsg.) 

Mathematik als Produktionsfaktor und Innovations-
verstärker? Wer wissen und verstehen will, warum 
die Mathematik immer stärker zur Produktentwick-
lung und Produktionssicherheit, zur Wertschöp- 
fung und Ressourcenschonung beiträgt, dem 
wird dieses Buch eine wahre Fundgrube sein. 

2009. Etwa 490S. Brosch. 
ISBN 978-3-540-89434-6 

€ (D) 29,95 1€ (A) 30,801 *SFr  46,50 
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Neu bei de Gruyter 
New at de Gruyter 

• Models, Modules and 
Abelian Groups 
In Memory ofA. L. S. Corner 

Ed. by RYdiger G beI / 
Brendan Goldsmith 
Approx. X, 498 pages. Hardcover. 
RRP € [DI 138.00 / *US$ 168.00 
ISBN 978-3-11-019437-1 

Pei-Chu Hu / Chung-Chun Yang 

• Distribution Theory of 
Algebraic Numbers 
XI, 527 pages. Hardcover. 
RRP € [D] 118.00/ *US$ 175.00 
ISBN 978-3-11-020536-7 
dc Gruyter Expositions in Mathematics 45  

Yakov Berkovich 

• Groups of 
Prime Power Order 
Volume 1 
November 2008. XIX, 512 pages. Hardcover. 
RRP € ED] 98,—! °US$ 145.00 
ISBN 978-3-11-020418-6 
dc Gruyter Expositions in Mathematics 46 

Yakov Berkovich! Zvonimir Janko 

• Groups of 
Prime Power Order 
Volume 2 
November 2008. XVI 596 pages. Hardcover. 
RRP € [DI 98,—! °U5$ 145.00 
ISBN 978-3-11-020419-3 
dc Gruyter Expositions in Mathematics 47 
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Peggy Daume 

Finanzmathematik im Unterricht 
Aktien und Optionen: Mathematische und didaktische 
Grundlagen mit Unterrichtsmaterialien 

2009. mit CD (Arbeitsmaterialien mit Lösungen). XIV, 268 S. 
mit 66 Abb., davon 3 in Farbe u. 36 Tab. Br. 
EUR 24,90 
ISBN 978-3-8348-0628-4 

Jur Ruf nach einer stärkeren Verankerung von Anwendungsbezügen aus der 
Finanzwelt im Mathematikunterricht ist zu Recht immer lauter geworden. Dieser 
Forderung kann man nur dann nachhaltig und erfolgreich gerecht werden, wenn 
man fachwissenschaftliche, fachdidaktische, aber auch unterrichtspraktische 
Erkenntnisse und Erfahrunges in die Unterrichtsplanung einfließen lässt. Die 
Berucksichtigusg dieses Dreiklangs zeichnet das vorliegende Buch aus. Nach einer 
ausfuhrlichen und verständlichen Beschreibung der hnanzmathematischen und 
didaktischen Grundlagen in den ersten beiden Teilen des Buches werden im dritten 
Teil daraus resultierende, mehrfach erprobte und optimierte Unterrichtseinheiten 
fur verschiedene Klassenstufen zur Analyse von Aktienkursen und zur Berechnung 
von Optionspreisen vorgestellt. Die CD zum Buch enthält umfangreiches Arbeits-
material (mit Lösungen) für die unmittelbare Verwendung im Unterricht. 

Der Inhalt 

Stochavtische Fisaszmathematik als Teil einer Fachwissenschaft: 
Aktien und Optionen 
Stochastische Fisanzmathematik als Teil des Mathematikunterrichts 
Vorstellung der Unterrichtveinheiten zu den Themen Aktien und Optionen 

Die Autorin 

Dr. Peggy Daume studierte die Fächer Mathematik und Chemie für das Amt 
des Lehrers sn Haupt- und Realschulen. Nach ihrem Studium promovierte sie 
an der Humboldt-Universität zu Berlin. Seitdem ist es ihr ein Anliegen, Schüler 
und Lehrer an Forschungsgebiete der angewandten Mathematik heranzuführen. 
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