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Vorwort

Im Mittelpunkt dieses Hefts stehen zwei Ubersichtsartikel. Der Aufsatz von E. Eberlein
et al. behandelt mathematische Modelle zur Bewertung von Risiken am Finanzmarkt,
wobei Kreditrisiken im Vordergrund stehen.

Dabei werden verschiedene Modelle der Risikobewertung diskutiert, um dann einen
axiomatischen Zugang zu dieser Problematik vorzustellen.

SchlieBlich werden dynamische Modelle und die Preisgestaltung von Derivaten be-
handelt. Im Hinblick auf die Turbulenzen an den Finanzmirkten, die durch falsche
Kreditbewertungen ausgelst wurden, handelt es sich hier um einen Artikel von gerade-
zu tagespolitischer Aktualitét!

An der Schnittstelle von reiner und angewandter Mathematik steht auch der zweite
Ubersichtsartikel dieses Hefts von J. Escher.

Er stellt dar, wie neuere Entwicklungen in der Funktionalanalysis die Grundlage fiir
das Studium nichtlinearer Evolutionsgleichungen bilden.

Dies wird an Hand zweier Beispiele ndher erldutert. Dabei wird zuerst die Modellie-
rung von Tumorwachstum behandelt, das zweite Beispiel beschreibt den Fluss einer zi-
hen Fliissigkeit unter dem Einfluss von Oberflichenspannung. Auch dieser Artikel zeigt
eindrucksvoll, wie theoretische Grundlagen und Anwendungsfragen einander beeinflus-
sen und befruchten.

Wie immer enthélt auch dieses Heft eine Reihe von aktuellen Buchbesprechungen.

K. Hulek
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Mathematics in Financial Risk Management

Abstract
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The paper gives an overview of mathematical models and methods used in financial risk
management; the main area of application is credit risk. A brief introduction explains
the mathematical issues arising in the risk management of a portfolio of loans. The pa-
per continues with a formal overview of credit risk management models and discusses
axiomatic approaches to risk measurement. We close with a section on dynamic credit
risk models used in the pricing of credit derivatives. Mathematical techniques used stem
from probability theory, statistics, convex analysis and stochastic process theory.
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1 Introduction
1.1 Financial Risk Management

Broadly speaking, risk management can be defined as a discipline for “Living with the
possibility that future events may cause adverse effects” (Kloman 1999). In the context
of risk management in financial institutions such as banks or insurance companies these
adverse effects usually correspond to large losses on a portfolio of assets. Specific exam-
ples include: losses on a portfolio of market-traded securities such as stocks and bonds
due to falling market prices (a so-called market risk event); losses on a pool of bonds or
loans, caused by the default of some issuers or borrowers (credit risk); losses on a port-
folio of insurance contracts due to the occurrence of large claims (insurance- or under-
writing risk). An additional risk category is operational risk, which includes losses re-
sulting from inadequate or failed internal processes, fraud or litigation.

In financial markets, there is in general no so-called “free lunch” or, in other words,
no profit without risk. This is the reason why financial institutions actively take on
risks. The role of financial risk management is to measure and manage these risks.
Hence risk management can be seen as a core competence of an insurance company or a
bank: by using its expertise and its capital, a financial institution can take on risks and
manage them by various techniques such as diversification, hedging, or repackaging
risks and transferring them back to markets, etc. While risk management has thus al-
ways been an integral part of the banking and insurance business, recent years have wit-
nessed a large increase in the use of quantitative and mathematical techniques. Even
more, regulators and supervisory authorities nowadays even require banks to use quan-
titative models as part of their risk management process.

Given the random nature of future events on financial markets, the field of stochas-
tics (probability theory, statistics and the theory of stochastic processes) obviously plays
an important role in quantitative risk management. In addition, techniques from con-
vex analysis and optimization and numerical methods are frequently being used. In fact,
part of the challenge in quantitative risk management stems from the fact that techni-
ques from several existing quantitative disciplines are drawn together. The ideal skill-set
of a quantitative risk manager includes concepts and techniques from such fields as
mathematical finance and stochastic process theory, statistics, actuarial mathematics,
econometrics and financial economics, combined of course with non-mathematical
skills such as a sound understanding of financial markets and the ability to interact with
colleagues with diverse training and background.

In this paper we give an introduction to some of the mathematical aspects of finan-
cial risk management. We have chosen the problem of measuring and managing the
risks associated with a portfolio of bonds or loans as vehicle for our discussion. This
choice is motivated by our common research interests; moreover, quantitative credit
risk models are currently a hot topic in academia and industry.

166 JB 109. Band (2007), Heft 4
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1.2 Risk Management for a Loan Portfolio

The loss distribution. Consider a portfolio of loans to m different counterparties, in-
dexed by i € {I1,...,m}. The standard way for measuring the risk in this portfolio is to
look at the change in the portfolio-value over a fixed time horizon 7" such as one year
(current time is = 0). We start with a single loan with given exposure (size) ¢; and ma-
turity date (repayment date) bigger than 7. The main risk is default risk, i.e. the risk
that the borrower cannot repay the loan in full. Denote by 7; > 0 the random default
time of borrower 7/ and introduce the Bernoulli random variable

1, if<T,
Hy= I{T"ST} = {0, else. (1)

Assume that in case of default the borrower pays the lender the amount (1 — §;)e;,
6; € (0, 1] being the proportion of the exposure which is lost in default (the so-called re-
lative loss given default). Abstracting from interest-rate payments the potential loss gen-
erated by loan i over the period (0, 7 is then given by L; = §;¢; ¥;. Denote by

pi=PYi=1)=P(r<T) )

the default probability of counterparty i; p; is by definition the probability that loan i
causes a loss and plays therefore an important role in measuring the default risk of the
loan.

The loss of the whole portfolio of m firms is then given by L = >~ | €;6; Y;. In realis-
tic applications m can be quite large: loan portfolios of major commercial banks contain
several million loans. The portfolio loss distribution is then determined by Fy(I) =
IP(L < /). Note that F; depends on the multivariate distribution of the random vector

(Y1,...,Y,) and not just on the individual default probabilities p;, 1 < i < m. In order
to determine F; we hence need a proper mathematical model for the joint distribution
of (Y1,..., Y,); this issue is taken up in Section 2.2.

Dependence between defaults can have a large impact on the form of F; and in par-
ticular on its right tail (the probability of large losses). This is illustrated in Figure 1,
where we compare the loss distribution for a portfolio of 1000 firms that default inde-
pendently (portfolio 1) with a more realistic portfolio of the same size where defaults
are dependent (portfolio 2). In portfolio 2 defaults are weakly dependent in the sense
that the correlation between default events (corr(Y;, Y;), i # j) is approximately 0.5 %.
In both cases the default probability is p; = 1 % so that on average we expect 10 de-
faults. We clearly see from Figure 1 that the loss distribution of portfolio 2 is skewed
and that its right tail is substantially heavier than the right tail of the loss distribution of
portfolio 1, illustrating the drastic impact of dependent defaults on credit loss distribu-
tions. There are in fact sound economic reasons for expecting dependence between de-
faults. To begin with, the financial health of a firm varies with randomly fluctuating
macroeconomic factors such as changes in economic growth. Since different firms are
affected by common macroeconomic factors, there is dependence between their de-
faults. Moreover, dependence between defaults is caused by direct economic links be-
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tween firms such as a strong borrower-lender relationship or a small supplier for a lar-
ger production firm.

o
=
o

—— BB portfolio, dependsntdefaults
--------- independent defauls

pobability
Q.06
1

0.04
1

0.02
1

0.0
L
kS

T T T L T T k
o} 10 20 30 40 50 60

Number of lcezes

Figure 1. Comparison of the loss distribution of a homogeneous portfolio of 1000 loans with a
default probability of 1% assuming (i) independent defaults and (ii) a default correlation of
0.5%. We clearly see that the dependence between default generates a loss distribution with a
heavier right tail.

Risk Measurement. In practice, risk measures expressing the risk of a portfolio on a
quantitative scale are needed for a variety of purposes. To begin with, financial institu-
tions hold risk capital as buffer against unexpected losses in their portfolios. Regula-
tors concerned with the solvency of financial institutions also have specific require-
ments on risk capital: under the current regulatory framework the amount of risk capi-
tal needed is related to the riskiness of the portfolio as measured via the risk measure
Value-at-Risk (see (3) below for a definition). Moreover, risk measures are used by the
management of a financial institution as a tool for limiting the amount of risk a sub-
unit within the institution — such as a trading group — may take, and the profitability
of a subunit is measured relative to the riskiness (appropriately measured) of its posi-
tion.

Fix some risk management horizon 7" and denote by the random variable L the loss
of a given portfolio over that horizon. Most modern risk measures are statistics of the
distribution of L; such risk measures are frequently called law-invariant risk measures
(Kusuoka 2001). The most popular law-invariant risk measure is Value-at-Risk (VaR).
Given some confidence level o € (0, 1), say, o = 0.99, the VaR of the portfolio at the
confidence level « is defined by

VaRo(L) := inf{/ € R:P(L < I) > a}, (3)

i.e. in statistical terms VaR, (L) is simply the a-quantile of L. If L is integrable, an alter-
native law-invariant risk measure is Expected Shortfall or Average Value at Risk given by
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1
l—«

1

ES; = / VaR,(L)du. 4)
a

Instead of fixing a particular confidence level «, in (4) one averages VaR over all levels

u >« and thus “looks further into the tail” of the loss distribution; in particular

ES, > VaR,.

Of course, from a theoretical point of view it is not very satisfactory to introduce risk
measures such as VaR or expected shortfall in a more or less ad hoc way. In Section 3
we therefore discuss axiomatic approaches to risk measurement and the related issue of
risk-based performance measurement.

Securitization, credit derivatives, and dynamic credit risk models. Recent years have
witnessed a rapid growth on the market for credit derivatives. These securities are pri-
marily used for the management and the trading of credit risk. Credit derivatives have
become popular, because they help financial firms to manage the credit risk on their
books by selling parts of it to the wider financial sector. The payoff of most credit deri-
vatives depends on the exact timing of defaults, so that dynamic (continuous-time)
credit risk model are needed to study pricing and hedging of these products. The
mathematical tools for analyzing credit derivatives hence stem from the field of sto-
chastic process theory, in particular martingale theory and stochastic calculus. We dis-
cuss some of the current developments in Section 4.

Further reading. A short survey paper cannot do justice to all aspects of the vast and
growing field of quantitative risk management. For further reading we refer to the
books McNeil, Frey & Embrechts (2005) (for quantitative risk management in gener-
al), Bluhm, Overbeck & Wagner (2002) (for an introduction with strong focus on cre-
dit risk) or Crouhy, Galai & Mark (2001) (for institutional aspects of risk manage-
ment); further references are provided in the text.

2 Credit Risk Management Models

In this section we discuss models for credit risk management. These models are typically
static, meaning that the focus is the loss distribution over a fixed time period [0, 7]
rather than the evolution of risk in time. This makes the mathematics underlying the
models relatively simple (the key tools are random variables instead of stochastic pro-
cesses) and permits us to discuss some key ideas in credit risk modelling in a non-techni-
cal setting. Note however, that the implementation of even these simple models poses
substantial practical challenges: current approaches for parameter estimation and mod-
el validation are far from satisfactory. To a large extent this is due to the difficult data
situation: credit loss data are collected on an annual or semi-annual basis so that a loss
history for a loan portfolio ranging over 20 years contains at most 40 serially indepen-
dent observations.

We begin with the issue of determining default probabilities for individual firms;
portfolio models and related statistical questions are discussed in Sections 2.2 and 2.3.
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2.1 Default probabilities

State variables. In order to determine the default probability p; of a given firm i one
typically introduces a state variable X; measuring its credit quality. The link between
state variable and default probability is then modelled by some function p : IR — [0, 1]
so that p; = p(X;). This modelling suggests the following simple moment estimator for
p(+): assume that there are N years of default data for a given portfolio available; de-
note by m,(x) the number of firms in year 7 with X; (roughly) equal to x and by M,(x)
the number of those firms which have defaulted in year 7. Then a simple estimator for
p(+) is given by

P 1 H (x)
_Ng . (5)

More sophisticated estimators can be developed in the context of a formal model for
the joint distribution of default events in the portfolio; see Section 2.3 below.

Credit ratings. A popular state variable used in the so-called credit-migration models
is the credit rating of a firm. Credit ratings for major companies or sovereigns are pro-
vided by rating agencies such as Moody’s, Standard & Poor’s (S&P) or Fitch. In the
S&P rating system there are seven rating categories (AAA, AA, A, BBB, BB, B, CCC)
with AAA being the highest and CCC the lowest rating of companies which have not
defaulted; moreover, there is a default state. Moody’s uses seven pre-default rating ca-
tegories labelled Aaa, Aa, A, Baa, Ba, B, C, a finer alpha-numeric system is also in
use. The rating system used by Fitch is similar to the S&P system. Rating agencies also
provide so-called rating transition matrices; an example from Standard & Poor’s is
presented in Table 1. These matrices are determined from historical rating informa-
tion; they give an estimate of the probability that a firm migrates from a given rating
category to another category within a given year.

Initial Rating at year-end (transition probabilities in %)

rating AAA  AA A BBB BB B CCC  Default
AAA 90.81 8.33 0.68 0.06 0.12 0.00  0.00 0.00
AA 0.70  90.65 7.79 0.64 0.06 0.14  0.02 0.00
A 0.09 227  91.05 5.52 0.74 026  0.01 0.06
BBB 0.02 0.33 595  86.93 5.30 1.17 1.12 0.18
BB 0.03 0.14 0.67 7.73  80.53 8.84 1.00 1.06

B 0.00 0.11 0.24 0.43 6.48 8346  4.07 5.20
cccC 0.22 0.00 0.22 1.30 238 1124 6486  19.79

Table 1. Probabilities of migrating from one rating quality to another within 1 year expressed
in %. Source: Standard & Poor’s CreditWeek (15th April 1996).

In the simplest form of credit migration models it is assumed that the current credit rat-
ing of a firm completely determines the distribution of its future rating, or, in mathema-
tical terms, that rating transitions follow a Markov chain. Under this assumption de-
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fault probabilities can be read off from an estimated transition matrix. For instance,
using the transition matrix presented in Table 1, the one-year default probability of a
company whose current S&P credit rating is A is estimated to be 0.06 %, whereas the de-
fault probability of a CCC-rated company is estimated to be almost 20 %. While the
Markovianity of rating transitions is convenient for financial modelling (see for in-
stance (Jarrow, Lando & Turnbull 1997)), there is some doubt if the assumption can be
maintained empirically; a good empirical study based on techniques from survival ana-
lysis is Lando & Skodeberg (2002). This tradeoff between tractability and realism is ty-
pical for the application of mathematical models in finance in general.

Firm-value models. Alternative state variables can be based on the firm-value interpre-
tation of default. In this approach the asset-value of firm 7 is modelled as a nonnega-
tive stochastic process (V;;),.,; liabilities are represented by some (deterministic)
threshold D;. In the simplest case the asset-value process is modelled as geometric
Brownian motion so that In Vr; is normally distributed. In line with economic intui-
tion, it is assumed that default occurs if the asset value of the firm is too low to cover
its liabilities. The precise modelling varies: in the simple Merton (1974) model the de-
fault indicator of firm i is defined by Y; := iy, ;<p;3, 1.€. one checks the solvency of
the firm only at the risk management horizon 7. Somewhat closer to reality are perhaps
the so-called first-passage time models (Black & Cox (1976), Longstaff & Schwartz
(1995)), where

Ti i= il’lf{[ >0: Vi < D,} . (6)

The name stems from the fact that in probability theory 7; is known as first-passage time
of the process (V) at the threshold D;. There are by now many extensions of the simple
model (6) such as unknown default thresholds or general jump-diffusion models for the
asset value process; a good overview is given in Lando (2004).

A natural state-variable in this context is the so-called distance to default which is
used in the popular KMV approach to modelling default probabilities; see for
instance Crosbie & Bohn (2002). In this approach one puts

_ Voi— D

X;:
iV

(7)
where the volatility o; is defined to be the standard deviation of the logarithmic return
In V1 ; — In Vy;. The definition (7) can be motivated in the context of the Merton (1974)-
model. In that model (V1; — Vy,)/ Vo, is approximately N (0, 0?) distributed, so that (in
practitioner language) “X; gives the number of standard deviations the asset value is
away from the default threshold”. For more details on the KMV model we refer to
McNeil et al. (2005), Section 8.2, or Bluhm et al. (2002), Sections 2 and 3.
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2.2 Credit Portfolio Models

Now we return to the problem of modelling the joint distribution of the default indica-
tor vector Y= (Y1,..., Y,,). There are two types of portfolio credit risk models, thresh-
old models and mixture models.

Threshold models. These models can be viewed as multivariate extensions of the firm
value models discussed in the previous subsection. Their defining attribute is the idea
that default occurs for a company i when some critical variable X; (such as the loga-
rithmic asset value In V7 ;) lies below some deterministic threshold d; (such as logarith-
mic liabilities In D;) at the end of the time period [0, 7], i.e. we have Y; = I X;<d;}>
1 <i < m. In this model class default dependence is caused by dependence of the com-
ponents of the random vector X := (X},..., X),). In abstract terms the latter can be re-
presented by the copula of X. This mathematical concept is of relevance for the analy-
sis and the modelling of dependent risk factors in general (Embrechts, McNeil &
Straumann 2001) and therefore merits a brief discussion.

Assume for simplicity that the marginal distributions F;(x) = IP(X; < x) are contin-
uous and strictly increasing. In that case the copula C of X can be defined as the distri-
bution function of the random vector U := (F;(X}),..., F,(X,,)). Note that U has uni-
form marginal distributions:

P(U; <u) =TP(X; < F ' (u)) = F(F7 ' () = u, u€[0,1].

1

C is by definition independent under strictly increasing transformations of the indivi-
dual components of Xand thus represents the dependence structure of this random vec-
tor. Moreover we have the following relation between the distribution function F of X
and its copula C, known as identity of Sklar:

F()C],...,Xm) = IP(XI S x17~~~7/Ym S xm) = IP(UI S Fl(xl)y--«»Um S En(xm))
= C(Fl (X]), e aFm(-xm))v (8)

see McNeil et al. (2005), Section 5.1 for details and extensions. Relation (8) illustrates
nicely how multivariate distributions are formed by coupling together marginal distri-
butions and copulas. An example which is frequently being used is the so-called Gauss
copula C§* defined as copula of a multivariate normally distributed random vector with
correlation matrix P.

In threshold models for portfolio credit risk the copula of the critical-variable vector
X governs the distribution of the default indicator vector Yin the following sense: given
two models with critical variables Xand . Xand threshold vectors d and d. Then the cor-
responding default indicators Y and Y have the same distribution if IP(X; <d)=
IP(X’, < 21,—) for all i (identical default probabilities) and if moreover X and X have the
same copula; see Section 8.3 of McNeil et al. (2005).

Credit portfolio models used in industry such as the popular KMV model (Kealho-
fer & Bohn 2001) typically use multivariate normal distributions with factor structure
for the vector X (so-called Gauss-copula models). Formally, one puts
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/
X,:\/EZa,,\I!j—i—\/l—R,e” ISISH’I7 (9)
j=1

Here ¥ = (VUy,...,¥;) is an /-dimensional Gaussian random vector with E(¥;) =0
and var(V;) = 1 representing country- and industry factors (so-called systematic fac-
tors); € = (ey, ..., €,) is a vector with independent standard-normally distributed com-

ponents representing firm-specific (idiosyncratic) risk; ¥ and e are independent; 0 <
R; < 1 measures the part of the variance of X; which is due to fluctuations of the sys-
tematic factors; the relative weights of the different factors are given by
a=(ai,...,q;) with Zjl.:l a;; = 1 for all i. From a practical point of view the factor
structure is mainly introduced in order to reduce the dimensionality of the problem, so
that in applications / is usually much smaller than m.

Bernoulli mixture models. In a mixture model the default risk of an obligor is assumed
to depend on a set of common economic factors, such as macroeconomic variables,
which are also modelled stochastically; given a realization of the factors, defaults of in-
dividual firms are assumed to be independent. Dependence between defaults thus
stems from the dependence of individual default probabilities on the set of common
factors. We start our analysis with a general definition.

Definition 2.1 (Bernoulli mixture model). Given some random vector ¥ =
(Uy,...,9;), the random vector Y = (Y),..., Y,,) follows a Bernoulli mixture model
with factor vector W, if there are functions p; : R’ — [0,1], I <i < m, such that con-
ditional on W the default indicator Yis a vector of independent Bernoulli random vari-
ables with IP(Y; = 1|¥ = ¢) = p;(¥).

Fory = (¥1,...,ym) in {0,1}” we thus have that

m

P(Y=y|¥=y)= sz (1 - pie))' ™, (10)

and the unconditional distribution of the default indicator vector Yis obtained by inte-
grating over the distribution of the factor vector W. In particular, the default probabil-
ity of company i is given by p; = IP(Y; = 1) = E(p:(¥®)).

One-factor models. In many practical situations it is useful to consider a one-dimen-
sional mixing variable ¥ and hence a one-factor model: one-factor models may be
fitted statistically to default data without great difficulty (see Section 2.3 below);
moreover, their behaviour for large portfolios is also particularly easy to understand,
see for instance Section 8.4.3 of McNeil et al. (2005). A simple one-factor model for a

portfolio consisting of different homogeneous groups indexed by r € {1,...,k} (re-
presenting for instance rating classes) would be to assume that
pi(¥) = h(p ) +07). (11)

Here / : IR — (0, 1) is a strictly increasing /ink function, such as h(x) = ®(x), ® the stan-
dard normal distribution function, or A(x) = (1 + exp(—x))~" (the logistic distribution
function); r(i) gives the group membership of firm i; p, is a group-specific intercept
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term; o > 0 is a scaling parameter and W is standard normally distributed. Such a speci-
fication is commonly used in the class of generalized linear mixed models in statistics.

Inserting this specification in (10) we can find the conditional distribution of the de-
fault indicator vector. Suppose that there are m, obligors in rating category r and write
M, for the number of defaults. The conditional distribution of the vector M =
(Mj,..., M) is then given by

k
PM=1]¥=¢)=]] ('7) (hr + o))" (1 = b, + o)™ ™", (12)

r=1

where I = (I,..., 1) .

Mapping of models. The threshold model (9) can be reformulated as a mixture model,
cf. Bluhm et al. (2002), Section 2. This is a useful insight for a number of reasons. To
begin with, Bernoulli mixture models are easy to simulate in Monte Carlo risk studies.
Moreover, the mixture model format and the threshold model format give rise to dif-
ferent model-calibration strategies based on different types of data, so that a link be-
tween the model types is useful in view of the data problems arising in the statistical
analysis of credit risk models.

Consider now a vector X of critical variables as in (9), default thresholds d, . .., d,,
and let Y; = Iy x;<d;}- We have, using the independence of ¥ and € and the fact that
e~ N(0,1),

!
m(de,wW=¢>=1P(e,-sd’_%aﬂ’rw=¢)
- (13)
~ a0 I ),
B ViI=R, /TP

moreover, the independence of ¢; and ¢, i # j, immediately implies that ¥; and Y; are
conditionally independent given the realisation of . Note that since X; ~ N(0, 1), the
model can be calibrated to a set of unconditional default probabilities p;, 1 < i < m, if
we let d; = &7 (p;).

The above argument can be generalized to various other critical variable models
with factor structure; see for instance Section 8.4.4 of McNeil et al. (2005).

2.3 Parameter estimation in credit portfolio models

Parameter estimation is an important issue in credit risk management. In threshold
models one needs to determine the parameters of the factor representation (9). For this
stock returns are typically used as proxy for the asset returns of a company; the factor
model is then estimated by a mix of formal factor analysis and an ad-hoc assignment of
factor weights based on economic arguments; see Kealhofer & Bohn (2001) for an ex-
ample of this line of reasoning. In this section we describe alternative approaches which
are based on the Bernoulli mixture format and historical default data. More specifically,
we discuss the estimation of model parameters in the one-factor Bernoulli mixture mod-
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el (11). Admittedly, model (11) is quite simplistic. However, given the present data situa-
tion, parameter estimation in Bernoulli mixture models based solely on historical de-
fault information is only feasible for models with a low-dimensional factor structure.

We consider repeated cross-sectional data, i.e. observations of the default or non-de-
fault of groups of monitored companies in a number of time periods. This kind of data
is readily available from rating agencies. Suppose as before that we have observations
over N years and denote by m;,, the number of firms in year ¢ and group r in our sample;
M,_y,. denotes the number of these firms which have actually defaulted and
M, = (M,.I, wiiin 3 M,k) In this simple model one neglects dependence of defaults over
time (serial dependence) and assumes that the factor variables (¥, ) for the different
years are independent and standard normally distributed; moreover in line with the
mixture model formulation, we assume that defaults of individual firms are condition-
ally independent given (¥, ) ;- Using (12) and the independence of (¥ ) 1> We obtain
the following form of the likelihood of the model parameters p := (u1,. .., ux) and o
given the observed data Mi,...,My:

¥ \ 1 - ¥ 22
L(p,o | My, ..., My) :WH/IRIP<M:M, R =¢,,L,a>e gy, (14)
The integrals in (14) are easily evaluated numerically, so that the model can be fitted
using maximum likelihood estimation (MLE); see Frey & McNeil (2003) for details. Si-
milar estimations based on moment matching techniques can be found in Bluhm et al.
(2002), Section 2.7.

Since the factor U, is often interpreted as some measure of the state of the economy
in year ¢, and since moreover business cycles tend to last over several years, it makes
sense to assume some serial dependence of the time series (¥,)Y, of factor variables.
The simplest model would be a Markovian structure where the distribution of ¥, de-
pends on the realization of W,_;. With this extension the model becomes a so-called &id-
den Markov model (Elhott & Moore 1995). For instance, McNeil & Wendin (2007) con-
sider a model where (¥, ) | follows a so-called AR-1 process with dynamics

U, =a¥, | +¢&,

for —1 < a < 1 and aniid sequence (s,) , of noise variables. Under this model assump-
tion, the random variables (¥,)" | are not independent and the likelihood has a more
complicated form, so that MLE is no longer feasible. McNeil & Wendin (2007) propose
to use Bayesian approaches instead; as shown in their paper, Markov-Chain Monte
Carlo (MCMC) methods (see for instance Robert & Casella (1999)) can be used to sam-
ple from the posterior distribution of the unknown model parameters.
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3 Risk measures and capital allocation
3.1 Standard techniques for calculating and allocating risk capital

The development of the theoretical relationship between risk and expected return is
built on two economic theories: portfolio theory and capital market theory (Markowitz
(1952), Sharpe (1964), Lintner (1965)). Portfolio theory deals with the selection of port-
folios that maximize expected returns consistent with individually acceptable levels of
risk whereas capital market theory focuses on the relationship between security returns
and risk. These theories also provide a natural framework for measuring profitability.
The profitability analysis is commonly carried out by expressing the risk-return rela-
tionship as simple rational functions of risk- and return-components. The two basic var-
iants of these so-called risk adjusted ratios are known as RORAC or RAROC, respec-
tively; see Matten (2000) for details.

Techniques for measuring risk are a prerequisite for profitability analysis. In a bank,
risk is usually quantified in terms of risk capital (or Economic Capital). The reason for
the close connection between risk and capital is the fact that the main purpose of the
bank’s capital is to protect the bank against extreme losses, i.e. capital which is invested
in save and liquid assets should ensure solvency of the bank even in adverse economic
scenarios. Hence, the actual capital requirements of a bank are determined by its risk
profile.

From a bank’s perspective, the investment of capital in riskless assets is not very at-
tractive, since the return the bank can earn by investing in these assets is usually much
lower than the return required by the shareholders of the bank. Therefore, in line with
portfolio theory, risk is one of the components in the profitability analysis of the bank’s
business areas, portfolios and transactions. This task requires an allocation algorithm
that splits the risk capital k of a portfolio X with subportfolios X1, ..., X}, into the sub-
portfolio contributions ki, . . ., k,, with k = k| + ... + k,,. The objective of this section is
to review the main concepts for measuring and allocating risk capital.

In the classical portfolio theory, e.g. in the Capital Asset Pricing Model, the risk of a
portfolio is measured by the variance (or volatility) of the portfolio distribution and risk
capital is distributed proportional to covariances.' Techniques based on second mo-
ments are the natural choice for normally distributed portfolios. Loss distributions of
credit portfolios, however, are asymmetric and heavy tailed. For these distributions sec-
ond moments do not provide useful tail information and are therefore not suitable for
measuring or allocating risk.

The current standard in credit portfolio modelling is to define the risk capital in
terms of a quantile of the portfolio loss distribution, in financial lingo the Value-at-Risk
(VaR) VaR, (X) of the loss X of the portfolio at a specified confidence level « (see (3)).
VaR has an intuitive economic interpretation, i.e. it specifies the capital needed to ab-
sorb losses with probability «, and has even achieved the high status of being written
into industry regulations. However, VaR also has an obvious limitation as a risk mea-
sure: in general it is not subadditive. Subadditivity means that for two losses X and Y

VaR(X + Y) < VaR(X) + VaR(Y). (15)
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VaR is known to be subadditive for elliptically distributed random vectors (X, Y)
(McNeil et al. 2005), and thus for this special case encourages diversification. For typi-
cal credit portfolios the assumption of an elliptical distribution cannot be maintained.
Consequently diversification, which is commonly considered as a way to reduce risk,
may increase Value-at-Risk. A specific example can be found in Section 6.1 of McNeil
et al. (2005).

3.2 Coherent and convex risk measures

In recent years, the development of more appropriate risk measures has been one of the
main topics in quantitative risk management. The starting point is the seminal paper
Artzner et al. (1999). In this paper, an axiomatic approach to the quantification of risk
is presented and a set of four axioms is proposed.

Definition 3.1 (Coherent risk measures). Let (€, A, IP) be a probability space, L>
the space of all (almost surely) bounded random variables on 2 and V" a subspace of
the vector space L. We will identify each portfolio X with its loss function, i.e. X is
an element of V" and X (w) specifies the loss of X at a future date in state w € Q. A risk
measure p is a function from V" to IR. It is called coherent if it is

monotonic: X <Y = pX)<pY) VX, YeV,
translation invariant: pX+a)=p(X)+a VNVacR, XeV,
positively homogeneous: plaX)=a-p(X) Ya>0,X €V,

subadditive: pP(X+Y)<p(X)+p(Y) VX, YeEV.

It seems to be accepted in the finance industry that the concept of a coherent risk
measure provides a useful characterization of risk measures under fairly general condi-
tions (see Artzner et al. (1997) for the motivation behind the choice of these axioms). A
serious criticism to the necessity of the subadditivity and positive homogeneity can,
however, be raised if liquidity risk is taken into account. This is the risk that the market
cannot easily absorb the sell-off of large asset positions. In this situation, doubling the
size of a position might more than double its risk. To take into account possible liquid-
ity-driven violations to subadditivity and positive homogeneity, the concept of convex
risk measures has been independently introduced in Heath & Ku (2004), Follmer &
Schied (2002) and Frittelli & Gianin (2002) by replacing the axioms on subadditivity
and positive homogeneity by the weaker requirement of convexity.

Definition 3.2 (Convex risk measures). A translation invariant and monotonic risk
measure p : V' — IR is called convex if it has the property

convex: p(aX + (1 —a)Y) <ap(X)+ (1l —a)p(Y) YX,Y €€V, ac|0,1].

The debate on coherent versus convex risk measures is subject of current research
and will not be covered in this survey article. We believe that coherent risk measures
provide an appropriate axiomatic framework for most practical applications and will
therefore focus on this concept. For the theory of convex risk measures we refer to the
excellent exposition in Follmer & Schied (2004).
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Two other important areas of active research are not covered in this article: the theo-
ry of dynamic risk measures and the connection between risk measures, utility theory
and portfolio choice. We refer the reader to the recent articles Cheridito et al. (2006)
and Pirvu & Zitkovic (2006) and the literature surveys provided therein.

3.3 Representation theorems for coherent risk measures

A general technique for specifying coherent risk measures is given in Artzner et al.
(1999).

Proposition 3.3. Let Q be a set of absolutely continuous probability measures with
respect to IP. The function

pe(X) := sup{Eq(X) | Q € Q} (16)
defines a coherent risk measure on L™,

Does every coherent risk measure have a representation of the form (16)? Artzner et
al. (1999) have shown that this is indeed the case if the underlying probability space €2 is
finite. For infinite {2 the situation is more complicated. It is shown in Theorem 2.3 in
Delbaen (2002) that the representation of general coherent risk measures has to be
based on the more general class of finitely additive probabilities. In order to represent a
coherent risk measure p by standard, i.e. o-additive, probability measures the coherent
risk measure p has to satisfy an additional condition, the so-called Fatou property.

Definition 3.4 (Fatou property and monotonic convergence). Given a function
p: L>* — IR. Then p satisfies the Fatou property, if p(X) < liminf,_., p(X,) for any
uniformly bounded sequence (Xj),., converging to X in probability; p satisfies the
monotonic convergence property, if p(X,) | 0 for any sequence 0 < X, < 1 such that
X, 1 0.

For coherent risk measures the monotonic convergence property implies the Fatou
property. Furthermore, the Fatou property (the monotonic convergence property) of p
is equivalent to continuity of p from below (from above), see Féllmer & Schied (2004).

Theorem 3.5 (Representation of coherent risk measures). Let p be a coherent risk
measure. Then we have

1. p satisfies the Fatou property if and only if there exists an L' (IP)-closed, convex set Q
of absolutely continuous probability measures on Q with

p(Y) =sup{Eq(Y) | Q € Q}. (17)

2. Assume that p can be represented in the form (17). Then p satisfies the monotonic con-
vergence property if and only if for every Y € L™ there is a Q, € Q such that p(Y) is
exactly Eq, (Y), i.e. p(Y) is not only a supremum but also a maximum.

The proof of the first part of the theorem given in Delbaen (2000, 2002) is mainly based
on two theorems in functional analysis, the bipolar theorem and the Krein-Smulian the-
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orem. The proof of the second part uses James' characterization of weakly compact sets
(Diestel 1975). The connection to dual representations of Fenchel-Legendre type is out-
lined in Follmer & Schied (2004), see also Delbaen (2000, 2002) and Frittelli & Gianin
(2002).

3.4 Expected shortfall

The most popular class of coherent risk measures is Expected Shortfall (see, for in-
stance, Rockafellar & Uryasev (2000, 2001); Acerbi & Tasche (2002)). For an integrable
random variable Y the Expected Shortfall at level «, denoted by ES,, is the risk mea-
sure defined by

ES.(Y):=(1—a) /1 VaR,(Y)du.

«

It is easy to show that

ESo(Y) = (1 — o) {E(Y 1{ysvara(y)}) + VaRa(Y) - (IP(Y < VaR4(Y)) — )}
(18)
is an equivalent characterization of Expected Shortfall. Furthermore, ES,, is coherent

(Acerbi & Tasche (2002)) and satisfies the monotonic convergence property. Hence, by
Theorem 3.5, there exists a set Q of probability measures with

ES.(Y) =max{Eq(Y) | Q € Q}. (19)

This set consists of all absolutely continuous probability measures @ whose density
d@Q/dIP is IP-a.s. bounded by 1/(1 — ) (see, for example, Delbaen (2000)). Further-
more, it follows from (18) that for every ¥ € L™ the maximum in (19) is attained by the
probability measure @ given in terms of its density by

dQy _ Lysvara(v)} + Brliy=vara(v)}
dP l-a ’

with (20)

IP(Y < VaR,(Y)) —«a

Y = ¥ =VaR,(1))

if (Y =VaRa(Y)) > 0. 1)

3.5 Spectral measures of risk

A particularly interesting subclass of coherent risk measures has been introduced in Ku-
suoka (2001), Acerbi (2002, 2004) and Tasche (2002). Spectral measures of risk can be
defined by adding two axioms to the set of coherency axioms: law invariance and como-
notonic additivity. Spectral risk measures are generalizations of Expected Shortfall. In
fact, they can be defined as the convex hull of the Expected Shortfall measures. A third
characterization provides a direct link to risk aversion: spectral risk measures can be re-
presented as integrals specified by appropriate risk aversion functions o (see Theorem
3.7).
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Recall that two real valued random variables X and Y are said to be comonotonic if
there exist a real valued random variable Z and two non-decreasing functions
f,g: IR — RRsuchthat X = f(Z) and Y = g(Z). A risk measure p will be called law-in-
variant if p(X) depends only on the distribution of X. Note that VaR and Expected
Shortfall are law-invariant. Furthermore, it has been recently shown in Jouini et al.
(2006) that law-invariant convex risk measures have the Fatou property.

Definition 3.6 (Spectral risk measures). A coherent risk measure p is called a spec-
tral risk measure if it is law-invariant and comonotonic additive, meaning that
p(X +7Y)=p(X)+ p(Y) for all comonotonic X, Y € V.

Law invariance of a risk measure p is an essential property for practical applications:
note that a risk measure can only be estimated from empirical loss data if it is law-invar-
iant. Two comonotonic portfolios X, Y € V provide no diversification at all when
added together. It is therefore a natural requirement that p(X + Y) should equal the
sum of p(X) and p(Y). If a risk measure is subadditive and comonotonic additive the
upper bound p(X) + p(Y) placed on p(X + Y) by subadditivity is sharp as it can be ac-
tually attained in the case of comonotonic variables.

For a proof of the following theorem we refer to Kusuoka (2001), Acerbi (2002) and
Tasche (2002). Generalizations can be found in Féllmer & Schied (2004) and Weber
(2007).

Theorem 3.7 (Characterization of spectral risk measures). Ler (2, A, IP) be a prob-
ability space with non-atomic 1P, i.e. there exists a random variable that is uniformly dis-
tributed on (0,1). Then the following three conditions are equivalent for a risk measure
P

1. pisaspectral measure of risk.
2. pisin the convex hull of the Expected Shortfall measures.
3. pcan be represented in the form

1
p(X) =p /0 VaRy(X)o(@)du + (1 — p)VaRy (X)

where p € [0,1] and o is a non-decreasing density on [0,1], ie. >0 on[0,1],
fol ou)du =1, and o(uy) < o(up) for 0 < uy <upy < 1.

3.6 Capital Allocation

We now turn to the allocation of risk capital either to subportfolios or to business units.
More formally, assume that a risk measure p has been fixed and let X be a portfolio
which consists of subportfolios Xi,..., X,,, i.e. X = X; +... + X,,. The objective is to
distribute the risk capital k := p(X) of the portfolio X to its subportfolios, i.e. to com-
pute risk contributions ki, ...,k of X1,..., X, withk =k, + ... + k,,,.

Allocation techniques for risk capital are a prerequisite for portfolio management
and performance measurement. In recent years, theoretical and practical aspects of dif-
ferent allocation schemes have been analyzed in a number of papers; see for instance
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Tasche (1999, 2002), Overbeck (2000), Delbaen (2000), Denault (2001), Hallerbach
(2003). An allocation scheme proposed by several authors is the allocation by the gradi-
ent or Euler principle:* the capital allocated to the subportfolio X; of X is the derivative
of the associated risk measure p at X in the direction of X; (see (24) for a precise formali-
zation). Tasche (1999) argues that allocation based on the Euler principle provides the
right signals for performance measurement. Another justification for the Euler principle
is given in Denault (2001) using cooperative game theory and the notion of “fairness".
He shows that the Euler principle is the only fair allocation principle for a coherent risk
measure. In the following we will review a simple axiomatization of capital allocation in
Kalkbrener (2005). The main axioms are the property that the entire risk capital of a
portfolio is allocated to its subportfolios and a diversification property that is closely
linked to the subadditivity of the underlying risk measure. It turns out that in this fra-
mework the Euler principle is an immediate consequence of the proposed axioms.

The axiomatization is based on the assumption that the capital allocated to subport-
folio X; only depends on X; and X but not on the decomposition of the remainder
X — X; = >4 X; of the portfolio. Hence, a capital allocation can be considered as a
function A from V' x V' to IR. Its interpretation is, that A(X, Y) represents the capital
allocated to the portfolio X considered as a subportfolio of portfolio Y.

Definition 3.8 (Axiomatization of capital allocation). A function A: V' x V — IR is
called a capital allocation with respect to a risk measure p if it satisfies the condition
A(X,X) = p(X) for all X € V, i.e. if the capital allocated to X (considered as stand-
alone portfolio) is the risk capital p(X') of X.

The following requirements for a capital allocation A are proposed.

1. Linearity. For a given overall portfolio Z the capital allocated to a union of subport-
folios is equal to the sum of the capital amounts allocated to the individual subport-
folios. In particular, the risk capital of a portfolio equals the sum of the risk capital
of its subportfolios. More formally, A is called linear if

Va,b e R,X,Y,Z€V AaX +bY,Z)=aA(X,Z)+bA(Y,Z).

2. Diversification. The capital allocated to a subportfolio X of a larger portfolio Y
never exceeds the risk capital of X considered as a stand-alone portfolio: A is called
diversifying if
VX, Y eV AX,Y)<AX,X).

3. Continuity. A small increase in a position does only have a small effect on the risk ca-
pital allocated to that position: A is called continuous at Y € V if

VX eV lir%A(X7 Y+eX)=AX,Y).

Risk measures and capital allocation rules are closely related. First, given a capital
allocation A the corresponding risk measure p is obviously given by the values of A on
the diagonal, i.e. p(X) = A(X, X). Conversely, for a positively homogeneous and sub-
additive risk measure p a corresponding capital allocation A, can be constructed as fol-
lows: let V" be the set of real linear functionals on }” and for a given risk measure p con-
sider the following subset
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H,={heV"|h(X)<pX)foral X € VV}.

It is an easy consequence of the Hahn-Banach Theorem that for a positively homoge-
neous and subadditive risk measure p

p(X) = max{h(X) | h € Hp} (22)
forall X € V. Hence for every Y € V there exists an 4y, € H, with h,(Y) = p(Y). This
allows to define a capital allocation A, by

A(X,Y) = h5(X). (23)

The set H, can be interpreted as a collection of (generalized) scenarios: the capital allo-
cated to a subportfolio X of portfolio Y is simply the loss of X under scenario /.

The following theorem (Theorem 4.2 in Kalkbrener (2005)) states the equivalence
between positively homogeneous, subadditive (but not necessarily monotonic) risk mea-
sures and linear, diversifying capital allocations.

Theorem 3.9 (Existence of capital allocations). Lez p: V' — IR.

a) If there exists a linear, diversifying capital allocation A with associated risk measure p
then p is positively homogeneous and subadditive.

b) If p is positively homogeneous and subadditive then A, is a linear, diversifying capital
allocation with associated risk measure p.

If a linear, diversifying capital allocation A is moreover continuous at a portfolio
Y € V it is uniquely determined by the directional derivative of its associated risk mea-
sure, as the next theorem (Theorem 4.3 in Kalkbrener (2005)) shows.

Theorem 3.10 Let p be a positively homogeneous and sub-additive risk measure and
Y € V. Then the following three conditions are equivalent:
a) A, is continuous at Y, i.e. forall X € Vlim.oA,(X,Y +€eX) = A, (X, Y).
b) The directional derivative

liIrép(YJreX)*p(Y)
€— €

(24)

exists for every X € V.
©) There exists aunique h € H, withh(Y) = p(Y).

If these conditions are satisfied then A, (X, Y) equals (24) for all X € V, i.e. A, is given
by the Euler principle.

Theorem 3.9 implies that in the general case, in particular for credit portfolios, there
do not exist linear diversifying capital allocations for VaR since VaR is not subadditive.
However, under regularity conditions (see, for example, Tasche (1999)), the directional
derivative (24) exists for VaR,, and equals

E(X|Y = VaR,(Y)). (25)

The volatility (or covariance) allocation, on the other hand, is linear and diversifying, as
it is derived from the risk measure Standard Deviation using (23). More precisely, let ¢
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Std

be a non-negative real number and define the risk measure p;

tion A5 by

p34(X) := c- Std(X) + E(X), (26)

and the capital alloca-

c-Cov(X,Y)/Std(Y)+ E(X) if Std(Y) >0,

E(X) if Std (Y) = 0. (&)

AS(X,Y) = {
Then the risk measure p5 is translation invariant, positively homogeneous and subad-
ditive but not monotonic for ¢ > 0. A5 is a linear, diversifying capital allocation with
respect to p>™@. If Std(Y) > 0 then A5 is continuous at Y and equals the directional de-
rivative (24) by Theorem 3.10.

Expected Shortfall ES is a coherent risk measure and therefore positively homoge-
neous and subadditive. Hence, application of (23) to Expected Shortfall yields a linear,
diversifying capital allocation with associated risk measure ES. The scenario function
h5S(X) for this risk measure is given by Eqy (X), where the probability measure Qy is
specified in (20). In summary,

AfS(X, Y) ] EQY(X) = </X 8 1{)’>\'aRa(Y)}d]P+ By/X l{y:vaRa(y)}dIP>/(l — a)

is a linear, diversifying capital allocation with respect to ES,,. If
IP(Y >VaR,(Y))=1—-a or IP(Y>VaR,(Y))=1-a (28)

then AZS is continuous at Y and equals the directional derivative (24). In particular,
(28) holds if IP(Y = VaR,(Y)) = 0; in that case AZS(X, Y) takes the particularly intui-
tive form

AES(X,Y)=E(X | Y > VaR.(Y)).

The extension to spectral risk measures can be found in Overbeck (2004).

3.7 Gase study: capital allocation in an investment banking portfolio

We will now analyze the practical consequences of different allocation schemes when
applied to a realistic credit portfolio. The case study is based on a sample investment
banking portfolio consisting of m = 25000 loans with an inhomogeneous exposure and
default probability distribution. The average exposure size is 0.004% of the total expo-
sure and the standard deviation of the exposure size is 0.026%. The portfolio expected
loss is 0.72% and the unexpected loss, i.e. the standard deviation, is 0.87%. Default
probabilities py, ..., p, of all companies are obtained from Deutsche Bank’s rating sys-
tem and vary between 0.02% and 27%. Default correlations are specified by a Bernoulli
mixture model: for company i, the conditional default p; has the form

7 (p) — VRIS, ity
VI-R; '

pi(¥) = @( (29)
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where the 96 systematic factors ¥ = (¥y,..., Uys) follow a multi-dimensional normal
distribution and represent different countries and industries; see (9) and (13).

The portfolio loss distribution L specified by this model does not have an analytic
form. Monte Carlo simulation is therefore used for the calculation and allocation of
risk capital. For this class of models, however, the Monte Carlo estimation of tail-fo-
cused risk measures like Value-at-Risk or Expected Shortfall is a demanding computa-
tional problem due to high statistical fluctuations. This stability problem is even more
pronounced for Expected Shortfall contributions of individual transactions. Impor-
tance sampling is a variance reduction technique that has been successfully applied in
credit portfolio models of this type. We refer to Glasserman & Li (2005), Kalkbrener et
al. (2004) and Egloff et al. (2005) for details.

For the test portfolio we have calculated the risk measures VaRg 999s(L), ESg.999(L)
and ESg99(L). The VaRg 9995 (L) is the risk measure used at Deutsche Bank for calculat-
ing Economic Capital, i.e. the capital requirement for absorbing unexpected losses over
a one-year period with a high degree of certainty. The confidence level of 99.98% is de-
rived from Deutsche Bank’s target rating of AA+, which is associated with an annual
default rate of 0.02%. The ESj999(L) has been chosen since it leads to a comparable
amount of risk capital, while being based on a coherent risk measure. The ESj99(L) was
calculated to study the impact of the confidence level « on the properties of the Ex-
pected Shortfall measure. The application of these risk measures results in the following
capital requirements (in percent of portfolio exposure):

VaR()_gggg(L) = 10.50%, ESo'ggg(L) = 9.43%, ESo_gg(L) = 5.68%.

In the next step the portfolio capital is distributed to the individual loans using different
capital allocation algorithms. In credit portfolio models of the form (29) the application
of the Euler principle to VaR,, leads to risk contributions for individual loans that are
either 0 or the full exposure of the loan. This digital behaviour of the contribution (25)
is due to the fact that {L = VaR, (L)} is usually represented by a single combination of
defaults and non-defaults of the m loans. We therefore do not distribute VaR 9995(L)
via the directional derivative (25) but follow the industry standard and use volatility
contributions (27) instead. The ES(g99(L) and ESgg9(L) are allocated using Expected
Shortfall contributions.

Figure 2 displays the 50 loans with the highest capital charge under Expected Short-
fall allocation based on the 99.9% quantile. The relation of portfolio capital

VaRo.9998(L) > ESp.999(L) > ESg.99(L)

also holds for each of these loans. However, the order of the capital consumption
changes and the absolute differences in capital are significant: the highest capital con-
sumption for Expected Shortfall is 93% of the exposure compared to almost 200% for
covariances. In particular, under the covariance allocation the capital charge exceeds
the overall exposure (the maximum possible loss) for almost all loans in this sub-sample.
This demonstrates that the shortcomings of the covariance allocation, i.e. the fact that
the underlying risk measure is not monotonic, are not purely theoretical but have impli-
cations for realistic credit portfolios.
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Figure 2. Comparison between Expected Shortfall and covariance capital allocation for loans
with highest capital charges.

In contrast, Expected Shortfall contributions are usually higher than volatility con-
tributions for investment-grade loans, i.e. for loans with a rating of BBB or above; see
Kalkbrener et al. (2004) for details. This result illustrates that unrealistically high capi-
tal charges for poorly rated loans are avoided under Expected Shortfall allocation by
distributing a higher proportion of the portfolio capital to highly rated loans.

Expected shortfall contributions behave also very reasonably with respect to the sec-
ond main risk driver in credit portfolios, namely concentration risk. This risk is caused
by default correlations and name concentration. Expected Shortfall contributions mea-
sure the average contribution of individual loans to portfolio losses above a specified a-
quantile. For a high « these losses are mainly driven by default correlations and name
concentration and Expected Shortfall allocation therefore is — almost by definition —
very sensitive to concentration risk. It is therefore not surprising that Expected Shortfall
usually penalizes concentration risks more strongly than the covariance method. For in-
stance, the 99.9% Expected Shortfall contribution at R = 60% is three times higher than
at R = 30% for a typical AA+ rated loan in our portfolio whereas the volatility contri-
bution of this loan not even doubles.? Overall, this case study strongly supports the view
that Expected Shortfall contributions provide a reasonable methodology for allocating
risk capital for credit portfolios.

4 Dynamic Credit Risk Models and Credit Derivatives

4.1 Overview

Credit derivatives. The volume in trading credit derivatives at the exchanges and di-
rectly between individual parties has increased enormously since the first of these pro-
ducts were introduced roughly fifteen years ago. The reason for this success is to a
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large extent due to the fact that they allow to transfer credit risk to a larger community
of investors. Traditionally the risk arising from a loan contract could not be trans-
ferred and remained in the books of the lending institution until maturity. With credit
derivatives the risk profile of a given portfolio of credits can be shaped according to
specified limits. Concentrations of risk caused by geographic or industry sector factors
can be removed. Also by selling a whole credit portfolio via a collateralized debt obli-
gation (CDO) or a collateralized loan obligation (CLO), a financial institution can
free part of its capital which can then be used for new business opportunities. Thus
credit derivatives allow banks to use their capital more efficiently by acting more as a
broker of risk than a taker of risk. Some important credit derivatives are introduced
below; for further information we refer for instance to Schénbucher (2003) or Bluhm
& Overbeck (2006).

Dynamic credit risk models. To analyse credit derivatives, static models which consid-
er only a fixed future time horizon are no longer appropriate: the pay-off of most cred-
it derivatives depends on the timing of credit events such as default or downgrading of
a company; furthermore markets for certain credit products have become so liquid
that investors can trade credit risk in a dynamic fashion. For these reasons dynamic
(continuous time) models based on (sophisticated) tools from stochastic calculus are
needed.

Dynamic credit risk models can be classified into firm-value models, as discussed
briefly in Section 2.1, and reduced-form models: in this model class the precise mechan-
ism leading to default is left unspecified; instead the default time of a firm is modelled as
a nonnegative random variable, whose distribution typically depends on economic cov-
ariables. The approach is similar to the modelling philosophy underlying the Bernoulli
mixture models introduced in Section 2.2. Reduced-form models are popular in prac-
tice, since they lead to tractable formulas for prices of credit derivatives. In particular, it
is often possible to apply the well-developed pricing machinery for default-free term
structure models to the analysis of defaultable securities; see for instance Lando (1998)
or Duffie & Singleton (1999). Duffie & Lando (2001) provide a link between firm-value
models and reduced-form models assuming that an investor has incomplete information;
see also Blanchet-Scalliet & Jeanblanc (2004) or Frey & Runggaldier (2006) for a discus-
sion from a more theoretical viewpoint. For textbook treatments of dynamic credit risk
models we refer to Bielecki & Rutkowski (2002), Bluhm et al. (2002), Duffie & Singleton
(2003), Lando (2004), Schonbucher (2003) and Chapter 9 of McNeil et al. (2005). Cur-
rently a lot of research is devoted to the development of dynamic credit portfolio mod-
els. For reasons of space we cannot discuss this exciting field. An overview is given in
Section 9.6 of McNeil et al. (2005), but the best way to get an impression of the current
developments is to visit the excellent web-site www.default-risk.com.

Martingale modelling and credit spreads. The existence of a liquid market for credit
products requires a specific modelling approach: pricing models for credit derivatives
are set up under an equivalent martingale measure — an artificial probability measure
turning discounted security prices into martingales (fair bets) — and model parameters
are determined by equating model prices to prices actually observed on the market
(model calibration). In this way it is ensured that the model does not permit any arbi-
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trage (riskless profit) opportunities. Absence of arbitrage also immediately leads to
the existence of credit spreads: the risk that a lender might loose part or all of his
money due to default of a counterparty during the lifetime of a credit contract has to
be compensated by an interest rate which is higher than the risk-free rate (the interest
rate earned by default-free bonds). The difference between the risk-free rate and the
rate one has to pay for a bond or loan subject to default risk is termed spread.

4.2 The Defaultable Lévy Libor Model

Among the many possible ways to quantify the dynamic evolution of credit spreads we
outline in the following an approach which allows to capture the joint dynamics of risk-
free interest rates and credit spreads; for details we refer to the original article Eberlein,
Kluge & Schonbucher (2006). A number of instruments depend on both quantities so
that modelling interest rates and credit spreads separately might lead to inconsistencies.
Instead of describing the dynamics by a diffusion with continuous trajectories we will
consider more powerful driving processes, namely time-inhomogeneous Lévy processes,
also called processes with independent increments and absolutely continuous character-
istics (PITIAC) (see Jacod & Shiryaev (2003)). This class of processes is rather flexible
and in the context of credit risk even more appropriate than in equity models since cred-
it risk-related information often arrives in such a way that it causes jumps in the under-
lying quantities: take for example the adjustment of the rating of a firm by one of the
leading agencies. Models driven by Lévy processes capture such an abrupt movement
more realistically than Brownian motion driven models which have continuous paths.
In implementations typically generalized hyperbolic Lévy processes (see Eberlein
(2001)) or any of its subclasses like hyperbolic or normal inverse Gaussian processes are
used.

Let us consider a fixed time horizon T* and a discrete tenor structure Ty < 7T}
< ---< T, =T*. T, denotes the time points where certain periodic payments have to
be made. As an example take quarterly or semiannual interest payments for a loan or a
coupon-bearing bond over a period of 10 years. As underlying interest rate we consider
the é-forward Libor rates L(t, T). The acronym Libor stands for London Interbank Of-
fered Rate. L(z, T} ) is the annualized interest rate which applies for a period of length
Ok = Tr41 — Ty starting at time point T} as of time 7. & is typically 3 or 6 months. For-
mally L(z, T}) is defined by

1 (BT

where B(t, Ty ) denotes the price at time 7 of a zero coupon bond with maturity 7). Zero
coupon bond prices are also called discount factors since they represent the amount
which due to interest earned increases to the face value 1 until maturity 7}, thus
B(Tk, Ti) = 1. Actually the Libor rate is not a risk-free rate since by definition it is the
rate at which large internationally operating banks lend money to other large interna-
tionally operating banks. There is a very small default risk involved and consequently
the Libor rate is slightly above the treasury rate. Since it is readily available it is conveni-
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ent to take the Libor rate as the base rate. The corresponding rate for a contract which
has a nonnegligible probability to default is the defaultable forward Libor rate L(t, Ty.).
Both rates are related by the equation

L(t, Ty) = L(¢t, Tyx) + S(t, Ty) (31)
where S(¢, Ty) is the (positive) spread. Since S(¢, T;) turns out not to be the quantity
which will show up in valuation formulae for credit derivatives we will model instead
the forward default intensities H(t, Ty ) given by

S(t, Tx)
H(t,Ty) = ———~—. 32
(& T) 1+ 6 L(2, Ty) L)
The term 6, L(t, T}) is small compared to 1, therefore, numerically H (¢, Ty) and S(z, T})
are quite close.
We start by specifying the dynamics of the most distant Libor rate by setting

L(t, Tp1) = L(0, T,,_;) exp </0rb1‘(s, Tn_1) ds+ /0, A(s, Tpet) dLT ) (33)

The fact that L(-,T,-;) is modeled as an exponential will guarantee its positivity.
A(-, T,-1) is a deterministic volatility structure and L7 = (LT") is a time-inhomoge-
neous Lévy process which without loss of generality has the simple canonical represen-
tation

L,T* = /0’ \/c:dWsT* + /Or/mx(,u — ") (ds, dx). (34)

The first term is a stochastic integral with respect to a standard Brownian motion W7~
and represents the continuous Gaussian part, whereas the second integral, which is an
integral with respect to the compensated random measure of jumps of L7", is a purely
discontinuous process. The drift term b%(-, T,_;) will be chosen in such a way that
L(-, T,—1) becomes a martingale under the terminal forward measure Pr+.*

Via a backward induction for each tenor time point T, forward measures IPTk are
derived. Although one could define each forward martingale measure IP7, by giving ex-
plicitly its density relative to the spot martingale measure IP — this is the usual martin-
gale measure known from stock price models — the latter is not used in the context of Li-
bor models. One starts with a probability measure IP7+ which is interpreted as the term-
inal forward measure and proceeds backwards in time by introducing successively the
forward measures IP7, via Radon-Nikodym derivatives

d[PTk I+ O L(Ty, Tk)
leTk+1 T 1+ 6kL(O, Tk) ’

Then, for each tenor time point T}, under IP7, _, the Libor rate L(z, k) can be given in
the following uniform form

L(t, Ty) = L(0, Ty) exp (/OtbL(s, Ty) ds + /0' A(s, Tx) dekH) (35)

where also the driving processes L7k+1 = (LtTk“) have to be derived from L”" during
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the backward induction. To implement this model one uses only mildly time-inhomoge-
neous Lévy processes, namely piecewise (time-homogeneous) Lévy processes. Typically
three Lévy parameter sets — one for short, one for intermediate, and one for long matu-
rities — are sufficient to calibrate the model to a volatility surface given by prices of inter-
est rate derivatives such as caps, floors and swaptions. For some calibration results see
Eberlein & Koval (2006), where the Lévy Libor model has been extended to a multicur-
rency setting.

The dynamics of the forward default intensities H (-, T;) cannot be specified directly
since it depends on the specification of the random time point at which a defaultable
loan or bond actually defaults. There is a standard way to construct a random time for
the default event. Let I' = (T';) be a hazard process, that is an adapted, right-continu-
ous, increasing process starting at 0 with tlim I'; = c0. Let 1 be a uniformly distributed
random variable on the interval [0, 1], indel;cendent of the process (I';),~, possibly de-
fined on an extension of the underlying probability space. Then -

r=inf{r>0]e " <n} (36)

defines a stopping time with respect to the ‘right’ filtration which can be used to indicate
default. By choosing the hazard process I' appropriately — only its values at the tenor
time points 7; matter — one can now model the forward default intensities H (¢, T}) in
such a way that the dynamics is described in the same simple form (35) as given for the
Libor rates, namely

H(t,Ty) = H(0, Tx) exp (/Oth(s, Ty) ds + /01 Vesy(s, Ty) dW‘_TkH
1 (37)
+/0 /]RW(& Ti)x(p — v7k+1)/(ds, dx)).

Again this is done by a backward induction along the tenor time points and as in (35)
the specific form as an exponential guarantees that the forward default intensities and
thus the spreads S(z, 7)) are positive.

Based on this joint model for interest and default rates we can now price defaultable
instruments and credit derivatives. Let us start with a defaultable coupon bond with n
coupons of a fixed amount ¢ that are promised to be paid at the dates 77, ..., T,. In case
default happens during the life time of the bond usually not everything is lost. There is a
positive recovery. To incorporate this fact in the model, suitable recovery rules have to
be fixed. The most appropriate scheme is the recovery of par rule. The assumption is
then that if a coupon bond defaults in the time interval (7%, Tj.1], the recovery is given
by a recovery rate w € [0, 1) times the sum of the notional amount, which we set equal
to 1, and the interest accrued over the period (7%, Tj+1]. The resulting amount is paid at
time Ty . The promised-interest payments for subsequent periods are lost.

Theorem 4.1 (Pricing of defaultable coupon bonds). Under the recovery of par rule
the arbitrage-free price at time Ty = 0 of a defaultable bond with n coupons of amount c is
- n—1 o
B(0,c;n) =B, T,) + Y_BO, Tiwr) (e +7(1 + 98 Eg, [H(TWTo)]),  (38)
k=0 -
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where B(0, Ty.) are the pre-default prices of defaultable zero-coupon bonds with maturities
Ty, which are known at time 0.

Note that the only random variables in this pricing formula are the forward default in-
tensities. This is the reason why we aimed at describing the dynamics of H(-, T}) in a re-
latively simple form. The expectations are taken with respect to the (restricted) defaulta-
ble forward measures Wfk , for the dates T). These are the appropriate martingale
measures in the defaultable world. Their Radon-Nikodym densities with respect to the
(default-free) forward measures IP7, are given by

dPr, B0, T) o7, BO, Tk)H 1 (39)
dPr,— B(0,Ty) B(0,Tx) w5 1 + 6H(T;, Ty

Recall that B(0, T;) denotes the time-0 price of a default-free zero-coupon bond with
maturity 7. A formula similar to (38) can be obtained to price a defaultable floating
coupon bond that pays an interest rate composed of the default-free Libor rate plus a
constant spread x. Let us mention here that the change of measure technique is a key
tool in interest rate and credit theory to obtain valuation formulae which are as simple
as possible.

The most popular and heavily traded credit derivatives are credit default swaps.
They can be used to insure defaultable financial instruments against default. In a credit
default swap the protection buyer A pays periodically a fixed fee to the protection seller
B until a prespecified credit event occurs or the final time point of the contract is
reached. The credit event can be the default of a reference bond issued by a party C.
The protection seller in turn will make a payment that covers the losses of 4 in case the
credit event happens. Of course the credit event as well as the default payment have to
be clearly specified. Let us consider a standard default swap with the maturity 7, where
the credit event is defined to be the default of a certain fixed-coupon bond. According
to the recovery scheme explained above, the default payment A4 will receive at time Ty
if default happend in the period (7%, Tj+1] is 1 — w(1 + ¢). The periodic fee s, the so-
called default swap rate, is now determined in such a way that the initial value of the
contract is zero. The time-0 value of the periodic fee payments is s(>";_, B(0, Tx—))
since each fee payment of size s which has to be made at time 7}_; has to be discounted
by the corresponding discount factor B(0, Ty_1). Following the standard pricing princi-
ple for a contingent claim, some nontrivial analysis shows that the initial value of the
payment A will receive in case of default is

2(1 — (1 +¢))B(0, Tic)8k-1 Bp, H (T, Te))- (40)

Equating these two sums one gets the default swap rate

5= 1*__77(”_012 B(0, Te)61 B, [H(Tic, Tk,l)]). (41)
52 B0, Tiy) 7 k
k=1

The formula shows that again expectations of forward default intensities have to be
evaluated under the corresponding defaultable forward measures. Another important
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class of credit derivatives which can be priced in this model framework are credit default
swaptions. The holder of such an option has the right to enter a credit default swap at
some prespecified time and swap rate. Credit default swaptions are typically extension
options which are often imbedded in a credit default swap.

There is a very liquid market for credit default swaps. Therefore the current swap
rates usually do not have to be determined by formula (41). Instead, credit default
swaps are used as calibration instruments for the term structure of forward default in-
tensities. In other words, given the currently quoted swap rates, (41) is used to extract
the model parameters and then the so calibrated model can be used to price less liquid
instruments for example in the OTC-market. Other derivatives which can be priced in
this modelling framework are total rate of return swaps, asset swaps, options on defaulta-
ble bonds, and credit spread options.

Comments

1 The precise definition of this allocation scheme, called volatility allocation, is given in Section
3.6.

2 Recall Euler’s well-known rule that states that if / : § — IR is positively homogeneous and dif-
ferentiable at x € S C IR”, we have f(x) = 30 xi 2 (x).

3 The R-parameter is the coupling of the loan to the systematic factors and therefore quantifies
the correlation of the loan with the rest of the portfolio.

4 Pr« is the martingale measure corresponding to the numeraire B(z, T*),i.e. security prices ex-
pressed in units of B(¢, T*) are Pr+-martingales.
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Neuere Entwicklungen in der Funktionalanalysis bilden die Grundlage eines umfassen-
den Studiums abstrakter (nichtlinearer) Evolutionsgleichungen. Dabei ist eine Theorie
fiir unendlich-dimensionale dynamische Systeme entstanden, die hinreichend allgemein
ist, um wichtige Klassen freier Randwertaufgaben untersuchen zu kénnen. Anhand
zweier konkreter Beispiele werden einige dieser Entwicklungen vorgestellt und die ent-
sprechenden analytischen Werkzeuge erlautert.
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1 Einfiihrung

Viele natur- und ingenieurwissenschaftliche Prozesse verandern die raumlichen Gebiete
in denen diese Prozesse stattfinden. Die mathematische Modellierung dieses ubiquitdren
Phanomens erfolgt in der Regel durch sogenannte freie Randwertaufgaben, d. h. durch
Systeme partieller Differentialgleichungen, in welchen neben den eigentlichen Zustands-
groflen auch der freie Rand des sich verdndernden Gebietes bestimmt werden muss. Da-
bei weisen die meisten relevanten freien Randwertaufgaben eine starke Kopplung zwi-
schen den Zustandsgroéfen und dem freien Rand auf. Auflerdem unterliegen die Lsun-
gen freier Randwertaufgaben offensichtlich keinem Superpositionsprinzip, und stellen
somit stets nichtlineare, wie sich in den Anwendungen zeigt, quasilineare bzw. voll-
nichtlineare Evolutionsgleichungen dar. Einige Merkmale und Eigenschaften dieser
Systeme werden im Verlauf der vorliegenden Ausfiihrungen erortert.

Wichtige Beitrdge der Funktionalanalysis haben in den vergangenen drei Jahrzehn-
ten wesentlich zum Verstdndnis unendlich-dimensionaler dynamischer Systeme bei-
getragen. Dabei ist eine allgemeine Theorie entstanden, welche die analytische Schérfe
besitzt, die die Behandlung freier Randwertaufgaben im Rahmen klassischer Losungen
erfordert. Zudem besticht dieser Zugang durch eine grofle Flexibilitét, die es erlaubt,
verschiedene Klassen freier Randwertaufgaben zu untersuchen. Zu erwéihnen sind hier
Phaseniibergangsmodelle wie das Stefanproblem, das Mullins-Sekerka-System oder der
Oberflachendiffusionsfluss, hydrodynamische Modelle wie die Navier-Stokessche Glei-
chung, das klassische Wasserwellenproblem, die Hele-Shaw-Zelle oder Fliisse durch po-
rose Medien, und in der Geometrie sogenannte Kriimmungsfliisse.

Ziel dieses Beitrages ist es, an Hand zweier Beispiele iiber neuere Entwicklungen auf
diesem Gebiet zu berichten. Die Auswahl der diskutierten Beispiele wurde dabei vom
Gedanken geleitet, die dahinterstehenden allgemeinen Prinzipien aufzudecken. Das ers-
ten Beispiel befasst sich mit der Modellierung von Tumorwachstum. Es wird dargelegt,
dass diese Modelle im Rahmen der sogenannten quasilinearen parabolischen Evoluti-
onsgleichungen addquat untersucht werden konnen. Das Charakteristikum dieser Klas-
se von Evolutionsgleichungen besteht darin, dass in natiirlicher Weise ein fiithrender li-
nearer Anteil ausgezeichent ist, dem die Nichtlinearitéten in einem zu prézisierenden
Sinne untergeordnet sind. Die parabolische Struktur spiegelt sich in der Tatsache wider,
dass der fithrende lineare Anteil im Rahmen der analytischen Halbgruppen auf geeig-
neten Banachriumen behandelt werden kann.! Dieser Zugang ist duferst flexibel, da
die Voraussetzungen an die Nichtlinearititen nahezu optimal sind und keine Vorausset-
zungen an die Geometrie des zugrundeliegenden Banachraumes zu stellen sind (vgl.
Theorem 3.1).

In einem gewissen Gegensatz hierzu stehen die sogenannten voll-nichtlinearen para-
bolischen Evolutionsgleichungen, bei welchen kein fithrender linearer Term mehr aus-
gezeichnent ist, dem die Nichtlinearitdten untergeordnet sind. Unter geniigenden Regu-
laritdtsvoraussetzungen ist es naheliegend, die Gleichungen zu linearisieren, und in ei-
nem ersten Schritt die entsprechenden linearen Evolutionsgleichungen zu untersuchen.
Hierbei erzwingt die voll-nichtlineare Struktur der urspriinglichen Gleichungen jedoch,
dass die entsprechenden linearen Systeme Isomorphismen zwischen geeigneten Funk-
tionenrdumen induzieren. Die scheinbar harmlose Forderung, dass Losungsoperatoren
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linearer Evolutionsgleichungen Isomorphismen zwischen Banachraum-wertigen Funk-
tionenrdumen sind, hat erstaunlich tiefliegende funktionalanalytische Konsequenzen,
u. a. auch fiir die Geometrie der zugrundeliegenden Banachrdume, vgl. Abschnitt 5.
Diese reichhaltige Struktur wurde unter verschiedenen Gesichtspunkten und mit unter-
schiedlichen Methoden untersucht, und ist heutzutage als Theorie der maximalen Regu-
laritdt bekannt. Das zweite Beispiel dieses Beitrages beschreibt den Fluss einer zdhen
Fliissigkeit unter dem Einfluss von Oberfldchenspannungseffekten. Es zeigt sich, dass
dieses Problem keine quasilineare, sondern eine voll-nichtlineare Evolutionsgleichung
ist, die jedoch mit Hilfe der sogenannten stetigen maximalen Regularitit erfolgreich un-
tersucht werden kann.

Beiden Beispielen gemeinsam ist die Tatsache, dass, obwohl die Zustandsgréfien
durch Differentialgleichungen beschrieben werden, der freie Rand nicht durch Differen-
tialoperatoren, sondern vielmehr durch sogenannte Pseudodifferentialoperatoren mit
nicht glatten Symbolen an die ZustandsgroBen gekoppelt ist. Pseudodifferentialopera-
toren sind auf der Fouriertransformation basierende Verallgemeinerungen linearer Dif-
ferentialoperatoren, deren Theorie in den letzten 50 Jahren entwickelt wurde. Neuere
Untersuchungen zeigen, dass die Pseudodifferentialoperatoren der hier diskutierten
freien Randwertaufgaben wichtige spektrale Eigenschaften besitzen, die es erlauben, fiir
diese Operatoren einen sehr weitreichenden Funtionalkalkiil zu entwickeln, vgl. [25].

Aufgrund der komplexen Struktur freier Randwertaufgaben kann eine erfolgreiche
Untersuchung dieser Probleme nur dann gelingen, wenn Methoden und Konzepte ver-
schiedener mathematischer Disziplinen im Zusammenspiel verwendet werden. Im Zen-
trum des zweiten und des vierten Abschnittes steht die Modellierung der betrachteten
Probleme. Die Lektiire dieser Ausfithrungen bedarf keiner besonderer Detailkenntnis-
se. Im dritten und fiinften Abschnitt werden einige analytische Aspekte freier Rand-
wertaufgaben beleuchtet. Um hier ein gewisses Maf3 an Prézision zu erlangen, habe ich
mich nicht gescheut, an einigen Stellen etwas weiter auszuholen. Mit dem letzten Ab-
schnitt wollte ich an der Geometrie interessierte Leser ansprechen: Dort werden all-
gemeine Transformationsgruppen verwendet, um Regularitdtseigenschaften abstrakter
nichtlinearer Gleichungen zu gewinnen.

2 Tumorwachstumsmodelle

Bei der Modellierung gewisser pravaskularer Karzinome werden die Tumorzellen als
Partikel einer inkompressiblen Flissigkeit, der Tumor selbst als ein sich bewegendes
Gebiet betrachtet, dessen Geschwindigkeitsfeld proportional zum Druckgradienten ist.
Die Zellproliferation erfolgt durch den metabolen Konsum eines durch den Tumor dif-
fundierenden Néihrstoffes, z.B. Sauerstoff oder Glukose. In den betrachteten Modellen
wird die Proliferationsrate durch den Quellterm in der entsprechenden Kontinuitéts-
gleichung beschrieben. Schliellich wirken Oberflichenspannungskrifte dem inneren
Druck entgegen.

Im Folgenden bezeichne Q(z) C IR™ den Tumor zur Zeit 7 und v sein Geschwindigkeits-
feld. Die Nahrstoffkonzentration zur Zeit 7 und im Punkt x € Q(¢) wird mit (¢, x) und
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die Proliferationsrate mit f(o) bezeichnet. Bei konstanter Dichte folgt dann aus der
Massenbilanz die sogennante Kontinuitdtsgleichung

divi=f(o) in Q(t), 1 >0, (2.1)

wobei div ¥V fiir die Divergenz oder Quellenstirke des Vektorfeldes ¥ steht. Bezeichnen
wir den Druck in Q(¢) mit p(¢, x) und dessen Gradienten mit Vp(z,x), so besagt das
Darcysche Gesetz, dass

¥y=-Vp in Q), t>0, (2.2)
und wir erhalten
—Ap=f(o) in Q(), t>0, (2.3)

wobei A = div - V fiir den Laplaceschen Operator steht. Jedem der in (2.1)—(2.3) auftre-
tenden Differentialoperatoren liegt die Euklidsche Metrik in IR” zugrunde. Die Diffusi-
on des Nihrstoffes wird durch folgende partielle Differentialgleichung? beschrieben

00— Ac+g(o)=0 in (), t >0, (2.4)

wobei g(o) > 0 fir die Konsumationsrate steht. Es bezeichne ferner I'(¢) die Tumor-
oberfliche zur Zeit ¢ > 0, d. h. T'(¢) ist die Randmannigfaltigkeit des Gebietes (7). Ne-
ben den Grofien p und o ist die Familie {I'(¢) ; ¢ > 0} als weitere Unbekannte des Sys-
tems zu betrachten. Alle zu bestimmenden Gréfen sind durch die Randbedingungen

V =—-0p, p=+H auf T(1), >0 (2.5)

gekoppelt. Hierbei steht v fir die dufiere Einheitsnormale an I'(¢) und V' = ¥ - v fiir die
Normalgeschwindigkeit der Familie {I'(z); ¢ > 0}. Die Normalenableitung an I'(¢)
bzgl. v bezeichnen wir mit d,. Die erste Gleichung in (2.5) ist somit eine Konsequenz
aus dem Darcyschen Gesetz. Die zweite Gleichung in (2.5) besagt, dass die Oberfldchen-
spannungskriifte proportional zum Kriimmungsvektor der Tumoroberfliche wirken.
Dabei steht H fiir die mittlere Kriimmung® von I'(¢) und  fiir einen positiven Parame-
ter, den sogenannten Oberflachenspannungskoeffizienten. Die Orientierung von H ist
so gewihlt, dass die mittlere Kriimmung konvexer Gebiete nichtnegativ ist. Die als be-
kannt betrachtete Niahrstoffkonzentration auerhalb des Tumors sei mit ) bezeichnet.
Dann ergibt sich die weitere Randbedingung

o=1 auf T(¢), t>0. (2.6)

SchlieBlich wird angenommen, dass das System am Anfang der Evolution bekannt sei,
d. h. es gelte

F(O) == FO, O’(O, ) = 09, (27)

wobei I'y eine geniigend reguldre Hyperflache ist, die den Rand des Tumors £ zur Zeit
t = 0 darstellt, und oy fiir die Anfangsverteilung des Nahrstoffs steht. Damit Néhrstoff
in den Tumor diffundieren kann, ist es sinnvoll die Beziehung oy < ¢ zu fordern. An
den Druck p ist keine Anfangsbedingung zu stellen; diese ist durch (I'y, 0¢) eindeutig
festgelegt. In der Tat: Es bezeichne H, die mittlere Kriimmung von Iy und es sei
fo :=f(00). Dann ist der Druck py zur Zeit r = 0 die eindeutig bestimmte Losung des el-
liptischen Randwertproblems
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—Apy=/fo in Q, po=~vHy auf Ty.

Zusammenfassend erhalten wir folgendes System fiir das Tripel (p,o,T'):

-Ap = f(o) in  Q(), t >0,
o = Ac—g(o) in Q) t>0,
Vv = —0yp auf I'(7), >0,
p = ~AH  auf T(1), 120, (2.8)
o = P auf I'(7), 1 >0,
a(0,) = o0 in Q(0),
ro = To.

Das obige Modell geht auf Greenspan [36, 37] und Byrne und Chaplain [10, 11] zu-
riick. Fir die Proliferations- bzw. Konsumationsrate f bzw. g werden in der Literatur
verschiedene Ansétze vorgeschlagen. Die meisten Arbeiten betrachten lineare Raten der
Form

f(o) := p(o — o), glo)=MXo, o€eRR, (2.9)

mit positiven Konstanten p, o, A. Die Bedeutung der Konstanten z und A ist offensicht-
lich. Auch die Rolle von & ldsst sich leicht erkldren: Diese Konstante stellt einen Schwel-
lenenwert fiir die Zellproliferation dar. Gilt namlich o < 7, so wirkt /" als Senke und das
Tumorvolumen wird in diesen Gebieten reduziert. Dies bedeutet, dass in diesem Fall zu
wenig Nahrstoff vorhanden ist, damit der Tumor wachsen kann. Im Fall o > & wirkt f
als Quelle und das Tumorvolumen vergroBert sich in diesen Gebieten. Neben linearen
Proliferationsraten wurden auch logistische Funktionen [11, 12] oder Polynome bzw.
Potenzfunktionen [37, 57, 58] untersucht. Modifizierte Modelle und experimentelle Un-
tersuchungen werden in den Arbeiten [47, 44, 49, 52, 41] dokumentiert.

Die ersten analytischen Resultate [36, 37, 10, 11] befassen sich mit rotationssym-
metrischen Losungen fiir ein durch rdumliche Mittelung vereinfachtes System, in wel-
chem die Randbedingungen fiir den Druck p durch eine Integrodifferentialgleichung
fir den Radius des Tumors ersetzt werden. Die ersten Untersuchungen fir das volle
System (2.8) gehen auf Bazaliy, Cui und Friedman zurtick [31, 17, 18, 9, 8].

Theorem 2.1 Es gelte (2.9). Ferner sei 1 = @ konstant und es gelte & < &. Dann be-
sitzt (2.8) eine eindeutig bestimmte rotationssymmetrische Gleichgewichtslage. Diese
Losung ist asymptotisch stabil, falls p geniigend klein ist.

Die Nihrstoffkonzentration aufierhalb des Tumors wird durch & beschrieben. Es ist
deshalb nur dann Tumorwachstum zu erwarten, wenn — wie in Theorem 2.1 geschehen
— vorausgesetzt wird, dass dieser Wert grofier ist als der Schwellenwert o fiir die Prolife-
ration. Die Tatsache, dass im Fall ¢ > & kein Tumorwachstum moglich ist, kann wie
folgt eingesehen werden. Es bezeichne Vol(z fQ(,) dx das Gesamtvolumen des Tu-
mors zur Zeit ¢. Fur klassische Losungen des Systems (2.8) ist diese Funktion glatt, und
ihre erste Ableitung ist durch

dVol(t):/ v do()
dt r(7)
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gegeben. Nun gilt fiir die Normalgeschwindigkeit V' = —9,p = —Vp - v. Unter Beach-

tung der ersten Gleichung in (2.8) mit f (o) = u(oc — ) folgt deshalb aus dem
Gaufschen Integralsatz:

/ Vdo(t) = — / (Vp-v)do(t) = — | divVpdx = p / (o o< )i
f

() I(z) Q Q(1)

Weil die Konsumationsrate g(o) positiv ist, nimmt die Néhrstoffkonzentration o im
Tumorinneren ab, d. h. es gilt*

o(t,x) < méa,(x) P(y) fir alle x e Q(z), t >0. (2.10)
yel(t

In Theorem 2.1 wird die Situation 1) = & betrachtet, d. h. die Nahrstoffkonzentration
auflerhalb des Tumors wird als konstant angesehen. Wir erhalten somit aus (2.10) die
Beziehung

dVol(z) e N S
AVl M/Q(r)(a — &) dx= (e — FVol(p).

Es folgt d In(Vol(z))/dt < u(@ — o), d. h. im Fall 7 < & féllt das Volumen von €(¢)
mindestens exponentiell mit der Rate u(c — 7).

In Theorem 2.1 werden lediglich kleine Stérungen von Sphiren als Anfangsgeo-
metrien fiir T’y zugelassen. Allgemeinere Anfangsbedingungen werden in [9] untersucht.
Es wird nachgewiesen, dass (2.8) eindeutig klassisch 16sbar ist, falls die Anfangsdaten
geniigend regulér sind. Trotz der hohen Regularitat der Anfangsdaten konnte in [9] ein
Regularitatsverlust der Losungen nicht ausgeschlossen werden. Die Wohlgestelltheit
des Systems (2.8) wurde abschliefend durch folgendes Resultat gekldrt:

Theorem 2.2 ([21]) Es seien f, g : IR — IR glatt und Q0 bezeichne ein beschrinktes
Gebiet in IR™, dessen Rand Ty eine C*-Hyperfliche sei. Ferner sei o € C*(Qq) und
¥ : IR” — IR bezeichne eine beschrinkte und glatte Funktion. Dann besitzt das System
(2.8) unter der minimalen Vertriglichkeitsbedingung 0|y = ¥|Uy eine eindeutig be-
stimmte klassische Losung (p,o,T) auf dem (méglicherweise)® endlichen Zeitintervall
(0, T). AuBerdem ist diese Lisung auf der Zeit-Raum Mannigfaltigkeit U, 1) ({1} x
O(1)) glatt.

Theorem 2.2 ist die Basis, um qualitative Eigenschaften der Losungen des Systems
(2.8), wie globale Existenz, Blow-up-Phianomene, Stabilitdts- oder Bifurkationseigen-
schaften von Gleichgewichtslagen zu studieren.

Die Modellierung gewisser in vitro Tumorzellkulturen basiert auf der folgenden,
geometrisch etwas einfacheren Konfiguration, vgl. [41, 44, 47]. Dazu bezeichne
I := R™" x {0} eine undurchléssige Schicht (z.B. den Boden einer Petri-Schale). Die
Tumorzellkultur befindet sich dann im Gebiet

Q1) == Q,(1) :== {(x,y) e R" ' x R; 0 < y < p(t,x)},

mit einer unbekannten positiven Funktion p(z, x). Die Nahrstoffzufuhr erfolgt tiber die
freie Randkomponente
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[(f) =T, == {(x,y) e R™! x R; y = p(t, x)}.

Unter den folgenden vereinfachenden Voraussetzungen gelingt eine vollstindige Ana-
lyse der Stabilitits- und Bifurkationseigenschaften einer Klasse von Gleich-
gewichtslagen des Systems.

= Die Zeitskala des Tumorwachtums ist in der Regel deutlich grofer als die Zeitskala
der Diffusion des Nihrstoffes. Dies rechtfertigt das Ersetzen der Diffusionsglei-
chung (2.4) durch die quasi-stationdre Approximation

Ao = g(o) fir (x,y) € Q,(1), t>0. (2.11)

= Der Einfachheit halber soll ein rdumlich zweidimensionales Modell diskutiert wer-
den, welches aufierdem in horizontaler Richtung als periodisch vorausgesetzt sei,
d. h.

o(t,x,y), p(t,x,y) und p(z, x) sind 27-periodisch in x. (2.12)

Im Folgenden identifizieren wir 27-periodische Funktionen mit Funktionen iiber
dem Kreis S' = IR/Z.

= Esgelte (2.9) und v = 7 sei konstant.
Die Normalgeschwindigkeit der obigen Geometrie ist durch
V=p/\1+ Vo

gegeben. Damit wird die dritte Gleichung in (2.8) zu d,p = —Vp - ¥ mit ¥ = (=Vp, 1).
Insgesamt erhalten wir folgendes System:

Ao = o in  Q,(1), t>0,
Ap = —plc—o) in Q,1), >0,
Op = —(Vplp) auf T,(1)¢>0,
o = [ auf T'p(1), t >0, (2.13)
p = VK auf T,(1), t >0,
oo = 0,0p=0 auf Ty, >0,
p(0,) = 00 in t=0.

Um die folgenden Resultate prizise formulieren zu kdnnen, ist es hilfreich einige Be-
zeichnungsweisen einzufiihren. Es bezeichne C, ([0, 7) x S') den Kegel der positiven
Funktionen in C([0, T) x S'). Fiir jedes p € C.([0,T) x S') setzen wir

Dyr={(t,x,y);t€[0,T), x&S', 0<y<p(t,x)}.

Diese Menge stellt den natiirlichen Definitionsbereich des Druckes p und der Nihr-
stoffkonzentration o dar. Es sei K eine kompakte glatte Riemannsche Mannigfaltigkeit,
k € N und a € (0,1). Dann bezeichnen wir im Folgenden mit C¥**(K) den iiblichen
Banachraum aller C*-Funktionen, deren Ableitungen der Ordnung k& gleichméBig
a-Holder-stetig® sind.
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Definition Ein Tripel (o,p, p) heifit Lisung des Systems (2.13), falls (o,p) €
C(D,r) xC(D,r) und o(1,-) € C**(Q,(1)), p(t,-) € C**(Q,(¢)) fiir jedes ¢ € (0, T)
und

p e C([o,T),C3(S) nC((0,T), C**(SY),

und falls dieses Tripel das System (2.13) punktweise in D, 7 erfiillt. Eine Losung
(o, p, p) heiBt flach, falls jede der Funktionen o, p und p in der x-Variablen konstant ist.

Theorem 2.3 ([15, 16]) Es seien p, o, & und y positive Konstanten. Dann gelten die
folgenden Aussagen:

(a) (Wohlgestelltheit) Fiir jedes py € Cff'B(Sl) mit 3> « gibt es ein T > 0, so dass
(2.13) eine Lésung (o,p, p) auf [0,T) besitzt. Diese Lisung ist in der Klasse
C(D,1) x C(D,1) x C([0,T), C3**(S")) eindeutig bestimmt.

Im Folgenden gelte 5 < G.

(b) (Flache Losungen) (i) Es gibt eine eindeutig bestimmte Konstante p. € (0,00)
und ein eindeutig bestimmtes Paar (o.,p.) € C™([0,p.]) x C¥([0,p.]), so dass
(04, Ps, ps) eine flache Gleichgewichtslage des Systems (2.13) ist.

(ii) Fiir po € (0,00) bezeichne (o,p, p) die Losung zum Anfangswert py. Dann ist
(o,p, p) flach, existiert global, d.h. T = oo, und es gibt positive Konstanten
w, K, Ty > 0, so dass

lp(t) — p«| < Kexp (—wt),  t2To.

(c) (Asymptotische Stabilitit) Es gibt ein v. > 0, so dass fiir v > . die Gleichge-
wichtslage (o, p«, p«) asymptotisch stabil ist, d. h. es gibt positive Konstanten w, ¢, K, so
dass

lo(t,) = oullcara + 1p(22) = Pell c24a

(2.14)
+ ||p(t7 ) - p*”c4+n < Kexp (_w[)v t> 0,

falls ||lpo — pull ca+a <&
(d) (Instabilitdt) Gilt 0 < v < 7., so ist die Gleichgewichtslage (0., p, p.) instabil.

(e) (Bifurkation) Es gibt eine Nullfolge (yi)ien. SO dass jedes i ein Bifurkationspunkt
nicht-flacher Lisungen von der flachen Gleichgewichtslage (o, p., p.) ist, d. h. fiir jedes
k € IN gibt es in der Nihe von (Y, 0., ps, ps) einen Zweig nicht-flacher Gleichgewichts-
losungen. In den Punkten {~y > 0; v # v, k € IN} findet keine Bifurkation statt.

Bemerkung Die zweite Aussage in (b) besagt, dass die flachen Gleichgewichtslagen
in der Klasse der flachen Lésungen fiir jeden Wert v > 0 global stabil sind. Im Fall
v € (0,~.) folgt hingegen aus (d), dass die diese Gleichgewichtslagen gegeniiber nicht-
flachen Storungen aus C*+*(S') instabil sind. Dies verdeutlicht, dass der Klasse der
flachen Losungen (mit Ausnahme der flachen Equilibrien) eine nachgeordnete Stel-
lung zukommt, da wesentliche dynamische Eigenschaften des Systems in dieser Klasse
nicht beobachtet werden konnen.
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3 (Quasilineare Evolutionsgleichungen

Die Struktur der inhdrenten Nichtlinearitét freier Randwertaufgaben tritt deutlich zu
Tage, wenn man diese Systeme auf ein festes Referenzgebiet transformiert. Dazu kann
man etwa die sogenannte Hanzawa-Transformation zu verwenden, vgl. [39].

Es sei 3 eine kompakte geschlossene glatte orientierbare Hyperfliche des IR” mit
dem duBeren Normalenfeld x. Fiir hinreichend kleines @ > 0 ist die Abbildung

XS x (—a,a) = R™, (p,r) = p+ru(p) (3.1)
ein glatter Diffeomorphismus auf das Bild R := im(X), d.h. X € Diff (2 x
(—a,a),R). Offensichtlich besteht R genau aus den Punkten in IR, deren Abstand zu
¥ den Wert g nicht iberschreitet. Deshalb ldsst sich die Inverse X! in die metrische
Projektion = und den orientierten Abstand A zerlegen, d. h. X! = (£, A) und

ZeC¥(R,Z) und A€ C¥(R,(—a,a)). (3.2)
Es seinun p € C3(X) mit ||p||, < @und

0,: X —R", p—p+p(p)u(p)

Dann ist ', := im(6,) eine C>~Hyperfliche und 6, € Diff (X, T,). Fiir spitere Zwecke
halten wir fest, dass I', auch die Nullstellenmenge der Funktion Op(x) ==
A(x) — p(E(x)) ist.

Wir bezeichnen das von T', eingeschlossene Gebiet mit 2, und setzen aufierdem
D := Q. Das Gebiet D, dessen Rand ¥ ist, dient uns als Referenzgebiet. Um (2.8) in
ein System auf D transformieren zu kénnen, muss der Diffeomorphismus 0, geeignet
ins Innere fortgesetzt werden. Diese Erweiterung bezeichnen wir mit ©,. Dabei kann
man diese Erweiterung so konstruieren, dass ©, ein C*>—Diffeomorphismus von D auf
das Gebiet Q, ist, d. h.

0, €Diff*(D,Q,) und O, =4,

Wir bezeichnen mit ©; den von 6, induzierten pull-back-Operator, d. h.
Qu:=u00, fir uecC(Q,),

und mit ©7 den entsprechenden push-forward-Operator, d. h.
Oy ::vo@;] fir ve C(D).

Nun erkldren wir die folgenden transformierten Differentialoperatoren
A(p)u = -©;A(0Lu) und B(p)u:= 0,(V(©Lu) - Vo,)

fir u € C?(D). Wir bendtigen auierdem die Transformationen der Nichtlinearitiiten /',
g und des Kriimmungsoperators Hr,:

fu,p) = ©3f(0%u), &(u,p) :=©,g(0%u) und H(p):= O} Hr,,
sowie die der Rand- und Anfangsdaten:

X(p) = @;1/) und Vo = 6;000.
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Diese Operatoren beriicksichtigen die Transformationen der raumlichen Differential-
operatoren. Weil die Diffeomorphismen © ;) auch von der Zeit abhéngen, entsteht aus
der parabolischen Gleichung fiir o ein zusitzlicher Term, den wir abkiirzend mit
R(u, v, p) bezeichnen. Setzen wir schlieSlich u := ©7 p und v := ©}0, so erhalten wir aus
(2.8) das folgende System fiir die neuen Unbekannten (u, v, p):

A(pu = f(v.p) in JxD,
Ov+A(p)v = R(u,v,p)—&(v,p) in JxD,
O+ B(pu = 0 auf JxX,
u = H(p) auf JxX, (3.3)
v = x(p) auf Jx X,
v(0,-) = Vo in D,
p(0,-) = 00 auf )3

Im obigen System steht J = [0, T') fiir das Zeitintervall, auf dem die Abbildungen u, v, p
erklédrt sind. Um die Darstellung zu vereinfachen, betrachten wir im Folgenden den in
den Anwendungen wichtigen Spezialfall einer konstanten Néhrstoffkonzentration
auflerhalb des Tumors, d. h. ¢ = const. Eine einfache Translation zeigt, dass wir in die-
ser Situation den Wert der Konstanten 0 setzen konnen. Dies bedeutet, dass wir fur v
homogene Dirichletsche Randbedingungen betrachten konnen. Der allgemeine Fall
1) # const. bedarf einer etwas komplizierteren Behandlung, auf die wir hier nicht einge-
hen wollen, vgl. [21].

In einem néchsten Schritt fithren wir in (3.3) eine Reduktion durch, in dem wir, bei
gegebenem p und rechten Seiten f und /, das elliptische Randwertproblem

Alp)r=f in D, ~Ar=h auf ¥, (3.4)

fiir r 16sen. Hierbei bezeichnet v den Spur- oder Einschriankungsoperator auf D bzgl. ¥,
d.h.yr:=r|%.

Fir die folgenden Betrachtugnen ist es hilfreich, sogenannte Sobolevraume ein-
zufithren. Diese (verallgemeinerten) Funktionenrdume bilden den mathematischen
Rahmen, welcher der variationellen Struktur vieler partieller Differentialgleichungen
angepasst ist. Die Sobolevrdume W[f(D) mit g € (1,00) und k € N sind die, bzgl. natiir-
licher Normen (im Fall ¢ = 2 sogar Hilbertnormen) vervollstindigten Raume glatter
Funktionen. D.h. dem Vektorraum der glatten Funktionen werden .,ideale Elemente*
hinzugefiigt, die als Grenzwerte bzgl. geeigneter Normen realisiert werden kdnnen.’
Dabei gibt der Index k an, wieviele verallgemeinerten Differenzierbarkeitseigenschaften
eine Sobolev-Funktion aus WX (D) besitzt. Es ist bekannt, dass sich die Elemente in
W;‘ (D) mit klassischen (gleichméBig stetigen bzw. stetig differenzierbaren) Funktionen
identifizieren lassen, falls & und ¢ grof§ genug sind. Insbesondere kdnnen solche Sobo-
lev-Funktionen auf den Rand von D eingeschrinkt werden.® Es liegt in der Natur der
Sache, dass man bei freien Randwertaufgaben an der genauen Randregularitét interes-
siert ist. Dazu bendtigen wir neben den Sobolevrdumen auch die Besovrdume By, (¥)
mits > 0und g € (1, 00), vgl. [55, 56]. Es ist nimlich bekannt, dass’

v € L(WS(D), B,'4(%)) (3.5)

’77qq

eine Retraktion ist, falls s > 1/¢. Weil jede Retraktion surjektiv ist, folgt aus (3.5) ins-
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besondere, dass die Skala der Besovraume das richtige Werkzeug ist, um die Randregu-
laritdt der Elemente der Sobolevraume W (D) zu messen: Fiir u € W¥(D) gehdrt u|%.
zu By /4(3), und zu jedem h € Bi1/9(X) gibt es einu € W (D) mit u|% = h.

Die klassische Theorie der elliptischen Randwertprobleme sichert aufierdem, dass es
zu jedem Paar (f, h) € Ly(D) x B, '/4(X) eine eindeutige Losung r von (3.4) in w;(D)
gibt. Wir bezeichnen den entsprechenden Poisson- bzw. Potentialoperator mit S(p)
bzw. T'(p), d. h. fiir die Losung r von (3.4) gilt r = S(p)f + T(p)h. Mit diesen Bezeich-

nungen erhalten wir das zu (3.3) dquivalente System

ov+ A(p)v = R(r(v,p),v,p) —g(v,p) in JxD,
dp+B()T(P)H(p) =  —B(p)S(p)f(v,p)  auf Jx3,
v = 0 auf J x X,

v(0,) = Vo in D,

p(0,-) = Po auf %,

wobei wir die Abkiirzung (v, p) = S(p)f (v, p) + T(p)H (p) verwendet haben. SchlieB-
lich beachten wir, dass der Operator H(p), der aus der mittleren Kriimmung von T, ent-
standen ist, eine quasilineare Struktur trdgt. D. h. es gilt

H(p)=P(p)p+K(p) fir peCX(T),

wobei K und [p — P(p)] nichtlineare Operatoren erster Ordnung sind, der Operator
[n — P(p)n] hingegen linear und von zweiter Ordung ist. Mit diesen Bezeichnungen er-
gibt sich das folgende System

Ov+ A(p)v = Fi(v,p) in JxD,
O+ B(p)T(p)P(p)p = Fa(v,p) auf JxZX,
y = 0 auf J x E, (36)
V(O, ) = ) in l)7
p(0,-) = p auf X
wobei wir zur Abkiirzung
F](V,p) = R(r(v.,p),v,p) ~§(V,,0),
F(v,p) = = B(p)[S(p)f (v, p) + T(p)K(p)]

gesetzt haben. Das System (3.6) liegt nun in einer Form vor, die eine Behandlung im
Rahmen der heutzutage gut ausgebauten Theorie der quasilinearen parabolischen Evo-
lutionsgleichungen erlaubt. Wir stellen ein zentrales Resultat dieser Theorie in einer et-
was vereinfachten Fassung kurz vor. Es bezeichne Ey und E; Banachriume, so dass E;
stetig eingebettet und dicht in Ej ist. Ferner bezeichne H(E, Ey) die Menge aller Opera-
toren 4 € L(E|, Ey), so dass —A als unbeschrinkter Operator in E, mit Definitions-
bereich E eine starkstetige analytische Halbgruppe in £(Ey, Ey) erzeugt.' AuBerdem
bendtigen wir sogenannte Interpolationsraume, die wir mit Ey fiir @ € (0, 1) bezeichnen.
Das folgende Resultat geht auf H. Amann zurlick, vgl. [2]:
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Theorem 3.1 Esseien0 <y < < a < lundT > 0. Ferner sei
(A,F) € C1([0,T] x Eg,H(E\, Ey)) X E,),  up € E,.

Dann gibt es ein eindeutig bestimmtes maximales t* € (0, T, so dass das quasilineare pa-
rabolische Anfangswertproblem

W = A(t,u)u+ F(t,u), te(0,T], u(0) = up.
eine eindeutig bestimmte Losung
Ui= u('vuo) € C([07 t+)7Ea) N Cl((oa t+)7E0)

besitzt. Sind A und F unabhdngig von t, so induziert die Abbildung (t,uy) — u(t,uy) ein
dynamisches System auf E,,.

Um (3.6) mit Theorem 3.1 16sen zu konnen, setzen wir
Ey:=Ly(D) x B,;'/4(S), Ei:= W}(D) x B};'/4(5),

wobei W7 (D) := {v € W;(D); v|X = 0}. Vermdge (3.5) ist W, (D) ein abgeschlosse-
ner Unterraum von qu(D), also selbst ein Banachraum. Wéhlen wir ¢ > m + 1, so folgt
aus dem Sobolevschen Einbettungsatz, dass B}, '/4(X) ¢ C*(X). Fiir p € B}, /4() mit
llpllo < b sind die in (3.6) auftretenden Operatoren erkldrt. Wir setzen deshalb
X :={(v,p) € E1; ||p||x < b} und definieren den quasilinearen Operator

AW = (A(p)w, B(o)T(p)Plp)n)
fir V= (v,p) € X und W = (w,n) € E}, sowie

F(V) = (R((v,p),v,0) = 80,0) , ~B()[S() T (v ) + T(0)K(p)))

fir V' = (v, p) € X. Mit Hilfe der Interpolationstheorie fiir Sobolev- und Besvordume,
sowie geeigneten Einbettungssitzen ist moglich, die nachstehenden Abbildungs- und
Regularititseigenschaften

(AF) = COC(Xg,ﬁ(EhEo),E,})

fiir geeignete Werte 3,y € (0, 1) zu verifizieren. Auf die technischen Details sei hier ver-
zichtet. Hingegen wollen wir noch einige Erlduterungen zur Generatoreigenschaft des li-
nearen Operators A(V) (bei festem V' = (v, p) € X) anschliefien. In der ersten Kom-
ponente besteht dieser Operator aus dem gleichméBig elliptischen Operator A4(p), der
die Ordnung zwei besitzt. Die Koeffizienten dieses Operators sind zwar nicht glatt, be-
sitzen aber trotzdem geniigend Regularitdt, um die bekannten parameter-abhidngigen
a-priori-Abschétzungen elliptischer Operatoren von Agmon-Douglis-Nirenberg anpas-
sen zu konnen, um nachzuweisen, dass A4(p) € H(qu_O(D),L,,(D)). Die zweite Kom-
ponente ®(p) := B(p)T(p)P(p) des Operators A(v) ist kein Differentialoperator, son-
dern ein Pseudodifferentialoperator dritter Ordnung auf der Mannigfaltigkeit . Auch
dieser Operator besitzt kein glattes Symbol in der Tangentialraumvariablen. Neuere
Untersuchungen zeigen jedoch, dass ®(p) parameter-elliptisch ist, und sogar einen be-
schrinkten H..-Kalkiil besitzt, vgl. [25]. Diese Resultate implizieren dann unmittelbar,
dass ®(p) € H(B‘;;l/‘l(Z),B}I;l/q(Z)).
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Der Operator ®(p) spielt auch in der Untersuchung des Systems (2.13) eine zentrale
Rolle. Dabei spiegelt sich die sehr einfache geometrische Konfiguration auch in der
Analysis wider: Die Linearisierung L(p*) von (2.13) iber dem flachen Equilibrium p* ist
kein (echter) Pseudodifferentialoperator, sondern vielmehr ein Fouriermultiplikations-
operator. Mit der Fourierentwicklung

r(x) = ag + Z(ak cos kx + by sinkx).
k=1

fiir r € C(S") gilt ndmlich

L(p")r(x) = Xoao + Z Ae(ag coskx + by sin kx),
k=1

wobei

Me = — (G — 0)+pop. [V k? + 1 tanh(Vk? + 1p.) — k tanh(kp.)]
4~k tanh(kp,), k=0,1,2,... .

Aufgrund der genauen Kenntnis des Spektrums der Linearisierung L(p*) konnen all-
gemeine Resultate iiber das Verhalten quasilinearer parabolische Fliisse in der Nihe
von Gleichgewichtslagen und Methoden der Bifurkationstheorie verwendet werden, um
Theorem 2.3 zu beweisen, vgl. [15, 16, 45, 13].

4 Zdhe Fliissigkeitstropfen

Es bezeichne €(7) einen Fliissigkeitstropfen, der sich frei unter dem Einfluss der Schwer-
kraft g und der Oberflichenspannung bewege. Betrachtet man eine Newtonsche inkom-
pressible Fliissigkeit mit konstanter Dichte p; und Viskositét p, so erfiillen das Ge-
schwindigkeitsfeld ¥ und der Druck p der Fliissigkeit die bekannten Navier-Stokesschen
Differentialgleichungen

prl0F+(F- V)V - puA¥+Vp = g } in (1),

4.1
divi = 0 (1)

Mit dem hydrodynamischen Spannungstensor
T(¥,p) = pidomm) — p[VF+ (V¥) '],

dem Oberflichenspannungskoeffizienten v und dem mittleren Kriimmungsvektor Hv/
an I'(7) gilt auf dem freien Rand I'(¢) die Bedingung

T(V,p)v =~0 auf T(z). (4.2)
Die Orientierungen sind dabei wie in Paragraph 2 festgelegt. In konkreten Anwendun-

gen ist es wichtig, den Einfluss der Viskositat auf die konvektiven und dufleren Krifte
zu beriicksitigen. Dazu wéhlt man eine charakteristische Linge L und einen Einheits-
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vektor . Mit den nach Reynolds bzw. Bond benannten Grofien Re = prLy/u? bzw.
B = pyL?*|g|/~ erhilt man aus (4.1) und (4.2) das folgende dimensionsfreie System:

Re[0V+ (V- V)V - A¥V+Vp = Bé in Q(s),
divy = 0 in Q(1), (4.3)
Tp)w = Hv auf (7).

Fiir zdhe Fliissigkeiten, wie sie etwa bei viskosen Sinterprozessen auftreten, sind Werte
fir die Reynolds- und Bondzahl sehr klein und werden z.B. in [43] mit Re =
107...107%" und B = 107°...10~® angegeben. Fiir diese Fliisse konnen sowohl der
konvektive Term 0,¥ + (V- V)V, als auch der Einfluss der Gravitationskraft g vernach-
ldssigt werden. Wir erhalten somit das folgende freie Randwertproblem fiir den Stokess-
chen Fluss:

-AV+Vp = 0 in Q(s),
divi, = 0 in Q1),
TW,p)y = Hv auf I'(), (4.4)
Vo o= v.-7 auf T(2),
roy = Iy, inz=0.

Wie in Paragraph 3 kann das System (4.4) mit Hilfe des Diffeomorphismus 6, zu einer
Evolutionsgleichung auf der Referenzmannigfaltigkeit 3 fiir die Abstandsfunktion p re-
duziert werden:

Op+ Q(p)p =0, p(0) = po, (4.5)
wobei der Operator Q in lokalen Koordinaten folgende Darstellung besitzt:
0(p)o = [0a0(0,(0:P*)) — i)' (p).- (4.6)

In (4.6) wurden neben der Summationskonvention auch die Bezeichnungsweisen P und
i von (3.1) und (3.2) verwendet, und S(p) steht fiir den Losungsoperator des transfor-
mierten vektorwertigen elliptischen Randwertproblems in (4.4). Offensichtlich ist der
Operator o — Q(p)o fiir festes p linear und von erster Ordnung. Ferner folgt aus den
Abbildungseigenschaften des Operaotrs S(p), dass auch die nichtlineare Abbildung
p — Q(p)o fiir festes o von erster Ordnung ist. Somit kann (4.5) nicht im Rahmen von
Theorem 3.1 behandelt werden: Der lineare Hauptteil ist hyperbolisch und erzeugt des-
halb gewiss keine analytische Halbgruppe. Ferner ist die Nichtlinearitit in Q dem linea-
ren Anteil nicht untergeordnet. Dies bedeutet, dass (4.5) als voll-nichtlineare Evoluti-
onsgleichung zu betrachten und entsprechend zu behandeln ist. Der nichste Abschnitt
ist der analytischen Untersuchung solcher Aufgabenstellungen gewidmet.

9 Stetige maximale Regularitét

Die auf Da Prato und Grisvard zuriickgehende Theorie der stetigen maximalen Regula-
ritdt bildet einen eleganten Zugang, um voll-nichtlineare parabolische Evolutionsglei-
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chungen zu studieren. Im Folgenden soll eine kurze Einfithrung in diese Theorie gege-
ben werden. Dazu seien Ej und E; Banachrdume, so dass E| stetig eingebettet und dicht
in Ey ist. Ferner sei D C E; offen und

IMe C'(D,Ey) mit OI(v) € H(E, Ey), veD. (5.1)

Hierbei bezeichnet 0I1(v) die Fréchet-Ableitung des (nichtlinearen) Operators IT an der
Stelle v. Weil I voraussetzungsgemaf Fréchet-differenzierbar ist, gilt

Oll(v)h = %H(V—F eh)| | ve D, heE.

E=

Fur T > 0 seien
IE, := C([0, T, Eo), IE, := C([0, T], E1) N CY([0, T), Ey),

und v : IEy — Ey, u — u(0) bezeichne den zeitlichen Spuroperator in IEy. Man sagt,
dass (IEy, IE,) ein Paar maximaler Regularitit fiir OII(v) ist, falls die folgende Isomor-
phieeigenschaft erfiillt ist:

(%+ 8H(V),’y) € Isom(IE;,IEy x Ey), veED. (5.2)
Mit diesen Bezeichnungen konnen wir nun das folgende Existenz- und Eindeutigkeits-
resultat formulieren:

Theorem 5.1 ([19]) Es seien (5.1) und (5.2) fiir jedes v € D erfiillt. Dann gibt es zu je-
dem uy € D und € C(IRy, Ey) ein eindeutig bestimmtes maximales 1+ := 1+ (up) > 0
und eine eindeutige Lisung

u:=u(-,up) € C([0,¢%),D) N C'([0, ), Ey) (5.3)
des abstrakten Anfangswertproblemes
Luinw =1, uo)=u. (54)

Bemerkung 5.2 a) Theorem 5.1 geht im wesentlichen auf Da Prato und Grisvard
zurtick, vgl. [19]. Eine interessante Erweiterungen von Theorem 5.1 wurde von Ange-
nent [3] bewiesen.

b) Es ist zu beachten, dass Theorem 5.1 den ,linearen" Fall D = E; und
IT € H(E\, Ey) umfasst. In dieser Situation stimmt die Aussage von Theorem 5.1 mit
der Voraussetzung (5.2) iiberein. Trotzdem ist es nicht offensichtlich, ob diese Voraus-
setzung fiir unbeschrénkte Operatoren mit £, # Ey verifiziert werden kann. In der Tat
hat Baillon [7] gezeigt, dass im Fall E; # E, die Eigenschaft (5.2) nur dann richtig sein
kann, falls £, eine isomorphe Kopie des Folgenraumes ¢y enthélt. Nun ist bekanntlich
jeder abgeschlossene Teilraum eines reflexiven Banachraumes selbst reflexiv. Weil ¢
aber nicht reflexiv ist, kann (5.2) somit in reflexiven Banachrdumen nicht gelten. Es ge-
hort zu den Hauptresultaten der Arbeit [19], dass Da Prato und Grisvard mit Hilfe des
sogenannten stetigen Interpolationsfunktors (-, -)O nicht-reflexive Banachraume kon-

0,00
struiert haben, in welchen die Bedingung (5.2) verifiziert werden kann.
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¢) Im Folgenden soll kurz eine wichtige Skala von Banachrdumen vorgestellt wer-
den, die mit Hilfe der stetigen Interpolationsmethode realisiert werden kann. Dazu de-
finieren wir fiir jedes s € IR die kleinen Hélderriume buc* (IR™) durch

buc’(IR™) := AbschlieBung von BUC*(IR™) in B _(IR™).

Hierbei bezeichnen B _(IR™) die iiblichen Besovrdume, vgl. [55]. Es ist bekannt, dass
der Raum B! _(IR™) im Fall s>0, s# N, mit dem klassischen Holderraum
BUC*(IR™) tbereinstimmt, vgl. Theorem 2.5.7 und Remark 2.2.2.3 in [55]. Mit diesen
Bezeichnungen wird in [45], Theorem 1.2.17 gezeigt, dass

(BUC(R™), BUC"(IR™)), . = buc™ (R™)
fiir jedesn € N und 6 € (0,1) mit On ¢ IN.

d) Eine weitere Skala von Banachrdumen, in welcher stetige maximale Regularitit
erwartet werden kann, sind die sogenannten kleinen Nikol'skiirdume. Diese Riume
konnen als stetige Interpolationsraume zwischen den klassischen Besselpotentialriu-
men dargestellt werden, vgl. [19], Section 6 und [53], Section 6.

e) Es bezeichne ¥ eine kompakte Riemannsche Mannigfaltigkeit. Dann werden die
kleinen Holderrdume /*(X) ebenfalls als Abschlieung von C*(X) in C5(X) erklirt.
Wie in ¢) gilt dann

(C(D), C'(D))ge0 = H"()
fiir jedesn € N und 6 € (0, 1) mit 6n ¢ N, vgl. Corollary 1.2.19 in [45].

f) Es bezeichne wiederum (X, dy) eine kompakte Riemannsche Mannigfaltigkeit.
Es ist bekannt, dass im Fall « € (0,1) die klassische Holdernorm auf dem Raum
Cke(x) eine Topologie erzeugt, die nicht separabel ist. Hingegen kann man zeigen,
dass die kleinen Holderrédume /#47(3) sehr wohl separabel sind, vgl. [42]. Dies bedeu-
tet insbesondere, dass C***(Z) \ #+2(Z) # (). AuBerdem besitzen die Raume 4% ()
die folgende intrinsische Charakterisierung

D) = I € COT) - i S () —fO)l _
PRIV ECEN, o e o O

Mit Hilfe dieser Charakterisierung erkennt man z.B. leicht, dass x* € C%([0,1]) \
([0, 1]).

g) Es sei 4 € H(KH7(2), h¥+(%)) fiir k, [ € N, o € (0, 1). Ferner sei 6 € (0,1)
und der (maximale) Definitionsbereich der #*+/(X)-Realisierung von A sei h*++¢(%).
Setzen wir nun Ey := #**/(X) und E; := h*+*%(X), so folgt aus Théoréme 3.1 in [19],
dass (IEo, IE; ) ein Paar maximaler Regularitit fiir 4 ist.

h) Es seien ¥ und Q wie in (4.6) und A bezeichne die Fréchet-Ableitung des Opera-
tors [p — Q(p)p] im Punkt py. Dann wird in Lemma 5.5 in [24] gezeigt, dass 4 ein
Pseudodifferentialoperator erster Ordnung auf ¥ ist, der fiir jedes 6 € (0, 1) die Eigen-
schaft 4 € H(h**9(Z), K*+9(2)) besitzt. [
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6 Parabolische Regularisierung

Bevor wir die voll-nichtlineare Evolutionsgleichung (4.5) und somit auch das freie
Randwertproblem (4.4) fiir den Stokesschen Fluss mit Hilfe von Theorem 5.1 16sen,
wollen wir einen Regularitétssatz fiir die Losungen des abstrakten Anfangswertproble-
mes (5.4) vorstellen. Eine wichtige Eigenschaft /inearer parabolischer Differentialglei-
chungen, etwa der Warmeleitungsgleichung besteht darin, dass die Losungen solcher
Gleichungen eine instantane rdumliche Regularisierung erfahren. Dies bedeutet, dass
die Losungen zu jedem positiven Zeitpunkt beziiglich der raumlichen Variablen beliebig
glatt sind, auch wenn der Anfangswert nur endliche Regularititseigenschaften aufweist.
Weil die Nichtlinearitdten der in Abschnitt 3 diskutierten Probleme den entsprechenden
linearen Hauptteilen untergeordnet sind, ist es mdglich mit sogenannten ,,bootstrapp-
ing“ Argumenten nachzuweisen, dass auch diese quasilinearen Probleme die oben be-
schriebene Regularisierungseigenschaft haben. Im Gegensatz dazu liegt es gerade im
Wesen der maximalen Regularitédt, dass solche bootstrapping Argumente nicht an-
wendbar sind: Die Losung von (5.4) liegt im Funktionenraum (5.3), und der abstrakte
Rahmen bietet keine weiteren Moglichkeiten eine Regularisierungseigenschaft der Lo-
sungen nachzuweisen. Im Folgenden wird erldutert, dass eine solche Regula-
risierungseigenschaft trotzdem vorliegt, falls der nichtlineare Operator II mit der Geo-
metrie der zugrundeliegenden Mannigfaltigkeit ¥ in einem geeigneten Sinne vertraglich
ist. In diesem Fall gelingt es sogar nachzuweisen, dass die Losungen reell-analytische
Funktionen der Raum- und Zeitvariablen sind. Dazu seien im Weiteren

= Y eine kompakte geschlossene analytische Mannigfaltigkeit der Dimension m,
s Il € C¥D, Ep), und es gelten (5.1) und (5.2) fiir jedes v € D,

wobei C¥(D, Ej) die Gesamtheit aller reell-analytischen Abbildungen von D in Ej be-
zeichnet, und Ey und E; Banachriaume von Funktionen tiber ¥ sind, so dass

E c C'(®), E| C Ey C C(D). (A1)

Wir wéhlen up € D und bezeichnen mit u die eindeutig bestimmte Losung von (5.4) auf
[0,77). Um die Darstellung zu vereinfachen behandeln wir nur den Fall /' =0.
SchlieBlich setzen wir

a(t,p) :=u(t)(p) fur (1,p)€[0,7) x . (6.1)

Unser Ziel ist es, Regularitdtseigenschaften von & zu beweisen, die tiber die von (5.3) hi-
nausgehen. Dazu wéhlen wir 7 € (0,77) und setzen 7 := [0, 7. Die Hauptidee der fol-
genden ‘Uberlegungen besteht darin, durch geeignete Fliisse auf ¥ Parameter in & ein-
zufithren, deren Regularitétseigenschaften mit Hilfe des Satzes tiber implizite Funktio-
nen genau studiert werden konnen. Bei dieser Vorgehensweise, die auf Angenent [3, 4]
zurlickgeht und in [27, 29, 22, 23] weiterentwickelt wurde, ist die maximale Regularitét
der Linearisierung von zentraler Bedeutung. Unabhingig von Angenents Arbeiten hat
Masuda zur Untersuchung dreidimensionaler Navier-Stokesscher Gleichungen in fes-
ten Gebieten ebenfalls parameterabhdngige Losungen eingefiihrt und deren Regularitét
untersucht, vgl. [46].

JB 109. Band (2007), Heft 4 211



Ubersichtsartikel ‘ Historische Beitrage J Berichte aus der Forschung Buchbesprechungen —|

Es bezeichne V“(X) den Vektorraum aller reell-analytischen Vektorfelder iiber X.
Weil ¥ glatt und kompakt ist, gibt es aufgrund des Whitneyschen Einbettungssatzes
ein N, so dass ¥ glatt in IR" eingebettet ist. Weil die glatten Einbettungen auBerdem
offen sind in C*(Z,RY) und C¥(%,RY) in C=(%, RY) dicht liegt, gibt es eine reell-
analytische Einbettung e von X in IRY. Mit der entsprechenden Riemannschen pull-
back-Metrik ldsst sich nun eine parameter-abhéngige Familie analytischer Fliisse auf
¥ konstruieren, so dass die entsprechenden Vektorfelder das Tangentialbiindel auf-
spannen. Genauer gilt (vgl. [24]):

Lemma 6.1 Es gibt ein N € IN und eine Abbildung

SeC(RY xR x X,%) (6.2)
mit den folgenden Eigenschaften:
S(u,t,-) € Diff“(2), (u,1) € RY x R, (6.3)
d
(&5 tploi ne R} =T,2, pex, (6.4)
d ,
(1= 5 S(1,1,)],-0] € Hom(RY, V(2)). (6.5)

Bemerkung 6.2 Es gibt Situationen, in denen eine parameter-abhidngige Familie
analytischer Flisse auf ¥ mit den obigen Eigenschaften intrinsisch, und nicht iiber ei-
ne Einbettung konstruiert werden konnen. Ein einfaches Beispiel ist etwa der m-di-
mensionale Torus ¥ :=T" := IR"/Z". Mit N = m und

S(p,t,p) =p+tu
gelten offensichtlich (6.2)—(6.5). Diese einfache Konstruktion lédsst sich allgemein auf
global symmetrische Riemannsche Mannigfaltigkeiten ausdehnen. Ist ¥ eine solche

Mannigfaltigkeit und G die entsprechende endlich-dimensionale Liesche Gruppe, die
analytisch und transitiv auf ¥ operiert, so kann S wie folgt konstruiert werden

S(u, t,p) = exp(tu* Xi) - p, (6.6)
wobei {X1,..., Xy} eine Vektorraumbasis der Lieschen Algebra von G bezeichnet und -

fir die Wirkung von G auf ¥ steht, vgl. [29]. Es ist zu beachten, dass bei dieser Kons-
truktion keine Kompaktheitseigeschaften von X verwendet wurden. |

Wir setzen nun
Wu(t)v:=S(u,t,)v, (n,t) e RV xR, veE;, j=0,1,

wobei wir der Einfachheit halber dieselbe Bezeichnungsweise fiir diese Operatoren auf
Ey bzw. auf E; verwenden. Die Flusseigenschaft von S(p,-,-) impliziert unmittelbar,
dass die Abbildung [t — W,(¢)] eine Darstellung der Gruppe (IR, +) in (Isom(E;),0)
ist. Unsere néchste Voraussetzung stellt sicher, dass die linearen Operatoren W),(¢) auf
E; beschrinkt sind, und dass die Abbildung [1 — W, (¢)v] fiir jedes v € E; stetig ist, d. h.
wir verlangen, dass fiir jedes 1 € RY gilt:

[t — W,()] ist eine starkstetige Gruppe auf E;, j =0, 1. (42)
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Der starkstetigen Gruppe {W,(¢); t € IR} ist in eindeutiger Weise ein infinitesimaler
Erzeuger zugeordnet, den wir mit 4, bezeichnen. Es ist bekannt, dass 4, ein abge-
schlossener (im Allgemeinen jedoch unbeschrinkter) Operator in Ej ist, vgl. Theorem
1.6.3 in [48]. Somit ist der Definitionsbereich dom(4,,) von 4, versehen mit der Gra-
phennorm von A4,, ein wohldefinierter Banachraum. Unsere néchste Voraussetzung
lautet nun

E— dom(4,) firjedes ucRY. (A3)
Eine einfache Konsequenz aus (A3) ist, dass

A, € L(Ei,Ey) fiir jedes pe RY. , (6.7)
Esseiw € Ej. Mit v, := 2 5(u, 1,-)|,_, gilt dann wegen (A;) und (As):

Aw(p) = Tywv,, pex.

Aufgrund der Eigenschaft (6.5) bildet [(12, w) — A, w] somitden Raum IRY x E; bilinear
nach Ej ab. Die ndchste Voraussetzung stellt sicher, dass diese Abbildung beschrinkt ist:

(s, w) = A,w] € L2RY x Ey, Ep). (Aq)

Es ist zu beachten, dass sich die Voraussetzungen (A;) - (A4) nur auf die Familie
S(p, -, -) und nicht auf den nichtlinearen Operator IT beziehen. Um die wesentliche Vo-
raussetzung an den Operator IT formulieren zu konnen, sei

S, :=S(u1,) € Diff“(8), ueRY. 6.8)
7’

Offensichtlich gilt S, = exp(v,), wobei exp : TE — X die libliche Riemannsche Expo-
nentialabbildung bezeichnet. Mit Hilfe der Diffeomorphismen S, fithren wir die folgen-
den pull-back und push-forward Operatoren S und S := (S,), = (S,')" auf den
Funktionenrdumen E;, j = 0, 1 ein, d. h. wir setzen

S;v: voS, und Stv= VOS;l, VEE;, j=0,1
Nun erkldren wir

®(p,v) == S;T(Stv) fir (p,v) € RV x D, (6.9)
und fordern, dass es eine offene Nullumgebung O in IRY gebe mit

® e C“(0 x Dy, Ey). (As)

Beispiele 6.9 a) Eine wichtige Klasse von Operatoren die die Eigenschaft (As) be-
sitzen, bilden dquivariante Operatoren auf global symmetrischen Riemannschen Man-
nigfaltigkeiten. Dabei nennen wir, mit den Bezeichnungen von Bemerkung 6.8, den

Operator II dquivariant bzgl. G, falls es eine offene Umgebung O des neutralen Ele-
mentes in G gibt mit O - D C D und

I(g-v)=g-II(v) fur (g,v)€ OxD,
wobei

g-v:X2—=R, p—vig-p)
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fur die Gruppenwirk"ung von G auf Funktionen tber X steht. Es sei nun S wie in (6.6).
Dann impliziert die Aquivarianz von II:

®(u,v) = exp(pf Xy) - T(exp(—p* X)) - v) = TI(v).

Vermoge der Voraussetzung (5.1) ist (As) somit offensichtlich erfiillt. Konkrete Beispie-
le translations- und rotationséquivarianter Operatoren werden in [27, 29, 20] diskutiert.

b) Es sei ®(p) := Q(p)p fiir p € A*7*(X) mit dem zum Stokesschen Fluss gehoren-
den Operator Q, vgl. (4.5). Ein detailiertes Studium parameter-abhingiger pull-back
Operatoren auf kleinen Holderrdumen iiber kompakten Mannigfaltigkeiten zeigt,
dass der Operator ® die Voraussetzung (As) erfiillt. Fiir die zum Teil technischen De-
tails verweisen wir auf [24].

¢) (Lokale Operatoren) Es sei 7 € C¥(IR) und II bezeichne den durch 7 induzier-
ten Nemitskii-Operator, d. h. es gelte

) (p) :==(v(p)), peX.
Dann erfiillt IT offensichtlich die Voraussetzung (As).

d) Esseien ¥ = S' und Ey = 1*(S"), E, = h2t(S") fiirein a € (0, 1). Ferner sei-
ena € h*(S') und

(v) := ad®v, veh*(Sh),
wobei 0 fiir die Ableitung nach dem Bogenlingenparameter steht. Weil 4%(S') eine Ba-
nachalgebra ist, folgt sofort, dass I € L(2**(S"), *(S")). Fiir v € h***(S') und
1 € IR gilt ferner

O(p,v)(p) = a(p+wv(p), peS.

Somit ist IT genau dann drehdquivariant, wenn der Koeffizient « konstant ist. In diesem
Fall gilt (As), vgl. die obige Bemerkung a). Allgemeiner kann man zeigen, dass (As) fiir
jedesa € C*(S'") gilt. Hingegen ist die Abbildung ®(y, v) fiira € h*(S') \ C*(S') nicht
glattin p, und folglich kann die Eigenschaft (As) in diesem Fall nicht richtig sein. |

Mit Hilfe der in Lemma 6.1 konstruierten Abbildung S lassen sich nun in der fol-
genden Weise Parameter in die Losung u aus (6.44) einbauen. Es sei N wie Lemma 6.1
und

Vi=V(e):=(1~-¢1+e) x Bgn(0,e),
mite > 0. Fiir (A, ) € V setzen wir

() (p) = a(A, S(u, t,p)),  (t,p) €I x X, (6.10)

Wie bereits erwdhnt kann aufgrund der maximalen Regularitéit der Linearisierung des
Operators IT der Satz iiber implizite Funktionen in Banachraumen angewendet werden,
um folgenes Resultat zu beweisen, vgl. [24]:

Proposition 6.4 Es gibt ein sy > 0 so dass [(A, p) — vy ,] € C*(V (o), IE)).

Nach diesen Vorbereitungen konnen wir nun leicht den folgenden Satz beweisen:
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Theorem 6.5 Unter den Voraussetzungen (A, )—(As) gilt it € C<((0,¢%) x ¥).

Beweis: Es sei (79,p0) € (0, 7] x ¥. Vermdge Lemma 6.1 gibt es by,. .., b, € RV
mit [|b|| = 1 fir k = 1,...,m, so dass (vp,, ..., vy,) eine Basis von T}, ist. Im Fol-
genden schreiben wir 2B := Y"1 uFby fiir (u!,. .., ™) € IR™. AuBerdem setzen wir

0:V(E)—= 0, %8, (A @,...,um) — (Ao, S(B, 10, po))

fiire € (0,€0). Aus Lemma 6.1 folgt dann, dass ¢ € C¥(V (¢), (0,7") x ¥), und (6.5) im-
pliziert die Beziehung

T(I.O)(p(év (7717 i@ 77]111)) =1l (f’ anvbk(p())) € R x TPOZ
k=1

fiir alle (¢, (' ...,7")) € R x IR™. Somit ist 11,0y bijektiv. Aufgrund des Satzes tiber
die Umkehrabbildung folgt nun, dass fiir gentigend kleines £ > 0 die Abbildung ¢ eine
analytische Parametrisierung ¢ einer offenen Umgebung O von (1,p9) in (0,77) x &
ist.

Wegen (A)) gilt IE; € C(I, C(X)). Folglich ist die Auswertungsabbildung

IE, — IR, w~ w(t)(po)
wohldefiniert. Vermoge Proposition 6.4 gilt deshalb

[0, ) — vslto) (po)] € C“(V(e), R).
Andererseits zeigt (6.10), dass @*it(X, 1) = vy z8(t0)(po) fur (X, i) € V(e). Dies impli-
ziert it € C¥(0,1R) und folglich die Behauptung. |

AbschlieBend soll kurz erldautert werden, wie die Hauptresultate der Abschnitte 5
und 6 angewendet werden konnen, um nachzuweisen, dass der Stokessche Fluss (4.4)
mit Oberflichenspannung fiir groffe Klassen von Anfangsdaten wohlgestellt ist, und
die entsprechenden Losungen reell-analytische Funktionen der Orts- und Zeitvaria-
blen sind.

Theorem 6.6 Es sei o € (0,1) und fiir py € B*+*(X) sei der Operator Q(po)po er-
klart. Dann gibt esein T = T(po) > 0, so dass das Anfangswertproblem

O+ Qp)p =0, p(0) = po, (6.11)
eine eindeutig bestimmte Losung

p=p(,po) € C([0,T), ***(£)) N C([0, T), (%))
besitzt. Mit

p(t,p) := p(t, po)(p) fir (1,p) € (0,T)x X
gilt auB3erdem

peC(0,T) x X).

Beweis: Vermdge der Bemerkungen 5.2 (g) und (h) folgt die Existenz- und Eindeu-
tigkeitsaussage unmittelbar aus Theorem 5.1.
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Setzen wir E; := h**+(X) fiir i = 0, 1, so iiberpriift man leicht, dass die Vorausset-
zungen (A;)—-(Ay) fiir jede Familie S gelten, die die Eigenschaften (6.2)—(6.5) erfiillt. Auf
die Giiltigkeit der Voraussetzung (As) wurde bereits in Beispiel 6.3(b) hingewiesen. So-
mit folgt die letzte Aussage aus Theorem 6.5 u

Die Losungen von (6.11) induzieren nun vermdge des Diffeomorphismus 6, eine
Familie offener Gebiete {Q(7); # € (0,7)} in IR”, so dass Q(¢) fiir jedes € (0, T) eine
kompakte berandete Mannigfaltigkeit mit analytischer Randmannigfaltigkeit I'(¢) ist.
AuBlerdem gibt es ein Paar

(7,p) € C(P,IR" xR) mit P:= | ({1} xQ()),
t€[0,T)
so dass (V(1,-),p(1,-)) € C*((),IR” x IR) fiir ¢ € (0, T), und so dass (¥,p,T(-)) eine
klassische Losung von (4.4) ist.

Wie in vielen zweidimensionalen Modellen der Hydrodynamik ist es auch fiir den
ebenen Stokesschen Fluss (4.4) moglich eine sogenannte Stromfunktion einzufiihren,
die mit funktionentheoretischen Methoden untersucht werden kann. Wird etwa das
Anfangsgebiet () von einer analytischen Kurve begrenzt, so konnen mit diesen Me-
thoden ebenfalls analytische Losungen fiir den Stokesschen Fluss (4.4) in der Ebene
konstruiert werden. Fiir interessante Untersuchungen auf diesem Gebiet sei auf die
Arbeiten [35, 5, 6, 51, 50, 34] verwiesen.

Anmerkungen

1 Halbgruppen sind ein Hilfsmittel zur funktionalanalytischen Beschreibung abstrakter dissipati-
ver Systeme.

2 Differentialgleichungen vom Typ (2.4) werden als parabolisch bezeichnet. Hierbei steht 0, ¢ fiir
die partielle Ableitung von o nach der Zeit und es gilt Ac = 3", 870, wobei 870 die zweite
partielle Ableitung von o nach der j-ten Ortsvariablen bezeichnet. '

3 Die mittlere Kriimmung einer Hyperfldche ist das arithmetische Mittel der sogenannten Haupt-
kriimmungen.

4 Es sei darauf hingewiesen, dass die Eigenschaft (2.10) etwa keine a-priori-Forderung oder der
Heuristik der Modellierung geschuldet ist. Sie ist vielmehr eine Konsequenz des parabolischen
Maximumsprinzips, welches ein klassisches Werkzeug zur analytischen Untersuchung dieser
partiellen Differentialgleichungen ist.

5 Nichtlineare Differentialgleichungen besitzen im Allgemeinen keine globalen Losungen. Es
konnen vielmehr sogenannte Blow-up-Phidnomene auftreten, bei denen die Losungen in end-
licher Zeit eine Singularitét entwickeln.

6 Holder-stetige Funktionen konnen als Verallgemeinerungen Lipschitz-stetiger Funktionen be-
trachtet werden. Sie spielen in der Theorie der partiellen Differentialgleichungen eine zentrale
Rolle.

7 E. Zeilder bietet dazu folgendenVergleich an: “The introduction of Sobolev spaces corresponds
to the introduction of real numbers by completion of the set of rational numbers via irrational num-
bers”, vgl. p. 127 in [59].

8 Es gibt Sobolev-Funktionen, die nicht stetig sind und fiir die eine Punktauswertung nicht sinn-
voll erkldrt werden kann.

216 JB 109. Band (2007), Heft 4



J. Escher: Funktionalanalytische Methoden bei freien Randwertaufgaben

9

10

(1]
(2]

(3]
4]

(6]
(7]
(8]

]
(10]
(1]
(12]

[13]
[14]

[15]
[16]
(17]

(18]

(19]
(20]

(21]

Hierbei bezeichnet £L(X, Y') den Banachraum aller linearen und beschriinkten Abbildungen des
Banachraumes X in den Banachraum Y.

Es ist bekannt, dass H(E|, Ey) eine offene Teilmenge von L(E), Ep) ist. Im Folgenden statten
wir H(E), Ey) stets mit der von der Norm in £(E, Ey) erzeugten Topologie aus, vgl. [1].
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p-Adic Automorphic
Forms on Shimura
Varieties

Berlin u.a., Springer, 2004, 390 S., € 89,95

The theory of modular forms (and, more
generally, automorphic forms) was initially
an analytic one, with examples such as Eisen-
stein series constructed as infinite sums
which converged on the upper half plane.
However, there were shades of algebra lurk-
ing in many of these analytic objects. For ex-
ample the classical Eisenstein series of even
integer weight k > 4 has the power series ex-
pansion

(g =8 S o e,

where ((s) is the Riemann zeta function and
ok-1(n) denotes the sum of the (k — 1)st
powers of the positive divisors of z (note that
g has become the traditional variable to use
when writing power series expansions of mo-
dular forms). The function oy (n) is far mo-
re familiar to number theorists than to ana-
lysts, and of course the zeta function also has
classical links to number theory.

In fact there were even some indications of
an arithmetic side to the story, perhaps star-
ting with Ramanujan’s observation that if

a[I(0 - ) =q- 244> +252¢° + -

n>1

> rimyg”

m>1

Alg)

Il

is the weight 12 modular form related to dis-
criminants of elliptic curves, then then inte-
gers 7(m) satisfied

T(m) = oy (m) (mod 691).

Note that ¢(—11) = 691/32760 (explaining
where this mysterious prime number came
from) and Ramanujan’s observation could
hence be more succinctly expressed as

A(g) = Eix(q) (mod 691).

One had to wait until the 1960s before these
(and many other) congruences between
modular forms were explained conceptually.
But then a lot of things happened at once.
Modular forms are examples of auto-
morphic forms for the group GL,, and
Langlands pointed out conjectural links be-
tween automorphic forms and Galois repre-
sentations, thus giving a totally different
way of studying modular forms. Parts of
Langlands’ conjectures were verified by
Langlands himself, Eichler, Shimura and
Deligne, so suddenly congruences between
modular forms could be re-interpreted as
congruences between Galois representa-
tions. A very concrete theory of mod p mod-
ular forms was developed by Serre and Swin-
nerton-Dyer. In fact, with the advent of
Grothendieck’s theory of schemes and sub-
sequent developments in moduli spaces, one
could even give a conceptual algebraic defi-
nition of a modular form over an arbitrary
ring R, and one could recover the classical
definition by letting R be the field of complex
numbers. By letting R be the ring of integers
modulo p" and taking careful limits, Serre
was able to construct infinite-dimensional
Banach spaces of objects which became
known as p-adic modular forms. These Ba-
nach spaces contained, and generalised, the
spaces of classical modular forms, and gave
p-adic information about these classical
forms. As an example of their use, Serre used
the Eisenstein series mentioned above to give
a new construction of a p-adic analogue of
the Riemann zeta function. Katz used
Serre’s spaces, and generalisations of them,
to give conceptual explanations of the con-
gruences that had been observed between
modular forms, and also developed enough
of a theory of p-adic Hilbert modular forms
to enable himself, Deligne and Ribet to con-
struct many new p-adic L-functions. Then,
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after this period of intense activity, the uses
of the p-adic theory seemed to dry up, to a
large extent.

All this changed in the early 1980s when
Haruzo Hida, a young Japanese mathemati-
cian, discovered a hitherto unexpected struc-
ture in the subspace of ordinary p-adic mod-
ular forms. Hida proved a finiteness theorem
about these forms (thus getting some kind of
control over an important part of the infi-
nite-dimensional space of p-adic modular
forms) and showed that ordinary p-adic
modular forms moved naturally in p-adic fa-
milies. This work was extremely important
because it gives one a “new degree of free-
dom” in the theory of modular forms: when
analysing a modular form, at least if it is or-
dinary, one can put it into what is now called
a Hida family, and use the other forms in the
family to shed light on the original form.
One beautiful example of this was the work
of Greenberg and Stevens, who managed to
compute the derivative of the p-adic L-func-
tion associated to a certain type of modular
form by putting the form in a family, com-
puting the derivative with respect to the new
variable instead, and then exploiting the fact
that the resulting family of L-functions had a
family of zeroes, enabling them to relate the
derivative they had to the one one they
wanted. Hida’s work opened up this kind of
possibility and still remains a very powerful
tool for the analysis of classical modular
forms (most recently, Wiles and others have
related Hida’s “big” Hecke algebras to cer-
tain abstractly-defined deformation rings,
although these aspects of the theory are not
covered in the book under review).

Over the past two decades, Hida and
others have generalised his theory and con-
structed p-adic families of automorphic
forms for many other groups. However, the
moment one leaves the relative safety of the
group GL,, one runs into technical difficul-
ties. Classically one has the Eichler-Shimura
isomorphism, relating sections of line bun-
dles on modular curves to the cohomology
of congruence subgroups of SL,(Z), and one
can choose which of these objects one would

like to p-adically interpolate. In Hida’s origi-
nal work he managed to construct families
on both the geometric side and the cohomo-
logical side. However when one works with
automorphic forms on a general reductive
group, the Eichler-Shimura map may not
even exist, and if it does, it may be far from
being an isomorphism and one has to choose
what to interpolate. If G “admits Shimura
varieties” (roughly speaking, this is true for
many symplectic and unitary groups but
false for GL, if n > 2) then one can try and
use algebraic geometry to analyse auto-
morphic forms for G, but there are still tech-
nical problems to be overcome before the
theory can be made to start. For example the
Shimura variety may not be a moduli space
for abelian varieties, one may not have an
analogue of a key intermediate result of Igu-
sa and Ribet (irreducibility of the Igusa
tower), the ordinary locus in the Shimura
variety may be non-affine or (more ser-
iously) too small, one may need a good un-
derstanding of compactification of the Shi-
mura varieties in question, one certainly
needs a good understanding of the reduction
mod p of the varieties, and so on. On the
other hand, the approach using group coho-
mology, although it will work in more gener-
al situations (for example for GL,), becomes
bogged down with problems of torsion in the
cohomology, sometimes to the extent that
one can say very little about the cohomology
groups that one is interested in, and one has
to restrict to cohomology in lower degrees.
Historically Hida developed his theory geo-
metrically for Hilbert modular forms, but
then used cohomological methods for nearly
a decade when generalising his results to
GL,, over number fields.

In the book under review however, Hida
has returned to the geometric construction
of p-adic families of ordinary forms. The ad-
vantage of this method is that, when it
works, it produces very precise control theo-
rems without errors involving torsion; this is
essentially because one is using H° in cohe-
rent cohomology rather than H” in group
cohomology. The disadvantage is that, con-
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trary to the cohomological approach which
(modulo its relations to automorphic forms)
is mainly group-theoretic, the geometric ap-
proach needs a deep understanding of modu-
li spaces of abelian varieties with extra
structure, and their compactifications, both
in characteristic 0 and characteristic p. Hida
has recently solved many of these problems
several papers that he wrote in the last few
years, and the motivation of the book under
review is to explain some of these ideas by
working through them firstly in special ca-
ses, and then in more and more general situa-
tions.

We now turn to the contents of the book.
After some introductory chapters about al-
gebraic geometry, modular curves and mo-
dular forms, Hida gives a new proof of Igu-
sa’s theorem (irreducibility of the classical
Igusa tower) in Chapter 3, and deduces, via
techniques which are now standard, his (ver-
tical) control theorem for ordinary p-adic
modular forms. In Chapter 4 he shows that
his proof of Igusa’s theorem will generalise
to give a proof of Ribet’s theorem of the irre-
ducibility of the Igusa tower in the Hilbert
modular case, at least when p is unramified
in the base field (although Ribet did not need
this assumption when he proved this result in
the 1970s). Hida goes on to deduce control
theorems for p-adic Hilbert modular forms.
After a chapter on the Eichler Shimura map
isomorphism and its generalisation to cer-
tain other reductive groups, Hida uses his
technique to prove irreducibility of the Igusa
tower in the Siegel modular case (here the ir-
reducibility result was already proved by
Chai and Faltings), although he does not
then go on to develop the control theorem
for p-adic Siegel modular forms at this point.
It should be noted that on the way he deve-
lops. or at least sketches the developent of, a
lot of the machinery of quotients a la Mum-
ford and toroidal compactifications. In the
final two chapters Hida shows how far his
techniques will go in the general case of a
group G that admits Shimura varieties — and
they go a long way. He axiomatizes the in-
gredients necessarily for the precise control

theorem to work and then verifies that these
axioms hold for a wide class of unitary and
symplectic groups. He also proves an appro-
priate modification of Igusa’s theorem
which works in many unitary and symplectic
cases. A remark for the experts: the theorems
are perhaps not quite the most general possi-
ble: for example Hida must often assume
that his group G is unramified at p, and some
of his general control theorems, although
they are precise (rather than up to torsion),
only relate classical forms to p-adic ones for
“sufficiently regular” weights, where there
appears to be no explicit bound on exactly
how large the weight must be for the theo-
rems to apply. On the other hand, the results
obtained are still strikingly strong.

Hida’s theory has had many applications
in the theory of classical modular forms, and
as mathematics continues to mature, this
more general theory will no doubt have simi-
larly striking applications in the theory of
automorphic forms.

London K. Buzzard

A First Course in Logic

S.Hedman

AFirst Course in Logic
An introduction to
Model Theory, Proof
Theory, Computability,
and Complexity, Oxford
Texts in Logic 1

Oxford University press, 2004, 431 S.,
£29,99

Es herrscht sicherlich kein Mangel an Ein-
fithrungen in die mathematische Logik. Eini-
ge der vorhandenen Texte neigen jedoch,
meiner Meinung nach, zu Ubertriebenem
Formalismus, haben eine etwas einge-
schriankte Stoffauswahl oder wirken inzwi-
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schen etwas altmodisch. Das vorliegende
Buch ist daher eine willkommene Ergdnzung
der Auswahl an einfithrenden Logikbii-
chern.

Bereits in der Einleitung wird deutlich,
dass algorithmischen Aspekten der Logik
viel Aufmerksamkeit gewidmet wird.

Das erste Kapitel befasst sich mit Aus-
sagenlogik. Exemplarisch gehe ich auf dieses
Kapitel etwas néher ein, als auf die folgen-
den. Im ersten Kapitel werden auch Kon-
zepte wie die Induktion tiber den Formel-
aufbau und formales Beweisen eingefiihrt.
Der vorgestellte Ableitungskalkiil fiir die
Aussagenlogik kennt nur Regeln und keine
Axiome. Mit Hilfe des Kalkiils werden zu-
néchst die iiblichen Regeln des logischen
SchlieBens bewiesen, wie zum Beispiel Kon-
traposition und Fallunterscheidung, sofern
sie nicht bereits Bestandteil des Kalkiils
sind. Nachdem die Korrektheit des Kalkiils
gezeigt wurde, wird ein Algorithmus vor-
gestellt, mit dem sich jede gegebene aus-
sagenlogische Formel in konjunktive Nor-
malform bringen ldsst. AnschlieBend wird
der Horn-Algorithmus vorgestellt, mit dem
sich fiir jede Horn-Formel schnell entschei-
den ldsst, ob die Formel erfiillbar ist. Es
wird angedeutet, dass das Erfiillbarkeits-
problem fiir allgemeine aussagenlogische
Formeln (SAT) NP-vollstindig ist. An die-
ser Stelle wird auch auf das siebte Kapitel
verwiesen, in dem néher auf Fragen der Be-
rechenbarkeit und Komplexitit eingegan-
gen wird. Gegen Ende des Kapitels wird
noch ein Resolutionskalkiil vorgestellt und
seine Vollstandigkeit bewiesen.

Die Vollstidndigkeit des zundchst einge-
fiihrten Kalkiils wird schlieBlich aus der
Vollstandigkeit des Resolutionskalkiils, das
nur iber die Erfiillbarkeit einzelner Formeln
Auskunft gibt, und dem Kompaktheitssatz
gefolgert. Der Kompaktheitssatz der Aus-
sagenlogik wird mit Hilfe eines recht elegan-
ten, fir die geplante Anwendung mal-
geschneiderten Lemmas, das sich bei néhe-
rem Hinsehen als Version von Konigs
Baumlemma entpuppt, bewiesen. Dieses
Vorgehen ist insofern originell, als dass sonst

oft der Kompaktheitssatz aus dem Vollstdn-
digkeitssatz gefolgert wird. Ich halte es aber
zum Beispiel auch fiir akzeptabel, in einer
Anféangervorlesung iiber mathematische Lo-
gik keinen Ableitungskalkiil fiir die Aus-
sagenlogik einzufithren und stattdessen auf
das Wabhrheitstafelverfahren zu verweisen.
In diesem Falle muB3 man aber den Kom-
paktheitssatz flir die Aussagenlogik direkt
beweisen, zum Beispiel in der im vorliegen-
den Buch vorgestellten Weise.

Im zweiten Kapitel werden die Sprache
und die Semantik der erststufigen Logik ein-
gefithrt. Als Beispiele fiir Strukturen dienen
dabei nicht nur Graphen, lineare Ordnun-
gen, Zahlensysteme und so weiter, sondern
zum Beispiel auch relationale Datenbanken.

Das dritte Kapitel beinhaltet die Anfinge
der Beweistheorie. Hier wird zunédchst der im
ersten Kapitel vorgestellte Ableitungskalkiil
fiir die Aussagenlogik zu einem Ableitungs-
kalkl fir erststufige Logik aufgestockt. Oft
geht man einen anderen Weg, indem man al-
le aussagenlogischen Tautologien als Axio-
me in den préadikatenlogischen Kalkiil auf-
nimmt. Die im vorliegenden Buch vorgestell-
ten Kalkiile kommen jedoch, wie schon im
Falle der Aussagenlogik bemerkt, ohne
Axiome aus. Nach einer eingehenden Dis-
kussion von prédnexer und Skolem-Normal-
form wird Herbrand-Theorie betrieben und
Resolution fiir erststufige Logik eingefiihrt.
Der Schluss des Kapitels ist der Logikpro-
grammierung mit Hilfe von Prolog und Ot-
ter gewidmet.

Im vierten Kapitel werden nach einem
recht weiten Ausflug in die Mengenlehre und
insbesondere die Kardinalzahlarithmetik die
klassischen Sétze iiber erststufige Logik be-
wiesen: Vollstindigkeitssatz, Kompaktheits-
satz, LOwenheim-Skolem aufwirts und ab-
wirts. Es werden auch einige etwas weniger
bekannte Sdtze zum Beispiel tiber die Amal-
gamierung von Strukturen gebracht. Ab-
schlieBend wird an einigen Beispielen ver-
deutlicht, wie wenig ausdruckstark die erst-
stufige Logik eigentlich ist.

In den Kapiteln 5 und 6 werden modell-
theoretische Themen wie Kategorizitit, Zu-
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fallsgraph und 0-1-Gesetze, Quantorenelimi-
nation, Typauslassung und Stabilitit be-
sprochen.

Kapitel 7 ist Berechenbarkeit und Kom-
plexitdt gewidmet. Hier werden sowohl die
Grundlagen der Rekursionstheorie als auch
der Komplexitatstheorie dargestellt. Das zu
Grunde liegende Maschinenmodell nennt
der Autor eine T-Maschine, im wesentlichen
eine Registermaschine, die mit der Program-
miersprache 7" programmiert wird. Die
Aquivalenz von rekursiven und mit einer
T-Maschine berechenbaren Funktionen
wird bewiesen. Am Schluss des Kapitels wer-
den die Klassen P und NP untersucht und ei-
nige Beispiele fiir NP-vollstindige Probleme
genannt.

In Kapitel 8 werden die Godelschen Un-
vollstindigkeitssitze bewiesen. Kapitel 9
geht der Frage nach, was es tiber die erststu-
fige Logik hinaus noch gibt. Es werden
zweitstufige Logik und unendliche Logiken,
sowie Fixpunkt-Logiken besprochen. In die-
sem Kapitel wird auch der Satz von Lind-
strom bewiesen, der die hervorragende Rolle
der erststufigen Logik zeigt.

Im Kapitel 10 geht es schlieBlich um end-
liche Modelltheorie. Wéhrend bisher algo-
rithmische Aspekte der Logik im Zusam-
menhang mit automatischem Beweisen und
dem Erfiillbarkeitsproblem (SAT) angespro-
chen wurden, geht es hier darum, Komplexi-
titsklassen mit Hilfe von Logiken zu be-
schreiben. Der wichtigste Satz in diese Rich-
tung ist sicherlich der Satz von Fagin, der be-
sagt, dass die Klasse NP, aufgefasst als Klas-
se von Grapheneigenschaften, genau die
Klasse aller Eigenschaften ist, die sich mit ei-
ner zweitstufigen Formel der Form zweitstu-
figer Existenzquantor gefolgt von einer erst-
stufigen Formel ausdriicken lassen. Man
kann den Autor gar nicht genug dafiir loben,
diesen Satz in einer Einfiihrung in die Logik
zu bringen. Mir scheint sich der Satz von
Faggin weder unter Logikern noch unter
theoretischen Informatikern der angemesse-
nen Bekanntheit zu erfreuen. Im zehnten
Kapitel wird auch der Beweis der NP-Voll-
standigkeit von SAT nachgeholt.

Der vorliegende Text ist fliissig geschrie-
ben, stellenweise witzig (der Name der Pro-
grammiersprache 7°") und gut lesbar. Es
wird mehr argumentiert als gerechnet, ohne
dass die Beweise unexakt wiren. Die Aus-
wahl der Themen ist recht umfangreich, oh-
ne dass das Buch damit iiberladen wirkt. Es
wird deutlich auf Stabilitdtstheorie, auto-
matisches Beweisen, Komplexitétstheorie
und endliche Modelltheorie eingegangen,
vermutlich die wichtigsten aktuellen For-
schungsgebiete in der mathematischen Lo-
gik. Selbst in dem kurzen Abschnitt iiber
Mengenlehre finden sich Verweise auf sehr
tiefe, relativ frische Resultate in der Kardi-
nalzahlarithmetik, die zwar faszinierend und
wichtig sind, auf die man in einem einfiihren-
den Text tiber mathematische Logik aller-
dings verzichten konnte. Nicht erwidhnt wer-
den nichtklassische Logiken.

Abgesehen von einigen Schreibfehlern
(Lowenhiem), macht das Buch einen recht
sorgfiltig geschriebenen Eindruck. Somit
kann ich es wiarmstens als Einfithrung in die
mathematische Logik empfehlen. Auch eine
Vorlesung lieBe sich gut nach dem Buch hal-
ten, wenn man entsprechend viel weglésst,
was aber angesichts des Aufbaus des Buches
kein Problem sein sollte.

S. Geschke

Berlin

J.Jahn

Vector Optimization,
Theory, Applications
and Extensions

Berlin u. a., Springer, 2004, 465 S., € 89,95

The book under review is dedicated to the
theory of vector optimization in general
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spaces. The aim of the book is to present a
survey of modern and important results con-
cerning theoretical foundations of vector op-
timization in a general mathematical setting,
optimality conditions, applications in engi-
neering and extensions to set-valued optimi-
zation.

The book starts in the first part with basic
concepts and theoretical results from convex
analysis that are important for developing
optimization theory in general spaces. Sev-
eral properties and assertions are motivated
and explained at the example of vector-va-
lued norms. After a introduction on the field
of mappings on linear spaces (convex maps,
differentiability, subdifferential) some fun-
damental theorems (Hahn-Banach theorem,
separation theorems for convex sets, James
theorem, Krein-Rutman theorems and
Lyusternik theorem) are presented.

In the second part important results from
theory of vector optimization are explained.
An introduction of different solution con-
cepts (minimal, strongly minimal, weakly
minimal and properly minimal elements) is
given. Using scalarization techniques neces-
sary and sufficient conditions for optimal
elements of a set are shown. The author in-
troduces special parametric norms for sca-
larization and gives a complete characteriza-
tion of minimal and weakly minimal ele-
ments in the general nonconvex case.
Furthermore, existence results for optimal
elements of a vector optimization problem
are shown using Zorn’s lemma and a scalari-
zation techniques. Lagrange multiplier rules
are proven for minimal and weakly minimal
elements of a vector optimization problem.
Moreover, the author presents a general
duality principle and duality assertions for
abstract convex vector optimization pro-
blems via scalarization methods. A speciali-
zation to abstract linear vector optimization
problems is given.

The third part of the book is concerned
with interesting applications of the theoreti-
cal results derived in the former chapters.
For vector approximation problems the
author shows Kolmogorov conditions and

duality assertions. Furthermore, cooperative
n player differential games are studied and
necessary and sufficient conditions for opti-
mal and weakly optimal controls are pre-
sented.

Engineering applications are considered in
the fourth part of the book. This chapter
introduces the basic concepts of multicriteria
optimization. The author presents an inter-
esting example from structural engineering,
gives the definitions of several variants of the
Edgeworth-Pareto optimality (weakly, pro-
perly, strongly and essentially Edgeworth-
Pareto optimal points) and explains rela-
tions between these different concepts.
Moreover, important scalarization results
are shown, especially, the weighted sum and
the weighted Chebyshev norm approach are
investigated in detail. Furthermore, numeri-
cal methods are described. As a special appli-
cation the author studies multiobjective de-
sign problems (design of antennas, design of
FDDI (fiber distributed data interface) com-
puter networks, a fluidized reactor-heater
system and a cross-current multistage ex-
traction process).

Finally, in part five some extensions to set-
valued optimization are presented. General
optimization problems with set-valued con-
straints or a set-valued objective function are
closely related to problems in stochastic op-
timization, fuzzy theory and optimal con-
trol. Several optimality notions for a set-va-
lued optimization problem are introduced.
Furthermore, this chapter contains basic
concepts and results from set-valued optimi-
zation: Differentiability notions, contingent
epiderivatives, subdifferential and optimal-
ity conditions using contingent epideriva-
tives, subgradients and weak subgradients,
especially Lagrange multiplier rules.

All at all, the book highlights very well re-
cent developments in the field of active re-
search, as well important and interesting to-
pics like optimization theory in general
spaces, optimality conditions and applica-
tions in engineering. The material is well pre-
sented, preliminaries are discussed in detail,
and many illustrations help to understand
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the complicated facts. The book may be
warmly recommended to graduate students
and researchers in optimization, numerical
mathematics, operations research, engineer-
ing and other fields which apply optimiza-
tion methods.

Halle C. Tammer

Monsografie Matematycz

lsomon

P.F.X. Miller
Isomorphisms
between H' Spaces
Monogr. Matem. 66

Basel u. a., Birkhduser, 2005, 453 S., € 98,—

Die Theory der Hardyrdume H?, also der
Banachrdume aller L”-Funktionen auf dem
komplexen Einheitskreis mit positiven Fou-
rierkoeffizienten, gehort zum festen Bestand
klassischer Analysis. Eine Sonderstellung
kommt dabei dem Fall p = 1 zu. Hier hat es
in den letzten drei Jahrzehnten eine stiir-
mische Entwicklung gegeben. Es wurden
neue und tiefliegende Erkenntnisse gewon-
nen wie etwa die Existenz einer unbedingten
Basis und die Charakterisierung des Dual-
raums als Raum der BMO-Funktionen
(,,bounded mean oszillation*) mit Hilfe der
Fefferman-Stein-Dualitét. Gleichzeitig wur-
den neue Typen von H'-Riumen eingefiihrt,
etwa dyadische, atomare und martingale
H'-Riume, und deren Zusammenhinge un-
tersucht. Einher damit ging die Diskussion
wichtiger neuer Ungleichungen, der Inter-
polation von Integralkernoperatoren, ba-
nachraumtheoretischer Fragen und vieles
andere mehr. Die hier gewonnenen Metho-
den sind auch interessant und hilfreich fiir

benachbarte Gebiete der Analysis, so dass
man im Zusammenhang mit A eher von ei-
nem selbstindigen Teilgebiet der Analysis
als von einem einzelnen Banachraum ana-
lytischer Funktionen sprechen sollte.

All das rechtfertigt, den H'-R4dumen ein
eigenstdndiges Buch zu widmen, welches die
neu gewonnenen Ergebnisse an der Schnitt-
stelle zwischen Fourieranalysis, Banach-
raum-, Wahrscheinlichkeits- und Operator-
theorie iibersichtlich darstellt und deren Be-
weise, die man sonst nur in Originalarbeiten
findet, detailliert ausarbeitet. Dies wird im
vorliegenden Buch durchgefiihrt.

Herausgekommen ist ein exzellentes Buch,
welches das Potenzial besitzt, zu einem wich-
tigen Standardwerk der Analysis zu werden.
Dem Verfasser gelingt es, auch die kompli-
ziertesten Sachverhalte klar und verstdndlich
darzustellen. Erreicht wird das u. a. durch ei-
ne konsequente Gliederung lingerer Bewei-
se, durch kurze Einfithrungen am Anfang ei-
nes jeden Abschnittes und Erlduterungen
vor Beginn wichtiger technischer Aussagen.
Auch scheut sich der Autor nicht, frither ein-
gefithrte Begriffe, welche spiter an anderer
Stelle wieder gebraucht werden, dort noch
einmal zu erkldren. Ebenso hilfreich sind die
historischen Notizen am Ende eines jeden
Kapitels.

Das Buch ist eingeteilt in 6 Kapitel.
Grundlage des gesamten Werkes ist das
Haarsystem, welches zusammen mit dem
Walshsystem im ersten Kapitel eingefiihrt
wird. Hier werden u. a. auch die Ungleichun-
gen von Khintchine, Burkholder, Fefferman
und Hardy-Littlewood bewiesen. Ebenfalls
in diesem Kapitel werden die Riume #' und
BMO vorgestellt.

Kapitel 2 ist funktionalanalytischen Kon-
zepten gewidmet. Es werden dort u.a. die
bisher bekannten komplementéiren Teilrdu-
me von H' bestimmt. Als wichtiges banach-
raumtheoretisches Hilfsmittel wird fernerhin
die Dekompositionsmethode von Pelczynski
bewiesen, und es werden analytische Famili-
en von Operatoren studiert.

Kapitel 3 beschéftigt sich mit tiefen kom-
binatorischen Fragen im Zusammenhang
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mit der ,,Carleson Packing Condition“. Ka-
pitel 4 gibt eine Isomorphieklassifizierung
der martingalen H'-Riume und untersucht
Subsysteme des Haarsystems.

Kapitel 5 beschiftigt sich mit isomorphen
Invarianten von H'. Hier wird u. a. gezeigt,
dass H' die uniforme Approximationseigen-
schaft besitzt und dass BMO primir ist. Ka-
pitel 6 schlieBlich diskutiert ausfiihrlich ato-
mare H'-Riume und untersucht das Bi-
orthogonalsystem von Carleson, welches
sich in zahlreichen Fillen als unbedingte Ba-
sis herausstellt.

Viele der dargestellten Ergebnisse sind
sehr tiefe Resultate der Analysis mit unge-
mein anspruchsvollen Beweisen, die man
zum Teil zum ersten Mal in einem Lehrbuch
findet. Es ist erstaunlich, wie gut es dem Ver-
fasser gelingt, sie in lesbare Form zu bringen.
Der Leser des Buches muss keine Spezial-
kenntnisse besitzen. Alles, was iiber die ele-
mentaren Grundlagen reeller und komplexer
Analysis hinausgeht, wird hier explizit ent-
wickelt.

Es ist dem Buch zu winschen, dass es die
Aufmerksamkeit erhédlt und ihm der Rang
zugeordnet wird, den es verdient.

Paderborn W. Lusky
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