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‘ Vorwort
Jahresbericht der Deutschen Mathematiker-Vereinigung, 110. Bd. 2008, Nr. 4

Vorwort

Das vorliegende Heft schlieBt den Band 110 und damit das Jahr 2008 ab. Es werden
darin Themen aus sehr unterschiedlichen Bereichen aufgegriffen.

In einem historischen Beitrag diskutiert Herr Deiser die verschiedenen Beweise Can-
tors iiber die Uberabzihlbarkeit der reellen Zahlen. Dabei geht es besonders um den er-
sten Beweis, der nur brieflich tiberliefert ist, aber nicht verdffentlicht wurde.

Der Artikel von Herrn Deuflhard, Frau Lutz-Westphal und Herrn Nowak geht,
ebenso wie die im letzten Heft erschienene Arbeit von Herrn Kirchgraber, auf einen
,Schnittstellenvortrag® der gemeinsamen Tagung von DMV und GDM im Mirz 2007
in Berlin zuriick. Naturgema8 treffen hier zwei verschiedene Kulturen aufeinander und
dementsprechend gibt es auch unterschiedliche Ansétze, die von der jeweilig anderen
Seite nicht immer kritiklos akzeptiert werden. Dennoch erscheint es mir wichtig, diesen
Dialog zu fithren und weiter auszubauen.

Herr Huckleberry beschreibt in seinem Nachruf auf Karl Stein das Leben und Werk
dieses bedeutenden Mathematikers, der die Komplexe Analysis nicht nur in Deutsch-
land, sondern weltweit maBgeblich mitgestaltet hat.

Mit diesem Heft mochte ich mich von den Leserinnen und Lesern des Jahresberichts
verabschieden. Ab dem néchsten Heft werden Herr Grunau aus Magdeburg und seine
Mitherausgeber die Herausgabe des Jahresberichts tibernehmen. Ich danke allen, die an
der Gestaltung des Jahresberichts beteiligt waren. Hierzu gehdren zunichst die Auto-
rinnen und die Autoren, aber ebenso all jene, die es iibernommen haben, Arbeiten aus
dem Jahresbericht zu referieren. Herzlichen Dank auch an die anderen Mitglieder des
Herausgebergremiums, vor allem an Frau Gather und an Herrn Lange, die ebenfalls
mit Ablauf dieses Jahres ausscheiden werden. Die Zusammenarbeit mit Frau Schmick-
ler-Hirzebruch und Frau RuBlkamp vom Viehweg+Teubner Verlag war stets duBerst
kooperativ. Dies gilt ebenso fiir das Zusammenwirken mit Frau Behrens von Fotosatz
Behrens. SchlieBlich gilt mein Dank auch den Sekretirinnen in Hannover, nimlich
Frau Andrea Wiese und Frau Stefanie Heidemann, deren Mithilfe mir sehr wertvoll
war. Zum Schluss méchte ich dem neuen Herausgeber, Herrn Grunau und den iibrigen
Herausgebern alles Gute fiir die Weiterfithrung des Jahresberichts wiinschen.

K. Hulek
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Ubersichtsartikel I Historische Beitrage Berichte aus der Forschung—( Buchbesprechungen J

»in der Unvollkommenheit

des ersten Conceptes*”

Die Entdeckung der Uberabzihl-
barkeit der reellen Zahlen

Oliver Deiser

Abstract

= Mathematics Subject Clas@ﬂcation: 01-02, 01 A 55,03-03
= Keywords and Phrases: Uberabzéhlbarkeit, Cantor, Baire’scher Kategoriensatz,
Diagonalverfahren

Wir diskutieren die verschiedenen Beweise, die Cantor fiir die Uberabzahlbarkeit der
reellen Zahlen gefunden hat. Ein Hauptaugenmerk liegt dabei auf dem allerersten nur
brieflich iberlieferten Beweis vom 7. Dezember 1873. Wir argumentieren, dass Cantor
hier im Wesentlichen bereits den Baire’schen Kategoriensatz bewiesen hat.

Eingegangen: 25.01.2008 DMV
JAHRESBERICHT

Oliver Deiser, Fachbereich Mathematik, FU Berlin DER DMV

deiser@math.fu-berlin.de © Vieweg-+Teubner 2008
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‘ Ubersichtsartikel I Historische Beitrage Berichte aus der Forschung Buchbesprechungen

1 Einfiihrung

Die Geschichte der reellen Zahlen ist von einem groBen wiederkehrenden Thema durch-
drungen: Die reellen Zahlen sind komplizierter und reichhaltiger als man annehmen
mochte. Die Pythagoreer entdeckten im 5. Jh. v. Chr. die Existenz irrationaler Zahlen:
Das Kontinuum lsst sich also nicht auf eine reine Verhiltnislehre reduzieren.' Liouvil-
le bewies 1844 stiarker die Existenz von transzendenten Zahlen: Nicht jeder Punkt des
Kontinuums ist Losung einer algebraischen Gleichung mit rationalen Koeffizienten.?
Cantor zeigte 1873 dann noch einmal stiarker, dass die reellen Zahlen iiberabzéhlbar
sind: Jede Folge Xo, X1, X2, ..., Xn, ... reeller Zahlen lisst reelle Zahlen aus.? Die sich an-
schlieBende eingehende Untersuchung dieses Phanomens ergab zudem, dass wir die An-
zahl der reellen Zahlen im Rahmen der klassischen Mathematik nicht bestimmen kon-
nen: Die Kontinuumshypothese ist weder beweisbar noch widerlegbar.* Die Menge der
reellen Zahlen bleibt in dieser Hinsicht dunkel — eine beunruhigende Erkenntnis.’

Der Uberabzihlbarkeit der reellen Zahlen wohnt ein Zauber inne, der iiber die ma-
thematische Bedeutung des Resultats weit hinausreicht. Hilt man an der Existenz der
Menge IR fest — wie es ja die klassische, mengentheoretisch axiomatisierte Mathematik
tut, die IR aus der Potenzmenge der natiirlichen Zahlen gewinnt — so ergibt sich ein fas-
zinierendes Bild der ,,GroBenunterschiede im Unendlichen®, in dem die Mengen IN, IR
und die Menge der reellen Funktionen nur drei von uniibersehbar vielen Stufen markie-
ren. Cantor griff in seinen Arbeiten und Briefen die uralte theologische und philosophi-
sche Diskussion iiber das Unendliche auf, und er sah seine mathematische Forschung
auch als eine Bereicherung und Vertiefung dieser Diskussion an. Diese Haltung hat der
modernen Mathematik, die von Cantor entscheidend mitgepréigt wurde, einen gewissen
,romantischen Charakter® verliehen, der sie seither ebenso befruchtet wie belastet.

In diesem Artikel zeichnen wir die Entdeckung der Uberabzihlbarkeit der reellen
Zahlen durch Georg Cantor aus rein mathematischer Sicht nach, indem wir die vier von
Cantor zwischen 1873 und 1895 gefundenen Beweise im Lichte ihrer heutigen Bedeu-
tung studieren. Diese Beweise sind:

(1) Der brieflich an Dedekind mitgeteilte Beweis vom 7. Dezember 1873.

(2) Der in ,,Uber eine Eigenschaft des Inbegriffes aller algebraischen Zahlen“ ver-
offentlichte Beweis von 1874.

(3) Der auf der Tagung der DMV in Halle 1891 vorgestellte Beweis, der das ,,Can-
tor’sche Diagonalverfahren® eingefiihrt hat.

(4) Der von Cantor nicht explizit notierte Beweis der Uberabzihlbarkeit von IR, der
sich aus seiner ordnungstheoretischen Charakterisierung der rationalen Zahlen
von 1895 ergibt.

2 Der erste Beweis vom 7. Dezember 1873

In einem Brief an Richard Dedekind vom 29. November 1873 stellt Cantor die Frage,
ob — in spiterer Formulierung — die reellen Zahlen abzihlbar seien.® Dedekind liefert
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sogleich einen Beweis der Abzahlbarkeit der algebraischen Zahlen, kann aber die Frage
von Cantor nicht beantworten; er billigt auch dem Problem keine allzu groBe Bedeu-
tung zu, mangels praktischen Interesses. In seinem Antwortschreiben vom 2. Dezember
bestétigt Cantor Dedekinds Einschiatzung, weist aber darauf hin, dass sich aus der Ab-
zahlbarkeit der algebraischen Zahlen ein neuer Beweis der Existenz von transzendenten
Zahlen ergeben wiirde, wenn man die Uberabzihlbarkeit der reellen Zahlen zeigen
konnte. Diese einfache Folgerung hat Dedekind iibersehen. In seinen privaten Auf-
zeichnungen iiber den Briefwechsel mit Cantor notiert er:

,,Die von mir ausgesprochene Meinung aber, dass die erste Frage [nach der Uberabzihlbarkeit
der reellen Zahlen] nicht zuviel Miihe verdiene, weil sie kein besonderes praktisches Interesse habe,

ist durch den von Cantor gegebenen Beweis fiir die Existenz von transzendenten Zahlen . .. schla-
gend widerlegt.*”

In der Folge scheint es dann eine Unstimmigkeit zwischen Dedekind und Cantor ge-
geben zu haben. Dedekind wirft Cantor in seinen privaten Aufzeichnungen vor, seinen
Beweis der Abzdhlbarkeit der algebraischen Zahlen ,,fast wortlich® in der spéteren Ver-
offentlichung von 1874 wiedergegeben zu haben, ohne Referenzen an Dedekind.® Ande-
rerseits hatte Cantor bereits in seinem ersten Brief vom 29. November die Abzéihlbar-
keit der Menge aller endlichen Tupel (ny, ..., ny) von natiirlichen Zahlen erwéhnt, aus
der sich die Abzédhlbarkeit der algebraischen Zahlen unschwer ergibt. Moglicherweise
war aber der Vorfall der Grund dafiir, dass der Briefwechsel zwischen Cantor und De-
dekind nach 1874 ins Stocken geriet.’

In seinem Brief vom 2. Dezember schreibt Cantor auch, dass sich ihm das Problem
der Uberabzihlbarkeit der reellen Zahlen bereits vor mehreren Jahren gestellt habe, er
sich aber nie ernsthaft damit beschéftigt hatte. Wie Cantor auf die Frage gestoB3en ist,
ist nicht bekannt. Einer Uberlieferung zufolge hat er bereits als Student die Abzihlbar-
keit der rationalen Zahlen in einem Seminar von WeierstraB vorgefiihrt,'’ und dann ist
die Frage nach der Abzihlbarkeit aller reellen Zahlen nur natirlich. Als eine direkte In-
spirationsquelle kommt Cantors Konstruktion der reellen Zahlen iiber Fundamental-
folgen rationaler Zahlen von 1872 in Frage.

Am 7. Dezember 1873 findet Cantor einen ersten Beweis der Uberabzihlbarkeit der
reellen Zahlen. Keine Geschichte der modernen Mathematik kommt an dieser Ent-
deckung vorbei, ohne innezuhalten und ihre Bedeutung zu betrachten. Wir werden den
Brief vom 7. Dezember gleich vollstindig wiedergeben und zu dem Schluss kommen,
dass Cantor im Wesentlichen bereits 1873 den Baire’schen Kategoriensatz fiir das Kon-
tinuum bewiesen hat.'!

Der weitere Gang der Geschichte ist, im Uberblick, folgender: Sowohl Cantor als
auch Dedekind finden unabhingig voneinander Modifikationen des Beweises vom 7.
Dezember, die ihnen einfacher erscheinen. Dedekind teilt Cantor seinen vereinfachten
Beweis brieflich am 8. Dezember mit, doch bereits am 9. Dezember, also wohl noch vor
Ankunft seines eigenen Briefes erreicht ihn seinerseits ein Schreiben von Cantor, in dem
dieser ebenfalls von einer gefundenen Vereinfachung spricht. Leider teilt Cantor seine
neue Version nicht explizit mit. Dedekind notiert in seinen Aufzeichnungen, dass seine
vereinfachte Darstellung ,,ebenfalls [wie schon sein Beweis der Abziahlbarkeit der algeb-
raischen Zahlen] fast wortlich in Cantors Abhandlung (Crelle Bd. 77) iibergegangen
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[ist]“.'* Moglicherweise waren die beiden von Cantor und Dedekind unabhéngig von-
einander gefundenen Modifikationen des Beweises in der Tat sehr dhnlich. Insgesamt
musste es aber Dedekind irritieren, Teile aus seinen Briefen in Cantors Publikation zu
finden. Der ganze Vorfall ist umso bedauerlicher, als die verdffentlichte Modifikation
aus heutiger Sicht den mathematischen Reichtum des Briefbeweises nicht voll zur Gel-
tung bringt.

Obwohl also Cantor und Dedekind selber von einem vereinfachten Beweis reden,
lohnt es sich, auf die erste Quelle zuriickzugreifen, bei der sich zudem keine urheber-
rechtlichen Fragen ergeben. Wir geben den Brief von Cantor an Dedekind vom 7. De-
zember 1873 vollstidndig wieder. Er ist auch heute noch gut lesbar, und der darin vor-
gestellte Beweis ist aus heutiger Sicht alles andere als ,,recht compliziert*, wie Dedekind
in seinen Aufzeichnungen urteilte. Cantor schreibt:

Hochgeehrter Herr Kollege!

In den letzten Tagen habe ich die Zeit gehabt, etwas nachhaltiger meine Thnen gegeniiber aus-
gesprochene Vermutung zu verfolgen; erst heute glaube ich mit der Sache fertig geworden zu sein;
sollte ich mich jedoch tauschen, so finde ich gewiss keinen nachsichtigeren Beurtheiler, als Sie. Ich
nehme mir also die Freiheit, Ihrem Urtheile zu unterbreiten, was soeben in der Unvollkommenbheit
des ersten Conceptes zu Papier gebracht ist.

Man nehme an, es konnten alle positiven [reellen] Zahlen ® < 1 in die Reihe gebracht werden:
D) o01,0,03,...,0,...
Auf o, folgend sei o, das néchst groBere Glied, auf dieses folgend wg das nichst groBere, u.s.f.

Man setze: 0= o}, 0, = ©?, ©p = ©} u.s.f. und hebe aus (I) die unendliche Reihe aus:

2 =3
19/ O] 5erisy O sy

ol,®
In der iibrig bleibenden Reihe werde das erste Glied mit ®}, das néchst folgende groBere mit w3

bezeichnet, u.s.f. so hebe man die zweite Reihe aus:
1 249 3
05/ 055 /03 5005 D5 < 5 ¢

Wird diese Betrachtung fortgesetzt, so erkennt man dass die Reihe (I) sich in die unendlich vie-
len zerlegen ldsst:

1 52 o3
1) o, 0f,07,...,0},...

1 2 3
(2) o,,05,03,...,05,...

1 29 o3
3) 03,05,03,...,05,...

in jeder von ihnen wachsen aber die Glieder fortwéhrend von links nach rechts zu; es ist:
A @]
op<ogt.

Man nehme nun ein Intervall (p . . .q) so an, dass kein Glied der Reihe (1) in ihm liegt; also etwa
innerhalb (! ... ®?); nun kdnnten auch etwa simtliche Glieder der zweiten Reihe, oder der dritten
auBerhalb (p . .. q) liegen; es muss jedoch einmal eine Reihe kommen, ich will sagen die k', bei wel-
cher nicht alle Glieder auBerhalb (p ... q) liegen; (denn sonst wiirden die innerhalb (p . .. q) liegen-
den Zahlen nicht in (I) enthalten sein, gegen die Voraussetzung); dann kann man ein Intervall
(p'...q') innerhalb (p ... q) fixieren, so dass die Glieder der k" Reihe alle auBerhalb desselben lie-
gen; von selbst verhélt sich dann (p’...q’) in gleicher Weise in Bezug auf die vorhergehenden Rei-
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hen; im weiteren Verlaufe muss jedoch eine k’*® Reihe erscheinen, deren Glieder nicht simmtlich
auBerhalb (p’...q’) liegen und man nehme dann innerhalb (p’...q’) ein drittes Intervall (p” ...q")
an, so dass alle Glieder der k’**" Reihe auBerhalb desselben liegen.

So sieht man, dass es mdglich ist, eine unendliche Reihe von Intervallen zu bilden:

P---@,@-..4)0@"...q"),...

von denen jedes die folgenden einschliet und die zu unsern Reihen (1), (2), (3), ... sich wie folgt
verhalten:

Die Glieder der 1'", 2", .. ., k — 1" Reihe liegen auBerhalb (p . .. q).

Die Glieder der k", ..., k'—1'°" Reihe liegen auBerhalb (p’...q’).

Die Glieder der k", .. ., k” — 1" Reihe liegen auBerhalb (p” . ..q").

Es ldsst sich nun stets wenigstens eine Zahl, ich will sie n nennen, denken, welche im Innern eines je-
den dieser Intervalle liegt; von dieser Zahl 1 , welche offenbar > 0, < 1, sieht man rasch, dass sie in
keiner unserer Reihen (1), (2), .. ., (n), enthalten sein kann. So wiirde man, von der Voraussetzung
ausgehend, dass alle Zahlen > 0, < 1 in (I) enthalten seien, zu dem entgegengesetzten Resultate ge-
langt sein, dass eine bestimmte Zahl n > 0, < 1 nicht unter (I) zu finden sei; folglich ist die Voraus-
setzung eine unrichtige gewesen.

So glaube ich schlieBlich zu dem Grunde gekommen zu sein, weshalb sich der in meinen friihe-
ren Briefen mit (x) bezeichnete Inbegriff nicht dem mit (n) bezeichneten eindeutig zuordnen ldsst.

Mit den besten Griien
Thr ergebenster

Georg Cantor'?

Die tragende Struktur dieses Arguments ist die folgende: Wir betrachten Mengen
M, C IR fiir n € N (oben: M, = {0!|i € N}). Gesucht ist eine reelle Zahl x* mit
x* & |J, Mp. Um ein solches x* zu finden, konstruieren wir eine Folge von abgeschlos-
senen geschachtelten Intervallen I, positiver Lange mit I, N M, = & fiir alle n (oben:
I =[p...q, L =[p...q], usw.). Gelingt dies, so ist jedes Element x* € ", 1, (# D)
wie gewiinscht. Die Konstruktion der Intervalle I, ist aber offenbar moglich, wenn fiir
alle M = M,, folgende Bedingung erfiillt ist:

(+) Ist I # O ein Intervall positiver Lange, so gibt es ein Intervall J C I
positiver Langemit J N M = .
Die Bedingung (+), die de facto von Cantor zur Konstruktion der Intervallschachtelung

benutzt wird, ist heute als M ist nirgendsdicht bekannt. Das Argument von Cantor zeigt
klar:

Buaire’scher Kategoriensatz fiir IR
Ist M,, eine Folge von nirgendsdichten Teilmengen von IR, so enthélt die Vereini-
gung aller M, kein Intervall I # @ positiver Lange.'*

Es ist miiBig zu diskutieren, warum Dedekind und Cantor der originale Beweis als
kompliziert erschienen ist, und warum sie den vollen mathematischen Gehalt des Argu-
ments nach einer gefundenen Modifikation anscheinend nicht weiter untersucht haben.
Sicherlich ist die Briefkonstruktion nicht optimal zugeschnitten fiir einen Beweis, der
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moglichst direkt die Uberabzihlbarkeit von IR zeigen will (so spielt etwa die Konstruk-
tion der Matrix X keine wesentliche Rolle).'* Wie dem auch sei: Der Beweis vom 7. De-
zember zeigt den Baire’schen Kategoriensatz fiir das Kontinuum, den Baire erst 1899
explizit notiert hat.'®

Insgesamt konnen wir den Baire’schen Kategoriensatz sowohl historisch wie inhalt-
lich als eine natiirliche Verallgemeinerung der Uberabzihlbarkeit jedes nichtleeren offe-
nen Intervalls I C IR lesen: Die Uberabzihlbarkeit von I besagt, dass I nicht ,,klein® ist
im Sinne einer abzdhlbaren Vereinigung von einzelnen Punkten. Der Baire’sche Satz be-
sagt stirker, dass I nicht ,klein“ ist im Sinne einer abzihlbaren Vereinigung von nir-
gendsdichten Mengen. I ist, wie man sagt, nicht mager.

Die Isolation und begriffsbildende Analyse der tragenden Bedingungen eines Bewei-
ses gilt heute allgemein als ein wichtiger Schritt der mathematischen Erkenntnis, und in
keinem Falle soll hier Cantor ein erst viel spéter in seiner Bedeutung erkannter Satz zu-
geschrieben werden. Aber wir konnen Cantor den Beweis des Satzes zuschreiben. Und
das Schicksal des Arguments ist bemerkenswert: Cantor veroffentlichte nur eine Varia-
nte des Arguments — moglicherweise sogar in Dedekinds Worten. Weiter hat dann das
spatere Diagonalverfahren auch diese Variante zumindest so weit verdrangt, dass viele
Mathematiker die Beweise von 1873/74 nicht kennen'” und den Baire’schen Kategorien-
satz nicht im Zusammenhang mit der Uberabzihlbarkeit der reellen Zahlen sehen.

Wir betrachten nun die verdffentlichte Cantor-Dedekind’sche Variante des Brief-
beweises genauer.

3 Der verdffentlichte Beweis von 1874

Die Veroffentlichung des neuen abstrakten Beweises fiir die Existenz transzendenten
Zahlen kam wohl auf Vermittlung von Weierstrall zustande. Cantors Arbeit heil3t
,Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen®, greift also
aus heutiger Sicht nicht die primire neue Erkenntnis in ihrem Titel auf. Ob die Uber-
abzéhlbarkeit der reellen Zahlen fiir sich stehend iiberhaupt veroffentlicht worden wire,
ist zweifelhaft!'®

Der veroffentlichte Beweis der Uberabzihlbarkeit von 1874 verlduft, in modernisier-
ter Notation, wie folgt. Fiir zwei reelle Zahlen x # y sei dabei I(x, y) =[x, y], falls x <0y,
und I(x, y) = [y, X] sonst.

Der Beweis von 1874"°
Seien Xy, X, . . ., Xp, . . . reelle Zahlen, und sei I = [a, bl mita <b.
Wir finden ein x* € I mit x* # x,, fir alle n > 1. Hierzu konstruieren wir rekursiv ge-
schachtelte abgeschlossene Intervalle I, positiver Lange:

Sei I, bereits konstruiert. Im Falle der Existenz seien dann x; und X, die ersten bei-
den voneinander verschiedenen Glieder der Folge, die im Inneren von I, liegen. Wir
setzen dann Iy = I(Xk, Xm).

Ist I,4 nicht definiert fiir ein n, so liegt hochstens ein Glied der Folge im Inneren
von I;, und damit ldsst die Folge sogar ein offenes nichtleeres Intervall aus. Sind alle
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I, definiert, so ist jedes x* im nichtlee{en Durchschnitt der I, verschieden von allen
Gliedern der Folge, wie eine einfache Uberlegung zeigt.

Die Verbindung zum Baire’schen Kategoriensatz ist bei diesem schrittweisen Aus-
heben von Intervallen immer noch spiirbar, aber bei weitem nicht mehr so deutlich wie
im Beweis des Briefes.

Aus heutiger Sicht ldsst sich der Beweis vom 7. Dezember leicht in einer Weise notie-
ren, die die Analogie zum Baire’schen Satz klar herausstellt und dabei allen iiberfliissi-
gen Ballast entfernt:

Variante des Beweises vom 7. Dezember
Seien wieder reelle Zahlen x, X,, . . ., Xp, . .. und Iy = [a, b],a < b, gegeben.
Wir definieren rekursiv Intervalle I, wie folgt:

In41 = ,.ein abgeschlossenes Intervall I C I, positiver Lange mit x| & J« 20
Dann ist jedes x* € (neN In (3% @) verschieden von allen x,,.

Hier konstruieren wir Intervalle, die einzelnen Punkten fernbleiben.?! Ersetzt man
die Punkte x, durch nirgendsdichte Mengen M,, so bleibt die Konstruktion durchfiihr-
bar: Es existieren immer und iiberall Intervalle, die den Mengen M, fernbleiben. Das
Argument zeigt dann den Baire’schen Kategoriensatz.

4 Das Diagonalargument von 1891

Es ist nicht genau bekannt, wann Cantor sein auf der Tagung der DMV in Halle 1891
vorgetragenes Diagonalargument gefunden hat. Er zeigt, dass die Menge aller Belegun-
genvon N, d. h. aller Funktionen f: IN — {0, 1}, iiberabzihlbar ist:

Beweis der Uberabziihlbarkeit der Menge F= {f | f- N — {0, I}}
Seien fi, 5, .. ., f,, ... Elemente von F. Wir definieren f * € F durch
f*(n) =1, falls f,(n) = 0, und f *(n) = 0, falls f,(n) = 1.
Dann ist f *(n) # f,(n) fiir alle n. Also ist f * von jedem f,, verschieden.

Die Uberabzihlbarkeit der reellen Zahlen gewinnt man nun aus der Gleichmaéchtig-
keit von IR und F.*

Allgemein zeigt das Diagonalargument, dass fiir jede Menge M keine Bijektion zwi-
schen M und der Potenzmenge P(M) von M existiert. In dieser allgemeinen Form wird
das Ergebnis heute zitiert als:

Satz von Cantor
Sei M eine Menge, und sei G eine Funktion mit Definitionsbereich M.
Dann liegt die Menge

D={xeM|x¢ GX)}
nicht im Wertebereich von G.
Insbesondere existiert also kein surjektives G : M — P(M).

Denn wire G(x) = D, so wére x € D genau dann, wenn x ¢ D, was nicht sein kann.
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Cantors Diagonalargument spielt dann in der weiteren Geschichte der Mathematik
in vielen Varianten eine wichtige Rolle. Wir nennen einige Beispiele:

(1) Angewendet auf eine Folge x;, x», .. -5 Xn, - .. VOIL reellen Zahlen in Dezimaldar-
stellung ergibt sich der bekannte Beweis der Uberabzdhlbarkeit von IR durch Diagona-
lisierung einer unendlichen Matrix von Nachkommastellen.

(2) Ein Diagonalargument zeigt folgenden Satz von Julius Konig und Ernst Zermelo
von 1904: Sind A, A, ..., A,, .. .Teilmengenvon IR derart, dass jedes A, von kleinerer
Maichtigkeit ist als IR, so ist auch die Vereinigung aller A, von kleinerer Méchtigkeit als
IR. Fiir einelementige Mengen M,, erhalten wir so wieder die Uberabzihlbarkeit von IR.

(3) Das Diagonalargument von Cantor hat Bertrand Russell zur Entdeckung der
Antinomie der Menge aller Mengen gefiihrt, die sich selbst nicht als Element enthalten.
Sei ndmlich R = {x | x ist eine Menge mit x ¢ x}. Dann gilt R € R genau dann, wenn
R ¢ R, Widerspruch. Die uneingeschriankte Mengenbildung durch Aufsammlung aller
Objekte mit einer bestimmten Eigenschaft ist also widerspriichlich und muss durch eine
vorsichtigere Axiomatik ersetzt werden. Auf die Russell’sche Klasse R kommt man
durch Setzen von M = ,,die Menge aller Mengen® und G = ,,die Identitdt“ im Satz von
Cantor: R = {x € M |x ¢ x} =D liegt nicht im Wertebereich der Identitit auf M, ist also
keine Menge.

(4) In der mathematischen Logik tauchen Diagonalargumente an prominenten Stel-
len auf, etwa im Beweis des ersten Godel’schen Unvollstindigkeitssatzes oder im Beweis
der Existenz einer effektiv aufzdhlbaren Menge A C IN, die nicht berechenbar ist.?

(5) Auf Lebesgue (1905) geht ein Diagonalargument zuriick, das zeigt, dass die ite-
rierte Anwendung der Operationen der abzéhlbaren Vereinigung und des abzdhlbaren
Durchschnitts ausgehend von den offenen und abgeschlossenen Teilmengen von IR im-
mer wieder neue Mengen hervorbringt (Reichhaltigkeit der sog. Borel-Hierarchie).

(6) Diagonalisierungen konnen benutzt werden, um schnell oder langsam wachsende
Funktionen zu konstruieren. Paul du Bois-Reymond hat bereits 1875 in dieser Weise ge-
zeigt, dass zu jeder Folge von immer langsamer gegen unendlich konvergierenden
Funktionen immer noch eine Funktion existiert, die langsamer gegen unendlich konver-
giert als alle Glieder der Folge.>*

5 Die ordnungstheoretische Uberabzihlbarkeit von IR von 1895

Im ersten Teil seiner ,,Beitrage zur Begriindung der transfiniten Mengenlehre“ von 1895
zeigt Cantor einen grundlegenden Satz tiber die rationalen Zahlen:

Ordnungstheoretische Charakterisierung von @
Sei M eine linear (= total) geordnete Menge mit den Eigenschaften:
(a) M ist abzdhlbar.

(b) M hat kein kleinstes und kein groBtes Element.
(c) M ist dicht, d. h. fiir alle a < b existiert ein cmita <c <b.
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Dann ist M ordnungsisomorph zu @, d. h. es existiert eine Bijektion
f: M — @ sodass fiir alle a, b € M gilt: a < b genau dann, wenn f(a) < f(b).>

Zusammen mit der Existenz von irrationalen Zahlen, d. h. der Unvollstdndigkeit der
Ordnung @, erhalten wir einen neuen Beweis der Uberabzihlbarkeit der reellen Zahlen:

Ordnungstheoretischer Beweis der Uberabzihlbarkeit von IR
Annahme, IR ist abzihlbar. Dann erfiillt IR die Eigenschaften (a), (b) und (c).
Nach dem Satz sind also IR und @ ordnungsisomorph. Dies ist aber nicht der Fall,
da IR vollstindig, @ aber unvollstandig ist, und da ein Ordnungsisomorphismus die
Vollstandigkeit einer Ordnung erhalt.?

Dieser Beweis benutzt die pythagoreische Erkenntnis der Existenz von irrationalen
Zahlen, oder gleichwertig die Existenz von Liicken in @: Es gibt Dedekind’sche Schnitte
(L, R) in @, deren linker Teil L kein Supremum und deren rechter Teil R kein Infimum
besitzt. Es ist bemerkenswert, dass Cantors Charakterisierungssatz auch dazu geeignet
ist, die Existenz von Liicken in @ nachzuweisen, und dies ohne jede Arithmetik: Denn
die Ordnung Q* = @, + @, die aus zwei hintereinander gehéngten Kopien von @ be-
steht,”” hat offenbar die Liicke (@Qo, @;). Aber @* erfiillt die Bedingungen des Can-
tor’schen Satzes, ist also isomorph zu @. Damit hat auch @ Liicken.

Cantors Charakterisierung liefert also neue ordnungstheoretische Beweise sowohl
fiir die Existenz irrationaler Zahlen als auch fiir die Uberabzihlbarkeit der reellen Zah-
len und beleuchtet damit zwei fundamentale und geschichtlich weit auseinanderliegende
Erkenntnisse tiber IR noch einmal von einer ganz eigenen Warte.

6 Zur Bedeutung

Die Entdeckung der Uberabzihlbarkeit wirft die Frage auf, wie viele reelle Zahlen es
nun gebe. Die Cantor’sche Kontinuumshypothese von 1878 gibt die folgende Antwort:

Ist A C R iiberabzihlbar, so existiert eine Bijektion zwischen A und IR.*®

Kurz: Die Michtigkeit von IR ist die kleinste Unendlichkeitsstufe nach der durch die
Menge IN reprisentierten unendlichen Méchtigkeit — es gibt keine Méchtigkeit zwi-
schen IN und IR.

Die Kontinuumshypothese ist nun aber im Rahmen der klassischen Mathematik
nachweislich weder beweisbar noch widerlegbar, es sei denn, die klassische Mathematik
ist selbst widerspriichlich.?’ Dieses metamathematische Ergebnis der sog. Unabhingig-
keit der Kontinuumshypothese haben Kurt Gédel 1938 und Paul Cohen 1963 bewiesen.
Die Entdeckung der Uberabzihlbarkeit der reellen Zahlen hat insgesamt zur Analyse
der Fundamente der Mathematik und zur Entwicklung von allgemeinen Methoden der
mathematischen Logik gefiihrt, die solche limitierende Resultate iiberhaupt ermdgli-
chen. Das Ergebnis selbst zeigt, dass wir die so vertraut erscheinenden reellen Zahlen in
gewisser Hinsicht nicht verstehen. Wie diese Verstindnisliicke zu interpretieren ist und
ob und wie sie ausgefiillt werden konnte, ist nach wie vor Gegenstand der Diskussion.
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Eine ganz andere praktische Bedeutung hat das Phanomen der Uberabzihlbarkeit
in der Analysis und Wahrscheinlichkeitstheorie: Die Existenz eines abzéhlbar-additiven
MaBes A auf einer Menge M mit A(M) > 0, das einzelnen Punkten das MaB 0 zuordnet,
ist nur moglich, wenn M iiberabzihlbar ist, denn sonst wire A(M) = >~ A({x}) =0.
Die Langenmessung A auf IR erfiillt aber sicherlich A({x}) = 0 fiir alle x € IR. Eine Inte-
grationstheorie mit starken Vertauschungssatzen ruht auf einer abzihlbar-additiven
Langenmessung und damit notwendig auf einer iiberabzdhlbaren Struktur.

Diese beiden weit voneinander entfernt liegenden Gesichtspunkte zeigen, wie sehr
sich sowohl Cantor als auch Dedekind in ihrer spontanen Einschidtzung der Bedeutung
der Frage geirrt haben.
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14 Siehe [Baire 1899, S. 65]. In der dquivalenten dualen Form besagt der Satz, dass der Durch-
schnitt abzahlbar vieler offener und dichter Teilmengen von IR wieder dicht ist.

15 Wir geben einen solchen Zuschnitt im néchsten Abschnitt.

—O 0 X
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Bei dieser Einschitzung ist auch erwihnenswert, dass die Eigenschaften dicht und iiberalldicht
in einem Intervall in Cantors Arbeiten iiber ,,Lineare Punktmannigfaltigkeiten aus den 1880er
Jahren eine wichtige Rolle spielen (siehe z. B. [Cantor 1879, S. 2f], [Cantor 1880, S. 358], [Can-
tor 1882, S. 114]). Cantor hat aber wohl die Aussage des Baire’schen Satzes nie explizit formu-
liert.

In manchen Lehrbiichern der Analysis wird allerdings der erste Cantor’sche Beweis der Uber-
abzihlbarkeit von IR vorgestellt, siche z.B. [Dieudonné 1985, S. 34].

Vgl. hierzu den Brief von Cantor an Dedekind vom 25. Dezember 1873 ([Cantor / Dedekind
1937, S. 161]).

[Cantor 1874, S. 260f] und etwas ausfiihrlicher auch in [Cantor 1879, S. 6-8]. Speziell in der
ausfiihrlichen Form ist der Beweis nicht mehr kiirzer als der Briefbeweis.

Konkret kénnen wir zum Beispiel immer entweder das linke oder rechte Drittelintervall von I,
wihlen. Das Auswahlaxiom muss nicht verwendet werden.

Den verdffentlichten Beweis von 1874 kénnen wir auch in dieser Weise lesen, denn auch hier
gilt fiir allen > 1, dass x, £ In41. Bei obiger Variante wird diese Eigenschaft aber in den Mittel-
punkt gestellt. Cantor hat auf diese Eigenschaft explizit in seiner zweiten Darstellung des Argu-
mentes hingewiesen (siehe [Cantor 1879, S. 6]).

Die Gleichmichtigkeit der Mengen IR und F ist nicht iiberraschend, wenn man an die Dualdar-
stellungen reeller Zahlen denkt, deren Nachkommaanteile wir ja als Elemente von F lesen kon-
nen. Die Feinheiten sind aber nicht vollig trivial, und zumindest ist die Verwendung des Satzes
von Cantor-Bernstein hilfreich. Deswegen hat sich fiir den Beweis der Uberabzahlbarkeit von
IR eine direkte Anwendung der Diagonalmethode verbreitet (siche Beispiel (1) unten).

Es existiert dann ein Computerprogramm P, das die Elemente von A als Liste ausgibt, aber kein
Computerprogramm P’, das bei Eingabe von n stets in korrekter Weise entscheidet, ob n ein
Element von A ist oder nicht.

Genauer zeigte er: Seien fy: R* — IR mit lim f,(x) = oo und lim f,,(x)/f,+1(x) = oo fiir alle n.
Dann gibt es ein g : RY — IR* mit lim g(x) = oo und lim f,(x)/g(n) = oo fiir alle n (siche [Bois-
Reymond 1875, S. 365]). Der Bewesis ist die erste bekannte diagonale Konstruktion. Die Arbeit
ist auf deutsch in den Annalen erschienen und enthélt gleich im ersten Absatz Formulierungen
wie ,,nachdem ich meine Scheu iiberwunden, das Wort ,unendlich® . .. substantivisch zu gebrau-
chen®, die Cantors Interesse geweckt haben diirften. Es ist gut moglich, dass Cantor die Arbeit
studiert hat.

Beweisskizze: Seien m;, m,, ..., My, ... und qi, 2, - - -, qn, - - - Aufzédhlungen von M bzw. Q.
Wir definieren f : M — @ rekursiv durch ,,f(x,) = qx,“ wobei k minimal ist, sodass die bislang
definierte Funktion f : {Xxy, ..., X,} — @ weiterhin ordnungstreu ist. Wir erhalten so einen Iso-
morphismus f: M — Q.

Eine linear geordnete Menge M heif3t (linear) vollstindig, wenn jede nichtleere nach oben be-
schriinkte Teilmenge ein Supremum in der Ordnung besitzt.

Formal sei @y = @ x {0}, @, = @Q x {1}, Q* = Q, U @, und es sei (q, i) < (1, j) in Q*, fallsi <}
oderi=jund q <rin Q.

Siehe [Cantor 1878, S. 2571].

Unter der ,klassischen Mathematik® verstehen wir informal das System der heute {iblichen
mathematischen Begriffsbildung und Argumentation. Genauer konnen wir ,,beweisbar in der
klassischen Mathematik® lesen als ,,beweisbar in der Axiomatik von Zermelo-Fraenkel mit
Auswahlaxiom®. Weiter kann , beweisbar® durch ,,formal herleitbar in einem syntaktischen
logischen Kalkiil“ prézisiert werden.
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Abstract
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Dieser Artikel berichtet iiber eine Schiileraktivitit, die seit Jahren am Zuse-Institut Ber-
lin (ZIB) bei Besuchen von Schiilergruppen erprobt und verfeinert worden ist. Das hier
zusammengestellte Material ist gedacht als Basis zur weiteren Ausarbeitung fiir eine
Unterrichtseinheit in Leistungskursen Mathematik an Gymnasien. Inhaltlich wird von
einem zwar fiir Schiiler (wie evtl. auch Lehrer) neuen, aber leicht fasslichen Gegenstand
ausgegangen: der Drei-Term-Rekursion fir Besselfunktionen. Die Struktur wird erklart
und in ein kleines Programm umgesetzt. Dazu teilen sich die Schiiler selbstorganisierend
in Gruppen ein, die mit unterschiedlichen Taschenrechnern ,,um die Wette* rechnen.
Die Schiiler und Schiilerinnen erfahren unmittelbar die katastrophale Wirkung von an
sich , kleinen“ Rundungsfehlern, sie landen — ebenso wie der Supercomputer des ZIB —
im ,,Bessel’schen Irrgarten®. Die auftretenden Phdnomene werden mathematisch ele-
mentar erklirt, wobei lediglich auf das Konzept der linearen Unabhangigkeit zuriickge-
griffen wird. Das dabei gewonnene vertiefte Verstidndnis flieBt ein in die Konstruktion
eines klassischen Algorithmus sowie eines wesentlich verbesserten Horner-artigen Algo-
rithmus.
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Einleitung

Dieser Artikel behandelt das allgemeine Thema ,,Rundungsfehler miissen nicht klein
sein® exemplarisch an einem in Leistungskursen am Gymnasium realisierbaren Beispiel,
der Drei-Term-Rekursion fiir die Bessel-Funktionen. Das hier beschriebene Vorgehen
ist seit vielen Jahren bei Besuchen von Schiilergruppen am ZIB erprobt und verfeinert
worden.

Der Artikel gliedert sich, wie folgt. In Kapitel 1 wird zunéchst die Bessel-Rekursion
eingefiihrt. Sodann wird die Vorwirtsrekursion numerisch durch einen Algorithmus
umgesetzt. Die ,,Kontrolle” der Richtigkeit der Ergebnisse wird anhand der Riickwarts-
rekursion durchgefiihrt: Es stellt sich heraus, dass fast alle Zahlen falsch sind, die Schii-
ler landen im ,,Bessel’schen Irrgarten®. In Kapitel 2 wird eine elementare Erklarung des
Phénomens angeboten, die lediglich die Begriffe der linearen Unabhangigkeit und der
Losungsmenge benutzt. Auf dieser Basis wird der klassische Algorithmus (J. C. P. Mil-
ler, 1957) zur Berechnung von Bessel-Funktionen dargestellt. Er ist einfach program-
mierbar und kann von Schiilern getestet werden. Das letzte Kapitel 3 behandelt einen
wesentlich verbesserten Algorithmus (P. Deuflhard, 1977) zur Berechnung von Bessel-
Reihen; er ist eine Erweiterung des Horner-Algorithmus zur Auswertung von Poly-
nomen. Auch dieser Algorithmus ist einfach programmierbar, erfordert aber zu seinem
Verstandnis eine mathematische Vertiefung, die auf Matrizen und Vektoren aufbaut
und fiir Interessierte in Kapitel 3.3 angefiigt ist. Dariiberhinaus sind Ubungsaufgaben
in den Text an den jeweils passenden Stellen eingestreut.

Friedrich Wilhelm Bessel (1784-1846)

1 Bessel-Rekursion

Der Astronom und Mathematiker Friedrich Wilhelm Bessel (1784-1846) hat fiir astro-
nomische Berechnungen spezielle Funktionen eingefiihrt, die heute nach ihm benannt
sind.
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Diese Funktionen spielen bei technischen Problemen mit Zylinder- oder Kugelsym-
metrie eine natiirliche Rolle, heute insbesondere in der Nano-Optik (z. B. bei Glasfaser-
kabeln) und beim GPS, dem satellitengestiitzten Geo-Positionierungs-System. Bessel-
Funktionen werden tiblicherweise geschrieben als Folge {Jx(x)} zum Index k = 0,1,.. .,
wobei wir uns auf reelles Argument x einschrianken. Die Funktion Ji(x) hat fiir Zylin-
derwellen dieselbe Bedeutung wie die Funktion cos(kx) fiir ebene Wellen. Bei zylinder-
symmetrischen Problemen repréasentieren die Bessel-Funktionen die ,,Innenraumlésun-
gen®, wihrend die sogenannten Neumann-Funktionen (sieche Abschnitt 1.1) die
»AuBenraumlidsungen” darstellen.

Cladding

Quelle: Wikipedia

Glasfaserkabel: Illustration und Arbeitsprinzip

Wir wollen und kénnen an dieser Stelle nicht weiter auf diese Anwendungen und die
Herleitung der Bessel-Funktion eingehen. Dazu miissten wir ausfiithrlicher auf die Dif-
ferentialgleichungen der Elektrodynamik, die Maxwell-Gleichungen, eingehen, was den
von uns gewahlten Rahmen sprengen wiirde. Zum Verstidndnis der hier vorgestellten
Schiileraktivitit ist es ausreichend zu konstatieren, dass die hier betrachteten Funktio-
nen aus dem genannten Anwendungskontext stammen, schlieflich untersuchen wir
nicht die Bessel-Funktion selber, sondern wollen lediglich das Verhalten von Rekursio-
nen im Computer untersuchen und dabei insbesondere die entstehenden Rundungsfeh-
ler beobachten. Die 3-Term-Rekursion fiir die Bessel-Funktionen eignet sich fiir dieses
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Experiment besonders gut, da sie von Schiilern selber amTaschenrechner realisiert wer-
den kann.

1.1 Mathematische Struktur

In diesem Abschnitt wollen wir die wenigen Beziehungen und Begriffe bereitstellen, die
wir im Folgenden benétigen werden. Unser zentrales Hilfsmittel ist die Eigenschaft,
dass Bessel-Funktionen einer speziellen sogenannten Drei-Term-Rekursion genligen:

Jeor =ngJk—Jk~1, =125, . (1.1)

Falls, etwa fiir das Argument x = 2.13 (siehe [1]), die beiden Werte
Jo = 0.149 606 770 448 844, J; = 0.564 996 980 564 127 (1.2)

auf 15 Stellen genau gegeben sind, so lassen sich aus der Beziehung (1.1) rekursiv die
Folgewerte

. 22% « Jy — Jo = 0.380 906 826 324 984
2% 2
Jy =252 47y = Ji = 0150 321 003 144 763

bis hin zu einem Zielwert Jy (fiir k = N — 1 in (1.1)) berechnen.
Falls Werte Jy, Jy_1 vorgegeben sind, so lasst sich daraus durch ,,Umkehrung* der
Drei-Term-Rekursion geméf

Jk_1=3§1k—fk+1, k=N-1,N-2,...,1, (1.3)

der Zielwert Jy berechnen. Die Rekursion (1.1) wird als Vorwdrtsrekursion bezeichnet,
entsprechend (1.3) als Riickwdrtsrekursion.

Dariiberhinaus geniigen die Besselfunktionen noch einer Summenbeziehung der
Form:

oo
Jo+2) Jx=1. (1.4)
k=1
Es verdient Erwdhnung, dass derartige Summenbeziehungen charakteristisch fiir soge-
nannte Minimallésungen von Drei-Term-Rekursionen sind.
In den Anwendungsproblemen ist man meist nicht so sehr an Werten einzelner Bes-
sel-Funktionen interessiert, sondern an Bessel-Reihen, also an Reihen der Form

Sn(X) = zn:Ak Jk(x) 3 (15)
k=0
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wobei die Koeffizienten {4} vorgegeben sind. Wie sich herausstellen wird, gibt es fiir
solche Reihen einen Algorithmus (siehe Abschnitt 3.2), der sogar im Allgemeinen noch
schneller ist, als wenn man erst die n + 1 benétigten Bessel-Funktionen J; ausrechnet
und sie dann mit den Gewichten 4; aufsummiert.

Ausdriicklich sei noch darauf hingewiesen, dass auch die Neumann-Funktionen
{Yk(x)} der Drei-Term-Rekursion (1.1) geniigen. Um sie aus der Vorwértsrekursion zu
erhalten, sind natiirlich Startwerte Yy, Y; vorzugeben, wahrend die Riickwartsrekur-
sion Startwerte Yy, Yy_; benotigt.

Merke: Erst durch zwei Werte ist festgelegt, welche dieser speziellen Funktionen
man aus der Drei-Term-Rekursion erhalt.

Avufgabe 1. Eine Linearkombination von Bessel- und Neumann-Fumktionen ist durch
Zr(x) = aJi(x) + BYr(x)

gegeben. Insbesondere gilt ( Argument x weggelassen)

Z() = Jo Yo «

(2)-12 %1(5)- 09
a) Zeige, dass Zy der Drei-Term-Rekursion (1.1) geniigt.
b) Zeige, dass die Matrix in (1.6) fir x=2.13 regulir ist. Was folgt daraus?

(Y5(2.13) = 0.519600779415332, Y;(2.13) = —0.0354907117768913)
¢) Leite fiir die sogenannte Casorati-Determinante

D(k,k+1) = J Yip1 — Jis1 Yi

eine Zwei-Term-Rekursion her. Welche Folgerung ist daraus zu ziehen?

1.2 Numerische Rechnungen

Die im vorigen Abschnitt dargestellte Rekursion eignet sich hervorragend zur Berech-
nung sdmtlicher Bessel-Funktionen, wenn zwei Startwerte bekannt sind. Wir gehen zu-
néchst von den Werten aus (1.2) fiir Jy,J; zu x = 2.13 aus und rechnen bis J>3. In klei-
nen Schiilergruppen (3-4), die sich selbst zusammenfinden, oftmals Schiilerinnen gegen
Schiiler, wird dann ,,um die Wette* gerechnet. Die Schiiler schreiben entweder ein klei-
nes Programm oder sie 16sen das Problem in der Gruppe durch sukzessives Eintippen
und Aufschreiben der Zwischenresultate. Gut ist es, wenn verschiedene Gruppen ver-
schiedene Taschenrechner haben. Die ersten beiden fertigen Gruppen diirfen dann ihre
Resultate an die Tafel schreiben. In aller Regel sind diese Resultate verschieden, oftmals
sehr verschieden. In Tabelle 1 geben wir die Resultate an, die wir durch Vergleich eines
Schulrechners mit dem ,,Supercomputer des ZIB erzielt haben.

Frage: Wer hat Recht?

Natiirlich sollen die Schiiler nicht lernen, dass der groBere Computer immer Recht hat.
Stattdesssen soll die Rechnung kontrolliert werden.
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Idee: Kontrolle durch Riickwirtsrekursion. Seien die numerisch erhaltenen Resul-
tate mit J3, J» bezeichnet. Sie werden in die Rekursion (1.3) fiir N = 23 eingesetzt,
um daraus Werte Jy, J; zu berechnen. Wenn die Zahlen stimmen, sollte approximativ
gelten: Jy ~ Jy, J, ~ J;. Dies zeigt sich aber keineswegs! Zur Illustration des Effektes
stellen wir in Abbildung 1 die Resultate einer Wiederholung des Paares ,,Vorwirts-
rekursion-Riickwartsrekursion” graphisch dar (logarithmische Skala). Offenbar gibt
es keine Chance, zu den richtigen Werten zuriickzukehren: Wir sind im ,,Bessel’schen

Irrgarten® gelandet.

k  TI-30Xa Solar

1.49606770 E-01
5.64996981 E-01
3.80906827 E-01
1.5032100 4 E-01
4.2532622* E-02
9.425932** E-03
1.720581** E-03
2.67483%** E-04
3.7525**** E_05
1.4396**** E-05
8.4135*%*** E_05
7.75608*** E-04
7.926841** E-03
8.8540907* E-02
1.072854187E+00
1.401470663E+01
1.963173800E+02
2.935354382E+03
4.665910469E+04
7.586692319E+05
1.396997508E+07
2.615882806E+08
5.144108798E+09
23 1.060016920E+11

0NN B W= O

DO RO D)+t bt bt it et e b et e
N —= O VoIV A WN— OO

Tabelle 1. Taschenrechner gegen Supercomputer (* wegen Festkomma-Darstellung auf TI)

80

70

-10

20
0 5

IBM pSeries 690

1.49606770448844 E-01
5.64996980564127 E-01
3.80906826324984 E-01
1.50321003144764 E-01
4.25326191532232 E-02
9.42592325231867 E-03
1.72054165578469 E-03
2.67269174637329 E-04
3.61571446484618 E-05
4.33378985815840 E-06
4.66431617665503 E-07
4.58497443345861 E-08
7.13381677623191 E-09
3.45312897638016 E-08
4.14374884565947 E-07
5.41265029138480 E-06
7.58201362616988 E-05
1.13366920903930 E-03
1.80203080831450 E-02
3.03434918111721 E-01
5.39537259719639 E+00
1.01018116202947 E+02
1.98651114408063 E+03
4.09348928413313 E+04

15

Abbildung 1. N = 23: Bessel’scher Irrgarten (logarithmische Skala)

Fir Abbildung 2 haben wir N = 18 gewihlt. Bei dieser Wahl scheint die Rekursion
in sich zuriickzukehren, also alles richtig zu sein. Aber dies ist eine Tauschung, wie sich
aus den dazu eingetragenen richtigen Werte ergibt!
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Abbildung 2. N = 18: Heimtiickische Falle (logarithmische Skala). Die richtigen Werte sind
zum Vergleich aufgetragen (Kurve, die nach rechts unten verlduft).

ka

TI-30Xa Solar

1.49606770 E-01
5.64996981 E-01
3.80906827 E-01
1.50321004 E-01
4.2532622* E-02
9.425932** E-03
1.720581** E-03
2.67483%** E-04
3.7525%*** E-05
1.4396****  E-05
8.4135%*** E-05
7.75608***  E-04
7.926841** E-03
8.8540907* E-02
1.072854187 E+00
15 1.401470663 E+01
16 1.963173800 E+02
17 2935354382 E+03
18 4.665910469 E+04
19 7.586692319 E+05
20 1.396997508 E+07
21  2.615882806 E+08
22 5.144108798 E+09
23 1.060016920 E+11

SV uoUb WL —O

Eoo

IBM pSeries 690

1.49606770448844 E-01
5.64996980564127 E-01
3.80906826324984 E-01
1.50321003144764 E-01
4.25326191532232 E-02
9.42592325231867 E-03
1.72054165578469 E-03
2.67269174637329 E-04
3.61571446484618 E-05
4.33378985815840 E-06
4.66431617665503 E-07
4.58497443345861 E-08
7.13381677623191 E-09
3.45312897638016 E-08
4.14374884565947 E-07
5.41265029138480 E-06
7.58201362616988 E-05
1.13366920903930 E-03
1.80203080831450 E-02
3.03434918111721 E-01
5.39537259719639 E+00
1.01018116202947 E+02
1.98651114408063 E+03
4.09348928413313 E+04

exakt

1.49606770448844 E-01
5.64996980564127 E-01
3.80906826324984 E-01
1.50321003144763 E-01
4.25326191532221 E-02
9.42592325231519 E-03
1.72054165576939 E-03
2.67269174554612 E-04
3.61571441200797 E-05
4.33378597180825 E-06
4.66399303652013 E-07
4.55502127176888 E-08
4.07237700017248 E-09
3.35725312423605 E-10
2.56784566414815 E-11
1.83186408413325 E-12
1.22445951944503 E-13
7.69951315506101 E-15
4.57074943794664 E-16
2.56971625952894 E-17
1.37208842176626 E-18
6.97561233257824 E-20
3.38443254494399 E-21
1.57037227051201 E-22

Tabelle 2. Vorwidrtsrekursion: Vergleich der berechneten Zahlen mit den ,,exakten“ Zahlen,
d. h. hier auf 15 Stellen genau.

In Tabelle 2 vergleichen wir abschlieBend die richtigen Zahlen mit den Zahlen von
Tabelle 1, die wir mit den beiden unterschiedlichen Computern in Vorwirtsrekursion
berechnet hatten. Das Resultat ist klar: Beide Rechner lagen falsch, auch der Supercom-
puter war nicht super!

Frage: Woher haben wir die richtigen Zahlen?
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Nachfolgend, in Kap. 2 und 3, werden zwei alternative Algorithmen angegeben, die die-
se Frage beantworten.

Aufgabe 2. Verifiziere, dass fiir die ,,exakten” Werte in Tabelle 2 die Beziehung
%Jk(x) ~ Jr-1(x), x=2.13

gilt und die Differenz mit wachsendem k betragsmiifig kleiner wird. Leite daraus eine ein-
Jfache asymptotische Formel fiir Ji.(x) her, die fiir festes x und grofes k gilt.

2 Klassischer Algorithmus

Im Jahre 1952 verdffentlichte der englische Mathematiker J. C. P. Miller (1906-1981)
einen Algorithmus zur Berechnung von Bessel-Funktionen [4], der nun dargestellt wer-
den soll. Er ist einfach programmierbar und eignet sich gut fiir den Unterricht an Gym-
nasien.

J.C.P. Miller (1906-1981)

2.1 Gestorte Bessel-Rekursion

Miller machte die Beobachtung, dass Bessel-Funktionen sehr wohl in Riickwirts-
richtung korrekt berechenbar sind. Wir zeigen dies in Tabelle 3, wobei wir die Werte
Ja3, Jos auf 15 Stellen genau vorgegeben haben.

Eine Erkldrung dieses Phdnomens ist, dass die Bessel-Rekursion, wie in obigem Ab-
schnitt 1.1 dargestellt, einen zweidimensionalen Lésungsraum hat, mit Basis etwa die
Bessel-Funktionen {J; } und die Neumann-Funktionen { Y} }. Asymptotisch gilt:

kli_{glo.lk =0, kh—»rgo Y =00. (2.7
Das obige Resultat fiir die Bessel-Funktionen ergibt sich im Wesentlichen aus der Sum-
menbeziehung (1.4). Es zeigt sehr schon die Bedeutung der Bezeichnung Minimallésung,
die wir oben bereits erwdhnt hatten.
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k  berechnet exakt
23 1.570372270512014 E-22 1.570372270512014 E-22
22 3.384432544943993 E-21 3.384432544943993 E-21
21 6.975612332578245 E-20 6.975612332578247 E-20
20 1.372088421766259 E-18 1.372088421766260 E-18
19  2.569716259528942 E-17 2.569716259528942 E-17
18  4.570749437946647 E-16 4.570749437946648 E-16
17 7.699513155061015 E-15 7.699513155061018 E-15
16 1.224459519445032 E-13 1.224459519445033 E-13
15 1.831864084133251 E-12 1.831864084133251 E-12
14 2.567845664148156 E-11 2.567845664148157 E-11
13 3.357253124236056 E-10 3.357253124236057 E-10
12 4.072377000172484 E-09 4.072377000172484 E-09
11 4.555021271768889 E-08 4.555021271768890 E-08
10 4.663993036520133 E-07 4.663993036520134 E-07
9  4.333785971808257 E-06 4.333785971808258 E-06
8 3.615714412007974 E-05 3.615714412007974 E-05
7 2.672691745546123 E-04 2.672691745546123 E-04
6 1.720541655769391 E-03 1.720541655769391 E-03
5 9.425923252315197 E-03 9.425923252315197 E-03
4 4.253261915322215 E-02 4.253261915322214 E-02
3 1.503210031447633 E-01 1.503210031447633 E-01
2 3.809068263249844 E-01 3.809068263249842 E-01
1 5.649969805641275 E-01 5.649969805641273 E-01
0 1.496067704488443 E-01 1.496067704488443 E-01

Tabelle 3. Riickwiirtsrekursion: Vergleich der berechneten Zahlen mit den ,,exakten® Zahlen,
d. h. hier auf 15 Stellen genau.

Bei Darstellung von Startwerten Jy, J; mit endlicher Genauigkeit im Rechner erhalt
man leicht gestorte Werte Jy, J;, die sich wiederum in die Basiselemente entwickeln las-
sen. So erhilt man etwa

j0=(1+5)J0+8'Y0, j1=(1+5)J1+6~Y1, (2.8)
wobei fiir die StorgroBen 6 und e gilt:
b~ eps, e=eps,

wobei eps die relative Rechnergenauigkeit bezeichnet, die definiert ist als die groBte
Maschinenzahl die bei der Addition zu eins als Resultat wieder eine Eins ergibt:
float (1 + eps) = 1.

In einer Zeile ist zu zeigen, dass deshalb (unter Weglassung aller Rundungsfehler in
Zwischenschritten) die tatsachlich berechnete Losung die Gestalt

h=(0+8Ji+e- Y, k=0,1,...,

hat. Diese Darstellung, zusammen mit der Eigenschaft (2.7), erklirt elementar die Ab-
bildung 11: Offenbar bricht bei Index 12 oder 13 die parasitire Losung ¢ - ¥ in Vor-
wirtsrichtung durch, wiahrend dies in Riickwértsrichtung gerade die Losung (1 + §)Jy
tut. Der Irrgarten hat also System: In Vorwirtsrichtung dominieren die Neumann-
Funktionen den Verlauf, in Riickwértsrichtung die Bessel-Funktionen.
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Aufgabe 3. Zeige, ausgehend von den asymptotischen Darstellungen fiir die Bessel-
und Neumann-Funktionen [5 ]

Je(x) = \/zlﬁ(%)ki Je(x) fur k— o

Vi(x) = -\/%(%)_kﬁ Yi(x) fiir k— oo,

dass in der Drei-Term-Rekursion (1.1) fiir Ji1 Ausloschung in Vorwirtsrichtung und
fiir Yi—y Ausloschung in Riickwartsrichtung auftritt.

a) Durch Aufstellung einer Tabelle fiir k, 2 J(x), -1 (x) bzw.
k% (%), Ve (x).

b) Durch eine Grenzwertbetrachtung der Quotienten 2 71(%) ) Jr—1(x) bzw. % Vi (x)/
Yk+] (x)

2.2 Details der Realisierung

Auf der Basis der obigen Einsicht entwickelte Miller einen Algorithmus, der heute sei-
nen Namen trédgt. Er sei hier kurz informell angegeben:

Algorithmus 2.1 Miller-Algorithmus

1. Wibhle einen Abbrechindex N und einen ,kleinen Wert o > 0. Das Argument x sei
vorgegeben.
2. Wihle Startwerte Jy =0 ,Jy_ =0 .

3. Berechne Werte J; aus der Riickwirtsrekursion (1.3).
4. Berechne den Skalierungsfaktor (vergleiche (1.4))
_ /a2
ﬁN=J0+2ZJ2k-
k=1

5. Berechne Approximationen der Bessel-Funktionen gemaf3

JM=Jk p_o0.. n<N.

KN

Als Approximation der Summenbeziehung (1.4) gilt hierbei offenbar
N
IV +2Y K =1.
k=1

In Tabelle 4 zeigen wir Approximationen J,EN)(x) fir x = 10.13 und verschiedene Ab-
brechindizes N. Wie zu beobachten, ,,bleiben die Stellen stehen®, wenn N hinreichend
grof3 gewéhlt wird.
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Frage: Wie grof ist NV bei beliebig vorgegebenem x zu wihlen?

Als Strategie wird man die Rechnungen mit wachsendem N so oft wiederholen, bis die
Resultate ausreichend genau sind, also hinreichend viele Stellen stehen bleiben. Dabei
ist es storend, dass beim Ubergang von N nach N + 1 immer die gesamte Riickwarts-
rekursion mit etwa 4N Operationen durchgerechnet werden muss. Im folgenden Kapitel
wird ein neuerer Algorithmus dargestellt, der beim Ubergang von N nach N + 1 nur
etwa 4 Operationen benotigt.

3 Ein Horner-artiger Algorithmus

Der Horner-Algorithmus zur 6konomischen Auswertung von Polynomen gehért an
vielen Schulen zum Standardstoff. Der hier vorgelegte Algorithmus fiir die Auswertung
von Bessel-Reihen baut darauf unmittelbar auf.

k  J(10.13), N =30 Ji(10.13),N =35 3,(10.13), N = 40
20 1.44221677720514 E-05 1.44221681315129 E-05 1.44221681315540 E-05
19 5.32531113143127 E-05 5.32531126416038 E-05 5.32531126417554 E-05
18 1.85342711788055 E-04 1.85342716407573 E-04 1.85342716408101 E-04
17 6.05417927616585 E-04 6.05417942706140 E-04 6.05417942707864 E-04
16 1.84666217853415 E-03 1.84666222456071 E-03 1.84666222456597 E-03
15 5.22806575580816 E-03 5.22806588611349 E-03 5.22806588612838 E-03
14 1.36362571377783 E-02 1.36362574776510 E-02 1.36362574776898 E-02
13 3.24634643387418 E-02 3.24634651478676 E-02 3.24634651479600 E-02
12 6.96855664364851 E-02 6.96855681733417 E-02 6.96855681735401 E-02
11 1.32635607179091 E-01 1.32635610484926 E-01 1.32635610485304 E-01
10 2.18368072057097 E-01 2.18368077499746 E-01 2.18368077500368 E-01
9 2.98495828274211 E-01 2.98495835713980 E-01 2.98495835714830 E-01
8 3.12029253602903 E-01 3.12029261379981 E-01 3.12029261380870 E-01
7 1.94344058956435 E-01 1.94344063800304 E-01 1.94344063800858 E-01
6 —4.34392412248093 E-02  —4.34392423074974 E-02  -4.34392423076210 E-02
5 -2.45802192687700 E-01 ~  -2.45802198814121 E-01  —2.45802198814821 E-01
4 -1.99208530431360 E-01  —1.99208535396472 E-01  —1.99208535397040 E-01
3 8.84805497014330 E-02 8.84805519067394 E-02 8.84805519069914 E-02
2 2.51615568754025 E-01 2.51615575025341 E-01 2.51615575026057 E-01
1 1.08740677730093 E-02 1.08740680440368 E-02 1.08740680440678 E-02
0 —2.49468664948890 E-01  —2.49468671166696 E-01 —2.49468671167406 E-01

Tabelle 4. Approximationen aus Miller-Algorithmus fiir N = 30, 35, 40, jeweils nur fiir

k=20,...,0.

3.1 Horner-Algorithmus als Zwei-Term-Rekursion

Die Auswertung von Polynomen verlangt die Berechnung von Summen der Form

Sn

(X) = iAk xk .
k=0

188
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Geeignetes Ausklammern fithrt dabei auf den Horner-Algorithmus, bei dem die Summe
,von hinten her® ausgewertet wird:

Sp(x) = Ao+ A1 x+...+ Ay X+ A4, X"
= Ado+x(A1+...+x (A1 +x 4)) -

Hier wollen wir den Algorithmus etwas anders herleiten. Wir gehen aus von der Tatsa-
che, dass die Polynome P, = x* einer Zwei-Term-Rekursion geniigen:

Py =xPy.

Mit dem bequemen Startwert Py = 1 ist dies eine (homogene) Vorwdrtsrekursion. Der
Effekt des Ausklammerns lésst sich darstellen als eine inhomogene Zwei-Term-Rekur-
sion der Form

U, = A,

Uy = Ap1+x Uy
Uy = Ay+x U
Sn = 0.

Dies ist offenbar eine Riickwirtsrekursion, die in der Literatur als ,,adjungierte” Riick-
wartsrekursion bezeichnet wird. Der Horner-Algorithmus ldsst sich demnach auch als
»adjungierte Summation® [3] bezeichnen.

3.2 Erweiterung auf Drei-Term-Rekursionen

Die Sichtweise des vorigen Abschnitts liefert den Schliissel zur Erweiterung des Horner-
Algorithmus auf allgemeine Drei-Term-Rekursionen, die 1977 von P. Deuflhard [2] ge-
leistet worden ist. Fiir die Konstruktion derartiger Algorithmen wichtig (aber hier nicht
bewiesen) ist die Tatsache, dass die adjungierte Riickwértsrekursion numerisch genau
dann brauchbar ist, wenn dies fiir die urspriingliche Drei-Term-Rekursion in Vorwarts-
richtung gilt — und umgekehrt. Eine ausfiihrliche theoretische Begriindung findet sich in
der obigen Originalliteratur und, etwas konziser, in dem Lehrbuch [3, Kap. 6]. Fiir Bes-
sel-Reihen werden wir daher die Riickwértsrekursion nach Miller als Ausgangspunkt
fiir eine adjungierte Vorwartsrekursion nehmen. Mit den Bezeichnungen des Abschnitts
2.2 haben wir also Summen der folgenden Gestalt zu berechnen:

n
SV =>4 1M ()
k=0

wobei der Abbrechindex N adaptiv so zu wihlen ist, dass St korrekt auf vorgegebene
Genauigkeit e ist. Gegeben die Riickwértsrekursion, wie sie in dem Algorithmus 2.1 rea-
lisiert ist, gelangen wir zu einer adjungierten Summation in Vorwartsrichtung (Herlei-
tung sieche im nachfolgenden Abschnitt 3.3), also zu dem folgenden
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Algorithmus 3.1 Adjungierte Summation von Bessel-Funktionen

g:=Au:=0;f:=—1u:=Ay; N := 1
repeat

m :=2mod(N + 1,2)f;

Au :=fAy — gAu— fu;

g =m—-2N/x+g;

Au =Au/g;

u =u+Au;

if(N >n and [Au| < |u| - €) then exit; (Losung S, ~ u)
g =-1/g

S =fg

N =N+1;

until (N > Npax)

Mit diesem Algorithmus lassen sich sodann beliebige Summen zu vorgegebenen Ko-
effizienten {4} auswerten, ohne dazu den Abbrechindex N vorab festzulegen. In Ta-
belle 5 sind einige Beispiele angegeben. Wie schon zu sehen ist, hiingt das ,,Stehenblei-
ben giiltiger Ziffern“ sowohl vom Argument x also auch von den Koeffizienten in der
Summe ab.

Aufgabe 4. Spezialisiere den Algorithmus 3.1 fiir den Fall, dass nur eine einzige Bes-
sel-Funktion J,(x) zu berechnen ist.

1024
N s=uM1024.13) + Y K27V (1024.13) N I a013)

k=1
1000 9.873630161365381 E+05 10 1.722923265030349 E-01
1010 1.009291691691664 E+06 12 2.273511331914537 E-01
1020 1.028158041678334 E+06 14 2.203454815320414 E-01
1030 9.073090336047271 E+05 16 2.185693492939857 E-01
1040 7.435725532242977 E+05 18 2.183830486762933 E-01
1050 7.150012371538359 E+05 20 2.183689776345255 E-01
1060 7.123942230060821 E+05 22 2.183681224273101 E-01
1070 7.122257868444083 E+05 24 2.183680793897036 E-01
1080 7.122176541637876 E+05 26 2.183680775681829 E-01
1090 7.122173576457674 E+05 28 2.183680775024694 E-01
1100 7.122173493609600 E+05 30 2.183680775004246 E-01
1110 7.122173491807199 E+05 32 2.183680775003691 E-01
1120 7.122173491776222 E+05 34 2.183680775003678E-01
1130 7.122173491775796 E+05 36 2.183680775003678E-01
1140 7.122173491775794 E+05

Tabelle 5. Adjungierte Summation.
Links: spezielle Bessel-Reihe zu 49 = 1, 4y = k%, x = 1024.13 und n = 1024.
Rechts: Bessel-Funktion Jjg zu x = 10.13.

190 JB 110. Band (2008), Heft 4



[ P, Deuflhard et al.: Bessel'scher Irrgarten — Rundungsfehler miissen nicht klein seinw

3.3 Mathematische Herleitung

Gesucht sind Approximationen der Form
SN =3 I (), ; (3.9)
k=0

fiir verschiedene ,,Abbrechindizes“ N > n. Bei Berechnung mittels des Miller-Algorith-
mus wire der Gesamtaufwand recht groB, da fiir jedes neue N simtliche N Werte J| ,gN)
neu berechnet werden miissen. Dies lésst sich durch Verwendung einer sog. adjungier-
ten Summation vermeiden.

Der Schliissel zur Herleitung dieses Algorithmus ist, dass wir, zunéchst fiir festes
N > n, einen Schritt des Miller-Algorithmus durch ein lineares Gleichungssystem dar-
stellen:

(N)
=1 ¢ =1 Jo 0
-1 ey -1 : =1:
-1 cn : 0
N
= Mc MatN+](R) —= =:r

Genauer miissten wir eigentlich My, J®™) +V) fiir die Ausdriicke M, J, r schreiben, um
ihre N-Abhingigkeit zu berticksichtigen, was wir jedoch aus Griinden einer einfacheren
Schreibweise nicht tun. Elementweise gilt: die ¢, = 2k/x sind die Koeffizienten der Bes-
sel-Rekursion (1.1), die my die Gewichte in der Normierungsbedingung (1.4), d.h.
my = 1,m2k_1 = 0,m2k = 2, k= 0,....

Fithren wir noch den Vektor 4 := (Ao, ..., 4,,0,...,0)7 € RV*! fiir die Koeffzien-
ten ein, so lisst sich die Summe S5 als Skalarprodukt

S =N" 4" = (4,7) mit MJ=r
k=0

schreiben. Setzen wir voraus, dass M invertierbar ist, so folgt
SN = (4, M) = (M TA4,r) . (3.10)

Hierbei ist MT = (m;;) die zu M = (m;;) transponierte Matrix. Definieren wir einen
Vektor u := M~ 4, so gilt

SS,N) = (u,r) =uy .
Wenn wir also fiir u das adjungierte Gleichungssystem

MTu=4
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16sen, so bendtigen wir am Schluss lediglich die letzte Komponente uy. In expliziter
Schreibweise lautet dieses Gleichungssystem

-1 my m Ay
a
o T | E | =
' en-1 —1 ;
-1 cy  my uy Ay

Ausfiihren einer GauB-Elimination auf der Matrix M7 und der rechten Seite A liefert,
aufgrund der speziellen Struktur von M7, das obere Dreieckssystem

Ru=e,

mit einer oberen Dreiecksmatrix R der Gestalt

1 Jo
R := :
1 fya
In
Genaueres Durchrechnen zeigt: Die Komponenten von e = (e,...,ey) und

f = (fo,-...,fn) sind jeweils durch die folgenden 3-Term-Rekursionen gegeben:
a) e_1:= 0, ey = —AO und

e = —(Ax +ex—2 — cxer—1) fir k=1,...,N, (3.11)
b) fo1:=0,fy := —mp und
fic o= —(mi+fier — exfir) fiir k=1, N )

Dabei ist Ay := 0 fiir £ > n. Die zu approximierende Summe (3.9) ergibt sich schlieBlich
zu

Mit den Rekursionen (3.11) und (3.12) benétigen wir O(1) Operationen, um aus il
die ndchste Approximation SNV zu berechnen — im Gegensatz zu O(N) Operationen
bei dem direkt aus dem Miller-Algorithmus abgeleiteten Verfahren. AuBerdem ist der
Speicherbedarf geringer und nicht von N, sondern nur von n abhangig (falls die Koeffi-
zienten {A4; } als Feld gegeben sind). Wegen (3.10) nennen wir das eben hergeleitete Ver-
fahren die adjungierte Summation von Minimallésungen.

Herleitung des robusten Algorithmus 3.1. Wir wollen einmal anhand dieses Verfah-
rens verdeutlichen, wie man, ausgehend von den Rekursionen (3.11) und (3.12), zu ei-
nem brauchbaren Algorithmus gelangen kann. Zunéchst ersetzen wir die Drei-Term-
Rekursion (3.11) fiir e, durch ein System von Zwei-Term-Rekursionen fiir
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k) e
W = u,(() =% und Ay :=wu — U1,

Ji
da wir genau an diesen beiden Werten (i als Losung, Au zur Uberpriifung der Genau-
igkeit) interessiert sind. Ferner ist zu beachten, dass die f; und e; sehr gro3 werden und
aus dem Bereich der im Rechner darstellbaren Zahlen fallen konnen. Statt der f; ver-
wenden wir daher die neuen GréBen
= E 1
gk :==—— und f; :=-; .
Bei der Transformation der Rekursionen (3.11) und (3.12) auf die neuen GroBen
U, Auy, g und f erweist es sich als giinstig, zuséatzlich noch

_ -1 Jfr _ " M
=—=—25 und 2 i=myfio = —
8= Fon k ke Si—1 Fn
einzufithren. Aus (3.12) folgt damit (Division durch —f;_1), dass
Sr=mg—cxr+gr fur k>1, (3:13)

und aus (3.11) (Division durch —f;_; und Einsetzen von (3.13)), dass
BeAuy = fro1 Ak — Zr1 Dy — Mgy .

Ordnen wir die Operationen nun so an, dass wir moglichst wenig Speicherplatz bendti-
gen und lassen wir die dann nicht mehr nétigen Indizes weg, so erhalten wir den obigen
Algorithmus 3.1, der sich in dieser Form fiir eine Implementierung eignet.
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Karl Stein was born on the first of January 1913 in Hamm in Westfalen, grew up there,
received his Abitur in 1932 and immediately thereafter began his studies in Miinster.
Just four years later, under the guidance of Heinrich Behnke, he passed his examina-
tions for teaching in high schools (Staatsexamen), received his doctor’s degree and be-
came Behnke’s assistant.

Throughout his life, complex analysis, primarily in higher dimensions (“mehrere
Veranderliche™), was the leitmotif of Stein’s mathematics. As a fresh Ph.D. in Miinster
in 1936, under the leadership of the master Behnke, he had already been exposed to the
fascinating developments in this area. The brilliant young Peter Thullen was proving
fundamental theorems, Henri Cartan had visited Miinster, and Behnke and Thullen
had just written the book on the subject. It must have been clear to Stein that this was
the way to go.

Indeed it was! The amazing phenomenon of analytic continuation in higher dimen-
sions had already been exemplified more than 20 years before in the works of F. Har-
togs and E. E. Levi. Thullen’s recent work had gone much further. In the opposite direc-
tion, Cartan and Thullen had proved their characterization of domains in €" which ad-
mit a holomorphic function which can not be continued any further. Behnke himself
was also an active participant in mathematics research, always bringing new ideas to
Miinster. This was indeed an exciting time for the young researcher, Karl Stein.

Even though the pest of the Third Reich was already invading academia, Behnke
kept things going for as long as possible. But this phase of the Miinster school of com-
plex analysis could not go on forever. Although Stein was taken into the army, during a
brief stay at home he was able to prepare and submit the paper which contained the re-
sults from his Habilitationsarbeit which was accepted in 1940. At a certain point he was
sent to the eastern front. Luckily, however, the authorities were informed of his mathe-
matical abilities, and he was called back to Berlin to work until the end of the war in
some form of cryptology. Stein told me he was not very good at this.

Almost immediately after the war, in a setting of total destruction, Behnke began to
rebuild his group, and very soon Stein became the mathematics guru in Miinster. At the
time there were only two professor positions in pure mathematics, those of Behnke and
F. K. Schmidt. Although it must have been very difficult, Behnke somehow found a po-
sition for Stein which he held from 1946 until 1955.

In 1955 Stein took a chair of mathematics at the Ludwigs-Maximilian-Universitét
in Miinchen where he stayed for the remainder of his academic career. There he contin-
ued his mathematics and built his own group in complex analysis. A number of his doc-
toral students later became professors at universities here in Germany. One of the most
exciting periods in Miinchen was certainly that in the late 1960s with the young Otto
Forster, who received his doctorate in 1961, leading a group of up-and-coming re-
searchers.

Not only being an outstanding researcher and teacher, Karl Stein worked tirelessly
on all sides of academia. Among other activities he was managing editor of Manuscrip-
ta Mathematica from 1969 until 1983, and in 1966 he was president of the DMV. He
was awarded numerous honors, including membership in the Bavarian and the Aus-
trian Academies of Sciences, and corresponding membership of the Goéttingen Acad-
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emy of Sciences. In 1973 he received an honorary doctor’s degree from the faculty of
mathemetics in Miinster, and in 1990, on the occasion of the 100th anniversary of the
founding of the DMV, he was awarded the inaugural Cantor-Medaille.

Up until a few years before his death in October of 2000 Stein was still actively
thinking about and even doing mathematics. I remember his talk in Bochum in the fall
of 1992, just before his 80th birthday. He still radiated his intense interest in discovery
and the joy of being involved with something so beautiful. Even the youngest of stu-
dents who heard that talk were mesmerized, knowing they had experienced the real
thing!

As the reader has certainly noticed we have barely touched upon the mathematics
that so fascinated Stein and his contributions as a researcher and teacher. Let us devote
the remainder of this article to a chronological sketch of some of the high points.

Although Stein’s thesis does not reflect his later work, it does reflect one of the main
directions of that time, namely “analytic continuation”, and it also shows that even at
this beginning stage he was ahead of his time. It was already known that a function
which is holomorphic in a neighborhood of the standard Euclidean sphere in ©*, n > 1,
extends holomorphically to the full Euclidean ball. In his thesis (see [S1]), under as-
sumptions, e.g., on dimension, which we now know to be inessential, Stein shows that
such results are in fact local in nature. For example, a function which is holomorphic in
a neighborhood of a piece of the sphere extends to an open set which only depends on
that piece. He even realized that such results are possible for functions holomorphic in
neighborhoods of higher-codimensional real manifolds. These results, which represent
a change in viewpoint, are precursors to the highly developed modern theory of Cau-
chy-Riemann manifolds.

One group of leading problems of that period revolved around the question of
whether or not holomorphic or meromorphic functions could be constructed with cer-
tain prescribed properties. The model situations were the theorem of Mittag-Leffler and
the Weierstrass-theory of infinite product expansions on the complex plane. In the for-
mer case, at each point of a divergent sequence {z,} a finite negative part P, of a Laur-
ent series is given and one asks if there is a meromorphic function f on the complex
plane which is holomorphic everywhere except at points of the sequence with f — P,
being holomorphic near each z,. Formulated without the details, one asks if one can ar-
bitrarily prescribe the principal parts of a meromorphic function.

In the original Weierstrass-theory one prescribes a positive integer m, at each of the
points z, and asks for the existence of a holomorphic function f whose zeros only occur
at points of the sequence and the orders of the zeros f at these points should be the given
integers. More generally one allows m, to be an arbitrary integer and asks for a mero-
morphic function with prescribed zeros and poles. In this case the “principal part” P, is
replaced by D, = (z — z,)™ and the requirement is that ,Df_n is holomorphic near z,.
Briefly stated, one asks if the “divisor” of a meromorphic function can be arbitrarily
prescribed.

Due to the early work of P. Cousin ([C]) one referred to the higher-dimensional ver-
sions of these as the additive and multiplicative Cousin problems or simply Cousin I
and IL.
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As Stein was starting out, it was well-known that the appropriate domains for sol-
ving the interesting problems of the time, such as the Cousin problems, were the “Regu-
laritatsbereiche”. Precisely speaking, they can be defined as domains D in €" so that gi-
ven any divergent sequence {x,} in D there exists a function /" holomorphic on D with
lim| f(x,)| = co. In fact such a domain possesses a holomorphic function which cannot
be continued across any boundary point. In other words D is the “region of regularity”
for that function or its “domain of holomorphy”. In the mid 1930s Cartan ([Ca]) and
Oka ([O]) had already proved definitive results for Cousin I for domains in €": If Dis a
domain of holomorphy, then every Cousin I problem on D is solvable!

Immediately after his thesis Stein turned to the Cousin problems. Later he discov-
ered the correct abstract setting for solving these and many other problems, e.g., on
complex manifolds or even complex spaces, but at this point his attention was focused
on Cousin II for domains in €".

The situation at the time of Stein’s entry into the subject is beautifully described in
([S2]). There were already a number of fascinating examples which showed that solving
this multiplicative problem on D required more than D just being a domain of holomor-
phy. There was a natural way to logarithmically change this to the additive problem,
i.e., to Cousin I, but in the process problems of well-definedness arise. This was not un-
known in complex analysis. Monodromy, something in the fundamental group or first
homology, was well-known, but the obstruction to Cousin II was clearly higher order.
Nowadays we know that this is the Chern class of the line bundle associated to the divi-
sor and, at least when the ambient manifold is compact, we can regard it as the Poincaré
dual of the divisor itself. But in those days these concepts were not available. Further-
more, even had they been on hand, in the noncompact setting which is appropriate for
Cousin II, relating a deRham- or Cech-class to something geometric is not a simple
matter.

In the late 1930s, without modern topological methods, but armed with strong geo-
metric insight, this is exactly what Stein had in mind: understanding this geometric ob-
struction. Being able to spend the year 1938 with Seifert in Heidelberg was in this regard
certainly his good fortune or maybe even fate. In any case he returned to Miinster being
one of the few (perhaps the only) complex analyst who was in the position of applying
“modern” topological methods to problems such as Cousin II.

In the work ([S10]), which should be regarded as one of the most important in this
early phase of several complex variables, Stein completely solved Cousin II and the re-
lated Poincaré problem using methods which opened doors to important new direc-
tions. The Oka principle, that a well-formulated problem in the complex analytic setting
has a holomorphic solution on a domain of holomorphy if and only if it has a topologi-
cal solution, could be seen in precise form in the hands of Stein. In brief, modulo details
which are now well-understood, here is what Stein did.

In its simplest form Cousin II amounts to the following: On a domain of holomor-
phy D we are given a 1-codimensional subvariety M, i.e., a closed subset which is locally
defined as the 0-set of a holomorphic function. We ask for a function which is globally
defined and holomorphic on D, which vanishes exactly on M and vanishes there exactly
of order one. Carefully worrying about triangulations, orientations and all other mat-
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ters that were known to be delicate in the infant state of the topology of the days, he de-
veloped a theory which led to well-defined intersection numbers M .K, where M is as
above, or more generally a divisor in D, and K runs through the 2-dimensional homol-
ogy cycles. Under minor technical conditions, even for domains finitely spread over
domains of holomorphy, he showed that a given divisor is the divisor of a meromorphic
function if and only if all of these (topologically defined!) intersection numbers vanish.
Not only did Stein prove this, he could see the topological obstruction! — I was fortu-
nate to talk with him about this on a number of occasions. As was mentioned above,
nowadays we often only mouth something about the Chern class, either deRahm or
Cech, of the associated bundle, and maybe we are not nearly seeing as much as Stein did
in the late 1930s!

Stein’s, and also Behnke’s, interests in Cousin type problems were not only restricted
to the higher-dimensional setting. Although the questions they were discussing for do-
mains in €", n > 2, had long before been completely handled for domains in the com-
plex plane, not much was known for general noncompact Riemann surfaces. On the
one hand, that situation was simpler, because there were no higher order topological
obstructions. On the other hand, the complex analysis looked quite difficult: Why
should a noncompact Riemann surface possess even one nonconstant holomorphic
function? In fact, the likes of Koebe and Caratheodory had attempted without success
to construct such functions!

From their experience with higher-dimensional domains, and knowledge of proofs
of theorems of Mittag-Leffler type for plane domains, Behnke and Stein at least knew
what to try to do: Extend the Runge approximation theorem to noncompact Riemann
surfaces and show that a noncompact Riemann surface possesses a Runge exhaustion!
The Runge condition can be described as follows: Let {U,} be an increasing sequence
of open, relatively compact subsets which exhaust the Riemann surface X. Denote by
K, the topological closure of U,. The exhaustion is said to be Runge if for every n every
function holomorphic in a neighborhood of K,, can be abitrarily well approximated in
the sup-norm of K,, by functions which are holomorphic on U, . At the time it was
well-known that, e.g., for plane domains the condition that U, is Runge in U, is
equivalent to the topological condition that the U, is relatively simply-connected in
U,41. In ([S11]) Behnke and Stein succeeded in proving this in the more general setting,
thus proving that a noncompact Riemann surface possesses a Runge exhaustion and as
a consequence it follows that both Cousin I and II ([S14]) have positive answers in that
context. Due to the war-time conditions this work was published long after its comple-
tion.

Up until the early 1950s Stein was still focused on the Cousin problems, particularly
Cousin II. His last work in this direction ([S15]) may have turned out to be his most fa-
mous. From this work one sees that Stein has studied the deep and perhaps mysterious
work of Oka, whom he credits with the theorem that on a domain of holomorphy a
Cousin II problem is holomorphically solvable if and only if it is topologically solvable.

As mentioned above, under a certain assumption which would seem only to be tech-
nical, Stein had made this precise in terms of his intersection numbers. This assumption
is that the first homology group of the domain should have a basis. Here Stein observes
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that (believe it or not!) this is really an assumption, and in order to do away with it he
must refine his topological condition. Underway he even proves several new results for
countable Abelian groups!

Of course ([S15]) is a basic work, but the reason that it may be one of Stein’s most fa-
mous is that, without pursuing matters much further, he noted that most results of the
type he had been considering are true for, in Stein’s words and notation, domains ® in
complex manifolds 9t*" which satisfy the following three axioms:

1. (Holomorphic convexity) For every compact subset §, of ® there is a compact subset
®; which contains it so that for every point P in ® which is not in ®, there is a holo-
morphic function fp on ® with

|/p(P)| > Max|fp(Ko)| -

2. (Point separation) For any two different points P; and P, in ® there is a function
J7,. P, which is holomorphic on ® and which takes on different values at P; and P;.

3. (Coordinates) For every Q in ® there is a system of n holomorphic functions on ®
whose functional determinant at Q is nonzero.

The Cartan-Serre theory, in particular the vanishing theorems for cohomology de-
fined by coherent sheaves on spaces which satisfy these axioms, was announced by Car-
tan at the famous Colloque sur les fonctions de plusieurs variables in Brussels in 1953.
There he baptized these spaces Varieté de Stein, a notation that is still used today. Dur-
ing my very first seminar talk where Stein was present, /is manifolds arose and, noticing
my nervousness, without prompting, he said “I like to call them holomorphically com-
plete”.

Returning to Miinster after participating in the Brussels Colloquium where he an-
nounced his own fundamental work on analytic decompositions, Stein lamented “Die
Franzosen haben Panzer, wir nur Pfeile und Bogen™'. To a certain extent this analogy
might fit, but in appearance only. Looking back one sees that these “Bows and Arrows”
were really quite sophisticated and that the accomplishments of the Miinsteraner were
truly extraordinary!

The most well-known names associated with the early days of the postwar Miinster
school of Heinrich Behnke are Hirzebruch, Grauert, Remmert and Stein. Hirzebruch,
who was one of the first doctoral students after the war, went on to prove numerous im-
portant results in complex geometry, primarily for compact manifolds. Certain of his
fundamental works utilize topological methods which go well beyond those employed
by Stein, but which are of a similar basic spirit in that invariants such as characteristic
classes or intersection numbers are fundamental topological obstructions to solving
problems of analytic or algebraic geometric interest. In the early days he and Stein often
commuted together from Hamm (Hirzebruch also grew up there), sometimes having to
ride on the outside running board of the train, but nevertheless discussing mathematics.
I can imagine that Stein’s animated expositions about his intersection numbers, or

! Oral communication from R. Remmert. See ([R]) for other recollections of the spirit of those
times.

200 JB 110. Band (2008), Heft 4



i A Huckleberry: Karl Stein (1913 -2000)

H. Grauert, K. Stein and R. Remmert

whether or not the first Betti group has a basis, made a lasting impression on the young
Hirzebruch!

Certain of Grauert’s early works, e.g., his Oka principle, can be regarded as taking
Stein’s prewar mathematics to another universe (see, e.g., our article, Hans Grauert:
Mathematician Pur, Mitteilung of the DMV, 2008, for a brief summary of Grauert’s
work). Later on (Stein had been retired for a number of years) they had close common
interests in understanding the conditions under which the quotient of a complex space
by an analytic or meromorphic equivalence relation is again a complex space. I recall
several very animated discussions in Oberwolfach!

In any account of Stein’s mathematics after his period of intense interest in the Cou-
sin problems, in particular in the topological obstructions, his work with Reinhold
Remmert must have center stage. This turned the page to a completely new direction!

Very early in Remmert’s studies, Behnke sent him to Stein, who at the time had an
idea that analytic continuation was something that applied not only to functions.
Maybe Thullen’s result in the 1-codimensional case could be proved for general analytic
sets! Stein had in mind that the appropriate elimination theory could be found in Os-
good’s book and Remmert should check this. What a daunting task for someone just
starting out! As it turned out, nothing of this sort could be found in Osgood, and work
could be started toward what would be the Remmert-Stein extension theorem ([S18]).

Here is a statement of the simplest version of that result: Let £ be an analytic set in a
domain D in @, i.e., a closed subset which is locally defined as the common 0-set of fi-
nitely many holomorphic functions, and suppose that A4 is an analytic set in the comple-
ment D \ E which is everywhere of larger dimension than E. Then the topological clo-
sure A of 4 in D is an analytic subset of D and what one adds to 4 to obtain this closure
is just the lower-dimensional analytic subset 4 N E.

To the ear of the nonspecialist the above may sound overly complicated. However,
considering the following example, which was a starting point for the Remmert-Stein
discussions, should allay any doubts about its importance. Let D be €" itself and E just
be the origin. Assuming that 4 is everywhere at least 1-dimensional, in this case the the-
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orem just says that 4 = 4 U {0} is an analytic subset of €" and, using results that were
already known at the time, 4 is the common 0-set of finitely many holomorphic func-
tions which are globally defined on €”, i.e., convergent power series.

Preimages 4 = n~! (V) via the standard projection 7 : €' \ {0} — IP,_;(C) of ana-
lytic sets ¥ in projective space are examples of analytic sets where the Remmert-Stein
theorem can be applied. In this case 4 is invariant by the C*-action defined by scalar
multiplication. Thus, writing the defining power series 4 as sums of homogeneous
terms, one shows that A4 is also the common 0-set of finitely many of these homogeneous
polynomials. Consequently the original variety V is the common 0-set of the same poly-
nomials and is therefore an algebraic variety.

The above proof of Chow’s theorem was given ahead of time by Cartan in his lecture
at the International Congress of Mathematicians in Boston in 1950! This result is a first
example of a general principle which states that in many algebraic geometric settings
there is no difference between algebraic and analytic phenomena. The Remmert-Stein
theorem is certainly one of the guiding forces behind this principle!

The theme of holomorphic and meromorphic maps was one of Stein’s favorites and
throughout this area the Remmert-Stein theorem plays a key role. The idea, e.g., for
analyzing a holomorphic map F : X — Y, is to throw out the analytic subsets (images
and preimages) where F degenerates, prove a good result for the restricted map, and
then obtain the desired result by Remmert-Stein continuation. In several complex vari-
ables, meromorphic maps have indeterminacies and thus it is necessary to define such
via their graphs. In any theory for these set valued maps the Remmert-Stein result is
used at many steps along the way. Remmert developed this theory for (generically sin-
gle-valued) meromorphic maps, and Stein later generalized this to correspondences
which are not necessarily generically single-valued (see, e.g. [S34, S35)).

Remmert’s mapping theorem, Images of analytic sets under proper holomorphic maps
are analytic sets, is very much in the spirit of the times. Of course this result is extremely
useful. However, it is perhaps just as important that it calls our attention to the concept
“proper”, i.e., inverse images of compact sets are compact. Its role had already been em-
phasized by Henri Cartan in 1935 in the context of actions automorphism groups on
bounded domains and some basic results were proved in Bourbaki, but the proper map-
ping theorem and Stein’s fundamental paper on analytic decompositions ([S23]) cemen-
ted the position of properness in complex analysis.

Stein’s paper contains a wealth of interesting and useful results, some even at the
general topological level (see for example Satz 9), but due to lack of space we will only
extract the most well-known one. For this it should be recalled that, in Miinster, com-
plex spaces were defined as topological spaces which could be locally realized as finite
ramified covers (with obvious topological assumptions) over domains in €". Stein had
in fact shown that unramified (even infinite) covers of holomorphically complete spaces
are holomorphically complete ([S24]), but he had really focused his interests on situa-
tions where some sort of properness is available.

Let us state an example of a result which is an important special case of those in
([S23]). Suppose F : X — Y is a proper holomorphic mapping of complex spaces. The
domain space X is assumed to be normal — for our purposes here it is enough to consid-
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er the smooth case. In order to analyze F, first apply Remmert’s theorem so that it may
be assumed that it is surjective. Then define an equivalence relation ~ on X with two
points being equivalent whenever they are in the same connected component of an
F-fiber. The decomposition of X into equivalence classes is a special case of what Stein
called an “analytic decomposition”. In this case at hand, he shows that X'/ ~=: X* car-
ries a unique structure of a normal complex space such that the quotient map
® : X — X* is holomorphic and every other holomorphic map which is constant on the
equivalence classes of ~ factors through it. In particular, this induces a holomorphic
map f : X* — Y which is a finite ramified cover! The factorization F = f o ® is what is
now called the Stein factorization of F.

A number of Stein’s last published works are devoted to understanding more gener-
al situations where it is possible to construct a universal quotient of the above type. The
works ([S29, S30]) are typical of this. One exception is ([S27]). In this jewel, given two
(concrete) domains in ", Remmert and Stein study the possibilities for proper holo-
mophic maps between them. For two polyhedral domains 4 and 4* with sufficient
structure coming from the affine structure of €", they show that proper holomorphic
maps which respect this structure are in fact affine. In particular, for domains in @ this
leads to strong nonexistence (rigidiy) results, e.g., that certain very simple explicitly gi-
ven domains have only the identity as proper holomorphic self-maps. Their methods
even shed new light on situations which were classically “understood”. For example,
Poincaré showed that the Euclidean ball B, := {(z,w) € €;|z]* + |w|> < 1} and the
polydisk A, :={(z,w) € €%|z| <1 and |w| < 1} are not equivalent by a biholo-
morphic map, because their automorphism groups don't have the same dimensions. Re-
mmert and Stein show that, just as the beginner would like to believe, the reason for the
inequivalence of these domains is that the boundary of B, is round and most of the
boundary of A is flat!

We have now come to the end of our tour of what we find to be the highest points of
Karl Stein’s mathematical works and would like to close this note by expressing our
greatest respect and admiration, not only for the science of the man, but equally for the
man behind the science!
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Verdnderlichen, Mitt. der Math. Ges. Hamburg 8 Festschrift IT (1940) 34-81.

[S10] Stein, K.: Topologische Bedingungen fiir die Existenz analytischer Funktionen komplexer
Veridnderlichen zu vorgegebenen Nullstellenflichen, Math. Ann. 117 (1941) 727-757.

[S11] Behnke, H. and Stein, K.: Entwicklung analytischer Funktionen auf Riemann’schen Fli-
chen, Math. Ann. 120 (1948) 430-461.

[S12] Behnke, H. and Stein, K.: Konvergente Folgen nichtschlichter Regularitéitsbereiche, Annali
di Mat. pura ed appl. 28 (1949) 317-326.

[S13] Stein, K.: Primfunktionen und multiplikative automorphe Funktionen auf nichtgeschlosse-
nen Riemann’schen Flachen und Zylindergebieten, Acta Math. 83 (1950) 165—196.

[S14] Behnke, H. and Stein, K.: Elementarfunktionen auf Riemann’schen Flichen als Hilfsmittel
fiir die Funktionentheorie mehrerer Veranderlichen, Canadian J. Math. 2 (1950) 152-165.

[S15] Stein, K.: Analytische Funktionen mehrerer komplexer Verdnderlichen zu vorgegebenen
Periodizitatsmoduln und das zweite Cousin’sche Problem, Math. Ann. 123 (1951) 201-222.

[S16] Behnke, H. and Stein, K.: Modifikation komplexer Mannigfaltigkeiten und Riemann’scher
Gebiete, Math. Ann. 124 (1951) 1-16.

[S17] Behnke, H. and Stein, K.: Die Singularitdten der analytischen Funktionen mehrerer Verin-
derhchen Nieuw Arch v. Wisk. Amsterdam 1952, 97-107.

[S18] Remmert R. and Stein, K.: Uber die wesentlichen Singularititen analytischer Mengen,
Math. Ann. 126 (1953). 263 306.

[S19] Stein, K.: Analytische Projektion komplexer Mannigfaltigkeiten, Colloque sur les fonctions
de plusieurs variables, Bruxelles 1953, pp. 97-107. Georges Thone, Li¢ge; Masson & Cie,
Paris, 1953.

[S20] Stein, K.: Un théoréme sur le prolongement des ensembles analytiques, Sém. Ecole Norm.
Sup. Paris 1953/54, Exposés XIII et XIV.

[S21] Behnke, H. and Stein, K.: Der Severi’sche Satz tiber die Fortsetzung von Funktionen meh-
rerer Verdnderlichen und der Kontinuitédtssatz, Annali di Mat. pura ed appl. Ser. IV, 36
(1954) 297-313.

[S22] Stein, K.: Analytische Abbildungen allgemeiner analytischer Rdume, Colloque de topologie
de Strasbourg 1954, 9 pp. Institut de Mathématique, Université de Strasbourg.

[S23] Stein, K.: Analytische Zerlegungen komplexer Rdume, Math. Ann. 132 (1956) 63-93.

[S24] Stein, K.: Uberlagerungen holomorph-vollstindiger komplexer Riume, Arch. Math. 7
(1956) 354-361.
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[S25] Stein, K.: Legons sur la théorie des fonctions de plusieurs variables complexes, In: Teoria
delle funzioni di piu variabili complesse e delle funzioni automorfe. Centro Internazionale
Matematico Estivo, Varenna 1956.

[S26] Stein, K.: Die Existenz komplexer Basen zu holomorphen Abbildungen, Math. Ann. 136
(1958) 1-8.

[S27] Remmert, R. and Stein, K.: Eigentliche holomorphe Abbildungen, Math. Zeitschr. 73
(1960) 159-189. R

[S28] Ramspott, K. J. and Stein, K.: Uber Runge’sche Paare komplexer Mannigfaltigkeiten,
Math. Ann. 145 (1962) 444 —463.

[S29] Stein, K.: Maximale holomorphe und meromorphe Abbildungen, I, Amer. J. Math. 85
(1963) 298-315.

[S30] Stein, K.: Maximale holomorphe und meromorphe Abbildungen, II, Amer. J. Math. 86
(1964) 823-868.

[S31] Stein, K.: On factorization of holomorphic mappings, Proc of the Conf. on Complex Analy-
sis, Minneapolis 1964, pp. 1-7.

[S32] Stein, K.: Uber die Aquivalenz meromorpher und rationaler Funktionen, Sitz.-Ber. Bayer.
Akad. Wiss. Math.-Nat. K1. Jg. 1966. pp. 87-99.

[S33] Stein, K.: Meromorphic mappings, L’enseignement mathématique 14 (1968) 29—-46.

[S34] Stein, K.: Fortsetzung holomorpher Korrespondenzen, Invent. Math. 6 (1968) 78—90.

[S35] Stein, K.: Topics on holomorphic correspondences, Rocky Mountain J. Math. 2 (1972)
443-463.

[S36] Stein, K.: Dependence of meromorphic mappings, Proc. Sixth Conference on Analytic
Functions, Krakow 1974. Ann. Polon. Math. 33 (1976/77) 107-115.

[S37] Stein, K.: Topological properties of holomorphic and meromorphic mappings, Colloque
Variétés Analytiques Compactes, Nice 1977. Springer Lecture Notes in Math. 683 (1978)
203-216.

[S38] Stein, K.: Rank-complete function fields, Several complex variables (Hangzhou 1981), Birk-
hauser 1984, pp. 245-246.

[S40] Koecher, M. and Stein, K.: Carl Ludwig Siegel, Jahrbuch Bayer. Akad. Wiss. Jg. 1983,
pp. 1-5.

[S41] Forster, O. and Stein, K.: Entwicklungen in der komplexen Analysis mehrerer Verdnderli-
chen, Perspectives in mathematics, Birkhduser 1984, pp. 191-214.

[S42] Stein, K.: Zur Abbildungstheorie in der komplexen Analysis, Jahresber. Deutsch. Math.-
Verein. 95 (1993) 121-133.

Dissertations guided by Karl Stein

[D1] Kerner,Hans: Funktionentheoretische Eigenschaften komplexer Ridume, December 17,
1958.

[D2] Konigsberger, Konrad: Thetafunktionen und multiplikative automorphe Funktionen zu
vorgegebenen Divisoren in komplexen Mannigfaltigkeiten, July 27, 1960.

[D3] Pfister, Albrecht: Uber das Koeffizientenproblem der beschridnkten Funktionen von zwei
Verdnderlichen, February 22, 1961.

[D4] Forster, Otto: Banachalgebren stetiger Funktionen auf kompakten Rdumen, July 26, 1961.

[D5] Osorio Vasco Tomé, Estevao: Randeigenschaften eigentlicher holomorpher Abbildungen,
January 31, 1962.

[D6] Wolffhardt, Klaus: Existenzbedingungen fiir maximale holomorphe und meromorphe Ab-
bildungen, July 24, 1963.

[D7] Wiegmann, Klaus-Werner: Einbettungen komplexer Rdume im Sinne von Grauert in Zah-
lenrdume, July 28, 1965.
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[D8] Schmidt, Gunther: Fortsetzung holomorpher Abbildungen unter Erweiterung des Bil-
draumes, February 23, 1966.
[D9] Knorr, Knut: Uber die Kohérenz von Bildgarben bei eigentlichen Abbildungen in der analy-

tischen Geometrie, February 21, 1968.

[D10] Schuster, Hans Werner: Infinitesimale Erweiterungen komplexer Riume, February 21,
1968.

[D11] Schneider, Michael: Vollstindige Durchschnitte in komplexen Mannigfaltigkeiten, January
22, 1969.

[D12] H68, Dietmar: Fortsetzung holomorpher Korrespondenzen in den pseudokonkaven Rand,
July 8, 1970.

[D13] Hayes, Sandra: Oka’sche Paare von Garben homogener Rdume, February 3, 1971.

[D14] Kraus, Giinther: Korrespondenzen und meromorphe Abbildungen, February 3, 1971.

[D15] Correll, Claus: Runge’sche Approximation durch dquivalente Funktionen auf holomorphen
Familien Riemann’scher Flichen, February 3, 1972.

[D16] Stiegler, Helmut: Fortsetzung holomorpher kanteneigentlicher Korrespondenzen, February
3,1972.

[D17] Schottenloher, Martin: Analytische Fortsetzung in Banachrdumen, February 16, 1972.

[D18] Duma, Andrei: Der Teichmiiller-Raum der Riemann’schen Fliachen vom Geschlecht > 2,
May 5, 1972.

[D19] Sinzinger, Hans: Zur Faktorisierung holomorpher Korrespondenzen iiber Abbildungen,
January 23, 1976.

[D20] Maurer, Joseph: Zur Aufldsung der Entartungen gewisser holomorpher Abbildungen, June
16, 1977.

[D21] Aurich, Volker: Kontinuitéitssdtze in Banachraumen, July 29, 1977.

[D22] Baumann, Johann: Eine gewebetheoretische Methode in der Theorie der holomorphen Ab-
bildungen: Starrheit und Nichtdquivalenz von analytischen Polyedergebieten, February 9,
1982.

[D23] Kirch, Ursula: Existenz und topologische Eigenschaften holomorpher Uberlagerungskorre-
spondenzen zwischen Riemann’schen Fliachen, March 1, 1982.
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System Control

T. Lyons, Z. Qian
System Control and
Rough Paths

Oxford University Press, 2002, 228 S., £ 62,—

Die grundlegende Fragestellung des Buches
ist, einen mathematischen Rahmen fiir die
Entwicklung von mehrdimensionalen Syste-
men zu entwickeln, die ein nichtlineares Ent-
wicklungsgesetz haben und zusétzlich von
einem recht irreguldren Kontrollprozess ge-
steuert werden. Der Kontrollprozess hat oft
den Charakter einer Stérung.

Sei zum Beispiel Y; ein hochdimensionales
System, das sich gemaB dY, =f(Y;) ent-
wickeln wiirde, wobei f eine nichtlineare
Funktion ist. Dann wiirde man fiir eine glat-
te Storung X; (niedrigdimensional) das Sys-
tem

d
Y =f(Y)+)_g(Yk
i=1
betrachten. Die Losung des Anfangswert-
problems liefert dann die Ito-Abbildung, die
dem Kontrollpfad X den Losungspfad Y zu-
ordnet.

Ein praktisches Kernproblem ist dann na-
tirlich stetige Ito-Abbildungen zu bekom-
men, um damit eine gewisse Stabilitdt des
Systems nachweisen zu koénnen. Nun hat
man aber zu beriicksichtigen, dass die Pfade
von X typischerweise nicht glatt sind. Zum
Beispiel konnte man dY; = f(Y;) + dB, be-
trachten, wobei B; eine Brown’sche Bewe-
gung ist oder ein anderer Pfad mit unend-
licher Variation und nicht differenzierbaren
Pfaden. In dieser Situation muss zunichst

einmal der Ausgangsgleichung Sinn gegeben
werden. Das bedeutet, man schreibt die Glei-
chung in integraler Form und entwickelt eine
angemessene Integrationstheorie. Dann gilt
auBerdem fiir Dimensionen grofBer als eins
im Allgemeinen keine Stetigkeit in der Su-
premumsnorm fiir die Pfade. Die néchste
Frage ist also, wie man eine andere geeignete
Norm finden kann. Nachdem man die Rau-
higkeit der Pfade von unendlicher Variation
aber sinnvollerweise in einer geeigneten
p-Variation beschreibt, verwendet man hier
die entsprechende Norm. In der Tat erhélt
man eine Stetigkeitseigenschaft der Ito-Ab-
bildung in der p-Variationsnorm.

Ausgehend von dieser Beobachtung ent-
wickelt das Buch die Mathematik von Syste-
men der Form

dY, = f(t, Y,)dX,

fiir rauhe Pfade X'. Damit entsteht insbeson-
dere auch ein neuer Rahmen fiir eine analyti-
sche Theorie der Ito-Prozesse jenseits der iib-
lichen Ito oder Stratanowitch Integrations-
theorie. Der Ausgangspunkt sind hier iterier-
te Integralrepresentationen der Pfade.

Das Buch verfolgt diesen Ansatz in sieben
Kapiteln. In Kapitel 1 werden das Problem
und die mathematische Struktur vorgestellt.
Das Kapitel 2 betrachtet dann die Ito-Abbil-
dung und Integrationstheorie zunachst fiir
relativ glatte Pfade, genauer Lipschitzpfade
und schreitet dann in Kapitel 3 fort mit rau-
hen Pfaden. Das Kapitel 4 ist dem wichtigen
Spezialfall gewidment, dass die Pfade durch
multidimensionale Brown’sche Bewegungen
gegeben sind. Im nichsten Kapitel 5 wird
dann die Pfadintergration entlang rauher
Pfade entwickelt. Das Kapitel 6 ist das Zen-
trum des Buches und behandelt die Theorie
von Differentialgleichungen, die von rauhen
Pfaden getrieben werden und formuliert und
beweist die zentrale Stetigkeitseigenschaften
der Ito-Abbildung. Das Schlusskapitel 7 be-
handelt dann Glattheitseingeschaften der
Ito-Abbildung. Das ist im Geiste der Ideen
des Malliavin Kalkiils.
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Das Buch ist inhaltsreich, klar strukturiert
und konzise geschrieben und kann sehr gut
als Basistext fir ein Seminar mit fort-
geschrittenen und guten Studenten der Sto-
chastik oder Analysis dienen. Es muss zu die-
sem Zweck allerdings erginzt werden durch
Arbeiten zu Anwendungen, die im Buch nur
gestreift werden und im Wesentlichen nur
der Motivation der Mathematik dienen, die
hier entwickelt wird.

A. Greven

Erlangen

F.Lemmermeyer,
P.Roquette

Helmut Hasse und
Emmy Noether:
Die Korrespondenz
1925-1935

Universitatsverlag Gottingen, 2006, 301 S.,
€32,-

Der vorliegende Briefwechsel zwischen H.
Hasse und E. Noether enthalt die 79 Briefe
von Noether an Hasse, die in der Hand-
schriftenabteilung der Gottinger Univer-
sitdtsbibliothek aufbewahrt werden. Die zu-
gehorigen Briefe von Hasse an Noether sind
verschollen. Der Nachlass von E. Noether
wurde nach ihrem plétzlichen Tod im Jahre
1935 wohl an ihren Bruder Fritz Noether
nach Tomsk, Sibirien, geschickt. Dieser hat
ihn aber nicht erhalten. Der vorliegende
Briefwechsel enthélt jedoch drei Briefe von
Hasse an Noether, von denen sich die Ent-
wiirfe erhalten haben. Emmy Noether
(1882—-1935) verlor 1933 als Jiidin ihre Lehr-
berechtigung an der Géttinger Universitit,
konnte aber eine Foschungsprofessur am

Frauen-College in Bryn. Mawr, Pennsylva-
nia, antreten. Diese Professur wurde gemein-
sam von der Rockefeller-Stiftung und dem
Komitee ,In Aid of Displaced German
Scholars® bezahlt (Brief 71). Eine Woche
nach Abfassung ihres letzten Briefes an Has-
se (Brief 82) starb sie an den Folgen einer
Operation. Fritz Noether emigrierte 1934
von Breslau aus in die UdSSR nach Tomsk.
Dort wurde er 1937 als angeblicher deut-
scher Spion verhaftet und 1941 zum Tode
verurteilt und hingerichtet. Die vorliegende
Publikation besteht aus folgenden Abschnit-
ten: Teil I — Vorspann, 1.1 Introduction, in
englischer Sprache, alle anderen Abschnitte
in deutscher Sprache. 1.2 Nachruf von B.L.
van der Waerden auf E. Noether, 1.3 Nach-
ruf von HW. Leopoldt auf H. Hasse. Teil
II — Die 82 Briefe zwischen Noether und
Hasse und 14 Briefe zwischen Hasse und an-
deren Mathematikern nach dem Tode von
E. Noether, dazu die Kommentare der He-
rausgeber. II.1 Briefe 19251927, 11.2 Briefe
1927-1931, I1.3 Briefe 19321935, 11.4 Brie-
fe danach. Jedem dieser vier Abschnitte ist
ein Verzeichnis der jeweiligen Briefe voran-
gestellt mit stichwortartigen Inhaltsangaben
der Herausgeber. Teil III — Anhang, II1.1
Namensverzeichnis, II1.2 Stichwortverzeich-
nis, III.3 Literaturverzeichnis, II1.4 Kurz-
biographien.

Der mathematische Inhalt der Briefe be-
trifft hauptsachlich Fragen der Algebra und
algebraischen Zahlentheorie, die sich aus
laufenden Publikationen von Hasse, Noet-
her und anderer Mathematiker ergeben.
Hierzu gehoren die Idealtheorie von Integri-
tdtsbereichen, Galoistheorie, Algebrentheo-
rie iber Zahlkoérpern und Begriindung der
Klassenkorpertheorie. Eine besondere Rolle
spielt der berithmte Brauer-Hasse-Noether-
Satz, der besagt, dass jede einfache Algebra
iiber einem Zahlkorper zyklisch ist. Einen di-
rekten Bezug zur Entstehung dieses Satzes
haben die Briefe 33—-37.

Die Bedeutung der vorliegenden Publika-
tion fiir das Studium der Geschichte der Ma-
thematik ergibt sich aus der zentralen Stel-

36
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lung von E. Noether in der Algebra der 20er
und 30er Jahre des 20. Jahrhunderts. Zusam-
men mit ihrem Kreis, zu dem u.a. E. Artin,
H. Hasse und B.L. van der Waerden gehor-
ten, ist sie die Schopferin der ,,Modernen Al-
gebra®, so der Titel der berithmten zweibdn-
digen Monographie von van der Waerden
aus den Jahren 1930 und 1931. In der Nach-
folge entstand in Frankreich nach dem zwei-
ten Weltkrieg die Sammlung ,,Bourbaki‘
von grundlegenden Darstellungen aller Ge-
biete der reinen Mathematik, die weltweit
pragend fiir deren weitere Entwicklung wur-
de. — H. Hasse ist zusammen mit E. Artin der
fiihrende Vertreter der algebraischen Zah-
lentheorie in der Zeit des vorliegenden Brief-
wechsels, einer Disziplin, die wesentlich zur
Herausbildung der modernen Algebra bei-
getragen hat.

Alle Briefe sind von den Verfassern kom-
mentiert und damit fiir den Leser erschlos-
sen. Oft sind diese Kommentare wesentlich
umfangreicher als die entsprechenden Briefe,
die teilweise auf Postkarten geschrieben wur-
den. Die Entzifferung der Briefe durch die
Verfasser ist schon eine grofe Leistung. Die
Kommentare gehen auch ein auf den Inhalt
der fehlenden Briefe von Hasse an Noether,
der soweit wie moglich aus der Mathematik
der Zeit erschlossen wird. Die 14 Briefe, die
sich an den Briefwechsel Hasse-Noether an-
schlieBen, stehen in Zusammenhang mit Em-
my Noethers Tod und deren Nachlass. Zu-
sammenfassend kann man sagen, dass die
vorliegende Publikation fiir jeden, der einen
tieferen Einblick in die Mathematik, und ins-
besondere die Algebra der 20er und 30er Jah-
re des 20. Jahrhunderts erhalten méchte, ei-
ne Pflichtlektiire sein sollte.

Berlin H. Koch

Markus Stroppel

M. Stroppel
Locally Compact
Groups

EMS Textbooks

in Mathematics

Zirich, European Mathematical Socienty,
2006, 304 S., €52,

Lokalkompakte Gruppen treten in den ver-
schiedensten Bereichen der Mathematik in
sehr natiirlicher Weise auf. Zunichst sind
natiirlich alle (endlichdimensionalen) reellen
oder komplexen Lie-Gruppen lokalkom-
pakt. Dariiber hinaus gibt es die in Zahlen-
theorie und Geometrie auftretenden lokal-
kompakten Korper, wie z.B. die p-adischen
Zahlen @, und auch alle abgeschlossenen
Matrizengruppen iiber diesen sind lokal-
kompakt. In der harmonischen Analysis bil-
den die lokalkompakten Gruppen die natiir-
liche Klasse von zugénglichen topologischen
Gruppen, da sie invariante MaBe besitzen,
so dass man ihnen (Banach-)Gruppen-Alge-
bren zuordnen kann und dadurch die ent-
sprechende Resultate zum Studium der uni-
taren Darstellungen dieser Gruppen vefiig-
bar werden. Insbesondere die Abel’schen lo-
kalkompakten Gruppen und ihre Dualitét
treten in den verschiedensten Kontexten, wie
z.B. der Fourier-Analysis, auf.

Es besteht also ein Bedarf an gut lesbaren
Lehrbiichern zu diesem Thema, die Studie-
renden schnell an die verschiedensten Aspek-
te der Theorie heranfiihren. Das vorliegende
Buch ist ein einfithrendes Lehrbuch in die
Theorie der lokalkompakten Gruppen, das
diesem Anspruch voll und ganz gerecht wird.
Der Weg, den es einschlégt, fiihrt iiber die to-
pologischen Gruppen und topologische
Transformationsgruppen zu den spezifi-
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schen Aspekten der lokalkompakten Grup-
pen und ihrer Struktur.

Es ergénzt in natiirlicher Weise das schon
fast enzyklopadische Lehrbuch von K.H.
Hofmann und S. Morris ,, The Structure of
Compact Groups“ (Studies in Math., de
Gruyter, Berlin, 1998), das sich auf kompak-
te Gruppen konzentriert. Lie-theoretische
Aspekte spielen in dem vorliegenden Buch
keine Rolle. Da jede lokalkompakte Gruppe
eine offene Untergruppe enthilt, die ein pro-
jektiver Limes von Lie-Gruppen ist, also
durch Lie-Gruppen ,,approximierbar*, kann
man sich auf den Standpunkt stellen, dass
die lokalkompakten Gruppen eine natiirli-
che Erweiterung der Klasse der reellen Lie-
Gruppen bilden, und man sie entsprechend
behandeln kann. Diesen Zugang, der in der
Tat weit iiber die lokalkompakten Gruppen
hinaus fiihrt und interessante Beriihrungen
mit der aktuellen unendlichdimensionalen
Lie-Theorie aufweist, verfolgen K. H. Hof-
mann und S. Morris in ihrer Monographie
»The Lie Theory of Connected Pro-Lie
Groups — A Structure Theory for Pro-Lie Al-
gebras, Pro-Lie Groups and Connected Lo-
cally Compact Groups®, die in Kiirze beim
EMS Publishing House, Ziirich, erscheinen
wird.

Das vorliegende Buch wird seinem Lehr-
buchcharakter in vieler Hinsicht sehr ge-
recht. Das ,geodétische Lernen® gewisser
Aspekte wird erleichtert durch einen iiber-
sichtlichen Abhéangigkeitsgraphen der Ab-
schnitte. Dariiber hinaus lassen sich mit sei-
ner Hilfe natiirlich auch Vorlesungen-zu den
verschiedensten Bereiche der Theorie, wie
z.B. lokalkompakte Abel’sche Gruppen,
kompakte Gruppen, oder etwa topologische
Algebra, zusammenstellen. Jeder Abschnitt
ist mit reichlich Ubungsaufgaben versehen,
die fiir einfithrende Vorlesungen bestens ge-
eignet sind.

Das Buch ist grob in 8 Kapitel (A—H) ge-
gliedert, die sich insgesamt in 40 Abschnitte
unterteilen. In Kapitel A werden zunichst
Grundlagen aus der Topologie behandelt

und Kapitel B enthélt eine Einfithrung in die
topologischen Gruppen. Kapitel C stellt
die wichtigsten Grundlagen iiber topologi-
sche Transformationsgruppen und Topolo-
gien auf Abbildungsrdumen bereit. Das
Haar’sche Integral wird in Kapitel D behan-
delt. Eine wichtige Anwendung hiervon ist,
dass fiir kompakte Gruppen die endlichdi-
mensionalen Darstellungen die Punkte tren-
nen, wozu einige Fakten aus der Funktional-
analysis zusammengetragen werden.

Kapitel E thematisiert Kategorien topolo-
gischer Gruppen, indem zuerst Kategorien
und allgemeine Limiten diskutiert werden.
Dem Studierenden, dem kategorielles Den-
ken neu ist, bietet dieses Kapitel eine hervor-
ragende Gelegenheit, sich anhand konkreter
Beispiele in diese Begriffswelt einzudenken.
Zentrales Ergebnis dieses Kapitels ist die Be-
schreibung kompakter Gruppen als projekti-
ver Limes kompakter Matrizengruppen.

Kapitel F iiber lokalkompakte Abel’sche
Gruppen ist das langste Kapitel des Buches.
Hier wird zunichst die volle Struktur- und
Dualitétstheorie entwickelt, wobei die wich-
tigsten Beispielklassen ausfiihrlich diskutiert
werden. Dariiber hinaus liegt ein gewisser
Schwerpunkt auf Automorphismengruppen
und Topologisierung von Endomorphis-
menringen dieser Gruppen.

Die letzten beiden Kapitel stellen Ergén-
zungen dar. Kapitel G behandelt lokalkom-
pakte Halbgruppen, ihre Einbettbarkeit in
Gruppen und automatische Stetigkeit der
Inversion in Gruppen mit stetiger Multipli-
kation. Das letzte Kapitel H gibt einen Uber-
blick iiber verschiedene Aspekte des fiinften
Hilbert’schen Problems, d.h., iiber die
Approximation lokalkompakter Gruppen
durch Lie-Gruppen und lokalkompakte
Gruppen endlicher Dimension.

AbschlieBend ldsst sich sagen, dass das
Buch einen sehr breit geficherten Einblick in
die Theorie lokalkompakter Gruppen gibt.
Die Notation ist zum Teil etwas eigenwillig,
aber hier hilft der ausfiihrliche Symbolindex
am Ende des Buches. Es ist ein sehr gelun-
genes Lehrbuch. Experten konnen es fiir ge-
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wisse Subtilitdten der Theorie als Nachschla-
gewerk oder als Begleitlektiire fiir Vorlesun-
gen sehr gut verwenden und Studierenden
bietet es sowohl einen schnellen Zugriff zu
speziellen Themen und eroffnet ihnen Aus-
blicke auf weiterfithrende Aspekte und An-
wendungen.

Darmstadt K.-H. Neeb
; J.Seade
e A On the Topology of
e Isolated Singularities
in Analytic Spaces

Birkhauser

Progr.in Math. 241

Basel, Birkhduser, 2005, 238 S., € 51,36

Eine der aufregendsten mathematischen
Entdeckungen des vergangenen Jahrhun-
derts war die Entdeckung von J. Milnor im
Jahr 1965, dass es auf der 7-dimensionalen
Sphére exotische differenzierbare Struktu-
ren gibt. Nach Vorarbeiten von Milnor und
F. Hirzebruch konnte E. Brieskorn im Jahre
1966 zeigen, dass man die 28 verschiedenen
differenzierbaren Strukturen auf der 7-Sphé-
re auf die folgenden Weise erhalten kann. Im
(n+ 1)-dimensionalen komplexen Raum
€' mit den Koordinaten z,...,z, be-
trachtet man die Hyperflache V', die durch
eine Gleichung der Form

20 4=

gegeben wird. Unter der Voraussetzung
a; > 2furi =0,...,nhat Vin 0 eine isolierte
Singularitdt. Eine solche Singularitdt nennt
man heutzutage eine Brieskorn-Pham-Sin-
gularitdt. Schneidet man ¥ mit einer hinrei-
chend kleinen Sphéire um den Nullpunkt, so

erhilt man eine (27 — 1)-dimensionale diffe-
renzierbare Mannigfaltigkeit, die der Umge-
bungsrand der Singularitdt genannt wird.
Brieskorn konnte nun zeigen, dass alle diffe-
renzierbaren Strukturen auf der 7-Sphére
auf den Umgebungsrindern geeigneter
Brieskorn-Pham-Singularititen mit n =4
realisiert werden. Damit war die Topologie
von Singularitdten in den Blickpunkt von
Mathematikern gertickt.

Die Topologie von isolierten Singularité-
ten ist auch der Gegenstand des vorliegenden
Buches. Mittlerweile hat sich die Singularita-
tentheorie zu einem eigenstdndigen, sehr
ausgedehnten Forschungsgebiet entwickelt.
Selbst die Darstellung aller Ergebnisse zur
Topologie von Singularititen miisste den
Rahmen eines Buches notgedrungen spren-
gen. Deswegen hat sich der Autor auf einige
wenige ausgewdhlte Themen beschrénkt.
In acht Kapiteln werden acht verschiedene
Themenbereiche behandelt. Dabei geht es in
den ersten fiinf Kapiteln um komplexe Sin-
gularititen, in den restlichen drei um reelle
Singularitdten. Die Auswahl erfolgt naturge-
méif nach den Vorlieben des Autors. Zu fast
allen Themenkreisen hat der Autor selbst
Arbeiten beigesteuert. In den letzten vier Ka-
piteln werden im Wesentlichen Arbeiten des
Verfassers, die teilweise mit Koautoren ent-
standen sind, dargestellt.

Das erste Kapitel enthélt einen Abriss der
klassischen Theorie. Dazu gehort vor allem
der Faserungssatz von Milnor, das Haupt-
resultat des klassischen Buchs von Milnor
»dingular points of complex hypersurfaces™
(Ann. of Math. Studies, Princeton 1968).
Dieser Faserungssatz, in seiner komplexen
und reellen Form, zieht sich wie ein roter Fa-
den durch das ganze Buch. Im ersten Kapitel
werden auch die eingangs erwihnten klassi-
schen Resultate von Brieskorn, Hirzebruch
und Milnor dargestellt.

Im zweiten Kapitel geht es um die 3-di-
mensionalen Brieskornmannigfaltigkeiten.
Dies sind die Umgebungsriander der zwei-
dimensionalen Brieskorn-Pham-Singularita-
ten. In gewissen Spezialfdllen hatte schon
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Felix Klein im Jahre 1884 gesehen, dass die
entsprechenden Gleichungen mit den end-
lichen Untergruppen von SU(2) in Verbin-
dung stehen. Speziell fir (ag,a;,a;) =
(2,3,5) erhalt man die Ikosaedergleichung,
und die zugehorige Brieskornmannigfaltig-
keit ist die Poincarésphére. In diesem Kapi-
tel wird ein weiteres Resultat von Milnor
dargestellt. Milnor konnte zeigen, dass alle
3-dimensionalen Brieskornmannigfaltigkei-
ten mit Isometriegruppen von ebenen Geo-
metrien in Zusammenhang stehen.

Das dritte Kapitel hat eine weitreichende
Verallgemeinerung dieses Resultats zum Ge-
genstand, die auf I. Dolgachev, Hirzebruch
und W. Neumann zuriickgeht. Es wird eine
vollstindige Antwort auf die Frage gegeben,
welche isolierten komplexen Flidchensingu-
laritdten einen Umgebungsrand besitzen,
der von der Form G/T ist, wobei G eine 3-di-
mensionale Liegruppe und I' eine diskrete
Untergruppe von G ist.

Im vierten Kapitel sind Anwendungen des
Satzes von Hirzebruch-Riemann-Roch und
des Hirzebruch’schen Signatursatzes auf die
Topologie von isolierten komplexen Fli-
chensingularitdten dargestellt. Hier geht es
um die Frage, inwieweit Invarianten der Mil-
norfaser einer Glattung durch die minimale
Auflésung der Singularitit bestimmt sind
und wie sie sich aus der Auflésung berechnen
lassen. Dies ist auch ein schénes Beispiel fiir
das Zusammenspiel von Topologie und al-
gebraischer Geometrie.

Das fiinfte Kapitel behandelt die Geo-
metrie und Topologie von Quadriken im
n-dimensionalen komplexen projektiven
Raum. Hier wird das Thema des zweiten Ka-
pitels noch einmal aufgegriffen und ein zu
dem Satz von Klein analoges Resultat in ho-
herer Dimension fiir den Spezialfall einer
Quadrik bewiesen. In diesem Kapitel werden
auch zum ersten Mal reell-analytische Me-
thoden verwendet.

In den letzten drei Kapiteln des Buches
werden reell-analytische Singularititen be-
trachtet. Im sechsten Kapitel geht es um das
Wechselspiel von reell-analytischer und

komplexer Geometrie. Es dient auch als
Vorbereitung fiir die letzten beiden Kapitel,
in denen reell-analytische Singularititen be-
trachtet werden, die eine Milnorfaserung be-
sitzen. Im siebten Kapitel werden solche Sin-
gularitdten konstruiert und ihre Topologie
untersucht. Das letzte Kapitel behandelt
schlieBlich reell zweidimensionale Beispiele.

Das Buch wendet sich vornehmlich an
fortgeschrittene Studierende, Doktoranden
und Mathematiker, die sich fiir Geometrie
und Topologie interessieren. In der erste
Hilfte des Buches werden besonders schone
Ergebnisse der Mathematik dargestellt, die
auch fiir ein breites Publikum von Interesse
sind. Es handelt sich um Resultate, die in der
Literatur in zahlreichen Arbeiten verstreut
sind und hier in einheitlicher und auch fiir
den Nichtexperten verstandlicher Form dar-
gestellt werden. Die zweite Hélfte des Buches
ist spezielleren Themen gewidmet. Das Buch
hat eine ausfiihrliche Einleitung und jedes
Kapitel beginnt noch einmal mit einer Uber-
sicht {iber die behandelten Themen. Es geht
dem Verfasser darum, die Ideen hervorzuhe-
ben. Manchmal wird deshalb auf die tech-
nischen Einzelheiten verzichtet und kompli-
ziertere Beweise sind schon einmal nur ange-
deutet. Aber immer findet sich dann ein Hin-
weis auf die entsprechende Literatur.

Insgesamt handelt es sich um ein Buch,
dass man mit Genuss liest. Es hat den ,,Fer-
ran Sunyer i Balaguer“-Preis 2005 erhalten
und ist in der von Birkhauser herausgebenen
Reihe der mit diesem Preis gekronten Biicher
erschienen. Das Buch ist sehr empfehlens-
wert.

Hannover W. Ebeling
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S. Tabachnikov
Geometry and
Billiards

Providence, Am. Math, Soc., 2005,176S.,
$28

Mathematische Billards sind dynamische
Systeme, bei denen sich (im einfachsten Fall)
ein Teilchen mit konstanter Geschwindigkeit
v € IR"in Q C IR” bewegt und beim Auftref-
fen auf x € 00 das Vorzeichen der Normal-
komponente x von v € Ty(9) gedndert
wird (,,Ausfallswinkel gleich Einfallswin-
kel®). Bis auf eine Ausnahmemenge sollte
daher 0N eine (n — 1)-dimensionale Man-
nigfaltigkeit sein.

Dynamische Fragen stehen in enger Bezie-
hung zu geometrischen Eigenschaften der
Bande 092. Eine Vielzahl solcher Beziehun-
gen werden im Buch von Serge Tabachnikov
untersucht. Es ist als Begleitmaterial eines
Kurses fiir fortgeschrittene Undergraduates
an der Penn State University entstanden'.

In der Theorie geoditischer Fliisse auf
Riemann’schen Mannigfaltigkeiten sind Dy-
namik und Differentialgeometrie dhnlich
eng miteinander verwoben. Vom didakti-
schen Standpunkt her haben Billards aber
den Vorteil, dass elementare Vorkenntnisse
ausreichen.

In der Einleitung wird das Ziel klar formu-
liert:

“One takes a rapid route to the frontier of

current research, deferring a more syste-

'Eine Ubersicht iiber die sehr erfolgreichen
REU- und MASS-Programme ist unter www.
math.psu.edu/mass zu finden.

matic and ‘linear’ study of foundations un-

til later.”

Um es kurz zu sagen: Das Buch 16st dieses
Versprechen vollstidndig ein. Es ist so ele-
mentar gehalten, dass es sich getrost am
Strand lesen ldsst (ich habe das ausprobiert).
Gleichzeitig ist das Wechselspiel dynami-
scher und geometrischer Fragen sehr unter-
haltsam. Etwa 100 Illustrationen, zahlreiche
Beispicle und Ubungen unterstiitzen das
Verstdndnis.

Zum Inhalt: Im einleitenden Kapitel wer-
den mathematische Billards physikalisch
durch die Bewegung von Billardkugeln so-
wie durch an 0f reflektierten Lichtstrahlen
motiviert. Die geometrische Optik gibt An-
lass zu einem Exkurs, indem die Finslergeo-
metrie vorgestellt wird; das Reflektions-
gesetz gibt Anlass zur Diskussion einfacher
Variationsprobleme.

Kapitel 2 stellt mit Quadrat und Kreis-
scheibe die einfachsten Billardtische vor —
und damit einhergehend die Ergodentheorie
von Torustranslationen.

Die Parkettierung der Ebene durch das
Quadrat ermoglicht eine einfache symboli-
sche Dynamik in zwei Symbolen, und die
Komplexitdtsfunktion p : IN — IN eines Or-
bits ist als die Anzahl p(n) der Worter der
Lange n in seiner Codierung definiert. Es
wird nun gezeigt, dass die fiir Billards mit ir-
rationaler Richtung v, also nicht periodi-
scher Codierung Letztere eine Sturmfolge ist
(p(n) =n+1), und dass diese Komplexitat
die minimal mogliche fiir nicht periodische
Folgen ist.

Im Fall endlichen Horizonts kann die Dy-
namik durch Restriktion auf den Phasen-
raum iber 002 diskretisiert werden. Fiir
Q) c IR? erhilt man eine flichenerhaltende
Abbildung des Zylinders 9 x [—1, 1] (Ka-
pitel 3). Die Liange der Bande 0X2 ist dann
nach der Crofton-Formel der Integralgeo-
metrie gleich einem Integral {iber die Zahl
der Schnittpunkte von Geraden mit dieser
Kurve.

Diese Darstellung wird anschlieBend zu ei-
nem Beweis der isoperimetrischen Unglei-
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chung verwendet. Tabachnikov schlief3t ei-
nen von ihm gefundenen Beweis eines Spezi-
alfalles der so genannten DNA-Ungleichung
an. Diese besagt fiir im konvexen Gebiet
enthaltene nicht notwendig doppelpunkt-
freie Kurven, dass deren mittlere absolute
Kriimmung nicht kleiner als die von 9 ist.

In Kapitel 4 wird gezeigt, dass auch Bil-
lards in Quadriken integrable Hamilton’sche
Systeme sind. Hilfsmittel des Beweises ist die
polare Dualitét sternformiger Hyperfldchen
im IR” und der Menge ihrer Tangentialebe-
nen, aufgefasst als Hyperfliche im Dual-
raum.

In diesem Fall, aber auch allgemein fiir
strikt konvexe, glatt berandete Gebiete (2,
treten Kaustiken auf, also Hyperfldchen, zu
denen eine tangentiale Trajektorie nach jeder
Reflektion an 02 wieder tangential ist. Die
Untersuchung solcher Kaustiken fithrt in
Kapitel 5 zur Entwicklung der Differential-
geometrie von Involute und Evolute.

Exkurse zur Theorie der Regenbdgen,
zum Vier-Scheitelsatz fiir Kurven und zur
reellen projektiven Ebene schlieBen sich
zwanglos an.

Der Beweis des Starrheitssatzes von Mi-
scha Bialy (,,nur fiir die Kreisscheiben befin-
den sich fast alle Punkte auf invarianten
Kreislinien der Billardabbildung®) konnte
aus dem Buch der Beweise stammen. Er ver-
kettet die Ungleichung zwischen arithmeti-
schem und geometrischem Mittel, Cauchy-
Schwarz und isoperimetrische Ungleichung.

Als nichstes Thema nimmt sich Tabachni-
kov periodische Orbits vor, deren Existenz
mit globalen Methoden bewiesen wird. Der
Satz von Birkhoff bestétigt mit einem Sat-
telpunktargument fiir strikt konvexe, glatt
berandete Billards in der Ebene die Existenz
zweier n-periodischer Trajektorien mit zu »
teilerfremder Rotationszahl p < |[(n —1)/2].
Ein zweiter Beweis erfolgt unter Verwen-
dung des letzten geometrischen Theorems
von Poincaré. Zur Motivation analoger Re-
sultate in hoheren Dimensionen werden
Grundideen der Morse-Theorie skizziert.

Polygonale Billards sind das Thema von
Kapitel 7. Dass selbst fiir Dreiecke die Exis-
tenz periodischer Orbits nicht bekannt ist,
zeigt beispielhaft, wie klein die Inseln unse-
ren mathematischen Wissens sind.

Durch Spiegelung erhélt man aus poly-
gonalen Billards (spezielle) Polyederflichen.
Fiir Letztere wird im generischen Fall die
Nichtexistenz doppelpunktfreier geschlosse-
ner Geoddten gezeigt (im Gegensatz zum
Fall glatter Flachen). Dazu wird eine diskre-
te Variante des Satzes von Gauss-Bonnet be-
wiesen.

Kapitel 8 tiiber chaotische Billards be-
schreibt die Technik strikt invarianter Kegel-
felder und die auf Wojtkowski zuriickgehen-
den Prinzipien fiir die Konstruktion hyper-
bolischer Billards. Die erheblichen analyti-
schen Probleme, die beim Nachweis der Er-
godizitdt entstehen, werden nur kurz er-
wihnt?,

Den Abschluss bilden duale Billards, bei
denen die diskrete Bewegung im AuBen-
gebiet ]RZ\Q durch Spiegelung am Tangen-
tialpunkt einer Gerade durch x mit 02 defi-
niert ist. Seit Jirgen Moser diese dyna-
mischen Systeme in seinem Buch® populari-
sierte, sind viele Resultate erzielt worden,
von denen einige kurz vorgestellt werden.

Insgesamt also: ein sehr inhaltsreiches,
aber gleichzeitig elementares Buch in nicht
bourbakistischem Stil. Ich meine, dass es
hilfreich sein kann, um Studierende beispiel-
haft an Fragestellungen und Techniken ma-
thematischer Forschung heranzufiihren.

2Zu diesem Thema sind aber z.B. unter www.
math.uab.edu/chernov Aufsdtze von Nikolai
Chernov erhiltlich.

3Stable and random motions in dynamical sys-
tems. Annals of Mathematic Studies. No. 77.
Princeton 1973
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Auf der Homepage des Autors (www.
math.psu.edu/tabachni) kann man sich
ein eigenes Bild von den Qualitdten des Bu-
ches machen und ebenso eine mathematisch
vollstandigere Darstellung der Billardtheo-
rie finden.

A. Knauf

Erlangen

L Crosilla, P. Schuster
From Sets and Types
to Topology and
Analysis Towards
Practicable Founda-
tions for Constructive
Mathematics

Oxford Logic Guides 48

Oxford, Clarendon Press, 2005, 350 St.,
£70,-

Der Band ist entstanden aus einer Konferenz
mit demselben Titel, die 2003 in Venedig
stattfand. Die besondere Absicht war in bei-
den Fillen, eine Briicke zu schlagen zwischen
der Praxis der konstruktiven Mathematik
und den verschiedenen formalen Systemen,
die zu ihrer Begriindung vorgeschlagen wur-
den. Die Spannweite der behandelten Gebie-
te wird am besten durch die Liste der enthal-
tenen Arbeiten beschrieben:

L.Crosilla and P. Schuster, Introduction

Part I Foundations

M. Rathjen, Generalized Inductive Defi-
nition in Constructive Set Theory

A. Simpson, Constructive Set Theories
and their Category-Theoretic Models

N. Gambino, Presheaf Models for Con-
structive Set Theory

T. Streicher, Universes in Toposes

M.E. Maietti and G. Sambin, Towards a
Minimalist Foundation for Constructive
Mathematics

P. Hancock and A. Setzer, Interactive
Programs and Weakly Final Coalgebras in
Dependent Type Theory

U. Berger and M. Seisenberger, Applica-
tions of Inductive Definitions and Choice
Principles to Program Synthesis

S. Negri and J. v. Plato, The Duality of
Classical and Constructive Notions and
Proofs

Part II Practice

E. Palmgren, Continuity on the Real Line
and in Formal Spaces

P. Aczel and C. Fox, Separation Principles
in Constructive Topology

A. Bucalo and G. Rosolini, Spaces as
Comonoids

M.E. Maietti, Predicative Exponentiation
of Locally Compact Formal Topologies over
Inductively Generated Topologies

S. Vickers, Some Constructive Roads to
Tychonoff

T. Coquand, H. Lombardi and M.-F.
Roy, An Elementary Characterization of
Krull Dimension

H. Ishihara, Constructive Reverse Mathe-
matics: Compactness Properties

B. Spitters, Approximating Integrable Sets
by Compacts Constructively

H. Takamura, An Introduction to the
Theory of C*-Algebras in Constructive Ma-
thematics

D. Bridges and R. Havea, Approximation
to the Numerical Range of an Element of a
Banach Algebra

D. Bridges and L. Vita, The Constructive
Uniqueness of the Locally Convex Topology
on IR”

V. Brattka, Computability on Non-Sepa-
rable Banach Spaces and Landau's Theorem

Der Band beginnt mit einer sehr lesenswer-
ten Einfithrung der Herausgeber, in der ver-
sucht wird, die groBe Vielfalt der Beitrdge
unter gemeinsamen Gesichtspunkten zu dis-
kutieren.
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In der konstruktiven Mathematik besteht
eine besondere Notwendigkeit, Grundlagen-
fragen und konkrete Entwicklungen gleich-
zeitig im Blick zu haben. Dies erklirt sich
durch ihre Sensitivitit fiir verschiedene
(klassisch dquivalente) Formulierungen von
zentralen Begriffen, etwa dem der Kompakt-
heit. Es kommt auf genaue Formulierungen
an, und dafiir ist es wichtig, das zugrundelie-
gende formale System zu kennen.

Unter dem Einfluss des 1967 erschienenen
Buchs ,,Constructive Analysis“ von E. Bi-
shop wurden in der 70er Jahren verschiedene
formale Systeme vorgeschlagen, die zur Be-
handlung der konstruktiven Mathematik in
Bishops Sinn geeignet sind. Am meisten ver-
breitet sind Fefermans explizite Mathema-
tik, Martin-L6fs Typentheorie und intuitio-
nistische (IZF) und konstruktive (CZF) Sys-
teme der Mengenlehre, die auf Friedman,
Myhill und Aczel zuriickgehen. Von der
Martin-Lo6f’schen Typentheorie gibt es zahl-
reiche Versionen: extensional oder intensio-
nal, mit oder ohne Universen und induktiv
definierten Typen. Eine Variante ist der ,,cal-
culus of inductive constructions®, in dem
auch imprédikative Definitionen zugelassen
sind.

Generell ist anzumerken, dass die verwen-
deten formalen Hilfsmittel moglichst all-
gemein und primitiv sein sollten. Bishop
empfiehlt in einer Arbeit von 1970, mit mini-
malen Systemen zu beginnen und sie erst
dann zu erweitern, wenn sich eine echte ma-
thematische Notwendigkeit dafiir ergibt.
Wichtig in diesem Zusammenhang ist, dass
fiir die meisten mathematischen Begriffe kei-
ne wesentlich impradikativen Konstruktio-
nen bendtigt werden: dies ergibt sich aus Un-
tersuchungen von Feferman und auch von
Friedman und Simpson im Kontext der
(klassischen) ,,reverse mathematics®.

Auf einige besonders interessante Arbei-
ten sei noch extra hingewiesen; die Auswahl
ist sicherlich durch den Geschmack des Refe-
renten bestimmt.

Hancock und Setzer betrachten eine Er-
weiterung der Martin-L6f’schen Typentheo-

rie durch koinduktive Datentypen, und ver-
wenden sie fiir die Entwicklung von inter-
aktiven Programmen. Koinduktive Daten-
typen sind durch dieselben Konstruktoren
wie induktive definiert, ihre Elemente sind
jedoch als unendliche Bdume anzusehen, bei
denen jeder Knoten durch einen Konstruk-
tor und Zeiger auf die Vorgdngerknoten be-
schriftet ist. Die Autoren fithren den Begriff
einer schwachen finalen Koalgebra fiir poly-
nomiale Funktoren ein, und diskutieren die
Beziehungen zur ,,bewachten® Induktion.

Berger und Seisenberger untersuchen in
ihrer Arbeit den wichtigen Begriff der Reali-
sierbarkeit, mit dem das fir die konstruktive
Mathematik zentrale Konzept des rechneri-
schen Gehalts eines Beweises prazisiert wird.
Durch eine verfeinerte Form der Go-
del’schen Funktionalinterpretation ldsst sich
das Konzept der Realisierbarkeit auch fiir
Beweise von schwachen (oder ,,klassischen®)
Existenzsdtzen anwenden. Dies wird am Bei-
spiel von Higmans Lemma demonstriert,
wobei im Kontext der Funktionalinterpreta-
tion das Axiom der abhidngigen Auswahl ei-
ner besonderen Behandlung bedarf.

Der Beitrag von Coquand, Lombardi und
Roy représentiert eine von den Autoren in-
tensiv verfolgte neue Richtung in der kon-
struktiven Algebra, die enge Beziehungen
zur formalen Topologie hat. Ein wichtiger
Aspekt ihres Ansatzes ist die Absicht, Sétze
konstruktiv auf demselben (niedrigen) Ty-
penniveau zu beweisen auf dem sie formu-
liert sind. Aus diesem Grund miissen sie die
Komplexitit einiger Begriffe reduzieren, et-
wa den der Krull Dimension eines kommuta-
tiven Ringes. Die Quantifikation {iber belie-
bige Primideale wird ersetzt durch eine in-
duktive Charakterisierung der Krull Dimen-
sion.

Der vorliegende Band gibt eine hervor-
ragende Ubersicht iiber den aktuellen Stand
der Forschung in Theorie und Praxis der
konstruktiven Mathematik. Er sollte in kei-
ner mathematischen Bibliothek fehlen.

Miinchen H. Schwichtenberg
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Statistical Mechanics
of Interacting Agents

Oxford University Press, 2005, 324 S., £ 62,—

Der Grundgedanke der statistischen Mecha-
nik, aus einer Anzahl von Regeln fiir das
Verhalten eines Systems auf der mikroskopi-
schen, d.h. molekularen Ebene seine makro-
skopischen Gesetzmafigkeiten abzuleiten,
hat sich nicht nur in der Physik bewéhrt, wo
es beispielsweise gelang grundlegende ther-
modynamische oder magnetische Eigen-
schaften von Systemen an einfachen Model-
len nachzuvollziehen. Oftmals lassen sich
dieselben oder sehr dhnliche Modelle auch
verwenden, um Fragestellungen, beispiels-
weise aus den Wirtschaftswissenschaften
oder der Soziologie zu untersuchen. So gab
beispielsweise Follmer schon 1973 in einer
grundlegenden Arbeit eine 6konomische In-
terpretation des Ising-Modells aus der Theo-
rie des Ferromagnetismus.

Das vorliegende Buch betrachtet ein etwas
komplexeres Szenario, die sogenannten Mi-
nority Games, Minoritdtenspiele, die ur-
spriinglich entwickelt wurden, um kollektive
Phianomene und Fluktuationen in finanziel-
len Mérkten zu studieren. Tatséchlich lassen
sich aber durch das Minoritdtenspiel eine
ganze Reihe von Situationen beschreiben, in
denen Agenten in eigenniitziger Weise han-
deln und versuchen, durch Vorhersagen der
Entscheidungen der anderen Agenten Nut-
zen zu erzielen. Hierbei sind die Spielregeln
so, dass diejenigen einen Gewinn erzielen,
die sich mit ihrer (bindren) Entscheidung in
der Minderheit befinden, also beispielsweise

diejenigen, die eine Aktie verkaufen moch-
ten, wenn eine Mehrheit der anderen Markt-
teilnehmer sie kaufen will.

Um ein Lernverhalten der Agenten model-
lieren zu konnen umfasst die mathematische
Formulierung daher neben den Aktionen
der einzelnen Agenten auch eine (6ffentlich
zugéngliche) Information iiber die histori-
sche Marktentwicklung und Strategien der
einzelnen Agenten. Das entsprechende Mo-
dell eines Minoritdtenspiels bietet in der Tat
eine Reihe tiberraschender Eigenschaften.
So zeigen beispielsweise Simulationen, dass
das Verhalten der Agenten von der Lange ih-
res ,,Gedachtnisses” abhingt, dass sie sich
zum einen signifikant schlechter verhalten,
als bei rein zufalliger Entscheidung, wenn
die Historie Uiber das Marktverhalten, auf
die sie zugreifen konnen, zu kurz ist. Die glei-
chen Simulationen zeigen aber auch, dass die
Qualitét der Entscheidung iiber die einer rein
zufalligen Entscheidung steigt, wenn man
ein ldngeres Gedachtnis der Marktteilneh-
mer annimmt und dass schlieflich mit ex-
trem langem Gedachtnis wieder die Qualitét
einer rein zufilligen Entscheidung erreicht
wird. Interessant ist auch, dass sich das Mo-
dell kaum anders verhilt, wenn man das ech-
te Gedachtnis durch ein kiinstliches Ge-
déchtnis (fake memory) ersetzt.

Der vorliegende Leitfaden gibt eine Uber-
sicht iiber verschiedene Spielarten des Mino-
ritdtenspiels und ihre mathematische Be-
handlung. Hierbei ist allerdings ,,mathema-
tisch® im Sinne der theoretischen Physik zu
verstehen:

Nicht nur die Modelle erinnern an die Ma-
thematik und Physik ungeordneter Systeme,
auch die Methoden, allen voran der notori-
sche, nicht-rigorose Replikaansatz, bei dem
die Zustandssumme eines Systems zunéchst
fiir n Duplikate des Systems errechnet wird
und dann der Limes n — 0 genommen wer-
den muss, entstammen diesem Bereich.

Dennoch halte ich A. C. C. Coolens Buch
fir eine wertvolle Lektiire, die Forschern
ebenso wie ambitionierten Studierenden der
theoretischen Physik, angewandten Mathe-
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matik oder Okonomie, die Moglichkeit bie-
tet, einen Uberblick iiber das stets noch ex-
pandierende Feld der Minoritédtenspiele zu
gewinnen, ohne sie dabei in den Dschungel
von Forschungsarbeiten oder eines enzyklo-
padischen Werkes zu schicken. Das Werk
bietet dabei alle Vorteile eines Leitfadens:
eine konsistente Notation ebenso wie einen
didaktischen Aufbau, der die Modelle eher
in der Reihenfolge ihres Schwierigkeitsgra-
des als in chronologischer Ordnung einfithrt
und bewusst auf eine vollstindige Behand-
lung aller moglichen Varianten verzichtet.
Es sei daher jedem ans Herz gelegt, der sich
fiir ein Gebiet interessiert, das Methoden der
Physik mit Fragestellungen der Okonomie
verkniipft und auf der mathematischen Seite
noch reichlich Forschungspotenzial bietet.

M. Lowe

Miinster

B. S. Mordukhovich
Variational Analysis
and Generalized
Differentiation

| Basic Theory

Il Applications
Grundiehren der
mathematischen
Wissenschaften

Berlin u.a., Springer, 2006, 450 u. 400 S.,
je €79,95

Viele Probleme aus der Optimierung, der op-
timalen Steuerung oder der Okonomie fiih-
ren auf nichtdifferenzierbare Aufgabenstel-
lungen. Dazu gehoren nicht selten auch sol-
che Probleme, denen man die Nichtglattheit
zundchst nicht ansieht, da sie mit Hilfe von
differenzierbaren Daten definiert werden.
Eine addquate Behandlung derartiger Pro-
bleme gelingt dann nur mit den Methoden

der nichtglatten Analysis. Hierfiir gibt es ei-

ne ganze Reihe von verschiedenen Ansitzen.

Die bekanntesten Vertreter sind vermutlich:

= das konvexe Subdifferential und der kon-
vexe Normalenkegel aus der konvexen

Analysis, vergleiche [4];

m das Clarke-Subdifferential und der Clar-
ke’sche Normalenkegel bei lokal Lip-
schitz-stetigen Daten, siehe [2].

Die Begriffe von Clarke konnen dabei als
Verallgemeinerungen der zugehorigen kon-
vexen Gegenstiicke angesehen werden, da sie
im konvexen Fall mit diesen iibereinstim-
men. Tatsédchlich waren und sind die Begriffe
und Hilfsmittel von Clarke von ungeheurem
Nutzen und im gewissen Sinne nicht weiter
verbesserbar, wenn man auf die Giiltigkeit
einiger Eigenschaften und die Konvexitit
des zugehorigen Normalenkegels sowie des
entsprechenden Subdifferentials nicht ver-
zichten will.

In verschiedenen Anwendungen stellte
sich allerdings immer wieder heraus, dass der
Normalenkegel und das Subdifferential von
Clarke zu groB3 sind und nicht selten wesent-
lich stiarkere Aussagen erzielt werden kon-
nen, wenn man statt des Clarke’schen Kal-
kiils den in der Literatur oft als Mordukho-
vich-Normalenkegel bezeichneten Kegel
bzw. das zugehorige Mordukhovich-Subdif-
ferential verwendet. Hierbei handelt es sich
um im Allgemeinen nichtkonvexe Objekte,
fiir die dennoch zahlreiche Rechenregeln gel-
ten und die im Mittelpunkt des vorliegenden
Werkes stehen.

Das Buch ist dabei in zwei Binde geglie-
dert. Sowohl der erste als auch der zweite
Band enthalten vier Kapitel, wobei sich der
erste Band mehr mit den theoretischen
Grundlagen und der zweite Band mit den
Anwendungen dieser Theorie auf verschie-
dene Problemklassen beschéftigt.

Das Kapitel 1 fithrt zunéchst die zentralen
Begriffe ein, und zwar den zuvor schon
genannten Mordukhovich-Normalenkegel
(hier schlicht als Normalenkegel bezeichnet),
das (Mordukhovich-)Subdifferential und die
(Mordukhovich-)Coderivative fiir mengen-
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wertige Abbildungen. Dies sind die wesentli-
chen Begriffe, auf die alle nachfolgenden Ka-
pitel aufbauen. Samtliche Definitionen und
Eigenschaften werden dabei gleich in all-
gemeinen Banach-R&umen angegeben.

Das Kapitel 2 beschiftigt sich mit ver-
schiedenen Extremalprinzipien und ihren
Zusammenhang mit bekannten Variations-
prinzipien (etwa dem Variationsprinzip von
Ekeland). Die Resultate werden zunéchst in
beliebigen Banach-Raumen formuliert, teil-
weise auf endlich-dimensionale Raume spe-
zialisiert und fiihren insbesondere zu Cha-
rakterisierungen von Asplund-Raumen, die
auch im nachfolgenden Kapitel 3 bendtigt
werden.

Dieses Kapitel 3 enthalt diverse Rechen-
regeln fiir den praktischen Umgang mit Nor-
malenkegeln, Subdifferentialen und Coderi-
vatives. Sie sind in Asplund-R&umen formu-
liert und gehen weit liber die schon im Kapi-
tel 1 vorgestellten elementaren Regeln in Ba-
nach-Raumen hinaus.

Mit den Kapiteln 1-3 stehen die wesentli-
chen theoretischen Grundlagen bereit. Die
restlichen Kapitel enthalten Anwendungen
dieser Theorie auf verschiedene Problem-
klassen. Das formal noch zum Theorie-
Band 1 gehorende Kapitel 4 etwa benutzt die
bisher erzielten Resultate, um Sensitivitéts-
analysen fiir gestorte Probleme durchzufiih-
ren, wie sie insbesondere in der Optimierung
von grofBem Nutzen sind.

Der zweite Band behandelt im Kapitel 5
zundchst diverse Optimalititskriterien fiir
restringierte Optimierungsaufgaben und ver-
schiedene Gleichgewichtsprobleme. Dabei
werden auch speziell strukturierte Optimie-
rungsprobleme behandelt, so etwa die
MPECs (Mathematical Programs with
Equilibrium Constraints) sowie die EPECs
(Equilibrium Programs with Equilibrium
Constraints). Gerade die EPECs sind eine
Aufgabenstellung, in der sich die internatio-
nale Forschung momentan bestenfalls im
Anfangsstadium befindet.

Die beiden Kapitel 6 und 7 sind dann der
optimalen Steuerung gewidmet, einem The-

ma, das historisch fiir die Entwicklung der
nichtglatten Analysis wohl die herausragen-
de Rolle gespielt hat und immer noch spielt.
Im Kapitel 6 stehen hier insbesondere Opti-
malitidtsbedingungen (wie etwa das Maxi-
mumprinzip) bei Problemen mit ODE-Re-
striktionen im Vordergrund, wéhrend im
Kapitel 7 auch PDEs auftreten.

Im abschlieBenden Kapitel 8 stehen ver-
schiedene Anwendungen der entwickelten
Theorie auf einige 6konomische Modelle im
Mittelpunkt.

Jedes Kapitel wird auBBerdem durch einen
Abschnitt mit Kommentaren ergianzt. Diese
umfassen im Allgemeinen etwa 15-20 Sei-
ten, im Falle des ersten Kapitels sind es gar
fast 40 (!) Seiten. Diese sind fiir den Leser au-
Berordentlich niitzlich, enthalten sie neben
vielen historischen Kommentaren insbeson-
dere auch umfangreiche Verweise auf die
entsprechende Originalliteratur (das Buch
enthalt knapp 1400 Referenzen) sowie eine
Einordnung der jeweiligen Resultate in den
Forschungszusammenhang. Dabei wird
auch auf die historisch verschiedenen Ent-
wicklungen in Ost und West eingegangen, da
diese beiden Teile der Welt bis zur Wende
1989/1990 auch wissenschaftlich getrennt
waren.

Insgesamt enthilt das Buch eine Fiille von
Material, der allergrote Teil hiervon mit
dem vorliegenden Werk erstmals in Form ei-
ner Monographie. Nicht selten werden auch
neueste Forschungsergebnisse mit eingebun-
den, zum Teil sind die Resultate wohl noch
nirgends publiziert. Das Buch ist auf dem
Markt daher praktisch konkurrenzlos. Le-
diglich Loewen [3], Rockafellar und Wets [5]
sowie Borwein und Zhu [1] behandeln zum
Teil ein dhnliches Themengebiet. Sie be-
schrinken sich hierbei aber auf den endlich-
dimensionalen Fall (insbesondere [5]) bzw.
haben eine eher andere Ausrichtung und
sind weitaus weniger umfangreich (im Falle
von [3,1]), in [1] wird nicht selten sogar auf
die Beweise verzichtet, wahrend Mordukho-
vich alle Beweise ausfiihrt.
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Das Buch ist sicherlich nicht fiir den ,,An-
fanger” geschrieben. Solide (funktional-)
analytische Grundkenntnisse werden vo-
rausgesetzt. Fiir den zweiten Band sind au-
Berdem eine gewisse Vertrautheit mit den
Grundlagen der Optimierung und optimalen
Steuerung recht niitzlich. Wer diese Voraus-
setzungen mitbringt, wird das vorliegende
Buch mit groBem Gewinn lesen und auf diese
Weise in ein sehr aktuelles und forschungs-
intensives Gebiet der Mathematik eingefiihrt
und auf den neuesten Stand gebracht. Das
Buch erscheint nicht umsonst in der renom-
mierten Springer-Reihe ,,Grundlehren der
mathematischen Wissenschaften“ und durf-
te fur viele Jahre, vielleicht sogar Jahrzehnte,
zu einem Standard- und Referenzwerk im
Bereich der nichtglatten Analysis und ihren
Anwendungen werden.

Literatur

[1] J.M. Borwein und Q.J. Zhu: Techniques of
Variational Analysis. Canadian Mathema-
tical Society Books in Mathematics, Sprin-
ger Science+Business Media, New York,
NY, 2005.

[2] F. H. Clarke: Optimization and Nonsmooth
Analysis. John Wiley & Sons, New York,
NY, 1983.

[3] Ph. D. Loewen: Optimal Control via Non-
smooth Analysis. CRM Proceedings &
Lecture Notes 2, American Mathematical
Society, Providence, RI, 1993.

[4] R.T.Rockafellar: Convex Analysis. Prince-
ton University Press, Princeton, NJ, 1970.

[51 R.T. Rockafellar und R.J.-B. Wets: Varia-
tional Analysis. Grundlehren der mathema-
tischen Wissenschaften 317, Springer-Ver-
lag, Berlin, Heidelberg, 1998.

Wiirzburg Ch. Kanzow

S.Dineen

Probability Theory

in Finance
AMathematical Guide
to the Black-Scholes
Formula

Providence, Am. Math. Soc., 2006, 294 S.,
$55,—

Die Anzahl an mittlerweile verdffentlichten
Biichern, die in die moderne Finanzmathe-
matik oder aber in die ihr zugrundeliegenden
stochastischen Methoden einfiihren (sollen),
ist in den vergangenen Jahren stark ange-
wachsen. Das vorliegende Buch von Sean
Dineen, obwohl in der AMS-Serie Graduate
Studies in Mathematics erschienen, ist ein
Versuch, rigorose mathematische Grund-
lagen mit Intuition zu verkniipfen, sie teil-
weise auch durch diese zu ersetzen, um so
auch gerade Studenten aus dem Bereich der
Okonomie eine fiir sie erreichbare mathema-
tische Basis zum Verstdndnis der modernen
Finanzmathematik zu geben. Hierzu setzt
der Autor lediglich einen Grundlagenkurs in
Analysis voraus. Folglich ist eine grofle Ar-
beit zu leisten, da keinerlei Grundlagen der
Stochastik als bekannt angenommen werden
diirfen.

Das Buch besteht aus einem Vorwort ge-
folgt von den Kapiteln

Chapter 1: Money and Markets

Chapter 2: Fair Games

Chapter 3: Set Theory

Chapter 4: Measurable Functions

Chapter 5:Probability Spaces

Chapter 6: Expected Values

Chapter 7: Continuity and Integrability

Chapter 8: Conditional Expectation

Chapter 9: Martingales
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Chapter 10: The Black-Scholes Formula
Chapter 11: Stochastic Integration

sowie einer groBen Sammlung von Lésungen
zu in den Kapiteln gestellten Ubungsauf-
gaben, einer Bibliographie und einem Index.

Im ersten Kapitel werden eine sehr knappe
Einfithrung in die Zinsrechnung gegeben, die
Exponentialfunktion und der Hauptsatz der
Integralrechnung (!) eingefiihrt sowie einige
Bemerkungen zum Handel an Finanzmérk-
ten gemacht. Im zweiten Kapitel werden
motivierende Anmerkungen zu fairen Spie-
len gemacht, die iiber Erwartungswerte er-
klart werden, ohne dass der Begriff der Er-
wartung liberhaupt vorher definiert wurde.
Das dritte Kapitel beinhaltet mengentheore-
tische Grundlagen der Wahrscheinlichkeits-
rechnung (Mengen, o-Algebra, Partition,
Filtration) sowie einige eher philosophische
Anmerkungen zum Umgang mit abstrakter
Mathematik und mit dem Unendlichen. Die
Borel-o-Algebra, messbare Funktionen und
(punktweise) Konvergenz sind die Themen
des vierten Kapitels, wiahrend sich das fiinfte
mit dem Einfithren der Begriffe der Wahr-
scheinlichkeit, Unabhingigkeit und Zufalls-
variablen beschiftigt. Hier wird auch bereits
das Einperioden-Binomial-Modell als ein-
fachstes Beispiel eines Finanzmarkts, in dem
ein Optionsbewertungsproblem gelost wer-
den kann, behandelt. Die iibliche Definition
des Erwartungswerts iber den Weg von den
einfachen iiber die positiven zu integrier-
baren Zufallsvariablen samt der zugehdrigen
Standardresultate wie die Sdtze {iber majori-
sierte und iiber monotone Konvergenz stel-
len den Inhalt des sechsten Kapitels dar. Un-
abhingige Zufallsvariablen, bedingte Er-
wartungen sowie erste Bemerkungen zum
Hedgen von Call-Optionen werden in den
ndchsten beiden Kapiteln behandelt. Grund-
lagen aus der Theorie der Martingale bilden
das neunte Kapitel. Hierbei werden erstaun-
licherweise die Begriffe Sub- und Supermar-
tingal nicht erwdhnt und der Begriff Conti-
nuous martingale félschlicherweise fiir Mar-
tingale in stetiger Zeit verwendet. In Kapi-

tel 10 schlieBlich wird die Black-Scholes-
Formel als zentrales, motivierendes Beispiel
fiir finanzmathematische Anwendungen be-
handelt. Neben einer Berechnung des den
Optionspreis bestimmenden Erwartungs-
werts beinhaltet es auch den Versuch einer
Motivation der Brown’schen Bewegung als
Basis der Zufallsmodellierung im Black-
Scholes-Modell tiber Grenzbetrachtungen.
Im abschlieBenden elften Kapitel wird eine
Einfiihrung in die stochastische Integration
gegeben sowie ihre nochmalige Anwendung
auf das Hedgen einer Option im Black-Scho-
les-Modell vorgestellt.

Der Autor verfolgt mit dem Anspruch ei-
ner rigorosen mathematischen Einfithrung
bei gleichzeitiger Annahme minimaler Vor-
kenntnisse seiner Horer ein hohes Ziel. Aller-
dings leidet das Buch hierunter auch deut-
lich. Es fehlt ihm eine gewisse Ausgewogen-
heit hinsichtlich der Schwierigkeit der einzel-
nen Abschnitte, die auch zuséitzlich nicht alle
eine Lange gemal ihrer Bedeutung besitzen.
So wird der Leser in einigen Abschnitten
sehr detailliert in technischen Grundlagen
eingefiihrt (die eigentliche Wahrscheinlich-
keitsrechnung beginnt erst auf Seite 74!),
wahrend ihm in manch anderen Teilen ein
recht forsches Vorgehen zugemutet wird. So
wird der Themenkomplex Central limit theo-
rem auf knapp einer Seite abgehandelt. Na-
hezu unglaublich erscheint es allerdings, dass
das starke Gesetz der groBen Zahlen, wel-
ches gerade die fiir die Anwendung in der
Optionsbewertung so wichtige Monte-Car-
lo-Methode motiviert, in einem Buch zum
Thema Probability Theory iiberhaupt nicht
erwahnt wird (was ibrigens auch fiir die
Monte-Carlo-Methode gilt)!

Generell besitzt das Buch neben der Pra-
sentation einiger interessanter historischer
Zusammenhdnge und einiger schoner
Ubungsaufgaben und Beispiele auch Schwi-
chen, die erkennen lassen, dass weder die
Wabhrscheinlichkeitstheorie noch ihre An-
wendung in der modernen Finanzmathema-
tik die eigentlichen Forschungsgebiete des
Autors sind. So wird der moderne Duplika-
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tionsansatz der Optionsbewertung nicht er-
wahnt, sondern die Black-Scholes-Formel
iiber einen Grenzprozess aus zeitdiskreten
Modellen hergeleitet, bei denen nicht unbe-
dingt ersichtlich ist, dass der entstehende
Preis wirklich keine Arbitragemdglichkeit
zuldsst. Auch ein Satz wie It is generally ac-
cepted that most share prices at any fixed
future time are lognormally distributed (S.
158) ignoriert einen GroBteil der empiri-
schen Erkenntnisse und der finanzmathema-
tischen Forschung der letzten 15 Jahre. Des
weiteren tragen ungliickliche Bezeichnungen
wie z.B. die Verwendung von Continuous
martingales zu Inkonsistenzen mit der Stan-
dardliteratur bei, die vom Autor auch weit-
gehend ignoriert wurde.

Im wesentlichen kann das Buch nur als Er-
génzung zu einfithrenden Vorlesungen tiber
Wahrscheinlichkeitstheorie empfohlen wer-
den. Der Einsteiger in die Gebiete der Fi-
nanzmathematik und der Wahrscheinlich-
keitstheorie sollte aufgrund der Unvollstan-
digkeiten und auch des fehlenden Bezugs zur
Anwendung fiir Einfithrung auf die Stan-
dardliteratur zuriick greifen.

Kaiserslautern R.Korn
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Der Ruf nach einer stérkeren Verankerung von Anwendungsbeziigen aus der
Finanzwelt im Mathematikunterricht ist zu Recht immer lauter geworden. Dieser
Forderung kann man nur dann nachhaltig und erfolgreich gerecht werden, wenn
man fachwissenschaftliche, fachdidaktische, aber auch unterrichtspraktische
Erkenntnisse und Erfahrungen in die Unterrichtsplanung einflieBen Iasst. Die
Berlicksichtigung dieses Dreiklangs zeichnet das vorliegende Buch aus. Nach einer
ausfiihrlichen und verstandlichen Beschreibung der finanzmathematischen und
didaktischen Grundlagen in den ersten beiden Teilen des Buches werden im dritten
Teil daraus resultierende, mehrfach erprobte und optimierte Unterrichtseinheiten
fiir verschiedene Klassenstufen zur Analyse von Aktienkursen und zur Berechnung
von Optionspreisen vorgestellt. Die CD zum Buch enthalt umfangreiches Arbeits-
material (mit L&sungen) fiir die unmittelbare Verwendung im Unterricht.

Der Inhalt
= Stochastische Finanzmathematik als Teil einer Fachwissenschaft:
Aktien und Optionen
= Stochastische Finanzmathematik als Teil des Mathematikunterrichts
= Vorstellung der Unterrichtseinheiten zu den Themen Aktien und Optionen
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Fax +49(0)611. 7878 - 420

Firma s "~ Name, Vorname 32408004
Abteilung
StraBe (bitte kein Postfach) T PLZ Ok

Anderungen vorbehalten. Erhaltlich im Buchhandel oder beim Veriag, zuziglich Versandkosten
Geschaftsfihrer: Dr. Ralf Birkelbach, Albrecht F. Schirmacher AG Wiesbaden HRB 9754 \

=

TECHNIK BEWEGT. YEUSReR



.
: %




