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Vorwort

In dem vorliegenden Heft 4 des Jahresberichts bieten wir Ihnen einen Ubersichtsartikel von
J.-H. Bruinier iiber Borcherds Produkte. Darin wird die Bedeutung der Borcherdsschen Me-
thode der Produktdarstellung fiir die Theorie der automorphen Formen ausgehend von den
klassischen Beispielen erldutert. Dariiber hinaus finden Sie natiirlich wie {iblich eine Reihe
von aktuellen Buchbesprechungen.

Mit diesem Heft verabschiedet sich das Herausgebergremium des Jahresberichts nach
achtjdhriger Tatigkeit von den Lesern. Unser Ziel war es, die Mathematik in ihrer ganzen
Spannbreite den Lesern ndher zu bringen, und wir hoffen, dass uns das gelungen ist. Gleich-
zeitig wiinschen wir natiirlich dem neuen Herausgeber K. Hulek fiir die Zukunft viel Erfolg.

A. Krieg

JB 106. Band (2004), Heft 4 149
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Infinite products in number theory
and geometry

Jan Hendrik Bruinier

Abstract

m  Keywords and Phrases: Infinite product, modular form, Hilbert modular surface,
partition function, Green function, Eisenstein series, generating series, intersection
number, Chow group

®=  Mathematics Subject Classification: 11F03, 11F27, 11F41, 14C17, 14C20,
11G 18, 14G40

We give an introduction to the theory of Borcherds products and to some number theo-
retic and geometric applications. In particular, we discuss how the theory can be used to
study the geometry of Hilbert modular surfaces.
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’ Ubersichtsartikel Historischer Artikel Buchbesprechungen

1 Introduction

Infinite products play an important role in many branches of mathematics. In num-
ber theory, they for instance provide an elegant way of encoding and manipulating com-
binatorial identities. The product expansion of the generating function of the partition
function is a well known example. On the other hand, infinite products are a fundamen-
tal tool in complex analysis to construct meromorphic functions with prescribed zeros
and poles, the Weierstrass product theorem being a prominent example. In that way,
they become interesting for the study of geometric problems.

In the first part of the present paper we will present some examples of particularly
interesting infinite products, called Borcherds products, which are characterized by a
striking symmetry property: They are modular forms for the orthogonal group of a sui-
table rational quadratic space of signature (2, £). Although some very classical modular
forms appear here, as for instance certain Eisenstein series or the j-function, most of
these product expansions were only discovered rather recently by R. Borcherds [Bol,
Bo4].

We will then consider more systematically the properties of Borcherds products on
Hilbert modular surfaces. They can be used to recover important classical results on the
geometry of such surfaces. In addition, they provide a new approach to various arith-
metic questions.

Hilbert modular surfaces can be realized as arithmetic quotients associated to cer-
tain rational orthogonal groups of signature (2,2). In particular, they are just very spe-
cial instances of those Shimura varieties that can be obtained as quotients from ortho-
gonal groups of signature (2, ¢), the general setting of Borcherds' theory. However, we
feel that focusing on such a special case facilitates the presentation of central ideas.
Moreover, the geometry of Hilbert modular surfaces is particularly beautiful. Most of
the results stated in sections 27 actually hold in greater generality.

The present paper is not intended to be a survey on Borcherds products. It only cov-
ers a small part of the many interesting aspects of the theory. For further expository ar-
ticles, in particular for the connection to generalized Kac-Moody algebras, we refer to
[Bo2], [Bo3], [BoS], [Ko].

I would like to thank E. Freitag, W. Kohnen, S. Kudla, and U. Kiihn for many sti-
mulating discussions and valuable suggestions.

2 Infinite products and elliptic modular forms

Recall that an infinite product
(I—a)(l—a)(1—as)...

is said to converge absolutely, if the underlying series
ay+a+az+...

converges absolutely. With this definition, an absolutely convergent infinite product
vanishes, if and only if one of its factors vanishes. So for instance the product

152 JB 106. Band (2004), Heft 4
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h(g) =TI -4
n=I
converges absolutely for any complex number ¢ with |g| < 1 and does not vanish there.
Its underlying series is the geometric series Y, ¢".
This first example already has very interesting combinatorial and geometric proper-
ties. The function 1/A(g) is holomorphic for |¢| < 1 and hence can be expanded in an in-
finite series

o0
1/h(q) = > _p(n)g" =1+ q+2¢* + 3¢ +5¢* +7¢° + 11¢° + 15¢' +22¢° + ...
n=0
It is easily verified that the function p(n) is the so called partition function. It counts the
number of ways a positive integer n can be written as a sum of positive integers. The
number of summands is unrestricted, repetition is allowed, and the order of the sum-
mands is not taken into account. For instance there are 5 partitions of 4, namely 4,
341,242,241+ 1,14+14+14+1.

The arithmetic of partitions is quite involved and there are a number of unsolved
questions about them (see e.g. [On]). One reason is that the partition function grows
rather rapidly. This is not apparent from the first few values give above, but a quick
computation (using e.g. Maple) shows that for instance p(100) = 190 569 292. In fact
the celebrated Hardy-Rademacher-Ramanujan asymptotic states

eKy/n
21) p(n) 3
as n — oo, where K = m/2/3 (c.f. [Ap] chapter 5). This follows from the fact that
1/h(q) is closely related to a (weakly holomorphic) modular form of weight —1/2. The
Fourier coefficients of such modular forms satisfy similar asymptotics in general.
In a different direction, if we put ¢ = ™" for 7 in the upper complex half plane
H = {7 € €; 3(7) > 0}, we are lead to the discriminant function

o0

(22) A()=g-h(@* =q][0 -

n=1
Since the product converges (locally uniformly) absolutely, it defines a nowhere vanish-
ing holomorphic function on IH. Moreover, A has a striking symmetry property with
respect to the action of the modular group SL,(Z) on IH by Moebius transformations

ab _ ar+b 3
T = (c d) T = 9057 It satisfies

A(?:j:f’) — (cr +d)2A(D), (ch g) € SL,(Z)

(for a simple proof see [Ko]).

To put this in a suitable context, we recall some basic notions of the theory of modu-
lar functions (see e.g. [Sh], [Ma], [Ap] for more details). Let k& be an integer, I" a sub-
group of finite index of T'(1) := SL,(Z), and x an Abelian character of I". A function
f:H — Cis called a weakly holomorphic modular form (of weight k with respect to I
and x), if

JB 106. Band (2004), Heft 4 153



[ Ubersichtsartikel ] Historischer Artikel LBuchbesprechungen 1

(1) £(22) = x()(er +d)'f(r) forall (4}) €T,
(2) fisholomorphic on H,
(3) fis meromorphic at the cusps of I'.

We do not want to explain the last condition in too much detail. If I' = I'(1) (which is
all we need in this section), then any function f satisfying the first two conditions has a
Fourier expansion
o
f(r) =" ey,
n=-00

because T = ([‘) i) € I'(1). Now the third condition means that only finitely many c(n)
with n < 0 are non-zero. If actually all ¢(n) with n < 0 (respectively n < 0) vanish, then
f is called a holomorphic modular form (respectively cusp form) for I'(1). If T has only fi-
nite index in I'(1), one has to require similar conditions for finitely many I'(1)-translates
of f corresponding to the cusps of T, i.e., the T-orbits of P! (Q) = Q U cc.

We write W (respectively My, Si) for the space of weakly holomorphic modular
forms (respectively holomorphic modular forms, cusp forms) of weight & for I'(1) with
trivial character. One can show that M, = {0} for k <0 or k odd, My = C, and
M, =0.

The properties of A stated above can be summarized by saying that A is a cusp form
of weight 12 for I'(1) with trivial character, i.e., an element of Si,.

Further examples of modular forms are provided by Eisenstein series. If k is an even
integer, k > 2, we define the Eisenstein series of weight & for I'(1) by

Bl = % Y (er+d)*.
cdell
ged(c,d)=1

By comparison with a suitable integral, one checks that E; converges normally and de-
fines a holomorphic function on IH. Consequently the transformation behavior of a
modular form of weight k easily follows by reordering the summation. The Fourier ex-
pansion of Ej can be computed by means of the partial fraction expansion of the cotan-
gens. One finds that

Ei(r) = 1- 255" o\ (m)e,
k n>1
where B denotes the k-th Bernoulli number and o1 (n) = > din d*! the usual divisor
sum function. In particular Ej is a (non-zero) holomorphic modular form of weight k
for I'(1). As a consequence we get the decomposition M; = CE; @ Sy for k > 2. The
non-vanishing of A on IH implies that we have an isomorphism

Sk —= My_12, f— f/A.
It can be deduced that the graded algebra @, ., M) of modular forms for I'(1) is a poly-
nomial ring in E4 and Eg.

To get a more geometric interpretation of modular forms for I' C T'(1), one consid-
ers the modular curve associated with I', that is, the quotient Yr = I'\IH. The complex

154 JB 106. Band (2004), Heft 4



J. H. Bruinier: Infinite Products in Number Theory and Geometry

structure of IH induces a structure as a non-compact Riemann surface on Yr. One ob-
tains a compact Riemann surface X1 by adding finitely many points, namely the cusps
of I'. Every compact Riemann surface X has a natural structure as a projective algebraic
variety over €. The Zariski topology is given by taking for the closed sets the finite sub-
sets of X together with X itself. The structure sheaf O is given by taking for the regular
functions O(U) on an open subset U C X all meromorphic functions on X, which are
holomorphic on U.

The modular curves Yr and Xr associated to certain families of “congruence sub-
groups” I can actually be defined over algebraic number fields and even over their rings
of integers (see [Sh], [DeRa], [DI]). This is due to their moduli interpretation. For in-
stance, the modular curve I'(1)\IH is the (coarse) moduli space of isomorphism classes
of elliptic curves over €. In fact, by the theory of the Weierstrass p-function, an elliptic
curve over C is a torus, which in turn is given by a quotient € /L, where L C C is a lat-
tice. Two elliptic curves €/L and €/L' are isomorphic, if and only if L = aL’ for some
a € € — {0}. In particular every isomorphism class has a representative C/L,, where
L, =7 + 7Z and 7 € IH. 1t is easily checked that two elliptic curves €/L, and C/L
with 7, 7/ € IH are isomorphic, if and only if 7 is equivalent to 7/ with respect to the ac-
tion of I'(1) on IH (this corresponds to a change of basis of the lattice). Hence the as-
signment 7 — €/L, induces the identification of I'(1)\IH with the moduli space. The
point is that the moduli problem makes sense not only over € but over any scheme over
Z, allowing to construct models over Dedekind rings.

We may regard A as a section of the line bundle of modular forms of weight 12 on
['(1)\IH. In view of the moduli interpretation one checks that A assigns to the elliptic
curve €/ L, its discriminant A(7).

A further classical modular form is the j-function:

J(r) = E3(1)/A(T) = ¢7! + 744 + 1968844 + 214937604% + . . ..

Since A does not vanish on IH, the j-function is holomorphic on IH . However, because
of the presence of the term ¢~! in the Fourier expansion, it is only meromorphic at the
cusp co. Hence j € Wy. In terms of the moduli interpretation, j assigns to the elliptic
curve C/L, its j-invariant j(7). In the theory of elliptic curves one shows that j classifies
elliptic curves over an algebraically closed field up to isomorphism. Moreover, for every
z € C there is an elliptic curve with prescribed j-invariant z. In other words, j defines an
analytic isomorphism

r(1)\H — C.

It extends to an isomorphism Xr(;) — P'(C) to the Riemann sphere P'(C).

What does j have to do with infinite products? There are different important infinite
products involving j. Here we only present one of these. To this end it is convenient to
define J(7) =j(r) — 744 € Wy. We denote the Fourier expansion by J(7)=
> n>_1 c(n)q" with coefficients c(n) € Z. In particular we have ¢(—1) = 1, and ¢(0) = 0.
We consider the modular form of two variables

Jj(z1) = Jj(z2)
of weight 0 for the group I'(1) x T'(1). It vanishes at a point (z,z;) € IH x H, if and
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only if z; = Mz, for some M € T'(1), because of the injectivity of j. In other words, the
divisor of j(z1) — j(z2) is given by quadratic equations

(2.3) czizp4dzi—az—b=0
with integral coefficients and ad — bc = 1.

Theorem 2.1. The modular form j(z) — j(z2) has the infinite product expansion

(24) j(z1)—j() =qr" T1(1 - grap) ™.
m>0
nel

27rzz

Here g; = ¢, and c(n) is the n-th Fourier coefficient of J(7). The product converges
normally for \s(z]) (z2) > 1.

This beautiful identity was found in the 80’s independently by Borcherds, Koike,
Norton, and Zagier. It is the denominator identity of the monster Lie algebra, which is
a generalized Kac-Moody algebra with an action of the Monster simple group. It is cru-
cial in Borcherds’ proof of the moonshine conjecture (see [Bo5] for an introduction and
further references).

One may wonder why Theorem 2.1 had not been discovered earlier. It only involves
classical modular functions that were well understood already at the end of the 19th
century. One reason might be that the product only converges on a sub-domain of IH>.
This is due to the fact that the ¢(n), being the coefficients of a weakly holomorphic mod-
ular form with a pole at the cusp oo, grow rather rapidly:

2.5) c(n) ~ \;’“3//;

as n — oo. This asymptotic is analogous to the one for the partition function (2.1). The
restricted convergence of the product for j(z;) — j(z,) implies that only part of the divi-
sor can be read off directly from the product. More precisely, it only tells us the vanish-
ing along those divisors of type (2.3) with ¢ = 0

One might ask, whether the product expansions of the discriminant function A(7)
and the function j(z;) — j(z;) have anything in common. This is in fact true. Both are
particular examples of Borcherds products. These are certain meromorphic modular
forms in ¢ variables, which have a particular product expansion, and arise as lifts of
weakly holomorphic modular forms of weight 1 — ¢/2 for I'(1). Their zeros and poles
are explicitly given in terms of so-called Heegner divisors (also referred to in the litera-
ture as “rational quadratic divisors™ or “special divisors™).

In the next section we will make this informal definition more precise. Let us just re-
mark here that j(z;) — j(z2) can be viewed as the Borcherds lift of the weight 0 modular
form J(7), and A(7) as the Borcherds lift of the classical weight 1/2 Jacobi theta func-
tion 126(1) = 123", 4 q . It can be shown that the j-function and the Eisenstein series
Ej, with k 4,6,8,10, 14 are also lifts of certain weakly holomorphic weight 1/2 mod-
ular forms. For instance

E4 H(l c(n
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where ¢(n) denote the coefficients of the weight 1/2 modular form (for I'y(4) in the Koh-
nen plus-space)

f=q73+4—-240q + 26760g" — 85995¢° + 17072644¢" — 4096240¢° + 443304964'% + ...,

see [Bol].

Finally, notice that Borcherds products naturally live on the hermitian symmetric
space of type IV associated to the real orthogonal group O(2, ¢) of signature (2, ¢). This
hermitian space has complex dimension ¢. They are constructed using a regularized the-
ta lift for the dual reductive pair (SL,(IR), O(2,¢)). In small dimensions however, there
are exceptional isomorphisms relating O(2, £) to other classical Lie groups. For instance
0O(2,1) is essentially isomorphic to SL,(IR), and O(2,2) to SL,(IR) x SL,(IR), which is
implicitly used in the construction of the examples above. Moreover, O(2, 3) is essen-
tially isomorphic to the symplectic group Sp(2, IR) of genus 2, and O(2,4) to the hermi-
tian symplectic group of genus 2. In view of these isomorphisms, also the Heegner divi-
sors alluded to above become classically well known objects. For instance in the O(2, 1)
case, one gets Heegner points on modular or Shimura curves, justifying the terminol-
ogy. In the O(2, 2) case, one can obtain Hirzebruch-Zagier divisors on Hilbert modular
surfaces, in the O(2, 3) case Humbert surfaces on Siegel modular threefolds.

3 Borcherds products on Hilbert modular surfaces

We now want to generalize the j(z;) — j(z2) example of the the previous section and
study Borcherds' construction of infinite automorphic products (in two variables) in a
more systematic way. From a geometric point of view, the underlying modular variety
I'(1)*\IH? in that example was not very exciting. By means of the j-function it is isomor-
phically mapped to the affine plane ©2. If one wants to get more interesting varieties
one has to replace the discrete subgroup I'(1) x I'(1) € SL,(IR) x SL(IR) by more
complicated groups. An important family of discrete subgroups is provided by Hilbert
modular groups of real quadratic fields.

We first need to introduce some notation (see [Fr], [Ge2], [Go] for more details).
Throughout we use z = (z1,2,) as a variable on IH? and write (1, y,) for its imaginary
part. Let K be the real quadratic field of discriminant D. For simplicity we assume
throughout that D is a prime (hence D = 1(mod 4) and K = Q(v/D)). We write Ok for
the ring of integers and x — x’ for the conjugation in K. The Hilbert modular group
Tk =SL,(Ok) associated with K can be viewed as a discrete subgroup of
SL2(]12{) x SL,(IR) by means of the two embeddings of K into IR. In particular I'x acts
on IH-” by

a b az1 +b dz + b
Z1,Z Zi,23) = ; :
(21 2)H<c d>(1 2) <czl+d dzy+d
In the same way as with the modular curves Y1 of the previous section, we consider the
quotient Yx =T K\]HZ, which has a structure as a non-compact complex surface. It can

be compactified by adding sg points, namely the cusps of I'k, i.e., the I'x-orbits of
P!(K). Here hy is the class number of K. In contrast to the case of modular curves the
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resulting normal complex space X is not regular. There are quotient singularities at the
elliptic fixed points, and furthermore, the cusps are highly singular points. By the theory
of Hironaka the singularities can be resolved [Hi], there exists a desingularization
7: Xg — Xk, such that Dg := 7! (X") is a divisor with normal crossings. The mini-
mal resolution of singularities was constructed by Hirzebruch [Hz]. _

According to the theory of Baily-Borel, the complex spaces Yk, Xx, and X all have
natural structures as quasi-projective algebraic varieties over €. Moreover, Yx has a
moduli interpretation as the (coarse) moduli space of isomorphism classes of Abelian
surfaces with multiplication by Ok and a certain class of polarizations (see section 8).
This can be used to construct integral models. The surfaces Yx, Xk, and Xk are all re-
ferred to as Hilbert modular surfaces associated with K.

On such surfaces there exist distinguished divisors, called Hirzebruch-Zagier divi-
sors. (As already mentioned, they play the role of the Heegner divisors in the informal
definition of Borcherds products of the previous section.) For every vector (a,b, \) of
positive norm ab — A in the lattice Z* @& d~, the subset

(a,b,\)* ={(z1,22) e %, aziza+ Az + Nz + b =0}

defines an analytic divisor on IH2. Here d~! = \/LBOK is the inverse different of K. Ob-
serve the analogy with (2.3). Now let m be a positive integer. The sum

T(m) = > (a,b,\)*
(abNe(@?ed")/{£1}
ab—A\N'=m/D
is a ['g-invariant analytic divisor on IH2. It descends to an algebraic divisor on the qua-
si-projective variety Yk, the Hirzebruch-Zagier divisor of discriminant m. Moreover, we
obtain Hirzebruch-Zagier divisors on Xk by taking the closure of 7'(m), and on Xk by
taking the pullback with respect to the desingularization morphism.

One easily sees that 7'(m) = 0, if and only if xp(m) = —1, where xp is the quadratic
character corresponding to K given by the Legendre symbol xp(x) = (2). If m is
square-free and a norm of Ok, then the normalization of 7'(m) on Xk is isomorphic to
the modular curve Xo(m). If m is square-free and not a norm of Ok (but xp(m) = 1),
then the normalization of 7'() is isomorphic to a Shimura curve associated to a certain
order in the indefinite quaternion algebra Q,, = (%"ﬂ .

One can show that the Hirzebruch-Zagier divisors are actually defined over @).
Moreover, they often have a moduli interpretation, which can be used to extend them
to integral models. For instance, in the latter case, where the normalization of 7'(m) is a
Shimura curve, the points on 7'(m) correspond to Abelian surfaces with quaternionic
multiplication by a certain order of Q,,,.

Let k be an integer. Recall that a meromorphic (respectively holomorphic) Hilbert
modular form of weight k for the group I'x is a meromorphic (respectively holomorphic)
function f on IH? satisfying the transformation law

B.1) £((@#5)(21,22)) = (cz1 + @) (¢ 22 + @) F (21, 22)
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for all (‘c’ Z) € I'k. Notice that in contrast to the definition of modular forms for sub-
groups of SL,(Z) in the previous section, we do not have to require that / be mero-
morphic (respectively holomorphic) at the cusps. This is automatic by the Koecher prin-
ciple.

We are now ready to explain Borcherds' lift in the case of Hilbert modular surfaces.
Let us first describe the “input data” which is used to feed the lift. We denote by
Wi (D, xp) the space of weakly holomorphic modular forms of weight k for the Hecke
group

(32) To(D) = {(“ ”) €SLy(Z); c=0 (mod D)}

with character xp (where XD(( 5)) = xp(d)). Since (}1) € To(D), any such modular
form f has a Fourier expansion of the form /' =" o ¢(n)q". We let W, (D, xp) be
the subspace of those f € Wy (D, xp), whose Fourier coefficients ¢(n) satisfy the so-
called plus space condition, i.e., c(n) = 0 whenever xp(n) = —1. Moreover, we write
M5 (D, xp) (respectively S (D, xp)) for the subspace of holomorphic modular forms
(respectively cusp forms) in W,! (D, xp). For even k > 2, Hecke proved that there is a
unique normalized Eisenstein series Ex(7) in M; (D, xp), and

(3.3) M (D,xp) = St(D,xp) ® CEx(r),

see [He], and section 7 here.
Iff =3, ez c(n)g" € €((g)) is a formal Laurent series, we put

.y _Jem), ifnz 0 (modD),
o) = {ZC(n), if n= 0 (mod D).

Modular forms in the plus space W, (D, xp) can also be realized as vector valued mod-
ular forms for the full modular group I'(1) transforming with a certain D-dimensional
unitary representation (see [BB]). As a consequence, there is a bilinear pairing assigning
to two modular forms f e W5 (D,xp) and g € W;(D,xp) a modular form

(f,g) € Wy for the group F(l) Iff=>,cnq" and g=>,b(n)q", it can be de-
scribed in terms of the Fourier expansions as follows

(3.4 = "> &m)b(Dn—m)q".
nell mel

Notice that this pairing only depends on the transformation properties of modular
forms in the plus space and naturally extends to non-holomorphic forms.

Theorem 3.1 (Borcherds). Letf =3, c(n)q" be a weakly holomorphic modular
form in Wi (D, xp) and assume that ¢(n) € Z for all n < 0. Then there exists a mero-
morphic Hilbert modular form V(zy, zp, f) for Tg (with some multiplier system of finite
order) such that:

(1) The weight of U is equal to the constant term c(0) of f.
(i) The divisor Z(f) of ¥ is determined by the principal part of f at the cusp oo. It equals
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Z(f) =Y _en)T(-n).

n<0

(iii) Let W C TH? be a Weyl chamber attached to f and put N = min{n; c(n) # 0}. The
Sfunction V has the Borcherds product expansion

/
V(,z.f)=qig; ][] (1 - diay

vep!

I

)z(Dm/ )

which converges normally for all (zy,z,) with y1y, > |N|/D outside the set of poles.
Here p € K is the Weyl vector corresponding to W and f, and g = e forv € K.

A few additional explanations regarding Weyl chambers are in order. For each
X € b~! of negative norm the subset

M ={(z1,2) e HY Xy + Ny, =0}

is a hyperplane of real codimension 1 in IH2. Since f is meromorphic at the cusps, and
by reduction theory, the union

S(f) =D e(DAXN)A*

Aep!

AN <0
has only finitely many I'x-orbits. It is invariant under the stabilizer in T'x of the cusp co.
Its complement IH?> — S(f) decomposes into connected components, which are called
the Weyl chambers attached to /. To such a Weyl chamber W (and f) one can associate
the so-called Weyl vector p € K, which we do not want to define here (see [BB] for its ex-
plicit computation in the present case, and [Bol, Bo4] for more general facts). More-
over, if v € K, then one writes (v, W) > 0,if \y; + XNy, > 0 forall (z1,2,) € W.

If div(¥) is compact in Yk, i.e., if the normalizations of the irreducible components
are Shimura curves, then S(f) is empty and there is just the one Weyl chamber
W = 2. In this case p = 0, and the condition (v, W) > 0 becomes just the condition
that v be totally positive.

Theorem 3.1 is contained (in a slightly different formulation) in Theorem 13.3 of
[Bo4] (to obtain the above form see [BB]). The idea of the proof is as follows.

First, we notice that by an elementary argument the Fourier coefficients of  are
bounded by

(3.5) ¢(n) = O(e‘”’m), n— oo,

see [BF] section 3. This implies the convergence of the product in the stated region. The
estimate (3.5) is also a consequence of the (much more precise) Hardy-Rademacher-Ra-
manujan asymptotic for the coefficients of weakly holomorphic modular forms, the
general theorem behind (2.1) and (2.5).

As already mentioned, the group (SL(IR) x SLy(IR))/{=£1} is isomorphic to the
connected component of real orthogonal group O(2,2). The latter group and SL,(IR)
form a dual reductive pair in the sense of Howe [Ho]. Thus we can construct Hilbert
modular forms for I'x from modular forms on SL,(IR) by integrating against a certain
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kernel function, the Siegel theta function Og(7;z1,z2) associated to the lattice
L = 7Z* @ Ok of signature (2,2). Here the Siegel theta function is a certain non-holo-
morphic modular form for I'y(D) satisfying the plus-space condition in the variable 7,
and a I'k-invariant function in the variable (z;, z;). This suggests that we look at the in-
tegral

(3.6) /f (£(r),©5(r;21,22))dp

Here 7 = {r € H; |7| > 1, |u| < 1/2} denotes the standard fundamental domain for
the action of I'(1) on IH, and dyp = 94 is the invariant measure on IH (with 7 = u + i).
Since f* and the Siegel theta function are in weight 0, the integrand is T'(1)-invariant, so
that the integral makes formally sense. Unfortunately, because /' grows exponentially as
T approaches the cusp oo, it diverges wildly. However, Harvey and Moore discovered
that it is possible to regularize the integral [HM]. Following their idea, Borcherds de-
fines the regularized theta lift ®(z, z,,f) of f to be the constant term in the Laurent ex-
pansion at s = 0 of the meromorphic continuation in s of

(3.7) ;lir?c i (f(7),05(7;21,22))v"*dpu.
t

Here F, = {T € F; |v| < t} is the truncated fundamental domain. One can show that
this regularized integral still makes sense even though (3.6) does not. It defines a I'g-in-
variant real analytic function on IH? — supp(Z(f)) with a logarithmic singularity’
along the divisor —4Z(f).

Moreover, it can be shown that the limit in (3.7) exists and is holomorphic at s = 0,
if the constant term ¢(0) of / vanishes. It follows that ®(z, z,, /) is equal to

Jim ((f(7),Os(7521,22)) — €(0)v) dp + A(0),
where 4 is the constant term in the Laurent expansion at s = 0 of lim,_, f 7 vI=Sdp.
This could be taken as an alternative definition.

The Fourier expansion of ®(zj, z,,f) can be computed explicitly by applying some
partial Poisson summation on the theta kernel. It turns out that

®(z1,22,f) = —2log|U(z1,22,f)* (167y192)"? | + 2¢(0) log(8m) — I'(1)),
giving the meromorphic continuation, the divisor, and the transformation behavior of
the infinite product ¥(z, z,1).

Notice that a weakly holomorphic modular form f =3 ¢(n)g" in W,/ (D, xp) of
weight k& < 0 is uniquely determined by its principal part

Y cng" € Clg™').

n<0

°If X is a normal complex space, D C X a Cartier divisor, and f a smooth function on X—
supp(D), then f has a logarithmic singularity along D, if for any local equation g for D on an
open subset U C X, the function / — log |g| is smooth on U.
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For the difference of two elements of W’ (D, xp) with the same principal part is a holo-
morphic modular form of weight k¥ < 0 with Nebentypus, hence vanishes identically.
Moreover, the Galois group Gal(C/®) acts on weakly holomorphic modular forms by
mapping f to

f=>cm)’q,  oeGal(C/Q).

Here c(n)” denotes the Galois conjugate of ¢(n). This follows from the fact that the
spaces Wi (D, xp) have bases of modular forms with integral rational Fourier coeffi-
cients (see [DeRa], [DI]). Consequently, if / has principal part in @Q[g~!], then all its
Fourier coefficients are rational with bounded denominators. We may conclude that
some power of any holomorphic Borcherds product has coprime integral rational Four-
ier coefficients and trivial multiplier system. This observation is crucial. By the g-expan-
sion principle (see [Ge2], chapter X.3 Theorem 3.3), such a modular form corresponds
to a section of the line bundle of Hilbert modular forms over Z on the moduli stack over
Z representing the moduli problem “isomorphism classes of Abelian schemes with real
multiplication by Ok ”. Hence Borcherds products can be viewed as modular forms over
Z. In fact, they provide a powerful tool to study arithmetic intersection numbers on Hil-
bert modular surfaces, see [BBK] and section 9 here.

We conclude this section with an example for Theorem 3.1. We consider the Hilbert
modular group Ik of the real quadratic field K = @Q(+/5). The fundamental unit of K is
g0 =1 (1 +V/5) € Ok. Gundlach constructed a particular holomorphic Hilbert modu-
lar form ©(zy,23) of weight 5 for I'x as a product of 10 theta functions of weight 1/2
[Gu]. He showed that the divisor of © is equal to 7'(1) and used this fact to determine
the graded algebra of Hilbert modular forms for I'x. From the construction one also
finds that © has Fourier coefficients in Z with greatest common divisor 64.

One can recover Gundlach’s function using the Borcherds lift: We need to look at
the “input space” W (5, xs). Using some basic facts on modular forms for T'y(5) due to
Hecke one finds that there is a modular form f; € W' (5, xs) with Fourier expansion

fi=q ' +5+11q—54¢" +55¢° +44¢° —395¢° +3404'° +2964"" — 18364" +....

If we plug this into the Borcherds lift, we get a Hilbert modular form ¥ for I'x of weight
5 with divisor 7'(1). Hence ¥ must be a constant multiple of ©. From the Borcherds
product expansion it follows that ¥ has coprime Fourier coefficients in Z. Conse-
quently the constant factor is 1/64. If we compute the Weyl vector as in [BB], we obtain
the product expansion

1 N 5y . &(50/)
(38) 2062 =g T (1-a4a)

ved!
oV —gyv>0

)

where the ¢(n) denote the Fourier coefficients of f;.
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4 Obstructions for constructing Borcherds products

Borcherds’ theorem of the previous section provides a way of constructing many Hil-
bert modular forms with known divisor supported on Hirzebruch-Zagier divisors
T'(m). It is natural to seek for a precise description of those linear combinations of Hir-
zebruch-Zagier divisors, which are divisors of Borcherds products. Since the divisor of
a Borcherds product ¥(zy, z5, f) is determined by the principal part of the weakly holo-
morphic modular form f, which is used to construct it, it suffices to understand which
Fourier polynomials Y, _, ¢(n)q" € €[g~'] can occur as principal parts of elements of
W (D, xp)- A necessary condition is easily obtained. If f € W, (D, xp) with Fourier
coefficients c(n), and g € M5, (D, xp) with Fourier coefficients b(n), then the pairing
(f,g) is a weakly holomorphic modular form of weight 2 for I'(1). Thus

(f,g)dr

is a meromorphic differential on the Riemann sphere whose only pole is at the cusp co.
By the residue theorem its residue has to vanish. But this residue is just the constant
term in the Fourier expansion of (£, g). In view of (3.4) we find that

4.1) > &mb(—n) =0.
n<0
Using Serre duality for vector bundles on Riemann surfaces, Borcherds showed that
this condition is essentially also sufficient (see [Bo6] and [BB] Theorem 6).

Theorem 4.1 There exists a weakly holomorphic modular form f € W' (D, xp) with
prescribed principal part ), _, c(n)q" (where c(n) = 0if xp(n) = —1), if and only if

> &n)b(-n) =0

n<0
for every cusp formg =3, b(m)g™ in Sy (D, Xp).

This result shows that S (D, xp) is precisely the space of obstructions for construct-
ing Borcherds products on Yx with prescribed divisor. (In the same way M; (D, xp)
can be viewed as the space of obstructions for constructing Borcherds products with
prescribed divisor and weight.) The dimension of this space can be computed by means
of the Riemann-Roch theorem or the Selberg trace formula. In our case, where D is
prime, this was already done by Hecke [He]. One finds that

dim S5 (D, xp) = dim M5 (D, xp) — 1 = [DZ—ZS].

In particular S5 (D, xp) = {0} for the primes D = 5,13, 17. In these cases there are no
obstructions, and for any 7'(m) there is a Borcherds products product with divisor
T(m). For all other prime discriminants D there are obstructions. Then for instance
T'(1) is not the divisor of a Borcherds product, since there is a normalized Hecke eigen-
form g in S»(D, xp). Its first Fourier coefficient is 1, and the “real part” of g is an ele-
ment of S (D, xp), whose first Fourier coefficient is equal to 1 as well (see [Ge2], chap-
ter VI.4). Hence ¢! cannot be the principal part of a weakly holomorphic modular
form in W (D, xp).
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Let us look at Theorem 4.1 from a little different angle. Let €[g~!]" (respectively
@[[¢]]") be the space of Fourier polynomials (respectively formal power series), whose
coefficients satisfy the plus space condition. We define a non-degenerate bilinear pairing

between these spaces by putting

{f.g} = emb(-n)
n<0
for f =Y ,c0c(n)q" € Clg™']" and g =3, ., b(m)q" € C[[q]]". For k <0 the space
W, (D, xp) is identified with a subspace of €[g~!]* by mapping a weakly holomorphic
modular form with Fourier coefficients ¢(n) to _,_, ¢(n)q". The space M5 , (D, xp) is
identified with a subspace of €[[¢]]" by mapping a modular form to its g-expansion.
Now Theorem 4.1 implies that the orthogonal complement of S, (D, xp) with respect
to the pairing {-, -} is equal to W} (D, xp) @ €. Using the splitting (3.3) of M3 (D, xp)
one concludes that the orthogonal complement of M, (D, xp) is precisely W," (D, xp).
Since the pairing is non-degenerate, and since M5 , (D, xp) has finite dimension, it fol-

lows by linear algebra that conversely M, , (D, xp) is the orthogonal complement of
W (D, xp). In other words:

Corollary 4.2. A formal power series Y, .o b(m)q™ € C[[q]]™ is the g-expansion of a
modular form in M5 (D, xp), if and only if

> &(m)b(—n) =0

n<0
forevery f =37 c(n)q" in W (D, xp).

Since the pairing {-, -} is defined over @ with respect to the natural rational struc-
tures Q[g~']" and Q[[g]]*, and since M, , (D, xp) and W;} (D, xp) have bases of modu-
lar forms with integral coefficients, an analogous assertion holds for modular forms
over @Q. Moreover, it suffices to check the condition in this corollary for every
f € W (D, xp) with integral coefficients.

If X is a regular projective algebraic variety, we write CH' (X) for its first Chow
group, i.e., the group of algebraic divisors on X modulo rational equivalence. Further-
more, we put CH'(X)q, = CH'(X) ®z Q. Recall that CH' (X) is isomorphic to the Pi-
card group of X, the group of isomorphism classes of algebraic line bundles on X . The
isomorphism is given by mapping a line bundle £ to the class ¢; (£) of the divisor of a ra-
tional section of £. The Chow group CH!(X) is an important invariant of X. It is fi-
nitely generated.

Meromorphic (respectively holomorphic) Hilbert modular forms can be interpreted
as rational (respectively regular) sections of the sheaf M, (C) of modular forms, which
can be defined as follows: If we write p : IH*> — Y for the canonical projection, then
the sections over an open subset U C I'\IH? are holomorphic functions on p~!(U), sa-
tisfying the transformation law (3.1). By the Koecher principle, this sheaf on Yk extends
to Xx. Moreover, we obtain a sheaf on X, also denoted by M, (@), by taking the pull-
back with respect to the desingularization morphism. By the theory of Baily-Borel,
there is a positive integer ng such that My (C) is an algebraic line bundle if ng|k, and
therefore defines an element of Pic(Xx). Notice that M (€) = My (€)®" for any posi-
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tive integer n. If k is any rational number, we chose an integer n such that nk is a positive
integer divisible by nx and put ¢; (M (C)) = Lc; (M, (€)) € CH! (XK)

It is natural to study the positions of the Hirzebruch-Zagier d1v1sors in CH' (X).
To this end we consider the generating series

(42) A(r) =c1(M_12(D) + Y T(m)g" € Qlg]]* ®g CH' (Xk)q-
m>0

Combining Theorem 3.1 and Corollary 4.2 one obtains the following striking applica-
tion.

Theorem 4.3. The Hirzebruch-Zagier divisors generate a subspace of CH' (X, K of
dimension < dim(Mj; (D, xD)). The generating series A(T) is a modular form in
M (D, xp) with values in CH' (XK)Q, i.e., an element of M5 (D, xp) ®q CH' (X/K)Q'

In other words, if ) is a linear functional on CH' (X, k)q- then

e (M (€ +Z/\ m))q" € My (D, xp).

m>0

A typical linear functional one can take for X is given by the intersection pairing with a
divisor on Xg. Theorem 4.3 was first proved by Hirzebruch and Zagier by computing
intersection numbers on Xy of Hirzebruch-Zagier divisors with other such divisors and
with the exceptional divisors coming from the resolution of the cusp singularities [HZ].
Their discovery triggered important investigations by several people, showing that more
generally periods of certain special cycles in arithmetic quotients of orthogonal or uni-
tary type can be viewed as the coefficients of Siegel modular forms. For instance, Oda
considered cycles on quotients of O(2, ¢) given by embedded quotients of O(1, /) [Od1],
and Kudla-Millson studied more general cycles on quotients of O(p,¢) and U(p,q)
using the Weil representation and theta functions with values in closed differential
forms [KM1,KM2,KM3], see also [Fu] for the case of non-compact quotients. The rela-
tionship of the Kudla-Millson lift and Borcherds’ regularized theta lift is clarified in
[BF].

Using Borcherds products, Theorem 4.3 can be proved as follows (see [Bo6]). In
view of Corollary 4.2 it suffices to show that

{0)cr (M_15(@) + > &(m)T(—n) =0 € CH' (Xx)q
n<0
for every f =3, c¢(n)q" in W (D, xp) with integral Fourier coefficients. But this is an
immediate consequence of Theorem 3.1: The Borcherds lift of /" is a rational section of
M) (€) with divisor ), _,¢(n)T(—n). Notice that we have only used (i) and (ii) of
Theorem 3.1. The product expansion (iii) is not required. Finally, we mention that this
argument generalizes to Heegner divisors on quotients of O(2, ¢).
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5 GConverse theorems

By Theorem 4.1 of the previous section we know precisely which linear combina-
tions of Hirzebruch-Zagier divisors occur as divisors of Borcherds products on Yk.
Here it is natural to ask, whether every Hilbert modular form on Yx whose divisor is a
linear combination of Hirzebruch-Zagier divisors, is a Borcherds product, i.e., in the
image of the lift of Theorem 3.1. In this section we discuss this question in some detail.
To answer it, we first simplify the problem. We extend the Borcherds lift to a larger
space of “input modular forms”, given by certain Maass wave forms, and answer the
question for this extended lift. In that way we are led to automorphic Green functions
associated with Hirzebruch-Zagier divisors.

Let k be an integer, I" a subgroup of finite index of I'(1), and x a character of T". A
twice continuously differentiable function f : IH — C is called a weak Maass form (of
weight k with respect to T" and ), if

(1) f(228) = x()(er +d)¥f (7) forall (41) €T,
(2) f has polynomial growth at the cusps of I' (in terms of local parameters),

) Awf(r)=0.

Here

(PP (D0
) Lp=rw <8u2+6v2> +lkv(8u+l('9v)

denotes the usual hyperbolic Laplace operator in weight k and 7 = u + iv.

So if we compare this with the definition of a weakly holomorphic modular form,
we see that we simply replaced the condition that f be holomorphic on IH by the weaker
condition that /" be annihilated by A, and the meromorphicity at the cusps by the cor-
responding growth condition. The third condition implies that f is actually real analy-
tic. Because of the transformation behavior, it has a Fourier expansion involving be-
sides the exponential function a second type of Whittaker function. (See [BF] section 3
for more details.)

There are two fundamental differential operators on modular forms for I, the
Maass raising and lowering operators

_ 5 0 -1 )

Ry =2i o + kv and Ly = —2iv 5
If f is a differentiable function on IH satisfying the transformation law (1) above in
weight k, then L;f transforms in weight & — 2, and Ryf in weight k + 2. It can be shown

that the assignment
f(1) = &(f)(r) = VLif (r) = R f(7)

defines an antilinear map & from weak Maass forms of weight k to weakly holo-
morphic modular forms of weight 2 — k. Its kernel is precisely the space of weakly holo-
morphic modular forms in weight k.

We write Ni(D, xp) for the space of weak Maass forms of weight k with respect to
To(D) and xp. Let us have a closer look at map & : Nk(D, xp) — Wa_i(D, xp). We de-
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note by N (D, xp) the inverse image of S, (D, xp) under &, and its plus subspace by
N Z (D, xp). (Note that our notation is not consistent with the notation of [BF].)

Theorem 5.1. We have the following exact sequence:
§
0 — W (D,xp) — N (D,x0) = S{4(D,x0) — 0.

This can be proved using Serre duality for the Dolbeault resolution of the structure
sheaf on a modular curve (see [BF] Theorem 3.7) or by means of Hejhal-Poincaré series
(see [Br2] chapter 1).

For every weak Maass form f € N ;(D, Xp) there is a unique Fourier polynomial
P(f) =3 ,c0c(n)g" in €[g~']" such that f(7) — P(f)(r) is bounded as v — oo, uni-
formly in u. It is called the principal part of /. This generalizes the notion of the princi-
pal part of a weakly holomorphic modular form. One can show that every prescribed
Fourier polynomial as above occurs as the principal part of a unique f € N} (D, xp).
This is a key fact, which suggests to study the Borcherds lift of weak Maass forms.

If f € Ny (D, xp), then we define its regularized theta lift ®(z;,z,f) by (3.7), in the
same way as for weakly holomorphic modular forms. One can show that the regularized
theta integral defines a I'g-invariant function on IH? with a logarithmic singularity
along —4Z(f), where

Z(f) = &nT(-n),
n<0
and ), ¢(n)g" denotes the principal part of f [Br2], [BF]. It is almost harmonic (out-
side the singularities) in the following sense. If A(!) and A® denote the SL,(IR)-invar-
iant hyperbolic Laplace operators on IH? in the first and second variable, then
AV®(zy,z,, f) = constant.

The Fourier expansion of ®(zy,z,,f) can be computed explicitly. It can be used to
determine the growth behavior at the boundary of Yx in Xx. It turns out that the
boundary singularities are of log and log-log type. More precisely, one can view
1®(z1,22,f) as a pre-log-log Green function for the divisor Z(f) on Xk in the sense of
[BKK1] (see section 8 here, and [BBK] Proposition 2.15).

Moreover, one finds that ®(z;, z2, ) can be split into a sum

(5.2) ®(z1,22, f) = —2log |¥(z1, 22, f)* + &(21, 22, f),

where £(z1, 2, f) is real analytic on the whole domain IH? and ¥(z,, z,, f) is a mero-
morphic function on IH? whose divisor equals Z(f). If f is weakly holomorphic, the
function £(z1, 22, f) is simply equal to 2¢(0) (log(87) — I"(1) — log(1672y1y,)) and we
are back in the case of Borcherds’ original lift. However, if f is an honest weak Maass
form, then £ is a complicated function and ¥ far from being modular.

In any case, via the usual Poincaré-Lelong argument, the above splitting implies that
the (1, 1) form

(53) Ap(f) = 3ddD(z1, 20, ) = 1dd€(z1, 73, )
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represents the Chern class of the divisor Z(f) in the second cohomology H?( Yx). One
can further show that it is a square integrable harmonic representative. (It can also be
regarded as a pre-log-log form on Xk, representing the class of T(m) on Xy in
H2(Xk).)

Using suitable L”-estimates for the functions ®(zy, z,, /), and results of Andreotti-
Vesentini and Yau on (sub-) harmonic functions on complete Riemann manifolds that
satisfy such integrability conditions, the following weak converse theorem for the Borch-
erds lift can be proved (see [Br2] chapter 5).

Theorem 5.2. Let F be a meromorphic Hilbert modular form of weight r for Tg
whose divisor div(F) =", _,¢(n)T(—n) is a linear combination of Hirzebruch-Zagier
divisors. Then

—2log |F(z1,22)*(16m2y132)"| = ®(z1, 22, f) + constant,
where f is the unique weak Maass form in N (D, xp) with principal part 3", _, c(n)q".

Corollary 5.3. The asszgnment Z(f) — Ap(f) defines a linear map from the sub-
group CH, Z(XK) of CH!(Xx) generated by the Hirzebruch-Zagier divisors, to H"' (Yx),
the space of square integrable harmonic (1,1)-forms on Yk.

Summing up, we get the following commutative diagram:

NG (D, xp) = N§"(D, xp)/Ws (D, xp) —> S5 (D, xp) -

g5 | 1

Zyz(Xk) ®2C CHy7(Xk) ®2C

HI’I(YK)

Here ZHZ(X k) denotes the subgroup of the divisor group Z'(X, Kg generated by the
T(m) (m € N). The left vertical arrow is defined by f +— Z(f) — Fo ) divG, where c(0)
denotes the constant term of f, and G a fixed meromorphic Borcherds product of
weight k. The vertical arrow in the middle is given by / — Z(f) — ¢(0)c; (M, (CT)).

In particular, the above diagram gives rise to a linear map S; (D, xp) — H"!(Yk).
It can be explicitly described in terms of the Fourier expansions. One finds that the im-
age is in the subspace of H"!(Yx) given by forms which are symmetric with respect to
the interchange of the coordinates z;, z,. It is known that this subspace is isomorphic to
CQ @ S,(Tk), where

dxidy, " dxydy,

55) Q=
(5-5) 4my? 4my3

is the symmetric invariant Kihler form on IH?, and S2(TCk) denotes the space of Hilbert
cusp forms of weight 2 for T'x. Consequently, we get a linear map S (D, xp) — S2(Tk).

To answer the surjectivity question for the Borcherds lift raised at the beginning of
this section, it now suffices to show that this map is injective. This can for instance be
deduced by means of the Fourier expansion of the image. We obtain the following
strong converse theorem for the Borcherds lift (see [Br1], [Br2] chapter 5).
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Theorem 5.4. Let F be a meromorphic Hilbert modular form for Tk whose divisor
div(F) =3, o ¢(n)T(—n) is given by Hirzebruch-Zagier divisors. Then there is a
weakly holomorphic modular form f € Wi (D, xp) with principal part Y, _, c(n)q",
and, up to a constant multiple, F is equal to the Borcherds lift of f in the sense of Theo-
rem3.1.

As a corollary it can be deduced that the dimension of CHY,, (X, k)q is equal to the
dimension of M} (D, xp) complementing Theorem 4.3. It is not hard to see that our
map S5 (D, xp) — S2(I'k) coincides with the celebrated Doi-Naganuma lift [DN], [Na],
[Za]. The above construction can be viewed as a new approach to it.

The weak converse theorem is proved in much greater generality in [Br2]. Combin-
ing the argument of [Br2] with techniques of [BF] it could probably be extended to hold
in full generality for O(2,¢). However, for the strong converse theorem the situation
seems far more complicated. It is proved in [Br2] for modular forms on I'(L) € O(2,4),
where I'(L) denotes the discriminant kernel of the orthogonal group of an even lattice L
of signature (2, £) that splits two hyperbolic planes over Z. For example, if we go to con-
gruence subgroups of the Hilbert modular group I'g, it is not clear whether the analo-
gue of Theorem 5.4 holds or not.

6 Automorphic Green functions

In this section we look at the regularized theta lifts of weak Maass forms from a dif-
ferent perspective. By the discussion of the previous section, for every positive integer m
there exists a unique weak Maass form f,, € Ny (D, xp) whose principal part is equal to
g ™if m # 0 (mod D), and equal to g™ if m = 0 (mod D). The lift

m(z1,22) = %q’(zl,lz,fm)

of £, is a real analytic function on Yk with a logarithmic singularity along —27 (m).

Here we present a different, more naive, construction of ¢,,(z1,z>). For details see
[Br1]. The idea is to construct ¢,,(z;, z2) directly as a Poincaré series by summing over
the logarithms of the defining equations of 7'(m). We consider the sum

(6.1) >

(a,b N eZ*@d™!
ab—AN'=m/D

aziz + Az1 + Nz, +b
azizy + Az + Nzp + b|

The denominators of the summands ensure that this function has a logarithmic singu-
larity along —27 (m) in the same way as ¢,,(z1, z2). The enumerators are smooth on the
whole H>. They are included to make the sum formally I'x-invariant. Unfortunately,
the sum diverges. However, it can be regularized in the following way. If we put
0o(z) = 3log(#), we may rewrite the summands as

aziZy+Xz1 + Nz, + b =) 1+|a2122+)\21 +)\/22+b|2
azizy +Az1 + Nz + b . 2y 1yam/D ’
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Now we replace Qg by the 1-parameter family Q; ; of Legendre functions of the second
kind (cf. [AbSt] §8), defined by

(6.2) O, / z+ Vz2 — 1coshu) *du.
0

Here z > 1 and s € € with R(s) > 0. If we insert s = 1, we get back the above Qy. Hence
we consider

lazizo + Azy + Nzp + blz)
6.3) ®,,(z1,22,5) = a1+ .
(63) (B122:) a,bZGZ G 1( 2y1y2m/D

Aed!
ab—N(\)=m/D

It is easily seen that this series converges normally for (z1,z;) € IH? — T(m) and
R(s) > 1 and therefore defines a 'g-invariant function, which has logarithmic growth
along —27'(m). It is an eigenfunction of the hyperbolic Laplacians A) with eigenvalue
s(s —1), because of the differential equation satisfied by Q,_;. Notice that for
D = m =1 the function ®,,(z1, 22, 5) is simply the classical resolvent kernel for SL;(Z)
(cf. [Hej], [Ni]). One can compute the Fourier expansion of ®,,(z1, 2, s) explicitly and
use it to obtain a meromorphic continuation to s € €. At s = 1 there is a simple pole, re-
flecting the divergence of the formal sum (6.1). We define the regularization ®,,(z1, )
of (6.1) to be the constant term in the Laurent expansion of ®,,(z1, z2, s) at s = 1.

It turns out that ®,,(z1, z2) is, up to an additive constant L,,, equal to the function
®m(z1,22) above (see [Br2] Proposition 2.11 and Theorem 2.14). Here the constant L,, is
quite interesting, since it is given by the derivative of the m-th coefficient of a certain Fi-
senstein series E; (7, s) of weight 2 for I'g(D) and xp [BK], [BBK]. We will come back to
this in section 7.

One may use the Fourier expansion of ®,,(z;,z,) and identities for certain finite ex-
ponential sums of [Za] to obtain a different independent proof of Theorem 3.1.

The following integral formula is fundamental (see [BK] Theorem 4.7, [BBK]). It
justifies why ®,,(z1,22,s) (and also ®,,(z1,22)) is called an automorphic Green function
for the divisor 7'(m).

Theorem 6.1. Let h : Yx — € be a bounded eigenfunction of the Laplacian AV (or
AD) with eigenvalue X. Then for s € € with R(s) > 1 we have

| @i -t [ hame.
FK\HZ T(m
Here Q) is defined by (5.5) so that Q? is an invariant volume form on Yk.

Such automorphic Green functions are constructed in greater generality for O(2, )
in [Br2] using the regularized theta lift of Hejhal-Poincaré series, and independently in
[OT] from the point of view of spherical functions on real Lie groups.
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7 Integrals of automorphic Green functions

It is well known that the volume of Yx is given by volg(Yx) = [ Yk 02 = (k(-1),

where (g (s) denotes the Dedekind zeta function of K. The volume of a divisor C on Yx
is defined as the integral volo(C) = [ €. One can show that the integral is finite, see
e.g. [Br3]. If Cis effective, then its volume is positive.

It is a well known fact that the volumes of Hirzebruch-Zagier divisors are given by
the Fourier coefficients of the unique normalized Eisenstein series in M5 (D, xp) (see
[Fra], [Ha], and [Ge2] chapter V.5). Let us recall the definition of that Eisenstein series.
In weight k there are the two non-holomorphic Eisenstein series

1 Y
EX(t,s) = xp(d
F () ;z ol )(c7+d)k ler +d|*
=0(D)
= > xolc Y
cdel (CT+d) ler +d|

for I'o(D) with character x p, the former corresponding to the cusp co of I'g (D), the latter
to the cusp 0. (By our assumption that D be prime, these are the only cusps of I'y(D).)
They converge for R(s) > 1 — k/2 and have a meromorphic continuation in s to the full
complex plane. If k > 2, the special values E°(7,0) and E{(r,0) are holomorphic in 7
and define elements of M (D, xp). One can show that the linear combination

1 00 1/2—k—s

————(D'E D E}

2L(k + 2s,xp) ( b (1:5) + k(T s))

satisfies the plus space condition. (This follows most easily from Lemma 3 of [BB].)
Here L(s, xp) denotes the L-series associated with the Dirichlet character xp. In parti-
cular we have Ex(7,0) € M;" (D, xp). The Fourier expansion of E(, s) has the form

(7.1)  Ex(1,s) Z C(n, s)Ws(4mny)e™m,

neZ

Ek(T,S) =

where the C(n, s) are complex coefficients independent of v; and W;(v) is a certain Whit-
taker function, which we normalize as in [BK] (3.2). The precise normalization is not
important for our purposes here, we only need that it is a universal function for all # of
the same sign. The coefficients C(n,s) are computed for instance in [BK] section 5,
Example 2. Here we only state the special value

(7.2) Ek(T,O):1+ZC(n,O)q”:1+L(—Zde '(xp(d) + xp(n/d))q"

n>1 ,Xp) n>1 dn

which is obtained in the standard way (see [He], Werke p. 818) using the functional equa-
tion of L(s, xp)-

Theorem 7.1. We have

Ey(1,0) = = ot YK)ZVOIQ(T

m>1

JB 106. Band (2004), Heft 4 171



Ubersichtsartikel Historischer Artikel Buchbesprechungen

Similar identities hold in much greater generality for special cycles on arithmetic
quotients of O( p,q) and U( p, q), see e.g. [Gel], [Ku4], [Ku2], [Od2]. (Observe that our
normalization of volg (7'(m)) equals twice the volume of 7T'(m) in [BBK].)

Let us briefly indicate, how Theorem 7.1 can be deduced from the properties of the
automorphic Green functions ®,,(z;, 22, s). For instance, from the description as a regu-
larized theta lift it follows that the residue at s = 1 of ®,,(z1, 22, 5) is equal to the con-
stant coefficient a,,(0) of the weak Maass form f,, € Ny (D, xp) defined at the begin-
ning of section 6. By means of the relationship of the spaces N} (D,xp) and
Mj (D, xp), which is also implicit in (5.1), one finds that a,,(0) = —§ C(m, 0) (see [BF]
Proposition 3.5). Therefore we have

)

Using growth estimates for @,,(z), z2, ), which can be deduced from the constant coeffi-
cients of the Fourier expansions, we obtain:

D,,(z1,22) = lirr11<<I’m(zl,zz,s) +

Proposition 7.2. The function ®,,(z1, z;) belongs to LP( Yk, Q?) for any p < 2, and

/ @m(zl722) QZ = lim (Qm(zl,zz,S)—i— C(m70)>92
YK s—1 YK 2(S _ 1)

If we apply Theorem 6.1 for the constant function # = 1, we may compute the inte-
gral. Itis equal to

1 C(m,0) 1 (volo(T(m)) = C(m,0)
(7.3) S(S_l)/T(m)Q+2(S_1)/}’1(92-(3—1)< “s o VolQ(YK)).

Since the limit s — 1 exists, the quantity in parenthesis on the right hand side has to
vanish at s = 1. This yields the assertion of Theorem 7.1.
So far we have essentially exploited the existence of the integral | Yk ®,,(z1,22) 2,

which means that the residue in the Laurent expansion of (7.3) at s = 1 vanishes. We
may actually compute the constant term of that expansion, that is, the value of the inte-
gral. It is equal to —volg(7'(m)).

One can further improve this result by observing that the full coefficient C(m, s) as a
function of s occurs in the constant term of ®,,(z), z2, s). More precisely, if we define

(74)  Gin(z1,22) = %11311 (@ (21, 22,5) + B(s)C(2s — 1)Clm, s — 1)),
with

_ (167 'T(s — 1/2)s

B =" Timas-1n

then one can show that G, (z1,22) = $®(z21, 22, i) + 1am(0)(I'(1) — log(8)) (which is
essentially the calculation of the constant L,, on page 20). This means in particular that
if F is the Borcherds lift of a weakly holomorphic modular form f with coefficients
a(n), then its Petersson metric is given by
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(7.5) 1og|F(z1,22)ll e = log(IF (21, 22)|(1673132) ") = = 3" a(m)G-n(z1, 22).
n<0

The latter identity can be viewed as a generalization of the Kronecker limit formula ex-
pressing the logarithm of the absolute value of the discriminant function (2.2) as the
constant term in the Laurent expansion at s = 1 of the non-holomorphic Eisenstein ser-
ies of weight 0 for SL,(Z) (see [BK] (4.14)). Notice that the constant B(s) in (7.4) does
not depend on m. It changes if the normalization of the Whittaker function W;(v) is var-
ied. Arguing as above we find that (see [BK] Theorem 4.10)

/ Gm(z1,22) = —ﬂﬂ(gﬂ (C'(m,0)/C(m,0) + log(4r) — T'(1)).
Yk

If we insert the explicit formula for C(m, s), we get

(7.6) /Y Gm(z1,22)Q* = —volg(T (m)) (H + % = ijé:i; + %log(D)> ,
K ) m

where

(7.7)  om(s) =m"=92> " d(xp(d) + xp(m/d)).
d\m

In particular, in view of (7.5), the integral over the logarithm of the Petersson metric
of any Borcherds product can be computed explicitly (see also [Ku4]). For example, if
K = @Q(+/5), we obtain for the Gundlach theta function

li
[ tox(2ten zlt6mny ) = a1 (2522 41+ 1))
Yg L (_ 1 3 XD)
Such integrals play a fundamental role in the Arakelov intersection theory of Hirzeb-
ruch-Zagier divisors. We will come back to that in the section 9.

The integral of the logarithm of the Petersson metric of a Borcherds product was
first calculated by Kudla in [Ku4] using a different approach based on the Siegel-Weil
formula. We recall that the quantity ®(z, z, /) we want to integrate is given by the the-
ta integral (3.7) of a weakly holomorphic modular form f. Now the idea is to inter-
change the (zj, z;)-integration with the regularized integration over 7 and to compute

(7.8) /f<f(7’), . QS(T;zl,zz)d,uz>d,uT,
K

where dp. denotes the invariant measure on Y. (Notice that this needs a careful justifi-
cation.) The inner integral over the Siegel theta function can be determined by means of
the Siegel-Weil formula. It yields an Eisenstein series of weight 0 for I'y(D), which can
be written in terms of the lowering operator and our Eisenstein series (7.1) of weight 2
as ﬁLzEz(T, s). The integrand for the remaining regularized integral over 7 is now es-
sentially L5 d((f (), Ex(7,5))d7) at s = 1, so that we may use Stoke’s theorem to com-
pute it. The derivative of E(7, s) occurs because of the factor L.

We conclude this section by giving a characterization of the automorphic Green
function ®,,(z1, z2). It can be proved in a similar way as Theorem 5.2.
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Proposition 7.3. Let [ be a smooth function on Yg — T (m) with the properties:

(1) f has alogarithmic singularity along T (m),
(i) (AD 4+ A®) f = constant,

(ili) f € L'**(Yx, Q?) for somee > 0,

(iv) fYK S (z1,22) 9 = Lvolo(T (m)).

Thenf(zl,zz) = —%‘Il'm(zl,zz).

8 Arithmetic of Hirzebruch-Zagier divisors

In their paper on the intersection of modular correspondences, Gross and Keating
interpreted classical results of Hurwitz and Kronecker by the observation that the inter-
section number of two modular correspondences on Ygoq = I'(1)*\IH? is given by the
coefficients of the classical Siegel Eisenstein series E?)(Z,s) of weight 2 and genus 2 at
s = 0. Their main result was that the arithmetic intersection numbers of three such mod-
ular correspondences on the regular model Spec Z[,;'] of Ygqq is given by the coeffi-
cients of the derivative of the Siegel Eisenstein series E)(Z, s) of weight 2 and genus 3
at s = 0 [GK]. Observe that Yggq can be viewed as the “degenerate” Hilbert modular
surface with discriminant D = 1 and the modular correspondences as Hirzebruch-Za-
gier divisors in this case.

Kudla proved that the arithmetic intersection numbers in the sense of Arakelov geo-
metry of certain arithmetic special divisors on a regular model of a Shimura curve are
dictated by the coefficients of the derivative of a Siegel Eisenstein series of weight 2 and
genus 2 at s = 0 [Kul]. (So Kudla considers an arithmetic surfaces, rather than an arith-
metic 3-fold as in the case of Gross and Keating. This explains the different genus.) Here
the arithmetic divisors are pairs consisting of a special divisor on the regular model and
a certain Green function for the induced divisor on the corresponding complex variety,
fitting in the setup of arithmetic intersection theory as in [SABK].

In further works Kudla, Rapoport, and Yang developed an extensive program relat-
ing arithmetic special divisors on Shimura varieties of type O(2,¢) and their arithmetic
intersection theory to automorphic forms, in particular to the coefficients of the deriva-
tives of Siegel Eisenstein series. Most of this is conjectural, but in important special
cases these conjectures are meanwhile proved. (See e.g. [Ku6] for the O(2, 1) case of Shi-
mura curves, [KRY] for the O(2,0) case of CM elliptic curves, [KR] for partial results
in the O(2, 3) case of Siegel modular threefolds, and [Ku5] for an overview.) Notice that
Yqeq can be described in terms of O(2,2).

One conclusion of this general picture is that the geometric results over € of Hirze-
bruch and Zagier (as e.g. Theorems 4.3 and 7.1) and their generalizations to O(2,¢)
should have arithmetic analogues over Z. Here the classical intersection theory has to
be replaced by Arakelov intersection theory.

In this section we discuss, how Borcherds products can be used to obtain new results
in that direction. We begin by recalling some facts on the arithmetic of Hilbert modular
surfaces.
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In section 2 we briefly discussed that modular curves have a moduli interpretation
as a moduli space for isomorphism classes of elliptic curves with additional structure.
The same is true for Hilbert modular surfaces, which is the starting point for arithmetic
investigations. More precisely, Yx parametrizes isomorphism classes of triples (4, ¢, 1),
where A is an abelian surface over €, ¢ is an Og-multiplication, that is, a ring homo-
morphism Og — End(4), and 1 is a ™ !-polarization, that is, an isomorphism of Q-
modules d~' — Homo, (4, 4")™™ from the inverse different d™! = #(’)K to the mod-
ule of Og-linear symmetric homomorphisms, taking the totally positive elements of ™'
to Ok-linear polarizations (see [Go] Chapter 2).

The moduli description now makes sense over any scheme S over Z. (Here one has
to require that ¢ fulfill an extra technical condition called the Deligne-Pappas condi-
tion, see [DePa]. That condition is automatically fulfilled in characteristic 0.) Due to the
work of Rapoport, Deligne, and Pappas it is known that the moduli problem “Abelian
surfaces over S with Og-multiplication and d~!-polarization with Deligne-Pappas con-
dition” is represented by a regular algebraic stack H, which is flat and of relative dimen-
sion two over Spec Z. It is smooth over Spec Z[1/D], and the fiber of H above D is
smooth outside a closed subset of codimension 2.

The corresponding complex variety H () is isomorphic to Y. The isomorphism is
obtained by associating to z = (zy,z;) € IH? the abelian surface 4, = C> /A, over C gi-
ven by the lattice

A, = {(;’fgig,) e ¢ a,,@eOK} c @

together with the Og-multiplication . induced by the natural action ¢(v) = (({J)) of

Ok on @, and a certain d'-polarization.

For k € Z sufficiently divisible there exists a line bundle My on H (the k-th power
of the pull-back along the zero section of the determinant of the relative cotangent bun-
dle of the universal family over ) such that the induced bundle on () can be identi-
fied with the line bundle M (C) of Hilbert modular forms of weight k for T'x of the pre-
vious sections. By the g-expansion principle and the Koecher principle, the global sec-
tions of My can be identified with Hilbert modular forms of weight k for 'y with
integral rational Fourier coefficients. There exists an arithmetic Baily-Borel compactifi-
cation H of the coarse moduli space corresponding to H, which can be described as

(8.1) H= Proj(@HO(H,Mk)>.
k

The scheme H is normal, projective, and flat over Spec Z (see [Ch], p.549), and
H(C) = Xk. Furthermore, its fibers over Spec Z are irreducible (see [DePa], p. 65). By
construction, the bundle M, extends to .

Throughout the rest of this paper we will make the following

__ Assumption 8.1. There exists a desingularization r : X —H by a regular scheme
Xk, which is projective and flat over Z, such that the regular locus H'® is fiber-wise
dense in Xk, and such that the induced morphism Xg(C) — X is a desingularization as
in the previous sections Xg.
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This assumption simplifies the exposition (it might actually be too optimistic). No-
tice that the singularities of 7 at the boundary can be resolved by considering a suitable
toroidal compactification of . So only the singularities corresponding to elliptic fixed
points would need to be resolved. If one wants to obtain unconditional results one can
impose an additional level structure in order to get a fine moduli problem and work
with a suitable toroidal compactification of the corresponding moduli scheme (as is
done in [BBK]). Unfortunately, in that way one only gets a regular scheme (V) which
is projective and flat over Z[(y, 1/N], where (y denotes a primitive N-th root of unity
and N > 3 the level.

We define the line bundle of modular forms of weight k on Xk as the pullback
7*(My). For simplicity we will also denote it by M.

It can be shown that the Hirzebruch-Zagier divisors on Xy are defined over @, that
is, T'(m) is obtained by base change from a divisor on the generic fiber 7 xz @ of H.
We define the Hirzebruch-Zagier divisor 7'(m) on the generic fiber Xk xz Q as the pull-
back of T'(m) on H xz @Q. Moreover, we define the Hirzebruch-Zagier divisor 7 (m) on
Xk as the Zariski closure of T'(m).

We now briefly recall some basic properties of arithmetic Chow rings (see
e.g. [SABK]). Since Yk is non-compact, the natural metrics on automorphic vector bun-
dles have singularities at the boundary [Mu], [BKK2]. Therefore we need to work with

the extended arithmetic Chow ring CH* (X, Dpre) constructed in [BKK1]. In this ring
the Green objects satisfy beside the usual logarithmic additional log-log growth condi-
tions.

Let X be an arithmetic variety over Z, i.e., a regular scheme, which is projective and
flat over Z. Moreover, let D be a fixed normal crossing divisor on the complex variety
X (@), which is stable under complex conjugation. An arithmetic divisor on X (in the
sense of [BKK1]) is a pair

(¥, 8y)s

where y is a divisor on the scheme X and g, is a pre-log-log Green object for the induced
divisor y(€) on X(C). In particular, a pair (y,g,) where g, is a pre-log-log Green func-
tion for y, determines an arithmetic divisor. This essentially means that g, is a smooth
function on X(C) — (y(C€) UD), invariant under complex conjugation, with logarith-
mic singularities along the irreducible components of y(C) and pre-log-log singularities
along D such that the 9-equation of currents holds:

—290(g] = [-209g] - §,.

Here [-] denotes the current associated to a differential form and 6, the Dirac current for
vy normalized as in [BKK1] and [BBK]. A differential form « is called pre-log singular
(pre-log-log singular), if o, da, O, and A0a have only logarithmic growth (respectively
log-log growth). We write Z! (X, Dpre) for the free abelian group generated by the arith-
metic divisors on X. Here Dy, stands for the Deligne algebra with pre-log-log forms
along D, which is needed for the precise description of Green objects in [BKK 1]. More-

—1 ~
over, we write Rat (X) for the subgroup of 7 (X, Dpre) given by arithmetic divisors of
the form (div(f), —log|f]), where f is a rational function on X and | f| the absolute va-
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lue of the induced function on X(C). The first arithmetic Chow group of X with log-log
growth along D is defined by

CH (X, Dyre) = 2 (X, Dyre) /Rat (¥).

More generally, in [BKK 1] arithmetic Chow groups CH (X, Dpre) of codimension p
arithmetic cycles with log-log growth along D are defined. There exists an arithmetic in-
tersection product

CH’ (X, Dyre) ® CH' (X, Dpre) — CH' (X, Dpre) gy

and

CH (X, Dyre)q = D CH (X, Dyre) @2 @
p=0

equipped with this product has the structure of a commutative associative ring.
For instance, if X = Spec Z, then the closed points of Spec Z can be identified with
the primes of Z. An arithmetic divisor is a pair (2_, mpp, g) consisting of a finite formal

—1
Z-linear combination of primes p and a real number g. The elements of Rat (Spec Z)
are the pairs of the form (3, y ord,(N)p, —log|N|) for N € @. This implies that

deg CH (Spec Z, Dpre) — IR, (anp, ) = g+znp log(p)

is an isomorphism. It is common to identify CH (Spec Z, Dy ) with IR.

There also is an arithmetic analogue of the Picard group: The arithmetic Picard
group Pic(X, Dpye) is the group of isomorphism classes of pre-log singular hermitian line
bundles on X. Here a pre-log singular hermitian line bundle is a pair £ = (£, || - ||) con-
sisting of a line bundle £ on X, and a smooth hermitian metric || - || on the induced com-
plex line bundle on X(C) — D, invariant under complex conjugation, and such that
—log||s|| has logarithmic singularities along div(s)(C) and pre-log-log singularities
along D for any rational section s of L. If £ is a pre-log singular hermitian line bundle
and s a rational section of £, then, essentially by the Poincaré-Lelong lemma,

C1(£) = (div(s), — log ls]))

—1
defines a class in CH (X, Dpre),_which is independent of the_choice of 5. It is called the
first arithmetic Chern class of £. The assignment £ — C;(£) actually induces an iso-
morphism

. ]
€1 : Pic(X, Dpre) — CH (X, Dpe).
We now consider the arithmetic Chow ring CH (A.’ X, p,e)Q of the model Xx of our
Hilbert modular surface, where we take for D the normal crossing divisor

Dg = 71 (X"). For details we refer to [BBK]. The Green functions of section 6 turn
out to be particularly nice, because they fit into the arithmetic Chow theory of Xg.

Theorem 8.2. The pair
T (m) = (T(m), Gn)
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—1 ~
defines an element of CH (X, Dpre), called the arithmetic Hirzebruch-Zagier divisor of
discriminant m. Here G, is the automorphic Green function defined by (7.4).

Notice that G,, always has log-log singularities along Dg, even if T'(m) is disjoint to
Dk. So G,, does not define a Green function for 7'(m) in the classical arithmetic Chow
theory due to Gillet and Soulé. We therefore really need the extension of [BKK1]. Ob-
serve that the arithmetic divisors of Theorem 8.2 slightly differ from those considered
by Kudla, Rapoport, and Yang. For instance, they often contain boundary components
(which is possible since Yk is non-compact), and are built with different Green func-
tions.

Moreover, we obtain an element of lsi\c(;\v? &, Dpre), by equipping the line bundle of
modular forms with the Petersson metric. Recall that if F € M, (@)(U) is a rational sec-
tion over an open subset U C Yk, then its Petersson metric is given by

IF (21, 22) pe = [F (21, 22) (16 y172)"

This defines a pre-log singular hermitian metric on My (C) (with respect to Dg). We de-
note the corresponding pre-log singular hermitian line bundle by My = (Mg, || - ||5,,)-
(That the Petersson metric has singularities at the boundary is easily seen: For instance,
if z = (z1, z2) approaches the cusp oo of Yk, then y;y, — oo by construction of the Bai-
ly-Borel topology. At the elliptic fixed points it is continuous, but the derivatives do
have singularities.)

A central idea in [BBK] is to connect the arithmetic of Borcherds products and the
properties of the automorphic Green functions G, to derive information on
(/ZITI;,Z(;\? &, Dpre) @ the subspace of CH (X & Dpre) @ spanned by the arithmetic Hirze-
bruch-Zagier divisors.

Theorem 8.3. Recall Assumption 8.1. The map Z},Z(X’ x) — 2;12(1’ &> Dpre) defined
by T(m) — T (m) induces an isomorphism

~ —1 ~
CH}lZ(XK)Q - CHHZ(XKvppre)Qy
taking c; (M (C)) to T (My).

Sketch of the proof. We have to show that if there is a relation in Z! (X k) among
the T'(m), we can lift it to a relation in Z (Xx, Dpre), and that every relation among ar-
ithmetic Hirzebruch-Zagier divisors arises in that way (up to torsion).

So suppose that F is a rational function on Xx with divisor Y n<o €(n)T(—n). Then
by the strong converse theorem (Theorem 5.4), we may assume that F is a Borcherds
product, that is, the lift of a weakly holomorphic modular form f € W (D, xp) with
Fourier expansion ), ¢(n)q" as in Theorem 3.1. It can be shown that any meromorphic
Borcherds product is the quotient of two holomorphic ones ([BBK] Proposition 4.5).
Therefore we may write F = F; /F,, where F, F, are holomorphic Borcherds products
of the same weight. But then the Borcherds product expansion (Theorem 3.1 (iii)) im-
plies that a positive power of F; has integral rational Fourier coefficients. Without loss
of generality we may assume that already the F; have integral rational Fourier coeffi-
cients. According to the g-expansion principle F; defines a section F; of My on the
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model X. Hence the quotient of these sections is a rational function on X that specia-
lizes to F on the generic fiber. B

We claim that the divisor of F; on X'x is horizontal. To see this, we notice that by
work of Rapoport, Deligne, and Pappas, the geometric fibers of H are irreducible (see
[Ra], [DePa)). It follows by Assumption 8.1, that the same holds for the geometric fibers
of Xi. Suppose that div(F;) contains a vertical component above a prime p. Then, be-
cause of the irreducibility of the fibers, div(F;) contains the full fiber above p. By the g-
expansion principle, this implies that all Fourier coefficients of F; are divisible by p. But
the Borcherds product expansion of F; shows that the coefﬁcients are coprime (in fact,
the coefficient corresponding to the Weyl vector p(Fj) is 1), and therefore a contradic-
tion.

Thus the divisor of 1/ is horizontal and equal to }_,_, ¢(n)7T (—n). In view of
(7.5) we may conclude that

S &(m)T (—n) = (diV(F1/F2), — log [F]) = 0 € CH (¥, Dpee) gy

n<0

Conversely, every relation among arithmetic Hirzebruch-Zagier divisors obviously
specializes to a relation on the generic fiber. O

—1 ~ ~
As a corollary we see that dim(CH (X, Dpre)q) = dim(CHy,, (Xk)g) = 2.

Moreover, dlagram (5.4) has an arithmetic analogue where one has to replace

ZL,(Xx) by ZHZ(XK, Dpre) and CHHZ(XK) by CHHZ(XK, Dypre)q- Finally, in view of
Theorem 4.3, one obtains the followmg arithmetic Hirzebruch-Zagier theorem
(cf. [BBK] Theorem 6.2):

Theorem 8.4. The arithmetic generating series

(82) A(r)=35 (M_ip2) + Z T (m)q"
m>0

is a holomorphic modular form in My (D, xp) with values in CH (X K, p,e)Q, i.e., an ele-
ment of M5 (D, xp) ®q CH (XK,Dpre)Q

9 Arithmetic intersection numbers

The first Chern form of the line bundle M (C) equipped with the Petersson metric
is equal to

Cl(Mk(q:)a “ ’ ”Pet) = 2mik - Q,
where ) denotes the Kéhler form (5.5). Consequently, volg(Yx) = (x(—1) can also be
regarded as the geometric self intersection number M (€)? of the line bundle of modu-

lar forms of weight 1. Moreover, Theorem 7.1 can be rephrased by saying that the inter-
section of the geometric generating series (4.2) and ¢; (M, (@)) is given by

A) -1 (Mi(©) = =S (1) Bx(r,0),

where E»(7,0) € M5 (D, xp) is the Eisenstein series (7.2).

JB 106. Band (2004), Heft 4 179



Ubersichtsartikel Historischer Artikel Buchbesprechungen 1

In view of this result it is natural to ask, what the intersection of the arithmetic gen-

erating series (8.2) with the class ¢, (Mk) S CH (X & Dpre)q 18-

Theorem 9.1. Recall Assumption 8.1. We have the following identities of arithmetic
intersection numbers.

TP R (=1  ¢(=1)
9.1) A(r) &My =% (K + ++1 D) ) - Ey(r,0),
O A)- &0 = 5 Gl (E o+ 5 &(D)) - Ex(r,0)
where E;(1,0) denotes the Eisenstein series defined in (7.2). In particular, the arithmetic
self intersection number of M is given by:

B = 13 k(=1  ¢(=1)
9.2) M, k> Ck ( 1)<CK(—1) + =D +2+2l (D)).

Let us briefly indicate how Theorem 9.1 can be proved (see [BBK] Theorem 6.4 for
details). For simplicity we assume that M, (D, xp) = CEx(7,0) (that is D =5, 13, or
17). In this case regarding Theorem 8.4, we only have to determine the constant term of
A(T) cl(Mk) that is, essentially the arithmetic self intersection number of M. The
hypothesis on M5 (D, xp) implies in particular that G, is the logarithm of the Petersson
metric of a holomorphic Borcherds product with divisor T'(m) for any m.

Let p be any prime that is split in Ok (thatis xp(p) = 1). It can be shown that there
exist infinitely many m; and infinitely many ms, such that xp(m;) = 1, T (my) is disjoint
to the boundary, and such that all possible intersections of 7'(p), T(my), T(m3) on Xk
are proper.

Let F, F», F3 be the Borcherds products on Xx with divisors 7'( p), T'(my), T (ms3),
respectively. By the bilinearity of the arithmetic intersection pairing we may assume that
these Borcherds products are integral, i.e., have trivial multiplier system and integral ra-
tional Fourier coefficients. We may further assume that they all have the same (suffi-
ciently divisible) weight k. Thus they define sections of M. The definition of the arith-
metic self intersection number then says:

M, = deg (k. (div(F) - div(F) - div(F3)))

1
(9.3) o / (= 10g [1Filper) * (= 10g [ Fallped) * (= 1o [ Fpe0)-

Xk ()

Here the integral is over the star product of the Green functions corresponding to the
sections F; of M. Tt describes the intersection at the Archimedian place. Moreover,
h:Xg — Spec( ) denotes the structure morphism. The first summand is the intersec-
tion at the finite places.

Using growth estimates for certain boundary terms, one finds that the integral in
(9.3)isequal to

K2 / GQZ+k/ —log | Fallpec 2+ / —10g | lpec

Xk T(p) T(p)'Ndiv(F,)’
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where T(p)’ denotes the strict transform of the divisor 7(p) in Xk ([BBK] Theorem
3.13). The integral of G, was computed in (7.6).

There is a birational morphism ¢ from the modular curve Xy( p) onto T'(p) (which
extends to integral models over Z([1/p]). This fact can be used to interpret the sum of the
latter two integrals as a star product on the modular curve Xy ( p), where it can be evalu-
ated by means of the results of [Kii2] or [Bost].

The finite intersection can also be reduced to a finite intersection on the minimal reg-
ular model of Xj( p) by applying the projection formula for the morphism ¢.

It turns out that the finite contribution and the Archimedian contribution fit to-
gether rather nicely and yield the desired result up to contributions from the fiber above
p- But now we can vary p, that is, take different Borcherds products for the Fj, to get the

precise formula for MM,
In the general case, one can argue similarly, since it can be proved that CH! Z(X K)q

is already generated by Hirzebruch-Zagier divisors 7'( p) of prime discriminant p (w1th
xp(p) = 1), see [BBK] section 4.2.

Formula (9.2) provides evidence for a conjecture of Kramer, based on results ob-
tained in [Kr] and [Kiil], saying that the arithmetic volume of an arithmetic variety as
Xy is essentially the derivative of the zeta value for the geometric volume of X (C). In
the same way, it provides further evidence for the conjecture of Kudla on the constant
term of the derivative of certain Eisenstein series [Ku2], [Ku3], [Ku5], and the conjecture
of Maillot and Roessler on special values of logarithmic derivatives of Artin L-func-
tions [MaRo].

It would be very interesting to find a more conceptual explanation for the fact that
the geometric intersection A(7) - ¢; (M (C)) is proportional to A(7) - ¢; (_M_k)z.

We may apply Theorem 9.1 and (7.6) to compute the Faltings height of 7 (m) with
respect to Mj, (as defined in [BKK 1] and [BBK] section 1). We find:

Theorem 9.2. Recall Assumption 8.1. If T(m) is a Hirzebruch-Zagier divisor which
is disjoint to the boundary of Xx, then the Faltings height of its model T (m) € Z'(Xk) is
given by

v~ s iz (51 545,

Here 0,,(s) is the generalized divisor sum defined in (7.7).

We conclude by noticing that Assumption 8.1 can be avoided in the above theorems
by introducing a level structure to rigidify the moduli problem. For instance, in [BBK]
the full level N-structure is used (where N is an arbitrary integer > 3). Then the moduli
problem is represented by an arithmetic variety over Z[(x, 1/N]. However, since N is in-
verted in the base, one only gets arithmetic intersection numbers in

Ry =R/(3, v Q-log(p)).
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MARIUS VAN DER PUT
MICHABL B, SINGER

M.Van der Put,
M.F. Singer
Galois Theory of
Linear Differential
Equations
Grundlehren 328

Berlin u. a., Springer, 2003, 456 S., € 89,95

Let me begin with my overall impression, in
two words: at last! At last, a thorough expo-
sition, including most of the facets it presents
nowadays, of this beautiful analogue of the
Galois theory of field extensions, initiated by
Liouville on the footsteps of Galois, en-
riched by Lie’s introduction of infinitesimal
groups, turned into a theory by Picard and
Vessiot, and forgotten for half a century un-
til Kolchin gave it its “modern” form in a
fundamental 1948 article ([Ko], 87-128).
The theory consists, in short, of replacing
polynomials over a field K by linear differen-
tial operators over a differential field (X, 0),
splitting fields by Picard-Vessiot differential
extensions, and finite groups by linear alge-
braic groups: you then still get a Galois dic-
tionary. When K is a global object such as
C(z), you can localize at one of the singular
points of the differential equation, say 0, and
get an array of analogues of the inertia
groups: the formal differential group after
base extension to the field of formal powers
series C((z)), or stopping half-way in the
completion, the local analytic differential
group over the field of convergent powers
series C({z}). All this, and much more, will
here be found.

This laudative introduction does not mean
that I praise everything in the book, and I
give some hopefully constructive criticisms
below. It does not mean either that our
authors’s predecessors must be forgotten:
Kaplansky’s book [Ka] played a crucial role

in publicizing Kolchin’s Picard-Vessiot theo-
ry (and the Zariski topology). It did lack
foundational material on Picard-Vessiot ex-
tensions, but this is remedied by Magid’s
monograph [M]. Several articles (see in par-
ticular [S], [Be], [Le]) also helped, and in spite
of their inaccessible language or distribution,
we can further mention lecture notes such as
[P] or [La]. Finally, a special notice should be
made of Kolchin’s two books and of his col-
lected works [Ko], which go beyond the (lin-
ear) Picard-Vessiot theory. In fact, non-line-
ar differential Galois theory is still under
construction, with new view-points provided
by current work of Umemura, Pillay, Mal-
grange, and a synthesis is clearly required.
Wisely for a Grundlehren volume, the book
under review, which we now analyse in a
more details, restricts to the linear case.
Chapter 1 gives a self-contained presenta-
tion of the foundational material on Picard-
Vessiot extensions and of the Galois corre-
spondance, all in 30-odd pages: a real treat.
One difficulty in this type of exposition is the
choice one has to make between the various
interpretations of a linear differential equa-
tion: an element of the ring of differential op-
erators K[9)], a differential system, a module
over K[0] (all these are presented, together
with their relationships, in Chapter 2), or the
localization at the generic point of a vector
bundle with connection (which will appear
in Chapter 6). Chapter 2 also introduces the
constructions of linear algebra in the differ-
ential context, leading to the language of
tannakian categories, and to the first exam-
ple (here between differential equations and
representations of groups) of the numerous
equivalences of categories to be met in the
book. The usefulness of this approach is well
conveyed by the one-line proof it provides
(p. 56, £. 1) that the fixed field under a nor-
mal subgroup is a Picard-Vessiot extension.
Chapter 3 concerns the local theory over a
field K of type C((z)), with the classical di-
chotomy between regular and irregular sin-
gularities: in the second case, determining
factors, here called eigenvalues, produce the
exponential torus, a subgroup of the formal
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Galois group which is in general not covered
by the formal monodromy. This leads to an
equivalence of categories between differen-
tial equations over K and a category Gr
made of down-to-earth triples. Chapter 4
goes global, and describes general methods
for computing differential Galois groups,
which are supported by ingenious (and often
efficient) algorithms; this is probably their
first appearance in book form. It is interest-
ing to note that just as in the study of Z-adic
representations, Jordan’s theorem on finite
subgroups of GL, plays an important role;
further links with classical Galois groups are
given at the end of this chapter.

For most of the rest of the book, the con-
stant field is C, allowing for an analytic de-
scription of the Galois group. Thus, Chap-
ters 5 and 6 study regular singular systems
over the Riemann sphere, and their re-inter-
pretation, using GAGA, as local systems
over the complement of the singular locus ,
or equivalently, as representations of its fun-
damental group (cf. §§ 6.2 and 6.4); here, the
monodromy group is Zariski dense in the
Galois group. The various forms of the Rie-
mann-Hilbert problem are clearly stated,
leading to Bolibrukh’s negative (and some-
times positive) solution if one searches for a
connection with logarithmic singularities on
a trivial bundle. Chapters 7, 8, and 9 concern
the much more difficult case of irregular sin-
gularities, with the study of asymptotic ex-
pansions and the Stokes phenomenon, their
refined Gevrey versions and multisumma-
tion, yielding Stokes matrices and Ramis’s
theorem, according to which the local analy-
tic Galois group is topologically generated
by the modromy, the exponential torus, and
the Stokes group. Differential equations
over C({z}) are classified in terms of the
Stokes sheaf; and the category they form is
shown to be equivalent to a refined version
Gr; of Gry, which is still easy to describe. The
inverse problem of differential Galois theory
is the subject of Chapter 11, in both local and
global contexts, and from both theoretical
and constructive points of view. Chapter 12
offers tentative approaches to moduli spaces

of differential equations. Finally, Chapter 13
describes the work of Matzat and the first
author on iterative differential equations
over fields of finite characteristic, and their
applications to p-adic differential equations.

Needless to say, a book with such a large
scope cannot maintain a homogeneous level,
and although its basic results require only
standard notions from multilinear or com-
mutative algebra, further prerequisites are
needed in its more advanced parts. Fortu-
nately, the authors have added three useful
appendices to come to the rescue. They re-
spectively deal with algebraic geometry, in-
cluding a short course on linear algebraic
groups; tannakian categories, pedagogically
introduced by Galois categories and affine
group schemes; and sheaf cohomology. (A
last appendix concerns the Picard-Vessiot
theory of linear partial differential equa-
tions.)

Now for the criticisms. The book is not
free of misprints, and T’ll here give only a
sample: on p. 31, £. 1-, read C[G], or O(G),
instead of O[G]; complete the sentence on
p. 220, ¢¢. 17-20; add “are invertible” on p.
249, ¢. 15-; on p. 340, ¢. 18, read “reducible”
instead of “irreducible”; erase “non” on
p. 341, £. 17, ... But on the content itself, I
think the book would have gained from the
following additions:

— examples of how to compute the Galois
groups of some classical families of differen-
tial equations (for instance, rigidity deserved
more than the passing remark at the end of
§5.1; more could have been said on Lie alge-
braic methods, as in the work of N. Katz, or
on the general algorithm of Compoint and
Singer in the reductive case);

— a better presented index: e.g., the word
“defect” has two completely different mean-
ings in the book (p. 177, and p. 275), while
the index lists only one.

—amore thorough bibliography, or rather,
a more homogeneous one: there is nothing
wrong with quoting very recent articles or
preprints whose impact it is still difficult to
evaluate, but basic papers such as [F] or [A]
should not be forgotten;
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— last, but not least: more detailed com-
ments on the history of the recent results cov-
ered by the book. I found such shortcomings
more noticeable in its analytic part (see, for
instance, Lemma 7.59), even if scattered
comments (7.25, 8.11, ...) do appear along
the text. It would have been useful to gather
them in the conclusion of each chapter, as
was actually done at the end of Chapters 3
and 11. Also, unnecessary adverbs some-
times accompany the attributions, e.g. on p.
229, where Ramis’s theorem is “originally”
due to Ramis, or on p. 79, where Katz’s cri-
terion for formal irreducibility “also” ap-
pears in a paper of Katz.

When presenting a theory, authors are of
course free to choose their favoured ap-
proach, or to put the stress on what they be-
lieve to be the final word, but this book is
bound to become the reference on the sub-
ject, and it is a pity to downplay the role of
other view-points (say, for instance, the ana-
lytic approach to multisummation via in-
verse and direct Laplace transforms, p. 227).
Fortunately, references such as [Ko] (see in
particular the second author’s commentary,
pp. 527-524), or the preface of [Ba], provide
enough information to answer the above cri-
ticisms.

These are minor points. The book is in fact
already becoming a standard reference, not
only for differential Galois theory proper,
but also for the many areas which have ac-
companied its recent growth: tannakian ca-
tegories, the algorithmic aspects of differen-
tial algebra and of representation theory,
multisummability, the Riemann-Hilbert and
other inverse problems, moduli... On top of
its intrinsic interest, differential Galois theo-
ry is an ideal testing ground for these the-
ories. Any (young or not so young) student
working in these areas will benefit from this
book, which clearly belongs to all mathema-
tical libraries.
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Graduate Texts l
in Mathematics

K. Fritzsche, H. Grauert
From Holomorphic
Functions to Complex
Manifolds

Grad. Texts in Math. 213

Berlin u. a., Springer, 2002, 392 S., € 64,95

In der Einleitung zum Buch von Klaus Fritz-
sche und Hans Grauert wird das Ziel defi-
niert: ,,The aim of this book is to give an un-
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derstandable introduction to the theory of
complex manifolds“, und der Leser soll mit
den wichtigsten Zweigen und Methoden der
Komplexen Analysis vertraut gemacht wer-
den. Hierbei konnen die Autoren auf ihr
Buch ,,Einflihrung in die Funktionentheorie
mehrerer Verdnderlicher®, bzw. dessen eng-
lische Fassung zum Teil zuriickgreifen.

Im ersten Kapitel werden die funktionen-
theoretischen Notationen eingefithrt zu
komplex differenzierbaren und holomor-
phen Funktionen, dem Cauchyschen Inte-
gralsatz in mehreren Veranderlichen und ho-
lomorphe Abbildungen. Bei den ersten Er-
gebnissen zur Fortsetzbarkeit holomorpher
Funktionen, finden sich der erste Riemann-
sche Hebbarkeitssatz, aber auch Sitze iiber
Reinhardtsche Korper und Hartogsfiguren.

Letztere stehen am Anfang der Theorie
der Holomorphiegebiete im zweiten Kapitel.
Zentrale Resultate sind der Satz von Cartan-
Thullen und Sitze in Zusammenhang mit
dem Levi-Problem.

Das dritte Kapitel {iber Analytische Men-
gen enthdlt den WeierstraBBschen Vorbe-
reitungs- bzw. Divisionssatz und als ein
Hauptergebnis den Fortsetzungssatz von
Remmert und Stein.

Als bekanntes Korollar wird der Satz von
Chow im vierten Kapitel bewiesen, welches
die Uberschrift ,,Komplexe Mannigfaltig-
keiten® tragt. Hier werden in durchaus kom-
pakter Form die wesentlichen Notationen
und Definitionen zusammengestellt und in
direkter Weise die bendtigten niederen Ko-
homologiegruppen eingefiihrt. Als Beispiele
komplexer Mannigfaltigkeiten finden sich
komplexe Tori, Hopf-Mannigfaltigkeiten,
der komplex projektive Raum und allgemein
projektiv algebraische Mannigfaltigkeiten,
sowie GraBmannsche Mannigfaltigkeiten.
Verzweigte Uberlagerungen und als Beispie-
le konkrete Riemannsche Flachen werden
zusammen mit monoidalen Transformatio-
nen und dem Konzept der meromorphen
Abbildung ebenfalls in diesem Kapitel be-
handelt.

Ein neues Kapitel iiber Stein-Theorie wur-
de eingefiigt: Hier kommen die Autoren al-

lein mit Potenzreihenmethoden und der Los-
barkeit des Cousin-I-Problems aus, um einen
Beweis der Losung des Levi-Problems dar-
zustellen.

Die abstrakteren Konzepte in Zusammen-
hang mit der Theorie der kohdrenten Gar-
ben und héheren Kohomologiegruppen wer-
den im vorliegenden Buch bewusst aus-
gespart — Sprache und Denkweise unter-
scheiden sich von denjenigen der Algebrai-
schen Geometrie.

Kéhlersche Geometrie ist das Thema des
sechsten Kapitels. Hier findet der Leser eine
Einfithrung in die Komplexe Differential-
geometrie mit dem Ziel, modulo der Existenz
schwacher Losungen der entsprechenden li-
nearen, partiellen Differentialgleichungen,
den Einbettungssatz fiir Hodge-Mannigfal-
tigkeiten zu beweisen.

Das letzte Kapitel gibt einen Ausblick auf
neuere Entwicklungen, insbesondere die
Theorie streng pseudokonvexer Gebiete in
komplexen Mannigfaltigkeiten, der zugeho-
rigen Differentialoperatoren und Sobolev-
Réume, das Neumann-Problem und die er-
forderlichen ,,subelliptic estimates*.

Das Buch erschien in der Reihe ,,Graduate
Texts in Mathematics“. Es wendet sich in
diesem Sinne an fortgeschrittene Studieren-
de und jeden, der sich hier einarbeiten will,
und enthilt interessante Ubungsaufgaben.
Auch der Fachmann wird dieses Buch zu Ra-
te ziehen wollen, das sicherlich als eine Ein-
fiihrung in die Theorie der komplexen Man-
nigfaltigkeiten zu den Standardreferenzen
gehort.

Marburg G. Schumacher
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Robert W. Carroll

Calculus Revisited

R.W. Carroll
Calculus Revisited
Math. and its Appl. 554

Dordrecht u. a., Kluwer, 2002, 532 S.,
€184,

Das Vorwort des Buches beginnt mit den
Sitzen: ,,It can easily be maintained that
classical calculus a la Newton and Leibniz,
along with subsequent embellishment, is one
of the greatest achievements of the human
intellect (...). Within this (suitably embellish-
ed) classical calculus as a language one can
(arguably) find most of classical mathema-
tics and classical theoretical physics (inclu-
ding number theory and some quantum me-
chanics)“.

Der Autor fiihrt dann weiter aus: In den
letzten Jahren haben Forschungen in der
theoretischen Physik (Stringtheorie, Quan-
tengravitation, Quantenfeldtheorie) und der
Mathematik (nichtkommutative Geometrie,
Quantengruppen, diskrete Mathematik) zu
einer Weiterentwicklung und Verallgemeine-
rung der Calculustechniken gefithrt. Dabei
erscheinen Ideen aus klassischen mathemati-
schen Gebieten (z. B. Knotentheorie, Lie-
Theorie, Homologie) in einem neuen Licht.
Die nichtkommutative Differential- und In-
tegralrechnung ist vor allem in der Theorie
der Quantengruppen und Quantenrdume
und in der nichtkommutativen Geometrie
fest verankert. Darliber hinaus gibt es eine
Vielzahl von Querverbindungen und Beriih-
rungspunkten zu unterschiedlichen Gebieten
und Methoden der Mathematik und Physik.
Stichpunktartig seien hier etwa g-deformier-
te spezielle Funktionen, Differentialrechung
und diskrete Strukturen, integrable Systeme,
Seiberg-Witten-Abbildung der nichtkom-

mutativen FEichtheorie, Connes-Kreimer-
Hopfalgebren und Feynmanndiagramme,
und ,,Fuzzy“- Physik genannt.

Das vorliegende Buch von Robert W. Car-
roll versucht, eine ungezwungene (,,infor-
mal®) Darstellung dieser Entwicklungen zu
geben. Dabei steht groBtenteils die nicht-
kommutative Differential- und Integralrech-
nung im Mittelpunkt. Einen Uberblick iiber
den Inhalt des Buches geben die Kapitel-
iiberschriften:

Basis for quantum groups

Calculus and algebra

Differential calculi

. More on g-analysis

. Remarks on quantum transmutation

. Discretization and quantum mechanics

. Discrete calculus

. Fuzzy physics and matrix geometry

. Further aspects on finite quantum me-
chanics

10. Integrable systems

11. Aspects of gauge theory

12. Pointless spaces and quantum gravity

Nl I N N T N

Fiir die meisten der im Buch behandelten
Gebiete wiirde eine rigorose Darlegung mit
vollstindigen Beweisen eine eigene Mono-
graphie erfordern. Der Autor hat deshalb ei-
nen anderen Zugang gewéhlt: Wie im Vor-
wort ausgefithrt stellt er sich das Ziel, das
Material und die tragenden Ideen fiir den
oinformierten Anfinger“ zu entwickeln.
Exakte Definitionen und Beweise der Resul-
tate werden dann gegeben, wenn sie — aus
Sicht des Autors — fiir das Verstidndnis der
Darlegung wesentlich sind. Viele mathemati-
sche und physikalische Grundbegriffe wer-
den als bekannt vorausgesetzt. GroBe Teile
des Buches sind in der Darstellung sehr eng
an ausgewdhlte Originalarbeiten oder an
Kapitel aus anderen Monographien ange-
lehnt, in denen der Leser weitere Details und
Beweise finden kann. Stoffauswahl und
Schreibstil entsprechen mehr dem theoreti-
schen Physiker als dem Mathematiker. Auch
die Referenzliste von 690 Publikationen be-
steht iiberwiegend aus Arbeiten von theo-
retischen und mathematischen Physikern.
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Das Buch enthilt eine Fiille von konkre-
tem Material und eine Vielzahl von explizi-
ten Formeln. Differentialkalkiile auf Koor-
dinatenalgebren von Quantenrdumen und
damit zusammenhidngende Begriffe und
Strukturen (¢g-deformierte Ableitungen, Dif-
ferentialoperatoren, Heisenbergalgebra etc.)
machen etwa die Hélfte des Buches aus. Die
kovariante Differentialrechnung auf Quan-
tenvektorrdumen spielt ein zentrale Rolle.
Fiir kovariante Differentialkalkille auf
Quantengruppen wird in den Abschnitten
3.1-3.3 die allgemeine Theorie fast vollstin-
dig entwickelt, es wird aber kein einziges Bei-
spiel eines kovarianten Kalkiils auf einer
Quantengruppe gegeben. Die Worono-
wicz’schen 3D- und 4D-Kalkiile auf der
Quantengruppe SU,(2) lassen sich jedoch
bereits auf etwa 2 Seiten vollstindig darstel-
len (siehe [KS], S. 497 und 504). Mehr noch:
Die grundlegende Konstruktionsmethode
fiir bikovariante Kalkiile auf koquasitrian-
guldren Hopfalgebren (siehe [J] und [KS],
14.5) kommt im Buch gar nicht vor! Die
Klassifikationsresultate aus [BS], [HS] zei-
gen aber gerade, dass - unter milden Voraus-
setzungen — alle bikovarianten Kalkiile auf
den Standardquantengruppen mit dieser
Methode beschrieben werden. Fordert man
noch, dass der Linksmodul der 1-Formen
von den Differentialen der Matrixgenerato-
ren erzeugt wird, dann gibt es sogar nur we-
nige ausgezeichnete bikovariante Kalkiile
auf den Standardquantengruppen. Eine ana-
loge Voraussetzung ist auch fiir die Eindeu-
tigkeit kovarianter Kalkiile auf Quantenvek-
torrdumen notwendig (siche [PW]). Die ent-
sprechenden Bemerkungen auf S. 4-20 sind
damit irrefithrend fiir den Leser.

An verschiedenen Stellen wird das Mate-
rial zu unkritisch und zu wenig aufgearbeitet
aus den meist physikalischen Originalarbei-
ten iibernommen. Bei dem Theorem 2.1 auf
S. 3—12 wird der liickenhafte Beweis aus der
Originalarbeit reproduziert (sieche etwa [KS],
14.4, fir einen vollstindigen Beweis). Man-
che Herleitungen haben nur formalen Cha-
rakter (etwa die meisten Rechnungen auf
den Seiten 4—7 bis 4-9 und 4—12 bis 4-15

mit der universellen R-Matrix fiir komplexes
q), die abgeleiteten Formeln gelten aber rigo-
ros. Fiir den Leser ist dies nur schwer er-
kennbar. Hier hitte ich mir eine genauere
Kommentierung des Authors gewiinscht.

Bei der Vielfalt des im Buch behandelten
Materials und der zahlreichen Beispiele wi-
ren eine Zusammenstellung hdufig benutzter
Begriffe und eine bessere Abstimmung in
den Bezeichnungen notwendig gewesen. Die
auf S. 1-13 gegebene kurze Definition der
quantisierten Envelopingalgebra ist fiir den
Nichtexperten kaum verstdndlich (der Un-
terschied zwischen /4-adischem und komple-
xem Fall wird gar nicht erklért). Die Hopf-
algebra U,(sk) kommt auf den Seiten 1-11,
4-22 und 4-24 jeweils mit unterschiedlicher
Form der Generatoren vor. Die Quanten-
ebene wird auf Seite 2—-5 durch die Glei-
chung yx = gxy und auf der Seite 4—6 durch
xy = gyx defniert. Bei der Definition der
Dixmierspur auf S. 824 wird das Symbol w
nicht erldutert (w ist hier ein singuldrer Zu-
stand auf der W*-Algebra /*°(IN)).

Welchem Leser nutzt das vorliegende
Buch?

Dem Experten oder Forschenden auf ei-
nem der behandelten Gebiete wohl weniger,
denn er wird vorwiegend auf die originalen
Arbeiten und Monographien zuriickgreifen.
Dem interessierten Leser, der iiber keine
Vorkenntnisse verfiigt, wohl kaum, denn er
wird eher eine geeignete Einfiihrung oder ein
Lehrbuch zur Hand nehmen. Das Buch ist —
nach den Worten des Autors — in der ersten
Linie fiir den ,,informierten Anfinger® ge-
schrieben, d. h. fir einen Leser, der bereits
mehr oder weniger gute Vorkenntnisse hat
und sich iiber ein angrenzendes Gebiet infor-
mieren will oder fiir einen Mathematiker
bzw. theoretischen Physiker, der iiber die
Anwendungen in der theoretischen Physik
bzw. die mathematischen Strukturen lesen
will. Viele der neu erscheinenden mathemati-
schen Biicher sind Lehrbiicher iiber Gegen-
stande, iiber die es bereits zahlreiche aus-
gezeichnete Lehrbiicher gibt, oder spezielle
Monographien, die vorwiegend an die Ex-
perten des Gebietes gerichtet sind. Biicher
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fir den ,,informierten Anfanger” (wie Car-
roll’s Buch) erscheinen zu selten. Durch die
Materialfiille, die zahlreichen konkreten
Formeln und Beispiele, und die umfangrei-
chen Querverbindungen von Mathematik
und theoretischer Physik werden sicher viele
Leser interessante Aspekte in dem vorliegen-
den Buch von R. W. Carroll finden.
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Leipzig K. Schmiidgen

S. G. Krantz, H. R. Parks
The Implicit Function
Theorem, History,
Theory, and Applica-
tions

Basel, Birkhauser, 2002, 176 S., € 73,—

Der Stoff einer drei- bis viersemestrigen
Analysis-Vorlesung wie wir sie in Deutsch-
land lehren oder lehren sollten beinhaltet ei-
nige zentrale Resultate, die Ausgangspunkte
wichtiger Entwicklungen der (h6heren) Ana-
lysis sind. Man denke etwa an den Hauptsatz
der Differential- und Integralrechnung und
Lebesgue-Integration, den Gaul3’schen Satz
oder den Satz iiber implizite Funktionen.
Diese, und andere Resultate konnen in der
Vorlesung nur unter ,,Standard“-Annahmen
diskutiert werden und lédngst nicht alle wich-
tigen Anwendungen koénnen erwidhnt oder
gar behandelt werden. (Pro-) Seminare bie-
ten eine gute Gelegenheit hier sinnvoll Vor-
lesungen zu ergidnzen. — Material gibt es viel,
gute Biicher, auch fiir Studenten verstiand-
lich und bezahlbar, hingegen wenige.

Steven Krantz und Harold Parks legen
nun ein Buch mit dem Titel ,,The Implicit
Function Theorem. History, Theory, and
Applications“ vor, welches von der Inten-
tion der Autoren geeignet sein sollte, als Se-
minartext im obigen Sinne zu dienen. Das
Buch beginnt mit 12 Seiten Einleitung, die
ganz nett zu lesen sind, sodann gibt es 20 Sei-
ten ,,History®, die mich nicht so begeistern
(entweder sollte man ,,Geschichte der Ma-
thematik® sehr ernsthaft betreiben oder sein
lassen), aber viele werden diesen Abschnitt
gern mogen. SchlieBlich geht’s los: Kap. 3:
Basic Ideas, Kap. 4: Applications, Kap. 5:
Variations and Generalisations, Kap. 6: Ad-
vanced Implicit Function Theorems. Zusam-
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men 107 Seiten ,,core text“ und 20 Seiten
,History“. Dazu 6 Seiten teilweise nutzloses
,,Glossary“ (Besov Space: A space of func-
tions in which smoothness is measured by
certain p”-power integral expressions), 76
Referenzen auf 9 Seiten (!) und ein kurzer In-
dex. Hierfiir verlangt der Verlag € 73,— und
ich kann mit gutem Gewissen von keinem
Studenten erwarten, diesen Preis zu bezah-
len. — Und dies ist sehr schade. Wir haben es
ndmlich mit einem sehr geeigneten Semi-
nartext zu tun, ein gut geschriebenes Buch,
welches Verbreitung unter Mathematikstu-
denten mit besonderen Interessen an der
Analysis verdient.

Einige Details: In Kapitel 3 werden mehre-
re, vom Ansatz her verschiedene Beweise des
Satzes iiber implizierte Funktionen gegeben
(Dinis Beweis mittels Induktion, der ,,klassi-
sche® Beweis — Definitheit der Jacobi-Ma-
trix, der Fixpunkt-Satz-Beweis) und dann
werden die typischen Folgerungen (Satz von
der Umkehrabbildung, Rang-Satz) gezogen.
Sehr schon das Gegenbeispiel am Ende: Der
Satz von der Umkehrabbildung benétigt die
Stetigkeit der Ableitung.

Das Kapitel ,,Anwendungen® behandelt
u. a. Probleme aus der Theorie gewohnlicher
Differentialgleichungen, ~Homotopie-Me-
thoden zur Losbarkeit nichtlinearer Glei-
chungen und die dquivalenten Definitionen
von Flachen. Besonders erwdhnenswert: der
Beweis der Glattheit der Abstandsfunktion
x +— dist(x, S), S C IR” abgeschlossen. Wei-
tere Anwendungen finden sich in Kapitel 5,
wo es um den Weierstral3’schen Vorberei-
tungssatz, implizierte-Funktionen-Sitze fur
nicht differenzierbare Funktionen oder spe-
zielle, singuldre Falle geht. Das letzte Kapitel
behandelt tiefere Resultate, etwa Hadamards
globalen Satz iiber implizite Funktionen und
vor allem den Satz von Moser-Nash.

Nochmals: Ein schones Buch fiir ein inte-
ressantes (Pro-)Seminar, aber mit nur ca.
130140 Seiten ernsthaften Text viel zu teu-
er! Warum nicht eine Paperback-Ausgabe
fur € 20,-?

Swansea N. Jacob

C.R.Leedham-Green,
S.McKay

The Structure of C.R.Leedham-Green,
P M
London Math Soc. The Structure of
i Groups of Prime Power
Order
London Math. Soc.
Monogr. 27

Oxford University Press, 2002, 346 S., £ 66,—

Das Spektrum der endlichen Gruppen
spannt sich zwischen den einfachen Gruppen
auf der einen Seite und den p-Gruppen, also
den Gruppen von Primzahlpotenzordnung,
auf der anderen Seite. Sind erstere klassifi-
zierbar, so haben letztere sich wegen ihrer
ungeheuren Vielzahl allen Klassifikations-
versuchen erfolgreich widersetzt. Das vorlie-
gende Buch unternimmt das Unmégliche: Es
beweist einen Struktursatz fiir endliche
p-Gruppen, der eine erstaunlich weitgehende
Klassifikation nicht nur ermdglicht, sondern
bei der auch die interessanten p-Gruppen am
Anfang der Klassifikation kommen.

Entscheidendes Strukturmerkmal end-
licher p-Gruppen ist ihre Nilpotenz, also eine
Eigenschaft, die schwicher als Kommutati-
vitdt und stdrker als Auflosbarkeit ist: Ist G
eine Gruppe, so ist ihre absteigende Zentral-
reihe durch iterierte Kommutatorbildung
mit der Gesamtgruppe G gebildet, in For-
meln:

WI(G) = G7 rYi(G) = [G7 ’Yi—l(G)]"

G heiBt nilpotent, falls diese Reihe bei der
1-Untergruppe {1} =7.41(G) terminiert,
wobei das kleinste ¢ mit dieser Eigenschaft
dann die (Nilpotenz-)Klasse ¢(G) von G
heiBt. Ist die Klassifikation der p-Gruppen
der Klasse 1, also der abelschen Gruppen,
noch eine Ubungsaufgabe in der Algebra, so
muss man bei Klasse 2 bereits aufgeben. Der
zentrale Begriff des vorliegenden Buches ist
der Begriff der Koklasse: Eine p-Gruppe der
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Ordnung p" hat die Koklasse cc(G):=
n—c(G) =Y a, wo [%(G)/vi1(G)|=
p¢i*!. Klassischerweise sind p-Gruppen ma-
ximaler Klasse, also von der Koklasse 1, un-
tersucht worden. Bei diesen steigt die abstei-
gende Zentralreihe so langsam wie moglich
ab, d.h. ag =1, =a3 = ... =0. Die Be-
obachtung, die am Anfang der dargestellten
Theorie stand (etwa 1980), ist diese: Jede
p-Gruppe maximaler Klasse hinreichend
groBer Ordnung hat ein ziemlich groBes ge-
meinsames epimorphes Bild mit der eindeu-
tig bestimmten unendlichen Pro-p-Gruppe
maximaler Klasse. Letztere ldsst sich leicht
als Erweiterung eines p-adischen Gitters
vom Rang p — 1 mit einer zyklischen Gruppe
der Ordnung p konstruieren, wobei die inva-
rianten Teilgitter durch Inklusion linear ge-
ordnet sind. Dies ist das einfachste Beispiel
einer einreihigen p-adischen Raumgruppe.
Kompliziertere treten bei groBeren (end-
lichen) Koklassen auf, aber fiir jede feste Ko-
klasse bis auf Isomorphie nur endlich viele.
Der Struktursatz, der den Vergleich einer be-
liebigen endlichen p-Gruppe G von gegebe-
ner Koklasse mit einem dieser endlich vielen
einreihigen p-adischen Raumgruppen dersel-
ben Koklasse ermdglicht, ist ein auf den ers-
ten Blick kontraintuitiver Satz, der fiir unge-
rade Primzahlen p so lautet (Seite 129):

Ist G eine p-Gruppe der Koklasse r, so hat
G einen Normalteiler der Nilpotenzklasse 1
oder 2 vom Index héchstens p2¢—1p" " +7-3,

Dieser Satz hat die iiberraschende Kon-
sequenz, dass p-Gruppen, die im Sinne der
Nilpotenzklasse weit weg von abelschen
Gruppen sind, also eine kleine Koklasse ha-
ben, im Sinne der Lange der gewohnlichen
Kommutatorreihe sehr nahe bei abelschen
Gruppen liegen. Der urspriingliche Zugang
zu diesem Ergebnis benutzte die Klassifikati-
on der einfachen algebraischen Gruppen
iiber den p-adischen Zahlkorpern. Im vorlie-
genden Buch, {ibrigens das erste zu diesem
Themenkomplex iiberhaupt, wird ein ele-
mentarer Zugang gewéhlt, welcher im Prin-
zip von einem Studenten, der eine Grund-
vorlesung in Algebra gehort hat, verfolgt
werden kann. So gut wie alle bendtigten

Hilfsmittel werden in dem Buch bereit-
gestellt:  elementare  p-Gruppentheorie,
p-Gruppen maximaler Klasse, potenzreiche
p-Gruppen, Liealgebren, lokale Korper,
Pro-p-Gruppen, homologische Algebra, ein-
reihige p-adische Raumgruppen und ihre
getwisteten Faktorgruppen. Das Buch endet
mit einem Ausblick auf die Theorie der Pro-
p-Gruppen von linearem Koklassenwachs-
tum, einem derzeit sehr aktiven Forschungs-
gebiet.

Dieses Buch wird ein Klassiker der
p-Gruppentheorie und gehort ins Biicher-
regal eines jeden Gruppentheoretikers. Ohne
wesentliche Vorkenntnisse vorauszusetzen,
flihrt es von den Anféngen bis zur aktuellen
Forschung und wird sicherlich der Gruppen-
theorie neue Freunde gewinnen. Es eignet
sich etwa fiir eine fortgeschrittene Vorlesung
iiber Gruppentheorie mit einem anschlieBen-
den Seminar. Der klare Stil des Buches und
der ausfiihrliche Notationsindex erlauben
es, mit etwas Vorwissen, praktisch an jeder
Stelle des Buches einzusteigen.

Aachen W. Plesken

Positive
Polynomials

A Prestel, Gh. N. Delzell
Positive Polynomials.
From Hilbert’s

17th Problem to Real

Analysis

Berlin u. a., Springer 2001, 268 S., € 48,10

In seinem 17. Problem hatte Hilbert gefragt,
ob jedes auf IR" nichtnegative Polynom
f(x)=f(x1,...,x,) als Summe von Qua-
draten rationaler Funktionen geschrieben
werden kann, d. h. ob eine Gleichung

hzf:_fl2+"'+f;.2
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mit f1,...,f,, h € IR[x] und % # 0 besteht.
Die Losung (im bejahenden Sinne) gelang
Artin 1926. Sein Beweis 6ffnete neue Bahnen
und kann mit einiger Berechtigung als Ge-
burtsstunde der modernen reellen Algebra
gesehen werden. Eine wesentliche Innova-
tion ist die Einfithrung von Anordnungen
»abstrakter* Korper K, und (fir
char(K) # 2) die Charakterisierung der
Quadratsummen in K als der Elemente, wel-
che unter jeder Anordnung nichtnegativ
sind. Der zweite entscheidende Schritt ist ein
Spezialisierungsargument, das es erlaubt,
von den Werten f'(x) fiir x € IR” auf die Vor-
zeichen von f beziiglich der Anordnungen
des Funktionenkorpers IR(x) = IR(xq,...,
Xn) zu schlieBen. Diesen Schritt sieht man
heute meistens eingebettet in das Transfer-
prinzip von Tarski, welches tiblicherweise in
der Sprache der Modelltheorie formuliert
wird. Ein etwas anderer, ebenfalls auf Artins
Ideen basierender Zugang wurde in den
1950er Jahren von S. Lang weiterentwickelt
und wird heute als Stellensatz von Artin-
Lang bezeichnet.

Dies also ist der Ausgangspunkt fiir den
Rahmen des Buches, wie dessen Untertitel
ihn absteckt. Zu erginzen wire freilich, daB
es den Leser bis an den Stand aktueller For-
schung fithrt. Von Hilberts Fragestellung
und Artins Antwort ausgehend kann man
den im vorliegenden Band beschrittenen wei-
teren Weg wie folgt skizzieren. Statt einer
Charakterisierung der auf ganz IR” nicht-
negativen Polynome studiert man allgemei-
ner die auf einer vorgegebenen Teilmenge
S C IR” nichtnegativen, oder strikt positi-
ven, Polynome, und zwar fiir Mengen S der
Form

S={xeR"fi(x) >0,...,£(x) >0}

mit f1, ...,/ € IR[x]. (Solche Mengen S hei-
Ben basisch abgeschlossen.) An die Stelle der
Summen von Quadraten von Polynomen
tritt dabei die von f1, . . ., f; erzeugte Prdord-
nung, d. h. der von diesen Elementen und al-
len Quadraten von Polynomen erzeugte
Halbring 7 in IR[x]. Jedes f € T erfiillt of-
fenkundig f|¢ > 0. Daher gilt dasselbe auch

fiir jedes f € IR[x], welches eine Identitit
fs=f+tmitm>0unds, € T erfiillt.
Bemerkenswerter Weise gilt hiervon auch
die Umkehrung: Jedes Polynom f mit
flg > 0 erfiillt eine solche Identitét. In dhn-
licher Weise kann man strikte Positivitit
kennzeichnen: Fir ein Polynom f gilt
fls >0 genau dann , wenn eine Identitit
fs=1+¢tmits, t € T besteht. Solche Aus-
sagen nennt man' Stellensitze, in Anlehnung
an Hilberts berithmten Nullstellensatz, und
zwar entsprechend Nichtnegativ- bzw. Posi-
tivstellensatz. Sie wurden in den 1960er und
70er Jahren gefunden und konnen als Verall-
gemeinerungen und Verschiarfungen von
Hilberts 17. Problem gesehen werden. Wie in
diesem wird die (strikte oder nicht-strikte)
Positivitdt durch Darstellungen mit Nenner
charakterisiert.

Viel starker und iiberraschender sind nen-
nerfreie Stellensitze. Eine Urform solcher
Resultate bildet der sogenannte Darstel-
lungssatz von Kadison-Dubois, der in seiner
Grundgestalt auf M. Stone zuriickgeht und
in verschiedenen Versionen vielfach neu ent-
deckt und bewiesen wurde. Wesentlich jiin-
geren Datums ist der Positivstellensatz von
K. Schmiidgen (1991). Er besagt, da3 T jedes
Polynom f mit f'|¢ > 0 enthélt, sofern nur S
kompakt ist. Schmiidgen fand dies beim Stu-
dium von (verallgemeinerten, multivariaten)
Momentenproblemen der Analysis, und
machte dabei wesentlichen Gebrauch von
Methoden aus der Hilbertraum- und der
Operatortheorie. Es ist ein erstaunliches Er-
gebnis, das seither im Bereich der reellen Al-
gebra eine Reihe neuer Entwicklungen in
Gang gesetzt hat.

In den kommenden Jahren gelang es,
Schmiidgens Satz rein algebraisch aus dem
genannten Darstellungssatz abzuleiten (den
man schon seit langem ebenfalls rein algeb-
raisch versteht), und ihn damit in einen neu-
en Zusammenhang zu stellen. Dies blieb
nicht das einzige Beispiel einer Befruchtung
zwischen Analysis und Algebra. Ebenfalls

! auch in der englischsprachigen Literatur
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aus der Operatortheorie kam der Ansto83 zu
einer Verschdrfung der Aussage: Statt der
Prédordnung 7 betrachtet man die kleinere
Menge M, welche von allen p?, p*f1, ..., p*f,
(fir p € IR[x]) als additive Halbgruppe in
IR[x] erzeugt wird. Im Gegensatz zu T ist al-
so M im allgemeinen nicht mehr multiplika-
tiv abgeschlossen. Man nennt M den von
fi,-...fr erzeugten quadratischen Modul.
Von Putinar wurde die Frage aufgeworfen,
unter welchen Voraussetzungen jedes auf der
kompakten Menge S positive Polynom so-
gar in M liegt. Nachdem Putinar mit analyti-
schen Mitteln entscheidende Vorarbeiten ge-
leistet hatte, gelang es Jacobi und Prestel vor
einigen Jahren auf rein algebraischem Wege,
eine vollstindige Antwort zu geben. Sie hier
vollstandig wiederzugeben ist nicht moglich,
doch sei zumindest die folgende Konsequenz
notiert: Fiir r < 2 ist Putinars Frage stets zu
bejahen, wihrend es fiir r > 3 Gegenbeispie-
le gibt.

Diese hier nur rudimentar skizzierten Er-
gebnisse bilden ganz grob den Rahmen fir
die vorliegende Monographie. Es wird der
Versuch unternommen, den Leser vollstdn-
dig an die genannten Resultate heranzufiih-
ren, und diesem Ziel werden die Autoren ins-
gesamt in bewundernswiirdiger Weise ge-
recht.

Der Band zerfillt vom Anspruch wie auch
vom Inhalt her in zwei Teile. Die ersten vier
Kapitel haben eher den Charakter eines
Lehrbuchs und entwickeln allgemeine
Grundlagen. Dagegen wird in den Kapiteln
5-8 wesentlich stdrker spezialisiert, um zu
den oben genannten Ergebnisse hinzufiih-
ren. Den ersten Teil kann man auch als eine
allgemeine Einfiithrung in die reelle Algebra
lesen. Allerdings wird immer wieder deut-
lich, daB3 die hier behandelten Themen mit
Blick auf die im zweiten Teil bendtigten An-
wendungen ausgewéhlt wurden. Um den
vorgegebenen Rahmen nicht zu sprengen,
mubBte notgedrungen an der Breite der Dar-
stellung gespart werden, und so wird man
manches vergeblich suchen, was man sich in
einem reinen Lehrbuch zu diesem Thema er-
hofft hitte.

Das erste Kapitel fiihrt, ganz im Artin-
schen Geist, Anordnungen von Korpern und
ihre reelle Abschliisse ein, und beweist die
Existenz und Eindeutigkeit der letzteren mit
Hilfe der Sturmschen Ketten. Im zweiten
Kapitel wird die Quantorenelimination fiir
reell abgeschlossene Korper und (in ihrer
Folge) das Tarskiprinzip bewiesen. Das
technische Hilfsmittel sind dabei Ultrapro-
dukte. Die allgemeine modelltheoretische
Sprache wird nicht eingefiihrt, sondern, so-
weit bendtigt, ad hoc auf die konkrete Situa-
tion zugeschnitten. Semialgebraische Men-
gen werden definiert und der Projektionssatz
(die geometrische Version der Quantoreneli-
mination) wird bewiesen. Dagegen wird auf
die Geometrie semialgebraischer Mengen
iiberhaupt nicht eingegangen. Kapitel 3 gibt
eine schnelle Einfithrung in quadratische
Formen iiber Korpern, insbesondere in Ver-
bindung mit Anordnungen (Pfisters Lokal-
global Prinzip, Struktur des Wittrings). Pfis-
ters Satz {iber Quadratsummen in reellen
Funktionenkorpern wird aus dem (nur zi-
tierten) Satz von Tsen-Lang bewiesen, wo-
mit eine quantitative Prézisierung von Hil-
berts 17. Problem erreicht wird.

Im vierten Kapitel wird das reelle Spek-
trum von Ringen eingefiihrt, und es werden
die allgemeinen reellen Stellensdtze (,,mit
Nenner®) bewiesen. Eine Besonderheit, die
man in anderen Lehrbiichern selten findet,
sind die 7,-Korper. Sie werden benutzt, um
das reelle Spektrum von IR[xi,...,x,] als
Menge von Aquivalenzklassen in (IR*)"
(IR* = eine Ultrapotenz von IR) zu charakte-
risieren, und dabei den Zusammenhang zwi-
schen Spezialisierung im reellen Spektrum
und Reduktion modulo der kanonischen Be-
wertung von IR* herzustellen.

Die beiden nichsten Kapitel sind das
Herzstiick des Buches. Vereinfacht gesagt
geht es in Kapitel 5 um den Satz von
Schmiidgen und in Kapitel 6 um die Modul-
versionen von Putinar und Jacobi-Prestel.
Beide Kapitel kreisen um das grundlegende
Konzept der Archimedizitit. Der Darstel-
lungssatz wird in verschiedenen Versionen
formuliert, die etwas vereinfachend alle der
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folgenden Form entsprechen: Ist ein Objekt
P, wie etwa eine Praordnung oder ein qua-
dratischer Modul, archimedisch, so enthilt
P alle auf der zugehorigen Menge strikt posi-
tiven Funktionen. Schmiidgens Theorem et-
wa wird dann zu dem Satz, da T (unter der
Voraussetzung S kompakt) stets archime-
disch ist, wihrend das Hauptergebnis von
Kapitel 6 eine Kennzeichnung der archime-
dischen quadratischen Moduln in IR[x] ist.
Der technische Apparat ist nun recht erheb-
lich, zumal noch neue Konzepte hinzukom-
men wie etwa Semiordnungen und das Lo-
kal-global Prinzip fiir schwache Isotropie
quadratischer Formen (Brocker, Prestel
1974). Die lokalen Objekte fiir das letztere
sind Henselisierungen des Korpers beziiglich
gewisser Krull-Bewertungen. Die Verbin-
dung zum Momentenproblem der Analysis
wird kurz hergestellt, jedoch nicht eingehen-
der diskutiert. Andere Anwendungen der
Theorie, etwa in der polynomialen Optimie-
rung, werden in dem Buch gar nicht gestreift.

Es folgen noch zwei Kapitel von abrun-
dendem Charakter: Kapitel 7 ibertragt
manche der zuvor erzielten Ergebnisse von
quadratischen Prdordnungen bzw. Moduln
auf solche hoherer Stufe (Summen von
2m-ten Potenzen statt Summen von Quadra-
ten). Kapitel 8 unterzieht die betrachteten
nennerfreien Darstellungen einer qualitati-
ven Komplexititsanalyse: Ist /| > 0 (mit .S
kompakt), so kann die Komplexitit solcher
Darstellungen beschrankt werden, wenn
man nicht nur den Grad von f, sondern auch
die Betrdge der Koeffizienten von f* (nach
oben) und minf(S) (nach unten) be-
schriankt.

Das Buch schlieBt mit einem ausfiihrlichen
Anhang iiber Bewertungstheorie (45 Seiten).
Behandelte Themen sind die Fortsetzung
von Bewertungen auf algebraische und auf
rein transzendente Erweiterungen, die Ga-
loistheorie von Bewertungen, sowie Henseli-
sierung und Vervollstindigung von Bewer-
tungen. Die letzteren werden insbesondere
im 6. Kapitel gebraucht. Man wird es den
Autoren danken, daB sie sich der Miihe einer
Darstellung unterzogen und die Bewertungs-

theorie nicht als bekannt vorausgesetzt ha-
ben. Gute Expositionen der Bewertungs-
theorie sind leider immer noch Mangelware.

Jedes Kapitel schlieBt mit sorgfaltigen bi-
bliographischen und historischen Anmer-
kungen und mit einer Serie von Ubungsauf-
gaben.

Ich halte das Buch fiir ein verdienstvolles
Werk, da es erstmals einen direkten Weg zu
diesem wichtigen und aktuellen Forschungs-
gebiet bahnt. Der iiberwiegende Teil des In-
halts der Kapitel 5-8 ist zuvor noch nicht in
Buchform erschienen, und einige der Ergeb-
nisse aus den beiden letzten Kapiteln erfah-
ren damit wohl iberhaupt ihre erste Publika-
tion. Die vom Leser verlangten Vorkenntnis-
se gehen im Prinzip {iber eine Standardvor-
lesung in Algebra kaum hinaus. So eignet
sich das Buch auch als Vorlage fiir eine zwei-
semestrige Vorlesung im Hauptstudium, et-
wa begleitet von einem Seminar iber Bewer-
tungstheorie. Tatsdchlich ist es aus einer sol-
chen Vorlesung des erstgenannten Autors
entstanden. Es muB} aber betont werden, daf3
es sich um eine anspruchsvolle Lektiire han-
delt, die vom Leser viel Konzentration ver-
langt. Das gilt nicht nur fiir den zweiten, son-
dern auch schon fiir den ersten (,,Lehr-
buch®“-) Teil. Wer mit diesen Grundlagen
vertraut ist, wird hier sicher keine Schwierig-
keiten haben. Wer aber hier erst die Initia-
tion in reeller Algebra erlebt, mag sich wohl
manchmal mehr Motivation und mehr Ori-
entierungshilfe wiinschen. Insbesondere die
Kapitel 2 und 4 sind doch um einiges sproder
ausgefallen, als es dem Charakter des The-
mas entspricht. Vielleicht hitte hier und da
ein SchuB3 Geometrie den Charme etwas er-
hoht.

Eine gewohnungsbediirftige Besonderheit
ist die Notation A® fiir das kartesische Pro-
dukt 4 x --- x 4. Dagegen steht A" fiir die
Menge der n-ten Potenzen im Ring A! Dies
fithrt manchmal zu merkwiirdig aussehen-
den Formulierungen, siehe etwa Theorem
5.4.5 als ein Beispiel fiir viele. Hier hitte sich
wohl auch ein anderer Weg finden lassen, ei-
nen Notationskonflikt zu vermeiden.

56

JB 106. Band (2004), Heft 4



Ubersichtsartikel

Historischer Artikel

Buchbesprechungen —‘

Zuweilen erhilt man den Eindruck eines
gewissen Zeitdrucks auf Seiten der Autoren,
etwa wenn der Text gelegentlich eher stich-
punktartig ausfallt als wirklich ausformu-
liert wird. Oder wenn auf Seite 188 ein be-
kannter Satz von Minkowski zitiert und fiir
seinen Beweis auf ein Buch von Cernikov
verwiesen wird, sich aber genau derselbe
Satz samt vollstdndigem Beweis schon auf
Seite 132 findet. Andererseits habe ich nur
wenige Druckfehler und iiberhaupt keine
echten mathematischen Fehler gefunden.
Die von den Autoren eingerichtete Internet-
seite mit Korrekturen, Updates und ergén-
zendem Material ist denn auch derzeit
(Herbst 2003) noch leer.

Insgesamt sind die gemachten kritischen
Anmerkungen eher von marginaler Bedeu-
tung und mindern die Verdienste des Werkes
nicht. Das Buch enthilt einen betrichtlichen
Schatz an schoner und wichtiger Mathema-
tik, und man wird ihm viele Leser wiinschen,
die die notige Neugier und Ausdauer mit-
bringen, sich diesen zu erschlieBen.

C. Scheiderer

Duisburg

- L-Invariants: 55
Theory W. Liick
and Applications 2
'“3731"1’,?.,7, - L*-Invariants: Theory
and Applications to
Geometry and
K-Theory

Erg. der Math. 44

Berlin u. a., Springer, 2002, 595S.,€ 119,

Der vorliegende 44. Band der 3. Folge der
groBartigen ,,Ergebnisse™ — Reihe ist rekord-
verdédchtig: Er wiegt, so steht es in den voll-
standigen bibliographischen Daten, 1040
Gramm. Es kann also in dieser Besprechung
nicht um eine moglichst vollstdndige Inhalts-

angabe gehen, und das ist auch schon deswe-
gen ganz uberflissig, weil die meisten Ma-
thematiker, die in der Topologie und in den
angrenzenden Bereichen der Algebra und
Geometrie arbeiten, das Buch ohnehin zur
Kenntnis genommen haben werden. Ich
mochte also den anderen Lesern des Jahres-
berichts — notwendigerweise ganz vage — er-
kldren, worum es geht, und sie dazu ermun-
tern, das Vorwort und die Einleitung des Bu-
ches zu lesen und auch in den spateren Kapi-
teln ein bisschen zu schmdkern.

Die élteste und auch topologischen Laien
am besten bekannte Invariante eines Rau-
mes X ist seine Euler-Charakteristik y/(X).
Thre Bedeutung resultiert unter anderem da-
raus, dass sie ganz verschiedene Beschrei-
bungen besitzt:

1. Die kombinatorische Beschreibung, also

x(X) = Eckenzahl — Kantenwahl + Flachen-
zahl—-+ ...,

wenn X eine endliche Triangulierung besitzt.

2. Die homologisch-algebraische Beschrei-
bung, also

X(X) = bo(X) = bi(X) + ba(X) ~ + ..

wobei by(X) die k-te Betti-Zahl, also die Di-
mension der k-ten Homologiegruppe Hy(X;
IR) als IR-Vektorraum ist.

3. Die geometrische Beschreibung, also

x(X) = Nullstellenzahl eines Vektorfelds auf
X;

dabei muss X eine kompakte Mannigfaltig-
keit sein, und die Nullstellen des (generi-
schen) Vektorfelds miissen mit Vorzeichen
und Vielfachheiten gezihlt werden.

4. Die analytische Beschreibung, also

x(X) = index (D),

wenn X eine kompakte Riemannsche Man-
nigfaltigkeit und D ein (geeigneter) kano-

nischer elliptischer Differentialoperator auf
Xist.

Alle diese Beschreibungen brechen zusam-
men, wenn X nicht kompakt ist; dann kon-
nen ja z. B. die Betti-Zahlen unendlich sein,
und man kann ihre Wechselsumme nicht bil-
den. Nun kann man natiirlich einwenden,
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dass die bi(X) als Elemente von IN U {0, co}
immer definiert sind und dass ihre Kenntnis
ja sowieso viel besser ist als die von x(X).
Aber es gibt hier nur ein Unendlich, und da
ist die Formel by (X) = oo natiirlich viel weni-
ger aussagekriftig als z. B. b (X) =22.

Einen Ausweg aus dieser Schwierigkeit
stellen hiufig die L-Betti-Zahlen b® (X)
dar. Sie sind oft auch dann endlich, wenn X
nicht kompakt ist und wenn die klassischen
Betti-Zahlen unendlich sind. Um die Defi-
nintion von b ® (X) zu skizzieren, will ich
mich auf die wichtige Situation beschranken,
in der X die universelle Uberlagerung einer
kompakten Mannigfaltigkeit Y oder eines
CW-Komplexes Y von endlichem Typ ist.
Dann operiert die Fundamentalgruppe G
von Y durch Decktransformationen auf X.
Man definiert nun (auf analytische oder
kombinatorische Weise) die L*>-Kohomolo-
giegruppen Hk(z) (X) und bezeichnet mit
b @ (X) die Dimension von Hk(z) (X) tiber
der Gruppenalgebra N(G) von G im Sinne
von v. Neumann.

Mit diesen Begriffen aus der Theorie der
Operatoralgebren erhélt man also nicht-ne-
gative reelle Zahlen b,® (X), die streng ge-
nommen nicht nur von X, sondern von der
Uberlagerung X — Y abhéngen.

Erstaunlich ist, dass diese L?-Betti-Zahlen,
die ja a priori beliebige reelle Zahlen sind, die
Tendenz haben, rational zu sein, wie z. B. die
im vorliegenden Buch ausgefiihrten Berech-
nungen bei 3-Mannigfaltigkeiten, symmetri-
schen Rdumen und klassifizierenden Rau-
men von endlich prisentierten Gruppen zei-
gen. Hier gibt es wichtige offene Fragen.

Auf alle Fille gewinnt man eine fiinfte und
diesmal operatoralgebrentheoretische Be-
schreibung der Euler-Charakteristik:

X(X) =b® () - b;P (X) + 5,2 (X) -+ ...

Diese Definition ist auch in Situationen
anwendbar, in denen die vier oben genann-
ten Beschreibungen nicht funktionieren.

Ein Test fiir die Qualitét einer neuen Theo-
rie besteht ja immer darin, dass man mit ihr
Resultate zeigen kann, die man ohne diese
Theorie formulieren aber (zumindest bisher)
nicht beweisen kann. Diesen Text bestehen

die L2-Betti-Zahlen glinzend. Ich zitiere eine
algebraische und eine geometrische Anwen-
dung:

Ist G eine Gruppe, die einen unendlichen
amenablen Normalteiler besitzt und so dass
der klassifizierende Raum BG ein endlicher
CW-Komplex ist, so ist
x(G):=x(BG)=0

Ist M eine 2m-dimensionale geschlossene
hyperbolische Mannigfaltigkeit, so ist
D™ x(M)>0.

Natiirlich sind die L>-Betti-Zahlen nicht
die einzigen L% Invarianten, die in dem vor-
liegenden Buch behandelt werden, aber es
wiirde zu weit fithren, hier auf die kompli-
zierteren einzugehen.

Herr Liick hat das Kunststiick fertig ge-
bracht, ein Buch zu schreiben, das gleichzei-
tig eine unverzichtbare Referenz fiir Exper-
ten und ein Lehrbuch mit Ubungsaufgaben
ist. Dafiir gebiihrt ihm groBte Anerkennung.
Natiirlich ist es leicht, hier und da ein wenig
zu mékeln: So finde ich, dass die analyti-
schen Ausfithrungen nicht immer dieselbe
Perfektion besitzen wie die topologischen
Teile. Und das Gegenbeispiel gegen die sog.
Starke Atiyah-Vermutung, das gefunden
wurde, wiahrend Herr Liick an diesem Buch
arbeitete, ist zwar aufgenommen worden,
aber trotzdem muss der unvorsichtige Leser
an manchen Stellen den Eindruck gewinnen,
diese Vermutung sei noch offen. Aber das
sind wirklich Bagatellen.

Wenn ein Leser nach dieser Besprechung
das Gefithl hat, nun gerade genug iiber
L*Invarianten gehort zu haben, so dndere
ich fiir ihn meine eingangs geduBerte Ermun-
terung, Vorwort und Einleitung des Buches
zu lesen, ab: Lesen Sie wenigstens den Teil
des Vorworts durch, in dem der Autor sich
sehr beherzigenswerte Gedanken dariiber
macht, auf welches Geleise wir unseren wis-
senschaftlichen Nachwuchs setzen sollen,
um unserer Verantwortung ihm gegeniiber
gerecht zu werden.

Diisseldorf W. Singhof
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Graduate Texts
in Mathematics

J. Matousek

Lectures on Discrete
Geometry

Grad. Texts in Math. 212

Berlin u. a., Springer, 2002. 481 S., € 44,95

Was ist , Diskrete Geometrie”“? Jifi Ma-
tousek (Karlsuniversitdt Prag) gibt mit dem
vorliegenden Buch auf diese Frage eine inte-
ressante, vielleicht iiberraschende, aber
durchaus iiberzeugende Antwort. Er hélt
sich nicht lange mit der naheliegenden Be-
hauptung auf, schon die alten Griechen hat-
ten diskrete Geometrie betrieben (,,siehe die
platonischen Korper®), sondern er prédsen-
tiert uns ein groBles, aktuelles, lebendiges
Forschungsgebiet weit jenseits der klassi-
schen, euklidischen (Schul-)Geometrie. Und
die Prisentation ist als eine ernstgemeinte
Einladung zu verstehen: eine Einladung, die
sie annehmen sollten.

Erste positive Uberraschung: keine groBe
Vorreden, auch kein erstmal-zig-Seiten-
Theorie-Wiederholen, keine groBen Voraus-
setzungen, und es wird schon sehr schnell in-
teressant (etwa ab Seite 6 — nicht erst auf Sei-
te 90, wie etwa in [1]).

Worum geht’s? Das ist zundchst definiert
durch die Objekte: Gegeben seien endlich
viele Punkte, Geraden, Ebenen im IRY. Wir
bilden affine und konvexe Hiillen, Verbin-
dungslinien, Schnittmengen. Da stellen sich
einige Fragen ganz von selbst. So etwa die
Frage: ,,Wenn aus einer Familie von kon-
vexen Mengen in der Ebene jeweils drei im-
mer eine nicht-leere Schnittmenge haben, gilt
das dann fiir alle?” Das ist noch ganz einfach
zu beantworten, auch in seiner d-dimensio-
nalen Version — dem Satz von Helly
(Seite 10). Und das ist nicht nur Spielerei, es

hat auch vielféltige Konsequenzen und An-
wendungen. Aber wenn wir nur noch for-
dern, dass unter jeweils p konvexen Mengen
sich ¢ finden, die einen gemeinsamen
Schnittpunkt haben, was folgt dann (fiir
p>q>d)? Einen gemeinsamen Schnitt-
punkt wird es dann nicht immer geben, aber
doch beschrankt viele?

Aber, fragt da der geneigte Leser, ist die
Frage — das ,,(p, ¢)-Problem“ von Hadwiger
und Debrunner — denn wirklich interessant?
Ist das wichtig fiir die/in der diskreten Geo-
metrie? Woher kommen da die entscheiden-
den Fragen? Die kommen aus ganz unter-
schiedlichen Quellen. Zunéchst sind da die
Fragen nach den grundlegenden kombinato-
rischen Zusammenhéngen zwischen den ele-
mentaren kombinatorischen Objekten. De-
ren Bedeutung misst sich letztlich an der Ein-
fachheit der Fragestellung, aber auch daran,
dass man sie immer wieder braucht, dass sie
im vorliegenden Buch also nicht nur einmal
auftauchen, sondern immer wieder. (In die-
sem Sinne hidngt das vorliegende Buch eben
auch viel besser und iiberzeugender zusam-
men als etwa der éltere Versuch [3] zum sel-
ben Thema.) Aber weitreichender und ein-
flussreicher fiir die Themenauswahl und die
Entwicklungsrichtung der Theorie sind (und
das wird in Matouseks Buch auch deutlich)
die Leitfragen und Kernprobleme, die ,,von
auBen® aus ganz unterschiedlichen Richtun-
gen an die diskrete Geometrie gestellt wor-
den sind und werden. Klassisch sind da die
Beitrdge der Gruppentheorie (Symmetrie-
gruppen), aber auch der Zahlentheorie
(Minkowskis ,,Geometrie der Zahlen®), in
neuerer Zeit der algebraische Geometrie (die
Geometrie der torischen Varietdten mit ihrer
Ubersetzung in Gitterpunktprobleme, oder
noch aktueller die tropische Geometrie [4]),
usw. Die entsprechenden Bereiche und Ent-
wicklungen der diskreten Geometrie stehen
in Matouseks Buch allerdings nicht im Vor-
dergrund. Viel deutlicher sichtbar ist in sei-
nem Buch der Einfluss aus Bereichen der an-
gewandten Mathematik, der kombinatori-
sche Optimierung (der Simplexalgorithmus
lieferte Kernfragen der modernen Polyeder-
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theorie), dem Computer-Aided Design
(CAD), wie auch der mathematischen Visua-
lisierung und der Computergraphik, die in
der Informatik die algorithmische Geo-
metrie (,,computational geometry) ergeben
hat, und deren mathematische Basis liegt
wiederum in der diskreten Geometrie. Fiir
viele der Themen dieses Buches kommen die
Anfinge, Kernprobleme und Leitfragen aus
dieser Richtung.

Die diskrete Geometrie ist also kein klas-
sisch existierendes, definiertes und abge-
grenztes Gebiet. Das vorliegende Buch ist
vielmehr ein ernstzunehmender Beitrag zur
Definition und zur Erweiterung des Gebiets.
Matousek deckt eine Fiille von klassischen
Themen ab, aber erschlieBt auch viele und
vielfdltige neue. Und trotz des groBen
Einflusses der algorithmischen Geometrie
als fragenstellender Anwendungsdisziplin
macht Matousek daraus kein Buch mit
Scheuklappen (wofiir es leider zu viele Bei-
spiele gibt): Er beschréankt sich nicht auf die
Dimensionen d < 3, oder auch nur auf die
Themen (wie die Theorie der Hyperebenen-
arrangements), die sich recht miihelos auf
allgemeine Dimension d verallgemeinern las-
sen. Im Gegenteil: Der Vorspann iiber iiber-
raschende hochdimensionale Effekte (Ab-
schnitt 13.1), mit dem die Diskussion hoch-
dimensionaler Volumina und ihrer Berech-
nung eingeleitet wird, ist brillant. Thm folgt
ein Kapitel iiber MaBkonzentration: einem
wichtigen Thema fiir die diskrete Geometrie,
das seine Urspriinge in der Funktionalana-
lysis hat. Und neben vielen zentralen und
wichtigen Resultaten, Themen und Fra-
gestellungen bietet das Buch noch viel mehr,
sozusagen Kiir, Illustrationsthemen, Elekti-
ves, das sich auch an Matouseks vielfaltigen
Forschungsinteressen orientiert.

Trotz aller Eleganz und Leichtigkeit in der
Darstellung ist dies doch ein ernsthaftes und
effektives Lehrbuch. Geduldig werden die
wichtigen Methoden erklart, und Beweise
prasentiert. Dafiir hat Matousek offenbar
kritisch ausgewahlt und hart gearbeitet. Die
Darstellung ist auch in den Details verldss-
lich, elegant, einfach schén. Und Matousek

driickt sich nicht, auch wenn’s kompliziert
wird, es gibt da keine Diinnbrettbohrerei:
siehe etwa seine Exposition der Losung des
Hadwiger-Debrunner (p,q)-Problems, im
Abschnitt 10.5. Ein groBes Arsenal von Me-
thoden wird in Kombination zum Einsatz
gebracht (e-Netze, Komplexititsschranken,
LP-Dualitdt, usw.), die ,,der klassische Ma-
thematiker” nicht mal vom Namen her
kennt — aber hier kennenlernen kann. Ma-
tousek setzt dennoch thematische Grenzen:
topologische Methoden sind etwa aus-
gespart, und dafiir verweist er nicht einmal
deutlich genug auf sein neuestes, meisterhaf-
tes Biichlein [2].

Matouseks ,,Lectures® zeigen die Diskrete
Geometrie lebendig und vielfaltig, auf dem
aktuellen Stand. Und von dort aus geht es
natiirlich weiter. Das Buch ist eben auch eine
Fundgrube in Bezug auf interessante Proble-
me, und ein Wegweiser in die aktuelle For-
schung. Das kulminiert in den Abschnitten
,Bibliography and Remarks“ jeweils vor
den Ubungsaufgaben. Manche davon gehen
iiber mehrere Seiten, und schlagen tiefe Bre-
schen in die aktuelle Forschungsliteratur
(mit Bezug auf die 40 Seiten sorgfaltige Lite-
raturangaben am Ende des Bandes . . .).
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G.V. Smirnov
Introduction to the
Theory of Differential
Inclusions

Grad. Studies

in Math. 41

Providence, Am. Math. Soc., 2001, 226 S.,
$34,—

The book provides an introductory treat-
ment of differential inclusions in finite di-
mensions. It deals with differential inclu-
sions of the form

(1) (1) € F(x(1), t€[0,T],

where F is a set-valued map which associates
with any y € R" a closed convex set
F(y) C IR". Solutions of (1) are elements of
the Banach space AC = AC([0,T],R") of
absolutely continuous functions.

Part 1 of the text is devoted to basic con-
cepts and results from convex, set-valued
and nonsmooth analysis that are needed in
the second part. Chapter 1 contains the ne-
cessary prerequisites of convex analysis in fi-
nite dimensions. This is followed by Chapter
2 on set-valued analysis and, in particular, on
(semi-) continuity properties, derivatives,
Lipschitzian approximations and extensions
of set-valued maps. Furthermore, convex
processes, i.e., multifunctions whose graphs
are convex cones, their properties and repre-
sentations are studied. They form set-valued
analogues of linear operators and satisfy a
multivalued version of the Jordan represen-
tation theorem. Chapter 3 provides an intro-
duction to nonsmooth analysis focussing on
Mordukhovich’s concepts for normal cones
and subdifferentials, the corresponding cal-
culus and applications to necessary optimal-
ity conditions.

Part 2 forms the main body of the text. It
contains six chapters on various aspects of
differential inclusions, namely, existence re-
sults, viability and invariance, controllabil-
ity, optimality, stability and stabilization.

The existence theory for differential inclu-
sions with closed convex-valued right-hand
sides is established in Chapter 4 within sev-
eral steps. The first step consists in showing
that for Lipschitzian F any subset M of AC
can be continuously projected into the solu-
tion set S of (1). More precisely, there exists
a continuous projection r from M to S hav-
ing the property that for each x € M such
that the distance d(x/(t),F (x(2))) is small,
r(x) is close to x with respect to the norm in
AC (Theorem 4.5). This result is used as a
workhorse to construct families of solutions
with required properties. The first conclu-
sion is that the solution set of initial value
problems for (1) is nonempty and arcwise
connected if F is Lipschitzian and takes
closed convex values. In a second step, solu-
tions to initial value problems for (1) with
upper semicontinuous F are derived as limits
of sequences of solutions to approximate dif-
ferential inclusions with Lipschitzian ap-
proximations of F as right-hand sides.
Furthermore, Chapter 4 contains results on
the continuous and differentiable depen-
dence of solution sets on initial conditions,
on the existence of optimal solutions to the
Mayer problem for differential inclusions
and on the convergence of discrete approxi-
mations in the Lipschitzian case.

Chapter 5 on viability and invariance starts
with an existence result for solutions that be-
have monotone with respect to a real-valued
function. Its proof is again based on Theo-
rem 4.5. This monotonicity theorem is used
to prove the main viability result (Theorem
5.2). It provides conditions on F and on a
closed set C C IR" that imply the existence of
a solution x(-) to (1) such that x(z) € C for
each ¢ if x(0) € C. A stronger requirement
on C is that it is invariant by the differential
inclusion (1), i.e., any solution to (1) is con-
tained in C if x(0) € C. In the Lipschitzian
situation the invariance of C by (1) is equiva-
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lent to the condition that, for each x € C,
F(x) is contained in the contingent cone
T (x,C) at x to C. Viability of some solution
of (1) is already implied by the weaker condi-
tion F(x) N T(x, C) # 0 for each x € C. The
latter result is used to study the reachability
set of (1).

Chapter 6 studies controllability of (1) for
the case that F is a convex process and local
controllability for Lipschitzian F by employ-
ing an approximate convex process. Chapter
7 contains nonsmooth necessary optimality
conditions for the Mayer problem and a
time-optimal problem. Two methods for
studying stability of differential inclusions
are described in Chapter 8. Namely, the Lya-
punov direct method and a method based on
first order approximations of F by linear se-
lectionable mappings and by convex pro-
cesses. Finally, Chapter 9 deals with the pro-
blem of stabilization, i.e., of finding a selec-
tion f of F such that the ordinary differential
equation x/(t) = f(x(z)) behaves asymptoti-
cally stable if the original differential inclu-
sion satisfies an asymptotic stability condi-
tion. Solutions are presented for a convex
process F (by constructing a Lyapunov func-
tion) and for Lipschitzian F.

Each chapter is completed by a number of
problems and exercises, respectively. Most
of the chapters in Part 2 contain applications
of the general results to more specific pro-
blems, e.g., to Filippov’s concept for treating
discontinuous ordinary differential equa-
tions (Section 4.4), existence and optimality
conditions for optimal control problems
(Sections 4.5 and 7.2), differential games
(Section 5.5), controllability and stabiliza-
tion in mechanical systems (Sections 6.4 and
9.4).

Comments on further reading for each
chapter are provided at the end of the book.
The bibliography contains 128 items and is
not intended to be nearly complete. It con-
tains only books and fundamental works on
differential inclusions as well as papers that
are relevant for the material presented.

The text grew out of several lectures given
by the author at several universities during

the last few years. Most of the material was
written when the author was visiting the In-
ternational School for Advanced Studies at
Trieste (Italy). The material is developed by
using modern tools from set-valued and non-
smooth analysis. All results, also those in the
first 3 chapters, are presented including
proofs. Hence, the material of the book may
very well be used for an introductory lecture
on differential inclusions, although potential
readers might miss some more introductions
to and discussions of the results. The text is
intended for graduate students who specia-
lize in pure and applied analysis and also sui-
table for mathematicians who are looking
for a modern introduction to the field. The
required mathematical background is
knowledge of the theory of functions and or-
dinary differential equations, and of func-
tional analysis at an elementary level.

Berlin W. R6misch

Sen
Fran

The Evolution Problem
in General Relativity

S. Klainerman, F. Nicolo
The Evolution Problem
in general Relativity
Progr. math. Physics

Basel, Birkhéuser, 2002,424 S., € 83,18

Die fundamentalen Gleichungen der All-
gemeinen Relativitédtstheorie, die Einstein-
gleichungen, bilden ein System von quasili-
nearen partiellen Differentialgleichungen.
Die zentralen mathematischen Probleme, die
zu behandeln sind, wenn man allgemeine L6-
sungen dieser Gleichungen untersuchen will,
miissen mit Hilfe der Theorie der hyperboli-
schen Gleichungen behandelt werden. Da-
mit verbunden ist die Tatsache, dass es na-
tiirlich ist, fiir diese Gleichungen ein An-
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fangswertproblem zu stellen. Es werden An-
fangsdaten vorgeschrieben und man ver-
sucht, die Existenz und Eindeutigkeit einer
entsprechenden Losung der durch die Ein-
steingleichungen definierten Entwicklungs-
gleichungen zu beweisen. Fiir lokale Losun-
gen in der Ndhe der Anfangshyperfliche
wurde dieses Problem vor mehr als fiinfzig
Jahren von Y. Choquet-Bruhat geldst. Eine
ausfithrliche Darstellung der heutigen
Kenntnisse auf dem Gebiet findet man in [1].
Weitaus schwieriger ist das globale Anfangs-
wertproblem fiir die Einsteingleichungen.

Es gibt kein gutes Verstédndis des globalen
Verhaltens allgemeiner Losungen der Ein-
steingleichungen. Dies gilt schon fiir den ein-
fachsten Fall der Einsteinschen Vakuumglei-
chungen. Im allgemeinen beschreiben die
Einsteingleichungen die Wechselwirkungen
von Materie durch das Gravitationsfeld,
aber selbst wenn man einen Bereich betrach-
tet, in dem keine Materie vorhanden ist, sind
die Gleichungen kompliziert. Die einfachste
Losung der Einsteinschen Vakuumgleichun-
gen ist der Minkowskiraum der speziellen
Relativitatstheorie. In diesem Fall ver-
schwindet das Gravitationsfeld. Ein mogli-
cher Ausgangspunkt, um das globale Ver-
halten von Losungen der Einsteingleichun-
gen zu verstehen, ist, kleine Storungen des
Minkowskiraums zu betrachten. Das heisst,
wir nehmen Anfangsdaten fiir den Min-
kowskiraum, storen diese ein wenig und fra-
gen nach dem Verhalten der sich daraus ent-
wickelnden Losung. Insbesondere ist es
wichtig zu wissen, ob die Losung in einem ge-
eigneten Sinne global in der Zeit existiert,
und ob sie dem Minkowskiraum qualitativ
dhnlich ist. Es handelt sich um die Frage der
globalen nichtlinearen Stabilitdt des Min-
kowskiraums. Diese Frage wurde durch ein
Theorem von Christodoulou und Klainer-
man positiv beantwortet. Der Beweis, der
sehr lang und technisch ist, wurde als das
Buch [2] veroffentlicht.

Im vorliegenden Buch wird das Theorem
von [2] verallgemeinert und es werden Teile
des Beweises vereinfacht. Man soll allerdings
den Grad der Vereinfachung nicht iiber-

schitzen. Das neue Buch ist wesentlich kiir-
zer als [2], verwendet aber viele Ergebnisse
von [2]. Das Theorem von [2] betrifft asymp-
totisch flache Losungen. Diese Losungen be-
schreiben isolierte Systeme, d. h. Systeme bei
denen das Gravitationsfeld ausserhalb eines
rdumlich beschriankten Gebietes abklingt.
Das Theorem von [2] behandelt den Fall von
Anfangsdaten, die iiberall nahe bei Min-
kowskidaten sind. Da asymptotisch flache
Anfangsdaten weit draussen immer nahe bei
Minkowskidaten sind, kann man hoffen, ein
Theorem fiir Daten die nicht tiberall klein
sind zu beweisen. Das Buch von Klainerman
und Nicolo beweist ein solches Theorem.
Die Aussage des Theorems beschrankt sich
auf das Verhalten der Losung weit draussen.
Die Entkopplung des Verhaltens in einem
geeigneten Aussengebiet von dem Verhalten
im Inneren folgt aus der hyperbolischen Na-
tur der Gleichungen und dem entsprechen-
den Vorhandensein eines Abhédngigkeits-
gebietes. Der Beweis von [2] benutzt maxi-
male Hyperflachen, deren Definition global
im Raum ist. Diese Methode ist deshalb fiir
den Beweis des neuen Theorems nicht geeig-
net. Im Beweis des neuen Theorems werden
stattdessen lichtartige Hyperfldchen verwen-
det.

Das erste Kapitel des Buches enthélt Hin-
tergrundmaterial iiber Lorentzgeometrie
und Allgemeine Relativitdtstheorie. Der not-
wendige analytische Hintergrund wird im
zweiten Kapitel erkldrt. Dort gibt es auch ei-
ne Beschreibung der Beweisstrategie die im
Buch benutzt wird, um das neue Theorem zu
beweisen. Im dritten Kapitel werden zahlrei-
che fiir den Beweis notwendige Definitionen
eingefithrt, das Haupttheorem wird formu-
liert und die Struktur des Beweises wird er-
klart. Dieser Beweis besteht aus komplizier-
ten geometrischen Konstruktionen sowie
Abschitzungen fiir die dadurch definierten
Strukturen. Die Herleitung dieser Abschit-
zungen ist der Inhalt der Kapitel vier bis sie-
ben. Im letzten Kapitel wird die Bedeutung
des Theorems fiir die Theorie der Gravitati-
onswellen erklart.
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Der Beweis des Haupttheorems ist sehr
kompliziert und dieser Umstand scheint un-
vermeidlich. Angesichts dieser Tatsache ist
es eine schwierige Aufgabe, das Material in
einer dem Leser zuginglichen Form zu pri-
sentieren, Die Autoren haben sich offenbar
viel Mithe gegeben, dieses Ziel zu erreichen
und sind dabei erfolgreich gewesen. Das
Haupttheorem hat eine zentrale Bedeutung
fiir die mathematische Entwicklung der All-
gemeinen Relativitdtstheorie und jeder, der
auf diesem Gebiet arbeitet, sollte sich mit
diesem Buch befassen.

Literatur

[1] Friedrich, H. and Rendall, A. D. 2000 The
Cauchy problem for the Einstein equations.
In: Schmidt, B. G. Einstein’s field equations
and their physical implications. Springer,
Berlin.

[2] Christodoulou, D. and Klainerman, S.
1993 The global nonlinear stability of the
Minkowski space. Princeton University
Press, Princeton.

Golm A. Rendall
Encyciopedia of Mathematics and ns Application’ 83

STOCHASTIC

INTEGRATION

WITH JUMPS
K. Bichteler
Stochastic Integration
with Jumps
Enc. of Math. and
its Appl. 89

Cambridge University Press, 2002, 501 S.,
£70,~

Langst schon haben Stochastische Differen-
tialgleichungen und die damit verbundene
Theorie der stochastischen Integration ihren
festen Platz im Kanon unserer Mathematik-

ausbildung; in Anwendungen und auch bei
den Anwendern hat sich dieser Zweig der
mathematischen Stochastik in den letzten
fiinfzehn bis zwanzig Jahren etabliert und ist
kaum mehr wegzudenken aus Modellen der
Ingenieur- und Biowissenschaften oder —
hier in aller Munde — aus der Finanzmathe-
matik. Die einfachste stochastische Differen-
tialgleichung ist eine Gleichung der Art

(x) Xi(w) = b(Xi(w)) + o(Xu(w)) &i(w),
Xo(w) = X,

wo & (w) ein zufilliges Rauschen darstellt.
Oft wird ¢, als weiles Rauschen angenom-
men — aber auch andere stochastische Stor-
terme werden betrachtet, das hangt letztlich
vom zu modellierenden System ab —, d. h. &,
ist eine Brownsche Bewegung. Bereits bei
dieser relativ einfachen Gleichung tritt ein
wesentliches Problem auf: die klassische Ab-
leitung nach der Zeit &, ist nicht einmal fiir ei-
ne Brownsche Bewegung (geschweige denn
fiir allgemeinere Storungen) definiert, so daf3
(%) sinnlos ist. Fassen wir (*) als Integralglei-
chung auf,

(#%) Xi(w) =2x0+ /Otb(Xx(w)) ds

-/ (X)) dEs(w),

dann bendtigen wir immer noch, daf§ & (w)
von beschriankter Variation ist, aber auch
das trifft auf eine Brownsche Bewegung
nicht mehr zu. Der naive Versuch,
f(; o(X,) d&; partiell zu integrieren, schldgt in
der Regel fehl, da dann o(X|) von beschrin-
ker Variation sein miifite, und im Hinblick
auf (x) kann das i. allg. nicht erwartet wer-
den, wenn & nicht von beschrankter Varia-
tion war.

In einer Reihe von bahnbrechenden Arbei-
ten zu Beginn der 1940er Jahre hat der japa-
nische Mathematiker Kiyosi Itd eine Theorie
der stochastischen Integration entwickelt,
die dieses Problem 16st. Aufbauend auf Ar-
beiten von Paley und Wiener [10] definiert
It6 das Integral [ o(X;) d&, zundchst als Rie-
mannsche Summe, betrachtet dann aber
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nicht punktweise (d. h. fiir jedes einzelne w)
Konvergenz, sondern Konvergenz in
L? = L?(P) beziiglich des zu Grunde liegen-
den Wahrscheinlichkeitsmafies P. Zentral in
It6s Ansatz ist die Beobachtung, daf§ sowohl
die Brownsche Bewegung ¢ als auch & — ¢
Martingale sind. Was Itds Theorie so erfolg-
reich macht, ist die folgende Kettenregel, ge-
meinhin als /z6-Formel bekannt,

(&) =S ) de+5 /"€ dt,  fec

die sich von der iiblichen Kettenregel eben
durch den Korrekturterm fiir /” unterschei-
det. Intuitiv sollte dz als zweite Variation von
&, also als df = (d{,)z, verstanden werden.
(Kirzlich hat Lyons in seinem Rough Paths-
Ansatz eine hiibsche Interpretation dieses
Korrekturterms und weiterer Variationen
hoherer Ordnung als Lévy-area gegeben, vgl.
[6].) Da (dr)* = 0 gilt, zeigt sich leicht, daB
Itos Integralbegriff den Stieltjesschen Ansatz
einschlieft. Doob bemerkte in seinem 1953
erschienenen Buch, daf sich Itds Theorie un-
mittelbar auf allgemeine L2-Martingale &,
als Integratoren verallgemeinern 148t, wenn
man nur eine Doob-Meyer Zerlegung des
Submartingals & kennt. Damit griff Doob
seiner Zeit etwas vor, erst P.A. Meyer er-
brachte 1962-3 einen vollstindigen Beweis
dieses Resultats. Damit war der Weg frei zu
einer allgemeinen stochastischen Integrati-
onstheorie fiir L2-Martingale, die im wesent-
lichen von Ph. Courrege 1962-3 und H. Ku-
nita-S. Watanabe 1967 ausgearbeitet wurde,
wir verweisen nur auf die hiibsche Darstel-
lung der Methode in [5], wo auch die ein-
schlagigen Originalarbeiten zitiert sind. Die-
se Theorie wurde dann von P. A. Meyer und
seiner Strafiburger Schule zunéchst auf loka-
le (L*-) Martingal-Integratoren ausgedehnt
(eine ,,einfache” Stopp-Technik, wenn man
erst einmal den Fundamentalsatz fiir lokale
Martingale hat — der géngige extrem kurze
Beweis ist von K. A. Yen und in [9] veroffent-
licht) und dann auf allgemeine Semimar-
tingale. Zur Erinnerung: ein Semimartingal
& ist ein cadlag (rechtsstetig mit endlichen
linksseitigen Limiten) Proze8, der als Summe

& = & + A, + M, geschrieben werden kann,
wo A, ein Prozefl mit beschrinkter Variation
auf kompakten Zeitintervallen und M, ein
lokales Martingal ist. Erwdhnenswert ist,
daf in all diesen Ansédtzen und Verallgemei-
nerungen der Integrand X; entweder links-
seitig stetig oder vorhersagbar (predictable,
also aus einem geeigneten Abschlufl der
linksstetigen Prozesse) sein mu8. Daf dies ei-
ne prinzipielle Einschrinkung darstellt und
nicht nur technischer Natur ist, haben K.
Bichteler 1979 und C. Dellacherie 1980 ge-
zeigt: jedes verniinftige stochastische Inte-
gral, das vorhersagbare Integranden zulafit,
muf notwendigerweise von einem Semi-
martingal getrieben sein. Obgleich diese
Theorie auf den ersten Blick recht allgemein
scheint, gibt es eine ganze Reihe von
(GaufBischen) Prozessen, die keine Semi-
martingale sind, etwa gebrochene Brown-
sche Bewegungen (Hurst Parameter H # %)
oder gewisse Dirichlet-Prozesse, die in An-
wendungen eine groe Rolle spielen.

Das vorliegende Buch ist aus Vorlesungen
iiber Stochastische Differentialgleichungen
fiir Mathematiker, Physiker, (Elektro-)Inge-
nieure und Wirtschaftswissenschaftler an
der Universitdt von Austin (Texas) entstan-
den, die eine solide mathematische Grund-
lage fiir all die stochastischen Techniken be-
noétigten, welche in den jeweiligen Wissen-
schaften (manchmal etwas handwerks-
méBig) verwendet werden. Die Leser, die ei-
ne eher klassische Einfithrung erwarten, wie
sie etwa oben skizziert wurde, werden von
diesem Buch enttduscht werden. Im Gegen-
teil, ,,a predilection for generality for simplici-
ty’s sake led directly to the most general sto-
chastic Lebesgue-Stieltjes integral“ [Preface,
p.xi], und was sich dahinter verbirgt, ist
schlechthin ein vollig neuartiger Zugang zu
stochastischen Integralen. Bichteler kritisiert
zu Recht die schwerfilligen und unterent-
wickelten Grenzwertsdtze fiir Ito-Integrale,
was zu einem guten Teil am Riemann-arti-
gen Aufbau der Itdschen Theorie hdngt. Der
Autor schlagt daher vor, Daniells Ansatz auf
stochastische Integrale auszudehnen, was
dann zu einer viel flexibleren stochastischen
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Lebesgue-Stieltjes Theorie fithren wiirde. Ist
man mit Daniells Theorie vertraut, dann
stellt das keine allzu grofie Hiirde dar. Fiir
die Klasse der Elementarprozesse E (stoch.
Treppenfunktionen)

Xi(w) = fo(w) Loy (2)

+ Z filw
(f; sind F ;_-meBbare  Zufallsvariable)

kann man das Integral fiir jeden adaptierten
Prozef ¢ unmittelbar angeben:

/ngs = folw) - &)

o ij(w ft

jl]])

€1 (W))-

Parallel zum deterministischen Fall geht
man nun zu verschiedenen AbschlieBungen
E* der Elementarfunktionen tiber und defi-
niert das Integral [X;d&, X* € E* als
Grenzwert von Integralen von Elementar-
prozessen definieren, was z.B. in der
L?(P)-Skala, 0 < p < oo (sic!), geschehen
kann. (Der Raum L°(P) besteht aus allen
fast sicher endlichen Zufallsvariablen und
wird mittels stochastischer Konvergenz zu
einem Banachraum.) Minimalvoraussetzung
an &, ist dabei, dafl & ein L?-integrator ist,
d. h., & sollte in Wahrscheinlichkeit rechts-
stetig sein (i.allg. keine grofie Einschrin-
kung) sowie der Beziehung

Sup{ “/ X: dgs/\l

genligen. Mit diesem Aufbau lassen sich
dann relativ bequem der Satz von der domi-
nierten Konvergenz, Daniell-Stetigkeit des
Integrals (monotone Konvergenz), Egoroffs
Satz oder die Approximation des Integrals
mittels (adaptiver) Riemannscher Summen
usw. zeigen. Methodisch folgt das alles ziem-
lich analog zur klassischen deterministischen
Theorie. Man beachte, dafl der Integrand
nicht notwendig vorhersagbar sein mu8: die
Klasse der L?-Integratoren (p > 0) ist strikt
kleiner als die Klasse der Semimartingale,
wobei L° gerade mit den Semimartingalen

:|)4|s1,XeE}<oo @
LP

ibereinstimmt. Eine weitergehende Charak-
terisierung von L7?-Integratoren findet sich
nicht, jedoch wird gezeigt, dafl L?-Martinga-
le stets L?-Integratoren sind. Fiir L°-Inte-
gratoren (Semimartingale) wird dann auch
Itds Formel (wir erinnern uns: die Ketten-
regel) und einige Elemente der stochasti-
schen Analysis (brackets, Doelans-Dade Ex-
ponentialfunktion, Girsanov-Transforma-
tion...) gezeigt.

Der wesentliche Vorteil der vorgeschlage-
nen Methode liegt wohl in der Mdglichkeit,
das stochastische Integral durch ganz kon-
krete Normen des Integranden und des Inte-
grators abschédtzen und kontrollieren zu
konnen. Zentrale neue Resultate sind hier,
daB fiir jeden L?(P)-Integrator & und jedes
g > p ein dquivalentes Wahrscheinlichkeits-
maf Q existiert, so da8 £ auch ein LI(Q)-In-
tegrator ist, wobei die Halbnormen () ge-
geneinander abgeschitzt werden konnen.
Ganz offensichtlich sind solche Abschitzun-
gen durch die Burkholder-Davis-Gundy Ab-
schédtzungen motiviert, die aber auch wieder-
um als Korollar gewonnen werden konnen.
Das vielleicht iiberraschendste Resultat ist
folgende Abschitzung,

[ xe

T
< 9.5p - max H/ | Xs|? dAs
p 0

sup
s<T

)

LP
fiir p € [2, ¢ (das max, erstreckt sich, abhén-
gig von £, iiber eine Teilmenge von {1,2,p})
wo T eine Stoppzeit, & ein L?-Integrator,
q>2, X, ein vorhersagbarer und A, =
A;[Z, q] ein geeigneter streng monoton wach-
sender, vorhersagbarer Prozef ist, dessen Er-
wartungswert man kontrollieren kann.

Das letzte Kapitel des Bandes beschéftigt
sich mit stochastischen Differentialgleichun-
gen und Fliissen, wo das bekannte Picard-
Verfahren angewendet wird, nur mit dem
wesentlichen Unterschied, dal man fir
L?-Integratoren deutlich bessere Norm-
abschétzungen verwenden kann als die iibli-
chen H?- und SP-Normen fiir Semimartin-
gale. Der Nachweis von Stabilitat bzgl. der
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Anfangsbedingungen gestaltet sich dann
deutlich natiirlicher und man kann mit die-
ser Methode auch das numerisch interessan-
te Euler-Schema pfadweise rechtfertigen.
Stochastische Fliisse werden nur im Zusam-
menhang mit Semimartingalen behandelt
und die Darstellung folgt dem Lehrbuch [11]
von Protter. Das Buch schliefit mit einigen
Anhédngen zu Topologie, Daniell-Integrati-
on, Analytischen Mengen, Skorokhod-To-
pologie, L”-Rdaumen bzw. Operatorenhalb-
gruppen, die das Buch self-contained machen
(sollen), sowie Losungen zu einigen Auf-
gaben. Ausfiihrlichere Anhédnge, Stichwort-
verzeichnisse und Notationslisten (leider
dringend noétig) finden sich auf der homepage
des Autors in Austin, Texas.

Was wir hier vor uns haben, ist sicherlich
kein Lehrbuch und ich kann mir kaum vor-
stellen, daB ein derartiges Buch in seiner Fiil-
le aber auch Abstraktion Grundlage einer
Vorlesung (gewesen) sein kann. Um eine um-
fassende, ggf. iiberblicksartige Gesamtdar-
stellung eines etablierten Gebiets — so wie es
der Cambridge Encyclopedia ins Stamm-
buch geschrieben ist — handelt es sich aber
auch nicht. Zu sehr weicht dafiir die Darstel-
lung vom Standard ab, und eine in sich logi-
sche und vielleicht sogar iiberlegene Privat-
notation des Autors verhindert die Verwen-
dung als Referenzwerk. Schelte gebiihrt den
Lektoren von Cambridge University Press,
die dem Autor einige unschéne Marotten
nicht ausreden konnten: eine Vielzahl von
kommentierenden Fufinoten (ich habe auf
manchen Seiten drei Fufinoten und noch
zahlreichere Verweise auf vorangehende
Fufinoten gefunden!), hdufige Verweise auf
Nummern von vorangehenden Fufinoten in-
nerhalb eines jeden Kapitels (dal am Ende
jeden Kapitels eine Liste steht, wo sich denn
der Text der Fufinoten findet, ist auch nur
ein schwaches Trostpflaster) und, wenigstens
auf den ersten fiinfzig Seiten, die permanente
Unterweisung im richtigen Gebrauch des
Englischen Artikels. Lobend erwdhnen
mochte ich die duflerst geringe Anzahl von
Druckfehlern und die an vielen Stellen gelun-
gene Motivation, die stets den vertrauteren

deterministischen Fall der Stochastik gegen-
iiberstellt.

Bichtelers Stochastic Integration with
Jumps ist eine Forschungsmonographie, die
einen sehr interessanten Ansatz zur stochas-
tischen Integration vorschldgt. Als Lehrbuch
oder Nachschlagewerk ist das Buch weniger
geeignet, flir ein Seminar mit einigen weni-
gen engagierten Studenten, die viel Zeit in-
vestieren wollen, kann die Lektiire des Buchs
duflerst gewinnbringend sein.
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Das Interesse an Finanzmathematik hat sich
seit einiger Zeit auch in der Lehrbuchlitera-
tur niedergeschlagen und wir finden mittler-
weile ein Fiille von Biichern, die die Black-
Scholes Formel und damit zusammenhén-
gende Themen in den Mittelpunkt stellen.
Die meisten Autoren konzentrieren sich auf
Diffusionsmodelle und arbeiten (mehr oder
minder rigoros) auf Brownsche Bewegungen
und den Ito-Kalkiil fiir stetige Martingale
hin. So erfreulich diese Entwicklung fiir ei-
nen Stochastiker auch sein mag, ist es doch
schade, daf fiir viele Studenten inzwischen
,Brownsche Bewegung® synonym fiir ,,Sto-
chastische Prozesse“ steht. In der For-
schungsliteratur zeichnet sich ein gegenldu-
figer Trend ab: immer hdufiger erscheinen
Arbeiten iiber Sprungprozesse und ganz
konkrete Modelle, die Wahrscheinlichkeits-
verteilungen bendtigen, welche nicht von
Diffusionen stammen. Im Hoérsaal scheinen
aber die stationdren Prozesse, Gauf3-Prozes-
se, Sprungprozesse, Lévy-Prozesse etc. nur-
mehr eine untergeordnete Rolle zu spielen.
Das mag an der Dominanz der Brownschen
Bewegung liegen, ein anderer Faktor ist aber
sicherlich, daf es ausgesprochen wenig mo-
derne Lehrbiicher gibt, die solche Prozesse
detailliert auf Vorlesungsniveau behandeln.
Klassische Darstellungen wie etwa bei Brei-
man, Gikhman-Skorokhod oder Loeve sind
nach wie vor empfehlenswert (und auch

noch bzw. wieder erhéltlich!), doch ein Man-
ko dieser Biicher ist, dafl sie allesamt erst
nach langen klassischen Vorbereitungen
zum Kern der Sache vorstofen und dann
modernere Entwicklungen, etwa stochasti-
sche Integration, ausklammern. Neuere
Darstellungen wie z. B. Protter, Klebaner,
Jacod-Shiryaev, konzentrieren sich auf all-
gemeine Semimartingale und sind damit im
allgemeinen nicht fiir eine Vorlesung des
sechsten oder siebten Semesters geeignet.
Eine gute Alternative bietet nun das Buch
von N.V. Krylov ,,Introduction to the Theo-
ry of Random Processes”. Es handelt sich
dabei um eine Neufassung der erstmals
1986/87 auf Russisch erschienenen Vor-
lesungsskripten einer gleichnamigen ,,Spezi-
alvorlesung™ an der Moskauer Lomonos-
sow-Universitit, also einer Wahlpflichtver-
anstaltung (i. allg. zweistiindig, zweisemes-
trig) fiir Mathematikstudenten des dritten
bis fiinften Studienjahres. Startpunkt ist die
Vertiefung der Mafi- und Wahrscheinlich-
keitstheorie, die etwa auf dem Niveau einer
vierstiindigen Vorlesung des fiinften Semes-
ters vorausgesetzt wird. Auf recht natiirliche
Weise wird dann die Brownsche Bewegung
(mittels des Donskerschen Invarianzprin-
zips) als Grenzwert von Irrfahrten einge-
fithrt und stochastische Integration beziig-
lich einer Brownschen Bewegung definiert.
Hier verfolgt der Autor den Ansatz iiber or-
thogonale Zufallsmafie (random orthogonal
measures), den man bereits aus seiner Mono-
graphie iber Diffusionsprozesse (Transl.
Math. Monogr. Vol. 142, Am. Math. Soc.,
Providence (R.I.) 1995) kennt. Methodisch
ist das ein sehr eleganter Ansatz, da man auf
einen Schlag auch die Spektralmasge fiir sta-
tiondre Prozesse sowie allgemeinere Poisson-
und Sprungintegrale in Griff bekommt,
doch habe ich meine Zweifel, ob dieser
Standpunkt als Einfithrung fiir Studenten
sonderlich gliicklich ist. Dem Kapitel tiber
Brownsche Bewegung schlieBen sich je ein
Kapitel iiber Martingale und stationire Pro-
zesse an, wobei vor allem deren Spektral-
zerlegung behandelt wird. Lévy-Prozesse
werden im fiinften Kapitel betrachtet, hier
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stehen die Lévy-Khinchine-Formel und die
damit korrespondierende Lévy-Itd Pfadzer-
legung im Vordergrund. Hervorzuheben ist
die elementare und préazise Darstellung des
Stoffs, die en passant auch noch in die Theo-
rie der Punktprozesse einfiihrt. Im letzten
Kapitel wird erneut das Ito-Integral auf-
gegriffen, wobei nun der klassische (Kunita-
Watanabe) Isometrieansatz fiir stetige Inte-
gratoren behandelt wird. Endpunkt der Dis-
kussion sind die Ito-Formel, der Satz von
Girsanov und Anwendungen auf (einfache)
stochastische Differentialgleichungen.

,Introduction to the Theory of Random
Processes™ ist ein ausgesprochen schones
Buch, das eine breite Auswahl von Themen
aus dem Gebiet der stochastischen Prozesse
présentiert. Die Darstellung ist elementar ge-
nug, um danach eine Vorlesung ab dem
sechsten Semester anzubieten, so elegant,
daf auch der Spezialist hier und dort Anre-
gungen findet, und vor allem hat sie sich viel
von der Frische des urspriinglichen Vor-
lesungsskripts bewahrt.

Sussex R. Schilling

lhttecuction e

R. A Ryan
Introduction to
Tensor Products
of Banach Spaces
Monogr. in Math.

Berlin u. a., Springer Verlag, 2002, 225 S.,
€74,95

Im Jahre 1956 veroffentlichte A. Grothen-
dieck seine Arbeit Résumé de la théorie métri-
que des produits tensoriels topologiques, in
der er seine Untersuchungen iiber normierte
Tensorprodukte niederlegte. In dieser Arbeit

beschreibt er verschiedene Wege, das Ten-
sorprodukt zweier Banachrdume zu normie-
ren; insbesondere entwickelt er einen Kalkiil
fiir Tensornormen, und er beweist sein
Hauptergebnis, das er Théoréme fondamen-
tal de la théorie métrique des produits tenso-
riels nennt und welches die Aquivalenz ge-
wisser Tensornormen zeigt. Was Grothen-
diecks Methoden angeht, ist hervorzuheben,
dass er die Bedeutung sowohl der endlichdi-
mensionalen Struktur eines Banachraums
erkennt als auch die der Approximations-
eigenschaft, und damit war er seiner Zeit
weit voraus.

Aus verschiedenen Griinden war (und ist)
diese Arbeit schwer zu lesen: Zum einen ist
sie in einer nicht sehr verbreiteten Zeitschrift
erschienen, dann werden Beweise fast stets
nur skizziert, und schlieBlich stellt das Sujet
selbst, Tensorprodukte normierter Riume,
hohe Anforderungen selbst an Spezialisten.
So blieb es nicht aus, dass das Résumé iiber
Jahre unbeachtet blieb, bis es von J. Linden-
strauss und A. Petczynski einem weiteren Le-
serkreis vorgestellt wurde, als sie in ihrer Ar-
beit Absolutely summing operators in L,-spa-
ces and their applications (Studia Math.
1968) viele der Grothendieckschen Resultate
in einer fiir Normalsterbliche eher verstind-
lichen Sprache wiedergaben; z. B. zeigten sie,
dass das Théoréme fondamental dquivalent
als Matrixungleichung geschrieben werden
kann, die seither als Grothendiecksche Un-
gleichung bekannt ist.

Die meisten Arbeiten, die in der Folge pu-
bliziert wurden, stiitzten sich auf den
Lindenstrauss-Pelczynskischen Ansatz, der
Operatoren gegeniiber Tensoren favorisiert.
Das Ziel des vorliegenden Buches von Ray
Ryan ist es, die Grothendiecksche Theorie
wieder in der Sprache der Tensoren zu for-
mulieren, wobei natiirlich auch die Opera-
torenideale zu ihrem Recht kommen. Ein
wesentliches Anliegen des Autors ist es, mit
seinem Text nicht nur Spezialisten auf dem
Gebiet zu erreichen, sondern auch Novizen.
Diesem Anspruch wird das Buch voll ge-
recht.

JB 106. Band (2004), Heft 4
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Im ersten Kapitel wird der Begriff des Ten-
sorproduktes linearer Rdume X und Y vor-
gestellt. Der Zugang, den Ryan wihlt, ist
ziemlich konkret; x ® y wird als kanonisches
lineares Funktional auf dem Raum der Bili-
nearformen auf X x Y eingefiihrt. Die
ndchsten beiden Kapitel widmen sich den
,klassischen® Normen auf Tensorproduk-
ten, ndmlich der injektiven (oder e-) und der
projektiven (oder m-) Norm. Nebenbei er-
fahrt der Leser einiges iiber das Bochner-In-
tegral, Rademacher-Funktionen und die
Khinchin-Ungleichung, nukleare Operato-
ren und vieles mehr. Kapitel 4 und 5 behan-
deln zwei Aspekte, die fiir die Geometrie der
Banachrdume insgesamt von Bedeutung
sind: die Approximationseigenschaft und die
Radon-Nikodym-Eigenschaft. Speziell fin-
det man in diesen Kapiteln auch das Prinzip
der lokalen Reflexivitit, die Dunford-
Pettis-Eigenschaft, Darstellungssiatze fiir
Operatoren etc.

Die allgemeine Theorie normierter Ten-
sorprodukte bildet den Gegenstand von Ka-
pitel 6 und 7. Zentral sind hier der Begriff der
endlich erzeugten Tensornorm sowie der da-
mit einhergehende Kalkiil der assoziierten
und dualen Normen. Damit konnen die 14
natiirlichen Normen von Grothendieck und
auch die Chevet-Saphar-Normen diskutiert
werden, die eng mit den p-nuklearen und ab-
solut p-summierenden Operatoren zusam-
menhédngen, welche ebenfalls ausfiihrlich be-
sprochen werden. Hohepunkt ist selbstver-
stindlich Grothendiecks Théoréme fon-
damental, das zuerst als Matrixungleichung
bewiesen und dann in der Sprache der Ten-
sorprodukte wiedergegeben wird. Das letzte
Kapitel schlieBlich stellt den Zusammenhang
von Tensorprodukten und Operatoren-
idealen her.

Ray Ryans Buch ist hervorragend geeig-
net, einen Leser, der iiber das iiblicherweise
in zwei Semestern vermittelte funktionalana-
lytische Grundwissen verfiigt, in ein wichti-
ges Gebiet der Banachraumtheorie einzufiih-
ren. Aber auch fiir diejenigen, die blo8 leicht
zugangliche und ebenso leicht verstindliche
Informationen iiber Begriffe wie Appro-

ximationseigenschaft, das Bochner-Integral,
p-summierende Operatoren etc. suchen, ist
das Werk warmstens zu empfehlen.

Die Darstellung ist in jeder Zeile klar und
elegant, und stets spiirt man die Sympathie
des Autors fiir die Leser. Als weiteren Plus-
punkt empfinde ich die angenehme Typogra-
phie und das fast vollstdndige Fehlen von
Tippfehlern.

Leider behindert der Verlag eine weite
Verbreitung dieses schonen Buches durch
die Festsetzung eines vollkommen unange-
messenen Preises: Inklusive Mehrwertsteuer
kostet es bei 225 Seiten {iber 80 Euro.

Berlin D. Werner
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