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Vorwort

Im Zentrum dieses Hefts stehen zwei ausfiihrliche Ubersichtsartikel. L. Riischendorf
berichtet liber neue Entwicklungen zum sogenannten Monge-Kantorovich Problem,
bei dem es um den optimalen Massentransport zwischen zwei Gebieten geht. Hier tref-
fen Probleme der Analysis und der Geometrie aufeinander, wobei insbesondere die
Theorie der partiellen Differentialgleichungen, Riemannsche Geometrie und Varia-
tionsprobleme eine Rolle spielen. In dem vorliegenden Aufsatz werden vor allem die
probalitistischen Aspekte des Problems eingehend dargestellt. An dieser Stelle sei noch
erwihnt, dass Kantorovich zusammen mit Koop im Jahre 1975 den Nobelgedichtnis-
preis fiir Wirtschaftswissenschaften erhalten hat.

Der zweite Ubersichtsartikel dieser Ausgabe stammt von G. Schneider und H. Uecker
und behandelt das Verhalten von Lichtimpulsen in dispersiven Medien wie etwa Glasfa-
serkabeln. Dies ist eine Frage von grundlegender Bedeutung fiir die optische Datenver-
arbeitung und insbesondere den Transport von Informationen, eine der wesentlichen
Grundlagen unserer Informationsgesellschaft. Mathematisch gesehen handelt es sich
dabei um die Untersuchung nichtlinearer Wellengleichungen, wobei insbesondere die
nicht-lineare Schrodingergleichung eine wichtige Rolle spielt.

Das Heft wird wie immer durch aktuelle Buchbesprechungen ergénzt.

K. Hulek
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Monge-Kantorovich Transportation
Problem and Optimal Couplings

Ludger Riischendorf

Abstract

= Mathematics Subject Classification: 60 E 15, 90 C46, 65K 10, 39B 72
= Keywords and Phrases: Optimal coupling, minimal metric, duality theory, polar fac-
torization, c-convexity, stochastic equation, recursive algorithm

The Monge-Kantorovich mass-transportation problem has been shown in recent years
to be fundamental for various basic problems in analysis and geometry. In this paper
we describe some of the historical developments of this probem and some of the basic
results. In particular we emphasize the probabilistic aspects and contributions to this
subject and its relevance for various classical and recent developments in probability
theory ranging from probability metrics and functional inequalities over estimates for
risk measures to the analysis of algorithms. The paper is based on a lecture of the author
delivered at the MSRI meeting on mass transportation problems in November 2005 in
Berkeley.

Eingegangen: 23.10.2006 DMV
Ludger Riischendorf, Albert-Ludwigs-Universitit Freiburg, JAHRESBERIGHT
Mathematical Stochastics, EckerstraBe 1, D-79104 Freiburg, DER DMV
ruschen@stochastik.uni-freiburg.de © B. G. Teubner 2007
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1 Introduction

The classical mass transportation problem of Monge and its version of Kantorovich
has found a lot of recent interest because of its importance for several problems in non-
linear PDEs, Riemannian geometry, variational problems and for several interesting in-
equalities and concentration results, see in particular the recent excellent presentations
of Ambrosio (2003), Villani (2003, 2006) and Ambrosio, Gigli, and Savaré (2005). In
this paper we survey some of the probabilistic developments of the transportation pro-
blem and the related optimal coupling problem and its applications. The probabilistic
development of the subject was mainly concentrated on the Kantorovich formulation
of the problem which turned out to be also instrumental for the Monge formulation
and its applications in analysis.

The probabilistic interest in this topic was essentially connected with some naturally
defined minimal metrics on the space of probability measures which are defined via op-
timal coupling properties. In particular to mention are the minimal £,-metrics, the Kan-
torovich-Rubinstein theorem and others. Much of this development and many prob-
abilistic applications are discussed in Rachev and Riischendorf (1998a,b).

After the introduction of the connections between optimal couplings and mass
transportation we discuss in section 3 the development of the basic duality theory which
gives the clue to many of the optimal coupling results. We then present in section 4 as
consequences some of the main results for optimal L?-couplings (the classical L2-dis-
tance) and also for general coupling functions. This includes in particular the important
characterizations of optimal transportation plans based on generalized convexity no-
tions (c-convexity, c-subgradients, c-cyclical monotonicity). At this point roughly
around 1990 the development of this subject in analysis began. Here this survey tries to
relate the various historical sources and to describe the probabilistic contributions. We
also describe some of the more concrete probabilistic applications and developments as
e.g. to the optimal coupling of normal or discrete distributions or to obtain bounds for
the risk of portfolios arising from positive dependence. In the final part of this paper we
discuss a recently introduced modification of the minimal /;-metric and its application
in the analysis of recursive algorithms of divide-and-conquer type.

2 The mass transportation problem

In 1942 Kantorovich introduced the problem of optimal mass transport in the following
form:

/c(x,y)du(x,y) = inf =3P, P), (2.1)

HEM(Py,Py)

where ¢ : U} x U, — IR is a measurable real cost function, P; € M l(U,~) are probability
measures on U; and

M(P,Py)={pe M" (U x Uy);p"i = P;, i=1,2} (2.2)

114 JB 109. Band (2007), Heft 3



L Rischendorf: Monge-Kantorovich Transportation Problem and Optimal Couplings

is the class of all probability measures on U; x U, with marginals P, P,. Here 7; are
the projections on the i-th components and p™ is the image of x under 7. ji. is called
the Monge-Kantorovich functional. In terms of random variables on a non-atomic prob-
ability space (€, U, P) problem (2.1) is equivalent with the problem to find an optimal
coupling of P, P, w.r.t. the coupling function ¢, i.e.

EC(X],Xz) = inf (23)

over all couplings X7, X, of Py, Py, i.e. such that PXi = P, i =1,2. Any u € M(Py, P;)
describes a transference (transportation) plan for the mass distribution P; to P, or
equivalently the joint distribution of a pair of (X, X2) of couplings of P;, P,. Using
conditional distributions we obtain for . € M (P, P;)

/ e(x, y)dp(x, ) = / ( / c(w)u(dylx)) Py(d). (24)

Any mass at point x is transported to y according to p(dy|x) and thus [ ¢(x,y)du(x,y)
denotes the total cost of transportation using this plan. In the optimal coupling problem
(2.3) ¢ is understood as a distance (dissimilarity) and it is a natural problem to find an
coupling (X1, X») of Py, P, with minimal expected dissimilarity.

A subclass of all transport plans are deterministic transport plans of the form
u(- | x) = e4(x), where ¢ is a function which transports P to P, i.e. P{ = P,. The addi-
tional restriction is that no mass is allowed to be split. Denoting by

S(Py,Py) ={¢: Uy — U,, ¢ measurable, P‘f = Py} (2.5)

the set of all deterministic transport plans one obtains the corresponding Monge trans-
portation problem

{6 dpP = i 2.
[ etonari = _nt (2.6
resp. the deterministic coupling problem
Ec(Xy,0(X,)) = inf . 2.7
(X1, 6(X1)) = (2.7)

This problem was introduced in 1781 by Monge for the special case that U; C IR?
are two bounded domains with volume measures P; and ¢(x, y) = ||x — y|| is the Eucli-
dean distance. Monge detected that optimal transport should go along straight lines
which are orthogonal to a family of surfaces (formally worked out by Appel (1887)).
Also he found the no-crossing rule of optimal transport rays.

From the probabilistic point of view the Kantorovich formulation of the transport
problem is more ‘natural’ than the Monge formulation. Similar extensions of determi-
nistic optimization problems are quite often to find in probability and statistics as e.g.
the transition from deterministic decision rules (like deterministic tests and estimators)
to randomized decision rules (like randomized tests and estimators) is a classical exam-
ple from the early period of statistics. Kantorovich obviously was not aware of the
Monge problem when he formulated his transport problem in 1942. In 1948 he wrote a
short note of three pages where he made the connection to the Monge problem and sta-
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ted that in case (2.1) has a deterministic solution ¢, then ¢ is also a solution of the
Monge problem, i.e., the Kantorovich problem is a relaxation of the Monge problem.
In fact Kantorovich’s problem was one of the earliest infinite dimensional linear pro-
gramming problems considered. In 1975 Kantorovich got together with Koopman the
Nobel price in economics for his development of linear programming and the applica-
tion to mathematical economics.

The Kantorovich problem and some variants have been developed in the probabilis-
tic literature since the mid seventies. For various kinds of optimization problems they
have been established as a basic and natural tool. A detailed exposition with many ap-
plications of these developments is given in Rachev and Riischendorf (1998a,b). Start-
ing with the late eighties, early nineties, important connections of the transportation
problem with problems from analysis and geometry, partial differential equations, fluid
mechanics, general curvature theory, variational problems, geometric and functional in-
equalities like isoperimetric and concentration inequalities, gradient flows in metric
spaces, and many others have been detected. This lead to a very active and wide ranged
research area. This line of research is excellently described and developed in the books
of Ambrosio (2003), Villani (2003, 2006), and Ambrosio, Gigli, and Savaré (2005).

In the following we review some of the history of the probabilistic development of
the transport problem, put it into line with the developments described above in analy-
sis. In this way we obtain e.g. a new extension of Brenier’s polar factorization result. Fi-
nally, we point out to some of the more recent applications in various areas of probabil-
istic analysis.

3 Duality theory and optimal couplings

In this section we describe developments of the duality theory which is the main tool
and the basis for determining optimal couplings and transport plans. In some more re-
cent work starting with McCann (1995) and Gangbo and McCann (1996) more direct
methods have been developed to determine optimal transport plans. We begin this sec-
tion with stating some of the classical results on minimal probability metrics which
stand at the beginning of optimal transportation problems.

3.1 Minimal probability metrics
a) Minimal £;-metric. Let (U,d) be a separable metric space and P;, P, € M'(U) be
probability measures on U with its Borel o-Algebra. We denote the minimal ¢;-metric

on M'(U) by

0(P1, Py) = inf { [ dtcnautery ne M(Pl,m} (3.1)

i.e. /1 is the minimal version of the usual L;-metric
Li(X,Y)=FEd(X,Y) (3.2)
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of random variables X, Y in U and is identical to the solution of the transportation pro-
blem with cost function ¢ = d.
The Lipschitz metric juy is defined by

mPl,Pz):sup{ [ e~ pa); Lips < 1}. (3.3)

Kantorovich-Rubinstein Theorem: The minimal ¢;-metric is identical to the Lip-
schitz metric, i.e., for all P, P, € M'(U) holds

L (Py, Py) = pp(Py, Pa). (3.4)

This result was proved by Kantorovich and Rubinstein (1957) in the case of compact
metric spaces and then extended by de Acosta (1982), Dudley (1976), Fernique (1981),
Levin (1975), and Kellerer (1984a).

In the case of the real line U = IR! and d(x, y) = |x — y| one gets the explicit expres-
sion

1
Zl(Pl,Pz):/O |F7 ' (u) — 5 (u)|du s

= / IFy(x) — Fy(x)|dx

where F; are the distribution functions of P;. In this case the results go back to early
work of Gini (1914), Salvemini (1949), and Dall’Aglio (1956) (even for the case
¢(x,y) = |x — y|*) Vallander (1973) and Szulga (1978).

Fréchet (1940) was the first to note formally the metric properties of ¢; in general
metric spaces, Hoeffding (1940) gave a formula for ¢, in the real case and Vasershtein
(1969) ‘introduced’ #; again in his paper on Markov processes. Dobrushin (1970) was
the first to call £, Wasserstein metric (Wasserstein the English transcripted version of
Vasershtein).

b) Total variation metric. Let 7" denote the total variation metric on U and let
oX,Y)=PX#Y) (3.6)

denote the compound probability metric on the space of random variables, then
V(Py,Py) =G(Py, Py) = inf{o(X, Y); X £ P, Y £ P,}. (3.7)

This result is due to Dobrushin (1970). It is a basic result to many of the optimal cou-
pling results in probability theory which extend the classical paper of Doeblin (1938)
giving a coupling proof of the limit theorem for Markov chains.

¢) Prohorov metric. A similar result holds true for the Prohorov metric 7 on M'(U)
which is the classical metric for the weak convergence topology. Strassen (1965) proved
that 7 is the minimal metric of the Ky Fan metric X, i.e.

=K. (3.8)
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In all three cases the transition to the minimal metric yields a change of the topol-
ogy. This has important applications, e.g. to Skorohod type results (relation between
weak and strong convergence) in the proof of central limit theorems, in matching theory
and in robustness results and many others. More generally for any compound probabil-
ity metric (X, Y) the corresponding minimal metric /7 is defined by

A(P1, Py) = inf{u(X,Y); X £ P, Y £ P,}. (3.9)

Zolotarev (1976) used this principle for the construction of several examples of ideal
metrics. The interesting question of characterization of the minimal metrics with (-
structure, i.e. which have a sup-representation similar to (3.3), is so far only partially an-
swered.

3.2 Monge-Kantorovich duality theory

The duality theory for the transportation problem began with Kantorovich’s 1942 re-
sult which stated equivalence of (2.4) with a dual problem for the case of compact metric
spaces and continuous cost functions ¢(x, y). The proof however worked only for the
case where c¢(x,y) = d(x,y) is a metric on U = U; = U,. For the metric case the MK-
transportation problem is equivalent to the mass transfer problem where for
Py, P, € M'(U) the class of transport plans M (P;, P) is replaced by the class of mass
transference plans

M =M(P,— Py)={ye M(Ux U); Y\ =4 = P — Py}, (3.10)
i.e. all transport plans with fixed difference of the marginals. With respect to this class it
is allowed to transfer a mass point of x to y via some route x = xy, x3,...,x, = y such

that the cost ¢(x, ) is replaced by the cost Y| ¢(x;, xi+1). The basic result is an exten-
sion of the Kantorovich-Rubinstein theorem of the form

u(P1, Py) = inf { [ clnndute vy e mp - Pz>}
(3.11)
i { [ = P -5 () < c(x,y>}.

After the Kantorovich-Rubinstein (1957) paper this kind of duality theorems for the
mass transfer problem was intensively discussed in the Russian probability school in
particular by Levin (1975) and Levin and Milyutin (1979). Also the papers of de Acosta
(1982), Dudley (1976), Fernique (1981), and Rachev and Shortt (1990) concerned the
Kantorovich-Rubinstein functional .. It coincides with the MK-functional fi, only if ¢
is a metric (see Neveu and Dudley (1980)). An important role in this development is
played by the Lipschitz norm in (3.11) (see Fortet and Mourier (1953)) and by related
approximation arguments. A rather complete duality theory of the KR-functional /i,
has been developed by Levin (see corresponding references and presentation in Rachev
and Riischendorf (1998a,b)).
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L Ruschendorf: Monge-Kantorovich Transportation Problem and Optimal Couplings

The MK-problem with fixed marginals can be considered also on n-fold products of
probability spaces (U;, U;, P;). Let o : ], Uy — Rand M = M(P,,..., P,) be the set
of all transport plans, i.e. measures with marginals P; then we define

S(h) = sup { / hdp; p € M}

n (3.12)
1 =t { Y [fapah < ofsi e 2P}
i=1
where @&f;(x) = Y%, fi(x;). We say that duality holds if
S(h) = I(h). (3.13)
Here the equivalent problem of maximizing the gain (profit) is considered which

transfers to the problem of minimizing the cost by switching to ¢ = —A.

For the proof of duality theorems of MK-type several strategies have been devel-
oped. One approach is to establish via Hahn-Banach and Riesz-type results in the first
step the equality

S(h) = I(h) (3.14)
where S(h) is the supremum problem where the measures with fixed marginals are re-
laxed to the finite additive measures ba(Py, ..., P,). In the second step conditions on /

are identified (Riesz-type results) which ensure that S(4) = S(h). This approach was
followed in Riischendorf (1979-1981) (in the following abbreviated by Rii) and Gaftke
and Ri (1981) (without being aware at that time of the MK-problem in the Russian
school). Motivated by this development Kellerer (1984b) followed a different route to
obtain more general results. Starting from the duality for simple cases he investigated in
detail continuity properties of the functionals S, / which allowed him by Choquet’s ca-
pacity theorem to obtain very general duality results. Rachev (1985) extended approxi-
mation arguments as used in the KR-case to some instances of the MK-problem. Levin
(since 1984) established some techniques which allowed him to prove reduction results
from the MK-problem to the KR-problem.

Here is a list of some of the basic duality results for the MK-duality problem. The
spaces U; are assumed to be Hausdorff and the measures are restricted to the class of
tight measures.

Theorem 3.1 (Duality Theorem.) @) Duality holds on the class of all lower-majorized
product-measurable functions:

Ln(U)={he LW ®...0,), ;€ L'(P); h >, f}. (3.15)
b) Duality holds on F(U), (3.16)

where F(U) are the upper semicontinuous functions and closure is w.r.t. I(| f — gl).

Duality also holds on G,,(U), (3.17)
the closure of the lower majorized lower semicontinuous functions.

¢) Existence of an optimal measure on F for the S-functional. (3.18)
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d) Existence of minimal functions (f;) on L,,(U) for the I-functional. (3.19)
e) For P€ M(P,,P,), f; € L'(P.), ®f; > h holds:
P, (fi) are solutions for S,I <= h=a&,f; [P] (3.20)

Remarks 3.2 a) The duality and existence results were proved in Rii (1981) essen-
tially for the bounded product measurable case and in Kellerer (1984b) for the general
case. The conditions in the results are sharp, i.e. there exist counter-examples of the
duality and existence results, e.g. on G(U) or without lower boundedness in d).

b) Condition (3.20) characterizes optimal transport plans P under the existence condi-
tion e.g. for & € L,,(U). The sufficiency part does not need any conditions, i.e. the
r.h.s. of (3.20) implies optimality of P and (f;).

c) In Kellerer (1984b) a simple example is given where 4 € C(U x U), S(h) = I(h),
P, = P,, but & does not allow a representation of the form 4 = f; & f; [P] with
fi € LN(P), P € M(Py, P,).

d) The existence of solutions of the dual problem is closely connected with the follow-
ing closedness problem: Let P € M (Py, P,), s > 0 and consider

Fy=L(P;) ® L'(P,)
={f=f(x,») =g(x) +h(y);g € L'(P),h € L'(P;)}

When is F; closed in L*(P)? In general closedness does not hold true (see Rii and
Thomsen (1993)). Several partial results are known, e.g. in case s=0 and
P < P, ® P, any element ® € F,, the closure w.r.t. L°(P), has a representation of
the form

O(x,y) =f(x) +2(y) [P] (3.22)

but in general f, g cannot be chosen measurable. Several positive results are estab-
lished. (3.22) is sufficient for proving the existence of a general version of Schrodin-
ger bridges and the positive results also allow to give an extension of the Kolmogor-
ov representation result for continuous functions of 7 variables by a superposition
of functions of one variable to the case of locally bounded measurable functions
with equality holding a.s. (see Rii and Thomsen (1997)).

(3.21)

Immediately after establishing the duality results (3.15)—(3.20) some interesting con-
sequences were established in the early eighties in particular sharpening some classical
bounds. Here are some examples:

a) Sharpness of Fréchet-bounds: For 4; € %, holds
Sup{P(A1 X ... X An),P € M(P],. wpe 7Pn)} = mln{P,(A,), 1<i< f’l} (323)
inf{P(A; X ... X Ay); P € M(Py,...,Py,)} = (ZP,—(A,-) —(n— 1)) . (3.24)
i=1

+

These are classical bounds in probability theory. They could be shown to be sharp
by calculating the dual problem explicitly (see Rii (1981a)).
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b)

<)

d)

Holder and Jensen inequality: For o; > 0,5 1/a; = 1, X; > 0 the Holder inequality
ET[x <] Ixll, (3.25)
i=1 i=1

is an optimal upper bound in the class of distributions with given a;-th moments of
X;. One can improve this bound by

E][x<E[[F'(U), (3.26)
i=l1 i=l

where U is uniform on (0, 1), F; the distribution functions of P;. This bound is sharp

in the class of all distributions with marginals P; (with distribution functions F;).

Similarly the Jensen inequality

Ep(X) - o(EX), © convex (concave) (3.27)

)

IV A

is sharp in the class of all distributions with given expectation. For large classes of
convex functions one can improve the bounds. E.g. for ¢(x) = max x; — min x;, the
span of x, holds

E span(X;) > E span(F7'(U)) (3.28)

which is sharp in the class of distributions with given marginals.

Sharp bounds for the sum: For P; € M'(IR") with distribution functions F; holds
sup{P(X, + X» < 1); X; ~ P;} = F| A F5(1)

= inf{F,(u) + F>(t —u);u € R'}, (3.29)
Fy A F; is the infimal convolution of the distribution functions F; of P;. Similarly,
nf(P(X, + X2 < 0); X ~ P} = (FyV Fy(1) — 1), (3.30)

where F; V F, is the supremal convolution.

This problem of sharp bounds for the distribution of the sum was solved indepen-
dently by Makarov (1981) and Rii (1982). In Rii (1982) the proof was based on the
duality theorem. This result has found recently great interest in risk theory since it
allows to derive sharp bounds for the ‘value at risk’ measure in a portfolio caused by
dependence of the components. There are a sequence of recent papers using the dua-
lity result in order to establish effective extensions of the bounds for more than two
random variables and thus to obtain effective bounds for the risk in portfolios.

For A-monotone and for quasi monotone functions # : IR” — IR' ase.g.
h(x) = ¢(x1 + ...+ x,), ¢ convex, sharp bounds were established

sup{Eh(X); X; ~ P;} = Eh(F{'(U);..., F,'(U)) (3.31)
(see Tchen (1980), R (1980, 1983)).
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The duality theorem (3.15)—(3.20) was established for tight measures on a Haus-
dorff space which corresponds roughly to the case of complete separable metric spaces.
A natural question is in what generality does the duality theorem hold true? We consid-
er the case n = 2 and probability spaces (U;, U;, P;) and define:

(D) holds if S(h) = I(h) forallh € B(U; x Uy, N; @ W) (or h € L,,(Uy x UL)).

Remind that P € M'(Q, ) is called perfect if for all f € £(A) I a Borel set B C £(N)
such that

P(f7'(B) =1. (3.32)

This notion was introduced by Kolmogorov and is instrumental for various measure
theoretic constructions like conditional probability measures (see Ramachandran
(1979a,b)). The following general duality theorem holds if one of the underlying mar-
ginal measures is perfect.

Theorem 3.3 (Perfectness and duality.) (Ramachandran and Rii (1995)) If P is
perfect, then (U, Ny, Py) is a duality space, i.e. (D) holds for any further probability
space (Up, Uy, Py).

The proof starts with the case U; = [0, 1], i = 1,2, where (D) holds by the Duality
Theorem 3.1. It then uses various measure theoretic properties as the outer measure
property of Pachl, the Marczewski imbedding theorem, and a measure extension prop-
erty.

In the following we deal with the problem whether perfectness is also a necessary
condition. To study this question we introduce the notion of a strong duality space.

Definition 3.4 (U, U;, Py) is a ‘strong duality space’ if it is a duality space and the
Sunctional I is stable under extensions, i.e. for any (U, Wy, Py) and any sub o-algebra
€, c Wyandh € B(A; @ €,) holds

Iy, ¢, (h) = Iy,eu, (h). (3.33)

Equivalently one could also postulate stability of S. As consequence of the general
duality theorem one obtains that perfectness implies strong duality space. We need two
further measure theoretic properties.

Definition 3.5 (U, Uy, Py) has the ‘projection property’ if for all (Uy, Wy, Py) and
C e W, ® N, there exists A; € Ay with Py(A,) = 1 and

m(CN(4; x Uy)) € ‘ZI_ZPZ, ‘ZI_zpz the P,- completion of Uj. (3.34)

This notion is a measure theoretic analog of the projection property in descriptive
set theory. The classical result in this area says that the projection of a Borel set in a pro-
duct of two standard Borel spaces is analytic and thus universally measurable.

The second property is the measure extension property.

Definition 3.6 (U, Uy, Py) has the ‘measure extension property’ if for all (U, Us,
P,) for all D, C N, and all P € M(Py, P,/D,) there exists an extension P € M(Py, P)
such that P/, ® D, = P.
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We say that (Uy, Uy, Py) has the ‘charge extension property’ if the extension can be
found in the set ba(Py, P,) of charges, i.e. non-negative finitely additive measures, with
marginals P;.

It now turns out that the strong duality spaces are exactly the perfect spaces. Thus a
general duality theorem in the strong sense implies perfectness. The following theorem
states that the strong duality property is even equivalent with any of the measure theore-
tic notions introduced above.

Theorem 3.7 (Characterization theorem.) (Ramachandran and Rii (2000)) For a
probability space (Uy, Uy, Py) the following statements a)—e) are equivalent:

a) (U, Ay, Py) is a strong duality space.

b) (U, U,, Py) is perfect.

¢) (U, Wy, Py) has the measure extension property.
d) (U, Uy, Py) has the projection property.

e) (U, Uy, Py) has the charge extension property.

As consequence all structure theorems for perfect spaces are also valid for strong
duality spaces. On the other hand this result says that one cannot expect ‘good’ duality
results on ‘general’ infinite dimensional spaces. There remain the following important

Open problems:
a) Is any measure space a duality space?
b) Isany duality space a strong duality space?

c) IsM(P,,P,) C ba(P,P,)dense in weak x-topology from B(U; x U,)?

4 Optimal multivariate couplings

The duality results of section 3 were developed into more concrete optimal coupling re-
sults in the early nineties. Here also started the development on the subject by several re-
searchers from analysis since the strong and fruitful connections to several problems in
analysis soon became clear. In particular to mention is the work of Brenier, McCann,
Gangbo and later on Ambrosio, Villani, Otto, Caffarelli, Evans, Trudinger, Lott, and
Sturm.

4.1 The squared norm cost
For the squared norm cost ¢(x, y) = ||x — y||%, x,» € IR* the problem of optimal trans-
port or optimal couplings is given by

E|X-Y|*= inf (4.1)
X~Py,Y~P,
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where P; € M'(IRF, 8) have covariance matrices >-;= Cov(P;). This problem is
equivalent to maximizing the trace tr ¥

tr ¥ = max! (4.2)
over all

Ve C(P,P) = {\IJ : 3P € M(Py, P;) such that (5} 2\;1} ) € Cov(P)}. (4.3)
2

In general C(P, P») is a complicated set but for normal distributions P; = N(a;, ;)
one gets the maximal possible class C(Py, P,) with covariance matrices >, of P;. The
covariance condition (4.3) is in this case equivalent to

(ng z\i ) > 0 in the sense of positive semidefiniteness. (4.4)

The corresponding optimization problem (4.2) was analytically solved in Olkin and
Pukelsheim (1982) and Dowson and Landau (1982), leading in particular to an univer-
sal lower bound of 4 (P;, P») depending only on first and second moments a;, ¥; for
any pair Py, P, € M'(IR*, B¥).

For general distributions P; the following is the basic optimal coupling result which
is due to Knott and Smith (1984, 1987), Rii and Rachev (1990), and Brenier (1987,
1991).

Theorem 4.1 (Optimal L’-couplings.) Let P; € M'(R¥, 8%) with [||x|*dPi(x) <
00, then

a) There exists an optimal L*-coupling, i.e. a solution of (4.1).
b) XL P, YL Pyisan optimal L*-coupling
<=3 convex, Isc f € L'(P,) such that Y € f (X) a.s. (4.5)

c) If Py < N¥, thenforf asinb)
Of (X) =Vf(X) as. and (X,Vf(X)) (4.6)
is a solution of the Monge problem.

d) If Py < XN, then there exists a Py a.s. unique gradient Vf of a convex function f, such
that

Py = P,. (4.7)

Remarks 4.2 a) Part b) of this theorem was given in this form first in Rii and Ra-
chev (1990). The proof was based on the duality theorem. The sufficiency part for b) is
contained already in Knott and Smith (1984, 1987). Brenier (1991) established the un-
iqueness result in d) as well as b) while a special version of ¢) is already in his 1987 pa-
per. Note that the existence of a Monge solution in ¢) is an immediate consequence of
b) and a.s. differentiability of convex functions (see Rockafellar (1970)). By this his-
tory it seems appropriate to describe this important theorem to the authors from prob-
ability and analysis as mentioned above.
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b) Cyeclically monotone support. By convex analysis condition (4.5) is equivalent to cy-
clically monotone support T of the optimal transportation measure p = P ie.
v(xlvyl)v vesy ('xm>ym) € I' holds

zm:yixi-ﬂ = Zm:yixi (4.8)
i=1 =1

with x,,.1 := x;. This equivalence lead Gangbo and McCann (1995) to a new strat-
egy of proof. If uniqueness holds (as in the case P; < A¥) then cyclical monotonicity
of the support of 1 implies optimality. In this way they were able to replace the mo-
ment assumptions on P, P, by the uniqueness condition.

¢) For P, =\, P, = g\ absolutely continuous w.r.t. Lebesgue measure Caffarelli
(1992, 1996) established regularity estimates of the optimal Monge solution ®:
If f, g € Ck* (i.e. the partial derivatives up to order k are of Holder type «) and
g > 0 then ® € C**22 In particular if f,g € C* and locally bounded from below,
their supports and supp g is convex, then ® € C> and ® is a classical solution of
the Monge-Ampere equation

det D?(x) = g(f;g’&)) P)] (4.9)

(see Villani (2006) for more details).

A corollary of the optimal L?-coupling theorem is the polar factorization theorem
due to Brenier (1987).

Corollary 4.3 (Polar factorization theorem.) Let E C IR? be a bounded subset with
positive Lebesgue measure, h: E — IR a measurable map with P" < N, where
P = Ag is the normalized Lebesgue measure on E. Then there exists a unique gradient
Vf of a convex Isc function [ and a measure preserving map s on (E, P) such that

h=Vfos [P (4.10)

Remarks 4.4 a) The nondegeneracy condition of the polar factorization theorem
has been weakened by Burton and Douglas (1998, 2003). Also a counter-example is gi-
ven there to show that the theorem is false without any further assumption.

b) The nondegeneracy condition of / in the polar factorization theorem can also be re-
placed by the following independence assumption (Iy,):

(In) There exists a random variable ¥ on (E, P) such that ¥ is independent of / and

P” = U(0,1) is the uniform distribution on (0, 1).

For the proof let (X, Y) be an optimal coupling of (P*, P), X 2 P: Y £ p. Since
P <\, by the optimal coupling result Theorem 4.1 there exists a unique gradient V/f
of a convex function f such that

X =VfoY as. (4.11)
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Now one can apply the following result of Rii (1985) on the solutions of stochastic equa-
tions (see also Rachev and Rii (1990):

Let (E, p) A, B, B a Borel space, let (F, R) LB, h, f measurable, y, R probability mea-
sures, and let (E, u) be rich enough (i.e. it allows a uniformly distributed r.v. ¥ on
(E, u) independent of 4). If the distributional equation

ut =R/ (4.12)
holds, then there exists an r.v. U : E — F with uV = R such that the stochastic equa-
tion

h=foU [y (4.13)
holds.

Applying this general factorization theorem with y = 4 = P, R=P = L(Y) we
obtain the existence of a measurable factorization

h=VfoU [P] (4.14)
with some measure preserving map U on (E, P), i.e. the polar factorization result.

Corollary 4.5 For any measurable function h the independence hypothesis (1) im-
plies the existence of a polar factorization.

In general the independence hypothesis does not hold. If e.g. d = 1 and A(u) = u,
u € [0,1] = E then I, does not hold. If ¥ = V(u) would be independent of #, then
PVV=u — €y(u)» a contradiction. But by enlarging Etoe.g. E' := E x [0, 1] and consider-
ing P’ = P ® A\p,1] we can consider / formally as function on E’ by A(x, u) := h(x). The
independence hypothesis holds in this extended framework and thus there exists an r.v.
U on E’ such that P’V = P = A\g and

h=VfoU [P, (4.15)

ie. h(x) =VfoU(x,u) [P'].
Thus, we obtain a polar factorization theorem in the ‘weak sense’ without any non-
degeneration condition on 4.

Corollary 4.6 The polar factorization theorem holds in the extended sense (4.15)
without any further nondegeneration assumption.

This extension also holds for McCann’s (2001) version of the polar factorization
theorem in Riemannian manifolds.

4.2 General coupling function

For the case of general coupling (resp. cost) functions ¢ = ¢(x, y) and probability mea-
sures P, Q we consider the corresponding optimal coupling (transport) problem

S(c)zsup{/cdp;ueM(P, Q)} (4.16)
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with dual problem
1(c) :inf{/hldP+/h2dQ;c§h1 @hz,h,-eL'} (4.17)

The following notions from nonconvex optimization theory as discussed in Elster and
Nehse (1974) and Dietrich (1988) are useful and were introduced in the context of the
transportation problem in Rii (1991b). A proper function f : IR — IR U {oo} is called
c-convex if it has a representation of the form

fx) = Slip(C(x,Y) +a(y)) (4.18)

for some function a. The c-conjugate f¢ of f is defined by

S*(y) = sup(e(x, y) = f(x)), (4.19)

the sup being over the domain of /. Defining further the double c-conjugate f° by
J(x) = sup(e(x,y) = f(»)) (4.20)
Y.

then /¢, /¢ are c-convex, f“ is the largest c-convex function majorized by f and /' = £
if and only if /' is c-convex. The pair /¢, /* is an admissible pair in the sense that

f(») +1¢(x) > e(x,y) forall x, y. (4.21)

Obviously this construction is similarly possible on a general pair U;, U, of spaces
replacing IR* and ¢: Uy x U, — RU {o0}. The (double) c-conjugate functions are ba-
sic for the theory of inequalities as in (4.21). The generalized c-subgradient of a function
f at a point x is defined by

Oef (x) ={»; f(2) = f(x) 2 c(z,5) — c(x,y) Vz € dom f} (4.22)
further
O.f ={(x,y) € Ui x Up;y € 0.f(x)}. (4.23)

Denoting by € := {¥, ;¥ € Us,a € IR} the class of all shifts and translates of c,
VU, (x) := c(x,y) + a, c-convexity of f is equivalent to a representation of the form
f(x) = supye ¥(x) for some ¢ C € and further (with a := f(x) — ¢(x, yo))
yo€0.f(x)if and only if 3a € IR such that

\I}yo,a(x) =f(x) (4.24)
UyaX) <f(¥), VX' € domf. (4.25)

This geometric description of c-subgradients generalizes the corresponding description
in the case of convex functions and is very useful and intuitive.

The following is an extension of the optimal coupling (transportation) result in The-
orem 4.1 to general cost functions and general measure spaces U; as in the basic Duality
Theorem 4.1.

Theorem 4.7 (Optimal c-couplings.) (Rii (1991b)) Let ¢ be a lower majorized func-
tion (i.e. c(x,y) > fi(x) +f2(y) for some fi € L'(P), f, € L'(Q)) and assume that
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I(c) < oo. Then a pair (X,Y) with X ipvi Q is an optimal c-coupling between P
and Q if and only if

(X,Y)€o.f as. (4.26)
Jor some c-convex function f, equivalently, Y € 0.f(X) a.s.

The characterization in (4.26) is equivalent to the condition that the support I of the
joint distribution of X, Y is c-cyclically monotone, i.e. for all (x;, ;) €T, 1 <i<n,
Xp+1 = X1 holds

> (elxirn, 70) = clxi,p0)) < 0. (4.27)

i=1

This notion was introduced in Smith and Knott (1992), who reformulated Theorem
4.7 in terms of c-cyclical monotonicity. For the equivalence see also Rii (1995, 1996b)
and Gangbo and McCann (1996). Note that for the corresponding inf problem (trans-
portation problem) the inequality sign in (4.27) has to be chosen in the opposite direc-
tion.

Without the moment assumptions in Theorem 4.7 ¢-cyclically monotone support is
in general not a sufficient condition for optimality (see Ambrosio and Pratelli (2003)).
Gangbo and McCann (1996) have developed a characterization of c-optimality based on
c-cyclically monotone support plus a uniqueness property. They also have studied some
regularity properties of c-convex functions. The moment assumptions of the duality the-
orem have been weakened in Ambrosio and Pratelli (2003) and Schachermayer and
Teichmann (2006) for lower semicontinuous cost functions ¢. The notion of ‘strongly c-
monotone’ support is introduced and shown as a sufficient condition in their paper.

The characterization of solutions of the optimal coupling problem and the results
on existence of solutions (X, Y') resp. f imply the following necessary condition for dif-
ferentiable cost functions: If (X, Y), f are solutions of the optimal c-coupling problem
on IR* and if P < A\ and f is differentiable almost everywhere, then

Vf(X)=V,c(X,Y) as. (4.28)

(see Rii (1991Db)).

In this direction Gangbo and McCann (1996) have shown that if ¢ = ¢(x — y) is lo-
cally Lipschitz, then c-convex functions are differentiable almost everywhere. For an ex-
tension see (Villani, 2006, p. 125). As consequence one obtains:

If (4.28) has a unique solution in ¥ = ®(X), then

(X,®(X)) is a Monge solution. (4.29)

In the case where ¢(x,y) = h(x — ), h strictly convex, ¢-convex functions f are con-
vex and thus Vf exists almost everywhere and then (4.28) implies

Y=X-Vh(Vf(X)) = 2(X) (4.30)
where /4* is the convex conjugate of /4 (see Gangbo and McCann (1996)). A similar ex-
ample for the concave functions /(|x — y|) is in Rii and Uckelmann (2000). Note that

Monge solutions for (4.16) are solutions in weak sense for generalized PDE’s of Monge-
Ampere type.
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Remarks 4.8 a) Call a function ® c-cyclically monotone if I' = graph(®) is ¢-cycli-

cally monotone. Several sufficient and several necessary conditions for ® to be c-cycli-
cally monotone have been given in Smith and Knott (1992) and in Rii (1995). For the
optimal £,-coupling with ¢(x, y) = [[x — »|, || - || the Euclidean norm, one obtains e.g.
for p > 1 that for  cyclically monotone

b)

D(x) = ||h(x)||‘fi‘fh(x) +x (4.31)

is c-cyclically monotone. Similar extensions hold for p-norms || - || . In particular it
is shown that radial transformations

2(x) = a(lxl) g a0 2 ¢ (4.32)
are optimal. This allows e.g. to determine optimal couplings between uniform distri-
butions on two ellipsoids. For the Euclidean norm || - || = || - ||, and p = 1, the classi-
cal Monge case, one obtains that the optimal transport is concentrated on lines
Y € {X +tVf(X);0 <t < T}. Itis however not uniquely determined by this prop-
erty. Existence of Monge-solutions for the classical Monge case where ¢ is the Eucli-

dean norm has a long history, starting with early work of Sudakov (1979) (for de-
tails see Villani (20006)).

One-dimensional case. In the one-dimensional case the optimal coupling result in
Theorem 4.7 has been applied to determine optimal couplings for some classes of
nonconvex functions, see Uckelmann (1997), Rt and Uckelmann (2000), and, based
on a direct analysis of monotonicity properties, in McCann (1999). In the case where
P=Q=U(0,1)and ¢(x,y) = ®(x + y) and for coupling functions ® such that

©,,([){>0 € [0,k1) U (k2]

<0 tre (kl,kz), (433)

i.e. @ is of the type: convex-concave-convex, the following result was proved in
Uckelmann (1997):

Proposition 4.9 If o, (3 are solutions of

D(2a) — P(a+ )+ (B— )P (a+3) =0, (4.34)
0(28) — 0(a+ B) + (a— H)1¥(a+8) =0, |
0<a< <], then(X,T(X))isan optimal c-coupling where
) x x e [0,a]U[s 1],
T( )-{a+ﬁ—,x, x € (a, B). (455

Similar results have been shown for ¢(x, y) = ®(jx — y|), ® convex-concave for the
case of uniform marginals. Extensions of these results are in Rii and Uckelmann
(2000). Also some results for nonuniform marginals and numerical results are given
there. These results confirm some general conjectures on the solutions in the one di-
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mensional case. The case ¢(x,y) = ®(|x — y|), ® concave was studied in McCann
(1999) in detail.

c) Discrete distributions, Voronoi cells. In the case where one distribution is discrete
0=Y oy, the relevant c-convex functions for the optimal couplings are of the
form

Sf(x) = max(c(x, x;) + a;). (4.36)

The subgradients are to be the support points x; of Q and we have to determine only
the shifts a;. Let

4; = {x: f(x) = c(x,%;) + a;}

={x:x€0f(x)}
denote the corresponding Voronoi cells, then the subgradients are unique except at
the boundaries of 4;. This observation implies a uniqueness result for discrete distri-
butions (see Cuesta-Albertos and Tuero-Diaz (1993)). The optimal transportation
problem between P and Q reduces to finding shifts ¢; such that P(4;) = a5, 1 <
j < n. For the case of ¢(x,y) = ||x — y||“ one gets for a = 2 linear boundaries. Some
cases for a = 1, 2, 4 are dealt with explicitly in Rii and Uckelmann (1997, 2000) in
the case where P is uniform on a square in IR? or a cube in IR®. For the solution in
not too large discrete cases one can apply sophisticated linear programming techni-
ques or algorithms developed for Voronoi cells (see Rii and Uckelmann (2000)). For
an alternative continuous time algorithm see Brenier (1999).

(4.37)

4.3 The n-coupling problem

The coupling problem between two distributions on IR¥ is naturally extended to the op-
timal coupling (transportation) between » probability measures Py, ..., P, on IR¥. This
might be used as discrete time approximation of a continuous time flow along some
time interval [0, 7] where P; are intermediate distributions on the transport from P; to
P,. A new problem arises only if in the formulation of the coupling problem there is a
cycle or a back coupling e.g. between P, and P;. For the L2-cost one version of this pro-
blem is

£|

n 2
3 X“ — max (4.38)
i=1

over all X; 2 Pi,1<i<n.
For the case n = 3 and P; = N(0,%;) this problem was posed in Olkin and Rachev
(1993). It is for n = 3 equivalent to

E(X,Y)+(Y,Z) + (X,Z)) = max! (4.39)

and thus includes cycles: some mass should be cycled around three places from 1) to 2)
from 2) to 3) but then also back from 3) to 1) in an optimal way. Knott and Smith
(1994) (in the case n = 3) proposed the fruitful idea that “optimal coupling to the sum
T = Y7, X; should imply multivariate optimal coupling in the sense of (4.38)”.
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The reason for this conjecture is the equivalence of (4.38) with the problem
EZ |X; — T||* = min ! (4.40)
= x; 4 p;

In the case of multivariate normal dlstrlbutlons P;=N(0,%;), 1 <i<3,thisidea leads
then to the following algorithm: Let TE N (0,%p), X positive definite, and define

X=8T, Y=8T, Z=S5;T (4.41)
the optimal 2-couplings with

iSp= B4 () P e l2.
Then one needs that T = X + Y + Z = (S; + S, + S,) T and thus one needs the iden-
tity Sy + S» + S, = 1. This leads to the following nonlinear equation for £:

(22mzA) 2 = 5. (4.42)

Mu

i=1

As consequence of this idea one gets the following result:

If (4.42) has a positive definite solution X, then X, Y, Z as defined in (4.41) are optimal
solutions of the 3-coupling problem (see Knott and Smith (1994)).

The natural iterative algorithm for the solution of (4.42) converges rapidly in d = 2
(as reported in Knott and Smith (1994)) but in d = 3 it turns out that convergence de-
pends very sensitive on the initial conditions.

It was shown only in Rii and Uckelmann (2002) based on the uniqueness result for
optimal couplings that this idea of Knott and Smith is valid in the normal case (in parti-
cular (4.42) has a solution) for any n > 3.

For general distributions P; however optimal coupling to the sum is not sufficient
for optimal n-coupling. There are some simple counter-examples. But a positive result is
given in Rii and Uckelmann (2002) saying that optimal coupling to the sum 7', continu-
ity of PT <« A% and ‘maximality’ of the domain of P7 imply optimal #-coupling.

The paper contains also a simple proof of the existence result of Gangbo and Swiech
(1998) on Monge solutions (in the case without cycles) of the form

X = (X1, 2(X1), ..., Pu(X1)) (4.43)

if P; < N\ and gives a one-to-one equivalence of the n-coupling problem with several
modified 2-coupling problems.

9 Avariant of the minimal £,-metric - application to the analysis
of algorithms

Many algorithms of recursive structure (divide and conquer type algorithms) allow to
derive limit theorems for their important parameters by the contraction method (see
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Rosler and Rii (2001) and Neininger and Rii (2004)). The limits then are characterized
by stochastic fix point equations typically of the form

K
X £ N (4:Xi+b) (5.1)
i=1
where X; are independent copies of X and where (X;) and the random coefficients
(A;, b;) are also independent.
For example: The internal path length Y, of the Quicksort algorithm satisfies the re-
cursive equation

Yo £ LYy, + (=L = )¥pgyr + (2= 1), (52)
where 1, is uniform on {0,...,n — 1} distributed and (Y,) are independent copies of
(Y).

The normalization X, : E Yn—E¥n satisfies the recursive equation

Y d InX ++H7n—ln+l + Cn(ln) (53)

and leads to the limit equation
XL Ux+(1-UX+CU), (5.4)

where the entropy function C(x) = xInx + (1 — x)In(1 — x) + | arises as the limit of
C, and vivu [0, 1] as the limit of I» The contraction method then gives general condi-
tions which imply existence and unlqueness of solutions of (5.4) and convergence of X,
to this solution.

The solution of (5.4) resp. (5.1) can be described as fixpoint of the operator

T:M,—» M, Tu= E(zn:(Ai)(i + b,-)) (5.5)
i=1

where (X;) are iid and X; EA . My is the class of distributions with finite s-th moments.
A natural contraction condition is:

K
Anbie L, D EAf <1 (5.6)

This condition has been shown to imply the fixpoint result for 0 < s < 1 and for s = 2
(with the additional restriction of a fixed first moment). For 1 < s < 2 one has only an
inequality of the form

K
6(T, Tv) < K3 (D ElAil) &(u,v) (57)
i=1

with some constant K > 1. This inequality yields only an existence result for the fix-
point equation (5.1) under restrictive conditions. To solve this problem a new modifica-
tion of the minimal /;-metric was introduced in Rii (2006). Define

Ouv) =inf{|X — Y|, : X £ 1, Y £ 0, and X ~ Y} (5.8)
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Here X ~ Y is defined by the conditions
EX-Y)=0, EX-Y <oo. (5.9)

Note that condition (5.9) does not need that p, v € M;.

With this new variant of the minimal /,-metric which is defined by a modification of
the transportation problem one obtains the existence of fixpoints under the natural con-
dition (5.6) on the coefficients (see Rii (2006)).

Theorem 5.1 If A;, b e L*, 1 <s<2, EZ,";I |4;|° < 1 and if for some uy € M,
O (o, Tuo) < oo, then there exists a unique solution of (5.1) in

M (no) = {p € M; £(u, po) < oo} (5.10)

In the proof of this theorem it is shown that (M? (1), £°) is a complete metric space
and with the help of weighted branching processes it is shown that some power 770 of
T satisfies a contraction condition on M? (1) w.r.t. the new variant £ of the minimal
/s-metric.

An interesting corollary of this result is an equivalence principle for homogeneous
and inhomogeneous stochastic equations.

Corollary 5.2 Under the assumptions of Theorem 5.1 there is a one-to-one relation-
ship between solutions of the homogeneous stochastic equation

K
x £ 3 4x (5.11)
=1
and the inhomogeneous stochastic equation
A ¢
Y £ (4:Y+by). (5.12)

i=l

More exactly: For any solution X of (5.11) there exists exactly one solution Y of (5.12)
with distribution p € M° (o), where 1o = L(X) and conversely.

Thus the modification of the minimal /;-metric allows to investigate solutions of fix-
point equations (5.1) without any moment conditions.
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In this survey article we discuss a number of mathematical questions related to the be-
havior of light pulses in dispersive media. Mathematically, we analyze the dynamics of
modulating pulse solutions of a nonlinear wave equation. Such solutions consist of a
pulse-like envelope advancing in the laboratory frame and modulating an underlying
wave-train. We explain the role of the Nonlinear Schrodinger equation in the descrip-
tion of pulses with the same carrier wave. We show that there is almost no interaction of
well prepared pulses with different carrier waves. Finally, we discuss the question: Do
modulating pulse solutions exist for all times? We discuss the relevance of the presented
results for fiber optics and photonic crystals.
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1 Introduction

The transport of information over long distances through optical fibers is one of the
key technologies of the post-industrial society. Information is encoded digitally by ones
and zeroes, i.e., by sending a light pulse through the optical fiber or not. Physically such
a light pulse is a complicated structure. It consists of an underlying electromagnetic car-
rier wave moving with phase velocity ¢, and of a pulse-like envelope moving with group
velocity ¢, and modulating the underlying carrier wave, see Fig. 1.

[P

s

l; e —— mﬁ‘!ﬂiplﬂ‘& '&m"‘ P """f’lff

Figure 1: Os and Is are encoded physically by sending a light pulse or not; thus, for instance,
the above electromagnetic wave encodes the sequence 101101.

The analysis of the evolution of such a light pulse is a nontrivial task. The system
shows dispersion and (weak) dissipation, i.e., harmonic waves with different wave num-
bers travel at different speeds and energy is lost in a wave number dependent way.
Moreover, there is a nonlinear response by the optical fiber. Thus, at a first glance it
looks like a typical example for the application of numerical methods. However, a direct
simulation of Maxwell’s equations which describe these electromagnetic waves is be-
yond any present possibilities. This can be seen as follows: The wavelength of the under-
lying carrier wave is around 10~7 m. Resolving this structure in a fiber of 10 km =10* m
gives in uniform one dimensional spatial discretization 10'! points, not to speak about
the transverse directions and the temporal discretization. Therefore, before making any
numerical investigations, the system has to be analyzed and simpler, numerically more
suitable, models have to be derived. Interestingly, by using only a pencil and a sheet of
paper a lot of things can be concluded without using any computer. This will be the sub-
ject of this survey article. _

Using multiple scaling analysis we derive a formula for the optimal shape of the en-
velope of the pulse. Optimal means that it is more or less of a permanent form, i.e., in
the ideal case the pulse is time periodic in a frame moving with the group velocity of the
envelope. We will explain that the dynamics of pulses with the same carrier wave,
i.e. with the same wave length, can be described by the dynamics of the envelope alone
which is governed by a Nonlinear Schrodinger equation (NLS equation). The NLS
equation is a universal nonlinear partial differential equation. Universal here means
that additional to nonlinear optics it appears in the above sense in many contexts, for
instance water waves, plasma physics, and lattice vibrations. Moreover, the NLS equa-
tion is a completely integrable Hamiltonian system. As a result, the NLS equation can
(in principle) be solved explicitly. The method is called the inverse scattering scheme. In
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particular, the NLS equation has explicit so-called N-soliton solutions. These are spe-
cial localized waves with N humps, N € IN, where the humps interact asymptotically in
a very unexpected way which is similar to the superposition principle in linear equa-
tions.

We will also explain that pulses with different carrier waves, i.e. different wave
lengths, do not interact in lowest order. This fact allows to increase the information rate
through the fiber by using different bands, i.e. a number of different carrier waves.

Photonic crystals play an important role in nanotechnological devices. One of the
ultimate goals is to use them as optical storage. We will explain the possibility of stand-
ing light pulses in photonic crystals.

Finally, we will explain that the formula for the pulses of permanent form is correct
to any polynomial order in the amplitude parameter, but that exponentially small terms
will hinder the existence of a modulating pulse of permanent form with finite energy.
However, it turns out that such modulating pulses of permanent form exist with infinite
energy and exponentially small tails.

The paper starts with a short description of the physical background in order to mo-
tivate the description of nonlinear optics by nonlinear wave equations. We concentrate
on rigorous mathematical results and skip in our presentation almost all purely formal
results. We use ideas from finite and infinite dimensional dynamical systems theory,
from perturbation theory and from a functional analytic treatment of partial differen-
tial equations over unbounded domains in Sobolev spaces.

The subsequent methods and results are not restricted to models from nonlinear op-
tics. They essentially apply to all equations for which a NLS equation can be derived as
an amplitude equation. For systems with (significant) dissipation the role of the NLS
equation is taken by other but related amplitude equations, for instance of Ginzburg-
Landau type. We refrain from any details in case of dissipation and refer to the litera-
ture, for instance [Sch99, Mie02] and the references therein.

Acknowledgment. The work is partially supported by the Deutsche Forschungsge-
meinschaft DFG and the Land Baden-Wurttemberg through the Graduiertenkolleg
GRK 1294/1: Analysis, Simulation und Design nanotechnologischer Prozesse.

2 Physical background

Light pulses are electromagnetic waves and described by Maxwell’s equations, namely
V-B=0 , VxE+9B=0,
V-D=p , VxH-9D=1J,

ol
Il

with D =¢E + P and H = B/ — M. Here E = E(%,1) is the electric field, X =
(x,7,2z) € IR®, € IR is the time, , the permittivity of vacuum, P the material polariza-
tion, B the magnetic flux, 1 the magnetic permeability of vacuum, M the material mag-
netization, p the charge density and J the electric current. These equations have to be
closed with constitutive laws P = P(E, H) and M = M(E, H) describing the behavior
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of the medium. Depending on this choice there are linear and nonlinear, instantaneous
and history dependent, dispersive and dissipative models.

In typical optical fibers there is no magnetization M, no charge density p, and no
electric current J, and therefore, using V x VE = AE - V(V- E), Maxwell’s equations
for light in nonlinear optical material are given by

AE —-V(V-E) - &E = 8*P, (1)

where we scaled the speed of light in vacuum and the dielectric constant to 1.

The constitutive law for the polarization P= f’l + 13n1 splits into a linear and a non-
linear part, which in general both depend on the history of the electric field. In centro-
symmetric isotropic bulk material, the constitutive law for the linear response Py is given
by an instantaneous part Pi(%,7) = P\(X, E(%, 1)) and a history dependent term

o0
B D= 00w BE) = [ xe-nEEndn @)
-0
where y; in (2) is a scalar function, independent of X, with x;(z) = 0 for # < 0 due to
causality, and similar for the nonlinear polarization. In case of optical fibers x; does
also depend on the transverse directions y, z, and in case of photonic crystals also on the
longitudinal direction x.
In the simplest case E is linearly polarized and only depends on x;, i.c.,

EF ) =u(x,0k with [[klg =1 (1,0,0)-k=0. (3)
Then, (1) simplifies to
Qu(x, 1) = Bu(x, 1) — Rpi(x, 1) — Fpui(x, 1), (4)

with u(x, 1), pi(x, 1), pui(x, ) € R such that By(z,X) = pi(x, )k, Py(t,%) = pu(x, k.
The symmetry (y,z) — — (y,z), which is present in most optical materials, prevents the
occurrence of even terms in p with respect to u, thus, in general p, starts with cubic
terms.

Due to the fact that we are mainly interested in the underlying mathematical struc-
tures, throughout the rest of the paper we choose

8}2P(X, t) = u(x7 t) = L{3(X7 t)
as constitutive law, thus the toy problem for this paper is
Pu=u—u+. (5)

This choice is rather unphysical; however, it delivers a system with all properties in
which we are interested, namely dispersive and nonlinear behavior. We refer to [SU03]
for a mathematical discussion of a physically more realistic choice which includes dissi-
pation and history dependence additional to dispersion and nonlinearity. Dissipation,
i.e., wave number dependent damping, is usually very weak in the so-called transmis-
sion windows of optical fibers. However, it may become important over very long
scales, while history dependence does not alter the analysis in an essential way.
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3 Single pulses |

The description of light pulses, i.e. here of localized solutions of (5), is based on the deri-
vation of a NLS equation by formal perturbation analysis. Therefore we introduce a
small perturbation parameter

l<ex1

which will relate the amplitude with the spatial and temporal scales. We seek O(e)-am-
plitude solutions which are slow spatial and temporal modulations of an underlying
wave train e/0¥=“0) where ko and wy are related by the dispersion relation wj = k2 + 1
of the linearized problem 9?u = ?u — u. Thus we substitute the ansatz

uq(x, ) = e(A(X, T)elk0*0) 4 c.c.) + O(?), (6)

into (5), where X = e(x — c¢t) with ¢ to be determined, where T" = £2¢, where c.c. means
complex conjugate, and where A(X,T) is a complex-valued amplitude. We sort the
coefficients of the carrier wave e'0¥~«0%) with respect to powers of ¢ and obtain

O(e'): —wld=—(ki+1)A, dispersion relation,
O(Ez) i 2icwoAy = 2ik0AX = Cc= ko/wg — wl(ko) =: C,g,

while at O(g3e!k0¥=«09) we find that 4 should satisfy the NLS equation
2iwedrd + (1 — (c))*)0%A + 3|44 = 0. (7)

linear group velocity,

In fact, the Fourier transform of the ansatz (6) is strongly localized around k. There-
fore, only the local shape of wy> = £v/k? + I near kg is important to determine ¢ = c[;
in (6) and the coefficients of the linear terms in (7), see Fig. 2.

LxJQ(k)

Figure 2: The two curves of eigenvalues w; » = =iV 1 + k2. The Fourier transform of (6) is con-
centrated in an O(e) neighborhood around =+kg. Therefore, the dynamics of (6) is determined
by the expans1on of wy at k. (ko) glves the linear group velocity ¢/ ¢, and the group velocity
dispersion w{ (ko) occurs as coefficient in the NLS equation. The concentratlon of Fourier
modes i(k) is respected by the nonlinear interaction, i.e. convolution in Fourier space.
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Equation (7) has a four dimensional family of solutions of the form
A(X,T) = A(X = vT — X0)e"¥0T%0), 5 = (wov) /(1 — (c,)?),

in which the real-valued function 4 satisfies the second-order ordinary differential equa-
tion

A = Cid = G, (8)
where

-2 270wo c 3

1= __ =

- 2
1 - (&), (1 — (&)Y
Since c’g < 1, we always have C, > 0, and for C; > 0 there exist the two explicit solu-
tions

2¢

Apulse(X) - i( C

1/2
) sech (C}*X) (9)
2

to (8). These are called homoclinic since they connect the origin (0, 0) as a fixed point of
the first order formulation of (8) with itself, see the left panel of Fig. 3, while solutions
which connect different fixed points of a dynamical system are called heteroclinic.

The derivation of the NLS equation (7) was only formal in the sense that we simply
ignored terms that are higher order w.r.t. € or appeared at a different wave-number.
They are contained in the residual, i.e.

Res(u) := — O%u + %u — u+

contains the terms which do not cancel after inserting an approximation into (5). If
Res(u)=0, then u is an exact solution of (5). It is important to note that due to a possible
‘accumulation of errors’ the smallness of the residual alone does not imply the so-called
validity of the approximation where validity means that there are solutions of (5) which
behave as predicted by the NLS equation on the relevant O(1/¢?) time-scale.

However, there are a number of mathematical validity results for (5), see [Kal88,
KSM92, Sch98] and also §4. The above procedure thus identifies modulating pulse solu-
tions of (5) which are described by the approximate formula

U pulse(X: 1) = €<‘ipulse(X — T — Xp)e'PX =0T +¢0) gilkox—wo) 4 c.c.) + O(e?)
= a(/ipulse(s(x = i Ty 5vt))e"((koﬁv)x‘('“”'0“270)”00) + c.c.) +0O(e?)

accurately over time-scales of order O(1 /52). In particular, for w.l.o.g. v=0, xg =0
and ¢y = 0 we have

= - L, e
Upyulse (% f= E(Apulse(a(x - c;;t))e’ko(x_(cf”l' n 4 c.c.) + O(2),

where ¢, = (1 + kg)l/ ¥ /ko is the linear phase velocity and vy, = o /ko.
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Figure 3: The (4, @y A)-phase portrait for (8), and a modulating pulse for (5) described by the
NLS equation.

For the transport of information the global existence of modulating pulse solutions
would be an important goal, i.e., we investigate if there are exact solutions to equation
(5) of the form

u(x,t) = v(x — cgt, ko(x — cpt)),
where v is 27-periodic in its second argument with

L HCY) =1,

This question will be discussed in detail in §7. As a first result we note [GS01] that such
solutions can be computed approximately to any polynomial order in £ by extending
the ansatz (6) by higher order terms and applying a small correction to the linear group
speed, i.e., using ¢, = ¢, + O(g?), see the right panel of Fig. 3. In other words, the fol-
lowing Lemma allows to find modulating pulse solutions which make the residual arbi-
trarily small.

To measure the residual we use Sobolev spaces [Ada75] H* = H*(IR, C). For simpli-
city we restrict to s € IN. Then H* consists of all functions /" : IR — @ which together
with their distributional derivatives up to order s are square integrable, equipped with
the norm

S
lullgs = 1% 2
=0

In our spatially one-dimensional setting, H° is a subset of the space of uniformly
bounded and m times continously differentiable functions C}'(IR, €) if s > m +1/2,
m € N, and the embedding is continuous, i.e., ||ul|om < Clu|ys. These so-called Sobo-
lev embeddings can be used to show that nonlinear terms such as u* are well-defined
and continuous mappings from H* — H*if s > 1/2.

Lemma 3.1 Lets > 2, ko > 0, n € IN, and v, < 0. For sufficiently small £ > 0 there
exists a two-dimensional family, parameterized by envelope shift xo € IR and phase shift
¢ € 10,27), of approximate modulating pulse solutions to (5) of the form

u(x, 1) = eviy (x — cgt — X0, ko(x — ¢cpt) + ¢),
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where v is 2m-periodic in its second argument Cp = c + e g =1/ ¢y, and where, for
somer > 0, ey (€,y) = € Apuise (€€)eY + O(3e"elél) + c.c., and

IRes(eviy )l gs < C"1/2.

4 Interaction of pulses with the same frequency

By the derivation of the NLS equation for the nonlinear wave equation (5) not only
modulating pulse solutions of the nonlinear wave equation are identified. The complete
dynamics known for the NLS equation can also be expected to be found approximately
in the nonlinear wave equation.

We refer to the excellent textbooks [AS81, DJ89, SS99] about the various dynamics
known for the NLS equation. For our purposes the fact is essential that the NLS equa-
tion is a completely integrable Hamiltonian system. Hamiltonian means that (7) can be
written as 9r4 = JOH(A) where J = —i/(2wy) is a skew symmetric operator and 6 de-
notes the variational derivative of the Hamiltonian

1 — 2 3
H(A)z/{ % oy AP 34’

An immediate consequence is that the Hamiltonian H(4) is conserved by the flow of
(7), but in fact various further properties follow. Completely integrable means here that
there are infinitely many independent conserved quantities for (7), and that there exists
a transformation which is called inverse scattering scheme and which uses these con-
served quantities to map (7) to a linear system which can (in principle) be solved expli-
citly. As a result, there are explicit though somewhat lengthy formulae (similar to (9))
for so-called N-soliton solutions of the NLS equation. In general, N-solitons are loca-
lized solutions which consist of N humps and which for # — 400 asymptote to N soli-
tons with different speeds. In particular, the individual humps interact in a very special
way which is rather unexpected in a nonlinear equation: asymptotically for  — oo the
interaction preserves the shapes and speeds of the individual humps, and only alters the
relative positions. Thus, the humps are similar to elastic particles, and this motivates
the name soliton. The change of position after interaction is O(1) in the NLS equation
and is called a pulse shift. Formally, the N-solitons yield modulating N-pulse solutions
for the nonlinear wave equation (5) with O(1/e) pulse-shifts after interaction, see Fig. 4.

However, as already said in §3, the formal derivation of the NLS equation for the
nonlinear wave equation (5) alone does not imply that the dynamics found in the NLS
equation can also be found in the nonlinear wave equation (5): There are amplitude
equations derived in a formally correct way by multiscale analysis which do not reflect
the dynamics of the original system, see, e.g., [Sch95]. We now discuss the validity of the
approximation, that is, how well solutions of the nonlinear wave equation (5) can be ap-
proximated via the solutions of the NLS equation.

146 JB 109. Band (2007), Heft 3



| G. Schneider and H. Uecker: The Mathematics of Light Pulses in Dispersive Media

a) Red b) |4]
T =0(1)

X=0 X =0(1)

c) u(x, t) (in co-moving frame with speed ¢;)

t=0(?)

x=0 x=0(")

Figure 4: A 2-soliton 4 with interaction in the NLS equation and the associated modulating 2-
pulse solution in the nonlinear wave equation (a)—(c), with interaction at (X, 7') = (0,0), and
a time periodic 2-solution A in the NLS equation (d). For graphical reasons, black has been as-
signed tou = 0 in c).

Let A € C([0, To], H*4 (IR, C)) be a solution of the NLS equation (7) with 54 > 1 de-
fined below. Then
ee(x, 1) = eA(e(x — ¢,t), e2t)eikor==0!) 4 ¢ c. (10)

defines a formal approximation of the solutions u of the nonlinear wave equation (5).
For our purposes it turns out to be advantageous to consider the extended approxima-
tion

e(x, 1) = ed(e(x — 1), e2t)ekox=0) 4 &3 43(e(x — cf), E21)edikox o) 4 cc.
g g
(11)

where 43 = 43/(9u3 — 9k2 — 1) is also in C([0, Ty], H*4 (R, €)), if s4 > 1. In summary,
if s4 > m + 1/2, then there exist C, 9 > 0 such that foralle € (0, &)
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sup |led(-,t) — e (-, )|l ey < C  sup ||83A3(6-,szt)e3i(k0x*“0') +c.c|c
1€[0,Ty/<2) 1€[0,T /€2)
<Ce sup | 4a(e, )|y < C* sup || As(, T)llcy
1€0,Ty /2] T€[0,Tp)

< Ce sup || 43(,T)| sS4
TE[(),T()]

due to Sobolev’s embedding theorem. As a consequence, if u can be approximated by
7 up to an error of order O(¢”) then it can also be approximated up to an error of or-
der O(e™35)) by 1) In detail this means that

= eellen < e = vllep + et — evellgp < € + C&> < 2CemEd),

In order to estimate the difference u — ¢y =: €3/>R we derive an equation for R and esti-
mate R. In order to do so we need estimates for the residual Res(s%). By the choice of 4
and A3 all terms up to formal order O(&*) are eliminated in the residual. Therefore there
exist C, g9 > 0 such that foralle € (0, &)

sup _ |[Res(et(?))]|gs < Ce™/2.
ze[OATO/az]

The loss of £'/> comes from the scaling properties of the L2-norm.
With u = ¢ + 3/ R we find

Fep+e?R) = (e +¥2R) — (e +€¥7R) — (e +€/*R)’
such that R satisfies

FR=PR-R+f (12)
with

= —-32?*R — 3*YR? — 3R> + 73/ *Res(e)).
Thus,

1/ llas < C1E®[IRllgs + Co(CR)EV? | Rllzgs + C3€? (13)

as long as ||R(7)|| ys < Cg with a constant Cg determined below, constants Cy, C; inde-
pendent of Cr and ¢ € (0,1) and a constant C, depending on Cr but independent of
e (0,1).

The equation for R is solved here for simplicity with zero initial conditions. We use
energy estimates and define the energy

E(R) = Z / "(OOLR? + (91 R) + (LR)dx.
i—0 J—o0

Forj=0and [ = [~ we obtain
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Lo / (OR) + (9cR)? + Ridx = / (0,R)(32R) + (0:R)(9,0:R) + R(d,R)dx

= /[(8,R)(6§R) — (OR)R + (O R)f + (0xR)(0;0xR) + R(O,R)]dx
= / (0:R)fdx
which can be estimated with the Cauchy Schwarz inequality by

/(arR)fdx < ORIl 21112 < 18RIl 2(C1* || Rll s + C2(Cr)E?|[Rllzys + Cae?)

< Cie2E(R) + Co(Cr)e*E(R)*? + C3e2E(R)Y?
< (C1 + G)EE(R) + G (Cr)EPE(R)Y? + Cie.

Since exactly the same estimates hold forj = 1,... s we finally find

OE(R) < (C1 + C3)e2E(R) + C2(Cr)e*E(R)Y? + C3é2. (14)
Now assume that £!/2C,(Cr)EV?(R) < 1. Then, for 0 < ¢ < T/ 2,

E(R(1)) < C3elC1+G+0T0 —; 2 (15)

by Gronwall’s lemma which translates differential inequalities like (14) into pointwise
estimates like (15), see, e.g., [Hen81, Lemma 7.1.1] for a very general version.
Choosing g9 > 0 so small that

) Cy(CrICY? < 1 (16)

we are done. In detail, to a given Cg = Cr(7y, Cy, C3) defined in (15) we have a C>(CR)
by (13) and to this C, we have an £, > 0 by (16). Hence, there are solutions u of (5)
which behave for all 7 € [0, 7;/£%] as predicted by the NLS equation (7).

Theorem 4.1 Fix sy > s+3>4. Let A € C([0, Ty, H’4) be a solution of the NLS
equation (7). There exist C, g > 0, such that for all e € (0,£0) there exist solutions u of
(5) such that SUD (o, 7p/22) lu(-, t) — (-, 1)|| ys < Ce3/2.

Remark 4.2 The time scale O(7;/<?) is necessary to describe non-trivial dynamics.
The error of order O(¢%?) is much smaller than the approximation which is of order
O(e). Adding higher order terms, like A3, to the approximation e allows to decrease
the magnitude of the residual further, in particular we can obtain O(¢!'!/2). This results
in an error of order O(¢”/?) instead of O(e¥/2). However, the time scale O(1/22) of va-
lidity in general can not be extended. ‘

As a consequence of Theorem 4.1 modulating pulse solutions for the nonlinear wave
equation (5) with the same carrier wave interact as predicted by the NLS equation, i.e.,
we have approximately the persistence of the modulating pulse solutions after the non-
linear interaction and O(1/¢) pulse-shifts in the nonlinear wave equation (5). For the
transport of information through optical fibers the interaction of pulses is in general un-
desirable. However, even if the envelopes are in a very general form, like in real world
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technical devices, the NLS equation can now be used to compute numerically how far
the modulating pulse solutions have to be separated such that there is no nonlinear in-
teraction during the journey through the fiber.

9 Interaction of pulses with different frequencies

The information rate through the fiber can be increased by using different bands, i.e.,
different basic wave numbers, cf. [Ace00]. As explained in Remark 5.1 below (after fix-
ing some notation), there is a simple argument why wave packets with different wave
numbers do not interact in lowest order w.r.t. &. Moreover, for pulses from Lemma 3.1
the argument can be refined, and in this section we explain that there is almost no inter-
action of such pulses associated to different carrier waves by giving an O(¢)-bound for
the possible shift of the envelope resulting from the interaction. For general wave pack-
ets the shift of the envelope will be in general O(1). Thus, it is advantageous to use well-
prepared pulses for the transport of information.

We introduce subscripts 4 and B to indicate the wave numbers k4 # kp of each
pulse, the associated group velocities ¢, 4 and ¢, p, the envelope shifts x4 and xp and so
on. If the two pulses are separated initially, and, say, x4 > xp and k4 < kg such that
cg.4 < Cgp and the faster pulse is in front, then, since the pulses are exponentially loca-
lized, it is natural to expect that the dynamics of the two pulses can be described by the
sum of the two individual pulses, at least on the natural O(1/£?) time-scale. However, if
the two pulses are, say, O(1/e) separated initially, with x4 > xp and k4 > kg, then,
since the group velocities differ by O(1), the two pulses must interact on an O(1/£?)
time-scale. Clearly this is the mathematically more interesting case.

For notational simplicity we assume that ¢4 = ¢p = 0 and thus study the interac-
tion of

Vi (X — Cgat + X4 ka(x — cpat)) and evgp(x — cgpt + xp, kp(x — ¢p8t)), ka # ks

We prove that the form of the pulses is almost preserved and that the interaction mainly
leads to phase-shifts Q24 and eQp with Q 4, Q5 € IR bounded independent of .

Remark 5.1 That the amplitude equations for v, and evi, decouple in lowest or-
der can be seen as follows. Going into the scaling of the envelope, evy , and evip have
an amplitude and a width of order O(1). But since the group velocities differ by an or-
der 1 /¢ in this scaling the interaction time of ev; , and v, is only O(e). Thus, the in-
fluence of a term v, , vx, on the dynamics of vy ,and vy is O(e) in the NLS scaling and
therefore in lowest order the evolution equations for vx , and v, decouple. This argu-
ment is not restricted to vy  and vy ,. It holds for all wave-packets. Moreover, this
property can be observed in a number of problems. For modulating pulse solutions
such a statement can be found for instance in [PW96] where it has been shown that the
two NLS equations for counter-propagating waves decouple.

The estimates from [PW96] still only transfer into O(1)-bounds for the possible envel-
ope shifts of the pulses for e—0. However, for well-prepared pulses, i.e., #>5 in Lemma
3.1, by extracting explicitly the phase shift of the underlying carrier wave we can refine
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the bound on the envelope shifts to O(e). In detail, we show that after interaction the so-
lution is close to

Vi (X — cgat + X4, ka(x — cpat) + €Q4(np))

(17)
+ €V (X — co.pt + xB, k(X — Cp Bt) + €Qp(n4)),
with explicit functions Q 4, Q, given by
n 5
= 3|Bl} 2 0 2 —ring| -
Q4= —————dijp+ Uy + O(e”e™"B!), np=¢e(x+ xp— cg5t), (18)
wA(CA = CB)
TP
Op = / #dm + QOB + (’)(eze_rl”B’), N4 = (X + x4 — Coul), (19)
(UB(CB — CA>
—0o0

where B; and A4, are given by (9) with constants Cj g, C 5 and C) 4, C,_4, respectively,
and where QY and Q are constants which normalize the initial phases, see Fig. 5. Note
that €24 depends on x — ¢, gt and Q2 on x — cqg.4! as the phase shift accounts for so-
called cross phase modulation.

" — TILB o R S
CgA e

after interaction

Figure 5: Illustration of the interaction of two pulses evk,, and evyp with the associated cross-
phase modulatins 4 and Q. Here k, > kp and the slower pulse is in front. Thus, ¢z — ¢4 < 0
in (19) and Qp is a decaying function of x. The constants Q% and Q% have been chosen in such a
way that at 7 = 0 (upper two pictures) there are no phase-shift for the pulses, i.e., Q5 is expo-
nentially small near the position xp of vy, while 4 is exponentially small near the position
—x4 of evk . Note that Qp travels with Vi, and €4 with Vip-

Theorem 5.2 Let s > 2, ky,kp >0, kg # kg, 14,718 <0, x4,xp € R in Lemma
3.1, and Ty > 0. There exist ey > 0 and C > 0 such that for all ¢ € (0,¢) there exist so-
lutions u of (5) such that
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sup |[u(x, 1) —evi, (X — cgat + x4, ka(x — cpat) +Q4(n5))
IE[O,TO/Ez]

- ska(x — cg.pt +xp, kp(x — ¢, pt + 6(23(77,4))”%_1 < G’
(20)
with vi , , Vicp from Lemma 3.1 and 4,2 given by (18),(19).

Remark 5.3 To obtain an estimate for the physically relevant shift of the envelope,
suppose that the error comes from a shift of the envelope. Then, due to the long wave
form of the envelope, “vertical” estimates of order O(£®) in L can lead on a pulse of
amplitude O(e) only to a possible envelope shift ea of order O(¢), due to

eg(e(x + ea)) — eg(ex) = g (ex)’a + O(e(%a)*) = O(Y).

Idea of the proof of Theorem 5.2 (See [CBSU06] for more details.) We make the ansatz
u(x,t) = ep(x,t) :=eA;(n4)E + eBi(np)F e
+ &3 45(n4, T)E + 3By (1, T)F +c.c. + h.o.t.

where 7' = £2¢, and where
E= ei(kAxﬂuAt+EQA(UB))7 F= ei(ka"“’B’+EQB(WA>)’ na = E(X o cg.At)7 ng = €(X _ Cg.Bt)~

In (21), h.o.t. stands for terms of higher order in &, which are algebraically determined

similar to 43 in (11), and which do not lead to new aspects compared to Section 3. We

choose 4; and B as given by Lemma 3.1. If we choose 4, Q3 to satisfy

2 2

Q= ———3|Bl| and 0, ,Qp= B
wa(Cga — CoB) wp(cgp — Cg.4)

which yields (18) and (19), then the coefficients at €3E and &’ F vanish. At ¢°E and £5F

we find that 4,, B, satisfy the linear equations

2iwadr Az + (1 - ¢ )0 A2+ G4 =0, (23)

0,

B

(22)

2iwpdrBy + (1 - ¢; )07 By + Gp =0, (24)
with, by construction, zero initial data, and where

6|A1| A2+3A A_ 7+6(BIB_2+BvB 1)A;

+& [(1—ch)a§BQAAl+21(chch 1)(8,,24)(0,,41))],

)4

)
Gy =6|Bi|*By + 3B3B_, + 6(A,A_ + A2A_1)B,

)

+ e [(1 — ch)arzlAQBBl +2i(Cg7ACg.B 1 ( QB ( nB )]

The argument given in Remark 5.1 applied to the terms multiplied by e~! shows

Lemma 5.4 There exists a C > 0 such that for all e € (0, 1] there exists a unique solu-
tion (A, B) € C([0, Ty, H* x H®) to (23)-(24) with zero initial data. It satisfies
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sup |[[(A2, B2)(T)l| gpsps < C.
T€(0,Ty]

This shows that ||Res(ev)| s = O(e''/?). Similar to the proof of Theorem 4.1 we write
u(x, 1) = e(x, 1) + ¢’/2R, where we can employ the higher weight of R due to the smal-
ler residual. The equation for R looks exactly as (14). Thus, SUD (0, 7,/22] IR|lys < Cas
above, which concludes the proof of Theorem 5.2. =

Theorem 5.2 can be extended in at least two directions. On a time scale O(1/£?) a
modulating pulse can pass at most O(1/e) many modulating pulses of width O(1/e).
The interaction of such a modulating pulse with O(1/¢) many modulating pulses with a
different carrier wave can lead at most to an O(1)-pulse shift. Thus, with respect to the
question of the transport of information through optical fibers the influence of different
frequencies to the dynamics at some frequency is negligible. Finally, a possibility to in-
crease the rate of information through the fibers is to decrease the gap between the wave
numbers. Formally we find for k4 — kg = O(e#) with 0 < p < 1 a pulse shift of order
O(e'~2"). Thus we must expect a certain payoff between the number of different carrier
frequencies 1/(k4 — k) and the spacing of bits.

6 Pulses in photonic crystals: Standing light

One of the major goals of nanotechnology is photonics, i.e. the construction of ‘electro-
nic' devices where the electrons are completely replaced by photons. In this context, the
question of optical storage plays a major role. One theoretical possibility are photonic
crystals. These are optical materials with a periodic structure with a wave length com-
parable to the wave length of light. Due to the periodic structure the linearized problem
is no longer solved by Fourier modes, but by so-called Bloch modes. The curves of ei-
genvalues plotted as a function over the Bloch wave numbers can now possess horizon-
tal tangencies, i.e. vanishing group velocities. Thus, in principle, standing light pulses
are possible. This will be explained in detail in the following, see also [BSTU06] for
more details.
Again we consider a semilinear wave equation

Pu(x,1) = X1 (X)O2u(x, 1) — xa(¥)ulx, 1) = x3 (¥ (x, 1) (25)

with x € R and # € IR, u = u(x, ) € IR, but now in a spatially periodic medium. This
means that the coefficient functions x; = x;(x) satisfy x;(x) = x;(x + L) forj = 1,2, 3.
We assume here that the x; are smooth functions, that x;(x) > 0 and that x,(x) > 0 for
all x € [0, L), and, without loss of generality, L = 27 throughout this section. The line-
arized problem

Rv(x.1) = X1 (X)B¥(x,1) — x2(X)v(x, 1)
is solved by the Bloch waves

v(x, 1) = ¥, (L, x)e!elen O

JB 109. Band (2007), Heft 3 153



Ubersichtsartikel } Historische Beitrage ‘ Berichte aus der Forschung l Buchbesprechungen

where n € Z \ {0}, ¢ € (—1/2,1/2], with ¥, and w, determined by (27) below. Here,
wy(¢) € R satisfies wy11(€) > wy(f), w_n(f) = —w,(£), and v,(x, £) satisfies

V(€ x) = ¥p(€,x +27) and  ¥,(¢,x) = $,(£ + 1, x)e™. (26)

The Bloch wave transform of a function u : IR — ( is a generalization of Fourier trans-
form and formally given by
xX) =Y e ul+)).

Je
By construction, # satisfies (26), and ¢ € (—1/2,1/2] is called a Bloch or pseudo wave
number. From Parseval’s identity [[u||,» = ||i]|,2 it follows that Bloch transform is an
isomorphism from H™ (IR, ) to the Bloch space L*((—1/2,1/2], H, ((0,27))), and its
inverse is given by

1/2

si(%) = / SH5ii(0, ) d.

~1/2
See [RS78, Sca99] for further properties and applications of Bloch transform.

For fixed Bloch wave number ¢ the Bloch modes ¥, (¥, x) satisfy the spatially periodic
eigenvalue problem

—A (L, 0x)Tu(L, ) = x1()(Ox +10)7Fu(L, ) = x2()Pu(l, ) = —(Wn(©)*0n(6,-).  (27)

Since the operator A(4,d,) is elliptic in the bounded domain [0,27) with periodic

boundary conditions we have for fixed ¢ countable many eigenvalues A, = w?, n € N.
In the space L} (0,27) where
- 5 1 [ e ]
) (- =— % —— 2
)5y, =5 [ TR, (28)

the operator A(¢, d,) is positive definite and self adjoint such that the eigenvalues \,(¢)
are real and positive. They are ordered by A, (¢) < A\, (£).

We now explain the possibility of horizontal tangencies for the curves £ — w,(£) by
discussing periodic coefficients as perturbation of the spatially homogeneous case.

Example 6.1 The solutions of the constant coefficient case
Ov(x, 1) = 0v(x,t) — v(x, 1) (29)

are given by the Fourier modes v(x, 1) = e/**1®)0) where (u(k))* = k* + 1. We consid-
er artificially the problem in a spatially perlodlc set-up. In a Bloch wave representation
we have

P =
v(x. [) . em.xelé.\ewn ()t

)

where k =n+¢, with n € Z here and ¢ € (—1,1]. The eigenvalues are related by
wr(0) = £pu(n + ), ie., they are obtained from wrapping +4(-) around a cylinder, see
the left panel of Fig. 6.
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Figure 6: The curves of eigenvalues for the homogeneous case (29) in Bloch-representation,
and the splitting of eigenvalues for (30). The Bloch modes of the ansatz (31) are strongly con-
centrated on an O(¢) neighborhood of the basic Bloch wave numbers £/, and the evolution of
the wave packet will be strongly determined by the associated curves Wi, at +/4y. Thus, the oc-
currence of horizontal tangencies as explained in Example 6.2 corresponds to vanishing group
velocity ¢, i.e. to standing light pulses.

For all ¢ € (—1/2,1/2] except for £ = 0, 1/2 all eigenvalues of A(¢,d,) in Example 6.1
are simple. By classical perturbation arguments [Kat66], for periodic x; = 1 + O(6) the
eigenvalues are smooth functions of ¢ and stay separated for 6 > 0 sufficiently small.
However, for ¢ = 0, 1/2 all eigenvalues are double and generically for small § > 0 the ei-
genvalues will split. This is exactly what happens in the spatially periodic case.

Example 6.2 Let x2(x) = 1 + 26 cos(2nx) = 1 + §(e2* + e72%) with § > 0 small
and a fixed n € IN. Setting

Wl x) = (0™,

kel

the eigenvalue problem (27) is given by the infinitely many equations
(L+ (k+ 0°)(0) + 6(120(0) + V() = M(OF () =0, (k€X).  (30)

For 6 = 0 we have (with some abuse of notation) \,(0) = A_,(0), i.e. a crossing of the
curves of eigenvalues at £ = 0. Due to the continuity of single eigenvalues or subspaces
to eigenvalues separated from the rest, for small > 0 and ¢ = 0, the infinite dimensional
eigenvalue problem in lowest order can be reduced to the two-dimensional problem

ot 1+ (=n)7 = 2(0) 6 B
i o -am) 7

for 2 and . Hence Ay, (0) = 1 + n? £ 6. Thus, \,(£) and A_,(¢) split at the crossings,
i.e. at £ = 0, and recombine in a different way. These new curves are also denoted with
An(#£) now ordered such that \,41(¢) > \,(£) but now and in the following indexed with
n € N. As before we let \,(£) = w?(¢) and w,(£) = —w_,(¢) > 0, see the right panel of
Fig. 6.
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Thus, on a linear level we have a situation as in the spatially homogeneous case: we
have curves of eigenvalues over wave numbers except that associated eigenfunctions are
no longer Fourier modes, but Bloch modes. Then, similar to the spatially homogeneous
case, slow modulations in time and space of such a Bloch mode (indexed with ny) may
be described by the ansatz

u(x, ) = eA(e(x — ¢,t), 521)9,,0(50, x)elloxelem ) ¢ c., (31)

where c.c. means complex conjugate, where 0 < & < 1 is a small parameter, and where
¢ = Ouwny (£o) is the linear group velocity. The complex valued amplitude AX,T)eC
describes slow modulations in time 7" = 2 1, and space X = e(x — ¢,t), of the underly-
ing wave v, (£, x)e0*em %), The Bloch modes of the ansatz are strongly concen-
trated in an (’)(5) nelghborhood of the basic Bloch wave numbers 4/, and the evolution
of the wave packet will be strongly determined by the associated curves Wiy, at xfy.
Plugging the ansatz into (25) one finds that 4 has to satisfy a NLS equation

Ord = i1 %A + iy A|A* (32)

with coefficients v; = — 187wy, (fo) € R and

3 7 x3(x) 4
v = Vi (Lo, x)|" dx € IR.
2 2wn0(50)/0 (o) oo )l

The occurrence of the nonlinear term il/2A|A|2 is a priori not clear at all. However, the
nonlinear interaction corresponds in Bloch space to a convolution with respect to the
Bloch wave numbers. Thus, the concentration of modes is respected by the nonlinear in-
teraction which can be described in lowest order by iy 4| 4.

In general, the dispersion relation ¢ — w,(¢) and hence the coefficient v, as well as
v2 have to be calculated numerically. On the other hand, for a given material, these coef-
ficients can be tailored by adjusting the grating, i.e. the periodic functions y;. This is a
highly nontrivial optimization problem [HFBWO1].

The justification of (32) for (25) in the sense of error estimates proceeds similar to
the proof of Theorem 4.1, but the functional analysis becomes somewhat more compli-
cated [BSTUOG]. The physical detection of the pulses predicted by (32) is a nontrivial
task, since they are localized in the photonic crystal and cannot be ‘seen’. One possibi-
lity would be the interaction with other modulating pulses. However, similar to the ana-
lysis in §5, only pulses with carrier waves close to the carrier wave of the standing pulse
will have any relevant, in terms of ¢, effect on the standing pulse, and vice versa. Never-
theless, due to the higher dispersion, the influence is in general much larger than in
homogeneous optical fibers, cf. [TPB04].

7 Single pulses Il

We found approximate modulating pulse solutions with the help of the NLS equation
up to a time-scale of order O(1/£?). Since these solutions are essential for the transport
of information the following question occurs: do these solutions exist for all ¢ € IR?
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More precisely, are there ‘breather solutions’, which are time-periodic solutions in a
moving frame and which are spatially localized, i.e., which decay to zero for |x| — oo?
Such solutions are known explicitly for the sine-Gordon equation

O?u = &u — sin(u),

which first appeared in differential geometry in the description of surfaces with constant
negative curvature [Enn70], but which also appears in crystallography and in particle
physics. In fact, like the NLS equation, the sine-Gordon equation is a completely integr-
able Hamiltonian system. See [DJ89] for more background and references.

Thus, the question is whether ‘breathers’ can also exist in other nonlinear wave
equations, for instance of the type

Ou = 0%u—u+g(u),

where g:IR — IR is a smooth, odd function which satisfies g(u) = O(?) and
£"(0) > 0. It turns out that for g(u) close to u — sin(u) the sine-Gordon equation is the
only such equation. For a precise statement see [BMW94, Den93]. In the following we
explain why this ‘non existence of breathers’ result holds. Moreover, we will explain po-
sitive results for generalized breather solutions.

The solutions we are interested in are obtained from the ansatz

u(x, t) = v(x — cgt, x — cpt) = v(&,»),

where v is periodic in y with period 27/kq for some k¢ > 0. They are homoclinic solu-
tions of the evolutionary system

(1 —c§)8§v+(l —cf))afv— v+g(v) =0, (33)

which generalizes the spatial dynamics approach of Kirchgassner [Kir82], i.e., we look
for v with

ggi& v(&y)=0.

In order to obtain (33) we have chosen ¢, = 1/¢, according to the linear relation
¢ = 1/c,.

Hence, v has to be in the intersection of the stable and unstable manifold of the ori-
gin. The stable and unstable manifolds are the nonlinear counterparts to the stable and
unstable subspaces in case of linear equations and are tangential to these subspaces.
Therefore, we look at the linearization around the fixed point (v, 9¢v) = (0,0) in order
to compute the dimensions of these manifolds. The linearization of (33) is given by

2\ 52 2
(1-c)v+(1-E)Fv—v=0. (34)
Since we are interested in periodic solutions w.r.t. y we use Fourier series

Wey) = Y vmE)emer

mell

1712k2(l —('12))+1

and find 8?\),,, = —\2,v,, which is solved by u,,(x) = e**u,,(0) where A2, = ‘()1402)

=)
s
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Due to the cubic nonlinearity we can restrict to odd m € Z. Therefore, for ¢, close to c;
the eigenvalues ), are on the imaginary axis for [m| > 3. The eigenvalues A+ are on the
real axis for ¢, < ¢,. Hence we have a two-dimensional stable and a two-dimensional
unstable manifold. These manifolds intersect for the sine-Gordon equation, but in gen-
eral two two-dimensional manifolds will not intersect in an infinite-dimensional phase
space. This makes the sine-Gordon equation exceptional in this class of equations.

Im Im

Re Re

e=0 £>0
Figure 7: The spectrum of the linearization (34), where ¢ is defined in Theorem 7.1.

A time-periodic solution in a moving frame is called generalized moving breather or
generalized modulating pulse solution if not necessarily

Jm v(6y) =0,
but v(, y) is small for [{| — oo. In [GSO01], the existence of generalized modulating pulse
solutions with O(e")-tails has been established. For simplicity we restrict to g(u) = .

Theorem 7.1 Fix a positive integer n and a positive real number ky. For sufficiently
small € > 0 (depending upon n and ky) there exists an infinite-dimensional, continuous
Jamily of modulating pulse solutions to equation (5) of the form

u(x,t) = v(x — cgt, x — cpt),

where v is 27 [ ko-periodic in its second argument and ¢, = e+ Me?, ¢g = 1/cy. These so-
lutions satisfy

V(&) =v(=6y), (&y) =2h(Ep,e)| <™ EyeRR,
where h(€,y,€) = eByuse(€€) sinkoy + c.c. + O(e?) and lime_ 1. h(€, p,€) = 0.

158 JB 109. Band (2007), Heft 3



G. Schneider and H. Uecker: The Mathematics of Light Pulses in Dispersive Media

O(e)

O™

Figure 8: A generalized modulating pulse solution.

The modulating pulse solutions of Theorem 7.1 are found in the intersection of the
infinite-dimensional center stable and infinite-dimensional center unstable manifold.
For |{| — oo the solutions converge with some exponential rate towards the center
manifold. Thus, a secular growth of the solutions is possible. However, for this special
equation the boundedness for || — oo follows with the help of the Hamiltonian struc-
ture due to the fact that the Hamiltonian restricted to the center manifold is positive de-
finite.

For general, especially quasilinear, systems the norm induced by the Hamiltonian is
too weak compared with the norm used for the construction of the invariant manifolds.
Thus, in general, generalized modulating pulse solutions can only be constructed for
|€] < 1/€", cf. [GSO05]. This result has been improved in [GS06] to exponentially small
tails and exponentially large intervals, i.e., |£| < exp(—1/¢).

8 Outlook and related fields

The above analysis can be extended into a number of directions. First we may consider
different constitutive laws for the polarization, as for instance

Pp(x,1) = u(x, 1) + & (u(x, 1)?)

leading to quasilinear systems, cf. [GSO05].

Recently so-called ultra-short pulses have attracted a lot of interest, cf. [SW04].
They play an important role in spectroscopy. For such pulses the length of the envelope
and the wavelength of the underlying carrier wave have a comparable size.

In materials with broken up-down symmetry also quadratic terms are present. Then,
from a mathematical point of view, the proof of the above approximation results is a
much more challenging task. The idea is to use normal form transforms or averaging
methods to eliminate the quadratic terms and to reduce the proof to the cubic case,
cf. [Sch98, BSTU06]. The case of quadratic resonant media has been treated recently in
[Sch05].

JB 109. Band (2007), Heft 3 159



Ubersichtsartikel Historische Beitrage Berichte aus der Forschung Buchbesprechungen

There is another famous system with dispersive behavior for which the NLS equa-
tion can be derived, namely the water wave problem, cf. [Zak68]. Estimates for the resi-
dual can be found in [CSS92]. Here, quadratic terms are present. The elimination of
these terms is complicated due to some resonance at the wavenumber k = 0 and other
resonances present in case of small positive surface tension. Estimates for model pro-
blems can be found in [DS05]. A first attempt for the water wave problem as been made
in [SWO06] where the validity of the approximation over at least the right time scale has
been shown.

More generally, as already pointed out in the introduction, the methods reviewed
here can be applied to all dispersive nonlinear equations for which the NLS equation
can be derived.

There are still many open questions. A serious difficulty in the description of photo-
nic crystals comes from the fact that the coefficient functions x; very often are step func-
tions, i.e., they are not smooth. Another challenging problem is the justification of the
NLS equation when the original equation possesses quasilinear quadratic terms. The
elimination of these terms by normal form transforms gives a loss of regularity compli-
cating the local existence and uniqueness theory of solutions substantially.
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Berichte aus der Forschung Buchbesprechungen

M. Kaplan
Computeralgebra

Berlin u.a., Springer, 2004, 391 S., € 39,95

Das vorliegende Buch ist ein Lehrbuch, das
aus Vorlesungen des Autors fiir Informati-
ker und Mathematiker an der TU Miinchen
hervorgegangen ist. In 8 Kapiteln und 2 An-
hidngen wird eine Auswahl von grundlegen-
den Algorithmen aus verschiedenen Berei-
chen der Computeralgebra vorgestellt.

Der Autor geht wie folgt vor. Die ersten
vier Kapitel, die fast die Hilfte des Buches
darstellen, sind Grundlagen gewidmet. Ka-
pitel 1 ist eine kurze Einleitung, in der ins-
besondere andere Quellen zur Einfithrung in
die Computeralgebra sowie vergleichende
Literatur zu Computeralgebrasystemen auf-
gelistet werden. In Kapitel 2 werden grund-
legende Themen wie Algorithmen und ihre
Komplexitidt, Resultanten oder Mignotte-
Schranken angesprochen. Kapitel 3 ist dem
Rechnen mit homomorphen Bildern (chine-
sicher Restsatz und Hensel-Liftung) gewid-
met. Kapitel 4 ist das mit Abstand ldngste
Kapitel des Buches. Behandelt werden die
Darstellung und Arithmetik von Zahlen und
Polynomen.

In Kapitel 5 werden Algorithmen zur Fak-
torisierung ganzer Zahlen vorgestellt (Pol-
lard-p, Pollard-(p — 1), Lenstras Elliptische-
Kurven-Methode, Kettenbruch-Methode
von Morrison-Brillhart, quadratisches Zah-
lensieb). Kapitel 6 beschéftigt sich mit den
Anféngen der univariaten Polynomfaktori-
sierung (Algorithmen von Berlekamp, Can-
tor-Zassenhaus und Zassenhaus). Gegen-
stand von Kapitel 7 ist die unbestimmte

Summation. Vorgestellt werden die Algo-
rithmen von Moenck und Gosper. Kapitel 8
ist eine sehr kurze Einfithrung in das Kon-
zept der Grobner-Basen (Algorithmus von
Buchberger). Die Anhénge lieferen einige In-
formationen zu ausgewéhlten Computeral-
gebrasystemen.

Das Buch vermittelt einen ersten Eindruck
von verschiedenen Bereichen der Compute-
ralgebra. Die behandelten Algorithmen wer-
den in Pseudocode dargestellt, analysiert
und durch zahlreiche, gut ausgewihlte Bei-
spiele illustriert. Es sind gerade die Beispiele,
die vorlesungsbegleitend oder beim Selbst-
studium niitzlich sind.

Zum tieferen Verstindnis der Materie
missen jedoch auch andere Quellen heran-
gezogen werden. So fehlt etwa die schnelle
Fourier-Transformation im Kapitel {iber
Arithmetik. Es werden Algorithmen zur
Faktorisierung ganzer Zahlen vorgestellt,
nicht aber Primzahltests. Im Kapitel iiber
Polynomfaktorisierung werden die 1965—
1970 entworfenen Algorithmen zur univaria-
ten Faktorisierung beschrieben (diese sind
auch heute noch von zentraler Bedeutung).
Neuere Entwicklungen zur univariaten Fak-
torisierung, die Faktorisierung {iber Zahl-
korpern, modulare ged-Algorithmen, multi-
variate Polynomfaktorisierung oder absolu-
te Polynomfaktorisierung werden aber nicht
angesprochen. Die fundamentale Bedeutung
von Buchbergers Algorithmus zur Berech-
nung von Grdbnerbasen wird nicht klar ge-
nug herausgearbeitet. Einige Bemerkungen
zu Querverbindungen zwischen den einzel-
nen Kapiteln (etwa Polynomfaktorisierung
+ Grobner-Basen = Zerlegung von Varie-
titen oder die klassische Anwendung von
Resultanten zur Elimination) sowie ausfiihr-
licher besprochenene Beispiele fiir prakti-
sche Anwendungen wiirden das Buch gut er-
ganzen.

Etwas irritiert hat mich der Klappentext.
Das dort angedeutete Vorhaben, an Beispie-
len die Leistungsfahigkeit von Computeral-
gebrasystemen aufzuzeigen, wird weder qua-
litativ noch quantitativ in Angriff genom-
men.

JB 109. Band (2007), Heft 3

21



Ubersichtsartikel Historische Beitrage

Berichte aus der Forschung Buchbesprechungen

Zusammenfassend kann gesagt werden,
dass das Buch eine erste Einfithrung in die
Computeralgebra darstellt, die durch die be-
handelten Beispiele besticht. Es ist deswegen
eine empfehlenswerte Ergdnzung der vor-
handenen Literatur.

Saarbriicken W. Decker

S.Rudich and

A Widgerson
Computational
Complexity Theory
IAS/Park City Mathem.
Series, Vol. 10

American Math. Soc., 2004, 389 S., $ 69,—

Seit Beginn der 90er Jahre widmet sich das
Park City Mathematics Institute in Zusam-
menarbeit mit dem Institute for Advanced
Study in Princeton der Forderung der ma-
thematischen Ausbildung und Forschung
mit einem breiten Spektrum an Veranstal-
tungen fiir Lehrer, Studenten, Dozenten und
Forscher. In jedem Jahr wird ein Schwer-
punktthema gewéhlt, das dann auch Gegen-
stand einer dreiwochigen Graduate Summer
School ist, deren Teilnehmer, mehrheitlich
Doktoranden und Postdoktoranden und
Forscher aus anderen Bereichen, von den
Grundlagen des jeweiligen Gebiets bis zu ak-
tuellen Themen der Forschung gefiihrt wer-
den sollen. Im Sommer des Jahres 2000 war
mit Computational Complexity Theory erst-
mals ein Thema aus der Theoretischen Infor-
matik Schwerpunkt. Der vorliegende Band
gibt (mit einer Ausnahme) die von den Do-
zenten, die ohne Einschrinkung zu den fiih-
renden Kopfen der Szene gerechnet werden
diirfen, gehaltenen Vorlesungen wieder. An
der Fiille des Materials und den technischen

Anspriichen erkennt man klar den ,,Steil-
kurs“-Charakter dieser Veranstaltung. Ne-
ben motivierenden Erlduterungen zu den
Themen und Begriffen, Definitionen und
Resultaten, die der Orientierung in der
Landschaft der Komplexitétstheorie dienen,
geben die Beitrdge mit ihren ausgefiihrten
Beweisen und Beweisskizzen einen guten
Eindruck von der Arbeitsweise in diesem Ge-
biet. Inhaltlich kann der Band fiir sich in An-
spruch nehmen, in konzentrierter Form eine
Art Bestandsaufnahme der Komplexitéts-
theorie (oder doch wenigstens von wichtigen
Teilen davon), etwa 30 Jahre nach den Ar-
beiten von Stephen Cook, Leonid Levin und
Richard Karp, zu geben, mit denen dieses
Forschungsgebiet begriindet wurde.

Die einfithrenden acht kompakten Vor-
lesungen Complexity Theory: From Gadel to
Feynman von Steven Rudich stecken den
Rahmen dieser Sommerschule ab. Aus-
gehend von den grundlegenden Begriffsbil-
dungen um das notorische P-vs.-NP-Pro-
blem, liber KomplexitdtsmaBe, Komplexi-
tatsklassen, Reduktionen und Relativierun-
gen bis hin zu unteren Schranken fiir Schalt-
kreise und im Rahmen der Beweiskomplexi-
tiat, wird ein Panorama vorgefiihrt, das in
vielen Punkten in den folgenden Beitrigen
vertieft behandelt wird. Der Titel dieser Vor-
lesungen ist allerdings etwas irrefithrend:
zwar wird Kurt Godels beriihmter Brief an
John von Neumann aus dem Jahr 1956 abge-
druckt (im originalen Deutsch und in eng-
lischer Ubersetzung) und kurz diskutiert,
aber iiber Richard Feynman und seine Ideen
erfahrt man (auch spiter) so gut wir nichts.
Ergdnzt werden diese einfithrenden Vor-
lesungen durch eine sehr knappe, aber in-
struktive Darstellung der Average Case
Complexity von Avi Widgerson und drei
Vorlesungen Exploring Complexity through
Reductions von Sanjeev Arora, wo das wich-
tige Thema der Probabilistically Checkable
Proofs und der Nicht-Approximierbarkeit
der exakten Losungen von manchen NP-
schwierigen Problemen schon einmal behan-
delt wird. Dazu wird mit dem Beweis von
Todas Theorem zu Zdhlproblemen und po-
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lynomieller Hierachie auch ein echter ,,Klas-
siker” der Komplexititstheorie geboten. Die
folgenden drei Vorlesungen von Ran Raz
tiber Quantum Computing beschrinken sich
auf eine elementare Einfithrung in den For-
malismus und ein Darstellung von Shor’s
polynomiellen Faktorisierungsalgorithmus
— sicher ein bahnbrechendes Resultat, das
man aber inzwischen #dhnlich dargeboten
auch in vielen Lehrbiichern findet, was man
von den meisten anderen Beitrdgen so nicht
sagen kann. Andere Bereiche des Quanten-
computing und der Quanteninformation
werden nicht angesprochen.

Die zweite Woche der Sommerschule, mit
der Uberschrift Lower Bounds, hatte drei
Themen: Circuit and Communication Com-
plexity (Ran Raz), Proof Complexity (Paul
Beame) und Arithmetic and Algebraic Com-
plexity (Michael Ben-Or). An den beiden
erstgenannten Beitrdgen erkennt man, wie
unterschiedlich die Dozenten an ihre Auf-
gabe herangegangen sind: Ran Raz gibt eine
exemplarische und — inklusive Beweise —
leicht nachvollziehbare Einfithrung in sein
Thema. Paul Beame geht sein Thema sehr
systematisch an, was bei die Vielzahl von for-
malisierten logischen Beweiskonzepten die
Ubersicht erleichtert. Aber daher kénnen
viele der in dieses umfassende Bild gehoren-
den Resultate nur ohne Beweis zitiert wer-
den. Zum letzten der drei genannten Thema
fehlt bedauerlicherweise eine Ausarbeitung
in dem vorliegenden Band — dieses umfang-
reiche und wichtige Teilgebiet der Komplexi-
titstheorie ist somit hier tberhaupt nicht
vertreten.

Der groB3e Themenbereich Randomness in
Computation bestimmte die dritte Woche,
wobei zwei Schwerpunkte auszumachen
sind: einmal die Untersuchung von Pseudo-
zufallsgeneratoren und Pseudozufallsfunk-
tionen, sowie der Technik des Derandomisie-
rens, die in den beiden Beitridgen Pseudoran-
domness I und II von Oded Golddreich bzw.
Luca Trevisan dargestellt sind; sodann die
faszinierenden Konzepte fir interaktives,
probabilistisches Beweisen (Interactive Pro-
ofs, Zero-Knowledge Proofs, Probabilistical-

ly Checkable Proofs) mit ihren erstaunlichen
Resultaten, von Salil Vadha und Madhu Su-
dan kompetent prisentiert. Angesichts der
Kompliziertheit der Methoden und Resulta-
te, die zu den PCP-Charakterisierungen der
Komplexitdtsklasse NP fithren, darf man in
diesem Rahmen natiirlich keine lehrbuch-
artige komplette Aufarbeitung erwarten,
aber eine wertvolle Wegleitung aus erster
Hand ist es allemal.

Ein solcher Band mit Betrdgen verschiede-
ner Autoren (teilweise wohl auch auf studen-
tischen Mitschriften beruhend) hat — wie an-
gedeutet — fast zwangsldufig Unausgewogen-
heiten. Der Vorzug, in vielen Bereichen von
ausgewiesenen Experten einen authentischen
Eindruck von der Denk- und Arbeitsweise in
deren Spezialgebieten anhand von grund-
legenden und aktuellen Resultaten zu erhal-
ten, ist greifbar. Aber ein durchstrukturiertes
Lehrbuch hilt man nicht in der Hand, eher
eine Sammlung von interessanten, anregen-
den, unterschiedlich konzipiertenTutorials
auf durchwegs hohem Niveau, das den state
of the art nach dreissig Jahren Komplexitits-
theorie widerspiegelt.

V. Strehl

Erlangen

S. Carter,

S. Kamada,

M. Saito

Surfaces in 4-Space
Enz. Math. Sciences
142

Berlin u. a., Springer, 2004, 213 S., € 84,95

This book provides a survey of knotted sur-
faces in Euclidian 4-space including their re-
cent results on quandle cocycle invariants
and its applications. 2-dimensional knot the-
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ory is a higher version of classical 1-dimen-
sional knot theory, but it has very different
properties from the classical case.

In Chapter 1 of the book they discuss basic
methods of drawing pictures of knotted sur-
faces, such as motion pictures, normal
forms, broken surface diagrams, and braid
chart descriptions. These methods are used
in the area, and the pictures illustrated in this
book are very beautiful.

Chapter 2 is devoted to the known meth-
ods of constructing knotted surfaces. In par-
ticular, deform-spun knots and ribbon knots
play important rolls of the study. They also
explain how to construct a compact 3-mani-
fold, whose boundary is a given knotted sur-
face, by the Seifert algorithm.

In Chapter 3 they review the invariants of
knotted surfaces derived from the exterior of
a knotted surface in the space. The Wirtinger
presentation of the fundamental group of an
exterior is given in various ways by using the
descriptions in Chapter 1. They also explain
the Faber-Levine pairing and its generaliza-
tion due to Kawauchi.

Chapter 4 contains their most recent, in-
teresting works on quandles. They develop
quandle homology and cohomology theory
and define the invariants by using quandle
cocycles in a state-sum form. The quandle
cocycle invariants of knotted surfaces are
natural generalizations of the Dijkgraaf-
Witten invariant for 3-manifolds. They also
have many applications, for example, a low-
er bound of triple point numbers and non-in-
vertibility of knotted surfaces.

The appendix is devoted to the tables of
quandles with at most six elements and their
homology groups due to Uegaki, which are
useful to calculating the cocycle invariants of
knotted surfaces.

This book is intended for graduate stu-
dents and mathematicians who are studying
low dimensional topology.

Chiba (Japan) S. Satoh

D.Wuensch

Zwei wirkliche Kerle:
Neues zur Entdeckung
der Gravitations-
gleichungen der All-
gemeinen Relativitats-
theorie durch Albert
Einstein und David
Hilbert

Termessos, Gottingen, 2005, 120 S., € 24,95

In seiner Unsichtbaren Loge schreibt Jean
Paul ,,Die Anstrengung der empfindenden
Phantasie ist unter allen geistigen die entner-
vendste; ein Algebraist {iberlebt allemal ei-
nen Tragodiensteller.” Lichtenberg vermute-
te aus dhnlichen Grinden, dass Mathematik
zur Verldngerung des Lebens beitragen kon-
ne. Mit anderen Worten, die rationale, adre-
nalinarme Titigkeit des Mathematikers
macht zuweilen Miihe, ist aber sicher gesund!

Nun hat es gerade in den letzten Jahren ei-
ne Entwicklung, wenn auch nicht in der Ma-
thematik selbst, so doch in der Geschichte
der Mathematik gegeben, die den Adrenalin-
spiegel — zumindest bei den Beteiligten — in
die Hohe trieb. Das Buch von Frau Wuensch
enthélt eine prdzise Darstellung und Be-
standsaufnahme dieses Falles, logisch, sach-
lich, frei von Emotionen und trotzdem span-
nend wie ein Kriminalroman.

Zur Sache: Im Jahre 1915 hatte Albert
Einstein mit seiner bekannten Arbeit Zur all-
gemeinen  Relativititstheorie die Physik
durch eine neue aufregende Sichtweise berei-
chert, die seiner speziellen Relativitidtsheorie
einen umfassenden einheitlichen Rahmen
gab. Im gleichen Jahre reichte David Hilbert
eine Arbeit Die Grundlagen der Physik zum
gleichen Thema ein. Beide Arbeiten wurden
nahezu zeitgleich eingereicht, die Hilbertsche
Publikation erschien jedoch erst im Jahre
1916. Die beiden Autoren standen vor den
Veroffentlichungen in lebhaftem Kontakt
miteinander, das heif3t, die beiden Arbeiten
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sind nicht unabhingig entstanden. Nach bis-
heriger Meinung hat Albert Einstein von
David Hilbert bei der Formulierung der ma-
thematischen Grundlagen der allgemeinen
Relativitdtstheorie profitiert.

Im Jahre 1997 erschien in der Zeitschrift
Science ein Artikel von Leo Corry, Jirgen
Renn und John Stachel, in dem die sensatio-
nelle Behauptung aufgestellt wurde, dass
umgekehrt Hilbert von Einstein profitiert
habe. Das Hauptargument dieser Autoren
war, dass in den von dem ersten Autor in der
Staats- und Universititsbibliothek Géttin-
gen aufgefundenen Fahnenkorrekturen von
Hilberts Arbeit eine Formel fehle, die in der
endgiiltigen Arbeit zu finden sei. Hilbert
habe zwar die Einsteinschen Gravitations-
gleichungen in der impliziten Form auf-
gefithrt, jedoch in den Fahnenkorrekturen
daraus nicht den zugehdrigen Variations-
term hergeleitet. Diese sensationelle Nach-
richt provozierte eine Anzahl von Reaktio-
nen und Gegenreaktionen, nicht nur in wis-
senschaftshistorischen Zeitschriften, auch in
der Washington Post, der Neuen Ziircher
Zeitung und natiirlich auch im Internet. Ei-
ne Website mit recht kréftigen Anwiirfen in
ausgesprochen unakademischer Wortwahl
musste inzwischen nach Einschreiten eines
Anwalts zuriickgezogen werden.

Im Jahre 2004 hat Friedwardt Winterberg
eine nicht minder aufregende Entdeckung
publiziert: Hilberts Fahnenkorrekturen sind
offenbar nicht mehr im Originalzustand, ir-
gend jemand hat sie auseinandergerissen und
ausgerechnet die Stelle herausgeschnitten,
an der sich die fragliche Formel befinden
miisste. Dieser Tatbestand wird von Corry,
Renn und Stachel auch nicht bestritten. Wir
haben hier also die absurde Situation, dass
die ,,Anklage™ gegen Hilbert auf die Nicht-
existenz einer Formel begriindet ist, die sich
auf einem Teil der Fahnenkorrekturen be-
funden hétte, der ebenfalls nichtexistent ist.
Ein solcher, zweifach auf Nichtexistenz
gegriindeter Beweis erweckt Unbehagen
(Schliemann hat in Troja keine Drihte aus-
gegraben, also besaBen die Trojaner drahtlo-
se Telegraphie!).

In dem Buch von Frau Wuensch wird in
umfassender und minutiéser Weise Spuren-
sicherung betrieben. Sie hat das Umfeld der
beiden Kontrahenten zur Tatzeit griindlich
untersucht, und man begegnet hier guten Be-
kannten wie Felix Klein, Walter Baade, Max
Born und anderen. Sie hat sich intensiv mit
den in den Archiven noch vorhandenen Ma-
nuskripten Hilberts auseinandergesetzt, und
sie hat liberzeugend versucht, die Vorginge,
die zu dem jetzigen Zustand der Fahnenkor-
rekturen gefiihrt haben, zu analysieren. Die-
ser Teil des Buches liest sich spannend wie
ein Kriminalroman. Die Autorin hat am
»Tatort™ in der Staats- und Universitits-
bibliothek Goéttingen akribisch recherchiert
und zahlreiche spannende Details zutage ge-
bracht, wie die Faltung der Fahnenkorrektu-
ren oder die Art und Weise der Ausschnei-
dung, aber sie befasst sich auch mit der Per-
sonlichkeit Hilberts: Welche Motive hitte er
gehabt, sein Manuskript zu verstiimmeln,
wie hielt er es generell mit Ausschneidungen?
Dies geht so weit, dass die Autorin ab-
schitzt, welche GroBe der verschwundene
Ausschnitt gehabt hatte und wieviel Inhalt
sich auf einer Fldche dieser GroBe unterbrin-
gen ldsst. Sie hat die Manuskripte Hilberts
statistisch untersucht, um zum Beispiel fest-
zustellen, auf welche Weise Hilbert Manu-
skripte bezifferte. Sie hat die Handschrift
Hilberts analysiert und sie ist der Frage
nachgegangen, warum die Fahnenkorrektu-
ren auf die nun vorliegende Weise gefaltet
sind. Thre Schlussfolgerung ist eindeutig und
nachvollziehbar: Die Manipulationen an
den Fahnenkorrekturen sind in neuerer Zeit
— genauer nach 1985 —entstanden.

Neben diesen materiellen Indizien gibt es
natiirlich auch noch den modus operandi der
Beteiligten. Ist es einsichtig, dass David Hil-
bert, der die ,,Weiterfiihrung der Methoden
der Variationsrechnung™ im Jahre 1900 als
23. Problem gestellt hatte, der auf dem Ge-
biet der Variationsrechnung und der Inva-
riantentheorie Grundlegendes geleistet hat-
te, eine — zumindest fir ihn — relativ nahelie-
gende Konsequenz, die er in seinem publi-
zierten Artikel mit den Worten .,. . .wie leicht
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ohne Rechnung . . . folgt .. .“ erst gesehen ha-
ben soll, nachdem er die inzwischen erschie-
nene Arbeit Einsteins in Hadnden hatte?
Auch diesen innermathematischen Fragen
geht Frau Wuensch mit der ihr eigenen
Griindlichkeit und Sauberkeit nach. Dabei
steht sie nicht allein mit dieser Vorgehens-
weise, zum Beispiel haben sich auch A.A.
Logunov, M. A. Mestvirishviliund V. A. Pe-
trov in einem unldngst in den Phys. Uspekhi
erschienenen Artikel in die Debatte einge-
schaltet. In einer sehr klaren und griindli-
chen physikalischen Argumentation kom-
men sie zu dem Resultat ,,. .. the conclusions
drawn in these papers [Corry, Renn, Stachel]
are completely groundless.*

Es ist bezeichnend, dass die beiden drama-
tis personae selbst das hier angesprochene
Problem bemerkenswert gelassen hinnah-
men, was die eingangs zitierte Theorie von
der besonderen Art der Konfliktbewaltigung
unter Mathematikern zu stiitzen scheint. Ei-
ne anfingliche Verstimmung — Hilbert du-
Berte sich ungehalten dariiber, dass Einstein
ihn in seiner Arbeit nicht zitiert hatte — wur-
de alsbald beigelegt. Weitaus wichtiger ist —
und dies wird von Frau Wuensch besonders
hervorgehoben — dass hier Unvergleichbares
verglichen wird. Einstein war Physiker, Hil-
bert Mathematiker. Das eigentliche Anlie-
gen Hilberts in seiner Arbeit ist der Versuch
einer Axiomatisierung der Physik (6. Hil-
bertsches Problem: Mathematische Behand-
lung der Axiome der Physik). Die Gleichung,
die heute die Gemiiter so erregt, war sicher-
lich fiir Hilbert eine naheliegende Kon-
sequenz, steht aber eher am Rande der Hil-
bertschen Uberlegungen. Fiir Einstein hin-
gegen war die Mathematik ein wichtiges
Werkzeug, aber eben nur ein Werkzeug, wo-
bei er nach Felix Klein ,,mehr von einem
starken physikalischen Instinkt als von kla-
rer mathematischer Einsicht gleitet wird.”
So sehen es auch Logunov, Mestvirishvili
und Petrov, die beziiglich Einsteins Darstel-
lung auf ,intuitive considerations® hinwei-
sen und darauf, dass die Gleichungen nicht
immer ,,hergeleitet” (derived) sondern ,,gera-
ten® (guessed) seien.

Frau Wuensch gibt der Versuchung nicht
nach, aus ihren Untersuchungen ihrerseits
eine neue Anklage zu formulieren, auf eine
Person zu zeigen und auszurufen ,,Thou art
the man!“ Es bleibt dem Leser iiberlassen,
seine eigenen Schliisse zu ziehen. Nach den
eingangs erwidhnten Emotionen wirkt sie
sachliche Kiihle dieses — nichtsdestoweniger
ungemein spannenden — Buches sehr wohl-
tuend.

Man kann das Buch aus verschiedenen
Griinden empfehlen. Zum einen ist es ein-
fach eine fesselnde Lekture, dariiber hinaus
liefert es einen interessanten Einblick in das
wissenschaftliche Umfeld von Einstein und
Hilbert und zeigt den miihevollen Weg bis
zur endgiiltigen Formulierung der allgemei-
nen Relativitdtstheorie. Das Buch zeigt auch
auf eine — wie ich meine — mustergiiltige Art,
wie mathematikhistorische Forschung sein
sollte: Man muss die Fakten mit Akribie und
wissenschaftlicher Ehrlichkeit recherchieren,
und erst wenn diese nur noch eine einzige
Schlussfolgerung zwingend zulassen, dann
sollte man diese ziehen, auch wenn die Ver-
suchung, ein sensationelles Ergebnis vor-
schnell zu publizieren, manchmal verlockend
ist. Wie Brecht es im Leben des Galilei for-
dert:

Ja, wir werden alles, alles noch einmal
in Frage stellen. Und wir werden nicht mit
Siebenmeilenstiefeln vorwirtsgehen, son-
dern im Schneckentempo. Und was wir
heute finden, werden wir morgen von der
Tafel streichen und erst wieder anschrei-
ben, wenn wir es noch einmal gefunden ha-
ben. Und was wir zu finden wiinschen, das
werden wir, gefunden, mit besonderem
Misstrauen ansehen. ... Sollte uns dann
aber jede andere Annahme als diese unter
den Hénden zerronnen sein, dann keine
Gnade mehr mit denen, die nicht geforscht
haben und doch reden.

Mein Resumee iiber das Buch ldsst sich am
besten in Einsteins Worten formulieren:
»Lieber Leser! Resiimiert wire profaniert.
Selber lesen!* Ich wiirde sogar so weit gehen
wollen, mit Lichtenberg zu empfehlen: ,,Wer
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zwei Paar Hosen hat, mache eins zu Geld
und schaffe sich dieses Buch an.*

Man darf auf das Buch der gleichen Auto-
rin iiber Theodor Kaluza gespannt sein.

U. Eckhardt

Hamburg

J.Appell, E. De Pascale,
A Vignoli

Nonlinear Spectral
Theory

de Gruyter Ser.in Non-
lin. Anal. and Appl. 10

Berlin u. a., de Gruyter, 2004, 408 S., € 148,

This is a unique book in the mathematical lit-
erature which systematically deals with the
nonlinear spectral theory, looks for the com-
mon points with the classical linear spectral
theory on one hand and points out the strik-
ing differences on the other hand.

Nonlinear spectral theory is relatively new
field of mathematics. Its origin falls within
the second half of the twenties century. It is
far from being complete and many funda-
mental questions remain to be open here.
The main focus of this book is therefore for-
mulated by the authors in the following
question: “How should we define a spectrum
for nonlinear operators which attempts to
preserve the useful properties of the linear
case, but admits applications to a possibly
large variety of nonlinear problems?”

Since the spectral theory for linear opera-
tors appeared to be one of the most impor-
tant topics of functional analysis and one of
the most important tools in solving linear
operator equations, it is natural to look for
analogies of the notion “spectrum” in the
nonlinear theory.

It was always tacitly assumed that a rea-
sonable definition of a spectrum of a contin-
uous nonlinear operator should satisfy some
minimal requirements, namely:

= it should reduce to the familiar spectrum
in case of linear operators

= it should share some of the usual proper-
ties with the linear spectrum (e. g. com-
pactness)

= it should contain the eigenvalues of the
operator involved

= it should have nontrivial applications, i.e.
those which may not be obtained by other
known means.

As the authors show, in contrast to the linear
case, the spectrum of a nonlinear operator
contains practically no information on this
operator. The authors finally convince the
reader that it is not the intrinsic structure of
the spectrum itself which leads to interesting
applications, but its property of being a use-
ful tool for solving nonlinear equations. The
reason consists in the fact that the authors
are more interested in studying specific non-
linear equations rather than abstract spec-
tra.

This book is an excellent presentation of
the “state-of-the-art” of contemporary non-
linear spectral theory as well as the glimpse
of the diversity of the directions in which cur-
rent research is moving. The whole text con-
sists of 12 chapters. The authors recall the
basic facts obout the spectrum of a bounded
linear operator in a Banach space in the first
chapter. In Chapter 2 some numerical char-
acteristics which provide a quantitative de-
scription of certain mapping properties of
nonlinear operators are studied. The classi-
cal Kuratowski measure of noncompactness
plays the key role here. Chapter 3 is devoted
to the general invertibility results. In particu-
lar, the conditions which guarantee that the
local invertibility of a nonlinear operator im-
plies its global invertibility are of interest.
The Rhodins and the Neuberger spectra are
studied in Chapter4. In Chapter5 the
authors study a spectrum for Lipschitz con-
tinuous operators first proposed by Kachu-
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rovskij in 1969 and a spectrum for linearly
bounded operators introduced recently by
Dorfner. Chapter 6 is concerned with a spec-
trum for certain special continuous opera-
tors introduced by Furi, Martelli and Vigno-
liin 1978 and its modification introduced re-
cently by Appell, Giorgieri and Vith. The
Feng spectrum is discussed in detail in Chap-
ter 7. Chapter 8 is devoted to the study of
“local spectrum” due to Vith, which is called
in the literature as “phantom”. In Chapter 9
the authors investigate the modification of
Feng spectrum proposed by Feng and Webb
and another spectra introduced by Singhof-
Weyer, Weberand Infante-Webb. Chapter
10 is devoted to the study of nonlinear eigen-
value problems. The authors focus on the
notion of a “nonlinear eigenvalue”, non-
linear analogue of the Krein-Rutman theo-
rem, connected eigenvalues, etc. In Chapter
11 they show how numerical ranges may be
used to localize the spectrum of a nonlinear
operator on the real line or in the complex
plane. Selected applications are presented in
the last Chapter 12.

The exposition of nonlinear spectral theo-
ry in this book is self-contained. All major
statements are proved, each definition and
notion is carefully illustrated by examples.
To understand this text does not require any
special knowledge and only modest back-
ground of nonlinear analysis and operator
theory is required. Due to these facts this
book can be used also as a “textbook” for
graduate students who are looking for new
and interesting problems. Especially, those
who are interested in the solvability and bi-
furcation of nonlinear operator equations
which represent nonlinear boundary value
problems or nonlinear integral equations
will find a lot of inspiration there. The book
is addressed not only to mathematicians
working in analysis but also to non-specia-
lists who want to get on idea of the develop-
ment of spectral theory for nonlinear opera-
tors in the last 30 years. The bibliography is
rather exhaustive and so this text will cer-
tainly serve as an excellent reference book
for many years. This volume should not be

missing at any department of mathematics
and in any mathematical library.

P. Drabek

Pilsen

Y. Pesin

Lectures on partial
hyperbolicity and
stable ergodicity
Ziirich Lec. in Adv.
Math.

Ziirich, European Math. Soc., 2004, 122 S.,
€28~

Das vorliegende Buch ist eine Einfithrung in
die Theorie der partiell hyperbolischen Sys-
teme, einem sich in letzter Zeit schnell ent-
wickelten Zweig der Theorie der glatten dy-
namischen Systeme. Der Autor zihlt zu den
weltweit fithrenden Experten auf diesem Ge-
biet und ist einer der Begriinder dieser mo-
dernen Theorie. Obwohl dieses Gebiet seit
etwa 30 Jahren erforscht wird, sind gerade in
den letzten Jahren sehr viele Publikationen
erschienen. Das Buch von Pesin kann aber
als das erste umfassende und einfithrende
Lehrbuch angesehen werden. Es ist sowohl
fiir fortgeschrittene und interessierte Stun-
denten und Doktoranden als auch fiir Wis-
senschaftler, die sich mit dynamischen Syste-
men beschiftigen duflerst empfehlenswert.

Das Buch beginnt mit der grundlegenden
Theorie der hyperbolischen Systeme. Dabei
wird besonders die Theorie der stabilen und
instabilen Bldtterungen beschrieben. Aus-
gehend von ihrer Existenz werden ihre wei-
tergehenden Eigenschaften wie absolute Ste-
tigkeit und Holderstetigkeit diskutiert. Da-
ran ankniipfend wird der Beweis der struktu-
rellen Stabilitit von Anosovsystemen skiz-
ziert.
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Nach diesen Grundlagen der Theorie der
hyperbolischen Systeme wird die Theorie der
partiell hyperbolischen Systeme untersucht.
Diese unterscheiden sich von den hyperboli-
schen durch das Auftreten ,,neutraler” Rich-
tungen. Nach Beschreibung deren Eigen-
schaften wird das Hauptaugenmerk auf den
Beweis des fundamentalen Satzes von Pugh
und Shub iiber die stabile Ergodizitidt von
partiell hyperbolischen Systemen gerichtet.
Ein zentraler Punkt dabei ist die Unter-
suchung der stabilen Erreichbarkeit (stable
accesibility).

Das Buch ist in einem hervorragendem Stil
geschrieben. Die Beweise und Ideen sind klar
strukturiert. Der Aufbau ist in sich schliissig
und logisch klar strukturiert. Die Notatio-
nen verzichten auf unnétige Kompliziert-
heit. Das alles tragt zu einer sehr guten Les-
barkeit bei. Obwohl ein gewisses Grundwis-
sen iiber die Theorie der glatten dyna-
mischen Systeme hilfreich sein kann, speziell
wenn man an den vollstindigen Beweisen
der Grundlagen der hyperbolischen Theorie
interessiert ist, ist dieses Buch in sich ge-
schlossen und kommt weitgehend ohne zu-
sdtzliche Literatur aus.

Lund J. Schmeling

Topics on Analysis
in Metric Spaces

L. Ambrosio, P. Tilli
Topics on Analysis
on Metric Spaces
Oxford Lect. Ser.in
Math. and its Appl. 25

Oxford University Press, 2004, 133 S.,
£29.50

Bei der Behandlung von Problemen im Be-
reich Partieller Differentialgleichungen und
Mathematischer Physik finden grundlegen-

de Konzepte der Analysis und der MaBtheo-
rie auf euklidischen R4dumen Anwendung. In
den letzten Jahren setzte sich jedoch die Er-
kenntnis durch, dass diese fundamentalen
Konzepte verallgemeinert werden konnen,
indem man die zugrunde liegenden eukli-
dischen Rdume durch geeignete Klassen von
metrischen Rdumen ersetzt, was neben ei-
nem tieferen Verstindnis der zugrunde lie-
genden Strukturen auch zu eleganten und
verstidndlichen Beweisen der Resultate fiihrt.

Ziel des vorliegenden Buches ist eine ele-
mentare Einfithrung in die Grundlagen der
Analysis auf metrischen Rdumen. Das Buch
selbst basiert auf einer Vorlesung des ersten
Autors, die er an der Scuola Normale in Pisa
im Jahre 1999 abgehalten hat.

Kapitel 1 gibt eine Einflihrung in die MaB-
theorie. Dabei wird der Zugang von Cara-
théodory iiber dullere Maf3e entwickelt. Ne-
ben der grundlegenden Definition werden
die wichtigsten Begiffe wie regulire MaBe,
die Messbarkeit von Mengen bzgl. des Ma-
Bes und das Kriterium von Carathéodory fiir
Messbarkeit vorgestellt. Danach wenden
sich die Autoren den signierten und vektor-
wertigen MaBen zu. Insbesondere diskutie-
ren sie den Rieszschen Darstellungssatz fiir
beschrinkte lineare Funktionale auf einem
lokal-kompakten topologischen Hausdorff-
Raum E mit Werten in IR” und skizzieren
dessen Beweis. SchlieBlich wird das wichtige
Konzept der schwachen Konvergenz von
Malen etabliert.

In Kapitel 2 fithren die Autoren dann das
k-dimensionale Hausdorff-Mass +*, k > 0,
auf einem metrischen Raum (E,d) ein und
studieren dessen wichtigste Eigenschaften.
Derartige MaBe stellen eine Verallgemeine-
rung der klassischen Konzepte von Linge,
Flacheninhalt und Volumen dar. Auf den
Spezialfall (E,d) = (IR",|-]), k =n, wird
besonders eingegangen und gezeigt, dass das
n-dimensionale Hausdorff-MaB auf IR” mit
dem n-dimensionalen Lebesgue-MaBl £”
iibereinstimmt. SchlieBlich wird noch auf die
fiir viele Anwendungen wichtige Frage ein-
gegangen, ob ein gegebenes Radon-MaB 1
durch ein Hausdorff-MalB3 darstellbar ist
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oder ob man zumindest die Hausdorff-Di-
mension des Trégers von p kontrollieren
kann. Dazu betrachtet man (B, (x))/r* im
Limes r | 0 und wird auf die Definition der
k-dimensionalen oberen (unteren) sphiri-
schen Dichte bzw. der sphérischen Dichte ge-
fithrt. Die Annahme an die k-dimensionale
obere (untere) Dichte, dass sie >t (< 1),
t > 0,auf B C Eist, erlaubt die Abschitzung
w(B) > tH*(B) (bzw. < 12¥H*(B)). Die im
Beweis benotigten Uberdeckungssitze (etwa
der Uberdeckungssatz von Vitali), die den
Schluss vom Lokalen zum Globalen ermdg-
lichen, werden zuvor ausfiihrlich diskutiert.

Das dritte Kapitel beschéftigt sich mit der
Klasse der Lipschitz-stetigen Funktionen
Lip(E,F) zwischen metrischen Radumen
(E,dg) und (F,dr) und deren Verbindungen
zum Hausdorff-MaB. Zunéchst wird der
Frage nachgegangen, inwieweit es moglich
ist, Lipschitz-Funktionen, die auf einer Teil-
menge 4 von E definiert sind, zu einer Lip-
schitz-Funktion auf E fortzusetzen. Im Fall
(F,dr) = (IR,|-|) wird dies durch den ele-
mentaren Satz von McShane geklart. All-
gemeinere Aussagen werden diskutiert, aber
nicht bewiesen (etwa der Satz von Kirsz-
braun, Lipschitz-Funktionen zwischen me-
trischen Rdumen mit Kriimmungsschranken
in Sinne von Alexandrov, etc.). Danach
werden Anwendungen vorgestellt, die das
Verhalten des Hausdoff MaBes unter Lip-
schitz-Funktionen betreffen. Unter anderem
wird eine Vorstufe der Koflichenformel dis-
kutiert. Genauer: Ist ¢ € Lip(E, F), H*(E)
< oo und m < k, so ldsst sich das Integral
des (k —m)- dimesionalen Flicheninhaltes
H ™ (¢~'(y)) der Niveaumengen ¢~'(y),
y€F, bzgl. dH*(y) durch ¢y Lip(¢)”
H*(E) abschitzen.

Im Anschluss wird auf die wichtige Cha-
rakterisierung der Lipschitz-Funktionen
Lip(IR",IR), als genau derjenigen L!(IR")-
Funktionen mit Distributions-Gradient
Vu € L>*(IR",IR"), und den Satz von Rade-
macher eingegangen. Letzterer garantiert,
dass jede Lipschitz-Funktion fast iiberall
(bzgl. des Lebesgue-MaBes) differenzierbar
ist.

Zum Abschluss von Kapitel 3 wird die all-
gemeine Flidchenformel fiir Lipschitz-Funk-
tionen ¢: R — R", n >k, vorgestellt und
diskutiert. Auf den technisch aufwendigen
Beweis wird verzichtet. Statt dessen wird
die eindimensionale Fldchenformel, d.h.
k = m = 1, fur die Klasse der fast tiberall dif-
ferenzierbaren Funktionen ¢:IR — IR, die
Nullmengen in Nullmengen abbilden, voll-
stindig bewiesen.

Das vierte Kapitel ist zundchst dem Be-
griff der Geoditischen in einem metrischen
Raum (E,d) gewidmet. Fiir Kurven ~: [0, 1]
— E werden die Begriffe der totalen Varia-
tion und der Rektifizierbarkeit eingefiihrt.
Dies erlaubt die parametrische Formulie-
rung des Problems der kiirzesten Verbin-
dungskurve zwischen zwei Punkten x,y € E
als

min{Var(w): ~ € Lip([0, 1], E), }

¥(0) =x, v(1) =y
Daneben hat man auch die intrinsische For-
mulierung:

min{Hl(C) :

C abgeschlossen und
zusammenhéngend, x, y € C [~

Das Ziel ist nun zu zeigen, dass sowohl die
parametrische als auch die intrinsische For-
mulierung des Problems der kiirzesten Ver-
bindung eine Losung besitzt und dass diese
iibereinstimmen. Dazu wird zundchst das
Konzept der metrischen Ableitung einge-
fihrt. Eine Kurve ~:[a,b] — E ist in
t € (a,b) metrisch differenzierbar, falls der
Grenzwert

h—0 h
existiert. Fir Lipschitz-Kurven v: [a,b] — E
zeigt sich dann, dass die metrische Ableitung
in fast allen Punkten in [q,b] existiert und
dass die totale Variation Var(y) gerade das
Integral der metrischen Ableitung ||(¢) tiber
[a,b] ist. Dies bedeutet insbesondere, dass
fur fast alle 7 € [a, b] gilt: £(¢) = |§|(f), wobei
{(t) = Var/(y). D.h. die metrische Ablei-
tung ist fiir fast alle Punkte gerade die Ande-
rungsrate der Lénge der Kurve. Damit ist
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man dann in der Lage jede Lipschitz-Kurve
~v:[a,b] — E nach der Bogenldnge umzupa-
rametrisieren, d.h. man findet eine Lip-
schitz-Kurve 5: [0, L] — E, L := Var(y), mit
metrischer Ableitung Hj = 1 fast Gberall auf
[0, L] und %([0, L)) = v([a,b]). Die Existenz
parametrischer geodatischer Verbindungs-
kurven ergibt sich dann wie im klassischen
Riemannschen Fall, indem man eine Mini-
malfolge geeignet nach der Bogenldnge um-
parametrisiert und auf die umparametrisier-
ten Kurven den Satz von Arzela-Ascoli an-
wendet (dabei ist natiirlich vorauszusetzen,
dass die Klasse der Lipschitz-Kurven, die x
mit y verbinden, nicht leer ist).

Der Beweis, dass die intrinsische Formu-
lierung oder aligemeiner, das Variationspro-
blem

: | C abgeschlossen,
mm{H (C): zusammenhéngend, ¢’ C C}

mit einer gegebenen abgeschlossenen nicht-
leeren Menge C’ C E, eine Losung besitzt,
ist tiefliegender und bendtigt Methoden der
geometrischen Maltheorie. So wird unter
anderem benutzt, dass eine abgeschlossene,
zusammenhédngende Teilmege C eines voll-
stindigen metrischen Raumes mit H'(C)
< oo kompakt ist und je zwei Punkte
x,y € C durch eine injektive rektifizierbare
Kurve verbunden werden konnen. Deswei-
teren ist C abzdhlbar 1-rektifizierbar, d. h. es
gibt hochstens abzdhlbar viele Lipschitz-
Kurven ~;:[0,1] — C, sodass H'(C\ U,
7([0,1])) = 0. Im Zusammenspiel mit Ei-
genschaften der Hausdorff-Konvergenz fiir
abgeschlossene Mengen ergeben diese Struk-
turresultate einen Unterhalbstetigkeitssatz
flir das 1-dimensionale Hausdorff-Ma@ bzgl.
Konvergenz im Hausdorf-Abstand; genauer
gilt in einem vollstindigen metrischen
Raum: Ist C; eine Folge nicht leerer abge-
schlossener zusammenhingender Mengen,
die im Hausdorff-Abstand gegen C konver-
giert, so ist C zusammenhdngend und es gilt

H'(C) < liminf H'(G).

Mit Hilfe dieses Unterhalbstetigkeitsresul-
tats ldsst sich der Beweis, dass die intrinsi-
sche Formulierung des Problems der kiirzes-
ten Verbindung zwischen zwei Punkten in ei-
nem metrischen Raum eine Losung besitzt,
unter der Annahme, dass jede abgeschlosse-
ne Kugel in £ kompakt ist, leicht fithren. Da-
riber hinaus kann jede minimierende Menge
C mit {x,y} = C' C C durch eine injektive
Lipschitz-Kurve  parametrisiert werden.
Dies bedeutet insbesondere, dass die intrinsi-
sche Formulierung dquivalent zur parame-
trischen Formulierung ist.

Der Abschluss von Kapitel 4 ist dem
Gromov-Hausdorff-Abstand dgy zwischen
kompakten metrischen Ridumen und dem
damit verbundenen Konvergenzbegriff auf
der Menge der Isometrieklassen kompak-
ter metrischer Rdume M gewidmet. Neben
der grundlegenden Eigenschaft, dass
dou: M x M — [0,00) eine vollstindige
Metrik auf M ist, wird der Zusammenhang
zwischen Gromov-Hausdorff- und Haus-
dorff-Konvergenz studiert. Gezeigt wird
u. a., dass das Konzept der Konvergenz im
Gromov-Hausdorff-Abstand bis auf den
Ubergang zu einer Teilfolge (modulo einer
isometrischen Einbettung) dquivalent zur
Konvergenz im Hausdorff-Abstand ist
(Gromovscher Einbettungssatz). Die Flexi-
bilitit des Konzeptes der Gromov-Haus-
dorff-Konvergenz wird durch den Beweis ei-
nes Existenzsatzes zum Steiner Problem in
gewissen metrischen Rdumen E untermau-
ert.

Kapitel 5 ist dem Konzept der Sobolev-
Rdume auf metrischen Rdumen gewidmet.
Ausgehend von zwei metrischen Rdumen
(E,dg) und (F,dF), einem Borel MaB p auf
E. das auf beschrankten Mengen endlich ist,
und p € [I, 0] definiert man nach Hajasz:
u:E — F gehort zur Sobolev-Klasse W7
(E. p, F), falls es eine nicht-negative Funk-
tion g€ L?(E,u) und eine p-Nullmenge
N C E gibt,sodass furallex,y € E\ N gilt

(1) dr(u(x),u(y)) <dp(x.y)(g(x) +g(»)).

Als unmittelbare Konsequenzen werden vor-
gestellt: Die Existenz eines minimalen g, d. h.

JB 109. Band (2007), Heft 3

31



Ubersichtsartikel

Historische Beitrage lBerichte aus der Forschung l Buchbesprechungen

mit minimaler LZ?-Norm, im Fall 1 < p < oo,
eines Lipschitz-Approximationssatzes vom
Lusin-Typ, die Charakterisierung der Sobo-
lev-Funktionen WL ?(E, u, F) vermdge Lip-
schitz-Funktionen ¢: F — IR und schlieB3lich
im euklidischen Fall £ = Q c IR”, Q offen,
= das n-dimesionale Lebesgue MafB} L,
die Folgerung, dass der Distributionsgra-
dient einer Funktion aus W\.7(E,;,R) in
L?(Q,IR") liegt. Insbesondere handelt es
sich bei Funktionen u € WLP(Q,L") N LF
um klassische Sobolev-Funktionen, d.h.
uec whr(Q).

Nach diesen eher elementaren Folgerun-
gen wird das Konzept der Hardy-Littlewood
Maximalfunktion im Kontext der metri-
schen Riume eingefiihrt. Dazu betrachtet
man nur Borel-MaBe p, die eine Verdopp-
lungseingenschaft besitzen, d. h. es existiert
eine Konstante C, sodass gilt

1u(Byy(x)) < Cu(B,(x)) Yx€E, r>0.

Fiir eine Borel Funktion f:E — [0, c0] ist
die Hardy-Littlewood Maximalfunktion
dann definiert durch

Mf (x) := sup

1
r>0 H(Br(x) Br(x)f(y) au(y)-

Als wichtige Eigenschaften der Maximal-
funktion werden die schwache L!-Abschiit-
zung und die Stetigkeit des Maximalfunktio-
nenoperators

LP(E,p) > f — Mf € LP(E, ),

1 < p < oo, nachgewiesen.

Die Einfithrung der Hardy-Littlewood
Maximalfunktion erlaubt dann im eukli-
dischen Fall unter milden Voraussetzungen
an Q den Beweis der Aquivalenz: W7
(LY NLP(Q, L") = WHP(Q). Dazu zeigt
man, dass fir u € WHP(IR") (1) mit g =
M(|Vu|) gilt. Dies ist auch die Motivation
fiir die von Hajasz gegebene Defintion. Den
Abschluss des Kapitels bilden Poincaré- und
Sobolev-Ungleichungen und der Auswahl-
satz von Rellich fiir Funktionen aus metri-
schen Sobolev Rdumen.

Abgerundet wird das Buch durch eine kur-
ze Einfiihrung in die Integrationstheorie.

Ausgangspunkt ist die Formel von Cavalieri,
also [y udp = [° p({u > t})dr, die man zur
Definition des Integrals macht. Dabei ist
p:2X —[0,00] nicht fallend und w: X —
[0, 00]. Dieser Zugang wurde von DeGiorgi
im Jahre 1983 in einer Reihe von Vorlesun-
gen an der Scuola Normale Superiore Pisa
vorgestellt.

Das Buch von Ambrosio & Tilli stellt eine
wunderschone Einfithrung in die Grund-
lagen der Analysis auf metrischen Raumen
dar. Es liest sich sehr kurzweilig. Die Beweise
sind sehr gut verstidndlich und die Argumen-
te hervorragend motiviert. Jedes Kapitel
wird abgerundet durch eine Reihe von Auf-
gaben unterschiedlichen Schwierigkeitsgra-
des. Als Grundlage fiir eine Vorlesung oder
ein Seminar (ca. drittes Studienjahr) ist das
Buch hervorragend geeignet.

Erlangen F. Duzaar
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