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Vorwort 

In dem vorliegenden Heft 4 des Jahresberichts bieten wir Ihnen einen Übersichtsartikel von 
J.-H. Bruinier über Borcherds Produkte. Darin wird die Bedeutung der Borcherdsschen Me-
thode der Produktdarstellung für die Theorie der automorphen Formen ausgehend von den 
klassischen Beispielen erläutert. Darüber hinaus finden Sie natürlich wie üblich eine Reihe 
von aktuellen Buchbesprechungen. 

Mit diesem Heft verabschiedet sich das Herausgebergremium des Jahresberichts nach 
achtjähriger Tätigkeit von den Lesern. Unser Ziel war es, die Mathematik in ihrer ganzen 
Spannbreite den Lesern näher zu bringen, und wir hoffen, dass uns das gelungen ist. Gleich-
zeitig wünschen wir natürlich dem neuen Herausgeber K. Hulek für die Zukunft viel Erfolg. 

A. Krieg 
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Infinite proclucts in number theory 
and geometry 

Jan Hendrik Bruinier 

Alstract 

• Keywords and Phrases: Infinite product, modular form, Hilbert modular surface, 
partition function, Green function, Eisenstein series, generating series, intersection 
number, Chow group 

• Mathematics Subject Ciassification: 11F03, 11F27, 11F41, 14C17, 14C20, 
11G18, 14G40 

We give an introduction to the theory of Borcherds products and to some number theo-
retic and geometric applications. In particular, we discuss how the theory can be used to 
study the geometry of Hilbert modular surfaces. 
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1 lntroduction 

Infinite products play an important role in many branches of mathematics. In num-
ber theory, they for instance provide an elegant way ofencoding and manipulating com-
binatorial identities. The product expansion of the generating function of the partition 
function is a weil known example. On the other hand, infinite products are a fundamen-
tal tooi in compiex analysis to construct meromorphic functions with prescribed zeros 
and poles, the Weierstrass product theorem being a prominent example. In that way, 
they become interesting for the study ofgeometric problems. 

In the first part of the present paper we will present some examples of particuiarly 
interesting infinite products, called Borcherds products, which are characterized by a 
striking symmetry property: They are modular forms for the orthogonal group of a sui-
tabie rational quadratic space ofsignature (2,). Although some very classical modular 
forms appear here, as for instance certain Eisenstein series or the j-function, most of 
these product expansions were only discovered rather recently by R. Borcherds [Bol, 
Bo4]. 

We will then consider more systematically the properties of Borcherds products on 
Hilbert modular surfaces. They can be used to recover important classical results on the 
geometry of such surfaces. In addition, they provide a new approach to various arith-
metic questions. 

Hilbert modular surfaces can be realized as arithmetic quotients associated to cer-
tain rational orthogonal groups ofsignature (2,2). In particular, they are just very spe-
cial instances of those Shimura varieties that can be obtained as quotients from ortho-
gonai groups of signature (2, £)‚ the general setting of Borcherds' theory. However, we 
feel that focusing on such a speciai case facilitates the presentation of central ideas. 
Moreover, the geometry of Hilbert modular surfaces is particularly beautiful. Most of 
the resuits stated in sections 2-7 actually hold in greater generality. 

The present paper is not intended to be a survey on Borcherds products. lt only cov-
ers a small part of the many interesting aspects of the theory. For further expository ar -
ticles, in particular for the connection to generalized Kac-Moody algebras, we refer to 
[Bo2], [Bo3], {Bo5], [Ko]. 

1 would like to thank E. Freitag, W. Kohnen, S. Kudla, and U. Kühn for many sti-
mulating discussions and valuable suggestions. 

2 Inhinite products and elliptic modular forms 

Recall that an infinite product 

(1— aj)(l - a2)(1 - a3) 

is said to converge absoluteiy, if the underiying series 

a 1  + a2  + a3 + 

converges absolutely. With this definition, an absolutely convergent infinite product 
vanishes, ifand only if one of its factors vanishes. So for instance the product 
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h(q) = fJ(1_ qul) 

converges absolutely for any complex number q with qI < 1 and does not vanish there. 
Its underlying series is the geometric series In>1 qfl. 

This first example already has very interesting combinatorial and geometric proper-
ties. The function 1/h(q) is holomorphic for qI < 1 and hence can be expanded in an in-
finite series 

1/h(q) = p()qfl = 1 + q+2q2  + 3q3  + 5q4  +7q5  + 11q6  + 15q7  +22q8  + 

lt is easily verified that the functionp(n) is the so called partition function. lt counts the 
number of ways a positive integer n can be written as a sum of positive integers. The 
number of summands is unrestricted, repetition is allowed, and the order of the sum-
mands is not taken into account. For instance there are 5 partitions of 4, namely 4, 
3+1,2+2,2+1 + 1,1 + 1 + 1 + 1. 

The arithmetic of partitions is quite involved and there are a number of unsolved 
questions about them (see e.g. [On]). One reason is that the partition function grows 
rather rapidly. This is not apparent from the first few values give above, but a quick 
computation (using e.g. Maple) shows that for instance p(IOO) = 190 569 292. In fact 
the celebrated Hardy-Rademacher-Ramanuj an asymptotic states 

(2.1) 

as n —* oo, where K = 7r \/7 (c.f. [Ap] chapter 5). This foliows from the fact that 
1/h(q) is closely related to a (weakly holomorphic) modular form ofweight —1/2. The 
Fourier coefficients of such modular forms satisfy similar asymptotics in general. 

In a different direction, if we put q = e27i7 for 'i-  in the upper complex half plane 
IH = {T e E; (-) > 01, we are lead to the discriminant function 

(2.2) 	() = q 	= qfl(1 — )24 

Since the product converges (locally uniformly) absolutely, it defines a nowhere vanish-
ing holomorphic function on IH. Moreover, A has a striking symmetry property with 
respect to the action of the modular group SL 2 () on IH by Moebius transformations 
r 

() 
y = /j. Itsatisfies 

=(cr+d)12(), 	
(a 	

) 

eSL2(Z) 
~ c7-  + d) 	 c d 

(for a simple proof see [Ko]). 
To put this in a suitable context, we recall some basic notions ofthe theory ofmodu-

lar functions (see e.g. [Sh], [Ma], [Ap] for more details). Let k be an integer, F a sub-
group of finite index of F(1) := SL 2 (71), and x an Abelian character of F. A function 
f: 111 — U is called a weakly holomorphic modular form (of weight k with respect to F 
and),if 
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(1) f() = X()( cr +d)kf(Y)forall() eF, 

(2) f is holomorphic on III, 
(3) f is meromorphic at the cusps ofF. 

We do not want to explain the last condition in too much detail. 1fF = F(l) (which is 
all we need in this section), then any functionf satisfying the first two conditions has a 
Fourier expansion 

f() = 
n=–cxJ 

because T = ( ) E F(1). Now the third condition means that only finitely many c(n) 
with n < 0 are non-zero. If actually all c(n) with n < 0 (respectively n <0) vanish, then 
f is called a holomorphic modularform (respectively cuspform) for F(l). 1fF has only fi-
nite index in ['(1), one has to require similar conditions for finitely many F(1)-translates 
off corresponding to the cusps ofF, i.e., the F-orbits ofP' (Q) = Q U 00. 

We write Wk (respectively Mk, Sk) for the space of weakly holomorphic modular 
forms (respectively holomorphic modular forms, cusp forms) ofweight k for F(l) with 
trivial character. One can show that Mk = { 0} for k < 0 or k odd, M0  = E, and 
M2 =0. 

The properties of A stated above can be summarized by saying that A is a cusp form 
ofweight 12 for ['(1) with trivial character, i.e., an element ofS 12 . 

Further examples of modular forms are provided by Eisenstein series. If k is an even 
integer, k > 2, we define the Eisenstein series ofweight k for F(1) by 

Ek(T)= 	 (c+d)* r  
c,dE7Z 

gcd(c,d)= 1 

By comparison with a suitable integral, one checks that Ek converges normally and de-
fines a holomorphic function on IH. Consequently the transformation behavior of a 
modular form of weight k easily follows by reordering the summation. The Fourier ex-
pansion ofEk  can be computed by means ofthe partial fraction expansion ofthe cotan-
gens. One finds that 

Ek(T) = 1 — Ukl(fl), 
k 

where Bk denotes the k-th Bernoulli number and 0k-1  (n) = dn d" t  the usual divisor 
sum function. In particular Ek is a (non-zero) holomorphic modular form of weight k 
for F(1). As a consequence we get the decomposition Mk = EEk Sk for k > 2. The 
non-vanishing of A on IH implies that we have an isomorphism 

Sk - Mk12, f f/z. 

lt can be deduced that the graded algebra (DklE Mk of modular forms for r(I) is a pOly 

nomial ring in E4  and E6 . 

To get a more geometric interpretation of modular forms for F c F(l), one consid-
ers the modular curve associated with F, that is, the quotient Yr = F\IH. The complex 
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structure of IH induces a structure as a non-compact Riemann surface on Y. One ob-
tains a compact Riemann surface X r  by adding finitely many points, namely the cusps 
of F. Every compact Riemann surface X has a natural structure as a projective algebraic 
variety over L. The Zariski topology is given by taking for the closed sets the finite sub-
sets of X together with X itseif. The structure sheaf 0 is given by taking for the regular 
functions 0(U) on an open subset U c X all meromorphic functions on X, which are 
holomorphic on U. 

The modular curves Yr  and Xr,  associated to certain families of "congruence sub-
groups" 12 can actually be defined over algebraic number fields and even over their rings 
of integers (see [Sh], [DeRa], [DI]). This is due to their moduli interpretation. For in-
stance, the modular curve F(1)\IH is the (coarse) moduli space of isomorphism ciasses 
of elliptic curves over 12. In fact, by the theory of the Weierstrass -function, an elliptic 
curve over 02 is a torus, which in turn is given by a quotient 02/L, where L c 02 is a lat-
tice. Two elliptic curves «2/L and (12/L' are isomorphic, if and only if L = aL' for some 
a e *12 - { 0}. In particular every isomorphism dass has a representative (L/L T , where 
L = 71 + y7L and r c III. lt is easily checked that two elliptic curves (12/L t  and (l2/L1 
with 'i-'  e III are isomorphic, if and only if-r is equivalent to ' with respect to the ac-
tion of 12(1) on IF! (this corresponds to a change of basis of the lattice). Hence the as-
signment r F-+ (12/L T  induces the identification of 12(1 )\IH with the moduli space. The 
point is that the moduli problem makes sense not only over (12 but over any scheme over 
71, allowing to construct models over Dedekind rings. 

We may regard A as a section of the line bundle of modular forms of weight 12 on 
F(1)\IH. In view of the moduli interpretation one checks that A assigns to the elliptic 
curve 02/LT  its discriminant A (y). 

A further ciassical modular form is thej-function: 

j(r) = E()//'r) = q 1  + 744 + l96884q + 21493760q2  + 

Since A does not vanish on II-!, thej-function is holomorphic on IH However, because 
of the presence of the term q in the Fourier expansion, it is only meromorphic at the 
cusp 00. Hence j E Wo. In terms of the moduli interpretation, j assigns to the elliptic 
curve 02/L itsj-invariantj(r). In the theory ofelliptic curves one shows thatj classifies 
elliptic curves over an algebraically closed field up to isomorphism. Moreover, for every 
z e (12 there is an elliptic curve with prescribedj-invariant z. In other words,j defines an 
analytic isomorphism 

F(1)\IH - 02. 

lt extends to an isomorphism Xr(l) -+ P' (02) to the Riemann sphere P' ((1:). 
What doesj have to do with infinite products? There are different important infinite 

products involvingj. Here we only present one of these. To this end it is convenient to 
define J(T) = j(-r) - 744 E Wo. We denote the Fourier expansion by J(r) = 

c(n)q n with coefficients c(n) e Z. In particular we have c(—l) = 1, and c(0) = 0. 
We consider the modular form of two variables 

j(zi) - j(z2) 

ofweight 0 for the group 12(1) x 12(1). lt vanishes at a point (zi,z2) E IH x IH, ifand 
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only ifz 1  = Mz2  for some M e F(1), because ofthe injectivity ofj. In other words, the 
divisor ofj(z i ) —j(z2) is given by quadratic equations 

(2.3) cz1z2+dzi—az2—b=0 

with integral coefficients and ad - bc = 1. 

Theorem 2.1. The modularformj(zi) — 1(z2)  has the infiniteproduct expansion 

(2.4) j(zi) —j(z2) = q' fl(1 	n)c(mn) 

m>O 
nEu 

Here q1 = e2 J, and c(n) is the n-th Fourier coefficient of J(). The product converges 
normallyfor(z 1 )(z2 ) > 1. 

This beautiful identity was found in the 80's independently by Borcherds, Koike, 
Norton, and Zagier. lt is the den ominator identity of the monster Lie algebra, which is 
a generalized Kac-Moody algebra with an action ofthe Monster simple group. lt is cru-
cia! in Borcherds' proof of the moonshine conjecture (see [BoS] for an introduction and 
further references). 

One may wonder why Theorem 2.1 had not been discovered earlier. lt only involves 
classical modular functions that were well understood already at the end of the 19th 
century. One reason might be that the product only converges on a sub-domain of 1H 2 . 
This is due to the fact that the c(n), being the coefficients ofa weakly holomorphic mod-
ular form with a pole at the cusp Dc, grow rather rapidly: 

(2.5) c(n) 

as n - Dc. This asymptotic is analogous to the one for the partition function (2.1). The 
restricted convergence ofthe product forj(z i ) —1(z2)  implies that only part ofthe divi-
sor can be read off directly from the product. More precisely, it only teils us the vanish-
ing along those divisors oftype (2.3) with c = 0. 

One might ask, whether the product expansions of the discriminant function (-r) 
and the functionj(z i ) —j(z 2 ) have anything in common. This is in fact true. Both are 
particular examples of Borcherds products. These are certain meromorphic modular 
forms in £ variables, which have a particular product expansion, and arise as lifts of 
weakly holomorphic modular forms of weight 1 - £/2 for F(1). Their zeros and poles 
are explicitly given in terms of so-called Heegner divisors (also referred to in the hitera-
ture as "rational quadratic divisors" or "special divisors"). 

In the next section we will make this informal definition more precise. Let us just re-
mark here thatj(z i ) —1(z2)  can be viewed as the Borcherds lift of the weight 0 modular 
form J(), and (-) as the Borcherds lift ofthe classical weight 1/2 Jacobi theta func-
tion 128() = 12neu q' . lt can be shown that thej-function and the Eisenstein series 
Ek, with k = 4,6,8, 10, 14 are also lifts ofcertain weakly holomorphic weight 1/2 mod-
ular forms. For instance 

2 ) E4  = fl(l - qn)C(fl 

n=1 
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where c(n) denote the coefficients ofthe weight 1/2 modular form (for F o (4) in the Koh-
nen plus-space) 

f = q + 4 - 240q + 26760q4  85995q5  + 1707264q8  - 4096240q°  + 44330496q12  + 

see [Bol]. 
Finally, notice that Borcherds products naturaily live on the hermitian symmetric 

space of type IV associated to the real orthogonal group 0(2, £) ofsignature (2, £). This 
hermitian space has complex dimension £. They are constructed using a regularized the-
ta lift for the dual reductive pair (SL2(IR), 0(2, £)). In small dimensions however, there 
are exceptional isomorphisms relating 0(2, £) to other classical Lie groups. For instance 
0(2, 1) is essentially isomorphic to SL2(IR), and 0(2,2) to SL 2 (IR) x SL2 (IR), which is 
implicitly used in the construction of the examples above. Moreover, 0(2,3) is essen-
tially isomorphic to the symplectic group Sp(2, IR) of genus 2, and 0(2,4) to the hermi-
tian symplectic group of genus 2. In view of these isomorphisms, also the Heegner divi-
sors alluded to above become classically well known objects. For instance in the 0(2, 1) 
case, one gets Heegner points on modular or Shimura curves, justifying the terminol-
ogy. In the 0(2,2) case, one can obtain Hirzebruch-Zagier divisors on Hilbert modular 
surfaces, in the 0(2, 3) case Humbert surfaces on Siegel modular threefolds. 

3 Borcherds products on Hilbert modular surtaces 

We now want to generalize thej(z i ) - j(z2) example ofthe the previous section and 
study Borcherds' construction of infinite automorphic products (in two variables) in a 
more systematic way. From a geometrie point of view, the underlying modular variety 
F(1) 2 \1H2  in that example was not very exciting. By means ofthej-function it is isomor-
phically mapped to the affine plane (E 2 . If one wants to get more interesting varieties 
one has to replace the discrete subgroup F(l) x F(1) ci SL2 (IR) x SL2 (IR) by more 
complicated groups. An important family of discrete subgroups is provided by Hilbert 
modular groups of real quadratic fields. 

We first need to introduce some notation (see [Fr], [Ge2], [Go] for more details). 
Throughout we use z = (z ‚ Z2) as a variable on 1H2  and write (Yi ' Y2) for its imaginary 
part. Let K be the real quadratic field of discriminant D. For simplicity we assume 
throughout that D is a prime (herice D 1 (mod 4) and K = Q('/)). We write (9K  for 
the ring of integers and x x' for the conjugation in K. The Hilbert modular group 

= SL2 (QK ) associated with K can be viewed as a discrete subgroup of 
SL2 (IR) x SL2 (JR) by means ofthe two embeddings ofK into IR. In particular FK acts 
on 1H2  by 

(a b\ 

	(

az, +b a'z2+b'\ 
(z1 ‚ z2 ) i 	

c d) 
(z1, Z7) 

= cz i  + d' C'Z2 + d') 

In the same way as with the modular curves Yr,  of the previous section, we consider the 
quotient YK = FK\1H2, which has a structure as a non-compact complex surface. lt can 
be compactified by adding hK points, namely the cusps of FK, i.e., the FK-orbits of 
P1  (K). Here hK is the dass number of K. In contrast to the case of modular curves the 
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resulting normal complex space XK is not regular. There are quotient singularities at the 
elliptic fixed points, and furthermore, the cusps are highly Singular points. By the theory 
of Hironaka the singularities can be resolved [Hi], there existS a desingularization 
7r: XK - XK, such that DK r' (X) is a divisor with normal crossings. The mini-
mal resolution of singularities was constructed by Hirzebruch [Hz]. 

According to the theory ofBaily-Borel, the complex spaces YK, XK, and XK all have 
natural structures as quasi-projective algebraic varieties over ff. Moreover, YK  has a 
moduli interpretation as the (coarse) moduli space of isomorphism classes of Abelian 
surfaces with multiplication by °K  and a certain dass of polarizations (see section 8). 
This can be used to construct integral models. The surfaces YK, XK, and XK are all re-
ferred to as Hilbert modular surfaces associated with K. 

On such surfaces there exist distinguished divisors, called Hirzebruch-Zagier divi-
sors. (As already mentioned, they play the role of the Heegner divisors in the informal 
definition of Borcherds products of the previous section.) For every vector (a, b,.\) of 
positive norm ab - ))V in the lattice 712  b', the subset 

(a,b,))'={(zi,z2)eJH2 ; aziz2+\zi+)'z2+b==0} 

defines an analytic divisor on 1112.  Here b' = 1 OK is the inverse different of K. Ob-
serve the analogy with (2.3). Now let m be a positive integer. The sum 

T(m) = 	 (a,b,).)' 

ab-Uk'=m/D 

is a FK-invariant analytic divisor on IH 2.  lt descends to an algebraic divisor on the qua-
si-projective variety YK,  the Hirzebruch-Zagier divisor of discriminant m. Moreover, we 
obtain Hirzebruch-Zagier divisors on XK by taking the closure of T(m), and on XK by 
taking the pullback with respect to the desingularization morphism. 

One easily sees that T(m) = 0, ifand only ifXD(m) = —1, where XD  is the quadratic 
character corresponding to K given by the Legendre symbol XD (x) = (). If m is 
square-free and a norm of 0K  then the normalization of T(m) on XK is isomorphic to 
the modular curve Xo(m). If m is square-free and not a norm of 0K  (but XD(m) = 1), 
then the normalization of T(m) is isomorphic to a Shimura curve associated to a certain 
order in the indefinite quaternion algebra Qm = (D_r). 

One can show that the Hirzebruch-Zagier divisors are actually defined over Q. 
Moreover, they often have a moduli interpretation, which can be used to extend them 
to integral models. For instance, in the latter case, where the normalization of T(m) is a 
Shimura curve, the points on T(m) correspond to Abelian surfaces with quaternionic 
multiplication by a certain order of Qm. 

Let k be an integer. Recall that a meromorphic (respectively holomorphic) Hilbert 
modular form of weight k for the group FK is a meromorphic (respectively holomorphic) 
functionf on IlI2 satisfying the transformation law 

(3.1) f(()(zi,z 2)) = (czi +d)k( c/ z2  +dt)kf( zl,z2 ) 
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for all ( ) e FK.  Notice that in contrast to the definition of modular forms for sub-
groups of SL 2  (71) in the previous section, we do not have to require that f be mero-
morphic (respectively holomorphic) at the cusps. This is automatic by the Koecher prin-
ciple. 

We are now ready to explain Borcherds' lift in the case of Hilbert modular surfaces. 
Let us first describe the "input data" which is used to feed the lift. We denote by 
Wk(D, XD) the space ofweakly holomorphic modular forms ofweight k for the Hecke 
group 

(3.2) Fo (D)={() eSL2 (71); c0 (modD)} 
cd 

with character XD  (where xD(()) = xD(d)). Since ( ) e Fo (D), any such modular 
formf has a Fourier expansion of the formf = c(n)q'. We let WJ(D,XD) be 
the subspace of those f e Wk(D, XD), whose Fourier coefficients c(n) satisfy the so-
called plus space condition, i.e., c(n) = 0 whenever XD(n) = —1. Moreover, we write 
M (D, XD)  (respectively S (D, XD))  for the subspace of holomorphic modular forms 
(respectively cusp forms) in W(D, XD).  For even k > 2, Hecke proved that there is a 
unique normalized Eisenstein series Ek(T)  in M(D, XD),  and 

(3.3) M(D,X D ) = S(D,XD) FEk(7-), 

see [He], and section 7 here. 
1ff = InE7L c(n)q" E C((q)) is a formal Laurent series, we put 

t c(n), if n 0 (mod D), 
2c(n), if n 0 (mod D). 

Modular forms in the plus space W(D, XD)  can also be realized as vector valued mod-
ular forms for the full modular group P(I) transforming with a certain D-dimensional 
unitary representation (see [BB]). As a consequence, there is a bilinear pairing assigning 
to two modular forms f C W(D,XD) and g e W(D,XD) a modular form 
(f,g) E Wk +kf for the group F(1). 1ff = c(n)qn and g = b(n)q, it can be de-
scribed in terms of the Fourier expansions as follows: 

(3.4) (f,g)  =c(m)b(Dn—m)q. 
nE7L mE7l 

Notice that this pairing only depends on the transformation properties of modular 
forms in the plus space and naturally extends to non-holomorphic forms. 

Theorem 3.1 (Borcherds). Letf = 	c(n)qn be a weakly holomorphic modular 
form in W(D, XD)  and assume that (n) c Zlfor all n <0. Then there exists a mero-
morphic Hilbert modular form 41 (zi,z2,f)for FK (with some multiplier System offinite 
order) such that: 

(i) The weight ofW is equal to the constant term c(0) off. 
(ii) The divisor Z(f) ofW is determined by theprincipalpart off at the cusp oc. lt equals 
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Z(f) = 	(n)T(—n). 
n<O 

(iii) Let W c 1H 2  be a Weyl chamber attached tof andput N = min{n; c(n) 01. The 
function W has the Borcherdsproduct expansion 

W(zi,z2,f) =qq 	
/ 

fj (i — qq) 
uEb' 

which converges normallyfor all (z 1 , z 2 ) with Y1Y2 > N/D outside the set ofpoles. 
Here p e K is the Weyl vector corresponding to W andf, and q7 = e2'' for ii E K. 

A few additional expianations regarding Weyl chambers are in order. For each 
.\ E b 1  of negative norm the subset 

= {(z,z) E 2• 	
+ A Y2 = 01 

is a hyperpiane of real codimension 1 in 1H2 . Sincef is meromorphic at the cusps, and 
by reduction theory, the union 

S(f) = Z c(D)\')) 

has only finitely many FK-orbits.  lt is invariant under the stabilizer in FK ofthe cusp 00. 

Its complement ILI2 - S(f) decomposes into connected components, which are called 
the Weyl chambers attached tof. To such a Weyl chamber W (andf) one can associate 
the so-called Weyl vector p e K, which we do not want to define here (see [BB] for its ex-
plicit computation in the present case, and [Bol, Bo4] for more general facts). More-
over, if v E K, then one writes (v, W) > 0, if .\y + ) 'Y2 > 0 for all (zi, z2) E W. 

If div(W) is compact in YK,  i.e., if the normalizations of the irreducible components 
are Shimura curves, then S(f) is empty and there is just the one Weyl chamber 
W = 1H2 . In this case p = 0, and the condition (ii, W) > 0 becomes just the condition 
that ii be totally positive. 

Theorem 3.1 is contained (in a slightly different formulation) in Theorem 13.3 of 
[Bo4] (to obtain the above form see [BB]). The idea ofthe proof is as follows. 

First, we notice that by an elementary argument the Fourier coefficients off are 
bounded by 

	

(3.5) c(n) = 0(e4 V'), 	n - 00, 

see [BF] section 3. This implies the convergence of the product in the stated region. The 
estimate (3.5) is also a consequence ofthe (much more precise) Hardy-Rademacher-Ra-
manujan asymptotic for the coefficients of weakly holomorphic modular forms, the 
general theorem behind (2.1) and (2.5). 

As already mentioned, the group (SL 2 (IR) x SL)(IR))/{±1} is isomorphic to the 
connected component of real orthogonal group 0(2,2). The latter group and SL 2 (IR) 
form a dual reductive pair in the sense of Howe [Ho]. Thus we can construct Hilbert 
modular forms for FK from modular forms on SL 2 (IR) by integrating against a certain 
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kernel function, the Siegel theta function es(;zi,z2) associated to the lattice 
L = 712 0K of signature (2,2). Here the Siegel theta function is a certain non-holo-
morphic modular form for Fo(D) satisfying the plus-space condition in the variable ‚ 

and a FK-invariant function in the variable (z 1  ‚ z2 ). This suggests that we look at the in-
tegral 

(3.6) L' es(;zi,z2»d. 

Here .T = { E IH; 1 ,r ~ 1, j ul < 1/21 denotes the standard fundamental domain for 
the action of F(I) on IH, and da = is the invariant measure on IH (with = u + iv). 
Sincef and the Siegel theta function are in weight 0, the integrand is F(1)-invariant, so 
that the integral makes formally sense. Unfortunately, becausef grows exponentially as 
r approaches the cusp co , it diverges wildly. However, Harvey and Moore discovered 
that it is possible to regularize the integral [HM]. Following their idea, Borcherds de-
fines the regularized theta lift '1(zi, z2,f) off to be the constant term in the Laurent ex-
pansion at s = 0 ofthe meromorphic continuation ins of 

(3.7) um f (f(), es(; z 1 , z 2))vd. 
j -.DC 

Here .F, = {i-  e .F; vl <t} is the truncated fundamental domain. One can show that 
this regularized integral still makes sense even though (3.6) does not. lt defines a FK - ifl-
variant real analytic function on 111 2  - supp(Z(f)) with a logarithmic singularity' 
along the divisor —4Z(f). 

Moreover, it can be shown that the limit in (3.7) exists and is holomorphic at s = 0, 
if the constant term c(0) off vanishes. lt foliows that (z 1 , z2,f) is equal to 

um f ((f(), es(; z 1  ‚ z 2 )) - (0)v) dp + A(0), 
t—oc Ft 

where A is the constant term in the Laurent expansion at s = 0 of 1im, 	fF t 
 vl_sd/i. 

This could be taken as an alternative definition. 
The Fourier expansion of 	z2 ,f) can be computed explicitly by applying some 

partial Poisson summation on the theta kernel. lt turns out that 

(zi,z2,f) = _2log (zl,z2,f) 2 (1 2y1y2) C(0) +2c(0)(1og(8) 	r'(l)) 

giving the meromorphic continuation, the divisor, and the transformation behavior of 
the infinite product 1P(z i  ‚ z2,f). 

Notice that a weakly holomorphic modular formf = 	c(n)q in W(D, XD)  of 
weight k < 0 is uniquely determined by itsprincipalpart 

c(n)q E 
n<o 

o  x is a normal complex space, D c X a Cartier divisor, and f a smooth function on X-
supp(D), thenf has a logarithmic singularity along D, if for any local equation g for D on an 
open subset U c X, the functionf - log Igl is smooth on U. 
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For the difference oftwo elements of W(D, XD)  with the same principal part is a hob-
morphic modular form of weight k < 0 with Nebentypus, hence vanishes identically. 
Moreover, the Galois group Gal(L/Q) acts on weakly holomorphic modular forms by 
mappingf to 

f = 	 cr E Gal(/Q). 

Here e(nf denotes the Galois conjugate of c(n). This foliows from the fact that the 
spaces Wk(D, XD) have bases of modular forms with integral rational Fourier coeffi-
cients (see [DeRa], [DI]). Consequently, iff has principal part in Q[q'],  then all its 
Fourier coefficients are rational with bounded denominators. We may conclude that 
some power of any holomorphic Borcherds product has coprime integral rational Four-
ier coefficients and trivial multiplier system. This observation is crucial. By the q-expan-
sion principle (see [Ge2], chapter X.3 Theorem 3.3), such a modular form corresponds 
to a section of the line bundle of Hilbert modular forms over 71 on the moduli stack over 
7Z representing the moduli problem "isomorphism classes of Abelian schemes with real 
multiplication by (9K".  Hence Borcherds products can be viewed as modular forms over 
Z. In fact, they provide a powerful tool to study arithmetic intersection numbers on Hil-
bert modular surfaces, see [BBK] and section 9 here. 

We conclude this section with an example for Theorem 3.1. We consider the Hilbert 
modular group FK  ofthe real quadratic field K = Q( \/). The fundamental unit ofK is 

= (1 + ß) E 0K• Gundlach constructed a particular hobomorphic Hilbert modu-
lar form e(z i , z2)  of weight 5 for FK as a product of 10 theta functions of weight 1/2 
[Gu]. He showed that the divisor of e is equal to T(1) and used this fact to determine 
the graded algebra of Hilbert modular forms for FK. From the construction one also 
finds that e has Fourier coefficients in 71 with greatest common divisor 64. 

One can recover Gundlach's function using the Borcherds lift: We need to look at 
the "input space" W(5, x5).  Using some basic facts on modular forms for f' o (5) due to 
Hecke one finds that there isa modular formjj E W(5, x5)  with Fourier expansion 

fI=q_l + 5+llq_54q4 +55q5 +44q6 _395q9 +34oqlO +296qH _l836q 14 .... 

Ifwe plug this into the Borcherds lift, we get a Hilbert modular form '1' for FK ofweight 
5 with divisor T(1). Hence W must be a constant multiple of e. From the Borcherds 
product expansion it folbows that T has coprime Fourier coefficients in Z. Conse-
quently the constant factor is 1/64. Ifwe compute the Weyl vector as in [BB], we obtain 
the product expansion 

(3.8) 	e(z1,z2) - 	(/)' 	II 	( i 

	

—q 1 	q2  

	

vEb 	

- q 1 q 1  

where the c(n) denote the Fourier coefficients ofj. 
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4 Obstructions for constructing Borcherds proclucts 

Borcherds' theorem of the previous section provides a way of constructing many Hil-
bert modular forms with known divisor supported on Hirzebruch-Zagier divisors 
T(m). lt is natural to seek for a precise description ofthose linear combinations ofHir-
zebruch-Zagier divisors, which are divisors of Borcherds products. Since the divisor of 
a Borcherds product 'I'(zi, z2,f) is determined by the principal part of the weakly hob-
morphic modular formf, which is used to construct it, it suffices to understand which 
Fourier polynomials >n<O  c(n)q" E can occur as principal parts of elements of 
W(D, XD).  A necessary condition is easily obtained. 1ff e W(D, D)  with Fourier 
coefficients c(n), and g e Mk(D, XD) with Fourier coefficients b(n), then the pairing 
(f, g) is a weakly holomorphic modular form of weight 2 for F( 1). Thus 

(f, g)d'r 

is a meromorphic differential on the Riemann sphere whose only pole is at the cusp 00. 

By the residue theorem its residue has to vanish. But this residue is just the constant 
term in the Fourier expansion of (f, g). In view of (3.4) we find that 

(4.1) 	(n)b(—n) = 0. 
n<o 

Using Serre duality for vector bundles on Riemann surfaces, Borcherds showed that 
this condition is essentially also sufficient (see [Bo6] and [BB] Theorem 6). 

Theorem 4.1 There exists a weakly holomorphic modularformf E W(D, XD)  with 
prescribedprincipalpart 	c(n)q' (where c(n) = 0 (fXD(n) = —1), (fand only if 

n)b(—n) = 0 
n< 0 

for every cuspform g = Im>0 b(m)qm in S_k(D, XD). 
This result shows that S (D, XD)  is precisely the space of obstructions for construct-

ing Borcherds products on YK with prescribed divisor. (In the same way M(D, XD) 
can be viewed as the space of obstructions for constructing Borcherds products with 
prescribed divisor and weight.) The dimension of this space can be computed by means 
of the Riemann-Roch theorem or the Selberg trace formula. In our case, where D is 
prime, this was already done by Hecke [He]. One finds that 

dimS(D,XD)=dimM(D,XD)—1 = [D_5] 

In particular S(D, XD) = { 0} for the primes D = 5, 13, 17. In these cases there are no 
obstructions, and for any T(m) there is a Borcherds products product with divisor 
T(m). For all other prime discriminants D there are obstructions. Then for instance 
T(1) is not the divisor ofa Borcherds product, since there isa normalized Hecke eigen-
form g in S2 (D, XD).  Its first Fourier coefficient is 1, and the "real part" of g is an ele-
ment ofS(D, XD),  whose first Fourier coefficient is equal to 1 as well(see [Ge2], chap-
ter VI.4). Hence q' cannot be the principal part of a weakly hobomorphic modular 
formin W(D,XD). 
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Let us look at Theorem 4.1 from a little different angle. Let [q 1 ] (respectively 
[[q]+) be the space of Fourier polynomials (respectively formal power series), whose 

coefficients satisfy the plus space condition. We define a non-degenerate bilinear pairing 
between these spaces by putting 

{f,g} = 
n<O 

forf = ><0c(n)qn E [q] and g = 	>0b(m)qm e [q]]t For k <0 the space 
W(D, XD)  is identified with a subspace of[q'] by mapping a weakly holomorphic 
modular form with Fourier coefficients c(n) to n<O  c(n)q. The space Mk(D, XD) is 
identified with a subspace of [[q]]  by mapping a modular form to its q-expansion. 
Now Theorem 4.1 implies that the orthogonal complement of Sk(D, XD) with respect 
to the pairing {•' } is equal to W(D, XD)  E. Using the splitting (3.3) of M_ k (D, XD) 
one concludes that the orthogonal complement of M k(D, XD) is precisely W(D, XD). 
Since the pairing is non-degenerate, and since Mk(D, XD) has finite dimension, it fol-
lows by linear algebra that conversely M_k(D, XD) is the orthogonal complement of 
W(D,X D ). In otherwords: 

Corollary 4.2. Aformalpower series 2m> b(m)qm E E[[q]] is the q-expansion ofa 
modularform in M_k(D, XD) ?fandonly if 

(n)b(—n) =0 
n<O 

for everyf = > c(n)q in W(D, XD). 
Since the pairing {' } is defined over Q with respect to the natural rational struc-

tures Q[q] and Q[[q]],  and since Mk(D, XD) and W,(D, XD)  have bases ofmodu-
lar forms with integral coefficients, an analogous assertion holds for modular forms 
over Q. Moreover, it suffices to check the condition in this corollary for every 
f e W,(D, XD)  with integral coefficients. 

If X is a regular projective algebraic variety, we write CH' (X) for its first Chow 
group, i.e., the group of algebraic divisors on X modulo rational equivalence. Further -
more, we put CH 1  (X) Q  = CH' (X) ® Q. Recall that CH 1  (X) is isomorphic to the Pi-
card group of X, the group of isomorphism ciasses of algebraic line bundles on X. The 
isomorphism is given by mapping a line bundle L to the dass C1 () ofthe divisor ofa ra-
tional section of L. The Chow group CH' (X) is an important invariant of X. lt is fi-
nitely generated. 

Meromorphic (respectively holomorphic) Hilbert modular forms can be interpreted 
as rational (respectively regular) sections of the sheaf Mi< (E) of modular forms, which 
can be defined as follows: If we write p: 1112 - YK for the canonical projection, then 
the sections over an open subset U c F\1H2  are holomorphic functions on p (U), sa-
tisfying the transformation law (3.1). Bythe Koecher principle, this sheafon YK  extends 
to XK. Moreover, we obtain a sheafon XK, also denoted by Mk(E),  by taking the pull-
back with respect to the desingularization morphism. By the theory of Baily-Borel, 
there is a positive integer nK such that Mk(L)  is an algebraic line bundle if nKk, and 
therefore defines an element ofPic(X K ). Notice that Mi<(E) = Mk(E) for any posi- 
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tive integer n. If k is any rational number, we chose an integer n such that nk is a positive 
integer divisible by nK and put c 1  (Mk(ff2)) = c 1  (M (EL)) e CH' (XK ) Q . 

lt is natural to study the positions of the Hirzebruch-Zagier divisors in CH' (X K ). 
To this end we consider the generating series 

(4.2) A() = ci(M_ i 12 ()) + 	T(m)qm e Q[[q]] ®a CH'( K ) Q . 
m>O 

Combining Theorem 3.1 and Corollary 4.2 one obtains the following striking applica-
tion. 

Theorem 4.3. The Hirzebruch-Zagier divisors generate a subspace ofCH' (K)Q  of 
dimension < dim(M(D,X D )). The generating series A() is a modular form in 
M(D, XD)  with values in CH 1 (XK ) Q. i.e., an element ofM(D. XD) ®Q CH'(K)Q. 

In other words, if.\ is a linear functional on CH 1  (K)Q,  then 

	

+ 	T(m)) E 
m>O 

A typical linear functional one can take for .X is given by the intersection pairing with a 
divisor on XK. Theorem 4.3 was first proved by Hirzebruch and Zagier by computing 
intersection numbers on XK of Hirzebruch-Zagier divisors with other such divisors and 
with the exceptional divisors coming from the resolution of the cusp singularities [HZ]. 
Their discovery triggered important investigations by several people, showing that more 
generaily periods of certain special cycles in arithmetic quotients of orthogonal or uni-
tary type can be viewed as the coefficients of Siegel modular forms. For instance, Oda 
considered cycles on quotients of 0(2, £) given by embedded quotients of 0(1, £) [Od 1], 
and Kudla-Millson studied more general cycles on quotients of O(p, q) and U(p, q) 
using the Weil representation and theta functions with values in closed differential 
forms [KM1,KM2,KM3], see also [Fu] for the case ofnon-compact quotients. The rela-
tionship of the Kudla-Millson lift and Borcherds' regularized theta lift is clarified in 
[BF]. 

Using Borcherds products, Theorem 4.3 can be proved as follows (see [Bo6]). In 
view of Corollary 4.2 it suffices to show that 

	

(0)cl(M 1 / 2 ()) + 	(n)T(—n) = 0 e CH 1 ( K ) Q  
n<O 

for everyf = Zn c(n)q in W(D, XD)  with integral Fourier coefficients. But this is an 
immediate consequence ofTheorem 3.1: The Borcherds lift off is a rational section of 
M(o)(E) with divisor > <0 Zn)T(—n). Notice that we have only used (i) and (ii) of 
Theorem 3.1. The product expansion (iii) is not required. Finally, we mention that this 
argument generalizes to Heegner divisors on quotients of 0(2, £). 
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5 Converse theorems 

By Theorem 4.1 of the previous section we know precisely which linear combina-
tions of Hirzebruch-Zagier divisors occur as divisors of Borcherds products on YK. 

Here it is natural to ask, whether every Hilbert modular fonn on YK  whose divisor is a 
linear combination of Hirzebruch-Zagier divisors, is a Borcherds product, je., in the 
image of the lift of Theorem 3.1. In this section we discuss this question in some detail. 
To answer it, we first simplify the problem. We extend the Borcherds lift to a larger 
space of "input modular forms", given by certain Maass wave forms, and answer the 
question for this extended lift. In that way we are led to automorphic Green functions 
associated with Hirzebruch-Zagier divisors. 

Let k be an integer, Fa subgroup offinite index ofF(1), and x a character ofF. A 
twice continuously differentiable function f: IH - 0F is called a weak Maass form (of 
weight k with respect to F and x), if 

(1) f() = x()(cT+d)kf (T) for all () eF, 

(2) f has polynomial growth at the cusps of F (in terms of local parameters), 
(3) kf(T) = 0. 

Here 

2/Da 	92'\ 	. ( (5.1) Lk= — V 

denotes the usual hyperbolic Laplace operator in weight k and -r = u + iv. 
So if we compare this with the definition of a weakly holomorphic modular form, 

we see that we simply replaced the condition thatf be holomorphic on IH by the weaker 
condition thatf be annihilated by Ak,  and the meromorphicity at the cusps by the cor -
responding growth condition. The third condition implies that f is actually real analy-
tic. Because of the transformation behavior, it has a Fourier expansion involving be-
sides the exponential function a second type of Whittaker function. (See [BF] section 3 
for more details.) 

There are two fundamental differential operators on modular forms for F, the 
Maass raising and lowering operators 

Rk = 2i+kv 1 	and 	Lk = _2iv 2 .  
DT 	 DT 

1ff is a differentiable function on IH satisfying the transformation law (1) above in 
weight k, then Lkf  transforms in weight k - 2, and Rkf  in weight k + 2. lt can be shown 
that the assignment 

f(T) :' ek(f)(T) 	v 2L(7-) = R k vk 

defines an antilinear map ek  from weak Maass forms of weight k to weakly hob-
morphic modular forms of weight 2 - k. Its kernel is precisely the space of weakly hob-
morphic modular forms in weight k. 

We write Nk(D,XD) for the space ofweak Maass forms ofweight k with respect to 
ro (D) and XD.  Let us have a closer look at map ek : Nk(D, XD) - W2_k(D, XD). We de- 

166 	 JB 106. Band (2004), Heft 4 



J. H. Bruinier: Infinite Products in NumberTheory and Geometry 

note by J\[k(D, XD)  the inverse image of S2_k(D, XD) under k,  and its plus subspace by 
.A/(D, XD).  (Note that our notation is not consistent with the notation of[BF].) 

Theorem 5.1. We have thefollowing exact sequence: 

O 	W(D,XD) 	(D,xD) 	Sk(D,XD) 	O. 

This can be proved using Serre duality for the Dolbeault resolution of the structure 
sheaf on a modular curve (see [BF] Theorem 3.7) or by means of Hejhal-Poincar series 
(see [Br2] chapter 1). 

For every weak Maass formf E .A/(D, XD) there is a unique Fourier polynomial 
P(f) = <0 c(n)qn in [q'] such thatf(r) - P(f)(r) is bounded as v - ‚ uni-
formly in u. lt is called the principal part off. This generalizes the notion of the princi-
pal part of a weakly holomorphic modular form. One can show that every prescribed 
Fourier polynomial as above occurs as the principal part of a uniquef e XD). 
This is a key fact, which suggests to study the Borcherds lift ofweak Maass forms. 

1ff e iV(D, XD),  then we define its regularized theta lift e (zi z2,f) by (3.7), in the 
same way as for weakly holomorphic modular forms. One can show that the regularized 
theta integral defines a FK-invariant function on 1H 2  with a logarithmic singularity 
along - 4Z(f), where 

Z(f) = 
n<O 

and 	c(n)q'1  denotes the principal part off [Br2], [BF]. lt is almost harmonic (out- 
side the singularities) in the following sense. If 	and (2)  denote the SL2 (IR)-invar- 
iant hyperbolic Laplace operators on 1H 2  in the first and second variable, then 

C' ) (z i ,z2,f) = constant. 
The Fourier expansion of (z1,  z2,f) can be computed explicitly. lt can be used to 

determine the growth behavior at the boundary of YK  in XK.  lt turns out that the 
boundary singularities are of log and log-log type. More precisely, one can view 

‚ z2,f) as a pre-log-log Green function for the divisor Z(f) on XK in the sense of 
[BKK1] (see section 8 here, and [BBK] Proposition 2.15). 

Moreover, one finds that I(z 1  ‚ z2 ,f) can be split into a sum 

(5.2) 	(z 1 ,z2 ,f) =-21og(zj,z2,f)I 2 +(zi,z2,f), 

where (z 1 ,z2 ,f) is real analytic on the whole domain 1H 2  and W(z i ,z2 ,f) isa mero-
morphic function on 1112  whose divisor equals Z(f). 1ff is weakly holomorphic, the 
function (z 1 ,z 2 ,f) is simply equal to 2c(0)(log(87r) - ["(1) - log(167r 2y 1 y2 )) and we 
are back in the case of Borcherds' original lift. However, iff is an honest weak Maass 
form, then is a complicated function and '1' far from being modular. 

In any case, via the usual Poincar-Lelong argument, the above splitting implies that 
the (1, 1) form 

(5.3) AB(f)  := dd(z i ,z2 ,f) =dd(z i ,z 2 ,f) 
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represents the Chern dass of the divisor Z(f) in the second cohomology H2 ( YK).  One 
can further show that it is a square integrable harmonic representative. (lt can also be 
regarded as a pre-log-log form on XK, representing the dass of T(m) on XK in 
H2 (RK).) 

Using suitable L-estimates for the functions (z1,z2,f), and resuits ofAndreotti-
Vesentini and Yau on (sub-) harmonic functions on complete Riemann manifolds that 
satisfy such integrability conditions, the following weak converse theorem for the Borch-
erds lift can be proved (see [Br2] chapter 5). 

Theorem 5.2. Let F be a meromorphic Hilbert modular form of weight r for FK 
whose divisor div(F) = (n) T(—n) is a linear combination of Hirzebruch-Zagier 
divisors. Then 

_2logF(z1,z2)2(161r2yjy2) = (z i  z 2 f) + constant, 

wheref is the unique weak Maass form in Jf(D, XD)  withprincipalpart n<O c(n)q. 

Corollary 5.3. The assignment Z(f) 	AB(f)  defines a linear map from the sub- 
group CHkZ(XK) ofCH' (XK) generated by the Hirzebruch-Zagier divisors, to N" t  ( YK), 
the space of square integrable harmonic (1, 1 )-forms on YK. 

Summing up, we get the following commutative diagram: 

Af(D,xD) 	J(D,XD)/W(D,XD) ---S(D,XD). 

(5.4) 	1 	1 
ZkZ(K) ®z C 	CHIZ(K) (97 c 

Here Z z (K) denotes the subgroup of the divisor group Z' (ic  generated by the 
T(m) (m e N). The left vertical arrow is defined byf Z(f) - -1 divG, where c(0) 
denotes the constant term off, and G a fixed meromorphic Borcherds product of 
weight k0 . The vertical arrow in the middle is given byf i—* Z(f) - c(0)c j  (M1 ()). 

In particular, the above diagram gives rise to a linear map S(D, XD) - 7- " ( YK). 
lt can be explicitly described in terms ofthe Fourier expansions. One finds that the im-
age is in the subspace of 7-t 1

" ( YK) given by forms which are symmetric with respect to 
the interchange ofthe coordinates z1 ‚ z2. lt is known that this subspace is isomorphic to 

S(FK ), where 

(5.5) 	
= dx1dy1 + dx2dy2 

4iry1 2 	47ry 

is the symmetric invariant Kähler form on 1Il2,  and S2(FK) denotes the space ofHilbert 
cusp forms ofweight 2 for FK. Consequently, we get a linear map S(D, XD) - S2(FK). 

To answer the surjectivity question for the Borcherds lift raised at the beginning of 
this section, it now suffices to show that this map is injective. This can for instance be 
deduced by means of the Fourier expansion of the image. We obtain the following 
strong converse theorem for the Borcherds lift (see [Brl], [Br2] chapter 5). 
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Theorem 5.4. Let F be a meromorphic Hilbert modular form for FK whose divisor 
div(F) = 	(n) T(—n) is given by Hirzebruch-Zagier divisors. Then there is a 
weakly holomorphic modular form f E W(D, XD)  with princial part 	c(n)q', 
and, up to a constant multiple, F is equal to the Borcherds lift off in the sense of Theo-
rem 3.1. 

As a corollary it can be deduced that the dimension of CH Z (K) Q  is equal to the 
dimension of M2(D, XD)  complementing Theorem 4.3. lt is not hard to see that our 
map S(D, XD) — S2(FK) coincides with the celebrated Doi-Naganuma lift [DN], [Na], 
[Za]. The above construction can be viewed as a new approach to it. 

The weak converse theorem is proved in much greater generality in [Br2]. Combin-
ing the argument of [Br2] with techniques of [BF] it could probably be extended to hold 
in full generality for 0(2, £). However, for the strong converse theorem the situation 
seems far more complicated. lt is proved in [Br2] for modular forms on F(L) c 0(2, £)‚ 
where F (L) denotes the discriminant kernel of the orthogonal group of an even lattice L 
of signature (2, £) that splits two hyperbolic planes over Z. For example, if we go to con-
gruence subgroups of the Hilbert modular group FK, it is not clear whether the analo-
gue ofTheorem 5.4 holds or not. 

6 Automorphic Green functions 

In this section we look at the regularized theta lifts of weak Maass fornis from a dif-
ferent perspective. By the discussion ofthe previous section, for every positive integer m 
there exists a unique weak Maass formfm e XD) whose principal part is equal to 
qm ifm 0 0 (mod D), and equal to 1 qm  ifm 0 (mod D). Thelift 

‚(z1,z2) = 	(z1, 12,fm) 

off, is a real analytic function on YK  with a logarithmic singularity along —2T(m). 
Here we present a different, more naive, construction of m (z1,z7). For details see 

[Brl]. The idea is to construct q m (zi ‚ z) directly as a Poincar series by summing over 
the logarithms of the defining equations of T(m). We consider the sum 

(6.1) 	 log azz + \Zl + 'Z2 + b 
az 1 z 2  + AZI + 'z2 + b 

The denominators of the summands ensure that this function has a logarithmic singu-
larity along —2T(m) in the same way as m(Zi, z2). The enumerators are smooth on the 
whole 1H 2 . They are included to make the sum formally FK-invariant.  Unfortunately, 
the sum diverges. However, it can be regularized in the following way. If we put 
Qo (z) = log (±)‚ we may rewrite the summands as 
-7 	 2 

10 
azlz,+zl+z7+b —) (l+ 1Z2 ++ 2 + — 	

2yiy2m/D 
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Now we replace Qo  by the 1-parameter family Q i of Legendre functions of the second 
kind (cf. [AbSt] §8), defined by 

(6.2) Q-i (z) = f(z + Vz2  - 1 cosh u)_sdu. 

Here z> 1 and s E C with R(s) > 0. Ifwe insert s = 1, we get back the above Qo.  Hence 
we consider 

/  
(6.3) 	m(Zi,Z2,S) = 	Q—i (\l +

az1z2 +z1  +'z2 + b 2  

a,bE7Z 	 2yiy2m/D 

ab—N(\)=m/D 

lt is easily seen that this series converges normally for (z1, z2) E IH - T(m) and 
J(s) > 1 and therefore defines a FK-invariant  function, which has logarithmic growth 
along —2T(m). lt is an eigenfunction ofthe hyperbolic Laplacians ») with eigenvalue 
s(s - 1), because of the differential equation satisfied by Q-i.  Notice that for 
D = m = 1 the function m(Zi ‚ z2 , s) is simply the ciassical resolvent kerne! for SL 2 (ZZ) 
(cf. [Hej], [Ni]). One can compute the Fourier expansion of 4 m (Zi z2, s) explicitly and 
use it to obtain a meromorphic continuation to s e W. At s = 1 there is a simple pole, re-
fiecting the divergence of the formal sum (6.1). We define the regularization ein (Zi ‚ z) 
of (6.1) to be the constant term in the Laurent expansion of ''m  (z 1 , z2, s) at s = 1. 

lt turns out that m(Zi,  z2) is, up to an additive constant Lm , equal to the function 
m(Zi, z2) above (sec [Br2] Proposition 2.11 and Theorem 2.14). Here the constant Lm  is 

quite interesting, since it is given by the derivative of the m-th coefficient of a certain Ei-
senstein series E2 (,$) ofweight 2 for I' o (D) and XD  [BK], [BBK]. We will come back to 
this in section 7. 

One may use the Fourier expansion of m(Zi, z2) and identities for certain finite ex-
ponential sums of[Za] to obtain a different independent proof of Theorem 3.1. 

The following integral formula is fundamental (sec [BK] Theorem 4.7, [BBK]). lt 
justifies why I, (zi, z2, s) (and also m  (zi, z2)) is called an automorphic Green function 
for the divisor T(m). 

Theorem 6.1. Let h: YK - E be a bounded eigenfunction ofthe Laplacian ( 1)  (or 
(2))  with eigenvalue A. Then fürs E F with R(s) > 1 we have 

	

f 	 f 

	

FK\1112 	 T(m) 

Here 9 is definedby (5.5)so that 92  is an invariant volumeform on YK. 

Such automorphic Green functions are constructed in greater genera!ity for 0(2, £) 
in [Br2] using the regu!arized theta lift of Hejhal-Poincar8 series, and independently in 
[OT] from the point of view of spherical functions on real Lie groups. 
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7 Integrals 01 automorphic Green functions 

lt is weil known that the volume of YK  is given by voln(YK) = fYK 
2 

= 

where K(S) denotes the Dedekind zeta function ofK. The voiume ofa divisor C on YK 
is defined as the integral vol 0  (C) = f. ft One can show that the integrai is finite, see 
e.g. [Br3]. If C is effective, then its volume is positive. 

lt is a weil known fact that the volumes of Hirzebruch-Zagier divisors are given by 
the Fourier coefficients of the unique normalized Eisenstein series in M (D, XD)  (see 
[Fra], [Ha], and [Ge2] chapter V.5). Let us recall the definition of that Eisenstein series. 
In weight k there are the two non-holomorphic Eisenstein series 

cE (CT+d) cT±d2s 
cO(D) 

1 	y 
= 	

XD(c) (c + d)k CT + 

for Fo(D) with character XD  the former corresponding to the cusp oc ofF o (D), the latter 
to the cusp 0. (By our assumption that D be prime, these are the only cusps of F 0 (D).) 
They converge for (s) > 1 - k12 and have a meromorphic continuation in s to the full 
complex plane. If k > 2, the special values E (r, 0) and Ek°  (r, 0) are holomorphic in 
and define elements of Mk (D, XD).  One can show that the linear combination 

Ek (r, s) 
= 2L(k +2s, 

XD) (E (r, s) + D 2 	( s)) 

satisfies the plus space condition. (This foliows most easily from Lemma 3 of [BB].) 
Here L(s, XD)  denotes the L-series associated with the Dirichlet character XD  In parti-
cular we have Ek(T,  0) E M(D, XD).  The Fourier expansion ofEk(-r, s) has the form 

(7.1) Ek(Y,$) = > C(n,$)Ws(47rnv)e2u, 

nE7Z 

where the C(n, s) are complex coefficients independent of v; and W(v) is a certain Whit-
taker function, which we normalize as in [BK] (3.2). The precise normalization is not 
important for our purposes here, we only need that it is a universal function for all n of 

the same sign. The coefficients C(n,$) are computed for instance in [BK] section 5, 
Example 2. Here we only state the special value 

(7.2) Ek(T, 0) = 1 + Z C(n, O) = 1 
+ L(1 —k 	) 	

dk_l (XD(d) + XD(n/d)), 
n> i 	 n~ 1 dln 

which is obtained in the standard way (see [He], Werke p. 818) using the functional equa- 
tion ofL(s, XD). 

Theorem 7.1. We have 

E2(,0)=1— 	
2 	

vol0(T(m)). 
volO(YK) m>1 
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Similar identities hold in much greater generality for special cycies on arithmetic 
quotients of O(p, q) and U(p, q), see e.g. [Gel], [Ku4], [Ku2], [0d2]. (Observe that our 
normalization ofvoln(T(m)) equals twice the volume of T(m) in [BBK].) 

Let us briefly indicate, how Theo rem 7.1 can be deduced from the properties of the 
automorphic Green functions m(Zi, z2, s). For instance, from the description as a regu-
larized theta lift it foliows that the residue at s = 1 of e in (Zi, Z2, s) is equal to the C0fl 

stant coefficient am (0) of the weak Maass formfm  e A[(D, XD)  defined at the begin-
ning of section 6. By means of the relationship of the spaces Af(D, XD)  and 
M_k (D, XD),  which is also implicit in (5.1), one finds that am  (0) = - C(m, 0) (see [BF] 
Proposition 3.5). Therefore we have 

) 

	

s—' 	

'\ 
m(Z1,Z2) = lim( tfl (z1z2s) + 2(s 

- i 

C(m, 0
)  

Using growth estimates for m(Zi, z2, s), which can be deduced from the constant coeffi-
cients ofthe Fourier expansions, we obtain: 

Proposition 7.2. Thefunction m(Z1, z2) belongs to L"( K,  92 )for anyp < 2, and 

I m(Zi,22)2 =lim
'YK

( 	
2(s— 1),)m(ziz2) + 
C(m,0)2

S_+l 

If we apply Theorem 6.1 for the constant function h = 1, we may compute the inte-
gral. lt is equal to 

(73) 	IT(-) 	
C(m,0) 

'YK 

2  	(voln(T(m)) + C(mO)1()
s(s— fl 	2(s— 1) 	(s— 1) 	s 	2 

Since the limit s - 1 exists, the quantity in parenthesis on the right hand side has to 
vanish at s = 1. This yields the assertion ofTheorem 7.1. 

So far we have essentially exploited the existence of the integral 
'K 

m(Zi ‚ z2) 12, 

which means that the residue in the Laurent expansion of (7.3) at s = 1 vanishes. We 
may actually compute the constant term of that expansion, that is, the value of the inte-
gral. lt is equal to —vol0(T(m)). 

One can further improve this result by observing that the full coefficient C(m, s) as a 
function ofs occurs in the constant term of 1 m (zi z, s). More precisely, ifwe define 

(7.4) Gm (zi,z2) = 1im (m(i,z2,) +B(s)(2s - l)C(m,s— 1)), 

with 

B 	
( 1 6) 1 F(s - 112)s 

(s) 
- 
- F(l/2)(2s— 1) 

then one can show that Gm (zi,z2) = 	(zi,z2,fm) +am(0)(F'(l) - log(87r)) (which is41 

essentially the calculation of the constant Lm  on page 20). This means in particular that 
if F is the Borcherds lift of a weakly holomorphic modular form f with coefficients 
a(n), then its Petersson metric is given by 
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(75) loglF(z i ,z 2 ) p  := 109(F(zi,z2)(16y1y2),(0)/2) = 

n<O 

The latter identity can be viewed as a generalization of the Kronecker limit formula ex-
pressing the logarithm of the absolute value of the discriminant function (2.2) as the 
constant term in the Laurent expansion at s = 1 of the non-holomorphic Eisenstein ser-
ies ofweight 0 for SL2() (see [BK] (4.14)). Notice that the constant B(s) in (7.4) does 
not depend on m. lt changes ifthe normalization ofthe Whittaker function W(v) is var-
ied. Arguing as above we find that (see [BK] Theorem 4.10) 

f 'K 
Gm(zi,z2)2 

= _
voln(T(m)) (C'(m,O)/C(m,O) + log(4) - F'(l)). 

Ifwe insert the explicit formula for C(m, s), we get 

(7.6) 
 'YK 

Gm(zi,z2)2 = _vo ln (T( m ))(L (_ 1 X +!_ m(1) +ulog(D)), 

	

L(—1,XD) 	2 a,(—l) 2 

where 

(7.7) a,(s) = mV 2 	ds(x D (d) + XD(m/d)). 
dm 

In particular, in view of (7.5), the integral over the logarithm of the Petersson metric 
of any Borcherds product can be computed explicitly (see also [Ku4]). For example, if 
K = Q(ß), we obtain for the Gundlach theta function 

	

'K 
log(2_6e(zi ‚Z2)(162Y1Y2)5/2)2 = —((-1) 	 + 1 + log(5)). 

Such integrals play a fundamental role in the Arakelov intersection theory of Hirzeb-
ruch-Zagier divisors. We will come back to that in the section 9. 

The integral of the logarithm of the Petersson metric of a Borcherds product was 
first calculated by Kudla in [Ku4] using a different approach based on the Siegel-Weil 
formula. We recall that the quantity (zi ‚ z2 'f) we want to integrate is given by the the-
ta integral (3.7) of a weakly holomorphic modular form f. Now the idea is to inter-
change the (z i , z2 )-integration with the regularized integration over T and to compute 

(7.8) L(' 'YK 
e5 (; z1 ‚ 

where d 2  denotes the invariant measure on YK.  (Notice that this needs a carefuljustifi-
cation.) The inner integral over the Siegel theta function can be determined by means of 
the Siegel-Weil formula. lt yields an Eisenstein series of weight 0 for F 0 (D), which can 
be written in terms of the lowering operator and our Eisenstein series (7.1) of weight 2 
as --1-L2E2(r 	 - , s). The integrand for the remaining regularized integral over is now es- 
sentially 	d((f( -), E2 (r, s))d) at s = 1, 50 that we may use Stoke's theorem to com- 
pute it. The derivative of E2 (r, s) occurs because of the factor 

We conclude this section by giving a characterization of the automorphic Green 
function m(Zi ‚ z2). lt can be proved in a similar way as Theorem 5.2. 
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Proposition 7.3. Letf be a smoothfunction an YK - T(m) with theproperties: 

(i) f has a logarithmic singularity along T(m), 
(ii) ((1) + (2)) f = constant, 
(iii)f e L'(YK,Q 2 )forsomeE >0, 
(iv) fyKf(z1,z2)2  =.vol(T(m)). 

Thenf(z i ,z 2 ) = —‚(z1,z2). 

8 Arithmetic of Hirzebruch-Zagier divisors 

In their paper an the intersection of modular correspondences, Grass and Keating 
interpreted classical resuits of Hurwitz and Kronecker by the observation that the unter-
section number of twa modular correspondences on YQa = F(1) 2 \lI-1 2  is given by the 
coefficients of the ciassical Siegel Eisenstein series E 2  (Z, s) of weight 2 and genus 2 at 
s = 0. Their main result was that the arithmetic intersection numbers of three such mod-
ular correspondences an the regular model Spec 7L[j,j'] of YQa is given by the coeffi-
cients of the derivative of the Siegel Eisenstein series E 3  (Z, s) of weight 2 and genus 3 
at s = 0 [GK]. Observe that YQq can be viewed as the "degenerate" Hilbert modular 
surface with discriminant D = 1 and the modular correspondences as Hirzebruch-Za-
gier divisors in this case. 

Kudla proved that the arithmetic intersection numbers in the sense ofArakelov gea-
metry of certain arithmetic special divisors an a regular model of a Shimura curve are 
dictated by the coefficients of the derivative of a Siegel Eisenstein series of weight 2 and 
genus 2 at s = 0 [Ku!]. (So Kudla considers an arithmetic surfaces, rather than an arith-
metic 3-fold as in the case of Gross and Keating. This explains the different genus.) Here 
the arithmetic divisors are pairs consisting of a special divisor an the regular model and 
a certain Green function for the induced divisor an the corresponding complex variety, 
fitting in the setup of arithmetic intersection theory as in [SABK]. 

In further works Kudla, Rapoport, and Yang developed an extensive program relat-
ing arithmetic special divisors an Shimura varieties of type 0(2, £) and their arithmetic 
intersection theory ta automorphic forms, in particular ta the coefficients of the deriva-
tives of Siegel Eisenstein series. Most of this is conjectural, but in important special 
cases these conjectures are meanwhile proved. (See e.g. [Ku6] for the 0(2, 1) case ofShi-
mura curves, [KRY] for the 0(2, 0) case of CM elliptic curves, [KR] for partial results 
in the 0(2, 3) case of Siegel modular threefolds, and [Ku5] for an overview.) Notice that 
Yq can be described in terms of 0(2, 2). 

One conclusion of this general picture is that the geametric results over U of Hirze-
bruch and Zagier (as e.g. Theorems 4.3 and 7.1) and their generalizations to 0(2,) 
should have arithmetic analogues over Z. Here the classical intersection theory has ta 
be replaced by Arakelov intersection theory. 

In this section we discuss, how Borcherds products can be used to obtain new results 
in that direction. We begin by recalling same facts an the arithmetic of Hilbert modular 
surfaces. 
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In section 2 we briefiy discussed that modular curves have a moduli interpretation 
as a moduli space for isomorphism ciasses of elliptic curves with additional structure. 
The same is true for Hilbert modular surfaces, which is the starting point for arithmetic 
investigations. More precisely, YK  parametrizes isomorphism ciasses oftriples (A, t, L'), 
where A is an abelian surface over (‚ t is an OK-multiplication, that is, a ring homo-
morphism °K - End(A), and ' is a b'-polarization, that is, an isomorphism of °K 
modules b -* HomoK  (A, Av)sYm  from the inverse different b' =, OK  to the mod- 
ule of (9K-linear symmetric homomorphisms, taking the totaily positive elements of b 1  
to OK-linear  polarizations (see [Go] Chapter 2). 

The moduli description now makes sense over any scheme S over Z. (Here one has 
to require that 0 fulfill an extra technical condition called the Deligne-Pappas condi-
tion, see [DePa]. That condition is automatically fulfilled in characteristic 0.) Due to the 
work of Rapoport, Deligne, and Pappas it is known that the moduli problem "Abelian 
surfaces over S with OK-multiplication and b 1 -polarization with Deligne-Pappas con-
dition" is represented by a regular algebraic stack 71, which is fiat and of relative dimen-
sion two over Spec Z. lt is smooth over Spec 7Z[l/D], and the fiber of 71 above D is 
smooth outside a closed subset of codimension 2. 

The corresponding complex variety 1i(() is isomorphic to YK.  The isomorphism is 
obtained by associating to z = (zl, z 2 ) E 1H2  the abelian surface A = (2 /As  over (gi-
yen by the lattice 

A= ~ ( c'zl  + 	E(2  aßEOK}  c(2 , 

together with the OK-multiplication t induced by the natural action t(v) = (( )) 
of 

OK Ofl 
(2  and a certain b'-polarization. 

For k e 71 sufficiently divisible there exists a line bundle Mk on N (the k-th power 
of the pull-back along the zero section of the determinant of the relative cotangent bun-
dle of the universal family over 7-() such that the induced bundle on can be identi-
fied with the line bundle Mk(() ofHilbert modular forms ofweight k for FK ofthe pre-
vious sections. By the q-expansion principle and the Koecher pririciple, the global sec-
tions of Mk can be identified with Hilbert modular forms of weight k for FK with 
integral rational Fourier coefficients. There exists an arithmetic Baily-Borel compactifi-
cation 77 ofthe coarse moduli space corresponding to N, which can be described as 

(8.1)  17 =Proi«BH'9 ('H„"k) 

The scheme 17 is normal, projective, and fiat over Spec 71 (see [Ch], p. 549), and 
E) X. Furthermore, its fibers over Spec 71 are irreducible (see [DePa], p. 65). By 

construction, the bundle Mk extends to R. 
Throughout the rest of this paper we will make the following 

Assumption 8.1. There exists a desingularization 7r: XK - i by a regular scheme 
XK, which is projective andfiat over 71, such that the regular locus 17eg  fiber-wise 
dense in XK,  and such that the induced morphism XK (() - is a desingularization as 
in theprevious sections XK. 
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This assumption simplifies the exposition (it might actually be too optimistic). No-
tice that the singularities of at the boundary can be resolved by considering a suitable 
toroidal compactification of 7 -L So only the singularities corresponding to elliptic fixed 
points would need to be resolved. If one wants to obtain unconditional results one can 
impose an additional level structure in order to get a fine moduli problem and work 
with a suitable toroidal compactification of the corresponding moduli scheme (as is 
done in [BBK]). Unfortunately, in that way one only gets a regular scheme N(N) which 
is projective and fiat over ?Z[N, l/N], where N  denotes a primitive N-th root of unity 
andN> 3thelevel. 

We define the line bundle of modular forms of weight k on XK as the pullback 
*(M k ) For simplicity we will also denote it by Mk. 

lt can be shown that the Hirzebruch-Zagier divisors on XK are defined over Q, that 
is, T(m) is obtained by base change from a divisor on the generic fiber U xz Q of R. 
We define the Hirzebruch-Zagier divisor T(m) on the generic fiber XK xz Q as the pull-
back of T(m) onH x Q. Moreover, we define the Hirzebruch-Zagier divisor Y(m) on 
XK as the Zariski closure of T(m). 

We now briefiy recall some basic properties of arithmetic Chow rings (see 
e.g. [SABK]). Since YK  is non-compact, the natural metrics on automorphic vector bun-
dles have singularities at the boundary [Mu], [BKK2]. Therefore we need to work with 
the extended arithmetic Chow ring CH*(X,Dpre)  constructed in [BKK1]. In this ring 
the Green objects satisfy beside the usual logarithmic additional log-log growth condi-
tions. 

Let X be an arithmetic variety over Z , i.e., a regular scheme, which is projective and 
fiat over Z. Moreover, let D be a fixed normal crossing divisor on the complex variety 
X(U), which is stable under complex conjugation. An arithmetic divisor on X (in the 
sense of [BKK1]) isa pair 

(y, 

where y is a divisor on the scheme X and g y  is a pre-log-log Green object for the induced 
divisor y(C) 011 X(). In particular, a pair (y, gy) where gy  is a pre-log-log Green func-
tion for y, determines an arithmetic divisor. This essentially means that gy  is a smooth 
function on - (y(L) LJ D), invariant under complex conjugation, with logarith-
mic singularities along the irreducible components ofy(E) and pre-log-log singularities 
along D such that the aa-equation ofcurrents holds: 

Here [.] denotes the current associated to a differential form and 5 the Dirac current for 
y normalized as in [BKK1] and[BBK]. Adifferential form a is called pre-log singular 
(pre-log-log singular), if a, Oce, 9cr, and 80c have only logarithmic growth (respectively 
log-log growth). We write Z' (X, V pre ) for the free abelian group generated by the arith-
metic divisors on X. Here D pre  stands for the Deligne algebra with pre-log-log forms 
along D, which is needed for the precise description ofGreen objects in [BKKI]. More- 

over, we write 	(X) for the subgroup of 2 1  (X, Dpre ) given by arithmetic divisors of 
the form (div(f), - log l f),  wheref is a rational function on X and l f 1 the absolute va- 
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lue of the induced function 011 X((E). The first arithmetic Chow group of X with log-log 
growth along D is defined by 

CH (x, Dpre ) = (X, Dpre )/ 1  (X). 

More generaily, in [BKK1] arithmetic Chow groups CH ° (X, Dpre ) of codimension p 
arithmetic cycles with log-log growth along D are defined. There exists an arithmetic in-
tersection product 

	

Dpre ) ® 	Dpre) 	
„ 	P+( 

 Vpre)Q, 

and 
«I:*(X,Dpre)Q = 	' (X,Vpre ) øiz Q 

P>O 

equipped with this product has the structure of a commutative associative ring. 
For instance, if X = Spec 71, then the closed points of Spec 71 can be identified with 

the primes of Z. An arithmetic divisor is a pair 	flp , g) consisting of a finite formal 
71-linear combination of primes p and a real number g. The elements of Rat (Spec 71) 
are the pairs ofthe form (plN  ord(N)p, - log I N) for N e Q. This implies that 

deg : CH ' (Spec 71,Vpre) 	' (ip, g) 	g+ Z nlog(p) 

is an isomorphism. lt is common to identify CM '  (Spec 71, V pre ) with IR. 
There also is an arithmetic analogue of the Picard group: The arithmetic Picard 

group Pic(X, Dpre ) is the group ofisomorphism ciasses ofpre-log singular hermitian line 
bundles on X. Here a pre-log singular hermitian line bundle is a pair L = (' . ) con-
sisting ofa line bundle L on X, and a smooth hermitian metric . on the induced com-
piex line bundle on X(E) - D, invariant under complex conjugation, and such that 
- log 11 s 11 has logarithmic singularities along div(s) (U) and pre-log-log singularities 
along D for any rational section s of L. If r is a pre-log singular hermitian line bundle 
and s a rational section ofr, then, essentially by the Poincar-Lelong lemma, 

= (div(s), - log sM) 

defines a dass in 	(X, V pre ), which is independent of the choice of s. lt is called the 
first arithmetic Chern dass of C. The assignment iZ 	‚ (f) actually induces an iso- 
morphism 

	

(X,Dpre) 	' 	'(X,Vpre). 

We now consider the arithmetic Chow ring 	Dpre ) Q  ofthe mode! XK ofour 
Hilbert modular surface, where we take for D the normal crossing divisor 
DK = ir' For details we refer to [BBK]. The Green functions of section 6 turn 
out to be particularly nice, because they fit into the arithmetic Chow theory of XK. 

Theorem 8.2. Thepair 

(m) = (T(m), G) 
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defines an element of CH '  (K, Vpre ), called the arithmetic Hirzebruch-Zagier divisor of 
discriminant m. Here Gm  is the automorphic Greenfunction defined by (7.4). 

Notice that Gm  always has log-log singularities along DK,  even if T(m) is disjoint to 
DK. So Gm  does not define a Green function for T(m) in the ciassical arithmetic Chow 
theory due to Gillet and Soul. We therefore really need the extension of [BKK1]. Ob-
serve that the arithmetic divisors of Theorem 8.2 slightly differ from those considered 
by Kudla, Rapoport, and Yang. For instance, they often contain boundary components 
(which is possible since YK  is non-compact), and are built with different Green func-
tions. 

Moreover, we obtain an element of PiC(XK, Vp re ), by equipping the line bundle of 
modular forms with the Petersson metric. Recall that if F e Mk (() ( U) is a rational sec-
tion over an open subset U c YK,  then its Petersson metric is given by 

F(Z1,Z2)11
2pet = F(zl , z2 )I 2 (l6y ly2 )k. 

This defines a pre-log singular hermitian metric 011 M ii. (EL) (with respect to DK). We de-
note the corresponding pre-log singular hermitian line bundle by Mk = (Mk, 
(That the Petersson metric has singularities at the boundary is easily seen: For instance, 
ifz = (zi,z2) approaches the cusp oc of YK,  theny iy2  - 	by construction ofthe Bai- 
ly-Borel topology. At the elliptic fixed points it is continuous, but the derivatives do 
have singularities.) 

A central idea in [BBK] is to connect the arithmetic of Borcherds products and the 
properties of the automorphic Green functions Gm  to derive information on 
—1 - 	 —1---- 
CHHz(XK, Dpre )Q, the subspace of CH (XK, Dp re )Q spanned by the arithmetic Hirze-
bruch-Zagier divisors. 

Theorem8.3. RecallAssumption 8.1. The map ZkZ(K) 	‚Z(K, Dpre ) defined 
by T(m) 	T(m) induces an isomorphism 

CHkz(K)Q 

takingc l (M k (E)) t01(Mk). 

Sketch of the proof. We have to show that if there is a relation in Z 1  (RK)  among 
the T(m), we can lift it to a relation in 

(. ' ic, T'pre ), and that every relation among ar-
ithmetic Hirzebruch-Zagier divisors arises in thatway (up to torsion). 

So suppose that F is a rational function on XK with divisor En<0 (n)T(—n). Then 
by the strong converse theorem (Theorem 5.4), we may assume that F is a Borcherds 
product, that is, the lift of a weakly holomorphic modular formf e W(D, XD)  with 
Fourier expansion >j,, c(n)q as in Theorem 3.1. lt can be shown that any meromorphic 
Borcherds product is the quotient of two holomorphic ones ([BBK] Proposition 4.5). 
Therefore we may write F = F1  /F2, where F1, F2 are holomorphic Borcherds products 
of the same weight. But then the Borcherds product expansion (Theorem 3.1 (iii)) im-
plies that a positive power of Fj  has integral rational Fourier coefficients. Without loss 
of generality we may assume that already the 1) have integral rational Fourier coeffi-
cients. According to the q-expansion principle F- defines a section Tj  of Mk on the 
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model XK. Hence the quotient of these sections is a rational function on XK that specia-
lizes to F on the generic fiber. 

We claim that the divisor of .F1  on XK is horizontal. To see this, we notice that by 
work of Rapoport, Deligne, and Pappas, the geometric fibers of 7 -  are irreducible (see 
[Ra], [DePa]). lt foliows by Assumption 8.1, that the same holds for the geometric fibers 
of K . Suppose that div(F1 ) contains a vertical component above a prime p. Then, be-
cause ofthe irreducibility of the fibers, div(.F1 ) contains the full fiber abovep. By the q-
expansion principle, this implies that all Fourier coefficients ofF1  are divisible byp. But 
the Borcherds product expansion of F, shows that the coefficients are coprime (in fact, 
the coefficient corresponding to the Weyl vector p(F) is 1), and therefore a contradic-
tion. 

Thus the divisor of J1/.F2 is horizontal and equal to 	Z(n)T(—n). In view of 
(7.5) we may conclude that 

= (div(F i / 2 ),-1ogF) =0 E 	1 (K,Vpre )Q. 
n<O 

Conversely, every relation among arithmetic Hirzebruch-Zagier divisors obviously 
specializes to a relation on the generic fiber. 

As a corollary we see that dim( 	jZ(K,Vpre)Q) = dim(CHkz(K)Q)= [ 9] 

Moreover, diagram (5.4) has an arithmetic analogue, where one has to replace 

Z z (K) by jZ(K, D pre ) and CHkZ(K)Q  by 	IZ(K, D pre ) Q . Finally, in view of 
Theorem 4.3, one obtains the following arithmetic Hirzebruch-Zagier theorem 
(cf. [BBK] Theorem 6.2): 

Theorem 8.4. The arithmetic generating series 

(8.2)  
m>O 

isa holomorphic modular form in M(D, XD)  with values in 5ii (K, D pre), i.e., an ele-

ment ofM(D, XD) ®Q 	( 'K, Dp re) 

9 Arithmetc intersection numbers 

The first Chern form of the line bundle Mk (E) equipped with the Petersson metric 
is equal to 

Cl (.A.'1k(E), 	Met) = 27rik 

where 9 denotes the Kähler form (5.5). Consequently, voln(YK) = K( — l) can also be 
regarded as the geometric seif intersection number M1 (2) 2  of the line bundle of modu-
lar forms of weight 1. Moreover, Theorem 7.1 can be rephrased by saying that the inter-
section ofthe geometric generating series (4.2) and Cl (Mk()) is given by 

A() •cl(Mk()) = 	(K(1) .E2(,0), 

where E2(7- . 0) E M(D, XD)  is the Eisenstein series (7.2). 
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In view of this result it is natural to ask, what the intersection of the arithmetic gen-
erating series (8.2) with the c1ass1 (k) 2  E CH (. 'K, Dpre)Q i s. 

Theorem 9.1. Recall Assumption 8.1. We have thefollowing identities ofarithmetic 
intersection numbers: 

(9.1) 	
) 

1(k)2 = 	(K(-1) 
(~K(-1) 	(( 

_1) + 	+ + ulog(D)) 
. E(T, 0), 2 	—1) 2 2 

where E2(r, 0) denotes the Eisenstein series defined in (7.2). In particular, the arithmetic 
selfintersection number ofMk  is given by: 

«K(-1 )

1((1 	- 1 3- 	K 	) 	- 1(7.L) ivk 	K') + 	+—+--iog 
 (1) 	2 2 

Let us briefly indicate how Theorem 9.1 can be proved (see [BBK] Theorem 6.4 for 
details). For simplicity we assume that M(D,XD) = UE2(r,0) (that is D = 5, 13, or 
17). In this case, regarding Theorem 8.4, we only have to determine the constant term of 
A('i-) . i (Mk) 2 , that is, essentially the arithmetic seif intersection number of .Mk. The 
hypothesis on M(D, XD)  implies in particular that Gm  is the logarithm ofthe Petersson 
metric ofa holomorphic Borcherds product with divisor T(m) for any m. 

Letp be any prime that is split in (9K  (that is XD(P) = 1). lt can be shown that there 
exist infinitely many m2 and infinitely many m3, such that XD(mj) = 1, T(m 2 ) is disjoint 
to the boundary, and such that all possible intersections of T(p), T(m 2 ), T(m3) 011 XK 
are proper. 

Let F1, F2, F3 be the Borcherds products on XK with divisors T(p), T(m 2 ), T(m 3 ), 
respectively. By the bilinearity of the arithmetic intersection pairing we may assume that 
these Borcherds products are integral, i.e., have trivial multiplier System and integral ra-
tional Fourier coefficients. We may further assume that they all have the same (suffi-
ciently divisible) weight k. Thus they define Sections of Mk. The definition of the arith-
metic seif intersection number then says: 

= 	(h(div(Fi) - div(F2 ) - div(Fi ))) 

(9.3) 	+ 	1 
2 	(— 

log Fi Met) * 
(— 

log F2Mpet) * 
(— 

log F3 fl pe ). 
(27ri) 

XK(U) 

Here the integral is over the star product of the Green functions corresponding to the 
sections F of Mk. lt describes the intersection at the Archimedian place. Moreover, 
h XK — Spec(71) denotes the structure morphism. The first summand is the intersec-
tion at the finite places. 

Using growth estimates for certain boundary terms, one finds that the integral in 
(9.3) is equal to 

k2f G2+k f —logF2p1+ 	f 	—logF3p, 

XK 	 T(p)' 	 T(p)'fldiv(F2 )' 
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where T(p)' denotes the strict transform of the divisor T(p) in XK ([BBK] Theorem 
3.13). The integral of G was computed in (7.6). 

There is a birational morphism c from the modular curve Xo(p) onto T(p) (which 
extends to integral models over ?L[l/p]).  This fact can be used to interpret the sum ofthe 
latter two integrals as a star product on the modular curve Xo (p), where it can be evalu-
ated by means ofthe resuits of[Kü2] or [Bost]. 

The finite intersection can also be reduced to a finite intersection on the minimal reg-
ular model ofXo(p) by applying the projection formula for the morphism V. 

lt turns out that the finite contribution and the Archimedian contribution fit to-
gether rather nicely and yield the desired result up to contributions from the fiber above 
p. But now we can varyp, that is, take different Borcherds products for the F, to get the 
precise formula for 

In the general case, one can argue similarly, since it can be proved that CH / (XK ) Q  

is already generated by Hirzebruch-Zagier divisors T(p) of prime discriminant p (with 
XD(p) = 1), see [BBK] section 4.2. 

Formula (9.2) provides evidence for a conjecture of Kramer, based on results ob-
tained in [Kr] and [Kül], saying that the arithmetic volume of an arithmeticvariety as 
XK is essentially the derivative of the zeta value for the geometric volume of XK ((E). In 
the same way, it provides further evidence for the conjecture of Kudla on the constant 
term of the derivative of certain Eisenstein series [Ku2], [Ku3], [Ku5], and the conjecture 
of Maillot and Roessler on special values of logarithmic derivatives of Artin L-func-
tions [MaRo]. 

lt would be very interesting to find a more conceptual explanation for the fact that 
the geometrie intersection A(T) . cl(Mk(F)) is proportional to A(r) . i (Mk) 2 . 

We may apply Theorem 9.1 and (7.6) to compute the Faltings height of T(m) with 
respect to Mk (as defined in [BKK1] and [BBK] section 1). We find: 

Theorem 9.2. Recall Assumption 8.1. If T(m) is a Hirzebruch-Zagier divisorwhich 
is disjoint to the boundary ofXK,  then the Faltings height of its mode! T(m) e Z' (XK) is 
given by 

ht(T(m)) = _2k2  voln(T(m)) 

Here am (s) is the generalizeddivisor sum defined in (7.7). 

We conclude by noticing that Assumption 8.1 can be avoided in the above theorems 
by introducing a level structure to rigidify the moduli problem. For instance, in [BBK] 
the full level N-structure is used (where N is an arbitrary integer > 3). Then the moduli 
problem is represented by an arithmetic variety over 1/N]. However, since N is in-
verted in the base, one only gets arithmetic intersection numbers in 
IRN = IR/( 

plN Q log(p». 
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M.VanderPut, 
M.F.Singer 
Galols Theory of 

Linear Differential 

Equations 

Grundlehren 328 

Berlin u. a., Springer, 2003, 456 5., € 89,95 

Let me begin with my overall impression, in 
two words: at last! At last, a thorough expo-
sition, including most of the facets it presents 
nowadays, of this beautiful analogue of the 
Galois theory of field extensions, initiated by 
Liouville on the footsteps of Galois, en-
riched by Lie's introduction of infinitesimal 
groups, turned into a theory by Picard and 
Vessiot, and forgotten for half a century un-
til Kolchin gave it its "modern" form in a 
fundamental 1948 article ([Ko], 87-128). 
The theory consists, in short, of replacing 
polynomials over a field K by linear differen-
tial operators over a differential field (K, (9), 
splitting fields by Picard-Vessiot differential 
extensions, and finite groups by linear alge-
braic groups: you then still get a Galois dic-
tionary. When K is a global object such as 
C(z), you can localize at one of the singular 
points ofthe differential equation, say 0, and 
get an array of analogues of the inertia 
groups: the formal differential group after 
base extension to the field of formal powers 
series C((z)), or stopping half-way in the 
completion, the local analytic differential 
group over the field of convergent powers 
series C({z}). All this, and much more, will 
here be found. 

This laudative introduction does not mean 
that 1 praise everything in the book, and 1 
give some hopefully constructive criticisms 
below. lt does not mean either that our 
authors's predecessors must be forgotten: 
Kaplansky's book [Kai played a crucial role  

in publicizing Kolchin's Picard-Vessiot theo-
ry (and the Zariski topology). lt did lack 
foundational material on Picard-Vessiot ex-
tensions, but this is remedied by Magid's 
monograph [M]. Several articies (see in par-
ticular [5], [Bei, [Le]) also helped, and in spite 
of their inaccessible language or distribution, 
we can further mention lecture notes such as 
[P] or [La]. Finaliy, a special notice should be 
made of Kolchin's two books and ofhis col-
lected works [Ko], which go beyond the (lin-
ear) Picard-Vessiot theory. In fact, non-line-
ar differential Galois theory is still under 
construction, with new view-points provided 
by current work of Umemura, Pillay, Mal-
grange, and a synthesis is clearly required. 
Wisely for a Grundlehren volume, the book 
under review, which we now analyse in a 
more details, restricts to the linear case. 

Chapter 1 gives a self-contained presenta-
tion of the foundational material on Picard-
Vessiot extensions and of the Galois corre-
spondance, all in 30-odd pages: a real treat. 
One difficulty in this type ofexposition is the 
choice one has to make between the various 
interpretations of a linear differential equa-
tion: an element of the ring of differential op-
erators KL3],  a differential system, a module 
over K[0] (all these are presented, together 
with their relationships, in Chapter 2), or the 
localization at the generic point of a vector 
bundle with connection (which will appear 
in Chapter 6). Chapter 2 also introduces the 
constructions of linear algebra in the differ-
ential context, leading to the language of 
tannakian categories, and to the first exam-
ple (here between differential equations and 
representations of groups) of the numerous 
equivalences of categories to be met in the 
book. The usefulness ofthis approach is weil 
conveyed by the one-line proof it provides 
(p. 56, £. 1) that the fixed field under a nor-
mal subgroup is a Picard-Vessiot extension. 
Chapter 3 concerns the local theory over a 
field K of type C((z)), with the classical di-
chotomy between regular and irregular sin-
gularities: in the second case, determining 
factors, here called eigenvalues, produce the 
exponential torus, a subgroup of the formal 
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Galois group which is in general not covered 
by the formal monodromy. This leads to an 
equivalence of categories between differen-
tial equations over K and a category Gr 1  
made of down-to-earth triples. Chapter 4 
goes global, and describes general methods 
for computing differential Galois groups, 
which are supported by ingenious (and often 
efficient) algorithms; this is probably their 
first appearance in book form. lt is interest-
ing to note that just as in the study of £-adic 
representations, Jordan's theorem on finite 
subgroups of GL plays an important role; 
further links with ciassical Galois groups are 
given at the end of this chapter. 

For most of the rest of the book, the con-
stant field is C, allowing for an analytic de-
scription of the Galois group. Thus, Chap-
ters 5 and 6 study regular singular systems 
over the Riemann sphere, and their re-inter-
pretation, using GAGA, as local systems 
over the complement of the singular locus, 
or equivalently, as representations ofits fun-
damental group (cf. §§ 6.2 and 6.4); here, the 
monodromy group is Zariski dense in the 
Galois group. The various forms of the Rie-
mann-Hilbert problem are clearly stated, 
leading to Bolibrukh's negative (and some-
times positive) solution if one searches for a 
connection with logarithmic singularities on 
a trivial bundle. Chapters 7, 8, and 9 concern 
the much more difficult case of irregular sin-
gularities, with the study of asymptotic ex-
pansions and the Stokes phenomenon, their 
refined Gevrey versions and multisumma-
tion, yielding Stokes matrices and Ramis's 
theorem, according to which the local analy -
tic Galois group is topologically generated 
by the modromy, the exponential torus, and 
the Stokes group. Differential equations 
over C({z}) are classified in terms of the 
Stokes sheaf; and the category they form is 
shown to be equivalent to a refined version 
Gr2  of Gr 1 , which is still easy to describe. The 
inverse problem of differential Galois theory 
is the subject ofChapter 11, in both local and 
global contexts, and from both theoretical 
and constructive points of view. Chapter 12 
offers tentative approaches to moduli spaces  

ofdifferential equations. Finally, Chapter 13 
describes the work of Matzat and the first 
author on iterative differential equations 
over fields of finite characteristic, and their 
applications top-adic differential equations. 

Needless to say, a book with such a large 
scope cannot maintain a homogeneous level, 
and although its basic resuits require only 
standard notions from multilinear or com-
mutative algebra, further prerequisites are 
needed in its more advanced parts. Fortu-
nately, the authors have added three useful 
appendices to come to the rescue. They re-
spectively deal with algebraic geometry, in-
cluding a short course on linear algebraic 
groups; tannakian categories, pedagogically 
introduced by Galois categories and affine 
group schemes; and sheaf cohomology. (A 
last appendix concerns the Picard-Vessiot 
theory of linear partial differential equa-
tions.) 

Now for the criticisms. The book is not 
free of misprints, and I'll here give only a 
sample: on p. 31, £. 1-, read C[G], or 0(G), 
instead of 0[G]; complete the sentence on 
p. 220, £?. 17-20; add "are invertible" on p. 
249, £. 15-; on p. 340, £. 18, read "reducible" 
instead of "irreducible"; erase "non" on 
p. 341, £. 17, ... But on the content itself, 1 
think the book would have gained from the 
following additions: 

- examples of how to compute the Galois 
groups of some ciassical families of differen-
tial equations (for instance, rigidity deserved 
more than the passing remark at the end of 
§5.1; more could have been said on Lie alge-
braic methods, as in the work of N. Katz, or 
on the general algorithm of Compoint and 
Singer in the reductive case); 

- a better presented index: e.g., the word 
"defect" has two completely different mean-
ings in the book (p. 177, and p. 275), while 
the index lists only one. 

- a more thorough bibliography, or rather, 
a more homogeneous one: there is nothing 
wrong with quoting very recent articles or 
preprints whose impact it is still difficult to 
evaluate, but basic papers such as [F] or [A] 
should not be forgotten; 
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- last, but not least: more detailed com-
ments on the history ofthe recent resuits cov-
ered by the book. 1 found such shortcomings 
more noticeable in its analytic part (see, for 
instance, Lemma 7.59), even if scattered 
comments (7.25, 8.11, ...) do appear along 
the text. lt would have been useful to gather 
them in the conclusion of each chapter, as 
was actually done at the end of Chapters 3 
and 11. Also, unnecessary adverbs some-
times accompany the attributions, e.g. on p. 
229, where Ramis's theorem is "originally" 
due to Ramis, or on p. 79, where Katz's cri-
terion for formal irreducibility "also" ap-
pears in a paper of Katz. 

When presenting a theory, authors are of 
course free to choose their favoured ap-
proach, or to put the stress on what they be-
lieve to be the final word, but this book is 
bound to become the reference on the sub-
ject, and it is a pity to downplay the role of 
other view-points (say, for instance, the ana-
lytic approach to multisummation via in-
verse and direct Laplace transforms, p. 227). 
Fortunateiy, references such as [Ko] (see in 
particular the second author's commentary, 
pp. 527-524), or the preface of[Ba], provide 
enough information to answer the above cri-
ticisms. 

These are minor points. The book is in fact 
already becoming a standard reference, not 
only for differential Galois theory proper, 
but also for the many areas which have ac-
companied its recent growth: tannakian ca-
tegories, the algorithmic aspects of differen-
tial algebra and of representation theory, 
multisummabiiity, the Riemann-Hilbert and 
other inverse problems, moduli... 011 top of 
its intrinsic interest, differential Galois theo-
ry is an ideal testing ground for these the-
ories. Any (young or not so young) student 
working in these areas will benefit from this 
book, which clearly belongs to all mathema-
tical libraries. 
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K. Fritzsche, H Grauert 

From Holomorphic 
Functions to Complex 
Manifolds 
Grad Textsin Math 213 

Berlin u. a., Springer, 2002, 392 5., € 64,95 

In der Einleitung zum Buch von Klaus Fritz- 
sehe und Hans Grauert wird das Ziel defi- 
niert: „The aim of this book is to give an un- 
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derstandable introduction to the theory of 
complex manifolds", und der Leser soll mit 
den wichtigsten Zweigen und Methoden der 
Komplexen Analysis vertraut gemacht wer-
den. Hierbei können die Autoren auf ihr 
Buch „Einführung in die Furiktionentheorie 
mehrerer Veränderlicher", bzw. dessen eng-
lische Fassung zum Teil zurückgreifen. 

Im ersten Kapitel werden die funktionen-
theoretischen Notationen eingeführt zu 
komplex differenzierbaren und holomor -
phen Funktionen, dem Cauchyschen Inte-
gralsatz in mehreren Veränderlichen und ho-
lomorphe Abbildungen. Bei den ersten Er-
gebnissen zur Fortsetzbarkeit holomorpher 
Funktionen, finden sich der erste Riemann-
sche Hebbarkeitssatz, aber auch Sätze über 
Reinhardtsche Körper und Hartogsfiguren. 

Letztere stehen am Anfang der Theorie 
der Holomorphiegebiete im zweiten Kapitel. 
Zentrale Resultate sind der Satz von Cartan-
Thullen und Sätze in Zusammenhang mit 
dem Levi-Problem. 

Das dritte Kapitel über Analytische Men-
gen enthält den Weierstraßschen Vorbe-
reitungs- bzw. Divisionssatz und als ein 
Hauptergebnis den Fortsetzungssatz von 
Remmert und Stein. 

Als bekanntes Korollar wird der Satz von 
Chow im vierten Kapitel bewiesen, welches 
die Uberschrift „Komplexe Mannigfaltig-
keiten" trägt. Hier werden in durchaus kom-
pakter Form die wesentlichen Notationen 
und Definitionen zusammengestellt und in 
direkter Weise die benötigten niederen Ko-
homologiegruppen eingeführt. Als Beispiele 
komplexer Mannigfaltigkeiten finden sich 
komplexe Ton, Hopf-Mannigfaltigkeiten, 
der komplex projektive Raum und allgemein 
projektiv algebraische Mannigfaltigkeiten, 
sowie Graßrnannsche Mannigfaltigkeiten. 
Verzweigte Uberlagerungen und als Beispie-
le konkrete Riemannsche Flächen werden 
zusammen mit monoidalen Transformatio-
nen und dem Konzept der meromorphen 
Abbildung ebenfalls in diesem Kapitel be-
handelt. 

Ein neues Kapitel über Stein-Theorie wur-
de eingefügt: Hier kommen die Autoren al- 

lein mit Potenzreihenmethoden und der Lös-
barkeit des Cousin-I-Problems aus, um einen 
Beweis der Lösung des Levi-Problems dar -
zustellen. 

Die abstrakteren Konzepte in Zusammen-
hang mit der Theorie der kohärenten Gar -
ben und höheren Kohomologiegruppen wer-
den im vorliegenden Buch bewusst aus-
gespart - Sprache und Denkweise unter-
scheiden sich von denjenigen der Algebrai-
schen Geometrie. 

Kählersche Geometrie ist das Thema des 
sechsten Kapitels. Hier findet der Leser eine 
Einführung in die Komplexe Differential-
geometrie mit dem Ziel, modulo der Existenz 
schwacher Lösungen der entsprechenden li-
nearen, partiellen Differentialgleichungen, 
den Einbettungssatz für Hodge-Mannigfal-
tigkeiten zu beweisen. 

Das letzte Kapitel gibt einen Ausblick auf 
neuere Entwicklungen, insbesondere die 
Theorie streng pseudokonvexer Gebiete in 
komplexen Mannigfaltigkeiten, der zugehö-
rigen Differentialoperatoren und Sobolev-
Räume, das Neumann-Problem und die er-
forderlichen „subelliptic estimates". 

Das Buch erschien in der Reihe „Graduate 
Texts in Mathematics". Es wendet sich in 
diesem Sinne an fortgeschrittene Studieren-
de und jeden, der sich hier einarbeiten will, 
und enthält interessante Ubungsaufgaben. 
Auch der Fachmann wird dieses Buch zu Ra-
te ziehen wollen, das sicherlich als eine Ein-
führung in die Theorie der komplexen Man-
nigfaltigkeiten zu den Standardreferenzen 
gehört. 

Marburg 	 G. Schumacher 
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R. W. Carroll 

Caiculus Revisited 

Math. and its Appi. 554 

mutativen Eichtheorie, Connes-Kreimer-
Hopfalgebren und Feynmanndiagramme, 
und „Fuzzy"- Physik genannt. 

Das vorliegende Buch von Robert W. Car-
roll versucht, eine ungezwungene („infor-
mal") Darstellung dieser Entwicklungen zu 
geben. Dabei steht größtenteils die nicht-
kommutative Differential- und Integralrech-
nung im Mittelpunkt. Einen Uberblick über 
den Inhalt des Buches geben die Kapitel-
überschriften: 

Dordrecht u. a., Kluwer, 2002, 532 S., 
€ 184,- 

Das Vorwort des Buches beginnt mit den 
Sätzen:,, lt can easily be maintained that 
ciassical caiculus ä la Newton and Leibniz, 
along with subsequent embellishment, is one 
of the greatest achievements of the human 
intellect ( ... ). Within this (suitably embellish-
ed) ciassical calculus as a language one can 
(arguably) find most of ciassical mathema-
tics and ciassical theoretical physics (inclu-
ding number theory and some quantum me-
chanics)". 

Der Autor führt dann weiter aus: In den 
letzten Jahren haben Forschungen in der 
theoretischen Physik (Stringtheorie, Quan-
tengravitation, Quantenfeldtheorie) und der 
Mathematik (nichtkommutative Geometrie, 
Quantengruppen, diskrete Mathematik) zu 
einer Weiterentwicklung und Verallgemeine-
rung der Calculustechniken geführt. Dabei 
erscheinen Ideen aus klassischen mathemati-
schen Gebieten (z. B. Knotentheorie, Lie-
Theorie, Homologie) in einem neuen Licht. 
Die nichtkommutative Differential- und In-
tegralrechnung ist vor allem in der Theorie 
der Quantengruppen und Quantenräume 
und in der nichtkommutativen Geometrie 
fest verankert. Darüber hinaus gibt es eine 
Vielzahl von Querverbindungen und Berüh-
rungspunkten zu unterschiedlichen Gebieten 
und Methoden der Mathematik und Physik. 
Stichpunktartig seien hier etwa q-deformier-
te spezielle Funktionen, Differentialrechung 
und diskrete Strukturen, integrable Systeme, 
Seiberg-Witten-Abbildung der nichtkom- 

1. Basis for quantum groups 
2. Calculus and algebra 
3. Differential calculi 
4. More on q-analysis 
5. Remarks on quantum transmutation 
6. Discretization and quantum mechanics 
7. Discrete calculus 
8. Fuzzy physics and matrix geometry 
9. Further aspects on finite quantum me-

chanics 
10. Integrable systems 
11. Aspects of gauge theory 
12. Pointless spaces and quantum gravity 

Für die meisten der im Buch behandelten 
Gebiete würde eine rigorose Darlegung mit 
vollständigen Beweisen eine eigene Mono-
graphie erfordern. Der Autor hat deshalb ei-
nen anderen Zugang gewählt: Wie im Vor-
wort ausgeführt stellt er sich das Ziel, das 
Material und die tragenden Ideen für den 
„informierten Anfänger" zu entwickeln. 
Exakte Definitionen und Beweise der Resul-
tate werden dann gegeben, wenn sie - aus 
Sicht des Autors - für das Verständnis der 
Darlegung wesentlich sind. Viele mathemati-
sche und physikalische Grundbegriffe wer-
den als bekannt vorausgesetzt. Große Teile 
des Buches sind in der Darstellung sehr eng 
an ausgewählte Originalarbeiten oder an 
Kapitel aus anderen Monographien ange-
lehnt, in denen der Leser weitere Details und 
Beweise finden kann. Stoffauswahl und 
Schreibstil entsprechen mehr dem theoreti-
schen Physiker als dem Mathematiker. Auch 
die Referenzliste von 690 Publikationen be-
steht überwiegend aus Arbeiten von theo-
retischen und mathematischen Physikern. 
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Das Buch enthält eine Fülle von konkre-
tem Material und eine Vielzahl von explizi-
ten Formeln. Differentialkalküle auf Koor-
dinatenalgebren von Quantenräumen und 
damit zusammenhängende Begriffe und 
Strukturen (q-deformierte Ableitungen, Dif-
ferentialoperatoren, Heisenbergalgebra etc.) 
machen etwa die Hälfte des Buches aus. Die 
kovariante Differentialrechnung auf Quan-
tenvektorräumen spielt ein zentrale Rolle. 
Für kovariante Differentialkalküle auf 
Quantengruppen wird in den Abschnitten 
3.1 3.3 die allgemeine Theorie fast vollstän-
dig entwickelt, es wird aber kein einziges Bei-
spiel eines kovarianten Kalküls auf einer 
Quantengruppe gegeben. Die Worono-
wicz'schen 3D- und 4D-Kalküle auf der 
Quantengruppe SUq (2) lassen sich jedoch 
bereits auf etwa 2 Seiten vollständig darstel-
len (siehe [KS], S. 497 und 504). Mehr noch: 
Die grundlegende Konstruktionsmethode 
für bikovariante Kalküle auf koquasitrian-
gulären Hopfalgebren (siehe [J] und [KS], 
14.5) kommt im Buch gar nicht vor! Die 
Klassifikationsresultate aus [BS], [HS] zei-
gen aber gerade, dass - unter milden Voraus-
setzungen - alle bikovarianten Kalküle auf 
den Standardquantengruppen mit dieser 
Methode beschrieben werden. Fordert man 
noch, dass der Linksmodul der 1-Formen 
von den Differentialen der Matrixgenerato-
ren erzeugt wird, dann gibt es sogar nur we-
nige ausgezeichnete bikovariante Kalküle 
auf den Standardquantengruppen. Eine ana-
loge Voraussetzung ist auch für die Eindeu-
tigkeit kovarianter Kalküle auf Quantenvek-
torräumen notwendig (siehe [PW]). Die ent-
sprechenden Bemerkungen aufS. 4-20 sind 
damit irreführend für den Leser. 

An verschiedenen Stellen wird das Mate-
rial zu unkritisch und zu wenig aufgearbeitet 
aus den meist physikalischen Originalarbei-
ten übernommen. Bei dem Theorem 2.1 auf 
S. 3-12 wird der lückenhafte Beweis aus der 
Originalarbeit reproduziert (siehe etwa [KS], 
14.4, für einen vollständigen Beweis). Man-
che Herleitungen haben nur formalen Cha-
rakter (etwa die meisten Rechnungen auf 
den Seiten 4-7 bis 4-9 und 4-12 bis 4-15  

mit der universellen R-Matrix für komplexes 
q), die abgeleiteten Formeln gelten aber rigo-
ros. Für den Leser ist dies nur schwer er-
kennbar. Hier hätte ich mir eine genauere 
Kommentierung des Authors gewünscht. 

Bei der Vielfalt des im Buch behandelten 
Materials und der zahlreichen Beispiele wä-
ren eine Zusammenstellung häufig benutzter 
Begriffe und eine bessere Abstimmung in 
den Bezeichnungen notwendig gewesen. Die 
auf S. 1-13 gegebene kurze Definition der 
quantisierten Envelopingalgebra ist für den 
Nichtexperten kaum verständlich (der Un-
terschied zwischen h-adischem und komple-
xem Fall wird gar nicht erklärt). Die Hopf-
algebra Uq (S12) kommt auf den Seiten 1 —11, 
4-22 und 4-24 jeweils mit unterschiedlicher 
Form der Generatoren vor. Die Quanten-
ebene wird auf Seite 2-5 durch die Glei-
chungyx = qxy und auf der Seite 4-6 durch 
xy = qyx defniert. Bei der Definition der 
Dixmierspur auf S. 8-24 wird das Symbolw 
nicht erläutert (w ist hier ein singulärer Zu-
stand auf der W*Algebra  PC(N)). 

Welchem Leser nutzt das vorliegende 
Buch? 

Dem Experten oder Forschenden auf ei-
nem der behandelten Gebiete wohl weniger, 
denn er wird vorwiegend auf die originalen 
Arbeiten und Monographien zurückgreifen. 
Dem interessierten Leser, der über keine 
Vorkenntnisse verfügt, wohl kaum, denn er 
wird eher eine geeignete Einführung oder ein 
Lehrbuch zur Hand nehmen. Das Buch ist - 
nach den Worten des Autors - in der ersten 
Linie für den „informierten Anfänger" ge-
schrieben, d. h. für einen Leser, der bereits 
mehr oder weniger gute Vorkenntnisse hat 
und sich über ein angrenzendes Gebiet infor-
mieren will oder für einen Mathematiker 
bzw. theoretischen Physiker, der über die 
Anwendungen in der theoretischen Physik 
bzw. die mathematischen Strukturen lesen 
will. Viele der neu erscheinenden mathemati-
schen Bücher sind Lehrbücher über Gegen-
stände, über die es bereits zahlreiche aus-
gezeichnete Lehrbücher gibt, oder spezielle 
Monographien, die vorwiegend an die Ex-
perten des Gebietes gerichtet sind. Bücher 
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für den „informierten Anfänger" (wie Car-
roh's Buch) erscheinen zu selten. Durch die 
Materialfülle, die zahlreichen konkreten 
Formeln und Beispiele, und die umfangrei-
chen Querverbindungen von Mathematik 
und theoretischer Physik werden sicher viele 
Leser interessante Aspekte in dem vorliegen-
den Buch von R. W. Carroll finden. 

Rel erences 

S. G. Krantz, H. R. Parks 

The Implicit Functlon 
Theorem, History, 
Theory, and Applica-
tions 

[BS] P. Baumann und F. Schmitt, CiassUica-
tion of bicovariant d(fferential calculi an 
quantum groups, Commun. Math. Phys. 
194 (1998), 71-86. 

[HS] L Heckenberger und K. Schmüdgen, 
Class(fication of bicovariant d(fftrential  cal-
culi on the quantum groups SL q (n + 1) and 
SPq (2fl), J. Reine Angew. Math. 502 (1998), 
141-162. 

[J] B. Jurco, D(fferential  calculi on quantized 
simple Lie groups, Lett. Math. Phys. 22 
(1991), 177-186. 

[KS] A. Klimyk und K. Schmüdgen, Quantum 
Groups and Their Representations, Sprin- 
ger-Verlag, Heidelberg, 1997. 

[PWJ W. Pusz und S.L. Woronowicz, Twisted 
second quantization, Rep. Math. Phys. 27 
(1989), 231-257. 

Leipzig 	 K. Schmüdgen 

Basel, Birkhäuser, 2002, 176 S., € 73,- 

Der Stoff einer drei- bis viersemestrigen 
Analysis-Vorlesung wie wir sie in Deutsch-
land lehren oder lehren sollten beinhaltet ei-
nige zentrale Resultate, die Ausgangspunkte 
wichtiger Entwicklungen der (höheren) Ana-
lysis sind. Man denke etwa an den Hauptsatz 
der Differential- und Integralrechnung und 
Lebesgue-Integration, den Gauß'schen Satz 
oder den Satz über implizite Funktionen. 
Diese, und andere Resultate können in der 
Vorlesung nur unter „Standard"-Annahmen 
diskutiert werden und längst nicht alle wich-
tigen Anwendungen können erwähnt oder 
gar behandelt werden. (Pro-) Seminare bie-
ten eine gute Gelegenheit hier sinnvoll Vor-
lesungen zu ergänzen. - Material gibt es viel, 
gute Bücher, auch für Studenten verständ-
lich und bezahlbar, hingegen wenige. 

Steven Krantz und Harold Parks legen 
nun ein Buch mit dem Titel „The Implicit 
Function Theorem. History, Theory, and 
Applications" vor, welches von der Inten-
tion der Autoren geeignet sein sollte, als Se-
minartext im obigen Sinne zu dienen. Das 
Buch beginnt mit 12 Seiten Einleitung, die 
ganz nett zu lesen sind, sodann gibt es 20 Sei-
ten „History", die mich nicht so begeistern 
(entweder sollte man „Geschichte der Ma-
thematik" sehr ernsthaft betreiben oder sein 
lassen), aber viele werden diesen Abschnitt 
gern mögen. Schließlich geht's los: Kap. 3: 
Basic Ideas, Kap. 4: Applications, Kap. 5: 
Variations and Generahisations, Kap. 6: Ad-
vanced Implicit Function Theorems. Zusam- 
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men 107 Seiten „core text" und 20 Seiten 
„History". Dazu 6 Seiten teilweise nutzloses 
„Glossary" (Besov Space: A space of func-
tions in which smoothness is measured by 
certain p-power integral expressions), 76 
Referenzen auf 9 Seiten (!) und ein kurzer In-
dex. Hierfür verlangt der Verlag € 73,— und 
ich kann mit gutem Gewissen von keinem 
Studenten erwarten, diesen Preis zu bezah-
len. - Und dies ist sehr schade. Wir haben es 
nämlich mit einem sehr geeigneten Semi-
nartext zu tun, ein gut geschriebenes Buch, 
welches Verbreitung unter Mathematikstu-
denten mit besonderen Interessen an der 
Analysis verdient. 

Einige Details: In Kapitel 3 werden mehre-
re, vom Ansatz her verschiedene Beweise des 
Satzes über implizierte Funktionen gegeben 
(Dinis Beweis mittels Induktion, der „klassi-
sche" Beweis - Definitheit der Jacobi-Ma-
trix, der Fixpunkt-Satz-Beweis) und dann 
werden die typischen Folgerungen (Satz von 
der Umkehrabbildung, Rang-Satz) gezogen. 
Sehr schön das Gegenbeispiel am Ende: Der 
Satz von der Umkehrabbildung benötigt die 
Stetigkeit der Ableitung. 

Das Kapitel „Anwendungen" behandelt 
u. a. Probleme aus der Theorie gewöhnlicher 
Differentialgleichungen, Homotopie-Me-
thoden zur Lösbarkeit nichtlinearer Glei-
chungen und die äquivalenten Definitionen 
von Flächen. Besonders erwähnenswert: der 
Beweis der Glattheit der Abstandsfunktion 
x dist(x, S), S c 1R abgeschlossen. Wei-
tere Anwendungen finden sich in Kapitel 5, 
wo es um den Weierstraß'schen Vorberei-
tungssatz, implizierte-Funktionen-Sätze für 
nicht differenzierbare Funktionen oder spe-
zielle, singuläre Fälle geht. Das letzte Kapitel 
behandelt tiefere Resultate, etwa Hadamards 
globalen Satz über implizite Funktionen und 
vor allem den Satz von Moser-Nash. 

Nochmals: Ein schönes Buch für ein inte-
ressantes (Pro-)Seminar, aber mit nur ca. 
130-140 Seiten ernsthaften Text viel zu teu-
er! Warum nicht eine Paperback-Ausgabe 
für €20,—? 

Swansea 	 N. Jacob 

C. R. Led1m-Greeu, 
S. McKay 

The Structure of C. R. Leedham-Green, 
GroupsofPrime S. McKay 

Power Order 
The Structure of 

Mouogr.27 
Groups of Prime Power 
Order 
London Math. Soc, 

Monogr.27 

Oxford University Press, 2002, 346 5., £ 66,- 

Das Spektrum der endlichen Gruppen 
spannt sich zwischen den einfachen Gruppen 
auf der einen Seite und den p-Gruppen, also 
den Gruppen von Primzahlpotenzordnung, 
auf der anderen Seite. Sind erstere klassifi-
zierbar, so haben letztere sich wegen ihrer 
ungeheuren Vielzahl allen Klassifikations-
versuchen erfolgreich widersetzt. Das vorlie-
gende Buch unternimmt das Unmögliche: Es 
beweist einen Struktursatz für endliche 
p-Gruppen, der eine erstaunlich weitgehende 
Klassifikation nicht nur ermöglicht, sondern 
bei der auch die interessanten p-Gruppen am 
Anfang der Klassifikation kommen. 

Entscheidendes Strukturmerkmal end-
licherp-Gruppen ist ihre Nilpotenz, also eine 
Eigenschaft, die schwächer als Kommutati-
vität und stärker als Auflösbarkeit ist: Ist G 
eine Gruppe, so ist ihre absteigende Zentral-
reihe durch iterierte Kommutatorbildung 
mit der Gesamtgruppe G gebildet, in For-
meln: 

'y i (G) := G,y(G) := [G,y(G)]. 

G heißt nilpotent, falls diese Reihe bei der 
1-Untergruppe {l} = 'y + i(G) terminiert, 
wobei das kleinste c mit dieser Eigenschaft 
dann die (Nilpotenz-)Klasse c(G) von G 
heißt. Ist die Klassifikation der p-Gruppen 
der Klasse 1, also der abelschen Gruppen, 
noch eine Ubungsaufgabe in der Algebra, so 
muss man bei Klasse 2 bereits aufgeben. Der 
zentrale Begriff des vorliegenden Buches ist 
der Begriff der Koklasse: Eine p-Gruppe der 
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Ordnung p' hat die Koklasse cc(G) 
n - c(G) = a, wo = 

a+1  Klassischerweise sind p-Gruppen ma-
ximaler Klasse, also von der Koklasse 1, un-
tersucht worden. Bei diesen steigt die abstei-
gende Zentralreihe so langsam wie möglich 
ab, d.h. aI =l,a2=a3= ... =0. Die Be-
obachtung, die am Anfang der dargestellten 
Theorie stand (etwa 1980), ist diese: Jede 
p-Gruppe maximaler Klasse hinreichend 
großer Ordnung hat ein ziemlich großes ge-
meinsames epimorphes Bild mit der eindeu-
tig bestimmten unendlichen Pro-p-Gruppe 
maximaler Klasse. Letztere lässt sich leicht 
als Erweiterung eines p-adischen Gitters 
vom Rangp - 1 mit einer zyklischen Gruppe 
der Ordnungp konstruieren, wobei die inva-
rianten Teilgitter durch Inklusion linear ge-
ordnet sind. Dies ist das einfachste Beispiel 
einer einreihigen p-adischen Raumgruppe. 
Kompliziertere treten bei größeren (end-
lichen) Koklassen auf, aber für jede feste Ko-
klasse bis auf Isomorphie nur endlich viele. 
Der Struktursatz, der den Vergleich einer be-
liebigen endlichen p-Gruppe G von gegebe-
ner Koklasse mit einem dieser endlich vielen 
einreihigenp-adischen Raumgruppen dersel-
ben Koklasse ermöglicht, ist ein auf den ers-
ten Blick kontraintuitiver Satz, der für unge-
rade Primzahlenp so lautet (Seite 129): 

Ist G eine p-Gruppe der Koklasse r, so hat 
G einen Normalteiler der Nilpotenzklasse 1 
oder 2 vom Index höchstens p2 1 

+r-3 

Dieser Satz hat die überraschende Kon-
sequenz, dass p-Gruppen, die im Sinne der 
Nilpotenzklasse weit weg von abelschen 
Gruppen sind, also eine kleine Koklasse ha-
ben, im Sinne der Länge der gewöhnlichen 
Kommutatorreihe sehr nahe bei abelschen 
Gruppen liegen. Der ursprüngliche Zugang 
zu diesem Ergebnis benutzte die Klassifikati-
on der einfachen algebraischen Gruppen 
über den p-adischen Zahikörpern. Im vorlie-
genden Buch, übrigens das erste zu diesem 
Themenkomplex überhaupt, wird ein ele-
mentarer Zugang gewählt, welcher im Prin-
zip von einem Studenten, der eine Grund-
vorlesung in Algebra gehört hat, verfolgt 
werden kann. So gut wie alle benötigten 

Hilfsmittel werden in dem Buch bereit-
gestellt: elementare p-Gruppentheorie, 
p-Gruppen maximaler Klasse, potenzreiche 
p-Gruppen, Liealgebren, lokale Körper, 
Pro-p-Gruppen, homologische Algebra, ein-
reihige p-adische Raumgruppen und ihre 
getwisteten Faktorgruppen. Das Buch endet 
mit einem Ausblick auf die Theorie der Pro-
p-Gruppen von linearem Koklassenwachs-
tum, einem derzeit sehr aktiven Forschungs-
gebiet. 

Dieses Buch wird ein Klassiker der 
p-Gruppentheorie und gehört ins Bücher-
regal eines jeden Gruppentheoretikers. Ohne 
wesentliche Vorkenntnisse vorauszusetzen, 
führt es von den Anfängen bis zur aktuellen 
Forschung und wird sicherlich der Gruppen-
theorie neue Freunde gewinnen. Es eignet 
sich etwa für eine fortgeschrittene Vorlesung 
über Gruppentheorie mit einem anschließen-
den Seminar. Der klare Stil des Buches und 
der ausführliche Notationsindex erlauben 
es, mit etwas Vorwissen, praktisch an jeder 
Stelle des Buches einzusteigen. 

Aachen 	 W. Plesken 

Berlin u. a., Springer 2001,268 S., €48,10 

In seinem 17. Problem hatte Hilbert gefragt, 
ob jedes auf IR nichtnegative Polynom 
f (x) =f(x i ..... x) als Summe von Qua-
draten rationaler Funktionen geschrieben 
werden kann, d. h. ob eine Gleichung 
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mit fi..... fr,  h e R[x] und h 54 0 besteht. 
Die Lösung (im bejahenden Sinne) gelang 
Artin 1926. Sein Beweis öffnete neue Bahnen 
und kann mit einiger Berechtigung als Ge-
burtsstunde der modernen reellen Algebra 
gesehen werden. Eine wesentliche Innova-
tion ist die Einführung von Anordnungen 
„abstrakter" Körper K, und (für 
char(K) 2) die Charakterisierung der 
Quadratsummen in K als der Elemente, wel-
che unter jeder Anordnung nichtnegativ 
sind. Der zweite entscheidende Schritt ist ein 
Spezialisierungsargument, das es erlaubt, 
von den Wertenf(x) für x e IR auf die Vor-
zeichen von f bezüglich der Anordnungen 
des Funktionenkörpers IR(x) = IR(x i ..... 
x) zu schließen. Diesen Schritt sieht man 
heute meistens eingebettet in das Transfer-
prinzip von Tarski, welches üblicherweise in 
der Sprache der Modelltheorie formuliert 
wird. Ein etwas anderer, ebenfalls auf Artins 
Ideen basierender Zugang wurde in den 
1950er Jahren von S. Lang weiterentwickelt 
und wird heute als Stellensatz von Artin-
Lang bezeichnet. 

Dies also ist der Ausgangspunkt für den 
Rahmen des Buches, wie dessen Untertitel 
ihn absteckt. Zu ergänzen wäre freilich, daß 
es den Leser bis an den Stand aktueller For-
schung führt. Von Hilberts Fragestellung 
und Artins Antwort ausgehend kann man 
den im vorliegenden Band beschrittenen wei-
teren Weg wie folgt skizzieren. Statt einer 
Charakterisierung der auf ganz 1R' nicht-
negativen Polynome studiert man allgemei-
ner die auf einer vorgegebenen Teilmenge 
S c lR' nichtnegativen, oder strikt positi-
ven, Polynome, und zwar für Mengen S der 
Form 

S={xElR'1 :fi(x)>0,...,fr (x)>0} 

mitfi .....fr  E IR[x]. (Solche Mengen S hei-
ßen basisch abgeschlossen.) An die Stelle der 
Summen von Quadraten von Polynomen 
tritt dabei die vonf,,. . . ‚J erzeugte Präord-
nung, d. h. der von diesen Elementen und al-
len Quadraten von Polynomen erzeugte 
Halbring T in IR[x]. Jedes f E T erfüllt of-
fenkundigf 5  ~ 0. Daher gilt dasselbe auch 

für jedes f E IR[x], welches eine Identität 
fs =f2" + t mit m > 0 und s, t E T erfüllt. 
Bemerkenswerter Weise gilt hiervon auch 
die Umkehrung: Jedes Polynom f mit 

> 0 erfüllt eine solche Identität. In ähn-
licher Weise kann man strikte Positivität 
kennzeichnen: Für ein Polynom f gilt 
f[ > 0 genau dann ‚ wenn eine Identität 
fs = 1 + t mit s, t e T besteht. Solche Aus-
sagen nennt man' Stellensätze, in Anlehnung 
an Hilberts berühmten Nullstellensatz, und 
zwar entsprechend Nichtnegativ- bzw. Posi-
tivstellensatz. Sie wurden in den 1960er und 
70er Jahren gefunden und können als Verall-
gemeinerungen und Verschärfungen von 
Hilberts 17. Problem gesehen werden. Wie in 
diesem wird die (strikte oder nicht-strikte) 
Positivität durch Darstellungen mit Nenner 
charakterisiert. 

Viel stärker und überraschender sind nen-
nerfreie Stellensätze. Eine Urform solcher 
Resultate bildet der sogenannte Darstel-
lungssatz von Kadison-Dubois, der in seiner 
Grundgestalt auf M. Stone zurückgeht und 
in verschiedenen Versionen vielfach neu ent-
deckt und bewiesen wurde. Wesentlich jün-
geren Datums ist der Positivstellensatz von 
K. Schmüdgen (1991). Er besagt, daß Tjedes 
Polynomf mitft > 0 enthält, sofern nur S 
kompakt ist. Schmüdgen fand dies beim Stu-
dium von (verallgemeinerten, multivariaten) 
Momentenproblemen der Analysis, und 
machte dabei wesentlichen Gebrauch von 
Methoden aus der Hilbertraum- und der 
Operatortheorie. Es ist ein erstaunliches Er-
gebnis, das seither im Bereich der reellen Al-
gebra eine Reihe neuer Entwicklungen in 
Gang gesetzt hat. 

In den kommenden Jahren gelang es, 
Schmüdgens Satz rein algebraisch aus dem 
genannten Darstellungssatz abzuleiten (den 
man schon seit langem ebenfalls rein algeb-
raisch versteht), und ihn damit in einen neu-
en Zusammenhang zu stellen. Dies blieb 
nicht das einzige Beispiel einer Befruchtung 
zwischen Analysis und Algebra. Ebenfalls 

1  auch in der englischsprachigen Literatur 
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aus der Operatortheorie kam der Anstoß zu 
einer Verschärfung der Aussage: Statt der 
Präordnung T betrachtet man die kleinere 
Menge M, welche von allenp2,p2f1,.. . ‚ pf. 
(für p E IR[x]) als additive Halbgruppe in 
IR[x] erzeugt wird. Im Gegensatz zu T ist al-
so M im allgemeinen nicht mehr multiplika-
tiv abgeschlossen. Man nennt M den von 
fi,. .. fr erzeugten quadratischen Modul. 
Von Putinar wurde die Frage aufgeworfen, 
unter welchen Voraussetzungen jedes auf der 
kompakten Menge S positive Polynom so-
gar in M liegt. Nachdem Putinar mit analyti-
schen Mitteln entscheidende Vorarbeiten ge-
leistet hatte, gelang es Jacobi und Prestel vor 
einigen Jahren auf rein algebraischem Wege, 
eine vollständige Antwort zu geben. Sie hier 
vollständig wiederzugeben ist nicht möglich, 
doch sei zumindest die folgende Konsequenz 
notiert: Für r < 2 ist Putinars Frage stets zu 
bejahen, während es für r> 3 Gegenbeispie-
le gibt. 

Diese hier nur rudimentär skizzierten Er-
gebnisse bilden ganz grob den Rahmen für 
die vorliegende Monographie. Es wird der 
Versuch unternommen, den Leser vollstän-
dig an die genannten Resultate heranzufüh-
ren, und diesem Ziel werden die Autoren ins-
gesamt in bewundernswürdiger Weise ge-
recht. 

Der Band zerfällt vom Anspruch wie auch 
vom Inhalt her in zwei Teile. Die ersten vier 
Kapitel haben eher den Charakter eines 
Lehrbuchs und entwickeln allgemeine 
Grundlagen. Dagegen wird in den Kapiteln 
5-8 wesentlich stärker spezialisiert, um zu 
den oben genannten Ergebnisse hinzufüh-
ren. Den ersten Teil kann man auch als eine 
allgemeine Einführung in die reelle Algebra 
lesen. Allerdings wird immer wieder deut-
lich, daß die hier behandelten Themen mit 
Blick auf die im zweiten Teil benötigten An-
wendungen ausgewählt wurden. Um den 
vorgegebenen Rahmen nicht zu sprengen, 
mußte notgedrungen an der Breite der Dar-
stellung gespart werden, und so wird man 
manches vergeblich suchen, was man sich in 
einem reinen Lehrbuch zu diesem Thema er-
hofft hätte. 

Das erste Kapitel führt, ganz im Artin-
schen Geist, Anordnungen von Körpern und 
ihre reelle Abschlüsse ein, und beweist die 
Existenz und Eindeutigkeit der letzteren mit 
Hilfe der Sturmschen Ketten. Im zweiten 
Kapitel wird die Quantorenelimination für 
reell abgeschlossene Körper und (in ihrer 
Folge) das Tarskiprinzip bewiesen. Das 
technische Hilfsmittel sind dabei Ultrapro-
dukte. Die allgemeine modelltheoretische 
Sprache wird nicht eingeführt, sondern, so-
weit benötigt, ad hoc auf die konkrete Situa-
tion zugeschnitten. Semialgebraische Men-
gen werden definiert und der Projektionssatz 
(die geometrische Version der Quantoreneli-
mination) wird bewiesen. Dagegen wird auf 
die Geometrie semialgebraischer Mengen 
überhaupt nicht eingegangen. Kapitel 3 gibt 
eine schnelle Einführung in quadratische 
Formen über Körpern, insbesondere in Ver-
bindung mit Anordnungen (Pfisters Lokal-
global Prinzip, Struktur des Wittrings). Pfis-
ters Satz über Quadratsummen in reellen 
Funktionenkörpern wird aus dem (nur zi-
tierten) Satz von Tsen—Lang bewiesen, wo-
mit eine quantitative Präzisierung von Hil-
berts 17. Problem erreicht wird. 

Im vierten Kapitel wird das reelle Spek-
trum von Ringen eingeführt, und es werden 
die allgemeinen reellen Stellensätze (,‚mit 
Nenner") bewiesen. Eine Besonderheit, die 
man in anderen Lehrbüchern selten findet, 
sind die ij-Körper. Sie werden benutzt, um 
das reelle Spektrum von IR[x i ,. .. ‚ x] als 
Menge von Aquivalenzklassen in (IR*) 
(IR* = eine Ultrapotenz von IR) zu charakte-
risieren, und dabei den Zusammenhang zwi-
schen Spezialisierung im reellen Spektrum 
und Reduktion modulo der kanonischen Be-
wertung von JR*  herzustellen. 

Die beiden nächsten Kapitel sind das 
Herzstück des Buches. Vereinfacht gesagt 
geht es in Kapitel 5 um den Satz von 
Schmüdgen und in Kapitel 6 um die Modul-
versionen von Putinar und Jacobi—Prestel. 
Beide Kapitel kreisen um das grundlegende 
Konzept der Archimedizität. Der Darstel-
lungssatz wird in verschiedenen Versionen 
formuliert, die etwas vereinfachend alle der 
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folgenden Form entsprechen: Ist ein Objekt 
P, wie etwa eine Präordnung oder ein qua-
dratischer Modul, archimedisch, so enthält 
P alle auf der zugehörigen Menge strikt posi-
tiven Funktionen. Schmüdgens Theorem et-
wa wird dann zu dem Satz, daß T (unter der 
Voraussetzung S kompakt) stets archime-
disch ist, während das Hauptergebnis von 
Kapitel 6 eine Kennzeichnung der archime-
dischen quadratischen Moduln in IR[x] ist. 
Der technische Apparat ist nun recht erheb-
lich, zumal noch neue Konzepte hinzukom-
men wie etwa Semiordnungen und das Lo-
kal-global Prinzip für schwache Isotropie 
quadratischer Formen (Bröcker, Prestel 
1974). Die lokalen Objekte für das letztere 
sind Henselisierungen des Körpers bezüglich 
gewisser Krull-Bewertungen. Die Verbin-
dung zum Momentenproblem der Analysis 
wird kurz hergestellt, jedoch nicht eingehen-
der diskutiert. Andere Anwendungen der 
Theorie, etwa in der polynomialen Optimie-
rung, werden in dem Buch gar nicht gestreift. 

Es folgen noch zwei Kapitel von abrun-
dendem Charakter: Kapitel 7 überträgt 
manche der zuvor erzielten Ergebnisse von 
quadratischen Präordnungen bzw. Moduln 
auf solche höherer Stufe (Summen von 
2m-ten Potenzen statt Summen von Quadra-
ten). Kapitel 8 unterzieht die betrachteten 
nennerfreien Darstellungen einer qualitati-
ven Komplexitätsanalyse: Ist f 1 s  > 0 (mit S 
kompakt), so kann die Komplexität solcher 
Darstellungen beschränkt werden, wenn 
man nicht nur den Grad vonf, sondern auch 
die Beträge der Koeffizienten von f (nach 
oben) und minf(S) (nach unten) be-
schränkt. 

Das Buch schließt mit einem ausführlichen 
Anhang über Bewertungstheorie (45 Seiten). 
Behandelte Themen sind die Fortsetzung 
von Bewertungen auf algebraische und auf 
rein transzendente Erweiterungen, die Ga-
loistheorie von Bewertungen, sowie Henseli-
sierung und Vervollständigung von Bewer-
tungen. Die letzteren werden insbesondere 
im 6. Kapitel gebraucht. Man wird es den 
Autoren danken, daß sie sich der Mühe einer 
Darstellung unterzogen und die Bewertungs- 

theorie nicht als bekannt vorausgesetzt ha-
ben. Gute Expositionen der Bewertungs-
theorie sind leider immer noch Mangelware. 

Jedes Kapitel schließt mit sorgfältigen bi-
bliographischen und historischen Anmer -
kungen und mit einer Serie von Ubungsauf-
gaben. 

Ich halte das Buch für ein verdienstvolles 
Werk, da es erstmals einen direkten Weg zu 
diesem wichtigen und aktuellen Forschungs-
gebiet bahnt. Der überwiegende Teil des In-
halts der Kapitel 5-8 ist zuvor noch nicht in 
Buchform erschienen, und einige der Ergeb-
nisse aus den beiden letzten Kapiteln erfah-
ren damit wohl überhaupt ihre erste Publika-
tion. Die vom Leser verlangten Vorkenntnis-
se gehen im Prinzip über eine Standardvor -
lesung in Algebra kaum hinaus. So eignet 
sich das Buch auch als Vorlage für eine zwei-
semestrige Vorlesung im Hauptstudium, et-
wa begleitet von einem Seminar über Bewer -
tungstheorie. Tatsächlich ist es aus einer sol-
chen Vorlesung des erstgenannten Autors 
entstanden. Es muß aber betont werden, daß 
es sich um eine anspruchsvolle Lektüre han-
delt, die vom Leser viel Konzentration ver-
langt. Das gilt nicht nur für den zweiten, son-
dern auch schon für den ersten (,‚Lehr-
buch"-) Teil. Wer mit diesen Grundlagen 
vertraut ist, wird hier sicher keine Schwierig-
keiten haben. Wer aber hier erst die Initia-
tion in reeller Algebra erlebt, mag sich wohl 
manchmal mehr Motivation und mehr Ori-
entierungshilfe wünschen. Insbesondere die 
Kapitel 2 und 4 sind doch um einiges spröder 
ausgefallen, als es dem Charakter des The-
mas entspricht. Vielleicht hätte hier und da 
ein Schuß Geometrie den Charme etwas er-
höht. 

Eine gewöhnungsbedürftige Besonderheit 
ist die Notation AK für das kartesische Pro-
dukt A x x A. Dagegen steht A" für die 
Menge der n-ten Potenzen im Ring A! Dies 
führt manchmal zu merkwürdig aussehen-
den Formulierungen, siehe etwa Theorem 
5.4.5 als ein Beispiel für viele. Hier hätte sich 
wohl auch ein anderer Weg finden lassen, ei-
nen Notationskonflikt zu vermeiden. 
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Zuweilen erhält man den Eindruck eines 
gewissen Zeitdrucks auf Seiten der Autoren, 
etwa wenn der Text gelegentlich eher stich-
punktartig ausfällt als wirklich ausformu-
liert wird. Oder wenn auf Seite 188 ein be-
kannter Satz von Minkowski zitiert und für 
seinen Beweis auf ein Buch von Cernikov 
verwiesen wird, sich aber genau derselbe 
Satz samt vollständigem Beweis schon auf 
Seite 132 findet. Andererseits habe ich nur 
wenige Druckfehler und überhaupt keine 
echten mathematischen Fehler gefunden. 
Die von den Autoren eingerichtete Internet-
seite mit Korrekturen, Updates und ergän-
zendem Material ist denn auch derzeit 
(Herbst 2003) noch leer. 

Insgesamt sind die gemachten kritischen 
Anmerkungen eher von marginaler Bedeu-
tung und mindern die Verdienste des Werkes 
nicht. Das Buch enthält einen beträchtlichen 
Schatz an schöner und wichtiger Mathema-
tik, und man wird ihm viele Leser wünschen, 
die die nötige Neugier und Ausdauer mit-
bringen, sich diesen zu erschließen. 

Duisburg 	 C. Scheiderer 

",', n­  

invanants 
Thory W. Lück 
ndAhcations 

L2-Invarlants: Theory 
ndKTheory 

and Applications to 
Geometry and 
K-Theory 
Erg. der Math. 44 

Berlin u. a., Springer, 2002, 595 5., € 119,- 

Der vorliegende 44. Band der 3. Folge der 
großartigen „Ergebnisse" - Reihe ist rekord-
verdächtig: Er wiegt, so steht es in den voll-
ständigen bibliographischen Daten, 1040 
Gramm. Es kann also in dieser Besprechung 
nicht um eine möglichst vollständige Inhalts- 

angabe gehen, und das ist auch schon deswe-
gen ganz überflüssig, weil die meisten Ma-
thematiker, die in der Topologie und in den 
angrenzenden Bereichen der Algebra und 
Geometrie arbeiten, das Buch ohnehin zur 
Kenntnis genommen haben werden. Ich 
möchte also den anderen Lesern des Jahres-
berichts - notwendigerweise ganz vage - er-
klären, worum es geht, und sie dazu ermun-
tern, das Vorwort und die Einleitung des Bu-
ches zu lesen und auch in den späteren Kapi-
teln ein bisschen zu schmökern. 

Die älteste und auch topologischen Laien 
am besten bekannte Invariante eines Rau-
mes X ist seine Euler-Charakteristik (X). 
Ihre Bedeutung resultiert unter anderem da-
raus, dass sie ganz verschiedene Beschrei-
bungen besitzt: 

1. Die kombinatorische Beschreibung, also 
(X) = Eckenzahl - Kantenwahl + Flächen-

zahl—+.... 
wenn X eine endliche Triangulierung besitzt. 

Die homologisch-algebraische Beschrei-
bung, also 

(X) = b0(X)— b 1 (X) + b2(X)- + 
wobei bk(X) die k-te Betti-Zahl, also die Di-
mension der k-ten Homologiegruppe Hk(X; 
IR) als JR-Vektorraum ist. 
3. Die geometrische Beschreibung, also 

= Nullstellenzahl eines Vektorfelds auf 
X; 
dabei muss X eine kompakte Mannigfaltig-
keit sein, und die Nullstellen des (genen-
schen) Vektorfelds müssen mit Vorzeichen 
und Vielfachheiten gezählt werden. 
4. Die analytische Beschreibung, also 

(X) = index (D), 
wenn X eine kompakte Riemannsche Man-
nigfaltigkeit und D ein (geeigneter) kano-
nischer elliptischer Differentialoperator auf 
Xist. 

Alle diese Beschreibungen brechen zusam-
men, wenn X nicht kompakt ist; dann kön-
nen ja z. B. die Betti-Zahlen unendlich sein, 
und man kann ihre Wechselsumme nicht bil-
den. Nun kann man natürlich einwenden, 
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dass die bk(X) als Elemente von N u 10, oo} 
immer definiert sind und dass ihre Kenntnis 
ja sowieso viel besser ist als die von 
Aber es gibt hier nur ein Unendlich, und da 
ist die Formel bk(X) = oonatürlich viel weni-
ger aussagekräftig als z. B. bk(X) = 22. 

Einen Ausweg aus dieser Schwierigkeit 
stellen häufig die L2-Betti-Zahlen bk 2  (X) 
dar. Sie sind oft auch dann endlich, wenn X 
nicht kompakt ist und wenn die klassischen 
Betti-Zahlen unendlich sind. Um die Defi-
nintion von bk 2  (X) zu skizzieren, will ich 
mich auf die wichtige Situation beschränken, 
in der X die universelle Uberlagerung einer 
kompakten Mannigfaltigkeit Y oder eines 
CW-Komplexes Y von endlichem Typ ist. 
Dann operiert die Fundamentaigruppe G 
von Y durch Decktransformationen auf X. 
Man definiert nun (auf analytische oder 
kombinatorische Weise) die L2-Kohomolo-
giegruppen Hk(2)  (X) und bezeichnet mit 
bk 2 (X) die Dimension von Hk(2)  (X) über 
der Gruppenalgebra N(G) von G im Sinne 
von v. Neumann. 

Mit diesen Begriffen aus der Theorie der 
Operatoralgebren erhält man also nicht-ne-
gative reelle Zahlen bk 2  (X), die streng ge-
nommen nicht nur von X, sondern von der 
Uberlagerung X - Y abhängen. 

Erstaunlich ist, dass diese L 2-Betti-Zahlen, 
die ja apriori beliebige reelle Zahlen sind, die 
Tendenz haben, rational zu sein, wie z. B. die 
im vorliegenden Buch ausgeführten Berech-
nungen bei 3-Mannigfaltigkeiten, symmetri-
schen Räumen und klassifizierenden Räu-
men von endlich präsentierten Gruppen zei-
gen. Hier gibt es wichtige offene Fragen. 

Auf alle Fälle gewinnt man eine fünfte und 
diesmal operatoralgebrentheoretische Be-
schreibung der Euler-Charakteristik: 

(X) = b0 2 '(X)— b 1 2  (X) + b2 2  (X)— + 
Diese Definition ist auch in Situationen 

anwendbar, in denen die vier oben genann-
ten Beschreibungen nicht funktionieren. 

Ein Test für die Qualität einer neuen Theo-
rie besteht ja immer darin, dass man mit ihr 
Resultate zeigen kann, die man ohne diese 
Theorie formulieren aber (zumindest bisher) 
nicht beweisen kann. Diesen Text bestehen  

die L2-Betti-Zahlen glänzend. Ich zitiere eine 
algebraische und eine geometrische Anwen-
dung: 

Ist G eine Gruppe, die einen unendlichen 
amenablen Normalteiler besitzt und so dass 
der klassifizierende Raum BG ein endlicher 
CW-Komplex ist, so ist 

= (BG) =0 
Ist M eine 2m-dimensionale geschlossene 

hyperbolische Mannigfaltigkeit, so ist 
(_l)m x(M) >0. 

Natürlich sind die L2-Betti-Zahlen nicht 
die einzigen L2-Invarianten, die in dem vor-
liegenden Buch behandelt werden, aber es 
würde zu weit führen, hier auf die kompli-
zierteren einzugehen. 

Herr Lück hat das Kunststück fertig ge-
bracht, ein Buch zu schreiben, das gleichzei-
tig eine unverzichtbare Referenz für Exper -
ten und ein Lehrbuch mit Ubungsaufgaben 
ist. Dafür gebührt ihm größte Anerkennung. 
Natürlich ist es leicht, hier und da ein wenig 
zu mäkeln: So finde ich, dass die analyti-
schen Ausführungen nicht immer dieselbe 
Perfektion besitzen wie die topologischen 
Teile. Und das Gegenbeispiel gegen die sog. 
Starke Atiyah-Vermutung, das gefunden 
wurde, während Herr Lück an diesem Buch 
arbeitete, ist zwar aufgenommen worden, 
aber trotzdem muss der unvorsichtige Leser 
an manchen Stellen den Eindruck gewinnen, 
diese Vermutung sei noch offen. Aber das 
sind wirklich Bagatellen. 

Wenn ein Leser nach dieser Besprechung 
das Gefühl hat, nun gerade genug über 
L2-Invarianten gehört zu haben, so ändere 
ich für ihn meine eingangs geäußerte Ermun-
terung, Vorwort und Einleitung des Buches 
zu lesen, ab: Lesen Sie wenigstens den Teil 
des Vorworts durch, in dem der Autor sich 
sehr beherzigenswerte Gedanken darüber 
macht, auf welches Geleise wir unseren wis-
senschaftlichen Nachwuchs setzen sollen, 
um unserer Verantwortung ihm gegenüber 
gerecht zu werden. 

Düsseldorf 	 W. Singhof 
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Graduate Texts 
k 

P4 

Lctrs 	n 
Dhu etc Gcc 	ty 

J. Matouäek 

Lectures an Discrete 
Geometry 
Grad. Texts in Math. 212 

Berlin u. a., Springer, 2002.481 S., €44,95 

Was ist „Diskrete Geometrie"? Jiti Ma-
touiek (Karisuniversität Prag) gibt mit dem 
vorliegenden Buch auf diese Frage eine inte-
ressante, vielleicht überraschende, aber 
durchaus überzeugende Antwort. Er hält 
sich nicht lange mit der naheliegenden Be-
hauptung auf, schon die alten Griechen hät-
ten diskrete Geometrie betrieben (,‚siehe die 
platonischen Körper"), sondern er präsen-
tiert uns ein großes, aktuelles, lebendiges 
Forschungsgebiet weit jenseits der klassi-
schen, euklidischen (Schul-)Geometrie. Und 
die Präsentation ist als eine ernstgemeinte 
Einladung zu verstehen: eine Einladung, die 
sie annehmen sollten. 

Erste positive Uberraschung: keine große 
Vorreden, auch kein erstmal-zig-Seiten-
Theorie-Wiederholen, keine großen Voraus-
setzungen, und es wird schon sehr schnell in-
teressant (etwa ab Seite 6 nicht erst auf Sei-
te 90, wie etwa in [1]). 

Worum geht's? Das ist zunächst definiert 
durch die Objekte: Gegeben seien endlich 
viele Punkte, Geraden, Ebenen im W. Wir 
bilden affine und konvexe Hüllen, Verbin-
dungslinien, Schnittmengen. Da stellen sich 
einige Fragen ganz von selbst. So etwa die 
Frage: „Wenn aus einer Familie von kon-
vexen Mengen in der Ebene jeweils drei im-
mer eine nicht-leere Schnittmenge haben, gilt 
das dann für alle?" Das ist noch ganz einfach 
zu beantworten, auch in seiner d-dimensio-
nalen Version - dem Satz von Helly 
(Seite 10). Und das ist nicht nur Spielerei, es  

hat auch vielfältige Konsequenzen und An-
wendungen. Aber wenn wir nur noch for-
dern, dass unter jeweils p konvexen Mengen 
sich q finden, die einen gemeinsamen 
Schnittpunkt haben, was folgt dann (für 
p > q > d)? Einen gemeinsamen Schnitt-
punkt wird es dann nicht immer geben, aber 
doch beschränkt viele? 

Aber, fragt da der geneigte Leser, ist die 
Frage - das „(p, q)-Problem" von Hadwiger 
und Debrunner - denn wirklich interessant? 
Ist das wichtig für die/in der diskreten Geo-
metrie? Woher kommen da die entscheiden-
den Fragen? Die kommen aus ganz unter-
schiedlichen Quellen. Zunächst sind da die 
Fragen nach den grundlegenden kombinato-
rischen Zusammenhängen zwischen den ele-
mentaren kombinatorischen Objekten. De-
ren Bedeutung misst sich letztlich an der Ein-
fachheit der Fragestellung, aber auch daran, 
dass man sie immer wieder braucht, dass sie 
im vorliegenden Buch also nicht nur einmal 
auftauchen, sondern immer wieder. (In die-
sem Sinne hängt das vorliegende Buch eben 
auch viel besser und überzeugender zusam-
men als etwa der ältere Versuch [3] zum sel-
ben Thema.) Aber weitreichender und ein-
flussreicher für die Themenauswahl und die 
Entwicklungsrichtung der Theorie sind (und 
das wird in Matouieks Buch auch deutlich) 
die Leitfragen und Kernprobleme, die „von 
außen" aus ganz unterschiedlichen Richtun-
gen an die diskrete Geometrie gestellt wor-
den sind und werden. Klassisch sind da die 
Beiträge der Gruppentheorie (Symmetrie-
gruppen), aber auch der Zahlentheorie 
(Minkowskis „Geometrie der Zahlen"), in 
neuerer Zeit der algebraische Geometrie (die 
Geometrie der torischen Varietäten mit ihrer 
Ubersetzung in Gitterpunktprobleme, oder 
noch aktueller die tropische Geometrie [4]), 
usw. Die entsprechenden Bereiche und Ent-
wicklungen der diskreten Geometrie stehen 
in Matouieks Buch allerdings nicht im Vor-
dergrund. Viel deutlicher sichtbar ist in sei-
nem Buch der Einfluss aus Bereichen der an-
gewandten Mathematik, der kombinatori-
sche Optimierung (der Simplexalgorithmus 
lieferte Kernfragen der modernen Polyeder- 
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theorie), dem Computer-Aided Design 
(CAD), wie auch der mathematischen Visua-
lisierung und der Computergraphik, die in 
der Informatik die algorithmische Geo-
metrie (,‚computational geometry") ergeben 
hat, und deren mathematische Basis liegt 
wiederum in der diskreten Geometrie. Für 
viele der Themen dieses Buches kommen die 
Anfänge, Kernprobleme und Leitfragen aus 
dieser Richtung. 

Die diskrete Geometrie ist also kein klas-
sisch existierendes, definiertes und abge-
grenztes Gebiet. Das vorliegende Buch ist 
vielmehr ein ernstzunehmender Beitrag zur 
Definition und zur Erweiterung des Gebiets. 
Matouek deckt eine Fülle von klassischen 
Themen ab, aber erschließt auch viele und 
vielfältige neue. Und trotz des großen 
Einflusses der algorithmischen Geometrie 
als fragenstellender Anwendungsdisziplin 
macht Matouek daraus kein Buch mit 
Scheuklappen (wofür es leider zu viele Bei-
spiele gibt): Er beschränkt sich nicht auf die 
Dimensionen d < 3, oder auch nur auf die 
Themen (wie die Theorie der Hyperebenen-
arrangements), die sich recht mühelos auf 
allgemeine Dimension d verallgemeinern las-
sen. Im Gegenteil: Der Vorspann über über-
raschende hochdimensionale Effekte (Ab-
schnitt 13.1), mit dem die Diskussion hoch-
dimensionaler Volumina und ihrer Berech-
nung eingeleitet wird, ist brillant. Ihm folgt 
ein Kapitel über Maßkonzentration: einem 
wichtigen Thema für die diskrete Geometrie, 
das seine Ursprünge in der Funktionalana-
lysis hat. Und neben vielen zentralen und 
wichtigen Resultaten, Themen und Fra-
gestellungen bietet das Buch noch viel mehr, 
sozusagen Kür, Illustrationsthemen, Elekti-
ves, das sich auch an Matoueks vielfältigen 
Forschungsinteressen orientiert. 

Trotz aller Eleganz und Leichtigkeit in der 
Darstellung ist dies doch ein ernsthaftes und 
effektives Lehrbuch. Geduldig werden die 
wichtigen Methoden erklärt, und Beweise 
präsentiert. Dafür hat Matoulek offenbar 
kritisch ausgewählt und hart gearbeitet. Die 
Darstellung ist auch in den Details verläss-
lich, elegant, einfach schön. Und Matoulek  

drückt sich nicht, auch wenn's kompliziert 
wird, es gibt da keine Dünnbrettbohrerei: 
siehe etwa seine Exposition der Lösung des 
Hadwiger-Debrunner (p, q)-Problems, im 
Abschnitt 10.5. Ein großes Arsenal von Me-
thoden wird in Kombination zum Einsatz 
gebracht (e-Netze, Komplexitätsschranken, 
LP-Dualität, usw.), die „der klassische Ma-
thematiker" nicht mal vom Namen her 
kennt - aber hier kennenlernen kann. Ma-
touiek setzt dennoch thematische Grenzen: 
topologische Methoden sind etwa aus-
gespart, und dafür verweist er nicht einmal 
deutlich genug auf sein neuestes, meisterhaf-
tes Büchlein [2]. 

Matoueks „Lectures" zeigen die Diskrete 
Geometrie lebendig und vielfältig, auf dem 
aktuellen Stand. Und von dort aus geht es 
natürlich weiter. Das Buch ist eben auch eine 
Fundgrube in Bezug auf interessante Proble-
me, und ein Wegweiser in die aktuelle For-
schung. Das kulminiert in den Abschnitten 
„Bibliography and Remarks" jeweils vor 
den Ubungsaufgaben. Manche davon gehen 
über mehrere Seiten, und schlagen tiefe Bre-
schen in die aktuelle Forschungsliteratur 
(mit Bezug auf die 40 Seiten sorgfältige Lite-
raturangaben am Ende des Bandes ... 

). 
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G. V. Smirnov 

Introduction to the 

Theory of Differential 

Inclusions 

Grad. Studies 

in Math. 41 

Providence, Am. Math. Soc., 2001, 226 S., 
$ 34,- 

The book provides an introductory treat-
ment of differential inclusions in finite di-
mensions. lt deals with differential inclu-
sions ofthe form 

(1) x'(t) E F(x(t)), t e [0, T[, 

where F is a set-valued map which associates 
with any y e JR" a closed convex set 
F(y) C IR". Solutions of (1) are elements of 
the Banach space AC = AC([0, T],JR') of 
absolutely continuous functions. 

Part 1 of the text is devoted to basic con-
cepts and resuits from convex, set-valued 
and nonsmooth analysis that are needed in 
the second part. Chapter 1 contains the ne-
cessary prerequisites of convex analysis in fi-
nite dimensions. This is followed by Chapter 
2 on set-valuedanalysis and, in particular, on 
(semi-) continuity properties, derivatives, 
Lipschitzian approximations and extensions 
of set-valued maps. Furthermore, convex 
processes, i.e., multifunctions whose graphs 
are convex cones, their properties and repre-
sentations are studied. They form set-valued 
analogues of linear operators and satisfy a 
multivalued version of the Jordan represen-
tation theorem. Chapter 3 provides an intro-
duction to nonsmooth analysis focussing on 
Mordukhovich's concepts for normal cones 
and subdifferentials, the corresponding cal-
culus and applications to necessary optimal-
ity conditions. 

Part 2 forms the main body of the text. lt 
contains six chapters on various aspects of 
differential inclusions, namely, existence re-
sults, viability and invariance, controllabil-
ity, optimality, stability and stabilization. 

The existence theory for differential inclu-
sions with closed convex-valued right-hand 
sides is established in Chapter 4 within sev-
eral steps. The first step consists in showing 
that for Lipschitzian F any subset M ofAC 
can be continuously projected into the solu-
tion set S of (1). More precisely, there exists 
a continuous projection r from M to S hav-
ing the property that for each x e M such 
that the distance d(x (t),F(x(t))) is small, 
r(x) is dose to x with respect to the norm in 
AC (Theorem 4.5). This result is used as a 
workhorse to construct families of solutions 
with required properties. The first conclu-
sion is that the solution set of initial value 
problems for (1) is nonempty and arcwise 
connected if F is Lipschitzian and takes 
closed convex values. In a second step, solu-
tions to initial value problems for (1) with 
upper semicontinuous F are derived as limits 
of sequences of solutions to approximate dif-
ferential inclusions with Lipschitzian ap-
proximations of F as right-hand sides. 
Furthermore, Chapter 4 contains results on 
the continuous and differentiable depen-
dence of solution sets on initial conditions, 
on the existence of optimal solutions to the 
Mayer problem for differential inclusions 
and on the convergence of discrete approxi-
mations in the Lipschitzian case. 

Chapter 5 on viability and invariance starts 
with an existence result for solutions that be-
have monotone with respect to a real-valued 
function. Its proof is again based on Theo-
rem 4.5. This monotonicity theorem is used 
to prove the main viability result (Theorem 
5.2). lt provides conditions 011 F and on a 
closed set C C 1R that imply the existence of 
a solution x() to (1) such that x(t) e C for 
each t if x(0) e C. A stronger requirement 
on C is that it is invariant by the differential 
inclusion (1), i.e., any solution to (1) is con-
tained in C if x(0) e C. In the Lipschitzian 
situation the invariance of C by (1) is equiva- 
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lent to the condition that, for each x E C, 
F(x) is contained in the contingent cone 
T(x, C) at x to C. Viability of some solution 
of (1) is already implied by the weaker condi-
tion F(x) fl T(x, C) 0 for each x e C. The 
latter result is used to study the reachability 
setof(l). 

Chapter 6 studies controllability of (1) for 
the case that F is a convex process and local 
controllability for Lipschitzian F by employ-
ing an approximate convex process. Chapter 
7 contains nonsrnooth necessary optimality 
conditions for the Mayer problem and a 
time-optimal problem. Two methods for 
studying stability of differential inclusions 
are described in Chapter 8. Namely, the Lya-
punov direct method and a method based on 
first order approximations of F by linear se-
lectionable mappings and by convex pro-
cesses. Finally, Chapter 9 deals with the pro-
blem of stabilization, i.e., of finding a selec-
tionf ofF such that the ordinary differential 
equation x'(t) =f(x(t)) behaves asymptoti-
cally stable if the original differential inclu-
sion satisfies an asymptotic stability condi-
tion. Solutions are presented for a convex 
process F (by constructing a Lyapunov func-
tion) and for Lipschitzian F. 

Each chapter is completed by a number of 
problems and exercises, respectively. Most 
of the chapters in Part 2 contain applications 
of the general results to more specific pro-
blems, e.g., to Filippov's concept for treating 
discontinuous ordinary differential equa-
tions (Section 4.4), existence and optimality 
conditions for optimal control problems 
(Sections 4.5 and 7.2), differential garnes 
(Section 5.5), controllability and stabiliza-
tion in mechanical systems (Sections 6.4 and 
9.4). 

Comments 011 further reading for each 
chapter are provided at the end of the book. 
The bibliography contains 128 items and is 
not intended to be nearly complete. lt con-
tains only books and fundamental works on 
differential inclusions as well as papers that 
are relevant for the material presented. 

The text grew out of several lectures given 
by the author at several universities during  

the last few years. Most of the material was 
written when the author was visiting the In-
ternational School for Advanced Studies at 
Trieste (Italy). The material is developed by 
using modern tools from set-valued and non-
smooth analysis. All resuits, also those in the 
first 3 chapters, are presented including 
proofs. Hence, the material of the book may 
very well be used for an introductory lecture 
on differential inclusions, although potential 
readers might miss some more introductions 
to and discussions of the resuits. The text is 
intended for graduate students who specia-
lize in pure and applied analysis and also sui-
table for mathematicians who are looking 
for a modern introduction to the field. The 
required mathematical background is 
knowledge of the theory of functions and or-
dinary differential equations, and of func-
tional analysis at an elementary level. 

Berlin 	 W. Römisch 

Basel, Birkhäuser, 2002,424 S., €83,18 

Die fundamentalen Gleichungen der All-
gemeinen Relativitätstheorie, die Einstein-
gleichungen, bilden ein System von quasili-
nearen partiellen Differentialgleichungen. 
Die zentralen mathematischen Probleme, die 
zu behandeln sind, wenn man allgemeine Lö-
sungen dieser Gleichungen untersuchen will, 
müssen mit Hilfe der Theorie der hyperboli-
schen Gleichungen behandelt werden. Da-
mit verbunden ist die Tatsache, dass es na-
türlich ist, für diese Gleichungen ein An- 
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fangswertproblem zu stellen. Es werden An-
fangsdaten vorgeschrieben und man ver -
sucht, die Existenz und Eindeutigkeit einer 
entsprechenden Lösung der durch die Ein-
steingleichungen definierten Entwicklungs-
gleichungen zu beweisen. Für lokale Lösun-
gen in der Nähe der Anfangshyperfläche 
wurde dieses Problem vor mehr als fünfzig 
Jahren von Y. Choquet-Bruhat gelöst. Eine 
ausführliche Darstellung der heutigen 
Kenntnisse auf dem Gebiet findet man in [1]. 
Weitaus schwieriger ist das globale Anfangs-
wertproblem für die Einsteingleichungen. 

Es gibt kein gutes Verständis des globalen 
Verhaltens allgemeiner Lösungen der Ein-
steingleichungen. Dies gilt schon für den ein-
fachsten Fall der Einsteinschen Vakuumglei-
chungen. Im allgemeinen beschreiben die 
Einsteingleichungen die Wechselwirkungen 
von Materie durch das Gravitationsfeld, 
aber selbst wenn man einen Bereich betrach-
tet, in dem keine Materie vorhanden ist, sind 
die Gleichungen kompliziert. Die einfachste 
Lösung der Einsteinschen Vakuumgleichun-
gen ist der Minkowskiraum der speziellen 
Relativitätstheorie. In diesem Fall ver-
schwindet das Gravitationsfeld. Ein mögli-
cher Ausgangspunkt, um das globale Ver-
halten von Lösungen der Einsteingleichun-
gen zu verstehen, ist, kleine Störungen des 
Minkowskiraums zu betrachten. Das heisst, 
wir nehmen Anfangsdaten für den Mm-
kowskiraum, stören diese ein wenig und fra-
gen nach dem Verhalten der sich daraus ent-
wickelnden Lösung. Insbesondere ist es 
wichtig zu wissen, ob die Lösung in einem ge-
eigneten Sinne global in der Zeit existiert, 
und ob sie dem Minkowskiraum qualitativ 
ähnlich ist. Es handelt sich um die Frage der 
globalen nichtlinearen Stabilität des Mm-
kowskiraums. Diese Frage wurde durch ein 
Theorem von Christodoulou und Klainer-
man positiv beantwortet. Der Beweis, der 
sehr lang und technisch ist, wurde als das 
Buch [2] veröffentlicht. 

Im vorliegenden Buch wird das Theorem 
von [2] verallgemeinert und es werden Teile 
des Beweises vereinfacht. Man soll allerdings 
den Grad der Vereinfachung nicht über- 

schätzen. Das neue Buch ist wesentlich kür-
zer als [2], verwendet aber viele Ergebnisse 
von [2]. Das Theorem von [2] betrifft asymp-
totisch flache Lösungen. Diese Lösungen be-
schreiben isolierte Systeme, d. h. Systeme bei 
denen das Gravitationsfeld ausserhalb eines 
räumlich beschränkten Gebietes abklingt. 
Das Theorem von [2] behandelt den Fall von 
Anfangsdaten, die überall nahe bei Mm-
kowskidaten sind. Da asymptotisch flache 
Anfangsdaten weit draussen immer nahe bei 
Minkowskidaten sind, kann man hoffen, ein 
Theorem für Daten die nicht überall klein 
sind zu beweisen. Das Buch von Klainerman 
und Nicolö beweist ein solches Theorem. 
Die Aussage des Theorems beschränkt sich 
auf das Verhalten der Lösung weit draussen. 
Die Entkopplung des Verhaltens in einem 
geeigneten Aussengebiet von dem Verhalten 
im Inneren folgt aus der hyperbolischen Na-
tur der Gleichungen und dem entsprechen-
den Vorhandensein eines Abhängigkeits-
gebietes. Der Beweis von [2] benutzt maxi-
male Hyperflächen, deren Definition global 
im Raum ist. Diese Methode ist deshalb für 
den Beweis des neuen Theorems nicht geeig-
net. Im Beweis des neuen Theorems werden 
stattdessen lichtartige Hyperflächen verwen-
det. 

Das erste Kapitel des Buches enthält Hin-
tergrundmaterial über Lorentzgeometrie 
und Allgemeine Relativitätstheorie. Der not-
wendige analytische Hintergrund wird im 
zweiten Kapitel erklärt. Dort gibt es auch ei-
ne Beschreibung der Beweisstrategie die im 
Buch benutzt wird, um das neue Theorem zu 
beweisen. Im dritten Kapitel werden zahlrei-
che für den Beweis notwendige Definitionen 
eingeführt, das Haupttheorem wird formu-
liert und die Struktur des Beweises wird er-
klärt. Dieser Beweis besteht aus komplizier -
ten geometrischen Konstruktionen sowie 
Abschätzungen für die dadurch definierten 
Strukturen. Die Herleitung dieser Abschät-
zungen ist der Inhalt der Kapitel vier bis sie-
ben. Im letzten Kapitel wird die Bedeutung 
des Theorems für die Theorie der Gravitati-
onswellen erklärt. 
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Der Beweis des Haupttheorems ist sehr 
kompliziert und dieser Umstand scheint un-
vermeidlich. Angesichts dieser Tatsache ist 
es eine schwierige Aufgabe, das Material in 
einer dem Leser zugänglichen Form zu prä-
sentieren, Die Autoren haben sich offenbar 
viel Mühe gegeben, dieses Ziel zu erreichen 
und sind dabei erfolgreich gewesen. Das 
Haupttheorem hat eine zentrale Bedeutung 
für die mathematische Entwicklung der All-
gemeinen Relativitätstheorie und jeder, der 
auf diesem Gebiet arbeitet, sollte sich mit 
diesem Buch befassen. 
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ausbildung; in Anwendungen und auch bei 
den Anwendern hat sich dieser Zweig der 
mathematischen Stochastik in den letzten 
fünfzehn bis zwanzig Jahren etabliert und ist 
kaum mehr wegzudenken aus Modellen der 
Ingenieur- und Biowissenschaften oder - 
hier in aller Munde - aus der Finanzmathe-
matik. Die einfachste stochastische Differen-
tialgleichung ist eine Gleichung der Art 

(*) X(w) =b(X(w)) +a(X 1 (w))(w), 

= 
wo er() ein zufälliges Rauschen darstellt. 
Oft wird als weißes Rauschen angenom-
men - aber auch andere stochastische Stör-
terme werden betrachtet, das hängt letztlich 
vom zu modellierenden System ab -‚ d. h. 
ist eine Brownsche Bewegung. Bereits bei 
dieser relativ einfachen Gleichung tritt ein 
wesentliches Problem auf: die klassische Ab-
leitung nach der Zeit ist nicht einmal für ei-
ne Brownsche Bewegung (geschweige denn 
für allgemeinere Störungen) definiert, so daß 
(*) sinnlos ist. Fassen wir (*) als Integralglei-
chung auf, 

Golm 	 A. Rendall 
	(**) 	 b(X(w))ds 

Cambridge University Press, 2002, 501 S., 
£70,- 

Längst schon haben Stochastische Differen-
tialgleichungen und die damit verbundene 
Theorie der stochastischen Integration ihren 
festen Platz im Kanon unserer Mathematik- 

dann benötigen wir immer noch, daß (w) 
von beschränkter Variation ist, aber auch 
das trifft auf eine Brownsche Bewegung 
nicht mehr zu. Der naive Versuch, 
J a(X) d 5  partiell zu integrieren, schlägt in 
der Regel fehl, da dann o- (X) von beschrän-
ker Variation sein müßte, und im Hinblick 
auf (*) kann das i. allg. nicht erwartet wer-
den, wenn e, nicht von beschränkter Varia-
tion war. 

In einer Reihe von bahnbrechenden Arbei-
ten zu Beginn der 1940er Jahre hat der japa-
nische Mathematiker Kiyosi Itö eine Theorie 
der stochastischen Integration entwickelt, 
die dieses Problem löst. Aufbauend auf Ar-
beiten von Paley und Wiener [10] definiert 
Itö das Integral f a(X,) zunächst als Rie-
mannsche Summe, betrachtet dann aber 

KBichteler 

Stochastic Integration 

willi Jumps 

Enc. of Math. and 

itsAppl.89 

64 	 JB 106. Band (2004), Heft 4 



Übersichtsartikel 	HistorischerArtikel 	1 	Buchbesprechungen 

nicht punktweise (d. h. für jedes einzelne w) 
Konvergenz, sondern Konvergenz in 
L 2  = L 2 (P) bezüglich des zu Grunde liegen-
den Wahrscheinlichkeitsmaßes P. Zentral in 
Itös Ansatz ist die Beobachtung, daß sowohl 
die Brownsche Bewegung ‚ als auch 
Martingale sind. Was Itös Theorie so erfolg-
reich macht, ist die folgende Kettenregel, ge-
meinhin als ltd-Formel bekannt, 

df(,) =f'() d  + 	dt, 	f e C2 , 

die sich von der üblichen Kettenregel eben 
durch den Korrekturterm fürf" unterschei-
det. Intuitiv sollte dt als zweite Variation von 

t, also als dt = (d 1 ) 2 , verstanden werden. 
(Kürzlich hat Lyons in seinem Rough Paths-
Ansatz eine hübsche Interpretation dieses 
Korrekturterms und weiterer Variationen 
höherer Ordnung als Lvy-area gegeben, vgl. 
[6].) Da (dt) 2  = 0 gilt, zeigt sich leicht, daß 
Itös Integralbegriff den Stieltjesschen Ansatz 
einschließt. Doob bemerkte in seinem 1953 
erschienenen Buch, daß sich Itös Theorie un-
mittelbar auf allgemeine L 2 -Martingale 
als Integratoren verallgemeinern läßt, wenn 
man nur eine Doob-Meyer Zerlegung des 
Submartingals kennt. Damit griff Doob 
seiner Zeit etwas vor, erst P.A. Meyer er-
brachte 1962-3 einen vollständigen Beweis 
dieses Resultats. Damit war der Weg frei zu 
einer allgemeinen stochastischen Integrati-
onstheorie für L 2 -Martingale, die im wesent-
lichen von Ph. Courfege 1962-3 und H. Ku-
nita-S. Watanabe 1967 ausgearbeitet wurde, 
wir verweisen nur auf die hübsche Darstel-
lung der Methode in [5], wo auch die ein-
schlägigen Originalarbeiten zitiert sind. Die-
se Theorie wurde dann von P. A. Meyer und 
seiner Straßburger Schule zunächst auf loka-
le (L 2 -) Martingal-Integratoren ausgedehnt 
(eine „einfache" Stopp-Technik, wenn man 
erst einmal den Fundamentalsatz für lokale 
Martingale hat - der gängige extrem kurze 
Beweis ist von K. A. Yen und in [9] veröffent-
licht) und dann auf allgemeine Semimar-
tingale. Zur Erinnerung: ein Semimartingal 
‚ ist ein cödlög (rechtsstetig mit endlichen 

linksseitigen Limiten) Prozeß, der als Summe 

= o + A + M geschrieben werden kann, 
wo A ein Prozeß mit beschränkter Variation 
auf kompakten Zeitintervallen und M ein 
lokales Martingal ist. Erwähnenswert ist, 
daß in all diesen Ansätzen und Verallgemei-
nerungen der Integrand X entweder links-
seitig stetig oder vorhersagbar (predictable, 
also aus einem geeigneten Abschluß der 
linksstetigen Prozesse) sein muß. Daß dies ei-
ne prinzipielle Einschränkung darstellt und 
nicht nur technischer Natur ist, haben K. 
Bichteler 1979 und C. Dellacherie 1980 ge-
zeigt: jedes vernünftige stochastische Inte-
gral, das vorhersagbare Integranden zuläßt, 
muß notwendigerweise von einem Semi-
martingal getrieben sein. Obgleich diese 
Theorie auf den ersten Blick recht allgemein 
scheint, gibt es eine ganze Reihe von 
(Gaußischen) Prozessen, die keine Semi-
martingale sind, etwa gebrochene Brown-
sche Bewegungen (Hurst Parameter H 
oder gewisse Dirichlet-Prozesse, die in An-
wendungen eine große Rolle spielen. 

Das vorliegende Buch ist aus Vorlesungen 
über Stochastische Differentialgleichungen 
für Mathematiker, Physiker, (Elektro-)Inge-
nieure und Wirtschaftswissenschaftler an 
der Universität von Austin (Texas) entstan-
den, die eine solide mathematische Grund-
lage für all die stochastischen Techniken be-
nötigten, welche in den jeweiligen Wissen-
schaften (manchmal etwas handwerks-
mäßig) verwendet werden. Die Leser, die ei-
ne eher klassische Einführung erwarten, wie 
sie etwa oben skizziert wurde, werden von 
diesem Buch enttäuscht werden. Im Gegen-
teil, „ apredilectionfor generalityfor simplici-
ty's sake led directly to the most general sto-
chastic Lebesgue-Stieltjes integral" [Preface, 
p. xi], und was sich dahinter verbirgt, ist 
schlechthin ein völlig neuartiger Zugang zu 
stochastischen Integralen. Bichteler kritisiert 
zu Recht die schwerfälligen und unterent-
wickelten Grenzwertsätze für Itö-Integrale, 
was zu einem guten Teil am Riemann-arti-
gen Aufbau der Itöschen Theorie hängt. Der 
Autor schlägt daher vor, Daniells Ansatz auf 
stochastische Integrale auszudehnen, was 
dann zu einer viel flexibleren stochastischen 
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Lebesgue-Stieltjes Theorie führen würde. Ist 
man mit Daniells Theorie vertraut, dann 
stellt das keine allzu große Hürde dar. Für 
die Klasse der Elementarprozesse E (stoch. 
Treppenfunktioneri) 

X(w) =fo(w) 1 {O}  (t) 
+

fj 	 (t) (w) ' (— j '  

(f sind F 1  -meßbare Zufallsvariable) 
kann man das Integral für jeden adaptierten 
Prozeß e, unmittelbar angeben: 

(fxs d s)(w) =fo(w) o(w) 

((w) — (w)) 

Parallel zum deterministischen Fall geht 
man nun zu verschiedenen Abschließungen 
E* der Elementarfunktionen über und defi-
niert das Integral fX  d, X. C E als 
Grenzwert von Integralen von Elementar-
prozessen definieren, was z. B. in der 
LP(P)-Skala, 0 <p < 00 (sic!), geschehen 
kann. (Der Raum L° (P) besteht aus allen 
fast sicher endlichen Zufallsvariablen und 
wird mittels stochastischer Konvergenz zu 
einem Banachraum.) Minimalvoraussetzung 
an e, ist dabei, daß ein L-integrator ist, 
d. h., et  sollte in Wahrscheinlichkeit rechts-
stetig sein (i. allg. keine große Einschrän-
kung) sowie der Beziehung 

sup{fXdA t : 	 E} < 	(t) 

genügen. Mit diesem Aufbau lassen sich 
dann relativ bequem der Satz von der domi-
nierten Konvergenz, Daniell-Stetigkeit des 
Integrals (monotone Konvergenz), Egoroffs 
Satz oder die Approximation des Integrals 
mittels (adaptiver) Riemannscher Summen 
usw. zeigen. Methodisch folgt das alles ziem-
lich analog zur klassischen deterministischen 
Theorie. Man beachte, daß der Integrand 
nicht notwendig vorhersagbar sein muß: die 
Klasse der L-Integratoren (p > 0) ist strikt 
kleiner als die Klasse der Semimartingale, 
wobei L°  gerade mit den Semimartingalen 

übereinstimmt. Eine weitergehende Charak-
terisierung von L-Integratoren findet sich 
nicht, jedoch wird gezeigt, daß L-Martinga-
le stets L-Integratoren sind. Für L°-Inte-
gratoren (Semimartingale) wird dann auch 
Itös Formel (wir erinnern uns: die Ketten-
regel) und einige Elemente der stochasti-
schen Analysis (brackets, Doelans-Dade Ex-
ponentialfunktion, Girsanov-Transforma-
tion ... ) gezeigt. 

Der wesentliche Vorteil der vorgeschlage-
nen Methode liegt wohl in der Möglichkeit, 
das stochastische Integral durch ganz kon-
krete Normen des Integranden und des Inte-
grators abschätzen und kontrollieren zu 
können. Zentrale neue Resultate sind hier, 
daß für jeden LP(P)Integrator e, und jedes 
q > p ein äquivalentes Wahrscheinlichkeits-
maß Q existiert, so daß auch ein L(Q)I n  
tegrator ist, wobei die Halbnormen (f) ge-
geneinander abgeschätzt werden können. 
Ganz offensichtlich sind solche Abschätzun-
gen durch die Burkholder-Davis-Gundy Ab-
schätzungen motiviert, die aber auch wieder-
um als Korollar gewonnen werden können. 
Das vielleicht überraschendste Resultat ist 
folgende Abschätzung, 

SuPfX
sds  

s<T 	 L 
pT 

<9.5p•max / XS dA S  
p 	 LP 

fürp c [2, q] (das max,, erstreckt sich, abhän-
gig von .‚ über eine Teilmenge von { 1, 
wo T eine Stoppzeit, Zt ein LIntegrator,  
q> 2, Xt  ein vorhersagbarer und A, = 
A, [Z, q] ein geeigneter streng monoton wach-
sender, vorhersagbarer Prozeß ist, dessen Er-
wartungswert man kontrollieren kann. 

Das letzte Kapitel des Bandes beschäftigt 
sich mit stochastischen Differentialgleichun-
gen und Flüssen, wo das bekannte Picard-
Verfahren angewendet wird, nur mit dem 
wesentlichen Unterschied, daß man für 
L P  -Integratoren deutlich bessere Norm-
abschätzungen verwenden kann als die übli-
chen H- und So-Normen für Semimartin-
gale. Der Nachweis von Stabilität bzgl. der 
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Anfangsbedingungen gestaltet sich dann 
deutlich natürlicher und man kann mit die-
ser Methode auch das numerisch interessan-
te Euler-Schema pfadweise rechtfertigen. 
Stochastische Flüsse werden nur im Zusam-
menhang mit Semimartingalen behandelt 
und die Darstellung folgt dem Lehrbuch [11] 
von Protter. Das Buch schließt mit einigen 
Anhängen zu Topologie, Daniell-Integrati-
on, Analytischen Mengen, Skorokhod-To-
pologie, L-Räumen bzw. Operatorenhalb-
gruppen, die das Buch seif-contained machen 
(sollen), sowie Lösungen zu einigen Auf-
gaben. Ausführlichere Anhänge, Stichwort-
verzeichnisse und Notationslisten (leider 
dringend nötig) finden sich auf der homepage 
des Autors in Austin, Texas. 

Was wir hier vor uns haben, ist sicherlich 
kein Lehrbuch und ich kann mir kaum vor-
stellen, daß ein derartiges Buch in seiner Fül-
le aber auch Abstraktion Grundlage einer 
Vorlesung (gewesen) sein kann. Um eine um-
fassende, ggf. überblicksartige Gesamtdar-
stellung eines etablierten Gebiets - so wie es 
der Cambridge Encyclopedia ins Stamm-
buch geschrieben ist handelt es sich aber 
auch nicht. Zu sehr weicht dafür die Darstel-
lung vom Standard ab, und eine in sich logi-
sche und vielleicht sogar überlegene Privat-
notation des Autors verhindert die Verwen-
dung als Referenzwerk. Schelte gebührt den 
Lektoren von Cambridge University Press, 
die dem Autor einige unschöne Marotten 
nicht ausreden konnten: eine Vielzahl von 
kommentierenden Fußnoten (ich habe auf 
manchen Seiten drei Fußnoten und noch 
zahlreichere Verweise auf vorangehende 
Fußnoten gefunden!), häufige Verweise auf 
Nummern von vorangehenden Fußnoten in-
nerhalb eines jeden Kapitels (daß am Ende 
jeden Kapitels eine Liste steht, wo sich denn 
der Text der Fußnoten findet, ist auch nur 
ein schwaches Trostpflaster) und, wenigstens 
auf den ersten fünfzig Seiten, die permanente 
Unterweisung im richtigen Gebrauch des 
Englischen Artikels. Lobend erwähnen 
möchte ich die äußerst geringe Anzahl von 
Druckfehlern und die an vielen Stellen gelun-
gene Motivation, die stets den vertrauteren  

deterministischen Fall der Stochastik gegen-
überstellt. 

Bichtelers Stochastic Integration with 
Jumps ist eine Forschungsmonographie, die 
einen sehr interessanten Ansatz zur stochas-
tischen Integration vorschlägt. Als Lehrbuch 
oder Nachschlagewerk ist das Buch weniger 
geeignet, für ein Seminar mit einigen weni-
gen engagierten Studenten, die viel Zeit in-
vestieren wollen, kann die Lektüre des Buchs 
äußerst gewinnbringend sein. 
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Providence, Am. Math. Soc., 2002, 230 S., 
$ 35,- 

Das Interesse an Finanzmathematik hat sich 
seit einiger Zeit auch in der Lehrbuchlitera-
tur niedergeschlagen und wir finden mittler-
weile ein Fülle von Büchern, die die Black-
Scholes Formel und damit zusammenhän-
gende Themen in den Mittelpunkt stellen. 
Die meisten Autoren konzentrieren sich auf 
Diffusionsmodelle und arbeiten (mehr oder 
minder rigoros) auf Brownsche Bewegungen 
und den Itö-Kalkül für stetige Martingale 
hin. So erfreulich diese Entwicklung für ei-
nen Stochastiker auch sein mag, ist es doch 
schade, daß für viele Studenten inzwischen 
„Brownsche Bewegung" synonym für „Sto-
chastische Prozesse" steht. In der For-
schungsliteratur zeichnet sich ein gegenläu-
figer Trend ab: immer häufiger erscheinen 
Arbeiten über Sprungprozesse und ganz 
konkrete Modelle, die Wahrscheinlichkeits-
verteilungen benötigen, welche nicht von 
Diffusionen stammen. Im Hörsaal scheinen 
aber die stationären Prozesse, Gauß-Prozes-
se, Sprungprozesse, Lvy-Prozesse etc. nur-
mehr eine untergeordnete Rolle zu spielen. 
Das mag an der Dominanz der Brownschen 
Bewegung liegen, ein anderer Faktor ist aber 
sicherlich, daß es ausgesprochen wenig mo-
derne Lehrbücher gibt, die solche Prozesse 
detailliert auf Vorlesungsniveau behandeln. 
Klassische Darstellungen wie etwa bei Brei-
man, Gikhman-Skorokhod oder Loeve sind 
nach wie vor empfehlenswert (und auch 

noch bzw. wieder erhältlich!), doch ein Man-
ko dieser Bücher ist, daß sie allesamt erst 
nach langen klassischen Vorbereitungen 
zum Kern der Sache vorstoßen und dann 
modernere Entwicklungen, etwa stochasti-
sche Integration, ausklammern. Neuere 
Darstellungen wie z. B. Protter, Klebaner, 
Jacod-Shiryaev, konzentrieren sich auf all-
gemeine Semimartingale und sind damit im 
allgemeinen nicht für eine Vorlesung des 
sechsten oder siebten Semesters geeignet. 

Eine gute Alternative bietet nun das Buch 
von N.V. Krylov „Introduction to the Theo-
ry of Random Processes". Es handelt sich 
dabei um eine Neufassung der erstmals 
1986/87 auf Russisch erschienenen Vor-
lesungsskripten einer gleichnamigen „Spezi-
alvorlesung" an der Moskauer Lomonos-
sow-Universität, also einer Wahlpflichtver-
anstaltung (i. allg. zweistündig, zweisemes-
trig) für Mathematikstudenten des dritten 
bis fünften Studienjahres. Startpunkt ist die 
Vertiefung der Maß- und Wahrscheinlich-
keitstheorie, die etwa auf dem Niveau einer 
vierstündigen Vorlesung des fünften Semes-
ters vorausgesetzt wird. Auf recht natürliche 
Weise wird dann die Brownsche Bewegung 
(mittels des Donskerschen Invarianzprin-
zips) als Grenzwert von Irrfahrten einge-
führt und stochastische Integration bezüg-
lich einer Brownschen Bewegung definiert. 
Hier verfolgt der Autor den Ansatz über or-
thogonale Zufallsmaße (random orthogonal 
measures), den man bereits aus seiner Mono-
graphie über Diffusionsprozesse (Transl. 
Math. Monogr. Vol. 142, Am. Math. Soc., 
Providence (R.I.) 1995) kennt. Methodisch 
ist das ein sehr eleganter Ansatz, da man auf 
einen Schlag auch die Spektralmaße für sta-
tionäre Prozesse sowie allgemeinere Poisson-
und Sprungintegrale in Griff bekommt, 
doch habe ich meine Zweifel, ob dieser 
Standpunkt als Einführung für Studenten 
sonderlich glücklich ist. Dem Kapitel über 
Brownsche Bewegung schließen sich je ein 
Kapitel über Martingale und stationäre Pro-
zesse an, wobei vor allem deren Spektral-
zerlegung behandelt wird. Lvy-Prozesse 
werden im fünften Kapitel betrachtet, hier 
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stehen die Lvy-Khinchine-Formel und die 
damit korrespondierende Lvy-Itö Pfadzer -
legung im Vordergrund. Hervorzuheben ist 
die elementare und präzise Darstellung des 
Stoffs, die en passant auch noch in die Theo-
rie der Punktprozesse einführt. Im letzten 
Kapitel wird erneut das Itö-Integral auf-
gegriffen, wobei nun der klassische (Kunita-
Watanabe) Isometrieansatz für stetige Inte-
gratoren behandelt wird. Endpunkt der Dis-
kussion sind die Itö-Formel, der Satz von 
Girsanov und Anwendungen auf (einfache) 
stochastische Differentialgleichungen. 

„Introduction to the Theory of Random 
Processes" ist ein ausgesprochen schönes 
Buch, das eine breite Auswahl von Themen 
aus dem Gebiet der stochastischen Prozesse 
präsentiert. Die Darstellung ist elementar ge-
nug, um danach eine Vorlesung ab dem 
sechsten Semester anzubieten, so elegant, 
daß auch der Spezialist hier und dort Anre-
gungen findet, und vor allem hat sie sich viel 
von der Frische des ursprünglichen Vor-
lesungsskripts bewahrt. 

Sussex 	 R. Schilling 

LL 	cLc 

RA.Ryan 

Introduction to 
Tensor Products 
of Banach Spaces 
Monogr. in Math. 

Berlin u. a., Springer Verlag, 2002, 225 5., 
€74,95 

Im Jahre 1956 veröffentlichte A. Grothen-
dieck seine Arbeit Rsum de la thorie mtri-
que des produits tensoriels topologiques, in 
der er seine Untersuchungen über normierte 
Tensorprodukte niederlegte. In dieser Arbeit 

beschreibt er verschiedene Wege, das Ten-
sorprodukt zweier Banachräume zu normie-
ren; insbesondere entwickelt er einen Kalkül 
für Tensornormen, und er beweist sein 
Hauptergebnis, das er Thorme fondamen-
tal de la thorie mötrique des produits tenso-
riels nennt und welches die Aquivalenz ge-
wisser Tensornormen zeigt. Was Grothen-
diecks Methoden angeht, ist hervorzuheben, 
dass er die Bedeutung sowohl der endlichdi-
mensionalen Struktur eines Banachraums 
erkennt als auch die der Approximations-
eigenschaft, und damit war er seiner Zeit 
weit voraus. 

Aus verschiedenen Gründen war (und ist) 
diese Arbeit schwer zu lesen: Zum einen ist 
sie in einer nicht sehr verbreiteten Zeitschrift 
erschienen, dann werden Beweise fast stets 
nur skizziert, und schließlich stellt das Sujet 
selbst, Tensorprodukte normierter Räume, 
hohe Anforderungen selbst an Spezialisten. 
So blieb es nicht aus, dass das Rsumö über 
Jahre unbeachtet blieb, bis es von J. Linden-
strauss und A. Pelczyiski einem weiteren Le-
serkreis vorgestellt wurde, als sie in ihrer Ar-
beit Absolutely summing operators in L-spa-
ces and their applications (Studia Math. 
1968) viele der Grothendieckschen Resultate 
in einer für Normalsterbliche eher verständ-
lichen Sprache wiedergaben; z. B. zeigten sie, 
dass das Thorme fondamental äquivalent 
als Matrixungleichung geschrieben werden 
kann, die seither als Grothendiecksche Un-
gleichung bekannt ist. 

Die meisten Arbeiten, die in der Folge pu-
bliziert wurden, stützten sich auf den 
Lindenstrauss-Pelczyüskischen Ansatz, der 
Operatoren gegenüber Tensoren favorisiert. 
Das Ziel des vorliegenden Buches von Ray 
Ryan ist es, die Grothendiecksche Theorie 
wieder in der Sprache der Tensoren zu for-
mulieren, wobei natürlich auch die Opera-
torenideale zu ihrem Recht kommen. Ein 
wesentliches Anliegen des Autors ist es, mit 
seinem Text nicht nur Spezialisten auf dem 
Gebiet zu erreichen, sondern auch Novizen. 
Diesem Anspruch wird das Buch voll ge-
recht. 
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Im ersten Kapitel wird der Begriff des Ten-
sorproduktes linearer Räume X und Y vor-
gestellt. Der Zugang, den Ryan wählt, ist 
ziemlich konkret; x ® y wird als kanonisches 
lineares Funktional auf dem Raum der Bili-
nearformen auf X x Y eingeführt. Die 
nächsten beiden Kapitel widmen sich den 
„klassischen" Normen auf Tensorproduk-
ten, nämlich der injektiven (oder 6-) und der 
projektiven (oder 7r-) Norm. Nebenbei er-
fährt der Leser einiges über das Bochner-In-
tegral, Rademacher-Funktionen und die 
Khinchin-Ungleichung, nukleare Operato-
ren und vieles mehr. Kapitel 4 und 5 behan-
deln zwei Aspekte, die für die Geometrie der 
Banachräume insgesamt von Bedeutung 
sind: die Approximationseigenschaft und die 
Radon-Nikodym-Eigenschaft. Speziell fin-
det man in diesen Kapiteln auch das Prinzip 
der lokalen Reflexivität, die Dunford-
Pettis-Eigenschaft, Darstellungssätze für 
Operatoren etc. 

Die allgemeine Theorie normierter Ten-
sorprodukte bildet den Gegenstand von Ka-
pitel 6 und 7. Zentral sind hier der Begriff der 
endlich erzeugten Tensornorm sowie der da-
mit einhergehende Kalkül der assoziierten 
und dualen Normen. Damit können die 14 
natürlichen Normen von Grothendieck und 
auch die Chevet-Saphar-Normen diskutiert 
werden, die eng mit den p-nuklearen und ab-
solut p-summierenden Operatoren zusam-
menhängen, welche ebenfalls ausführlich be-
sprochen werden. Höhepunkt ist selbstver-
ständlich Grothendiecks Thorme fon-
damental, das zuerst als Matrixungleichung 
bewiesen und dann in der Sprache der Ten-
sorprodukte wiedergegeben wird. Das letzte 
Kapitel schließlich stellt den Zusammenhang 
von Tensorprodukten und Operatoren-
idealen her. 

Ray Ryans Buch ist hervorragend geeig-
net, einen Leser, der über das üblicherweise 
in zwei Semestern vermittelte funktionalana-
lytische Grundwissen verfügt, in ein wichti-
ges Gebiet der Banachraumtheorie einzufüh-
ren. Aber auch für diejenigen, die bloß leicht 
zugängliche und ebenso leicht verständliche 
Informationen über Begriffe wie Appro- 

ximationseigenschaft, das Bochner-Integral, 
p-summierende Operatoren etc. suchen, ist 
das Werk wärmstens zu empfehlen. 

Die Darstellung ist in jeder Zeile klar und 
elegant, und stets spürt man die Sympathie 
des Autors für die Leser. Als weiteren Plus-
punkt empfinde ich die angenehme Typogra-
phie und das fast vollständige Fehlen von 
Tippfehlern. 

Leider behindert der Verlag eine weite 
Verbreitung dieses schönen Buches durch 
die Festsetzung eines vollkommen unange-
messenen Preises: Inklusive Mehrwertsteuer 
kostet es bei 225 Seiten über 80 Euro. 

Berlin 	 D. Werner 
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