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Vorwort 

Im Mittelpunkt dieses Hefts stehen zwei Übersichtsartikel. Der Aufsatz von E. Ebenem 
et al. behandelt mathematische Modelle zur Bewertung von Risiken am Finanzmarkt, 
wobei Kreditrisiken im Vordergrund stehen. 

Dabei werden verschiedene Modelle der Risikobewertung diskutiert, um dann einen 
axiomatischen Zugang zu dieser Problematik vorzustellen. 

Schließlich werden dynamische Modelle und die Preisgestaltung von Derivaten be-
handelt. Im Hinblick auf die Turbulenzen an den Finanzmärkten, die durch falsche 
Kreditbewertungen ausgelöst wurden, handelt es sich hier um einen Artikel von gerade-
zu tagespolitischer Aktualität! 

An der Schnittstelle von reiner und angewandter Mathematik steht auch der zweite 
Ubersichtsartikel dieses Hefts von J. Eschen. 

Er stellt dar, wie neuere Entwicklungen in der Funktionalanalysis die Grundlage für 
das Studium nichtlinearer Evolutionsgleichungen bilden. 

Dies wird an Hand zweier Beispiele näher erläutert. Dabei wird zuerst die Modellie-
rung von Tumorwachstum behandelt, das zweite Beispiel beschreibt den Fluss einer zä-
hen Flüssigkeit unter dem Einfluss von Oberflächenspannung. Auch dieser Artikel zeigt 
eindrucksvoll, wie theoretische Grundlagen und Anwendungsfragen einander beeinflus-
sen und befruchten. 

Wie immer enthält auch dieses Heft eine Reihe von aktuellen Buchbesprechungen. 

K. Hulek 
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Mathematics in Financial Risk Management 

Abstract 

• Mathematics SubjectClassification: 62P05, 60G51 
• Keywords and Phrases: Quantitative risk management, financial mathematics, 

credit risk, risk measures, Libor-rate models, Lvy processes 

The paper gives an overview ofmathematical models and methods used in financial risk 
management; the main area of application is credit risk. A brief introduction explains 
the mathematical issues arising in the risk management of a portfolio of loans. The pa-
per continues with a formal overview of credit risk management models and discusses 
axiomatic approaches to risk measurement. We dose with a section on dynamic credit 
risk models used in the pricing ofcredit derivatives. Mathematical techniques used stem 
from probability theory, statistics, convex analysis and stochastic process theory. 

The views expressed in this article are the authors' personal opinions and should not be con-
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1 Introduction 

1.1 Financial Risk Management 

Broadly speaking, risk management can be defined as a discipline for "Living with the 
possibility that future events may cause adverse effects" (Klornan 1999). In the context 
of risk management in financial institutions such as banks or insurance companies these 
adverse effects usually correspond to large losses on a portfolio ofassets. Specific exam-
ples include: losses on a portfolio of market-traded securities such as stocks and bonds 
due to falling market prices (a so-called market risk event); losses on a Pool of bonds or 
loans, caused by the default of some issuers or borrowers (credit risk); losses on a port-
folio of insurance contracts due to the occurrence of large claims (insurance- or under-
writing risk). An additional risk category is operational risk, which includes losses re-
sulting from inadequate or failed internal processes, fraud or litigation. 

In financial markets, there is in general no so-called "free lunch" or, in other words, 
no profit without risk. This is the reason why financial institutions actively take on 
risks. The role of financial risk management is to measure and manage these risks. 
Hence risk management can be seen as a core competence of an insurance company or a 
bank: by using its expertise and its capital, a financial institution can take on risks and 
manage them by various techniques such as diversification, hedging, or repackaging 
risks and transferring them back to markets, etc. While risk management has thus al-
ways been an integral part ofthe banking and insurance business, recent years have wit-
nessed a large increase in the use of quantitative and mathematical techniques. Even 
more, regulators and supervisory authorities nowadays even require banks to use quan-
titative models as part oftheir risk management process. 

Given the random nature of future events on Linancial markets, the field of stochas-
tics (probability theory, statistics and the theory ofstochastic processes) obviously plays 
an important role in quantitative risk management. In addition, techniques frorn con-
vex analysis and optimization and numerical rnethods are frequently being used. In fact, 
part of the challenge in quantitative risk management sterns from the fact that techni-
ques from several existing quantitative disciplines are drawn together. The ideal skill-set 
of a quantitative risk manager includes concepts and techniques from such fields as 
mathematical finance and stochastic process theory, statistics, actuarial mathematics, 
econometrics and financial economics, combined of course with non-mathernatical 
skills such as a sound understanding of financial markets and the ability to interact with 
colleagues with diverse training and background. 

In this paper we give an introduction to sorne of the mathernatical aspects of finan-
cial risk management. We have chosen the problem of measuring and rnanaging the 
risks associated with a portfolio of bonds or loans as vehicle for our discussion. This 
choice is motivated by our common research interests; rnoreover, quantitative credit 
risk models are currently a hot topic in academia and industry. 
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1.2 Risk Management tor a Loan Portfolio 

The loss distribution. Consider a portfolio of loans to in different counterparties, in-
dexed by i e {l,.... rn}. The standard way for measuring the risk in this portfolio is to 
look at the change in the portfolio-value over a fixed time horizon T such as one year 
(current time is t = 0). We start with a single loan with given exposure (size) e, and ma-
turity date (repayment date) bigger than T. The main risk is default risk, i.e. the risk 
that the borrower cannot repay the loan in full. Denote by 7-i > 0 the random default 
time ofborrower i and introduce the Bernoulli random variable 

fi, if1<T. 
Yi = 	:= 10, else. 	

(1) 

Assume that in case of default the borrower pays the lender the amount (1 
6 i  E (0, 1] being the proportion of the exposure which is lost in default (the so-called re-
lative loss given default). Abstracting from interest-rate payments the potential loss gen-
erated by loan / over the period (0. T] is then given by L, = be 1  Y. Denote by 

pi  := IP(Y, = 1) = W( < T) 	 (2) 

the default probability of counterparty i; p, is by definition the probability that loan i 
causes a loss and plays therefore an important role in measuring the default risk of the 
loan. 

The loss ofthe whole portfolio ofm firms is then given by L = 	ei b i  Y,. In realis- 
tic applications rn can be quite large: loan portfolios ofmajor commercial banks contain 
several million loans. The portjolio loss distribution is then determined by FL(l) = 
IP(L < 1). Note that EL depends on the multivariate distribution of the random vector 
(Y 1 ...., Yn,)  and not just on the individual default probabilitiesji 1 , 1 <i < m. In order 
to determine FL we hence need a proper mathematical model for the joint distribution 
of ( Y 1 ... .. Y,); this issue is taken up in Section 2.2. 

Dependence between defaults can have a large impact on the form of EL and in par-
ticular on its right tail (the probability of large losses). This is illustrated in Figure 1, 
where we compare the loss distribution for a portfolio of 1000 firms that default mdc-
pendently (portfolio 1) with a more realistic portfolio of the same size where defaults 
are dependent (portfolio 2). In portfolio 2 defaults are weakly dependent in the sense 
that the correlation between default events (corr( Y, 15), i fj) is approximately 0.5 1/C,. 

In both cases the default probability is »' 17 so that on average we expect 10 de-
faults. We clearly see from Figure 1 that the loss distribution of portfolio 2 is skewed 
and that its right tail is substantially heavier than the right tail of the loss distribution of 
portfolio 1, illustrating the drastic impact of dependent defaults on credit loss distribu-
tions. There are in fact sound economic reasons for expecting dependence between dc-
faults. To begin with, the financial health of a firm varies with randomly fluctuating 
macroeconomic factors such as changes in economic growth. Since different firms are 
affected by common macroeconomic factors, there is dependence between their de-
faults. Moreover, dependence between defaults is caused by direct economic links be- 
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tween firms such as a strong borrower-lender relationship or a small supplier for a lar-
ger production firm. 

20 

0 	 10 	 20 	 20 	 45 	 55 

Nurrber of Ic€oes 

Figure 1. Comparison ofthe loss distribution ofa homogeneous portfolio of 1000 loans with a 
default probability of 1 % assuming (i) independent defaults and (ii) a default correlation of 
0.5%. We clearly see that the dependence between default generates a loss distribution with a 
heavier right tau. 

Risk Measurement. In practice, risk measures expressing the risk of a portfolio on a 
quantitative scale are needed for a variety ofpurposes. To begin with, financial institu-
tions hold risk capital as buffer against unexpected losses in their portfolios. Regula-
tors concerned with the solvency of financial institutions also have specific require-
ments on risk capital: under the current regulatory framework the amount ofrisk capi-
tal needed is related to the riskiness of the portfolio as measured via the risk measure 
Value-at-Risk (see (3) below for a definition). Moreover, risk measures are used by the 
management of a financial institution as a tool for limiting the amount of risk a sub-
unit within the institution - such as a trading group may take, and the profitability 
of a subunit is measured relative to the riskiness (appropriately measured) of its Posi-
tion. 

Fix some risk management horizon T and denote by the random variable L the loss 
of a given portfolio over that horizon. Most modern risk measures are statistics of the 
distribution of L; such risk measures are frequently called law-invariant risk measures 
(Kusuoka 2001). The most popular law-invariant risk measure is Value-at-Risk (VaR). 
Given some confidence level ü E (0, 1), say, ra = 0.99, the VaR of the portfolio at the 
confidence level es is defined by 

VaR0 (L) := inf{/ e IR: JP(L < 1) > a}. 	 (3) 

i.e. in statistical terms VaR0 (L) is simply the cs-quantile ofL. IfL is integrable, an alter-
native law-invariant risk measure is Expected Shortfiull or A verage Value at Risk given by 
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ES0  =fVaR i (L)du. 	 (4) 

Instead of fixing a particular confidence level a, in (4) one averages VaR over all levels 
u > a and thus "looks further into the tail" of the loss distribution; in particular 
ES, > VaR0 . 

Ofcourse, from a theoretical point ofview it is not very satisfactory to introduce risk 
measures such as VaR or expected shortfall in a more or less ad hoc way. In Section 3 
we therefore discuss axiomatic approaches to risk measurement and the related issue of 
risk-based performance measurement. 

Securitization, credit derivatives, and dynamic credit risk models. Recent years have 
witnessed a rapid growth on the market for credit derivatives. These securities are pri-
marily used for the management and the trading ofcredit risk. Credit derivatives have 
become popular, because they heip financial flrms to manage the credit risk on their 
books by selling parts ofit to the wider financial sector. The payoff ofmost credit den-
vatives depends on the exact timing of defaults, so that dynamic (continuous-time) 
credit risk model are needed to study pricing and hedging of these products. The 
mathematical tools for analyzing credit derivatives hence stern frorn the field of sto-
chastic process theory, in particular martingale theory and stochastic caiculus. We dis-
cuss some ofthe current developrnents in Section 4. 

Further reading. A short survey paper cannot do justice to all aspects of the vast and 
growing field of quantitative risk management. For further reading we refer to the 
books McNeil, Frey & Embrechts (2005) (for quantitative risk management in gener-
al), Bluhm, Overbeck & Wagner (2002) (for an introduction with strong focus on cre-
dit risk) or Crouhy, Galai & Mark (2001) (for institutional aspects of risk manage-
ment); further references are provided in the text. 

2 Credit Risk Management Models 

In this section we discuss models for credit risk management. These models are typically 
static, meaning that the focus is the loss distribution over a fixed time period [0, T[ 
rather than the evolution of risk in time. This makes the mathematics underlying the 
models relatively simple (the key tools are random variables instead of stochastic pro-
cesses) and permits us to discuss some key ideas in credit risk modelling in a non-techni-
cal setting. Note however, that the implementation of even these simple models poses 
substantial practical challenges: current approaches for parameter estirnation and mod-
cl validation are far frorn satisfactory. To a large extent this is due to the difficult data 
situation: credit loss data are collected on an annual or semi-annual basis so that a loss 
history for a loan portfolio ranging over 20 years contains at most 40 serially indepen-
dent observations. 

We begin with the issue of determining default probabilities for individual firms; 
portfolio models and related statistical questions are discussed in Sections 2.2 and 2.3. 
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2.1 Default probabilities 

State variables. In order to determine the default probability p i  of a given firm i one 
typically introduces a state variable X measuring its credit quality. The link between 
state variable and default probability is then modelled by some functionp : IR - [0. 1] 
so that p i  = p(X). This modelling suggests the following simple moment estimator for 

assume that there are N years ofdefault data for a given portfolio available; de-
note by m,(x) the number offirms in year t with X1  (roughly) equal to x and by M,(x) 
the number ofthose firms which have defaulted in year t. Then a simple estimator for 
p(•) is given by 

x) x? . 	 (5) 

More sophisticated estimators can be developed in the context of a formal model for 
thejoint distribution ofdefault events in the portfolio; see Section 2.3 below. 

Credit ratings. A popular state variable used in the so-called credit-migration models 
is the credit rating ofa firm. Credit ratings for major companies or sovereigns are pro-
vided by rating agencies such as Moody's, Standard & Poor's (S&P) or Fitch. In the 
S&P rating System there are seven rating categorieS (AAA, AA, A, BBB, BB, B, CCC) 
with AAA being the highest and CCC the lowest rating of companies which have not 
defaulted; moreover, there is a default state. Moody's uSeS Seven pre-default rating ca-
tegories labelled Aaa, Aa, A, Baa, Ba, B, C, a finer alpha-numeric System is also in 
use. The rating system used by Fitch is similar to the S&P system. Rating agencies also 
provide so-called rating transition matrices; an example from Standard & Poor's is 
presented in Table 1. These matrices are determined from historical rating informa-
tion; they give an estimate ofthe probability that a firm migrates from a given rating 
category to another category within a given year. 

Initial Rating at year-end (transition probabilities in Y) 

rating AAA AA A BBB BB B CCC Default 
AAA 90.81 8.33 0.68 0.06 0.12 0.00 0.00 0.00 
AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0.00 
A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06 
BBB 0.02 0.33 5.95 86.93 5.30 1.17 1.12 0.18 
BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06 
B 0.00 0.11 0.24 0.43 6.48 83.46 4.07 5.20 
CCC 0.22 0.00 0.22 1.30 2.38 11.24 64.86 19.79 

Table 1. Probabilities of migrating from one rating quality to another within 1 year expressed 
in %• Source: Standard & Poor's CreditWeek (lSth April 1996). 

In the simplest form ofcredit migration models it is assumed that the current credit rat-
ing of a firm completely determines the distribution of its future rating, or, in mathema-
tical terms, that rating transitions follow a Markov cham. Under this assumption de- 
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fault probabilities can be read off from an estimated transition matrix. For instance, 
using the transition matrix presented in Table 1, the one-year default probability of a 
company whose current S&P credit rating is A is estimated to be 0.06 % whereas the de-
fault probability of a CCC-rated company is estirnated to be almost 20 0/)  While the 
Markovianity of rating transitions is convenient für financial modelling (see für in-
stance (Jarrow, Lando & Turnbull 1997)), there is some doubt if the assumption can be 
maintained empirically; a good empirical study based on techniques from survival ana-
lysis is Lando & Skodeberg (2002). This tradeoff between tractability and realism is ty-
pical für the application ofmathematical models in finance in general. 

Firm-value models. Alternative state variables can be based on theJirm-value interpre-
tation of default. In this approach the asset-value of firm i is modelled as a nonnega-
tive stochastic process (V 1 , 1 ) 1>0 ; liabilities are represented by some (deterministic) 
threshold D,. In the simples(case the asset-value process is mode!ied as geometrie 
Brownian motion so that in VT , i  is normally distributed. In line with econornic intui-
tion, it is assurned that default occurs if the asset value of the firm is too bw to cover 
its liabilities. The precise modelling varies: in the simple Merton (1974) model the de-
fault indicator offirm i is defined by Y := l{VT.<D}. i.e. one checks the solvency of 
the firm only at the risk management horizon T. Somewhat cioser to reality are perhaps 
the so-called first-passage time models (Black & Cox (1976), Longstaff & Schwartz 
(1995)), where 

T1 := inf{t > 0: V1 1 <D1 }. 	 (6) 

The name sterns from the fact that in probability theory 7i  is known as first-passage time 
ofthe process (V11 ) at the threshold D,. There are by now many extensions ofthe simple 
müde! (6) such as unknown defauit thresholds or general jump-diffusion models für the 
asset value process; a good overview is given in Lando (2004). 

A natural state-variable in this context is the so-called distance to default which is 
used in the popular KMV approach to modeiling default probabilities; see für 
instance Crosbie & Bohn (2002). In this approach one puts 

V01—D 	
(7) 

(Ti 1 Oj 

where the volatility u i  is defined to be the standard deviatiün of the logarithmic return 
in Vj .  - in V01 . The definition (7) can be motivated in the context ofthe Mertün (1974)-
müde!. In that model (V 11  - V3 1 )/ Vo. , is approximately N(0, a2 ) distributed, so that (in 
practitioner language) "Xi  gives the number of standard deviations the asset value is 
away from the default threshold". Für more details on the KMV model we refer to 
McNeil et al. (2005), Sectiün 8.2, ür Bluhm et al. (2002), Sections 2 and 3. 
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2.2 Credit Porffolio Models 

Now we return to the problem of modelling the joint distribution of the default indica-
tor vector Y= (Y1 .. .. ‚ Y,). There are two types ofportfolio credit risk models, thresh-
oldmodels and mixture models. 

Threshold models. These models can be viewed as multivariate extensions of the firm 
value models discussed in the previous subsection. Their defining attribute is the idea 
that default occurs for a company i when some eritical variable X1  (such as the loga-
rithmic asset value in Vr1)  lies below some deterministic threshold d, (such as logarith-
mic liabilities lnD 1 ) at the end of the time period [0. T[, i.e. we have Y1 = 
1 <i < m. In this model dass default dependence is caused by dependence of the com-
ponents of the random vector X 	(Xt ..... 	In abstract terms the latter can be re- 
presented by the copula of X. This mathematical concept is of relevance for the analy-
sis and the modelling of dependent risk factors in general (Embrechts, McNeil & 
Straumann 2001) and therefore merits a briefdiscussion. 

Assume for simplicity that the marginal distributions F(x) = IP(X1  <x) are contin-
bus and strictly increasing. In that case the copula C ofXcan be defined as the distri-
bution function of the random vector U (Ft  (X t ),... F, (Xm )). Note that U has uni-
form marginal distributions: 

1P(U <u) = IP(X1  <P(u)) = F1 (Ft (u)) = u, u e [0.1]. 

C is by definition independent under strictly increasing transformations of the indivi-
dual components ofXand thus represents the dependence structure ofthis random vec-
tor. Moreover we have the following relation between the distribution function F of X 
and its copula C, known as identitj ofSklar: 

F(x i . ... . x,,,) := IP(X 1  < x1  ..... X,,, < x,) = IP( U < Fi (xi).. ... Um  < F,,1 (x,)) 

	

= C(Fi(xi ). .... F,,1 (x, 1 )), 	 (8) 

see McNeil et al. (2005), Section 5.1 for details and extensions. Relation (8) illustrates 
nicely how multivariate distributions are formed by coupling together marginal distri-
butions and copulas. An example which is frequently being used is the so-called Gauss 
copula Cpla  defined as copula ofa multivariate normally distributed random vector with 
correlation matrix P. 

In threshold models for portfolio credit risk the copula of the critical-variable vector 
Xgoverns the distribution ofthe default indicator vector Yin the following sense: given 
two models with critical variables Xand Xand threshold vectors d and d. Then the cor-
responding default indicators Y and Y have the same distribution if IP(X, < d1 ) = 
IP(k1 <) for all i (identical default probabilities) and if moreover Xand X have the 
same copula; see Section 8.3 ofMcNeil et al. (2005). 

Credit portfolio models used in industry such as the popular KMV model (Kealho-
fer & Bohn 2001) typically use multivariate normal distributions with factor structure 
for the vector X (so-called Gauss-copula models). Formally, one puts 
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(9) 

Here xP = (W 1 ,. . . ‚ 'I'1) is an l-dimensional Gaussian random vector with E(T) = 0 
and var(W) = 1 representing country- and industry factors (so-called systematic fac-
tors); c = (€ .... .e,,,) is a vector with independent standard-normally distributed corn-
ponents representing firm-specific (idiosyncratic) risk; iji  and f are independent; 0 < 
R 1  < 1 measures the part of the variance of X, which is due to fluctuations of the sys-
ternatic factors; the relative weights of the different factors are given by 

= (/1,... ‚(IH) witha = 1 for all i. From a practical point of view the factor 
structure is mainly introduced in order to reduce the dimensionality of the problem, so 
that in applications / is usually much smaller than m. 

Bernoulli mixture models. In a mixture model the default risk of an obligor is assumed 
to depend on a set of common economic factors, such as macroeconomic variables, 
which are also modelled stochastically; given a realization ofthe factors, defaults of in-
dividual firms are assumed to be independent. Dependence between defaults thus 
sterns from the dependence of individual default probabilities on the set of common 
factors. We start our analysis with a general definition. 

Definition 2.1 (Bernoulli mixture model). Given some random vector I' = 
(I'i..... ',)', the random vector Y = (Y1 .....Y m ) '  follows a Bernoulli mixture model 
with factor vector 'II', ifthere are functionsp, : IR' - [0, 1], 1 < i < m, such that con-
ditional 011 "1' the default indicator Yis a vector ofindependent Bernoulli random vari-
ables with IP(Yi  = l'I' = ') = p(/4. 

Fory = (y .... ..')' in {0, !}'" we thus have that 
In 

IP(Y=y 	= ) = JJp/,)H(l —p 1 (b))', 	 (10) 

and the unconditional distribution ofthe default indicator vector Yis obtained by inte-
grating over the distribution of the factor vector E'. In particular, the default probabil-
ity ofcompany / is given by», = IP( Y = 1) = E(p,(4')). 

One-factor models. In many practical situations it is useful to consider a one-dirnen-
sional mixing variable lI and hence a one-factor mode!: one-factor models may be 
fitted statistically to default data without great difficulty (see Section 2.3 below); 
moreover, their behaviour for large portfolios is also particularly easy to understand, 
see for instance Section 8.4.3 of McNeil et al. (2005). A simple one-factor model for a 
portfolio consisting of different homogeneous groups indexed by r e { 1, ... . k} (re-
presenting for instance rating classes) would be to assume that 

p 1 (W) = h(IJr(i) + W). 	 (11) 

Hereh : JR 	(0. 1) isa strictly increasing/inkftinction, such as h(x) = (x), the stan- 
dard normal distribution function, or h(x) = (1 + exp(—x)) 1  (the logistic distribution 
function); r(i) gives the group membership of firm i; /r is a group-specific intercept 
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term; a> 0 is a scaling parameter and '1' is standard norma!ly distributed. Such a speci-
fication is commonly used in the dass of generalL-ed linear mixed models in statistics. 

Inserting this specification in (10) we can find the conditional distribution of the dc-
fault indicator vector. Suppose that there are m obligors in rating category r and write 
Mr  for the number of defaults. The conditional distribution of the vector M = 
(Mt,.. . ‚ M)' is then given by 

 fl W(M = 
11  p

= r) = 

	

(mr) 
 (h(tr  + 	))/r(1  h( r  + a))r, 	(12) 

wherel= (11,...,lk). 

Mapping of models. The threshold mode! (9) can be reformulated as a mixture model, 
cf. Bluhm et al. (2002), Section 2. This is a useful insight for a number of reasons. To 
begin with, Bernoulli mixture models are easy to simulate in Monte Carlo risk studies. 
Moreover, the mixture model format and the threshold model format give risc to dif-
ferent model-calibration strategies based on different types of data, so that a link be-
tween the model types is useful in view of the data problems arising in the statistical 
analysis ofcredit risk models. 

Consider now a vector X of critical variables as in (9), default thresholds d1 , . . . d, 
and let Y, = '{ x<d}. We have, using the independence of 4' and € and the fact that 

N(0, 1), 

d1 —/ 11 cW1  

(13) 
- (dl - 	t=i 

niA=:p,(); - 

moreover, the independence of e i  and €j, i zhj, immediately implies that Y, and Y are 
conditionally independent given the realisation of 4'. Note that since X N(0, 1), the 
model can be calibrated to a set of unconditional default probabilities p, 1 < i < m, if 
weletd1 = 

The above argument can be generalized to various other critical variable models 
with factor structure; see for instance Section 8.4.4 ofMcNeil et al. (2005). 

2.3 Parameter estimation in credit portfolio models 

Parameter estimation is an important issue in credit risk management. In threshold 
models one needs to determine the parameters ofthe factor representation (9). For this 
stock returns are typically used as proxy for the asset returns of a company; the factor 
model is then estimated by a mix of formal factor analysis and an ad-hoc assignment of 
factor weights based on economic arguments; see Kealhofer & Bohn (2001) for an ex-
ample of this line of reasoning. In this section we describe alternative approaches which 
are based on the Bernoulli mixture format and historical default data. More specifically, 
we discuss the estimation ofmodel parameters in the one-factor Bernoulli mixture mod- 

174 	 JB 109. Band (2007), Heft 4 



EEberIein. H. Frey, M. Kalkbrenner, L Overbeck: Mathemafics in Financial Rsk Management 

ei (11). Admittedly, model (11) is quite simplistic. However, given the present data situa-
tion, parameter estimation in Bernoulli mixture models based solely on historical dc-
fauit information is on!y feasibie for models with a low-dimensional factor structure. 

We consider repeated cross-sectional data, i.e. observations ofthe default or non-de-
fault of groups of monitored companies in a number of time periods. This kind of data 
is readiiy availabie from rating agencies. Suppose as before that we have observations 
over N years and denote by m i ., the number offirms in year t and group r in our sample; 

denotes the number of these firms which have actually defaulted and 
M := (It.1 . . . . M,j< )'. In this simple model one negiects dependence of defaults over 
time (serial dependence) and assumes that the factor variables (W,) for the different 
years are independent and standard normaHy distributed; moreover, in line with the 
mixture modei formulation, we assume that defaults of individuai firms are condition-
a!!y independent given ('I').  Using (12) and the independence of ('I'),  we obtain 
the following form of the hkehhood of the model parameters i (/11 .... .ji) '  and o 
given the observed data M1,. ... MN: 

L( Ii ~ 	 (14) 

The integrals in (14) are easiiy evaivated numerically, so that the model can be fitted 
using maximum likehhood estimation (MLE); see Frey & McNeil (2003) for detai!s. Si-
mi!ar estimations based on moment matching techniques can be found in Bluhm et al. 
(2002), Section 2.7. 

Since the factor W is often interpreted as some measure of the state of the economy 
in year t, and since moreover business cycles tend to last over several years, it makes 
sense to assume some serial dependence of the time series (W of factor variab!es. 
The simp!est model would be a Markovian structure where the distribution of W de-
pends on the realization of iJJ_•  With this extension the model becomes a so-called hid-
den Markov model (Elliott & Moore 1995). For instance, McNeil & Wendin (2007) con-
sider a model where (TJN ,  foliows a so-called AR-1 process with dynamics 

= (W ; _! + ct, 

for —1 < (i < 1 and an iid sequence (E) 	ofnoise variables. Under this model assump- 
tion, the random variables (1IJ) 	are not independent and the !ikelihood has a more 
complicated form, so that MLE is no longer feasible. McNei! & Wendin (2007) propose 
to use Bayesian approaches instead; as shown in their paper, Markov-Chain Monte 
Carlo (MCMC) methods (see for instance Robert & Case!ia (1999)) can be used to sam-
ple from the posterior distribution ofthe unknown model parameters. 
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3 Risk measures ancl capital allocatian 

3.1 Standard techniques for calculating and allocating risk capital 

The development of the theoretical relationship between risk and expected return is 
built on two economic theories: portfolio theory and capital market theory (Markowitz 
(1952), Sharpe (1964), Lintner (1965)). Portfolio theory deals with the selection ofport-
folios that maximize expected returns consistent with individually acceptable levels of 
risk whereas capital market theory focuses on the relationship between security returns 
and risk. These theories also provide a natural framework for measuring profitability. 
The profitabi!ity analysis is commonly carried out by expressing the risk-return rela-
tionship as simple rational functions ofrisk- and return-components. The two basic var-
iants of these so-ca!!ed risk adjusted ratios are known as RORAC or RAROC, respec-
tively; see Matten (2000) for details. 

Techniques for measuring risk are a prerequisite for profitability analysis. In a bank, 
risk is usually quantified in terms of risk capital (or Economic Capital). The reason for 
the dose connection between risk and capital is the fact that the main purpose of the 
bank's capital is to protect the bank against extreme losses, i.e. capital which is invested 
in save and liquid assets should ensure solvency of the bank even in adverse economic 
scenarios. Hence, the actual capital requirements of a bank are determined by its risk 
profile. 

From a bank's perspective, the investment ofcapital in riskiess assets is not very at-
tractive, since the return the bank can earn by investing in these assets is usua!ly much 
lower than the return required by the shareholders of the bank. Therefore, in line with 
portfo!io theory, risk is one of the components in the profitability analysis ofthe bank's 
business areas, portfolios and transactions. This task requires an allocation a!gorithm 
that splits the risk capital k of a portfolio X with subportfo!ios Xt,... ‚ X,, into the suh-
portfolio contributions kt,.. . ‚ k,,, with k = k1 + .. . + k,,7 . The objective ofthis section is 
to review the main concepts for measuring and allocating risk capital. 

In the c!assical portfo!io theory, e.g. in the Capita! Asset Pricing Mode!, the risk ofa 
portfo!io is measured by the variance (or volatility) ofthe portfo!io distribution and risk 
capital is distributed proportional to covariances.' Techniques based on second mo-
ments are the natural choice for normally distributed portfolios. Loss distributions of 
credit portfo!ios, however, are asymmetrie and heavy tailed. For these distributions sec-
ond moments do not provide useful taU information and are therefore not suitable for 
measuring or allocating risk. 

The current standard in credit portfolio modelling is to define the risk capital in 
terms ofa quantile of the portfolio loss distribution, in financial !ingo the Value-at-Risk 
(VaR) VaR, (X) of the loss X of the portfo!io at a specified confidence level a (see (3)). 
VaR has an intuitive economic interpretation, i.e. it specifies the capital needed to ab-
sorb losses with probabi!ity c, and has even achieved the high status of being written 
into industry regulations. However, VaR also has an obvious limitation as a risk mea-
sure: in general it is not subadditive. Subadditivity means that for two losses X and Y 

VaR(X+ Y) < VaR(X) + VaR(Y). 	 (15) 
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VaR is known to be subadditive for elliptically distrihuted random vectors (X, Y) 
(McNeil et al. 2005), and thus for this special case encourages diversification. For typi-
cal credit portfolios the assumption of an elliptical distribution cannot be maintained. 
Consequently diversification, which is commonly considered as a way to reduce risk, 
may increase Value-at-Risk. A specific example can be found in Section 6.1 of McNeil 
et al. (2005). 

3.2 Coherent and convex risk measures 

In recent years, the development of more appropriate risk measures has been one of the 
main topics in quantitative risk management. The starting point is the seminal paper 
Artzner et al. (1999). In this paper, an axiomatic approach to the quantification ofrisk 
is presented and a set offour axioms is proposed. 

Definition 3.1 (Coherent risk measures). Let (Q. A. IP) be a probability space, 
the space of all (almost surely) bounded random variables on 92 and V a subspace of 
the vector space L. We will identify each portfolio X with its loss function, i.e. X is 
an element of V and X(w) specifies the loss of X at a future date in state w E Q. A risk 
measure p is a function from V to IR. lt is called coherent ifit is 

monotonic: 	X < Y p(X) <p(Y) 	eX, Y e 
transiation invariant: 	p(X + a) = p(X) + a 	Va e IR, X e 

positively homogeneous: 	p(aX) = a p(X) 	Va > 0, X E V. 
subadditive: 	p(X + Y) p(X) + P(y) 	VX. Y E V. 

lt seems to be accepted in the finance industry that the concept of a coherent risk 
measure provides a useful characterization of risk measures under fairly general condi-
tions (see Artzner et al. (1997) for the motivation behind the choice of these axioms). A 
serious criticism to the necessity of the subadditivity and positive homogeneity can, 
however, be raised ifliquidity risk is taken into account. This is the risk that the market 
cannot easily absorb the sell-off of large asset positions. In this situation, doubling the 
size of a position might more than double its risk. To take into account possible liquid-
ity-driven violations to subadditivity and positive homogeneity, the concept of convex 
risk measures has been independently introduced in Heath & Ku (2004), Föllmer & 
Schied (2002) and Frittelli & Gianin (2002) by replacing the axioms on subadditivity 
and positive homogeneity by the weaker requirement ofconvexity. 

Definition 3.2 (Convex risk measures). A trans!ation invariant and monotonie risk 
measure p V - IRis called convex ifit has the property 

convex: p(aX+(l — a)Y) <ap(X)+(1 —a)p(Y) VX, YE V, uE [0,1]. 

The debate on coherent versus convex risk measures is subject of current research 
and will not be covered in this survey article. We believe that coherent risk measures 
provide an appropriate axiomatic framework for most practical applications and will 
therefore focus on this concept. For the theory ofconvex risk measures we refer to the 
excellent exposition in Föllmer & Schied (2004). 
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Two other important areas ofactive research are not covered in this article: the theo-
ry of dynamic risk measures and the connection between risk measures, utility theory 
and portfolio choice. We refer the reader to the recent articies Cheridito et al. (2006) 
and Pirvu & Zitkovic (2006) and the literature surveys provided therein. 

3.3 Representation theorems tor coherent risk measures 

A general technique for specifying coherent risk measures is given in Artzner et al. 
(1999). 

Proposition 3.3. Let Q be a Set of absolutely continuous probability measures with 
respect to IP. Thefunction 

pQ (X) := sup{E(X) Q e Q} 	 (16) 

defines a coherent risk measure on L. 

Does every coherent risk measure have a representation ofthe form (16)? Artzner et 
al. (1999) have shown that this is indeed the case if the underlying probabi!ity space Q is 
finite. For infinite f the situation is more complicated. lt is shown in Theorem 2.3 in 
Delbaen (2002) that the representation of general coherent risk measures has to be 
based 011 the more general dass offinitely additive probabilities. In order to represent a 
coherent risk measure p by standard, i.e. o --additive, probability measures the coherent 
risk measure p has to satisfy an additional condition, the so-called Fatou property. 

Definition 3.4 (Fatou property and monotonie convergence). Given a function 
p: L -* JR. Then p satisfies the Fatou property, if p(X) <1iminf p(X) for any 
uniformly bounded sequence (X) >1  converging to X in probability; p satisfies the 
monotonie convergence property, if p(X) 1 0 for any sequence 0 < X < 1 such that 
Xn J. 0. 

For coherent risk measures the monotonie convergence property implies the Fatou 
property. Furthermore, the Fatou property (the monotonic convergence property) of p 
is equivalent to continuity ofp from below (from above), see Fölimer & Schied (2004). 

Theorem 3.5 (Representation of coherent risk measures). Let p be a coherent risk 
measure. Then we have 

1. p satisfies the Fatou property (fand  only ?fthere  exists an L 1  (IP)-closed, convex set Q 
ofabsolutely continuous probability measures on 9 with 

p(Y) = sup{E Q (Y) 1 Q e Q}. 	 (17) 

2. Assume that p can be represented in thejorm (17). Then p satisfies the monotonic con-
vergenceproperty (fand only ,  (ffor every Y E L there isa Q y  E Q such that p(Y) is 
exactly EQ  y ( Y), i. e. p( Y) is not only a suprem uni but also a maximum. 

The proof of the first part of the theorem given in Delbaen (2000, 2002) is mainly based 
on two theorems in functional analysis, the bipolar theorem and the Krein-Smulian the- 
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orem. The proof of the second part uses James' characterization ofweakly compact sets 
(Diestel 1975). The connection to dual representations of Fenchel-Legendre type is out-
lined in Fölimer & Schied (2004), see also Delbaen (2000, 2002) and Frittelli & Gianin 
(2002). 

3.4 Expected shorffall 

The most popular dass of coherent risk measures is Expected Shortfall (see, for in-
stance, Rockafellar & Uryasev (2000, 2001); Acerbi & Tasche (2002)). For an integrable 
random variable Y the Expected Shortfall at level a, denoted by ES ( , is the risk mea-
sure defined by 

ES(Y) := (1 	
' J VaR1(Y)du. 

lt is easy to show that 

ES( Y) = (1 — 	' {E( Y l{y>Va[ (Y)}) + VaR( ( Y). (W( Y < VaR( ( Y)) — ) } 
(18) 

is an equivalent characterization of Expected Shortfall. Furthermore, ES(, is coherent 
(Acerbi & Tasche (2002)) and satisfies the monotonic convergence property. Hence, by 
Theorem 3.5, there exists a set Q ofprobability measures with 

ESQ (Y) = rnax{E(Y) Q E Q}. 	 (19) 

This set consists of all absolutely continuous probability measures Q whose density 
dQ/dIP is IP-a.s. bounded by 1/(l n) (see, for example, Delbaen (2000)). Further-
more, it follows from (18) that for every Y e L the maximum in (19) is attained by the 
probability measure Q. given in terms of its density by 

dQ . 1 {Y>VaR(Y)} + 3Y1{YVaR(Y)} 	with 	 (20) 
1—c 

W(Y<VaR(Y))— 
Y 	 if W(Y=VaR( (Y))>0. 	 (21) .— W(Y=VaR (Y))  

3.5 Spectral measures of risk 

A particularly interesting subclass ofcoherent risk measures has been introduced in Ku-
suoka (2001), Acerbi (2002, 2004) and Tasche (2002). Spectral measures of risk can be 
defined by adding two axioms to the set of coherency axioms: law invariance and como-
notonic additivity. Spectral risk measures are generalizations of Expected Shortfall. In 
fact, they can be defined as the convex hull of the Expected Shortfall measures. A third 
characterization provides a direct link to risk aversion: spectral risk measures can be re-
presented as integrals specified by appropriate risk aversion functions o-  (see Theorem 
3.7). 
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Recall that two real valued random variables X and Y are said to be comonotonic if 
there exist a real valued random variable Z and two non-decreasing functions 
f, g: JR -* JR such that X = f(Z) and Y = g(Z). A risk measure p will be called law-in-
Variant if p(X) depends only on the distribution of X. Note that VaR and Expected 
Shortfall are law-invariant. Furthermore, it has been recently shown in Jouini et al. 
(2006) that law-invariant convex risk measures have the Fatou property. 

Definition 3.6 (Spectral risk measures). A coherent risk measure p is called a spec-
tral risk measure if it is Iaw-invariant and comonotonic additive, meaning that 
p(X + Y) = p(X) + p( Y) for all comonotonic X, Y E V. 

Law invariance of a risk measure p is an essential property for practical applications: 
note that a risk measure can only be estimated from empirical loss data ifit is law-invar-
iant. Two comonotonic portfolios X, Y e V provide no diversification at all when 
added together. lt is therefore a natural requirement that p(X + Y) should equal the 
sum ofp(X) and p(Y). Ifa risk measure is subadditive and comonotonic additive the 
upper bound p(X) + p( Y) placed on p(X + Y) by subadditivity is sharp as it can be ac-
tually attained in the case ofcomonotonic variables. 

For a proof of the following theorem we refer to Kusuoka (2001), Acerbi (2002) and 
Tasche (2002). Generalizations can be found in Fölimer & Schied (2004) and Weber 
(2007). 

Theorem 3.7 (Characterization of spectral risk measures). Let (' A. IP) be a proh-
ability space with non-atomic IP, je. there exists a random Variable that is unijbrmly dis-
tributed on (0,1). Then thefollowing three conditions are equivalentfor a risk measure 
p. 

1. p is a spectral measure ofrisk. 
2. p is in the conVex hull ofthe Expected Shortfiull measures. 
3. p can be represented in theform 

p(X) =f VaR(X)a(u)du+ (1 —p)VaR 1 (X) 

where p e [0, 1] and o-  is a non-decreasing density on 0, l[, i.e. a> 0 on [0, 1], 

f a(u)du = 1, anda(ui ) <a(u2 )Jr0 < u1  <u2  < 1. 

3.6 Capital AHocation 

We now turn to the allocation ofrisk capital either to subportfolios or to business units. 
More formally, assume that a risk measure p has been fixed and let X be a portfolio 
which consists of subportfolios X,,... . X,, i.e. X = Xi  + ... + X,,. The objective is to 
distribute the risk capital k := p(X) of the portfolio X to its subportfolios, i.e. to com-
pute risk contributions k 1 ,. .. ‚ k, of X 1 ,.. . ‚ X,, with k = k1 +... + k,. 

Allocation techniques for risk capital are a prerequisite for portfolio management 
and performance measurement. In recent years, theoretical and practical aspects of dif-
ferent allocation schemes have been analyzed in a number of papers; see for instance 
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Tasche (1999, 2002), Overbeck (2000), Delbaen (2000), Denault (2001), Hallerbach 
(2003). An allocation scheme proposed by several authors is the allocation by the gradi-
ent or Euler principle:2  the capital allocated to the subportfolio Xi  of X is the derivative 
ofthe associated risk measure p at X in the direction ofX, (see (24) for a precise formali-
zation). Tasche (1999) argues that allocation based on the Euler principle provides the 
right signals for performance measurement. Anotherjustification for the Euler principle 
is given in Denault (2001) using cooperative garne theory and the notion of "fairness". 
He shows that the Euler principle is the only fair allocation principle for a coherent risk 
measure. In the following we will review a simple axiomatization ofcapital allocation in 
Kalkbrener (2005). The main axioms are the property that the entire risk capital of a 
portfolio is allocated to its subportfolios and a diversification property that is closely 
linked to the subadditivity of the underlying risk measure. lt turns out that in this fra-
mework the Euler principle is an immediate consequence of the proposed axioms. 

The axiomatization is based on the assumption that the capital allocated to subport-
folio X1  only depends on Xi  and X but not on the decomposition of the rernainder 
X = X of the portfolio. Hence, a capital allocation can be considered as a 
function A from V x V to JR. Its interpretation is, that A(X, Y) represents the capital 
allocated to the portfolio X considered as a subportfolio ofportfolio Y. 

Definition 3.8 (Axiomatization of capital allocation). A function A: V x V -* JR is 
called a capital allocation with respect to a risk measure p if it satisfies the condition 
A(X. X) = p(X) for all X EE V, i.e. if the capital allocated to X (considered as stand-
alone portfolio) is the risk capital p(X) ofX. 
The following requirements for a capital allocation A are proposed. 

1. Linearity. For a given overall portfolio Z the capital allocated to a union of subport-
folios is equal to the sum of the capital amounts allocated to the individual subport-
folios. In particular, the risk capital of a portfolio equals the surn of the risk capital 
ofits subportfolios. More formally, A is called linear if 

Va,b e IR.X, Y,Z E V A(aX-l-bY,Z)=aA(X.Z)+bA(Y,Z). 

2. Diversification. The capital allocated to a subportfolio X of a larger portfolio Y 
never exceeds the risk capital of X considered as a stand-alone portfolio: A is called 
diversifying if 

ex, Y e V A(X, Y) <A(X.X). 

3. Continuity. A small increase in a position does only have a small effect on the risk ca-
pital allocated to that position: A is called continuous at Y e V if 

VX E V 1imA(X, Y + eX) = A(X, Y). 

Risk measures and capital allocation rules are closely related. First, given a capital 
allocation A the corresponding risk measure p is obviously given by the values of A on 
the diagonal, i.e. p(X) = A(X. X). Conversely, for a positively homogeneous and sub-
additive risk measure p a corresponding capital allocation A 1, can be constructed as fol-
lows: let V*  be the set of real linear functionals on V and for a given risk measure p con-
sider the following subset 
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H 	{h V h(X) p(X) for all X c V}. 

lt is an easy consequence of the Hahn-Banach Theorem that for a positively homoge-
neous and subadditive risk measure p 

p(X) = max{h(X) h E H} 	 (22) 

for all X C V. Hence for every Y e V there exists an 	e H with h( Y) = p( Y). This 
aliows to define a capital allocation A by 

A(X, Y) := h(X). 	 (23) 

The set H can be interpreted as a collection of (generalized) scenarios: the capital alb-
cated to a subportfolio X ofportfolio Y is simply the loss ofX under scenario h. 

The following theorem (Theorem 4.2 in Kalkbrener (2005)) states the equivalence 
between positively homogeneous, subadditive (but not necessarily monotonic) risk mea-
sures and linear, diversifying capital allocations. 

Theorem 3.9 (Existence of capital allocations). Let p: V -* IR. 
a) If there exists a linear, divers(fjing capital allocation A ivith associated risk measure p 

then p is positively homogeneous and subadditive. 

b) Ifp is positively homogeneous and subadditive then A is a linear, diversifying capital 
allocation with associated risk measure p. 

If a linear, diversifying capital allocation A is moreover continuous at a portfolio 
Y e V it is uniquely determined by the directional derivative of its associated risk mea-
sure, as the next theorem (Theorem 4.3 in Kalkbrener (2005)) shows. 

Theorem 3.10 Let p be a positively hornogeneous and sub-additive risk measure and 
Y e V. Then thefollotving three conditions are equivalent: 

a) Aiscontinuousat Y, i.e.JbrallX e VlimE_0A 9 (X, Y+€X) =A(X, Y). 

b) The directional derivative 

lirn Y + (X) p( Y) 
€ 

existsfor every X E V. 

c) There exists a unique h e H with h( Y) = p( Y). 

Ifthese conditions are satisfied then A(X, Y) equals (24) for all X e V, je. A is given 
by the Euler principle. 

Theorem 3.9 implies that in the general case, in particular for credit portfolios, there 
do not exist linear diversifying capital allocations for VaR since VaR is not subadditive. 
However, under regularity conditions (see, for example, Tasche (1999)), the directional 
derivative (24) exists for VaR r, and equals 

E(XY = VaR,,(Y)). 	 (25) 

The volatility (or covariance) allocation, on the other hand, is linear and diversifying, as 
it is derived from the risk measure Standard Deviation using (23). More precisely, let c 

(24) 
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be a ion-negative real number and define the risk measure pt/  and the capital alloca-
tion Atdl  by 

pStd(x) := c Std(X) + E(X), 	 (26) 

(c. Cov(X, Y)/Std( Y) + E(X) if Std (Y)> 0, 
A " ( X, Y) 	

j E(X) 	 if Std (Y) = 0. 	
(27) 

Then the risk measure p Std  is translation invariant, positively homogeneous and subad- 
ditive but not monotonic for c> 0. A S td  is a linear, diversifying capital allocation with 
respect to 	IfStd( Y) > 0 then A" is continuous at Y and equals the directional dc- 
rivative (24) by Theorem 3.10. 

Expected Shortfall ES is a coherent risk measure and therefore positively homoge-
neous and subadditive. Hence, application of (23) to Expected Shortfall yields a linear, 
diversifying capital allocation with associated risk measure ES. The scenario function 
h(X) for this risk measure is given by EQ(X), where the probability measure Q y  iS 

specified in (20). In summary, 

AS(X, Y) 	EQ(X) 
= (f X ly > VR 0 y)}d + 3y fx. 1{YV aR o (Y)}d)/(l 

isa linear, diversifying capital allocation with respect to ES 0 . If 

IP(Y > VaR0 (Y)) = 1 - c or IP(Y > VaR0 (Y)) = 1 - 	 (28) 

then AS  is continuous at Y and equals the directional derivative (24). In particular, 
(28) holds if IP( Y = VaR0 ( Y)) = 0; in that case A 5 (X. Y) takes the particularly intui-
tive form 

AS(X .  Y) = E(X Y > VaR,,(Y)). 

The extension to spectral risk measures can be found in Overbeck (2004). 

3.7 Gase stuily: capital allocation in an investment banking portfolio 

We will now analyze the practical consequences of different allocation schemes when 
applied to a realistic credit portfolio. The case study is based on a sample investment 
banking portfolio consisting ofni = 25000 loans with an inhomogeneous exposure and 
default probability distribution. The average exposure size is 0.004% of the total expo-
sure and the standard deviation of the exposure size is 0.026 1/0. The portfolio expected 
loss is 0.72% and the unexpected loss, i.e. the standard deviation, is 0.87V. Default 
probabilities Pi,... ' p,, of all companies are obtained from Deutsche Bank's rating sys-
tem and vary between 0.02% and 27%. Default correlations are specified by a Bernoulli 
mixture model: for company i, the conditional defaultp 1  has the form 

- 	96 	
(29) 
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where the 96 systematic factors I' = ('I'i,.. . 'P) follow a multi-dimensional normal 
distribution and represent different countries and industries; see (9) and (13). 

The portfolio loss distribution L specified by this model does not have an analytic 
form. Monte Carlo simulation is therefore used for the caiculation and allocation of 
risk capital. For this dass of models, however, the Monte Carlo estimation of tail-fo-
cused risk measures like Value-at-Risk or Expected Shortfall is a demanding computa-
tional problem due to high statistical fluctuations. This stability problem is even more 
pronounced for Expected Shortfall contributions of individual transactions. Impor-
tance sampling is a variance reduction technique that has been successfully applied in 
credit portfolio models ofthis type. We refer to Glasserman & Li (2005), Kalkbrener et 
al. (2004) and Egloffet al. (2005) for details. 

For the test portfolio we have calcu!ated the risk measures VaR. o9998 (L), ES0 99 9 (L) 

and ES0 99(L). The VaR 09998 (L) is the risk measure used at Deutsche Bank for caiculat-
ing Economic Capital, i.e. the capital requirement for absorbing unexpected losses over 
a one-year period with a high degree of certainty. The confidence level of 99.98% is de-
rived from Deutsche Bank's target rating of AA+, which is associated with an annual 
default rate of 0.02%. The ES0999(L) has been chosen since it leads to a comparable 
amount of risk capital, while being based on a coherent risk measure. The ES 0 99(L) was 
calculated to study the impact of the confidence level c on the properties of the Ex-
pected ShortfaU measure. The application ofthese risk measures resuits in the following 
capital requirements (in percent ofportfolio exposure): 

VaR09998(L) = 10.50%, 	ES0 99 9 (L) = 9.437,. 	ES 0  99(L) = 5.68% 

In the next step the portfolio capital is distributed to the individual loans using different 
capital allocation algorithms. In credit portfolio models ofthe form (29) the application 
of the Euler principle to VaR u  leads to risk contributions for individual loans that are 
either 0 or the full exposure of the loan. This digital behaviour of the contribution (25) 
is due to the fact that {L = VaR ( (L)} is usually represented by a single combination of 
defaults and non-defaults of the m loans. We therefore do not distribute VaR099 98  (L) 

via the directional derivative (25) but fol!ow the industry standard and use volatility 
contributions (27) instead. The ES0999(L) and ES 099 (L) are allocated using Expected 
Shortfall contributions. 

Figure 2 displays the 50 loans with the highest capital charge under Expected Short-
fall allocation based on the 99.9%  quantile. The relation ofportfolio capital 

VaRo999 8 (L) > ESo9(L) > ES099(L) 

also holds for each of these loans. However, the order of the capital consumption 
changes and the absolute differences in capital are significant: the highest capital don-
sumption for Expected Shortfall is 93%  of the exposure compared to almost 200% for 
covariances. In particular, under the covariance allocation the capital charge exceeds 
the overall exposure (the maximum possible !oss) for almost all loans in this sub-sample. 
This demonstrates that the shortcomings of the covariance allocation, i.e. the fact that 
the underlying risk measure is not monotonie, are not purely theoretical but have impli-
cations for realistic credit portfolios. 
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Figure 2. Comparison between Expected Shortfall and covariance capital allocation for loans 
with highest capital charges. 

In contrast, Expected Shortfall contributions are usually higher than volatility con-
tributions für investment-grade loans, i.e. für loans with a rating of BBB or abüve; see 
Kalkbrener et al. (2004) für details. This result illustrates that unrealistically high capi-
tal charges für poorly rated loans are avoided under Expected Shortfall allocation by 
distributing a higher proportion üfthe portfolio capital to highly rated loans. 

Expected shürtfall cüntributiüns behave also very reasonably with respect to the sec-
ünd main risk driver in credit portfolios, namely concentration risk. This risk is caused 
by default correlations and name cüncentration. Expected Shortfall contributions mea-
sure the average contribution of individual loans to portfolio lüsses above a specified - 
quantile. Für a high (i these lüsses are mainly driven by default correlations and name 
cüncentratiün and Expected Shürtfall allücatiün therefüre is - almüst by definition - 
very sensitive tü cüncentratiün risk. lt is therefüre nüt surprising that Expected Shürtfall 
usually penalizes cüncentratiün risks müre strüngly than the cüvariance methüd. Für in-
stance, the 99.9%  Expected Shürtfall contributiün at R = 60% is three times higher than 
at R = 30% für a typical AA+ rated lüan in üur portfüliü whereas the vülatility cüntri-
butiün üfthis lüan nüt even düubles. 3  Overall, this case study strongly suppürts the view 
that Expected Shortfall cüntributiüns prüvide a reasünable methüdülügy für allücating 
risk capital für credit pürtfülios. 

4 Dynamic Credit Risk Models and Credit Derivatives 

4.1 Overview 

Credit derivatives. The vülume in trading credit derivatives at the exchanges and di- 
rectly between individual parties has increased enürmüusly since the first of these pro- 
ducts were intrüduced roughly fifteen years agü. The reasün für this success is tü a 
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large extent due to the fact that they allow to transfer credit risk to a larger community 
of investors. Traditionally the risk arising from a loan contract could not be trans-
ferred and remained in the books of the lending institution until maturity. With credit 
derivatives the risk profile of a given portfolio of credits can be shaped according to 
specified limits. Concentrations ofrisk caused by geographic or industry sector factors 
can be removed. Also by selling a whole credit portfolio via a collateralized debt obli-
gation (CDO) or a collateralized loan obligation (CLO), a financial institution can 
free part of its capital which can then be used for new business opportunities. Thus 
credit derivatives allow banks to use their capital more efficiently by acting more as a 
broker of risk than a taker of risk. Some important credit derivatives are introduced 
below; for further information we refer for instance to Schönbucher (2003) or Bluhm 
& Overbeck (2006). 

Dynamic credit risk models. To analyse credit derivatives, static models which consid-
er only a fixed future time horizon are no longer appropriate: the pay-off ofmost cred-
it derivatives depends on the timing of credit events such as default or downgrading of 
a company; furthermore markets for certain credit products have become so liquid 
that investors can trade credit risk in a dynamic fashion. For these reasons dynamic 
(continuous time) models based on (sophisticated) tools from stochastic caiculus are 
needed. 

Dynamic credit risk models can be classified into firrn-value models, as discussed 
briefly in Section 2.1, and reduced-forrn models: in this model dass the precise mechan-
ism leading to default is left unspecified; instead the default time ofa firm is modelled as 
a nonnegative random variable, whose distribution typically depends on economic cov -
ariables. The approach is similar to the modelling philosophy underlying the Bernoulli 
mixture models introduced in Section 2.2. Reduced-form models are popular in prac-
tice, since they lead to tractable formulas for prices of credit derivatives. In particular, it 
is often possible to apply the well-developed pricing machinery for default-free term 
structure models to the analysis ofdefaultable securities; see for instance Lando (1998) 
or Duffie & Singleton (1999). Duffie & Lando (2001) provide a link between firm-value 
models and reduced-form models assuming that an investor has incomplete inJrmation; 
see also Blanchet-Scalliet & Jeanblanc (2004) or Frey & Runggaldier (2006) for a discus-
sion from a more theoretical viewpoint. For textbook treatments of dynamic credit risk 
models we refer to Bielecki & Rutkowski (2002), Bluhm et al. (2002), Duffie & Singleton 
(2003), Lando (2004), Schönbucher (2003) and Chapter 9 of McNeil et al. (2005). Cur-
rently a lot of research is devoted to the development of dynamic credit portfolio mod-
els. For reasons of space we cannot discuss this exciting field. An overview is given in 
Section 9.6 of McNeil et al. (2005), but the best way to get an impression of the current 
developments is to visit the excellent web-site www. default-risk. coxn. 

Martingale modelling and credit spreads. The existence of a liquid market for credit 
products requires a specific modelling approach: pricing models for credit derivatives 
are set up under an equivalent martingale measure - an artificial probability measure 
turning discounted security prices into martingales (fair bets) - and model parameters 
are determined by equating model prices to prices actually observed on the market 
(model calibration). In this way it is ensured that the model does not permit any arbi- 
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trage (riskiess profit) opportunities. Absence of arbitrage also immediately leads to 
the existence of credit spreads: the risk that a lender might loose part or all of his 
money due to default of a counterparty during the lifetime of a credit contract has to 
be compensated by an interest rate which is higher than the risk-free rate (the interest 
rate earned by default-free bonds). The difference between the risk-free rate and the 
rate one has to pay for a bond or loan subject to default risk is termed spread. 

4.2 The Defaultable Lvy Libor Model 

Among the many possible ways to quantify the dynamic evolution of credit spreads we 
outline in the following an approach which allows to capture the joint dynamics ofrisk-
free interest rates and credit spreads; for details we refer to the original article Eberlein, 
Kluge & Schönbucher (2006). A number of instruments depend on both quantities so 
that modelling interest rates and credit spreads separately might lead to inconsistencies. 
Instead of describing the dynamics by a diffusion with continuous trajectories we will 
consider more powerful driving processes, namely time-inhomogeneous Lvy processes, 
also called processes with independent increments and absolutely continuous character-
istics (PIIAC) (see Jacod & Shiryaev (2003)). This dass of processes is rather flexible 
and in the context ofcredit risk even more appropriate than in equity models since cred-
it risk-related information often arrives in such a way that it causes jumps in the under-
lying quantities: take for example the adjustment of the rating of a firm by one of the 
leading agencies. Models driven by Lvy processes capture such an abrupt movement 
more realistically than Brownian motion driven models which have continuous paths. 
In implementations typically generalized hyperbolic Lvy processes (see Eberlein 
(2001)) or any of its subclasses like hyperbolic or normal inverse Gaussian processes are 
used. 

Let us consider a fixed time horizon T*  and a discrete tenor structure T0  < T 
< T,, = T. Tk denotes the time points where certain periodic payments have to 

be made. As an example take quarterly or semiannual interest payments for a loan or a 
coupon-bearing bond over a period of 10 years. As underlying interest rate we consider 
the 5 -tbni'ard Lihor rates L(t, T). The acronym Libor stands for London Interbank Of-
fered Rate. L(t, Tk)  is the annualized interest rate which applies for a period of length 

= Tk+1 - Tk starting at time point Tk as oftime t. hk is typically 3 or 6 months. For-
mally L(r, Tk)  is defined by 

L(t. Tk) 
=‚ (B(t :  Tk) - 1 ) 
	

(30) 
hk '\ B(t.Tk ±l)  

where B(t, Tk)  denotes the price at time t ofa zero coupon bond with maturity Tk.  Zero 
coupon bond prices are also called discount factors since they represent the amount 
which due to interest earned increases to the face value 1 until maturity Te, thus 
B(T, Tk) = 1. Actually the Libor rate is not a risk-free rate since by definition it is the 
rate at which large internationally operating banks lend money to other large interna-
tionaily operating banks. There is a very small default risk involved and consequently 
the Libor rate is slightly above the treasury rate. Since it is readily available it is conveni- 
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ent to take the Libor rate as the base rate. The corresponding rate for a contract which 
has a nonnegligible probability to default is the defaultableforward Libor rate L(t, Tk). 
Both rates are related by the equation 

L(t. Tk) = L(t, Tk) + S(t, Tk) 	 (31) 

where S(t, Tk)  is the (positive) spread. Since S(t. Tk)  turns out not to be the quantity 
which will show up in valuation formulae for credit derivatives we will model instead 
theforicarddefault intensities H(t, Tä)  given by 

H(t.Tk)= 1+ÖkL(tjk) 	
(32) 

The term 6kL(t, Tk) is small compared to 1, therefore, numerically H(t, Tk)  and S(t. Tk) 
are quite dose. 

We start by specifying the dynamics ofthe most distant Libor rate by setting 

L(t, T11 ) = L(0, Tfl ) exp (itbL( s,  T, 1 _ 1 ) ds + f (s. Tt) dLT). 	(33) 

The fact that L(., T_ 1 ) is modeled as an exponential will guarantee its positivity. 
.X(., T, 7 _1) is a deterministic volatility structure and LT* = (LT*) is a time-inhomoge-
neous Lvy process which without loss of generality has the simple canonical represen-
tation 

L[* 
= 10, VZ, dWT* +ftfx( - VT*)(dsdx) 	 (34) 

The first term is a stochastic integral with respect to a standard Brownian motion WT* 

and represents the continuous Gaussian part, whereas the second integral, which is an 
integral with respect to the compensated random measure ofjumps of LT*,  is a purely 
discontinuous process. The drift term b'- (., T, r_t) will be chosen in such a way that 
L(., T, 1 ) becomes a martingale under the terminalforwardmeasure IPT* 

. 

Via a backward induction for each tenor time point Tä,forivard  measures iPTk  are 
derived. Although one could define each forward martingale measure IPTk  by giving ex-
plicitly its density relative to the spot martingale measure IP - this is the usual martin-
gale measure known from stock price models - the latter is not used in the context of Li-
bor models. One starts with a probability measure IPT* which is interpreted as the term-
mal forward measure and proceeds backwards in time by introducing successively the 
forward measures IPTk  via Radon—Nikodym derivatives 

dWT k  - 1 + ökL(Tk r  Tk) 
dlPTk+t - 1 + 6kL(0. Tk) 

Then, for each tenor time point Tk,  under IPTF+l  the Libor rate L(t, Tk)  can be given in 
the following uniform form 

L(t, Tk) = L(0, Tk) exp (f bL(s, Tk) ds + f (s, Tk) dLTk +t) 	 (35) 

where also the driving processes LTk+1 = (LTk+1 ) have to be derived from LT  during 
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the backward induction. To implement this model one uses only mildly time-inhomoge-
neous Lvy processes, namely piecewise (time-homogeneous) Lvy processes. Typically 
three Lvy parameter sets - one for short, one für intermediate, and one for long matu-
rities - are sufficient to calibrate the model to a volatility surface given by prices ofinter-
est rate derivatives such as caps, floors and swaptions. For some calibration resuits see 
Eberlein & Koval (2006), where the Lvy Libor model has been extended to a multicur-
rency setting. 

The dynamics ofthe forward default intensities H(., Tk)  cannot be specified directly 
since it depends on the specification of the random time point at which a defaultable 
loan or bond actually defaults. There is a standard way to construct a random time für 
the default event. Let F = (F 1 ) be a hazard process, that is an adapted, right-continu-
ous, increasing process starting at 0 with ihn F = an. Let ij be a uniformly distributed 

random variab!e on the interval [0, 1], inendent of the process (Fi) >3 , possib!y de-
fined on an extension ofthe underlying probability space. Then 

=inf{t>0e 	<} 	 (36) 

defines a stopping time with respect to the 'right' filtration which can be used to indicate 
defau!t. By choosing the hazard process F appropriate!y - only its values at the tenor 
time points Tk matter - one can now model the forward default intensities H(t, Tk) in 
such a way that the dynamics is described in the same simple form (35) as given für the 
Libor rates, namely 

H(t, Tk) = H(0, Tk)  exp(f t  bH(s, Tk) ds + 1
0, 	

Tk)
0 	 (37) 

+1  IR 
(s,Tk)X(_vTk+l)(ds,dx) 

0  

Again this is done by a backward induction along the tenor time points and as in (35) 
the specific form as an exponential guarantees that the forward default intensities and 
thus the spreads S(t, Tk)  are positive. 

Based on this joint model for interest and default rates we can now price defaultable 
instruments and credit derivatives. Let us start with a defaultable coupon bond with n 
coupons of a fixed amount c that are promised to be paid at the dates T1 ,..., T. In case 
default happens during the life time of the bond usual!y not everything is lost. There is a 
positive recovery. To incorporate this fact in the model, suitable recovery rules have to 
be fixed. The most appropriate scheme is the recovery of pur rule. The assumption is 
then that ifa coupon bond defau!ts in the time interval (Tk. Tk+I],  the recovery is given 
by a recovery rate r e [0, 1) times the sum of the notional amount, which we set equa! 
to 1, and the interest accrued over the period (Tk, Tk+1].  The resu!ting amount is paid at 
time Tk.  The promised'interest payments für subsequent periods are lost. 

Theorem 4.1 (Pricing of defau!tab!e coupon bonds). Under the recoT'ery ofpar rule 
the arhitrage-freeprice at time T0 = 0 ofa dejaultable hond with n coupons of arnount c is 

B(0,c,n) =(0. T) +(0Tk +1 ) (c+(i +c)bkE T [H(Tk,Tk)[), 	(38) 
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where (0, Tk)  are the pre-default prices of defaultahle zero-coupon bonds with maturities 
Tk, which are known at tirne 0. 

Note that the only random variables in this pricing formula are the forward default in-
tensities. This is the reason why we aimed at describing the dynamics ofH(, Tk)  in a re-
latively simple form. Theexpectations are taken with respect to the (restricted) defaulta-
ble forward measures IPTk+l  for the dates Tk.  These are the appropriate martingale 
measures in the defaultable world. Their Radon-Nikodym densities with respect to the 
(default-free) forward measures IPTk  are given by 

dIPTk - B(0, Tk)
T5 

- B(0, Tk) 
e 	

- 	
(39 

dJP. - (01  Tk) 	(0, Tk) 	1 + &H(T, T) °  

Recail that B(0, Tk)  denotes the time-0 price of a default-free zero-coupon bond with 
maturity Tk.  A formula similar to (38) can be obtained to price a defaultab/ejloating 
coupon bond that pays an interest rate composed of the default-free Libor rate plus a 
constant spread x. Let us mention here that the change of measure technique is a key 
tool in interest rate and credit theory to obtain valuation formulae which are as simple 
as possible. 

The most popular and heavily traded credit derivatives are credit default swaps. 
They can be used to insure defaultable financial instruments against default. In a credit 
default swap the protection buyer A pays periodically a fixed fee to the protection seher 
B until a prespecified credit event occurs or the final time point of the contract is 
reached. The credit event can be the default of a reference bond issued by a party C. 
The protection seher in turn will make a payment that covers the losses of A in case the 
credit event happens. Of course the credit event as weil as the default payment have to 
be clearly specified. Let us consider a standard default swap with the maturity T, where 
the credit event is defined to be the default of a certain fixed-coupon bond. According 
to the recovery scheme expiained above, the default payment A will receive at time Tk+l 
if default happend in the period (Tk. Tk+I]  is 1 a- (l + c). The periodic fee s, the so-
called default swap rate, is now determined in such a way that the initial value of the 
contract is zero. The time-0 value of the periodic fee payments is s( 1  (0. T_)) 
since each fee payment of size s which has to be made at time Tk_I has to be discounted 
by the corresponding discount factor (0, Tk_1). Following the standard pricing princi-
ple for a contingent claim, some nontrivial analysis shows that the initial value of the 
payment A will receive in case ofdefault is 

- (l + c))B(0, Tk)ök_1ET [H(Tkl, Tk_1)J. 	 (40) 

Equating these two sums one gets the default swap rate 

=
+c) 	

((o,Tk)bkIE 	[H(Tk_1Tkl)]). 	 (41)
Tk  

The formula shows that again expectations of forward default intensities have to be 
evaluated under the corresponding defaultable forward measures. Another important 
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dass ofcredit derivatives which can be priced in this model framework are credit dejault 
swaptions. The holder of such an Option has the right to enter a credit default swap at 
some prespecified time and swap rate. Credit default swaptions are typically extension 
options which are often imbedded in a credit default swap. 

There is a very liquid market for credit default swaps. Therefore the current swap 
rates usually do not have to be determined by formula (41). Instead, credit default 
swaps are used as calibration instruments for the term structure of forward default in-
tensities. In other words, given the currently quoted swap rates, (41) is used to extract 
the model parameters and then the so calibrated model can be used to price less liquid 
instruments for example in the OTC-market. Other derivatives which can be priced in 
this modelling framework are total rate of return sivaps, asset swaps, options on dejaulta-
ble honds, and credit spread options. 

Com ments 

1 The precise definition of this allocation scherne, called volatility allocation, is given in Section 
3.6. 

2 Recall Euler's well-known rule that states that iff : S 	IR is positively homogeneous and dif- 
ferentiable at x cS (:: IR".wehavef(x) = 	x1-(x). 

3 The R-parameter is the coupling of the loan to the systematic factors and therefore quantifies 
the correlation of the loan with the rest of the portfolio. 

4 PT is the martingale measure corresponding to the nurneraire B(r. T),i.e. security prices ex-
pressed in units ofB(i. T) are P-martinga1es. 
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; Funktionalanalytische Methoden 
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Neuere Entwicklungen in der Funktionalanalysis bilden die Grundlage eines umfassen-
den Studiums abstrakter (nichtlinearer) Evolutionsgleichungen. Dabei ist eine Theorie 
für unendlich-dimensionale dynamische Systeme entstanden, die hinreichend allgemein 
ist, um wichtige Klassen freier Randwertaufgaben untersuchen zu können. Anhand 
zweier konkreter Beispiele werden einige dieser Entwicklungen vorgestellt und die ent-
sprechenden analytischen Werkzeuge erläutert. 
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1 Einführung 

Viele natur- und ingenieurwissenschaftliche Prozesse verändern die räumlichen Gebiete 
in denen diese Prozesse stattfinden. Die mathematische Modellierung dieses ubiquitären 
Phänomens erfolgt in der Regel durch sogenannte freie Randwertaufgaben, d. h. durch 
Systeme partieller Differentialgleichungen, in welchen neben den eigentlichen Zustands-
größen auch der freie Rand des sich verändernden Gebietes bestimmt werden muss. Da-
bei weisen die meisten relevanten freien Randwertaufgaben eine starke Kopplung zwi-
schen den Zustandsgrößen und dem freien Rand auf. Außerdem unterliegen die Lösun-
gen freier Randwertaufgaben offensichtlich keinem Superpositionsprinzip, und stellen 
somit stets nichtlineare, wie sich in den Anwendungen zeigt, quasilineare bzw. voll-
nichtlineare Evolutionsgleichungen dar. Einige Merkmale und Eigenschaften dieser 
Systeme werden im Verlauf der vorliegenden Ausführungen erörtert. 

Wichtige Beiträge der Funktionalanalysis haben in den vergangenen drei Jahrzehn-
ten wesentlich zum Verständnis unendlich-dimensionaler dynamischer Systeme bei-
getragen. Dabei ist eine allgemeine Theorie entstanden, welche die analytische Schärfe 
besitzt, die die Behandlung freier Randwertaufgaben im Rahmen klassischer Lösungen 
erfordert. Zudem besticht dieser Zugang durch eine große Flexibilität, die es erlaubt, 
verschiedene Klassen freier Randwertaufgaben zu untersuchen. Zu erwähnen sind hier 
Phasenübergangsmodelle wie das Stefanproblem, das Mullins-Sekerka-System oder der 
Oberflächendiffusionsfluss, hydrodynamische Modelle wie die Navier-Stokessche Glei-
chung, das klassische Wasserwellenproblem, die Hele-Shaw-Zelle oder Flüsse durch po-
röse Medien, und in der Geometrie sogenannte Krümmungsflüsse. 

Ziel dieses Beitrages ist es, an Hand zweier Beispiele über neuere Entwicklungen auf 
diesem Gebiet zu berichten. Die Auswahl der diskutierten Beispiele wurde dabei vom 
Gedanken geleitet, die dahinterstehenden allgemeinen Prinzipien aufzudecken. Das ers-
ten Beispiel befasst sich mit der Modellierung von Tumorwachstum. Es wird dargelegt, 
dass diese Modelle im Rahmen der sogenannten quasilinearen parabolischen Evoluti-
onsgleichungen adäquat untersucht werden können. Das Charakteristikum dieser Klas-
se von Evolutionsgleichungen besteht darin, dass in natürlicher Weise ein führender li-
nearer Anteil ausgezeichent ist, dem die Nichtlinearitäten in einem zu präzisierenden 
Sinne untergeordnet sind. Die parabolische Struktur spiegelt sich in der Tatsache wider, 
dass der führende lineare Anteil im Rahmen der analytischen Halbgruppen auf geeig-
neten Banachräumen behandelt werden kann.' Dieser Zugang ist äußerst flexibel, da 
die Voraussetzungen an die Nichtlinearitäten nahezu optimal sind und keine Vorausset-
zungen an die Geometrie des zugrundeliegenden Banachraumes zu stellen sind (vgl. 
Theorem 3.1). 

In einem gewissen Gegensatz hierzu stehen die sogenannten voll-nichtlinearen para-
bolischen Evolutionsgleichungen, bei welchen kein führender linearer Term mehr aus-
gezeichnent ist, dem die Nichtlinearitäten untergeordnet sind. Unter genügenden Regu-
laritätsvoraussetzungen ist es naheliegend, die Gleichungen zu linearisieren, und in ei-
nem ersten Schritt die entsprechenden linearen Evolutionsgleichungen zu untersuchen. 
Hierbei erzwingt die voll-nichtlineare Struktur der ursprünglichen Gleichungen jedoch, 
dass die entsprechenden linearen Systeme lsomorphismen zwischen geeigneten Funk-
tionenräumen induzieren. Die scheinbar harmlose Forderung, dass Lösungsoperatoren 
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linearer Evolutionsgleichungen Isomorphismen zwischen Banachraum-wertigen Funk - 
tionenräumen sind, hat erstaunlich tiefliegende funktionalanalytische Konsequenzen, 
u. a. auch für die Geometrie der zugrundeliegenden Banachräume, vgl. Abschnitt 5. 
Diese reichhaltige Struktur wurde unter verschiedenen Gesichtspunkten und mit unter -
schiedlichen Methoden untersucht, und ist heutzutage als Theorie der maximalen Regu-
larität bekannt. Das zweite Beispiel dieses Beitrages beschreibt den Fluss einer zähen 
Flüssigkeit unter dem Einfluss von Oberflächenspannungseffekten. Es zeigt sich, dass 
dieses Problem keine quasilineare, sondern eine voll-nichtlineare Evolutionsgleichung 
ist, die jedoch mit Hilfe der sogenannten stetigen maximalen Regularität erfolgreich un-
tersucht werden kann. 

Beiden Beispielen gemeinsam ist die Tatsache, dass, obwohl die Zustandsgrößen 
durch Differentialgleichungen beschrieben werden, der freie Rand nicht durch Differen-
tialoperatoren, sondern vielmehr durch sogenannte Pseudodifferentialoperatoren mit 
nicht glatten Symbolen an die Zustandsgrößen gekoppelt ist. Pseudodifferentialopera-
toren sind auf der Fouriertransformation basierende Verallgemeinerungen linearer Dif-
ferentialoperatoren, deren Theorie in den letzten 50 Jahren entwickelt wurde. Neuere 
Untersuchungen zeigen, dass die Pseudodifferentialoperatoren der hier diskutierten 
freien Randwertaufgaben wichtige spektrale Eigenschaften besitzen, die es erlauben, für 
diese Operatoren einen sehr weitreichenden Funtionalkalkül zu entwickeln, vgl. [25]. 

Aufgrund der komplexen Struktur freier Randwertaufgaben kann eine erfolgreiche 
Untersuchung dieser Probleme nur dann gelingen, wenn Methoden und Konzepte ver-
schiedener mathematischer Disziplinen im Zusammenspiel verwendet werden. Im Zen-
trum des zweiten und des vierten Abschnittes steht die Modellierung der betrachteten 
Probleme. Die Lektüre dieser Ausführungen bedarf keiner besonderer Detailkenntnis-
se. Im dritten und fünften Abschnitt werden einige analytische Aspekte freier Rand-
wertaufgaben beleuchtet. Um hier ein gewisses Maß an Präzision zu erlangen, habe ich 
mich nicht gescheut, an einigen Stellen etwas weiter auszuholen. Mit dem letzten Ab-
schnitt wollte ich an der Geometrie interessierte Leser ansprechen: Dort werden all-
gemeine Transformationsgruppen verwendet, um Regularitätseigenschaften abstrakter 
nichtlinearer Gleichungen zu gewinnen. 

2 Tumorwachstumsmodelte 

Bei der Modellierung gewisser prävaskularer Karzinome werden die Tumorzellen als 
Partikel einer inkompressiblen Flüssigkeit, der Tumor selbst als ein sich bewegendes 
Gebiet betrachtet, dessen Geschwindigkeitsfeld proportional zum Druckgradienten ist. 
Die Zeliproliferation erfolgt durch den metabolen Konsum eines durch den Tumor dif-
fundierenden Nährstoffes, z.B. Sauerstoff oder Glukose. In den betrachteten Modellen 
wird die Proliferationsrate durch den Quellterm in der entsprechenden Kontinuitäts-
gleichung beschrieben. Schließlich wirken Oberflächenspannungskräfte dem inneren 
Druck entgegen. 
Im Folgenden bezeichne (t) c IR" den Tumor zur Zeit t und V sein Geschwindigkeits- 
feld. Die Nährstoffkonzentration zur Zeit t und im Punkt x e Q(t) wird mit a(t, x) und 
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die Proliferationsrate mit f(a) bezeichnet. Bei konstanter Dichte folgt dann aus der 
Massenbilanz die sogennante Kontinuitätsgleichung 

divt=f(a) in S2(t), 1>0. 	 (2.1) 

wobei div t für die Divergenz oder Quellenstärke des Vektorfeldes t steht. Bezeichnen 
wir den Druck in Q(t) mit p(t, x) und dessen Gradienten mit Vp(t, x), so besagt das 
Darcysche Gesetz, dass 

=—Vp in Q(t), t>0. 	 (2.2) 

und wir erhalten 

pf(a) in Q(t), t>0. 	 (2.3) 

wobei A = div V für den Laplaceschen Operator steht. Jedem der in (2.1)—(2.3) auftre-
tenden Differentialoperatoren liegt die Euklidsche Metrik in 1R'' zugrunde. Die Diffusi-
on des Nährstoffes wird durch folgende partielle Differentialgleichung 2  beschrieben 

3o - Z\a + g(o) = 0 in 2(t). t > 0, 	 (2.4) 

wobei g(o-) > 0 für die Konsumationsrate steht. Es bezeichne ferner F(t) die Tumor-
oberfläche zur Zeit t > 0, d. h. F(t) ist die Randmannigfaltigkeit des Gebietes Q(t). Ne-
ben den Größen p und or ist die Familie {F(t); t > 01 als weitere Unbekannte des Sys-
tems zu betrachten. Alle zu bestimmenden Größen sind durch die Randbedingungen 

V = — p , 	p = -yH auf F(t), t> 0 	 (2.5) 

gekoppelt. Hierbei steht ii für die äußere Einheitsnormale an F(t) und V = V . ii für die 
Normalgeschwindigkeit der Familie {F(t); t> 01. Die Normalenableitung an F(t) 
bzgl. ii bezeichnen wir mit 3.  Die erste Gleichung in (2.5) ist somit eine Konsequenz 
aus dem Darcyschen Gesetz. Die zweite Gleichung in (2.5) besagt, dass die Oberflächen-
spannungskräfte proportional zum Krümmungsvektor der Tumoroberfläche wirken. 
Dabei steht H für die mittlere Krümmung 3  von F(t) und y für einen positiven Parame-
ter, den sogenannten Oberflächenspannungskoeffizienten. Die Orientierung von H ist 
so gewählt, dass die mittlere Krümmung konvexer Gebiete nichtnegativ ist. Die als be-
kannt betrachtete Nährstoffkonzentration außerhalb des Tumors sei mit 0 bezeichnet. 
Dann ergibt sich die weitere Randbedingung 

= /' auf F(t), t > 0. 	 (2.6) 

Schließlich wird angenommen, dass das System am Anfang der Evolution bekannt sei, 
d. h. es gelte 

F(0) = Fo, a(0,.) = ao, 	 (2.7) 

wobei F0 eine genügend reguläre Hyperfläche ist, die den Rand des Tumors 2o  zur Zeit 
= 0 darstellt, und o-o für die Anfangsverteilung des Nährstoffs steht. Damit Nährstoff 

in den Tumor diffundieren kann, ist es sinnvoll die Beziehung og <5 zu fordern. An 
den Druck p ist keine Anfangsbedingung zu stellen; diese ist durch (F 0 , ao) eindeutig 
festgelegt. In der Tat: Es bezeichne H0 die mittlere Krümmung von F0 und es sei 
fo :=f(ao ). Dann ist der Druckpo zur Zeit t = 0 die eindeutig bestimmte Lösung des el-
liptischen Randwertproblems 
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Po =fo  in 90. 	Po = Ho auf F 0 . 

Zusammenfassend erhalten wir folgendes System für das Tripel (p, a, 

— AP = 	f(a) in (t), 	t > 0, 
= 	Au— g(o) in f(t), 	t >0, 

V = 	—Dp auf F(t). 	t>0. 
p = 	'H auf F(t), 	t > 0, 	 (2.8) 
o = 	0/) auf F(t). 	t>0, 

a(0,) =Oro in 
f(0) = 	F0. 

Das obige Modell geht auf Greenspan [36, 37] und Byrne und Chaplain [10, 11] zu-
rück. Für die Proliferations- bzw. Konsumationsratef bzw. g werden in der Literatur 
verschiedene Ansätze vorgeschlagen. Die meisten Arbeiten betrachten lineare Raten der 
Form 

f(a) := p - )' 	g(a) = \a. cr ü IR, 	 (2.9) 

mit positiven Konstanten M, ‚ .X. Die Bedeutung der Konstanten ‚ii und ‚\ ist offensicht-
lich. Auch die Rolle von & lässt sich leicht erklären: Diese Konstante stellt einen Schwel-
lenenwert für die Zellproliferation dar. Gilt nämlich o <u, so wirktf als Senke und das 
Tumorvolumen wird in diesen Gebieten reduziert. Dies bedeutet, dass in diesem Fall zu 
wenig Nährstoff vorhanden ist, damit der Tumor wachsen kann. Im Fall u> & wirktf 
als Quelle und das Tumorvolumen vergrößert sich in diesen Gebieten. Neben linearen 
Proliferationsraten wurden auch logistische Funktionen [11, 12] oder Polynome bzw. 
Potenzfunktionen [37, 57, 58] untersucht. Modifizierte Modelle und experimentelle Un-
tersuchungen werden in den Arbeiten [47, 44, 49, 52, 41] dokumentiert. 

Die ersten analytischen Resultate [36. 37, 10, 11] befassen sich mit rotationssym-
metrischen Lösungen für ein durch räumliche Mittelung vereinfachtes System, in wel-
chem die Randbedingungen für den Druck p durch eine Integrodifferentialgleichung 
für den Radius des Tumors ersetzt werden. Die ersten Untersuchungen für das volle 
System (2.8) gehen auf Bazaliy, Cui und Friedman zurück [31, 17, 18,9,8]. 

Theorem 2.1 Es gelte (2.9). Ferner sei oL' konstant und es gelte & < u. Dann be-
sitzt (2.8) eine eindeutig bestimmte rotationssymmetrische Gleichgewichtslage. Diese 
Lösung ist asymptotisch stabil, fiuis i genügend klein ist. 

Die Nährstoffkonzentration außerhalb des Tumors wird durch ü beschrieben. Es ist 
deshalb nur dann Tumorwachstum zu erwarten, wenn wie in Theorem 2.1 geschehen 

vorausgesetzt wird, dass dieser Wert größer ist als der Schwellenwert & für die Prolife-
ration. Die Tatsache, dass im Fall &> or kein Tumorwachstum möglich ist, kann wie 
folgt eingesehen werden. Es bezeichne Vol(t) := dx das Gesamtvolumen des Tu-
mors zur Zeit t. Für klassische Lösungen des Systems (2.8) ist diese Funktion glatt, und 
ihre erste Ableitung ist durch 

dVol(t) - f 
dt .I

Vda(t) 
F(r) 
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gegeben. Nun gilt für die Normalgeschwindigkeit V = 	= —Vp . ii. Unter Beach- 
tung der ersten Gleichung in (2.8) mit f(a) = 	- &) folgt deshalb aus dem 
Gaußschen Integralsatz: 

fVda(t)=— f (Vp.v)da(t)=— 
 f 

divVpdx= p f(a_&)dx. 

F(t) 	 F(r) 	 H(t) 

Weil die Konsumationsrate g(a) positiv ist, nimmt die Nährstoffkonzentration a im 
Tumorinneren ab, d. h. es gilt 4  

a(t,x) < max 5(y)  für alle x e Q(t), t>0. 	 (2.10) 
yer(t) 

In Theorem 2.1 wird die Situation 	betrachtet, d. h. die Nährstoffkonzentration 
außerhalb des Tumors wird als konstant angesehen. Wir erhalten somit aus (2.10) die 
Beziehung 

dVol(t) < /tJ ( 	) dx = 	) Vol(t). 
dt 	0(t) 

Es folgt d ln(Vol(t))/dt < t(J - )' d. h. im Fall or < & fällt das Volumen von Q(t) 
mindestens exponentiell mit der Rate (6 - 

In Theo rem 2.1 werden lediglich kleine Störungen von Sphären als Anfangsgeo-
metrien für F o  zugelassen. Allgemeinere Anfangsbedingungen werden in [9] untersucht. 
Es wird nachgewiesen, dass (2.8) eindeutig klassisch lösbar ist, falls die Anfangsdaten 
genügend regulär sind. Trotz der hohen Regularität der Anfangsdaten konnte in [9] ein 
Regularitätsverlust der Lösungen nicht ausgeschlossen werden. Die Wohlgestelltheit 
des Systems (2.8) wurde abschließend durch folgendes Resultat geklärt: 

Theorem 2.2 ([21]) Es seienf, g : JR - JR glatt und 90  bezeichne ein beschränktes 
Gebiet in IR', dessen Rand F0 eine C4-Hyperfläche sei. Ferner sei ao E C2 (lo ) und 

IR - JR bezeichne eine beschränkte und glatte Funktion. Dann besitzt das System 
(2.8) unter der minimalen Verträglichkeitsbedingung aoFo = tFg eine eindeutig be-
stimmte klassische Lösung (p, o, F) auf dem (möglicherweise) 5  endlichen Zeitintervall 
(0, T). Außerdem ist diese Lösung auf der Zeit-Raum Mannigfaltigkeit LJ Ie (ofl({t} X 

Q(t)) glatt. 

Theorem 2.2 ist die Basis, um qualitative Eigenschaften der Lösungen des Systems 
(2.8), wie globale Existenz, Blow-up-Phänomene, Stabilitäts- oder Bifurkationseigen-
schaften von Gleichgewichtslagen zu studieren. 

Die Modellierung gewisser in vitro Tumorzellkulturen basiert auf der folgenden, 
geometrisch etwas einfacheren Konfiguration, vgl. [41, 44, 471. Dazu bezeichne 
Fo  := 1R' x {0} eine undurchlässige Schicht (z.B. den Boden einer Petri-Schale). Die 
Tumorzellkultur befindet sich dann im Gebiet 

Q(t) := 	(t) := {(x,y) e 	x JR; 0< y < p(t.x)}, 

mit einer unbekannten positiven Funktion p(t, x). Die Nährstoffzufuhr erfolgt über die 
freie Randkomponente 
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F(t) := f 0 (t) := {(x 1  y) e 	x IR i y = p(t. x)}. 

Unter den folgenden vereinfachenden Voraussetzungen gelingt eine vollständige Ana-
lyse der Stabilitäts- und Bifurkationseigenschaften einer Klasse von Gleich-
gewichtslagen des Systems. 

• Die Zeitskala des Tumorwachtums ist in der Regel deutlich größer als die Zeitskala 
der Diffusion des Nährstoffes. Dies rechtfertigt das Ersetzen der Diffusionsglei-
chung (2.4) durch die quasi-stationäre Approximation 

La = g(a) 	für (x,y) E 	(t), t > 0. 	 (2.11) 

• Der Einfachheit halber soll ein räumlich zweidimensionales Modell diskutiert wer-
den, welches außerdem in horizontaler Richtung als periodisch vorausgesetzt sei, 
d.h. 

o(t.x.)). p(t.x.y) und p(t,x) sind 27r-periodisch in x. 	 (2.12) 

Im Folgenden identifizieren wir 2ir-periodische Funktionen mit Funktionen über 
dem Kreis § = fl/7L 

Es gelte (2.9) und 	sei konstant. 

Die Normalgeschwindigkeit der obigen Geometrie ist durch 

V = 	+ 

gegeben. Damit wird die dritte Gleichung in (2.8) zu 0,1) = —Vp . P mit  
Insgesamt erhalten wir folgendes System: 

L\u = in Q(t), 	t>0, 
Ap = 	—‚a( 	- (T) in Q(t). 	r > 0, 
0tP = 	-(\p) auf F(t) t> 0. 
a = iT auf F9 (t). 	t >0, 	 (2.13) 
p = auf F(t). 	t> 0. 

= 	0. dp = 0 auf F0 , t> 0, 
= 	P0 in t=0. 

Um die folgenden Resultate präzise formulieren zu können, ist es hilfreich einige Be-
zeichnungsweisen einzuführen. Es bezeichne C+([0,  T) x S') den Kegel der positiven 
Funktionen in C({0. T) x S'). Für jedesp e C1([0 1  T) x §1) setzen wir 

D.r := {(t,x,y); t E 0. T) .x eS'. 0 < Y < p(t,x)}. 

Diese Menge stellt den natürlichen Definitionsbereich des Druckes p und der Nähr-
stoffkonzentration u dar. Es sei K eine kompakte glatte Riemannsche Mannigfaltigkeit, 
k e N und ei e (0, 1). Dann bezeichnen wir im Folgenden mit C(K) den üblichen 
Banachraum aller CkF unktionen , deren Ableitungen der Ordnung k gleichmäßig 
c-Hö1der-stetig 6  sind. 
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Definition Ein Tripel (o- ,p, p) heißt Lösung des Systems (2.13), falls (o,p) E 
C(D) XC(D P T) und a(t,.) E C4 ((t)), p(t..) e C2 °((t)) für jedes t E (0, T) 
und 

p E C([0, T), C°(S')) n C'((O, T). C(S 1 )). 

und falls dieses Tripel das System (2.13) punktweise in D1,.T erfüllt. Eine Lösung 
(o- ,p, p) heißtflach, falls jede der Funktionen a,p und p in der x-Variablen konstant ist. 

Theorem 2.3 ([15, 16]) Es seien i, &‚ or und 'y positive Konstanten. Dann gelten die 
folgenden Aussagen: 

(a) (Wohlgestelltheit) Für jedes p0 e C»3 (S 1 ) mit ß> cv gibt es ein T > 0, so dass 
(2.13) eine Lösung (a,p, p) auf [0, T) besitzt. Diese Lösung ist in der Klasse 
C(DPT ) x C(DT) x C([0, T), C 3 (S')) eindeutig bestimmt. 

Im Folgenden gelte < if . 

(b) (Flache Lösungen) (i) Es gibt eine eindeutig bestimmte Konstante p e (0, ) 
und ein eindeutig bestimmtes Paar (a ' p) e C([0,p]) x C0c([0,p*]),  so dass 

p) eine flache Gleichgewichtslage des Systems (2.13) ist. 

(ii) Für p0 E (0, oc) bezeichne (a,p, p) die Lösung zum Anfangswert po  Dann ist 
(a,p. p) flach, existiert global, d. h. T = oc, und es gibt positive Konstanten 
w, K, T0 > 0, so dass 

p(t)p < Kexp(—wt), 	t> T0 . 

(c) (Asymptotische Stabilität) Es gibt ein . > 0, so dass für y> 'y die Gleichge-
wichtslage (cv, ‚p,, p4 asymptotisch stabil ist, d. h. es gibt positive Konstanten u., C, K, so 
dass 

- 	+ p(t,.) —p*Mc2+, 	 (2.14) 
+ jp(t,) - P')4 	<Kexp (—wt), t > 0, 

falls l Ipo 	p*11c4+ < E. 

(d) (Instabilität) Gilt 0 < 'y < 	so ist die Gleichgewichtslage (cr,.p, p4 instabil. 

(e) (Bifurkation) Es gibt eine Nullfolge (yk)k0N,  so dass jedes 'y.  ein Bifurkationspunkt 
nicht-flacher Lösungen von der flachen Gleichgewichtslage (o,,p,, p4 ist, d. h. für jedes 
k E N gibt es in der Nähe von ('yk, a,p,, p4 einen Zii'eig nicht-flacher Gleichgewichts-
lösungen. In den Punkten {y> 0; 'y f 'y, k E N}findet keine Bifurkation statt. 

Bemerkung Die zweite Aussage in (b) besagt, dass die flachen Gleichgewichtsiagen 
in der Klasse der flachen Lösungen für jeden Wert 'y> 0 global stabil sind. Im Fall 

E (0, 7,) folgt hingegen aus (d), dass die diese Gleichgewichtslagen gegenüber nicht-
flachen Störungen aus C4 (S 1 ) instabil sind. Dies verdeutlicht, dass der Klasse der 
flachen Lösungen (mit Ausnahme der flachen Equilibrien) eine nachgeordnete Stet-
lung zukommt, da wesentliche dynamische Eigenschaften des Systems in dieser Klasse 
nicht beobachtet werden können. 
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3 Quasilineare Evolutionsgleichungen 

Die Struktur der inhärenten Nichtlinearität freier Randwertaufgaben tritt deutlich zu 
Tage, wenn man diese Systeme auf ein festes Referenzgebiet transformiert. Dazu kann 
man etwa die sogenannte Hanzawa-Transformation zu verwenden, vgl. [39]. 

Es sei E eine kompakte geschlossene glatte orientierbare Hyperfläche des 1R' mit 
dem äußeren Normalenfeld . Für hinreichend kleines a > 0 ist die Abbildung 

X 	x (a,ci) 	 (p,r) 	p + 	 (3.1) 

ein glatter Diffeomorphismus auf das Bild 7?. := im(X), d.h. X E Diff( x 
(—a, a), 7?). Offensichtlich besteht 7?. genau aus den Punkten in IRtm, deren Abstand zu 
E den Wert a nicht überschreitet. Deshalb lässt sich die Inverse X' in die metrische 
ProjektionEE und den orientierten Abstand A zerlegen, d. h. X = (E. A) und 

	

e C(7?..E) 	und 	A E C(7?..(—a.a)). 	 (3.2) 

Es sei nun pEE C2 () mit (p 	<a und 

pp+p(p)(p). 

Dann ist F. := im(9) eine C 2—Hyperfläche und O, e Diff 2 (, Fr ). Für spätere Zwecke 
halten wir fest, dass F, auch die Nullstellenmenge der Funktion (x) := 
A(x) - p(E(x)) ist. 

Wir bezeichnen das von F,, eingeschlossene Gebiet mit Q 1, und setzen außerdem 
D := Das Gebiet D, dessen Rand E ist, dient uns als Referenzgebiet. Um (2.8) in 
ein System auf D transformieren zu können, muss der Diffeomorphismus 6,, geeignet 
ins Innere fortgesetzt werden. Diese Erweiterung bezeichnen wir mit e. Dabei kann 
man diese Erweiterung so konstruieren, dass e ein C2 —Diffeomorphismus von D auf 
das Gebiet 9, 1  ist, d. h. 

O,eDiff 2 (D.) und O>=O. 

Wir bezeichnen mit 	den von e induzierten pull-back-Operator, d. h. 

e;u:=uoe 	für uCC(2), 

und mit e den entsprechenden push-forward-Operator, d. h. 

für v e C(D). 

Nun erklären wir die folgenden transformierten Differentialoperatoren 

A(p)u := -e(eu) und B(p)u 	e(v(eu) . V6) 

für u e C2 (D). Wir benötigen außerdem die Transformationen der Nichtlinearitätenj, 
g und des Krümmungsoperators H 9 : 

(u.p) 	 lit ). (u,p) 	e; g(eti) 	und 	H(p) := 

sowie die der Rand- und Anfangsdaten: 

x() 	(-) 	und 	v0  := e 0 a0 . 
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Diese Operatoren berücksichtigen die Transformationen der räumlichen Differential-
operatoren. Weil die Diffeomorphismen e 1  auch von der Zeit abhängen, entsteht aus 
der parabolischen Gleichung für o ein zusätzlicher Term, den wir abkürzend mit 
R(u, v, p) bezeichnen. Setzen wir schließlich u := ep und v ea, so erhalten wir aus 
(2.8) das folgende System für die neuen Unbekannten (u, v. 

A(p)u 	= J(v,p) in J x D. 
0v + A(p)v 	= R(u, v, p) - 	(v, p) in J x D, 
0tP + B(p)u 	= 0 auf J x E, 

u 	= H(p) auf J x E, 	 (3.3) 

= x() auf Jx, 
v(0,.) 	= v 0  in D.  

= po auf E.  

Im obigen System steht J = [0, T) für das Zeitintervall, auf dem die Abbildungen u, v, p 
erklärt sind. Um die Darstellung zu vereinfachen, betrachten wir im Folgenden den in 
den Anwendungen wichtigen Spezialfall einer konstanten Nährstoffkonzentration 
außerhalb des Tumors, d. h. const. Eine einfache Translation zeigt, dass wir in die-
ser Situation den Wert der Konstanten 0 setzen können. Dies bedeutet, dass wir für i' 
homogene Dirichletsche Randbedingungen betrachten können. Der allgemeine Fall 

const. bedarf einer etwas komplizierteren Behandlung, auf die wir hier nicht einge-
hen wollen, vgl. [21]. 

In einem nächsten Schritt führen wir in (3.3) eine Reduktion durch, in dem wir, bei 
gegebenem p und rechten Seitenf und h, das elliptische Randwertproblem 

A(p)r =f in D. 	yr = h auf S 7 	 (3.4) 

für r lösen. Hierbei bezeichnet y  den Spur- oder Einschränkungsoperator auf D bzgl. S, 
d. h. r := r. 

Für die folgenden Betrachtugnen ist es hilfreich, sogenannte Sobolevräume ein-
zuführen. Diese (verallgemeinerten) Funktionenräume bilden den mathematischen 
Rahmen, welcher der variationellen Struktur vieler partieller Differentialgleichungen 
angepasst ist. Die Sobolevräume J4' (D) mit q E (1 ) und k e N sind die, bzgl. natür-
licher Normen (im Fall q = 2 sogar Hilbertnormen) vervollständigten Räume glatter 
Funktionen. D.h. dem Vektorraum der glatten Funktionen werden „ideale Elemente" 
hinzugefügt, die als Grenzwerte bzgl. geeigneter Normen realisiert werden können. 7  
Dabei gibt der Index k an, wieviele verallgemeinerten Differenzierbarkeitseigenschaften 
eine Sobolev-Funktion aus W'(D) besitzt. Es ist bekannt, dass sich die Elemente in 
ft(D) mit klassischen (gleichmäßig stetigen bzw. stetig differenzierbaren) Funktionen 
identifizieren lassen, falls k und q groß genug sind. Insbesondere können solche Sobo-
1ev-Funktionen auf den Rand von D eingeschränkt werden. 8  Es liegt in der Natur der 
Sache, dass man bei freien Randwertaufgaben an der genauen Randregularität interes-
siert ist. Dazu benötigen wir neben den Sobolevräumen auch die Besovräume B q (E) 
mit s> 0 und q EE (1, )' vgl. [55, 56]. Es ist nämlich bekannt, dass 9  

ü r(W(D).B 1 /"()) 	 (3.5) 

eine Retraktion ist, falls s > l/q. Weil jede Retraktion surjektiv ist, folgt aus (3.5) ins- 
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besondere, dass die Skala der Besovräume das richtige Werkzeug ist, um die Randregu-
larität der Elemente der Sobolevräume W(D) zu messen: Für u e W('(D) gehört u} 
zu B/(),  und zu jedem h e B/'() gibt es ein u e J'V(D) mit u = h. 

Die klassische Theorie der elliptischen Randwertprobleme sichert außerdem, dass es 
zu jedem Paar (f, h) 0 Lq (D) x BJl/() eine eindeutige Lösung r von (3.4) in W(D) 
gibt. Wir bezeichnen den entsprechenden Poisson- bzw. Potentialoperator mit S(p) 
bzw. T(p), d. h. für die Lösung r von (3.4) gilt r = S(p)f + T(p)h. Mit diesen Bezeich-
nungen erhalten wir das zu (3.3) äquivalente System 

D,v+A(p)v 	= R(r(v,p),v,p) —(v,p) 	in J x D, 

0,p+B(p)T(p)H(p) = 	—B(p)S(p)f(v,p) 	auf J x S, 

v 	 = 	 0 	 auf Jx>.i, 

i'(O, .) 	= 	 v0 	 in 	D, 

Pc 	 auf 	E. 

wobei wir die Abkürzung r(v, p) = S(p)f (v p) + T(p)H(p) verwendet haben. Schließ-
lich beachten wir, dass der Operator H(13), der aus der mittleren Krümmung von F 1, ent-
standen ist, eine quasilineare Struktur trägt. D. h. es  gilt 

H() = P( + K() für 

wobei K und [ 	P(f)] nichtlineare Operatoren erster Ordnung sind, der Operator 
P(,)r] hingegen linear und von zweiter Ordung ist. Mit diesen Bezeichnungen er-

gibt sich das folgende System 

0,T'+A(p)v 	= Fi(v,p) 	in JxD, 
01p+B(p)T(p)P(p)p = F2(v,p) auf J x Z‚ 

v 	 = 	0 	auf Jx, 	 (3.6) 
v(0,.) 	= 	v0 	in 	D. 
p(0.) 	= 	Pc 	auf 	z. 

wobei wir zur Abkürzung 

F1  (v, p) 	:= R(r(v. p). v, p) - (v. p), 

F,(v.p) 	:= 	B(p)[S(p)7(v , p) + T(p)K(p)] 

gesetzt haben. Das System (3.6) liegt nun in einer Form vor, die eine Behandlung im 
Rahmen der heutzutage gut ausgebauten Theorie der quasilinearen parabolischen Evo-
lutionsgleichungen erlaubt. Wir stellen ein zentrales Resultat dieser Theorie in einer et-
was vereinfachten Fassung kurz vor. Es bezeichne E0 und E1  Banachräume, so dass E1  
stetig eingebettet und dicht in E0  ist. Ferner bezeichne 7- (E 1 . E0 ) die Menge aller Opera-
toren A e £(E 1 . E0 ), so dass —A als unbeschränkter Operator in E0 mit Definitions-
bereich E 1  eine starkstetige analytische Halbgruppe in L (E0  E0 ) erzeugt. 1 ° Außerdem 
benötigen wir sogenannte Interpolationsräume, die wir mit E0  für 0 e (0. 1) bezeichnen. 
Das folgende Resultat geht auf H. Amann zurück, vgl. [2]: 
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Theorem 3.1 Es seien 0 < y < 3 < cs < 1 und T > 0. Ferner sei 

(A,F) ü C 1 (0 1  T] x E3,7-(E 1 ,E0 )) x EF ). 	u0 e E0 . 

Dann gibt es ein eindeutig bestimmtes maximales t  e (0 7  T], so dass das quasilinearepa-
rabolische Anfangswertproblem 

u' = A(t, u)u + F(t, u), t ü (01  T], 	u(0) = u0 . 

eine eindeutig bestimmte Lösung 

u := u(., uo) E C([0, t)  EJ fl C l  ((0, t), Eo) 

besitzt. Sind 4 und F unabhängig von t, so induziert die Abbildung (t, u o ) 	u(t, uo ) ein 
dynamisches System auf 

Um (3.6) mit Theorem 3.1 lösen zu können, setzen wir 

E0 	L q (D) x B/(),  E 1 	ft 0 (D) x 

wobei W 0 (D) 	{v E W(D) 	= 01. Vermöge (3.5) ist W 0 (D) ein abgeschlosse- 
ner Unterraum von ft(D), also selbst ein Banachraum. Wählen wir q > iii + 1, so folgt 
aus dem Sobolevschen Einbettungsatz, dass 	c C3 (). Für p E 	 mit

qtl q(i
< b sind die in (3.6) auftretenden Operatoren erklärt. Wir setzen deshalb 

X 	{(v, p) e E1 ; 	< b} und definieren den quasilinearen Operator 

A(V)W := (A(p),B(p)T(p)P(p)fl) 

für V = (v,p) E X und W = (sv,sj) E Ei , sowie 

F(V) = (R(r(v,p), v,p) —g(v,p) . — B(p)S(p)7(v , p) + T(p)K(p)]) 

für V = (v, p) e X. Mit Hilfe der Interpolationstheorie für Sobolev- und Besvoräume, 
sowie geeigneten Einbettungssätzen ist möglich, die nachstehenden Abbildungs- und 
Regularitätseigenschaften 

(A,F) ü C°(X(E 1 .Eo),E) 

für geeignete Werte 3, 'y  e (0 1  1) zu verifizieren. Auf die technischen Details sei hier ver-
zichtet. Hingegen wollen wir noch einige Erläuterungen zur Generatoreigenschaft des li-
nearen Operators 4(V) (bei festem V = (v, p) E X) anschließen. In der ersten Kom-
ponente besteht dieser Operator aus dem gleichmäßig elliptischen Operator A(p), der 
die Ordnung zwei besitzt. Die Koeffizienten dieses Operators sind zwar nicht glatt, be-
sitzen aber trotzdem genügend Regularität, um die bekannten parameter-abhängigen 
a-priori-Abschätzungen elliptischer Operatoren von Agmon-Douglis-Nirenberg anpas-
sen zu konnen, um nachzuweisen, dass A(p) ü N( W - 0 (D), L(D)). Die zweite Kom-
ponente (p) := B(p)T(p)P(p) des Operators 4(v) ist kein Differentialoperator. son-
dern ein Pseudodifferentialoperator dritter Ordnung auf der Mannigfaltigkeit S. Auch 
dieser Operator besitzt kein glattes Symbol in der Tangentialraumvariablen. Neuere 
Untersuchungen zeigen jedoch, dass 1(p) parameter-elliptisch ist, und sogar einen be-
schränkten H-Kalkül besitzt, vgl. [25]. Diese Resultate implizieren dann unmittelbar, 
dass(p) E 
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Der Operator (p) spielt auch in der Untersuchung des Systems (2.13) eine zentrale 
Rolle. Dabei spiegelt sich die sehr einfache geometrische Konfiguration auch in der 
Analysis wider: Die Linearisierung L(p*)  von (2.13) über dem flachen Equilibrium p ist 
kein (echter) Pseudodifferentialoperator, sondern vielmehr ein Fouriermultiplikations-
operator. Mit der Fourierentwicklung 

r(x) = ao +(akcoskx+bksinkx). 

fürr e C(S') gilt nämlich 

L(p*)r(x) = X0a0  + 	k(ak coskx + bk sinkx), 

wobei 

= —p(a - a)+ ap[k2  + 1 tanh(k2 + lp) - ktanh(kp)] 

+k3  tanh(kp), k = 0, 1,2,... 

Aufgrund der genauen Kenntnis des Spektrums der Linearisierung L(p*)  können all-
gemeine Resultate über das Verhalten quasilinearer parabolische Flüsse in der Nähe 
von Gleichgewichtslagen und Methoden der Bifurkationstheorie verwendet werden, um 
Theorem 2.3 zu beweisen, vgl. [15, 16, 45, 13]. 

4 Zahe Flüssigkeitstropfen 

Es bezeichne Q(t) einen Flüssigkeitstropfen, der sich frei unter dem Einfluss der Schwer-
kraft g und der Oberflächenspannung bewege. Betrachtet man eine Newtonsche inkom-
pressible Flüssigkeit mit konstanter Dichte p f  und Viskosität p, so erfüllen das Ge-
schwindigkeitsfeld V und der Druckp der Flüssigkeit die bekannten Navier-Stokesschen 
Differentialgleichungen 

pf[,V+(VV)1fL+Vp = 	g 	
inQ(t). 

div V 	0 
(4.1) 

Mit dem hydrodynamischen Spannungstensor 

T(,p) :=pidr(&nl ) 	[V+ (V)T]. 

dem Oberflächenspannungskoeffizienten und dem mittleren Krümmungsvektor HP 
an F(t) gilt auf dem freien Rand F(t) die Bedingung 

= 7P auf F(t). 	 (4.2) 

Die Orientierungen sind dabei wie in Paragraph 2 festgelegt. In konkreten Anwendun- 
gen ist es wichtig, den Einfluss der Viskosität auf die konvektiven und äußeren Kräfte 
zu berücksitigen. Dazu wählt man eine charakteristische Länge L und einen Einheits- 
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vektor . Mit den nach Reynolds bzw. Bond benannten Größen Re = pLy/fJ 2  bzw. 
B = Pf L 2 /'y erhält man aus (4.1) und (4.2) das folgende dimensionsfreie System: 

V) - t+ Vp = Bi in Q(t), 
divi 	= 	0 	in1(t), 	 (4.3) 

T(t.p)P = Hö auf F(t). 

Für zähe Flüssigkeiten, wie sie etwa bei viskosen Sinterprozessen auftreten, sind Werte 
für die Reynolds- und Bondzahl sehr klein und werden z.B. in [ 43 1 mit Re = 

10-21 und B = 10- 6 ...  10- 8  angegeben. Für diese Flüsse können sowohl der 
konvektive Term 3,i + (. V), als auch der Einfluss der Gravitationskraft 2 vernach-
lässigt werden. Wir erhalten somit das folgende freie Randwertproblem für den Stokess-
ehen Fluss: 

= 0 	in 	f(t), 
divii 	= 0 	in 	Q(t), 

T(i,p)fi 	= Hv 	auf F(t), 	 (4.4) 
V = 	auf F(t), 

F(0) = 	'0 	int=0. 

Wie in Paragraph 3 kann das System (4.4) mit Hilfe des Diffeomorphismus P zu einer 
Evolutionsgleichung auf der Referenzmannigfaltigkeit E für die Abstandsfunktion p re-
duziert werden: 

Op + Q(p)p = 0, p(0) = po. 	 (4.5) 

wobei der Operator Q in lokalen Koordinaten folgende Darstellung besitzt: 

Q(p)a = [0a(8(3P)) 	s]S'(p). 	 (4.6) 

In (4.6) wurden neben der Summationskonvention auch die Bezeichnungsweisen P und 
s von (3.1) und (3.2) verwendet, und S(p) steht für den Lösungsoperator des transfor-

mierten vektorwertigen elliptischen Randwertproblems in (4.4). Offensichtlich ist der 
Operator Q(p)o für festes p linear und von erster Ordnung. Ferner folgt aus den 
Abbildungseigenschaften des Operaotrs S(p), dass auch die nichtlineare Abbildung 
p Q(p)a für festes or von erster Ordnung ist. Somit kann (4.5) nicht im Rahmen von 
Theorem 3.1 behandelt werden: Der lineare Hauptteil ist hyperbolisch und erzeugt des-
halb gewiss keine analytische Halbgruppe. Ferner ist die Nichtlinearität in Q dem linea-
ren Anteil nicht untergeordnet. Dies bedeutet, dass (4.5) als voll-nichtlineare Evoluti-
onsgleichung zu betrachten und entsprechend zu behandeln ist. Der nächste Abschnitt 
ist der analytischen Untersuchung solcher Aufgabenstellungen gewidmet. 

5 Stetige maximale Regularitat 

Die auf Da Prato und Grisvard zurückgehende Theorie der stetigen maximalen Regula- 
rität bildet einen eleganten Zugang, um voll-nichtlineare parabolische Evolutionsglei- 
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chungen zu studieren. Im Folgenden soll eine kurze Einführung in diese Theorie gege-
ben werden. Dazu seien E0 und E1 Banachräume, so dass E1 stetig eingebettet und dicht 
in E0 ist. Ferner sei D ci E 1  offen und 

11 e C' (D, Eo) mit 3H(v) e N(E1. E 0 ), 1' e D. 	 (5.1) 

Hierbei bezeichnet 0H(v) die Frchet-Ableitung des (nichtlinearen) Operators 11 an der 
Stelle v. Weil lT voraussetzungsgemäß Frchet-differenzierbar ist, gilt 

011(v)h=fl(v+eh), 	vED, heE1. 
dE 

Für T> 0 seien 

1E0:= C(0.T],Eo), 	IE 1  := C([0,T],E1)flC'([0,T],E0), 

und 	JE0 —* E0 , u F— u(0) bezeichne den zeitlichen Spuroperator in JE0. Man sagt, 
dass (IE 0 , IE 1 ) ein Paar maximaler Regularität für 011(v) ist, falls die folgende Isomor-
phieeigenschaft erfüllt ist: 

(

+3H(v)f) elsom(Wi,W0xE1), vED. 	 (5.2) 
dt 

Mit diesen Bezeichnungen können wir nun das folgende Existenz- und Eindeutigkeits-
resultat formulieren: 

Theorem 5.1 ([19]) Es seien (5.1) und (5.2)Jör jedes v E D erfüllt. Dann gibt es zu je-
dem u0 E D undj e C(JR + . Eo) ein eindeutig bestimmtes maximales t := r(uo) > 0 
und eine eindeutige Lösung 

u := u(., uo)  E C([0. t). D) n Cl  ([0, t), E0) 	 (5.3) 

des abstrakten Anfangswertprohlemes 

u+fl(u)=f. 	u(0)=uo. 	 (5.4) 

Bemerkung 5.2 a) Theorem 5.1 geht im wesentlichen auf Da Prato und Grisvard 
zurück, vgl. [19]. Eine interessante Erweiterungen von Theorem 5.1 wurde von Ange-
nent [31 bewiesen. 

b) Es ist zu beachten, dass Theorem 5.1 den „linearen" Fall D = E1  und 
11 e 7-l(E1,Ea) umfasst. In dieser Situation stimmt die Aussage von Theorem 5.1 mit 
der Voraussetzung (5.2) überein. Trotzdem ist es nicht offensichtlich, ob diese Voraus-
setzung für unbeschränkte Operatoren mit E 1  E0  verifiziert werden kann. In der Tat 
hat Baillon [7] gezeigt, dass im Fall E1  Eo die Eigenschaft (5.2) nur dann richtig sein 
kann, falls E0  eine isomorphe Kopie des Folgenraumes Co enthält. Nun ist bekanntlich 
jeder abgeschlossene Teilraum eines reflexiven Banachraumes selbst reflexiv. Weil Co 
aber nicht reflexiv ist, kann (5.2) somit in reflexiven Banachräumen nicht gelten. Es ge-
hört zu den Hauptresultaten der Arbeit [19], dass Da Prato und Grisvard mit Hilfe des 
sogenannten stetigen Interpolationsfunktors (' .) nicht-reflexive Banachräume kon-
struiert haben, in welchen die Bedingung (5.2) verifiziert werden kann. 
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c) Im Folgenden soll kurz eine wichtige Skala von Banachräumen vorgestellt wer-
den, die mit Hilfe der stetigen Interpolationsmethode realisiert werden kann. Dazu de-
finieren wir für jedes s ü JR die kleinen Hölderräume buc(1Rm) durch 

bucs(lRrn) 	Abschließung von BUC(IR') in B(IRr). 

Hierbei bezeichnen B,(1Rm) die üblichen Besovräume, vgl. [55]. Es ist bekannt, dass 
der Raum B(IR') im Fall s> 0, s $ N, mit dem klassischen Hölderraum 
BUC(lRm) übereinstimmt, vgl. Theorem 2.5.7 und Remark 2.2.2.3 in [55]. Mit diesen 
Bezeichnungen wird in [45], Theorem 1.2.17 gezeigt, dass 

(BUC(IR'), BUC1?(1Rmn)) 	= buc9 (IR') 

fürjedesn lNund9e (0. 1) mit On « N. 

d) Eine weitere Skala von Banachräumen, in welcher stetige maximale Regularität 
erwartet werden kann, sind die sogenannten kleinen Nikolskiiräume. Diese Räume 
können als stetige Interpolationsräume zwischen den klassischen Besselpotentialräu-
men dargestellt werden, vgl. [19], Section 6 und [53], Section 6. 

e) Es bezeichne Y eine kompakte Riemannsche Mannigfaltigkeit. Dann werden die 
kleinen Hölderräume hS() ebenfalls als Abschließung von Cc()  in C5 () erklärt. 
Wie in c) gilt dann 

(C(), C(E)) 	= h° ) 

für jedes n e N und 8 ü (0, 1) mit ßn « N, vgl. Corollary 1.2.19 in [45]. 

1) Es bezeichne wiederum (' d) eine kompakte Riemannsche Mannigfaltigkeit. 
Es ist bekannt, dass im Fall es ü (0, 1) die klassische Höldernorm auf dem Raum 
CI0(E) eine Topologie erzeugt, die nicht separabel ist. Hingegen kann man zeigen, 
dass die kleinen Hölderräume h(E) sehr wohl separabel sind, vgl. [42]. Dies bedeu-
tet insbesondere, dass C() \ h() 0. Außerdem besitzen die Räume h() 
die folgende intrinsische Charakterisierung 

h) = 	E Ca(E): hrn 	sup 	 = 0}. 

Mit Hilfe dieser Charakterisierung erkennt man z.B. leicht, dass x E C([0, 1]) \ 
h'([0, 1]). 

g) Es sei A c 	h(),hk())  für k, 1 e N. a (0, 1). Ferner sei 9 E (es 1) 
und der (maximale) Definitionsbereich der h 9 (E)-Realisierung von A sei h' 50 (). 
Setzen wir nun E0  := h' ° () und E1 := h°(), so folgt aus Thorme 3.1 in [19], 
dass (IE0 , JE 1 ) ein Paar maximaler Regularität für A ist. 

h) Es seien und Q wie in (4.6) und A bezeichne die Frchet-Ableitung des Opera-
tors [p 	Q(p)p] im Punkt po.  Dann wird in Lemma 5.5 in [24] gezeigt, dass A ein 
Pseudodifferentialoperator erster Ordnung auf E ist, der für jedes 8 e (0. 1) die Eigen-
schaft A E N(h 3 (E),h2 °()) besitzt. 
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6 Parabolische Regularisierung 

Bevor wir die voll-nichtlineare Evolutionsgleichung (4.5) und somit auch das freie 
Randwertproblem (4.4) für den Stokesschen Fluss mit Hilfe von Theorem 5.1 lösen, 
wollen wir einen Regularitätssatz für die Lösungen des abstrakten Anfangswertproble-
mes (5.4) vorstellen. Eine wichtige Eigenschaft linearer parabolischer Differentialglei-
chungen, etwa der Wärmeleitungsgleichung besteht darin, dass die Lösungen solcher 
Gleichungen eine instantane räumliche Regularisierung erfahren. Dies bedeutet, dass 
die Lösungen zu jedem positiven Zeitpunkt bezüglich der räumlichen Variablen beliebig 
glatt sind, auch wenn der Anfangswert nur endliche Regularitätseigenschaften aufweist. 
Weil die Nichtlinearitäten der in Abschnitt 3 diskutierten Probleme den entsprechenden 
linearen Hauptteilen untergeordnet sind, ist es möglich mit sogenannten „bootstrapp-
ing" Argumenten nachzuweisen, dass auch diese quasilinearen Probleme die oben be-
schriebene Regularisierungseigenschaft haben. Im Gegensatz dazu liegt es gerade im 
Wesen der maximalen Regularität, dass solche bootstrapping Argumente nicht an-
wendbar sind: Die Lösung von (5.4) liegt im Funktionenraum (5.3), und der abstrakte 
Rahmen bietet keine weiteren Möglichkeiten eine Regularisierungseigenschaft der Lö-
sungen nachzuweisen. Im Folgenden wird erläutert, dass eine solche Regula-
risierungseigenschaft trotzdem vorliegt, falls der nichtlineare Operator LT mit der Geo-
metrie der zugrundeliegenden Mannigfaltigkeit E in einem geeigneten Sinne verträglich 
ist. In diesem Fall gelingt es sogar nachzuweisen, dass die Lösungen reell-analytische 
Funktionen der Raum- und Zeitvariablen sind. Dazu seien im Weiteren 

• E eine kompakte geschlossene analytische Mannigfaltigkeit der Dimension rn, 
• lT ü C(D, Eo ), und es gelten (5.1) und (5.2) für jedes v e D, 

wobei C(D. E0 ) die Gesamtheit aller reell-analytischen Abbildungen von D in E0  be-
zeichnet, und E0  und E1  Banachräume von Funktionen über sind, so dass 

EcC), 	E1cE0cC(E). 	 (A 1 ) 

Wir wählen uo e D und bezeichnen mit u die eindeutig bestimmte Lösung von (5.4) auf 
0, r). Um die Darstellung zu vereinfachen behandeln wir nur den Fall f 0. 

Schließlich setzen wir 

ö(t,p) := u(t)(p) für (t,p) E [0. t) x Z. 	 (6.1) 

Unser Ziel ist es, Regularitätseigenschaften von ii zu beweisen, die über die von (5.3) hi-
nausgehen. Dazu wählen wir T e (0. n) und setzen 1 := [0, T]. Die Hauptidee der fol-
genden Uberlegungen besteht darin, durch geeignete Flüsse auf E Parameter in ü ein-
zuführen, deren Regularitätseigenschaften mit Hilfe des Satzes über implizite Funktio-
nen genau studiert werden können. Bei dieser Vorgehensweise, die auf Angenent [3, 41 
zurückgeht und in [27, 29, 22. 23] weiterentwickelt wurde, ist die maximale Regularität 
der Linearisierung von zentraler Bedeutung. Unabhängig von Angenents Arbeiten hat 
Masuda zur Untersuchung dreidimensionaler Navier-Stokesscher Gleichungen in fes-
ten Gebieten ebenfalls parameterabhängige Lösungen eingeführt und deren Regularität 
untersucht, vgl. [46]. 
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Es bezeichne V(>) den Vektorraum aller reell-analytischen Vektorfelder über E. 
Weil Z glatt und kompakt ist, gibt es aufgrund des Whitneyschen Einbettungssatzes 
ein N, so dass Z glatt in IRN  eingebettet ist. Weil die glatten Einbettungen außerdem 
offen sind in IRN) und C'(. IRN) in IRN) dicht liegt, gibt es eine reell-
analytische Einbettung e von E in 1R'. Mit der entsprechenden Riemannschen pull-
back-Metrik lässt sich nun eine parameter-abhängige Familie analytischer Flüsse auf 

konstruieren, so dass die entsprechenden Vektorfelder das Tangentialbündel auf-
spannen. Genauer gilt (vgl. [24]): 

Lemma 6.1 Es gibt ein N e N und eine Abbildung 

S E C(IRN x JR x S, ) 
	

(6.2) 

mit den Jblgenden Eigenschaften: 

S(. t,.) e Diff(), 	(ji, t) e IRN x IR, 	 (6.3) 

{s(, t,p) 0 ; e 	= 	p E Z . 	 (6.4) 

1 .' S(/. t, .)H] e Hom(JRN,V)) . 	 (6.5) 

Bemerkung 6.2 Es gibt Situationen, in denen eine parameter-abhängige Familie 
analytischer Flüsse auf Z mit den obigen Eigenschaften intrinsisch, und nicht über ei-
ne Einbettung konstruiert werden können. Ein einfaches Beispiel ist etwa der m-di-
mensionale Torus T" := JRJfl/. Mit N = in und 

S(,t,p) :=p+t 

gelten offensichtlich (6.2)—(6.5). Diese einfache Konstruktion lässt sich allgemein auf 
global symmetrische Riemannsche Mannigfaltigkeiten ausdehnen. Ist > eine solche 
Mannigfaltigkeit und G die entsprechende endlich-dimensionale Liesche Gruppe, die 
analytisch und transitiv auf E operiert, so kann S wie folgt konstruiert werden 

S(, t,p) := exp(tXk) p, 	 (6.6) 

wobei {X 1 .. .. ‚ X} eine Vektorraumbasis der Lieschen Algebra von G bezeichnet und. 
für die Wirkung von G auf E steht, vgl. [29]. Es ist zu beachten, dass bei dieser Kons-
truktion keine Kompaktheitseigeschaften von E verwendet wurden. 

Wir setzen nun 

VV(t)v := S(, 1, .)v, 	(t, t) E JRv x JR, v e E1 , j = 0, 1, 

wobei wir der Einfachheit halber dieselbe Bezeichnungsweise für diese Operatoren auf 
E0  bzw. auf E 1  verwenden. Die Flusseigenschaft von S(.,.) impliziert unmittelbar, 
dass die Abbildung [t F- W(t)] eine Darstellung der Gruppe (IR, +) in (Isom(E1 ), o) 

ist. Unsere nächste Voraussetzung stellt sicher, dass die linearen Operatoren W(t) auf 
E1  beschränkt sind, und dass die Abbildung [t H- W(t)v für jedes v E E1  stetig ist, d. h. 
wir verlangen, dass für jedes .t e JR" gilt: 

[t 	W(t)] ist eine starkstetige Gruppe auf E1 , j = 0, 1. 	 (A2) 
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Der starkstetigen Gruppe { W(t) t e IR} ist in eindeutiger Weise ein infinitesimaler 
Erzeuger zugeordnet, den wir mit A 1, bezeichnen. Es ist bekannt, dass A 1 , ein abge-
schlossener (im Allgemeinen jedoch unbeschränkter) Operator in E0 ist, vgl. Theorem 
1.6.3 in [48]. Somit ist der Definitionsbereich dom(A 1,) von A b,, versehen mit der Gra-
phennorm von A 1 , ein wohldefinierter Banachraum. Unsere nächste Voraussetzung 
lautet nun 

E1 —* dom(A 1 ) für jedes p e 	 (A3) 

Eine einfache Konsequenz aus (A 3 ) ist, dass 

A l, E r(E1 , Eo) für jedes Ji E IR". 	 (6.7) 

Es sei w e E1 . Mit v, := 7, S(, t, .) 	gilt dann wegen (A 1 ) und (A3): 

A /L w(p) = 7,,wv. p E E. 

Aufgrund der Eigenschaft (6.5) bildet [(' w) F-* Aiv] somit den Raum JRN  x E1 bilinear 
nach E0 ab. Die nächste Voraussetzung stellt sicher, dass diese Abbildung beschränkt ist: 

[(fL, w) i Aw] E 
£2 (IRN x E1, Eo). 	 (A4) 

Es ist zu beachten, dass sich die Voraussetzungen (A 1 ) - (A4 ) nur auf die Familie 
S(1i.,.) und nicht auf den nichtlinearen Operator fl beziehen. Um die wesentliche Vo-
raussetzung an den Operator II formulieren zu können, sei 

S1, := S(/L. 1,) E Diff(). 	p e jN 	 (6.8) 

Offensichtlich gilt S, = exp(v 11 ), wobei exp : T> 	E die übliche Riemannsche Expo- 
nentialabbildung bezeichnet. Mit Hilfe der Diffeomorphismen S 1  führen wir die folgen-
den pull-back und push-forward Operatoren S und S := (S 11) = (S') auf den 
Funktionenräumen E1 , j = 0, 1 ein, d. h. wir setzen 

S7v=voS 1 , und S(v=voS,  vEE1 .j=0,1. 

Nun erklären wir 

i. v) := SfI(Sv) für (t. v) c IRv  x D. 	 (6.9) 

und fordern, dass es eine offene Nullumgebung 0 in IR N  gebe mit 

d e C(O x Do,Eo). 	 (A 5 ) 

Beispiele 6.9 a) Eine wichtige Klasse von Operatoren die die Eigenschaft (A 5 ) be-
sitzen, bilden äquivariante Operatoren auf global symmetrischen Riemannschen Man-
nigfaltigkeiten. Dabei nennen wir, mit den Bezeichnungen von Bemerkung 6.8, den 
Operator LT äquivariant bzgl. G, falls es eine offene Umgebung 0 des neutralen Ele-
mentes in G gibt mit 0 D ci D und 

fl(g. v) = g 11(v) für (g. i') e 0 x D. 

wobei 

gv:k pv(g.p) 
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für die Gruppenwirkung von G auf Funktionen über E steht. Es sei nun S wie in (6.6). 
Dann impliziert die Aquivarianz von II: 

ID(M, v) = exp(Xk) . H(exp(—jXk) . v) = fl(v). 

Vermöge der Voraussetzung (5.1) ist (A 5 ) somit offensichtlich erfüllt. Konkrete Beispie-
le translations- und rotationsäquivarianter Operatoren werden in [27, 29, 20] diskutiert. 

b) Es sei I(p) := Q(p)p für p e h2 () mit dem zum Stokesschen Fluss gehören-
den Operator Q, vgl. (4.5). Ein detailiertes Studium parameter-abhängiger pull-back 
Operatoren auf kleinen Hölderräumen über kompakten Mannigfaltigkeiten zeigt, 
dass der Operator T die Voraussetzung (A 5 ) erfüllt. Für die zum Teil technischen De-
tails verweisen wir auf [24]. 

c) (Lokale Operatoren) Es sei cr e C(JR) und II bezeichne den durch lt induzier-
ten Nemitskii-Operator, d. h. es gelte 

LT(v)(p) := cr(v(p)), 	p (z 
Dann erfüllt LT offensichtlich die Voraussetzung (A 5 ). 

d) Es seien E = S 1  und E0 = h°(S 1 ), Et = h2(St) für ein a E (0 1  1). Ferner sei-
ena E h(S') und 

fl(v) := a32 v. 	V E h2 (S'), 

wobei 13 für die Ableitung nach dem Bogenlängenparameter steht. Weil hu(St)  eine Ba-
nachalgebra ist, folgt sofort, dass II e (hl(Sl) , h0(St)) .  Für v E h2(St)  und 
j e IR gilt ferner 

ID (‚v)(p)=a(p+)32 v(p). PES'. 

Somit ist II genau dann drehäquivariant, wenn der Koeffizient a konstant ist. In diesem 
Fall gilt (A5 ), vgl. die obige Bemerkung a). Allgemeiner kann man zeigen, dass (A 5 ) für 
jedes a e C(S') gilt. Hingegen ist die Abbildung 	i. v) für a E h(S') \ C(') nicht 
glatt in p, und folglich kann die Eigenschaft (A 5 ) in diesem Fall nicht richtig sein. 	• 

Mit Hilfe der in Lemma 6.1 konstruierten Abbildung S lassen sich nun in der fol-
genden Weise Parameter in die Lösung u aus (6.44) einbauen. Es sei N wie Lemma 6.1 
und 

mit r > 0. Für (.' u) E V setzen wir 

v,(t)(p) = 	t, S(, t,p)). 	(t,p) e 1 x E. 	 (6.10) 

Wie bereits erwähnt kann aufgrund der maximalen Regularität der Linearisierung des 
Operators LT der Satz über implizite Funktionen in Banachräumen angewendet werden, 
um folgenes Resultat zu beweisen, vgl. [24]: 

Proposition6.4 Es gibt ein Eo > Oso dass [AjL) F-e v] e C(V(ro),1E,). 

Nach diesen Vorbereitungen können wir nun leicht den folgenden Satz beweisen: 

214 	 JB 109. Band (2007), Heft 4 



J. Escher: Funktionalanalytische Methoden bei freien Randweaufgaben 

Theorem 6.5 Unter den Voraussetzungen (A, )—(A5) gilt ü E  C ((0, r) >< 

Beweis: Es sei (to,po) e (0, T] x E. Vermöge Lemma 6.1 gibt es b,, ... .b, c IR" 
mit Ilbk = 1 für k = 1.....m, so dass (vb, ..... vh,) eine Basis von T 0  Z ist. Im Fol-
genden schreiben wir /78 := kbk  für (t ...... 1mfl) E JR. Außerdem setzen wir 

V(r) 	(0, t) x E, 	(' (' 1 
... 	fl)) 	(t0, S(/7B, to,po)) 

fürS Ei (0,60). Aus Lemma 6.1 folgt dann, dass o C'( V(s), (0. r') x )' und (6.5) im-
pliziert die Beziehung 

	

....... ..... 
Tirn)) = to(,ijkvb(po)) 	JR X T 0  

für alle (' (77' .... i/)) e JR x IR"'. Somit ist T(j0yp bijektiv. Aufgrund des Satzes über 
die Umkehrabbildung folgt nun, dass für genügend kleines E > 0 die Abbildung eine 
analytische Parametrisierung einer offenen Umgebung 0 von (to,po) in (0. t+) >< 
ist. 

Wegen (A,) gilt JE, c C(I, C()). Folglich ist die Auswertungsabbildung 

JE, - R. 	‚v 	w(t o )(po ) 

wohldefiniert. Vermöge Proposition 6.4 gilt deshalb 

E C( V(e), JR). 

Andererseits zeigt (6.10), dass p'ü(.. /7) = vt,(to)(po) für 	/7) e V(e). Dies impli- 
ziert ü E C-'(O, IR) und folglich die Behauptung. 

Abschließend soll kurz erläutert werden, wie die Hauptresultate der Abschnitte 5 
und 6 angewendet werden können, um nachzuweisen, dass der Stokessche Fluss (4.4) 
mit Oberflächenspannung für große Klassen von Anfangsdaten wohigestellt ist, und 
die entsprechenden Lösungen reell-analytische Funktionen der Orts- und Zeitvaria-
blen sind. 

Theorem 6.6 Es sei c E (0 1  1) und für P0 c  h3 '(E) sei der Operator Q(po)po  er-
klärt. Dann gibt es ein T = T(po ) > 0, so dass das Anfangswertprobl cm 

3p+Q(p)p=0, p(0)=po, 	 (6.11) 

eine eindeutig bestimmte Lösung 

p = p(. 770)  e C([0. T). h3())  n C' ([0. T), h 2 ' ()) 

besitzt. Mit 

(t,p) := p(t, Po)(P) für (t.p) E (0. T) x 

gilt außerdem 

e Cw((0,  T) x 

Beweis: Vermöge der Bemerkungen 5.2 (g) und (h) folgt die Existenz- und Eindeu-
tigkeitsaussage unmittelbar aus Theorem 5.1. 
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Setzen wir E1  := h2 '(E) für i = 0, 1, so überprüft man leicht, dass die Vorausset-
zungen (A 1 )—(A4) für jede Familie S gelten, die die Eigenschaften (6.2)—(6.5) erfüllt. Auf 
die Gültigkeit der Voraussetzung (A 5 ) wurde bereits in Beispiel 6.3(b) hingewiesen. So-
mit folgt die letzte Aussage aus Theorem 6.5 Z. 

Die Lösungen von (6.11) induzieren nun vermöge des Diffeomorphismus 9r  eine 
Familie offener Gebiete {(t) t e (0, T)} in IR", so dass (t) für jedes t e (0 7  T) eine 
kompakte berandete Mannigfaltigkeit mit analytischer Randmannigfaltigkeit F(t) ist. 
Außerdem gibt es ein Paar 

(‚p) e C(P. IRtm x IR) mit 2 := U ({t} x 
tE(O,T) 

so dass (1(t, .).p(t..)) E Cwr(t), IR x IR) für t e (0 1  T), und so dass (i,p, F(.)) eine 
klassische Lösung von (4.4) ist. 

Wie in vielen zweidimensionalen Modellen der Hydrodynamik ist es auch für den 
ebenen Stokesschen Fluss (4.4) möglich eine sogenannte Stromfunktion einzuführen, 
die mit funktionentheoretischen Methoden untersucht werden kann. Wird etwa das 
Anfangsgebiet Q o  von einer analytischen Kurve begrenzt, so können mit diesen Me-
thoden ebenfalls analytische Lösungen für den Stokesschen Fluss (4.4) in der Ebene 
konstruiert werden. Für interessante Untersuchungen auf diesem Gebiet sei auf die 
Arbeiten [35, 5, 6, 51, 50, 34] verwiesen. 

Anmerkungen 

1 Halbgruppen sind ein Hilfsmittel zur funktionalanalytischen Beschreibung abstrakter dissipati-
ver Systeme. 

2 Differentialgleichungen vom Typ (2.4) werden als parabolisch bezeichnet. Hierbei steht 3,0,  für 
die partielle Ableitung von u nach der Zeit und es gilt Aa = wobei 07a die zweite 
partielle Ableitung von a nach der j-ten Ortsvariablen bezeichnet. 

3 Die mittlere Krümmung einer Hyperfläche ist das arithmetische Mittel der sogenannten Haupt-
krümmungen. 

4 Es sei darauf hingewiesen, dass die Eigenschaft (2.10) etwa keine a-priori-Forderung oder der 
Heuristik der Modellierung geschuldet ist. Sie ist vielmehr eine Konsequenz des parabolischen 
Maximumsprinzips, welches ein klassisches Werkzeug zur analytischen Untersuchung dieser 
partiellen Differentialgleichungen ist. 

5 Nichtlineare Differentialgleichungen besitzen im Allgemeinen keine globalen Lösungen. Es 
können vielmehr sogenannte Blow-up-Phänomene auftreten, bei denen die Lösungen in end-
licher Zeit eine Singularität entwickeln. 

6 Hölder-stetige Funktionen können als Verallgemeinerungen Lipschitz-stetiger Funktionen be-
trachtet werden. Sie spielen in der Theorie der partiellen Differentialgleichungen eine zentrale 
Rolle. 

7 E. Zeilder bietet dazu folgenden Vergleich an: "The introduetion of Soholev spaces corresponds 
to the introduct,on oJ real numhers by completion oJ the Set of rational numhers na irrational num-
hers", vgl. p. 127 in [591. 

8 Es gibt Sobolev-Funktionen, die nicht stetig sind und für die eine Punktauswertung nicht sinn-
voll erklärt werden kann. 
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9 Hierbei bezeichnet (X. Y) den Banachraum aller linearen und beschränkten Abbildungen des 
Banachraumes X in den Banachraum Y. 

10 Es ist bekannt, dass ?-l(E1 E0) eine offene Teilmenge von 	. Eo) ist. Im Folgenden statten 
wir 71(E1 ‚ Eo) stets mit der von der Norm in £(E 1 , E0 ) erzeugten Topologie aus, vgl. [11. 
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The theory of modular forms (and, more 
generaily, automorphic forms) was initially 
an analytic one, with examples such as Eisen-
stein series constructed as infinite sums 
which converged on the upper half plane. 
However, there were shades of algebra lurk-
ing in many of these analytic objects. For ex-
ample the ciassical Eisenstein series of even 
integer weight k > 4 has the power series ex-
pansion 

= (l k) 
+ Ek(q) 

2 
nOt 

where ((s) is the Riemann zeta function and 
ak_t(fl) denotes the sum of the (k - l)st 
powers ofthe positive divisors ofn (note that 
q has become the traditional variable to use 
when writing power series expansions ofmo-
dular forms). The function (Tkt (n) is far mo-
re familiar to number theorists than to ana-
lysts, and ofcourse the zeta function also has 
ciassical links to number theory. 

In fact there were even some indications of 
an arithmetic side to the story, perhaps star-
ting with Ramanujan's observation that if 

(q) = qfl(1 q") 24  = q 24q2  + 252q3  + 

= 

is the weight 12 modular form related to dis-
criminants of elliptic curves, then then inte-
gers T(m) satisfied 

r- (in) 	oit  (in) 	(ntod 691) 

Note that (-1I) = 691/32760 (explaining 
where this mysterious prime number came 
from) and Ramanujan's observation could 
hence be more succinctly expressed as 

(q) 	Et2(q) (mod 691). 

One had to wait until the 1960s   before these 
(and many other) congruences between 
modular forms were explained conceptually. 
But then a lot of things happened at once. 
Modular forms are examples of auto-
morphic forms for the group GL7, and 
Langlands pointed out conjectural links be-
tween automorphic forms and Galois repre-
sentations, thus giving a totally different 
way of studying modular forms. Parts of 
Langlands' conjectures were verified by 
Langlands himseif, Eichler, Shimura and 
Deligne, so suddenly congruences between 
modular forms could be re-interpreted as 
congruences between Galois representa-
tions. A very concrete theory of mod p mod-
ular forms was developed by Serre and Swin-
nerton-Dyer. In fact, with the advent of 
Grothendieck's theory of schemes and sub-
sequent developments in moduli spaces, one 
could even give a conceptual algebraic defi-
nition of a modular form over an arbitrary 
ring R, and one could recover the classical 
definition by letting R be the field ofcomplex 
numbers. By letting R be the ring ofintegers 
modulo p" and taking careful limits, Serre 
was able to construct infinite-dimensional 
Banach spaces of objects which became 
known as p-adic modular forms. These Ba-
nach spaces contained, and generalised, the 
spaces of ciassical modular forms, and gave 
p-adic information about these classical 
forms. As an example of their use, Serre used 
the Eisenstein series mentioned above to give 
a new construction of a p-adic analogue of 
the Riemann zeta function. Katz used 
Serre's spaces, and generalisations of them, 
to give conceptual expianations of the con-
gruences that had been observed between 
modular forms, and also developed enough 
of a theory ofp-adic Hilbert modular forms 
to enable himself, Deligne and Ribet to con-
struct many new p-adic L-functions. Then, 
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after this period of intense activity, the uses 
of the p-adic theory seemed to dry up, to a 
large extent. 

All this changed in the early 1980s when 
Haruzo Hida, a young Japanese mathemati-
cian, discovered a hitherto unexpected struc-
ture in the subspace of ordinaryp-adic mod-
ular forms. Hida proved a finiteness theorem 
about these forms (thus getting some kind of 
control over an important part of the infi-
nite-dimensional space of p-adic modular 
forms) and showed that ordinary p-adic 
modular forms moved naturally in p-adic fa-
milies. This work was extremely important 
because it gives one a "new degree of free-
dom" in the theory of modular forms: when 
analysing a modular form, at least if it is or-
dinary, one can put it into what is now called 
a Hida family, and use the other forms in the 
family to shed light on the original form. 
One beautiful example of this was the work 
of Greenberg and Stevens, who managed to 
compute the derivative of the p-adic L-func-
tion associated to a certain type of modular 
form by putting the form in a family, com-
puting the derivative with respect to the new 
variable instead, and then exploiting the fact 
that the resulting family of L-functions had a 
family of zeroes, enabling them to relate the 
derivative they had to the one one they 
wanted. Hida's work opened up this kind of 
possibility and still remains a very powerful 
tool for the analysis of ciassical modular 
forms (most recently, Wiles and others have 
related Hida's "big" Hecke algebras to cer-
tain abstractly-defined deformation rings, 
although these aspects of the theory are not 
covered in the book under review). 

Over the past two decades, Hida and 
others have generalised his theory and con-
structed p-adic families of automorphic 
forms for many other groups. However, the 
moment one leaves the relative safety of the 
group GL2 , one runs into technical difficul-
ties. Classically one has the Eichler-Shimura 
isomorphism, relating sections of line bun-
dies on modular curves to the cohomology 
ofcongruence subgroups of SL2(Z), and one 
can choose which ofthese objects one wouid  

like top-adically interpolate. In Hida's origi-
nal work he managed to construct families 
on both the geometric side and the cohomo-
logical side. However when one works with 
automorphic forms on a general reductive 
group, the Eichler-Shimura map may not 
even exist, and if it does, it may be far from 
being an isomorphism and one has to choose 
what to interpolate. If G "admits Shimura 
varieties" (roughly speaking, this is true for 
many symplectic and unitary groups but 
false for GL,, if n > 2) then one can try and 
use algebraic geometry to analyse auto-
morphic forms for G, hut there are still tech-
nical problems to be overcome before the 
theory can be made to start. For example the 
Shimura variety may not be a moduli space 
for abelian varieties, one may not have an 
analogue of a key intermediate result of Igu-
sa and Ribet (irreducibility of the Igusa 
tower), the ordinary locus in the Shimura 
variety may be non-affine or (more ser-
iously) too small, one may need a good un-
derstanding of compactification of the Shi-
mura varieties in question, one certainly 
needs a good understanding of the reduction 
mod p of the varieties, and so on. On the 
other hand, the approach using group coho-
mology, although it will work in more gener-
al situations (for example for GL), becomes 
bogged down with problems oftorsion in the 
cohomology, sometimes to the extent that 
one can say very little about the cohomology 
groups that one is interested in, and one has 
to restrict to cohomology in lower degrees. 
Historically Hida developed his theory geo-
metricaily for Hilbert modular forms, but 
then used cohomological methods for nearly 
a decade when generalising bis results to 
GL over number fields. 

In the book under review however, Hida 
has returned to the geometrie construction 
ofp-adic families of ordinary forms. The ad-
vantage of this method is that, when it 
works, it produces very precise control theo-
rems without errors involving torsion; this is 
essentially because one is using H°  in cohe-
rent cohomology rather than H'1  in group 
cohomology. The disadvantage is that, con- 
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trary to the cohomological approach which 
(modulo its relations to automorphic forms) 
is mainly group-theoretic, the geometric ap-
proach needs a deep understanding ofmodu-
ii spaces of abelian varieties with extra 
structure, and their compactifications, both 
in characteristic 0 and characteristicp. Hida 
has recently solved many of these problems 
several papers that he wrote in the last few 
years, and the motivation of the book under 
review is to explain some of these ideas by 
working through them firstly in special ca-
ses, and then in more and more general situa-
tions. 

We now turn to the contents of the book. 
After some introductory chapters about al-
gebraic geometry, modular curves and mo-
dular forms, Hida gives a new proof of Igu-
sa's theorem (irreducibility of the ciassical 
Igusa tower) in Chapter 3, and deduces, via 
techniques which are now standard, his (ver -
tical) control theorem for ordinary p-adic 
modular forms. In Chapter 4 he shows that 
bis proof of Igusa's theorem will generalise 
to give a proof of Ribet's theorem ofthe irre-
ducibility of the Igusa tower in the Hilbert 
modular case, at least when p is unramified 
in the base field (although Ribet did not need 
this assumption when he proved this result in 
the 1970s). Hida goes on to deduce control 
theorems for p-adic Hilbert modular forms. 
After a chapter on the Eichler Shimura map 
isomorphism and its generalisation to cer-
tain other reductive groups, Hida uses his 
technique to prove irreducibility ofthe Igusa 
tower in the Siegel modular case (here the ir-
reducibility result was already proved by 
Chai and Faltings), although he does not 
then go on to develop the control theorem 
forp-adic Siegel modular forms at this point. 
lt should be noted that on the way he deve-
lops, or at least sketches the developent of, a 
lot of the machinery of quotients a la Mum-
ford and toroidal compactifications. In the 
final two chapters Hida shows how far his 
techniques will go in the general case of a 
group G that admits Shimura varieties and 
they go a long way. He axiomatizes the in-
gredients necessarily for the precise control  

theorem to work and then verifies that these 
axioms hold for a wide dass of unitary and 
symplectic groups. He also proves an appro-
priate modification of Igusa's theorem 
which works in many unitary and symplectic 
cases. A remark for the experts: the theorems 
are perhaps not quite the most general possi-
ble: for example Hida must often assume 
that his group G is unramified atp, and some 
of his general control theorems, although 
they are precise (rather than up to torsion), 
only relate classical forms to p-adic ones for 
"sufficiently regular" weights, where there 
appears to be no explicit bound on exactly 
how large the weight must be for the theo-
rems to apply. On the other band, the results 
obtained are still strikingly strong. 

Hida's theory has had many applications 
in the theory of ciassical modular forms, and 
as mathematics continues to mature, this 
more general theory will no doubt have simi-
larly striking applications in the theory of 
autornorphic forms. 

London 	 K. Buzzard 

Oxford University press, 2004,431 5., 
£29,99 

Es herrscht sicherlich kein Mangel an Ein-
führungen in die mathematische Logik. Eini-
ge der vorhandenen Texte neigen jedoch, 
meiner Meinung nach, zu übertriebenem 
Formalismus, haben eine etwas einge-
schränkte Stoffauswahl oder wirken inzwi- 

S. Hedman 

A First Course in logic 

An introduction 10 

Model Theory, Proof 

Tdeory, Computability, 

and Complexity, Oxford 

Texts in Logic 1 
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schen etwas altmodisch. Das vorliegende 
Buch ist daher eine willkommene Ergänzung 
der Auswahl an einführenden Logikbü-
chern. 

Bereits in der Einleitung wird deutlich, 
dass algorithmischen Aspekten der Logik 
viel Aufmerksamkeit gewidmet wird. 

Das erste Kapitel befasst sich mit Aus-
sagenlogik. Exemplarisch gehe ich auf dieses 
Kapitel etwas näher ein, als auf die folgen-
den. Im ersten Kapitel werden auch Kon-
zepte wie die Induktion über den Formel-
aufbau und formales Beweisen eingeführt. 
Der vorgestellte Ableitungskalkül für die 
Aussagenlogik kennt nur Regeln und keine 
Axiome. Mit Hilfe des Kalküls werden zu-
nächst die üblichen Regeln des logischen 
Schließens bewiesen, wie zum Beispiel Kon-
traposition und Fallunterscheidung, sofern 
sie nicht bereits Bestandteil des Kalküls 
sind. Nachdem die Korrektheit des Kalküls 
gezeigt wurde, wird ein Algorithmus vor-
gestellt, mit dem sich jede gegebene aus-
sagenlogische Formel in konjunktive Nor-
malform bringen lässt. Anschließend wird 
der Horn-Algorithmus vorgestellt, mit dem 
sich für jede Horn-Formel schnell entschei-
den lässt, ob die Formel erfüllbar ist. Es 
wird angedeutet, dass das Erfüllbarkeits-
problem für allgemeine aussagenlogische 
Formeln (SAT) NP-vollständig ist. An die-
ser Stelle wird auch auf das siebte Kapitel 
verwiesen, in dem näher auf Fragen der Be-
rechenbarkeit und Komplexität eingegan-
gen wird. Gegen Ende des Kapitels wird 
noch ein Resolutionskalkül vorgestellt und 
seine Vollständigkeit bewiesen. 

Die Vollständigkeit des zunächst einge-
führten Kalküls wird schließlich aus der 
Vollständigkeit des Resolutionskalküls, das 
nur über die Erfüllbarkeit einzelner Formeln 
Auskunft gibt, und dem Kompaktheitssatz 
gefolgert. Der Kompaktheitssatz der Aus-
sagenlogik wird mit Hilfe eines recht elegan-
ten, für die geplante Anwendung maß-
geschneiderten Lemmas, das sich bei nähe-
rem Hinsehen als Version von Königs 
Baumlemma entpuppt, bewiesen. Dieses 
Vorgehen ist insofern originell, als dass sonst  

oft der Kompaktheitssatz aus dem Vollstän-
digkeitssatz gefolgert wird. Ich halte es aber 
zum Beispiel auch für akzeptabel, in einer 
Anfängervorlesung über mathematische Lo-
gik keinen Ableitungskalkül für die Aus-
sagenlogik einzuführen und stattdessen auf 
das Wahrheitstafelverfahren zu verweisen. 
In diesem Falle muß man aber den Korn-
paktheitssatz für die Aussagenlogik direkt 
beweisen, zum Beispiel in der im vorliegen-
den Buch vorgestellten Weise. 

Im zweiten Kapitel werden die Sprache 
und die Semantik der erststufigen Logik ein-
geführt. Als Beispiele für Strukturen dienen 
dabei nicht nur Graphen, lineare Ordnun-
gen, Zahlensysteme und so weiter, sondern 
zum Beispiel auch relationale Datenbanken. 

Das dritte Kapitel beinhaltet die Anfänge 
der Beweistheorie. Hier wird zunächst der im 
ersten Kapitel vorgestellte Ableitungskalkül 
für die Aussagenlogik zu einem Ableitungs-
kalkül für erststufige Logik aufgestockt. Oft 
geht man einen anderen Weg, indem man al-
le aussagenlogischen Tautologien als Axio-
me in den prädikatenlogischen Kalkül auf-
nimmt. Die im vorliegenden Buch vorgestell-
ten Kalküle kommen jedoch, wie schon im 
Falle der Aussagenlogik bemerkt, ohne 
Axiome aus. Nach einer eingehenden Dis-
kussion von pränexer und Skolem-Normal-
form wird Herbrand-Theorie betrieben und 
Resolution für erststufige Logik eingeführt. 
Der Schluss des Kapitels ist der Logikpro-
grammierung mit Hilfe von Prolog und Ot-
ter gewidmet. 

Im vierten Kapitel werden nach einem 
recht weiten Ausflug in die Mengenlehre und 
insbesondere die Kardinalzahlarithmetik die 
klassischen Sätze über erststufige Logik be-
wiesen: Vollständigkeitssatz, Kornpaktheits-
satz, Löwenheim-Skolem aufwärts und ab-
wärts. Es werden auch einige etwas weniger 
bekannte Sätze zum Beispiel über die Amal-
gamierung von Strukturen gebracht. Ab-
schließend wird an einigen Beispielen ver-
deutlicht, wie wenig ausdruckstark die erst-
stufige Logik eigentlich ist. 

In den Kapiteln 5 und 6 werden modell-
theoretische Themen wie Kategorizität, Zu- 
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fallsgraph und 0-1-Gesetze, Quantorenelimi-
nation, Typauslassung und Stabilität be-
sprochen. 

Kapitel 7 ist Berechenbarkeit und Kom-
plexität gewidmet. Hier werden sowohl die 
Grundlagen der Rekursionstheorie als auch 
der Komplexitätstheorie dargestellt. Das zu 
Grunde liegende Maschinenmodell nennt 
der Autor eine T-Maschine, im wesentlichen 
eine Registermaschine, die mit der Program-
miersprache T programmiert wird. Die 
Aquivalenz von rekursiven und mit einer 
T-Maschine berechenbaren Funktionen 
wird bewiesen. Am Schluss des Kapitels wer-
den die Klassen P und NP untersucht und ei-
nige Beispiele für NP-vollständige Probleme 
genannt. 

In Kapitel 8 werden die Gödelschen Un-
vollständigkeitssätze bewiesen. Kapitel 9 
geht der Frage nach, was es über die erststu-
fige Logik hinaus noch gibt. Es werden 
zweitstufige Logik und unendliche Logiken, 
sowie Fixpunkt-Logiken besprochen. In die-
sem Kapitel wird auch der Satz von Lind-
ström bewiesen, der die hervorragende Rolle 
der erststufigen Logik zeigt. 

Im Kapitel 10 geht es schließlich um end-
liche Modelltheorie. Während bisher algo-
rithmische Aspekte der Logik im Zusam-
menhang mit automatischem Beweisen und 
dem Erfüllbarkeitsproblem (SAT) angespro-
chen wurden, geht es hier darum, Komplexi-
tätsklassen mit Hilfe von Logiken zu be-
schreiben. Der wichtigste Satz in diese Rich-
tung ist sicherlich der Satz von Fagin, der be-
sagt, dass die Klasse NP, aufgefasst als Klas-
se von Grapheneigenschaften, genau die 
Klasse aller Eigenschaften ist, die sich mit ei-
ner zweitstufigen Formel der Form zweitstu-
figer Existenzquantor gefolgt von einer erst-
stufigen Formel ausdrücken lassen. Man 
kann den Autor gar nicht genug dafür loben, 
diesen Satz in einer Einführung in die Logik 
zu bringen. Mir scheint sich der Satz von 
Faggin weder unter Logikern noch unter 
theoretischen Informatikern der angemesse-
nen Bekanntheit zu erfreuen. Im zehnten 
Kapitel wird auch der Beweis der NP-Voll-
ständigkeit von SAT nachgeholt. 

Der vorliegende Text ist flüssig geschrie-
ben, stellenweise witzig (der Name der Pro-
grammiersprache T) und gut lesbar. Es 
wird mehr argumentiert als gerechnet, ohne 
dass die Beweise unexakt wären. Die Aus-
wahl der Themen ist recht umfangreich, oh-
ne dass das Buch damit überladen wirkt. Es 
wird deutlich auf Stabilitätstheorie, auto-
matisches Beweisen, Komplexitätstheorie 
und endliche Modelltheorie eingegangen, 
vermutlich die wichtigsten aktuellen For-
schungsgebiete in der mathematischen Lo-
gik. Selbst in dem kurzen Abschnitt über 
Mengenlehre finden sich Verweise auf sehr 
tiefe, relativ frische Resultate in der Kardi-
nalzahlarithmetik, die zwar faszinierend und 
wichtig sind, auf die man in einem einführen-
den Text über mathematische Logik aller -
dings verzichten könnte. Nicht erwähnt wer-
den nichtklassische Logiken. 

Abgesehen von einigen Schreibfehlern 
(Löwenhiem), macht das Buch einen recht 
sorgfältig geschriebenen Eindruck. Somit 
kann ich es wärmstens als Einführung in die 
mathematische Logik empfehlen. Auch eine 
Vorlesung ließe sich gut nach dem Buch hal-
ten, wenn man entsprechend viel weglässt, 
was aber angesichts des Aufbaus des Buches 
kein Problem sein sollte. 

Berlin 	 S. Geschke 

J.Jahn 
Vector Optimization, 

Theory, Applications 

and Extensions 

Berlin u. a.. Springer, 2004,465 5., € 89,95 

The book under review is dedicated to the 
theory of vector optimization in general 
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spaces. The aim of the book is to present a 
survey of modern and important resuits con-
cerning theoretical foundations ofvector op-
timization in a general mathematical setting, 
optimality conditions, applications in engi-
neering and extensions to set-valued optimi-
zation. 

The book starts in the first part with basic 
concepts and theoretical resuits from convex 
analysis that are important for developing 
optimization theory in general spaces. Sev -
eral properties and assertions are motivated 
and explained at the example of vector-va-
lued norms. After a introduction on the field 
of mappings on linear spaces (convex maps, 
differentiability, subdifferential) some fun-
damental theorems (Hahn-Banach theorem, 
Separation theorems for convex sets, James 
theorem, Krein-Rutman theorems and 
Lyusternik theorem) are presented. 

In the second part important results from 
theory of vector optimization are explained. 
An introduction of different solution con-
cepts (minimal, strongly minimal, weakly 
minimal and properly minimal elements) is 
given. Using scalarization techniques neces-
sary and sufficient conditions for optimal 
elements of a Set are shown. The author in-
troduces special parametric normS for sca-
larization and gives a complete characteriza-
tion of minimal and weakly minimal ele-
ments in the general nonconvex case. 
Furthermore, existence resuits for optimal 
elements of a vector optimization problem 
are shown using Zorn's lemma and a scalari-
zation techniques. Lagrange multiplier rules 
are proven for minimal and weakly minimal 
elements of a vector optimization problem. 
Moreover, the author presents a general 
duality principle and duality assertions for 
abstract convex vector optimization pro-
blems via scalarization methods. A speciali-
zation to abstract linear vector optimization 
problems is given. 

The third part of the book is concerned 
with interesting applications of the theoreti-
cal resuits derived in the former chapters. 
For vector approximation problems the 
author shows Kolmogorov conditions and  

duality assertions. Furthermore, cooperative 
n player differential games are studied and 
necessary and sufficient conditions for opti-
mal and weakly optimal controls are pre-
sented. 

Engineering applications are considered in 
the fourth part of the book. This chapter 
introduces the basic concepts ofmulticriteria 
optimization. The author presents an inter-
esting example from structural engineering, 
gives the definitions ofseveral variants ofthe 
Edgeworth-Pareto optimality (weakly, pro-
perly, strongly and essentially Edgeworth-
Pareto optimal points) and explains rela-
tions between these different concepts. 
Moreover, important scalarization resuits 
are shown, especially, the weighted sum and 
the weighted Chebyshev norm approach are 
investigated in detail. Furthermore, numeri-
cal methods are described. As a special appli-
cation the author studies multiobjective de-
sign problems (design of antennas, design of 
FDDI (fiber distributed data interface) com-
puter networks, a fluidized reactor-heater 
system and a cross-current multistage ex-
traction process). 

Finally, in part five some extensions to set-
valued optimization are presented. General 
optimization problems with set-valued con-
straints or a set-vaiued objective function are 
closely related to problems in stochastic op-
timization, fuzzy theory and optimal con-
trol. Several optimality notions for a set-va-
iued optimization problem are introduced. 
Furthermore, this chapter contains basic 
concepts and resuits frorn set-valued optimi-
zation: Differentiability notions, contingent 
epiderivatives, subdifferential and optimal-
ity conditions using contingent epideriva-
tives, subgradients and weak subgradients, 
especially Lagrange multiplier rules. 

All at all, the book highlights very weil re-
cent developments in the field of active re-
search, as weil important and interesting to-
pics like optimization theory in general 
spaces, optimality conditions and applica-
tions in engineering. The material is weil pre-
sented, preliminaries are discussed in detail, 
and many illustrations heip to understand 
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the complicated facts. The book may be 
warmly recommended to graduate students 
and researchers in optimization, numerical 
mathematics, Operations research, engineer -
ing and other fields which apply optimiza-
tion methods. 

Halle 	 C. Tammer 

Basel u. a.. Birkhäuser, 2005, 453 S., € 98,- 

Die Theory der Hardyräume H, also der 
Banachräume aller 11-Funktionen auf dem 
komplexen Einheitskreis mit positiven Fou-
rierkoeffizienten, gehört zum festen Bestand 
klassischer Analysis. Eine Sonderstellung 
kommt dabei dem Fall p = 1 zu. Hier hat es 
in den letzten drei Jahrzehnten eine stür-
mische Entwicklung gegeben. Es wurden 
neue und tiefliegende Erkenntnisse gewon-
nen wie etwa die Existenz einer unbedingten 
Basis und die Charakterisierung des Dual-
raums als Raum der BMO-Funktionen 
(„bounded mean oszillation") mit Hilfe der 
Fefferman-Stein-Dualität. Gleichzeitig wur-
den neue Typen von H' -Räumen eingeführt, 
etwa dyadische, atomare und martingale 
H'-Räume, und deren Zusammenhänge un-
tersucht. Einher damit ging die Diskussion 
wichtiger neuer Ungleichungen. der Inter-
polation von Integralkernoperatoren, ba-
nachraumtheoretischer Fragen und vieles 
andere mehr. Die hier gewonnenen Metho-
den sind auch interessant und hilfreich für 

benachbarte Gebiete der Analysis, so dass 
man im Zusammenhang mit H' eher von ei-
nem selbständigen Teilgebiet der Analysis 
als von einem einzelnen Banachraum ana-
lytischer Funktionen sprechen sollte. 

All das rechtfertigt, den H'-Räumen ein 
eigenständiges Buch zu widmen, welches die 
neu gewonnenen Ergebnisse an der Schnitt-
stelle zwischen Fourieranalysis, Banach-
raum-, Wahrscheinlichkeits- und Operator-
theorie übersichtlich darstellt und deren Be-
weise, die man sonst nur in Originalarbeiten 
findet, detailliert ausarbeitet. Dies wird im 
vorliegenden Buch durchgeführt. 

Herausgekommen ist ein exzellentes Buch, 
welches das Potenzial besitzt, zu einem wich-
tigen Standardwerk der Analysis zu werden. 
Dem Verfasser gelingt es, auch die kompli-
ziertesten Sachverhalte klar und verständlich 
darzustellen. Erreicht wird das u. a. durch ei-
ne konsequente Gliederung längerer Bewei-
se, durch kurze Einführungen am Anfang ei-
nes jeden Abschnittes und Erläuterungen 
vor Beginn wichtiger technischer Aussagen. 
Auch scheut sich der Autor nicht, früher ein-
geführte Begriffe, welche später an anderer 
Stelle wieder gebraucht werden, dort noch 
einmal zu erklären. Ebenso hilfreich sind die 
historischen Notizen am Ende eines jeden 
Kapitels. 

Das Buch ist eingeteilt in 6 Kapitel. 
Grundlage des gesamten Werkes ist das 
Haarsystem, welches zusammen mit dem 
Walshsystem im ersten Kapitel eingeführt 
wird. Hier werden u. a. auch die Ungleichun-
gen von Khintchine, Burkholder, Fefferman 
und Hardy-Littlewood bewiesen. Ebenfalls 
in diesem Kapitel werden die Räume H' und 
BMO vorgestellt. 

Kapitel 2 ist funktionalanalytischen Kon-
zepten gewidmet. Es werden dort u. a. die 
bisher bekannten komplementären Teilräu-
mc von Ht  bestimmt. Als wichtiges banach-
raumtheoretisches Hilfsmittel wird fernerhin 
die Dekompositionsmethode von Pelczynski 
bewiesen, und es werden analytische Famili-
en von Operatoren studiert. 

Kapitel 3 beschäftigt sich mit tiefen kom-
binatorischen Fragen im Zusammenhang 
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mit der „Carleson Packing Condition". Ka-
pitel 4 gibt eine Isomorphieklassifizierung 
der martingalen H'-Räume und untersucht 
Subsysteme des Haarsystems. 

Kapitel 5 beschäftigt sich mit isomorphen 
Invarianten von H'. Hier wird u. a. gezeigt, 
dass H' die uniforme Approximationseigen-
schaft besitzt und dass BMO primär ist. Ka-
pitel 6 schließlich diskutiert ausführlich ato-
mare H 1 -Räume und untersucht das Bi-
orthogonalsystem von Carleson, welches 
sich in zahlreichen Fällen als unbedingte Ba-
sis herausstellt. 

Viele der dargestellten Ergebnisse sind 
sehr tiefe Resultate der Analysis mit unge-
mein anspruchsvollen Beweisen, die man 
zum Teil zum ersten Mal in einem Lehrbuch 
findet. Es ist erstaunlich, wie gut es dem Ver-
fasser gelingt, sie in lesbare Form zu bringen. 
Der Leser des Buches muss keine Spezial-
kenntnisse besitzen. Alles, was über die ele-
mentaren Grundlagen reeller und komplexer 
Analysis hinausgeht, wird hier explizit ent-
wickelt. 

Es ist dem Buch zu wünschen, dass es die 
Aufmerksamkeit erhält und ihm der Rang 
zugeordnet wird, den es verdient. 

Paderborn 	 W. Lusky 
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ISBN 978-3-528-03216-6 

INHALT 

Kürzeste Wege - Minimale aufspannende Bäume - Das chinesische Postbo-

tenproblem - Das Travelling-Salesman-Problem - Färbungen - Kombinatori-

sche Spiele - Matchings - Flüsse in Netzwerken - Das P-NP Problem - 

Kombinatorische Optimierung für die Landwirtschaft 

DAS BUCH 

Kombinatorische Optimierung ist allgegenwärtig: Ob Sie elektronische 

Geräte oder Auto-Navigationssysteme verwenden, den Mobilfunk nutzen, 

den Müll von der Müllabfuhr abholen lassen oder die Produkte einer effizi-

ent arbeitenden Landwirtschaft konsumieren, immer steckt auch Mathe-

matik dahinter. Dieses Buch gibt eine Einführung in die wichtigsten Themen 

der kombinatorischen Optimierung. Alle diese Themen werden problemori-

entiert aufbereitet und mit Blick auf die Verwendung im Mathematikunter -

richt vorgestellt. So wird Lehrerinnen und Lehrern, Studierenden im Grund-

studium und anderen Interessierten der Zugang zu einem angewandten 

Gebiet der modernen Mathematik ermöglicht, das sich an vielen Stellen im 

Alltag wieder findet. 



Klaus Neusser 

Zeitreihenanalyse in den 
Wirtschaftswissenschaften 

2006. XVI, 264 S. Br. EUR 29,90 
ISBN 978-3-8351-0117-3 

Albrecht Irle/Claas Prelle 

Übungsbuch 
Finanzmathematik 

Leitfaden, Aufgaben und Lö-
sungen zur Derivatbewertun 
2007.2215. Br. EUR 24,90 
ISBN 978-3-8351-0086-2 

Bernd Luderer/Uwe Würker 

Einstieg in die 
Wirtschaftsmathematik 

6., überarb. Aufl. 2005. 
443 S. Br. EUR 24,90 
ISBN 978-3-8351-0044-2 

Heidrun Matthäus! 
WoIf-Gert Matthäus 

Mathematik für BWL-Bachelor 
Schritt fur Schritt mit 

ausführlichen Lösungen 
2006. 3185. Br. EUR 24,90 
ISBN 978-3-8351-0099-2 

Stephan Dempe! 
Heiner Schreier 

Operations Research 
Deterministische Modelle 
und Methoden 
2006. 381 S. Br. EUR 34,90 
ISBN 978-3-519-00448-6 

46 Eä Abraham-Lincoln-Str. 
65189 Wiesbaden 
Fax 0611.7878-420 
www.teubner.de  

Teubner 



Olaf Steinbach 

Lösungsverfahren für 
lineare Gleichungssysteme 

Algorithmen und 
Anwendungen 
2005. 200 S. Br. EUR 29,90 
!SBN 978-3-519-00502-5 

L)5 bUCfl 

1 Die Simulation technischer Prozesse erfordert in 
der Regel die Lösung von linearen Gleichungs-
systemen großer Dimension. Hierfür werden 
moderne vorkonditionierte lterationsverfahren 
(z.B. CG, GMRES, BiCGStab) hergeleitet und 
die zur Realisierung notwendigen Algorithmen 
beschrieben. Für Systeme mit strukturierten 
Matrizen werden effiziente direkte Lösungsver-
fahren angegeben. Numerische Beispiele für 
praktische Problemstellungen illustrieren die 
Effizienz der vorgestellten Verfahren. 

Abrahani-Lincoln-Str. 46 
65189 Wiesbaden 
Fax 0611.7878-420 
www.teubner.de  

Teubner 



puIpI  

Klemens Burg/Herbert Haf/ 

Friedrich Wille 

Höhere Mathematik 
für Ingenieure Band 1 

Analysis 
7., überarb. u. erw. Aufl. 2006. 
XVIII, 604 S. mit 230 Abb. Br. 
EUR 39,90 
ISBN 978-3-8351-0045-9 

Inhalt 

Grundlagen: Reelle Zahlen; Elementare Kom-
binatorik; Funktionen; Unendliche Folgen 
reeller Zahlen; Unendliche Reihen reeller 
Zahlen; Stetige Funktionen - Elementare 
Funktionen - Differentialrechnung einer 
reellen Variablen - Integralrechnung einer 
reellen Variablen - Folgen und Reihen von 
Funktionen - Differentialrechnung mehrerer 
reeller Variabler - Integralrechnung mehrerer 
reeller Variabler 

Abraham-Lincoln-Str. 46
65189 Wiesbaden 

- 

Fax 0611.7878-420 

www.teubner.de  
Teubner 

T 

Burg/HatA/\/ille 

Höhere Mathematik 
für Ingenieure Band II 

Lineare Algebra 
5., überarb. u. erw. Aufl. 2007. 
XVIII, 415 S. Br. EUR 39,90 
ISBN 978-3-8351-0111-1 

1 Inhalt 

Vektoren in der Ebene - Vektoren im dreidi-
mensionalen Raum - Vektorräume - Lineare 
Gleichungssysteme, GaußscherAlgorithmus - 
Algebraische Strukturen: Gruppen und Körper - 
Vektorräume über beliebigen Körpern - Matri-
zenmultiplikation Reguläre und inverse 
Matrizen - Determinanten - Spezielle Matrizen 
- Lineare Gleichungssysteme und Matrizen - 
Eigenwerte und Eigenvektoren - Die Jordan-
sche Normalform - Matrix-Funktionen - Dre-
hungen, Spiegelungen, Koordinatentransforma-

tionen - Lineare Ausgleichsprobleme - Tech-

nische Strukturen - Roboter-Bewegungen 

Burg/Hat/Wille 

Höhere Mathematik 
für Ingenieure Band III 

Gewöhnliche Differential- 
gleich un gen, Distributionen, 
Integraitransformationen 
4., durch ges. u. erw. Aufl. 
2002. xiv; 437 S. Br. EUR 39,90 
ISBN 978-3-519-32957-2 

Hlnhalt 

Gewöhnliche Differentialgleichungen: Diffe-
rentialgleichungen n-ter und Systeme 1. Ord-
nung - Ebene autonome Systeme - Lineare 
Differentialgleichungen - Lineare Differential-
gleichungen mit konstanten Koeffizienten - 
Potenzreihenansätze und Anwendungen - 
Rand- und Eigenwertprobleme - Distribution: 
Verallgemeinerung des klassischen Funk-
tionsbegriffs - Rechnen mit Distributionen - 
Anwendungen - Integraitransformationen: 
Fouriertransformation - Hilberttransformation 
- Diskrete und Schnelle Fouriertransformation 
- Laplacetransformation 




