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Vorwort  
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Vorwort 

Im Zentrum dieses Hefts stehen zwei ausführliche Übersichtsartikel. L. Rüschendorf 
berichtet über neue Entwicklungen zum sogenannten Monge-Kantorovich Problem, 
bei dem es um den optimalen Massentransport zwischen zwei Gebieten geht. Hier tref-
fen Probleme der Analysis und der Geometrie aufeinander, wobei insbesondere die 
Theorie der partiellen Differentialgleichungen, Riemannsche Geometrie und Varia-
tionsprobleme eine Rolle spielen. In dem vorliegenden Aufsatz werden vor allem die 
probalitistischen Aspekte des Problems eingehend dargestellt. An dieser Stelle sei noch 
erwähnt, dass Kantorovich zusammen mit Koop im Jahre 1975 den Nobelgedächtnis-
preis für Wirtschaftswissenschaften erhalten hat. 

Der zweite Ubersichtsartikel dieser Ausgabe stammt von G. Schneider und H. Uecker 
und behandelt das Verhalten von Lichtimpulsen in dispersiven Medien wie etwa Glasfa-
serkabeln. Dies ist eine Frage von grundlegender Bedeutung für die optische Datenver-
arbeitung und insbesondere den Transport von Informationen, eine der wesentlichen 
Grundlagen unserer Informationsgesellschaft. Mathematisch gesehen handelt es sich 
dabei um die Untersuchung nichtlinearer Wellengleichungen, wobei insbesondere die 
nicht-lineare Schrödingergleichung eine wichtige Rolle spielt. 

Das Heft wird wie immer durch aktuelle Buchbesprechungen ergänzt. 

K. Hulek 
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Monge-Kantorovich Transportation 
Problem and Optimal Couplings 

Ludger Rüschendorf 

Abstract 

• Mathematics Subject Ciassification: 60E 15, 90C46, 65K 10, 39B72 
• Keywords and Phrases: Optimal coupling, minimal metric, duality theory, polar fac-

torization, c-convexity, stochastic equation, recursive algorithm 

The Monge-Kantorovich mass-transportation problem has been shown in recent years 
to be fundamental for various basic problems in analysis and geometry. In this paper 
we describe some of the historical developments of this probem and some of the basic 
resuits. In particular we emphasize the probabilistic aspects and contributions to this 
subject and its relevance for various classical and recent developments in probability 
theory ranging from probability metrics and functional inequalities over estimates for 
risk measures to the analysis ofalgorithms. The paper is based on a lecture ofthe author 
delivered at the MSRI meeting on mass transportation problems in November 2005 in 
Berkeley. 

Eingegangen: 23. 10.2006 	 DMV 
Ludger Rüschendorf, Albert-Ludwigs-Universität Freiburg, 	 JAHRESBERICHT 
Mathematical Stochastics, Eckerstraße 1, D-79 104 Freiburg, 	 DER DMV 
ruschen@stochastik.uni-freiburg.de 	 © B. G. Tesbner 2007 
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1 Introduction 

The ciassical mass transportation problem of Monge and its version of Kantorovich 
has found a lot of recent interest because of its importance for several problems in non-
linear PDEs, Riemannian geometry, variational problems and for several interesting in-
equalities and concentration resuits, see in particular the recent excellent presentations 
of Ambrosio (2003), Villani (2003, 2006) and Ambrosio, Gigli, and Savar (2005). In 
this paper we survey some of the probabilistic developments of the transportation pro-
blem and the related optimal coupling problem and its applications. The probabilistic 
development of the subject was mainly concentrated on the Kantorovich formulation 
of the problem which turned out to be also instrumental for the Monge formulation 
and its applications in analysis. 

The probabilistic interest in this topic was essentially connected with some naturally 
defined minimal metrics on the space of probability measures which are defined via op-
timal coupling properties. In particular to mention are the minimal £-metrics, the Kan-
torovich-Rubinstein theorem and others. Much of this development and many prob-
abilistic applications are discussed in Rachev and Rüschendorf(l998a,b). 

After the introduction of the connections between optimal couplings and mass 
transportation we discuss in section 3 the development of the basic duality theory which 
gives the clue to many of the optimal coupling results. We then present in section 4 as 
consequences some of the main resuits for optimal L 2-couplings (the classical L 2 -dis-
tance) and also for general coupling functions. This includes in particular the important 
characterizations of optimal transportation plans based on generalized convexity no-
tions (c-convexity, c-subgradients, c-cyclical monotonicity). At this point roughly 
around 1990 the development of this subject in analysis began. Here this survey tries to 
relate the various historical sources and to describe the probabilistic contributions. We 
also describe some of the more concrete probabilistic applications and developments as 
e.g. to the optimal coupling of normal or discrete distributions or to obtain bounds for 
the risk of portfolios arising from positive dependence. In the final part of this paper we 
discuss a recently introduced modification of the minimal £-metric and its application 
in the analysis ofrecursive algorithms ofdivide-and-conquer type. 

2 TIie mass transportation problem 

In 1942 Kantorovich introduced the problem of optimal mass transport in the following 
form: 

c(x,y)d(x,y) = 	inf 	=: 	(P 1 , P7). 	 (2.1) f  1iEM(P1 ‚P2) 

where c: U1  x ]2 	IR is a measurable real cost function, P1  e M' (Ui ) are probability 
measures on Ui  and 

M(P1P2) ={ E 	x U2) 1 i = P. i= 1,2} 	 (2.2) 
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is the dass of all probability measures on U1 x 112 with marginals P1, P2. Here 'jTi are 
the projections on the i»th components and p! 7  is the image of t under ir,. jL is called 
the Monge-Kantorovichjunctional. In terms ofrandom variables on a non-atomic prob-
ability space (Q, 21, P) problem (2.1) is equivalent with the problem to find an optimal 
couplingofP 1 , P2 w.r.t. the coupling function c, i.e. 

Ec(X i ,X2 ) = inf 	 (2.3) 

over all couplings X1, X2 of P 1 , P2 , je, such that P"1 = P1 , i = 1 1 2. Any ji e M(P 1 , P2 ) 

describes a transference (transportation) plan for the mass distribution P1  to P2 or 
equivalently the joint distribution of a pair of (X 1 , X2 ) of couplings of P1 , P2 . Using 
conditional distributions we obtain for M e M(P', P,) 

/ c(x, y)d(x, y) = f (/ c(x, Y)(dYx)) P 1  (dx). 	 (2.4) 

Any mass at point xis transported to y according to ii(dyx) and thus fc(x,y)d1i(x.y) 
denotes the total cost oftransportation using this plan. In the optimal coupling problem 
(2.3) c is understood as a distance (dissimilarity) and it is a natural problem to find an 
coupling (X1, X2) ofP 1 , P2  with minimal expected dissimilarity. 

A subclass of all transport plans are deterministic transport plans of the form 
ii( .  1 x) = rc(x), where is a function which transports P1  to P2, i.e. P' = P2 . The addi-
tional restriction is that no mass is allowed to be split. Denoting by 

S(P 1 ,P2 ) = 15: Ui  - U2 ,0 measurable,P = P21 	 (2.5) 

the set of all deterministic transport plans one obtains the corresponding Monge trans- 
porration problem 

c(x, (x))dP i  (x) 	
o(PiP2) 	

(2.6) f  
resp. the deterministic coupling problem 

Ec(X i .(X i )) = 	inf 	. 	 (2.7) 
ÖES(Pi "2) 

This problem was introduced in 1781 by Monge for the special case that U1  c JR3  
are two bounded domains with volume measures Pi  and c(x,y) = 1 1 x y) is the Euch-
dean distance. Monge detected that optimal transport should go along straight lines 
which are orthogonal to a family of surfaces (formally worked out by Appel (1887)). 
Also he found the no-crossing rule of optimal transport rays. 

From the probabilistic point of view the Kantorovich formulation of the transport 
problem is more 'natural' than the Monge formulation. Similar extensions of determi-
nistic optimization problems are quite often to find in probabihity and statistics as e.g. 
the transition from deterministic decision rules (like deterministic tests and estimators) 
to randomized decision rules (like randomized tests and estimators) is a classical exam-
ple frorn the early period of statistics. Kantorovich obviously was not aware of the 
Monge problem when he formulated his transport problem in 1942. In 1948 he wrote a 
short note of three pages where he made the connection to the Monge problem and sta- 
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ted that in case (2.1) has a deterministic solution ä, then 9 is also a solution of the 
Monge problem, i.e., the Kantorovich problem is a relaxation of the Monge problem. 
In fact Kantorovich's problem was one of the earliest infinite dimensional linear pro-
gramming problems considered. In 1975 Kantorovich got together with Koopman the 
Nobel price in economics for bis development of linear programming and the applica-
tion to mathematical economics. 

The Kantorovich problem and some variants have been developed in the probabilis-
tic literature since the mid seventies. For various kinds of optimization problems they 
have been established as a basic and natural tool. A detailed exposition with many ap-
plications of these developments is given in Rachev and Rüschendorf (1998a,b). Start-
ing with the late eighties, early nineties, important connections of the transportation 
problem with problems from analysis and geometry, partial differential equations, fluid 
mechanics, general curvature theory, variational problems, geometric and functional in-
equalities like isoperimetric and concentration inequalities, gradient flows in metric 
spaces, and many others have been detected. This lead to a very active and wide ranged 
research area. This line of research is excellently described and developed in the books 
ofAmbrosio (2003), Villani (2003, 2006), and Ambrosio, Gigli, and Savar (2005). 

In the following we review some of the history of the probabilistic development of 
the transport problem, put it into line with the developments described above in analy-
sis. In this way we obtain e.g. a new extension ofBrenier's polar factorization result. Fi-
nally, we point out to some of the more recent applications in various areas of probabil-
istic analysis. 

3 Dualitij theory and optimal couplings 

In this section we describe developments of the duality theory which is the main tool 
and the basis for determining optimal couplings and transport plans. In some more re-
cent work starting with McCann (1995) and Gangbo and McCann (1996) more direct 
methods have been developed to determine optimal transport plans. We begin this sec-
tion with stating some of the classical results on minimal probability metrics which 
stand at the beginning of optimal transportation problems. 

3.1 Minimal probability metrics 

a) Minimal £ 1 -metric. Let (U, d) be a separable metric space and Pi  P2 ü M' (U) be 
probability measures on U with its Borel o--Algebra. We denote the minimal £-metric 
onM'(U)by 

	

inf{ fd(x)di(x.): 	i e M(PiP5)} 	 (3.1) 

i.e. f is the minimal version of the usual L 1 -metric 

L 1  (X, Y) = Ed(X. Y) 
	

(3.2) 
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ofrandom variables X, Y in U and is identical to the solution ofthe transportation pro-
blem with cost function c = d. 

The Lipschit: metric PL  is defined by 

ILL(P!P2)=SuP{ffd(Pl —P 2 ); Lipf< i}. 	 (3.3) 

Kantorovich-Rubinstein Theorem: The minimal Li -metric is identical to the Lip-
schitz metric, je., for all P1  ‚ P2 E M 1  (U) holds 

1 (P1 ,P2 ) = /IL(Pl.Pl). 	 (3.4) 

This result was proved by Kantorovich and Rubinstein (1957) in the case ofcompact 
metric spaces and then extended by de Acosta (1982), Dudley (1976), Fernique (1981), 
Levin (1975), and Kellerer (1984a). 

In the case ofthe real line U = JR' and d(x,v) = I x - I
vl one gets the explicit expres-

sion 

=  J F(u) —F»(u)du 	
(3.5) 0 

= f Fi (x) Fi(x)dx 

where F, are the distribution functions of P1 . In this case the results go back to early 
work of Gini (1914), Salvemini (1949), and Dall'Aglio (1956) (even for the case 
c(x, y) = - y) Vallander (1973) and Szulga (1978). 

Frchet (1940) was the first to note formally the metric properties of fi in general 
metric spaces, Hoeffding (1940) gave a formula for £2 in the real case and Vasershtein 
(1969) 'introduced' £i again in bis paper on Markov processes. Dobrushin (1970) was 
the first to call ( 1  Wasserstein metric (Wasserstein the English transcripted version of 
Vasershtein). 

b) Total variation metric. Let V denote the total variation metric 011 U and let 

a(X, Y) := P(X -A Y) 	 (3.6) 

denote the compound probability metric on the space of random variables, then 

V(P 1 . P7) = a(Pj , P2 ) = inf{a(X. Y): X 	Pi . Y 	P7}.  

This result is due to Dobrushin (1970). lt isa basic result to many of the optimal cou-
pling resuits in probability theory which extend the classical paper of Doeblin (1938) 
giving a coupling proof of the limit theorem for Markov chains. 

c) Prohorov metric. A similar result holds true for the Prohorov metric ir on M' (U) 
which is the ciassical metric for the weak convergence topology. Strassen (1965) proved 
that iris the minimal metric ofthe Ky Fan metric K, i.e. 

= K. 	 (3.8) 
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In all three cases the transition to the minimal metric yields a change of the topol-
ogy. This has important applications, e.g. to Skorohod type resuits (relation between 
weak and strong convergence) in the proof of central limit theorems, in matching theory 
and in robustness resuits and many others. More generaily for any compound probabil-
ity metric (X, Y) the corresponding minimal metric is defined by 

= inf{(X. Y);X 	P1, Y 	P21. 	 ( 3.9) 

Zolotarev (1976) used this principle for the construction of several examples of ideal 
metrics. The interesting question of characterization of the minimal metrics with - 
structure, i.e. which have a sup-representation similar to (3.3), is so far only partially an-
swered. 

3.2 Monge-Kantorovich duality theory 

The duality theory for the transportation problem began with Kantorovich's 1942 re-
sult which stated equivalence of(2.4) with a dual problem for the case ofcompact metric 
spaces and continuous cost functions c(x,y). The proof however worked only for the 
case where c(x,y) = d(x,y) is a metric 011 U = U1 = U2. For the metric case the MK-
transportation problem is equivalent to the mass transfer problem where for 
Pi, P2  e M' (U) the dass of transport plans M(P1 ‚ P2) is replaced by the dass of mass 
transference plans 

M = M(P1  - P2) = { y E M(U x U): 'y' - 	= P1 - P2 1, 	(3.10) 

i.e. all transport plans with fixed difference of the marginals. With respect to this dass it 
is allowed to transfer a mass point of x to y via some route x = x 1  ‚ x2, . .. ‚ X n =  y such 
that the cost c(x, y) is replaced by the cost c(x, x 1 ). The basic result is an exten-
sion ofthe Kantorovich-Rubinstejn theorem ofthe form 

= inf{fc(xY)d[L(xy);tu E M(Pi 

= sup l
u
fd(P i  Pa);f(x) — f(y) <c(x,y) 

After the Kantorovich-Rubinstein (1957) paper this kind of duality theorems for the 
mass transfer problem was intensively discussed in the Russian probability school in 
particular by Levin (1975) and Levin and Milyutin (1979). Also the papers of dc Acosta 
(1982), Dudley (1976), Fernique (1981), and Rachev and Shortt (1990) concerned the 
Kantorovich-Rubinstein functional j, lt coincides with the MK-functional only ifc 
is a metric (see Neveu and Dudley (1980)). An important role in this development is 
played by the Lipschitz norm in (3.11) (see Fortet and Mourier (1953)) and by related 
approximation arguments. A rather complete duality theory of the KR-functional 
has been developed by Levin (see corresponding references and presentation in Rachev 
and Rüschendorf (1 998a,b)). 
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The MK-problem with fixed marginals can be considered also on n-fold products of 
probability spaces (U' 9.11. P1 ). Let h : fl U - IR and M = M(P1  .... .P,1 ) be the set 
of all transport plans, i.e. measures with marginals P, then we define 

S(h) = sup 
{ f 

hd; ji E M} 

(3.12) 
1(h) = inf{ff idPi ; h  < 	e L2(P1)} 

where J(x) = 	1 f,(x 1 ). We say that duality holds if 

S(h) = 1(h). 	 (3.13) 

Here the equivalent problem of maximizing the gain (profit) is considered which 
transfers to the problem ofminimizing the cost by switching to c = — h. 

For the proof of duality theorerns of MK-type several strategies have been devel-
oped. One approach is to establish via Hahn-Banach and Riesz-type results in the first 
step the equality 

= 1(h) 	 (3.14) 

where (h) is the supremum problem where the measures with fixed marginals are re-
laxed to the finite additive measures ba(P j ,... ‚ Ph ). In the second step conditions on h 
are identified (Riesz-type results) which ensure that S(h) = S(h). This approach was 
followed in Rüschendorf (1979— 1981) (in the following abbreviated by Rü) and Gaffke 
and Rü (1981) (without being aware at that time of the MK-problem in the Russian 
school). Motivated by this developrnent Ketterer (1984b) followed a different route to 
obtain more general results. Starting frorn the duality for simple cases he investigated in 
detail continuity properties ofthe functionals S, 1 which altowed hirn by Choquet's ca-
pacity theorem to obtain very general duality resutts. Rachev (1985) extended approxi-
mation arguments as used in the KR-case to some instances of the MK-problem. Levin 
(since 1984) established some techniques which allowed hirn to prove reduction results 
frorn the MK-problem to the KR-problem. 

Here is a list of sorne of the basic duality resutts for the MK-duality problem. The 
spaces Ui  are assurned to be Hausdorff and the measures are restricted to the dass of 
tight measures. 

Theorem 3.1 (Duatity Theorem.) a) Duality holds on the dass of all lower-majorized 
product-measurablefunctions: 

rm (U) = { h e 011 ® . . . ® 91); 3fi  e L'(P1 ); h > 	 ( 3.15) 

b) Duality holds on ( U), 	 (3.16) 

where F( U) are the upper semicontinuousfunctions and ciosure is w. r. t. I( f - g). 

Duality also holds on G ( U), 	 (3.17) 
the ciosure of the lower majorized lower semicon tinuousfunctions. 

c) Existence of an optimal measure on 7 for the S-functional. 	 (3.18) 
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d) Existence ofminimaljunctions (f) on £‚(U) für the I-functional. 	(3.19) 

e) ForP E M(P t P2 ),fk  e r(P) 	> h holds: 

P, (J) are solutionsfor S, 1 	h = 7f1 [PJ 	 (3.20) 

Remarks 3.2 a) The duality and existence results were proved in Rü (1981) essen-
tially for the bounded product measurable case and in Kellerer (1984b) für the general 
case. The conditions in the resuits are sharp, i.e. there exist counter-examples of the 
duality and existence results, e.g. on G(U) or without lower boundedness in d). 

b) Condition (3.20) characterizes optimal transport plans P under the existence condi-
tion e.g. for h E L,(U). The sufficiency part does not need any conditions, i.e. the 
r.h.s. of(3.20) implies optimality ofP and (J;.). 

c) In Kellerer (1984b) a simple example is given where h e C(U x U), S(h) = 1(h), 
= P2 , but h does not allow a representation of the form h =J Ef2 [P] with 

J eL'(P1 ),Pe M(P1 .P2 ). 

d) The existence of solutions of the dual problem is closely connected with the follow-
ing closednessproblem: Let P e M(P1 , P2 ), s > 0 and consider 

F = L3 (P1 ) L(P) 

= {f =f(x,y) = g(x) + h(y);g E Ls(P1 ) ,  h E L(P2 )1 
(3.21) 

When is F, closed in L'(P)? In general closedness does not hold true (see Rü and 
Thomsen (1993)). Several partial resuits are known, e.g. in case s = 0 and 
P « P ® P2  any element E 770, the ciosure w.r.t. L ° (P), has a representation of 
the form 

(x,y) =f(x) +g(y) [PJ 
	

(3.22) 

but in generalf, g cannot be chosen measurable. Several positive results are estab-
lished. (3.22) is sufficient for proving the existence of a general version of Schrödin-
ger bridges and the positive results also allow to give an extension of the Kolmogor-
0v representation result für continuous functions of n variables by a superposition 
of functions of one variable to the case of locally bounded measurable functions 
with equality holding a.s. (see Rü and Thomsen (1997)). 

Immediately after establishing the duality results (3.15)—(3.20) some interesting con-
sequences were established in the early eighties in particular sharpening some ciassical 
bounds. Here are some examples: 

a) Sharpness ofFr€chet-bounds: Für A, e 121 i  holds 

sup{P(A i  x ... x A n ); P E M(P 1  .... .P)} = miii{P 1 (A,); 1 <i < n} 	(3.23) 

inf{P(At x ... xA);PEM(Pt,...,P)}= (P(A 1)_(n_l)). 	(3.24) 

These are classical bounds in probability theory. They could be shown to be sharp 
by caiculating the dual problem explicitly (see Rü (198la)). 
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b) Hölder and Jensen inequality: For a i  > 0, Z 1 /n i  = 1, X, > 0 the Hölder inequality 

1  EfJX < Xj rv j 	 (3.25) 

is an optimal upper bound in the dass of distributions with given o 1 -th moments of 
X,. One can improve this bound by 

EfJX 1 <EfJF 1 (U). 	 (3.26) 

where U is uniform on (0, 1), F1  the distribution functions ofP,. This bound is sharp 
in the dass of all distributions with marginals P, (with distribution functions F,). 

Similarly the Jensen inequality 

Ep(X) 	p(EX). 	convex (concave) 	 (3.27) 

is sharp in the dass of all distributions with given expectation. For large ciasses of 
convex functions one can improve the bounds. E.g. for c(x) = niaxx, - rninx, the 
span ofx, holds 

E span(X1 ) > E span(f'(U)) 	 (3.28) 

which is sharp in the dass ofdistributions with given marginals. 

c) Sharp bounds for the sum: For P, e M' (IR') with distribution functions F, holds 

sup{P(X,+X7 <t):X=P}=FiAF7(t) 	
(3.29) 

= inf{Fi (u) + F2 (t - u);u 0 

F, A F7  is the infimal convolution ofthe distribution functions F, ofP,. Similarly, 

inf{P(X, H-X7 <t); 	P} = (F, VF2(t) —1). 	 (3.30) 

where F, V F2  is the supremal convolution. 

This problem of sharp bounds for the distribution of the sum was solved indepen-
dently by Makarov (1981) and Rü (1982). In Ru (1982) the proof was based on the 
duality theorem. This result has found recently great interest in risk theory since it 
allows to derive sharp bounds for the 'value at risk' measure in a portfolio caused by 
dependence ofthe components. There are a sequence ofrecent papers using the dua-
lity result in order to establish effective extensions of the bounds for more than two 
random variables and thus to obtain effective bounds for the risk in portfolios. 

d) For A-monotone and for quasi monotone functions h: IR 	)R' as e.g. 
h(x) = (x, -1- ... + x, ? ), o convex, sharp bounds were established 

sup{Eh(X):X 	P} = Eh(F'(U). .... f(U)) 	 (3.31) 

(see Tchen (1980), Rü (1980, 1983)). 
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The duality theorem (3.15)—(3.20) was established for tight measures on a Haus-
dorff space which corresponds roughly to the case of complete separable metric spaces. 
A natural question is in what generality does the duality theorem hold true? We consid-
er the case n = 2 and probability spaces (U1 , 91 k , P!)  and define: 

(D) holds ifS(h) = 1(h) for all h c B(U 1  x U2, 9I (D912) (or h e ‚n (U1 X (12)). 

Remind that P E M' (' 91) is called perfect if for allf e t(91) 3 a Borel set B c f(f) 
such that 

P(f(B)) = 1. 	 (3.32) 

This notion was introduced by Kolmogorov and is instrumental for various measure 
theoretic constructions like conditional probability measures (see Ramachandran 
(1979a,b)). The following general duality theorem holds if one of the underlying mar -
ginal measures is perfect. 

Theorem 3.3 (Perfectness and duality.) (Ramachandran and Rü (1995)) If P2  is 
perfect, then (U2, 212,  P2) is a duality space, i.e. (D) holdsfor anyfurther probability 
space (U 1 ,91 1 ,P 1 ). 

The proof starts with the case Ui  = [0, 1], i = 1, 2, where (D) holds by the Duality 
Theorem 3.1. lt then uses various measure theoretic properties as the outer measure 
property of Pachl, the Marczewski imbedding theorem, and a measure extension prop-
erty. 

In the following we deal with the problem whether perfectness is also a necessary 
condition. To study this question we introduce the notion ofa strong duality space. 

Definition 3.4 (Ui, 91 1 , P1 ) is a 'strong duality space' (fit is a duality space and the 
functional 1 is stable under extensions, i.e. for any (U2, 912, P2) and any sub o-algebra 

2 C 912 andh E B(911 0 2) holds 

12112 (h) = 11112 12 (h). 	 (3.33) 

Equivalently one could also postulate stability of S. As consequence of the general 
duality theorem one obtains that perfectness implies strong duality space. We need two 
further measure theoretic properties. 

Definition 3.5 (U1 , 91 1 , P 1 ) has the 'projection property' (ffor all (U2, 912,  P2) and 
C e 91 0912  there existsA 1  E 91 1 withP i (A i ) = land 

7r2(Cfl (A1 x ( 12)) E 	 '2 the P2 -completion qf 2. 	 (3.34) 

This notion is a measure theoretic analog of the projection property in descriptive 
set theory. The classical result in this area says that the projection ofa Borel set in a pro-
duct oftwo standard Borel spaces is analytic and thus universally measurable. 

The second property is the measure extension property. 

Definition 3.6 (U1 ,21 1 ,P1 ) has the 'measure extension property' (ffor all (U2,912, 
P2) for all V2  0 912  and all P e M(P1 , P21V2) there exists an extension P E M(Pi, P2) 
such that P/91 1  0V2 = P. 
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We say that (U i , 1211, Pi)  has the 'charge extension property' if the extension can be 
found in the set ba(P j , P2) ofcharges, Le. non-negativefinitely additive measures, with 
marginals P,. 

lt now turns out that the strong duality spaces are exactly the perfect spaces. Thus a 
general duality theorem in the strong sense implies perfectness. The following theorem 
states that the strong duality property is even equivalent with any of the measure theore-
tic notions introduced above. 

Theorem 3.7 (Characterization theorem.) (Ramachandran and Rü (2000)) For a 
probability space (U,, 2I1,  P1) thejbllowing statements a)—e) are equivalent: 

a) (U1 , 91 1 ,P' ) isa strong duality space. 

b) (U1 ,91,P) isperfect. 

c) (U1 , 91 11 P1 ) has the measure extension property. 

cl) (U1 , 911, P 1 ) has the projection property. 

e) (U1 , 1211, P)  has the charge extension property. 

As consequence all structure theorems for perfect spaces are also valid for strong 
duality spaces. On the other hand this result says that one cannot expect 'good' duality 
results on 'general' infinite dimensional spaces. There remain the following important 

Open problems: 

a) Is any measure space a duality space? 

b) Is any duality space a strong duality space? 

c) Is M(P 1 , P2 ) c ba(Pi , P2 ) dense in weak *-topology from B(U1  x (12)? 

4 Optimal multivariate couplings 

The duality results of section 3 were developed into more concrete optimal coupling re-
suits in the early nineties. Here also started the development on the subject by several re-
searchers from analysis since the strong and fruitful connections to several problems in 
analysis soon became clear. In particular to mention is the work of Brenier, McCann, 
Gangbo and later on Ambrosio, Villani, Otto, Caffarelli, Evans, Trudinger, Lott, and 
Sturm. 

4.1 The squared norm cost 

For the squared norm cost c(x,y) = )x —y( 2 , x.yEE iR the problem of optimal trans-
port or optimal couplings is given by 

EMX — YM 2 = 	inf 	 (4.1) 
x—P1 . Y—P2 
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where P 1  c M1(1Rk3k)  have covariance matrices 	= Cov(P). This problem is 
equivalent to maximizing the trace tr W 

tr W = max! 
	

(4.2) 

over all 

w e C(PI .P) = {w : P e M(P 1 ,P2 ) such that 
( 	) 

E Cov(P)}. (4.3) 

In general C(P1  P2) is a complicated set but for normal distributions P, = N(a, 
one gets the maximal possible dass C(P1 , P2) with covariance matrices E i  of P,. The 
covariance condition (4.3) is in this case equivalent to

111 

~P T( ) 
> 0 in the sense of positive semidefiniteness. 	 (4.4) 

The corresponding optimization problem (4.2) was analytically solved in Olkin and 
Pukelsheim (1982) and Dowson and Landau (1982), leading in particular to an univer-
sal lower bound of £2(P1, P2) depending only on first and second moments a, E i  for 
anypairP1 ,P2  E Ml(IRk,3k). 

For general distributions P, the following is the basic optimal coupling result which 
is due to Knott and Smith (1984, 1987), Rü and Rachev (1990), and Brenier (1987, 
1991). 

Theorem 4.1 (Optimal L2 -couplings.) Let P 1  E M' (lRk, k) with f11
X112dPt(x) < 

‚ then 

a) There exists an optimal L 2 -coupling, je. a solution of(4. 1). 

X 
d 	

P2 i 	 2 h) 	= P1 , Y = 	sanoptimalL -coupling 

convex, lscf E L'(P1 ) such that Y e lf(X) as. 	 (4.5) 

c) IfP1 «k  thenforf as in b) 

¶(X) = Vf(X) as. and (X. Vf(X)) 
	

(4.6) 

isa solution ofthe Mongeproblem. 

d) jj,p1 <k  then there exists a Pl as. unique gradient Vf ofa convexfunctionf, such 
that 

= P2 . 	 (4.7) 

Remarks 4.2 a) Part b) of this theorem was given in this form first in Rü and Ra-
chev (1990). The proof was based on the duality theorem. The sufficiency part for b) is 
contained already in Knott and Smith (1984, 1987). Brenier (1991) established the un-
iqueness result in d) as well as b) while a special version of c) is already in his 1987 pa-
per. Note that the existence of a Monge solution in c) is an immediate consequence of 
b) and a.s. differentiability of convex functions (see Rockafellar (1970)). By this his-
tory it seems appropriate to describe this important theorem to the authors from prob-
ability and analysis as mentioned above. 
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b) Cyclically monotone support. By convex analysis condition (4.5) is equivalent to cy-
clically monotone support F of the optimal transportation measure i = p(X}'), i.e. 
V(x i .y i ) ..... (X n ,ym ) e Fholds 

In 	 in 

y,Xjj 	jXj 
	

(4.8) 

with x,,, 1 	x 1 . This equivalence lead Gangbo and McCann (1995) to a new strat- 
egy ofproof. Ifuniqueness ho!ds (as in the case P1  «)) then cyclicalmonotonicity 
of the support of ‚a implies optimality. In this way they were able to replace the mo-
ment assumptions on P1 , P2  by the uniqueness condition. 

c) For P1 = f.Nk ,  p2 = gk absolutely continuous w.r.t. Lebesgue measure Caffarelli 
(1992, 1996) established regularity estimates ofthe optimal Monge solution cl: 

1ff. g e C (i.e. the partial derivatives up to order k are of Hölder type c) and 
g> 0 then 1 e C2a.  In particular iff,g e C and locally bounded from below, 
their supports and supp g is convex, then 1' e C and I is a classical solution of 
the Monge-Ampre equation 

detD2(x) 	
f(x) 

[P1 ] 

g(V(x)) 

(see Villani (2006) for more details). 

A corollary of the optimal L 2 -coupling theorem is the polar factorization theorem 
due to Brenier (1987). 

Corollary 4.3 (Polar factorization theorem.) Let E ci ff{" be a bounded subset with 
positive Lebesgue measure, h : E - IR" a measurable map with P1' «.\\d,  where 
P = 'E is the normalci-ed Lebesgue measure an E. Then there exists a unique gradient 
Vf ofa convex lscfunctionf anda measurepreserving map s an (E, P) such that 

h=Vfos [P]. 	 (4.10) 

Remarks 4.4 a) The nondegeneracy condition of the polar factorization theorem 
has been weakened by Burton and Douglas (1998, 2003). Also a counter-example is gi-
yen there to show that the theorem is false without any further assumption. 

b) The nondegeneracy condition of h in the polar factorization theorem can also be re-
placed by the following independence assumption (Ih): 

(Ih) There exists a random variable Von (E. P) such that V is independent ofh and 
= U(0. 1) is the uniform distribution on (0, 1). 

For the proof let (X, Y) be an optimal coupling of (P". P), X 1 ph y P. Since 
P « Xd, by the optimal coupling result Theorem 4.1 there exists a unique gradient Vf 
of a convex functionf such that 

X=VfoY a.s.. 	 (4.11) 

(4.9) 
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Now one can apply the following result ofRü (1985) on the solutions of stochastic equa-
tions (see also Rachev and Rü (1990): 

/1 	 1 Let (E, u) - B, B a Borel space, let (F, R) ~ B, h, f measurable, p ,  R probability mea-
sures, and let (Eju) be rich enough (i.e. it allows a uniformly distributed r.v. V on 
(E, i) independent ofh). Ifthe distributional equation 

h_RJ 	 (4.12) 

holds, then there exists an r.v. U E -* F with p' = R such that the stochastic equa-
tion 

h=foU t] 
	

(4.13) 

holds. 

Applying this general factorization theorem with u = 	= P, R = P = E(Y) we 
obtain the existence ofa measurable factorization 

h=VfoU [P] 	 (4.14) 

with some measure preserving map U on (E, P), je. the polar factorization result. 

Corollary 4.5 For any measurablefunction h the independence hypothesis (Ih)  im-
plies the existence ofapolarfactorization. 

In general the independence hypothesis does not hold. If e.g. d = 1 and h(u) = u, 
u E [0, 1] = E then Ih does not hold. If V = V(u) would be independent of h, then 
pvh_u = EV(u), a contradiction. But by enlarging E to e.g. E' := E x [0, 1] and consider-
ing P' = P® \[o,'I  we can consider h formally as function on E' by h(x, u) := h(x). The 
independence hypothesis holds in this extended framework and thus there exists an r.v. 
U on E' such that piU = P = 'E and 

h=VfoU {P'[, 	 (4.15) 

i.e.h(x) = Vf o U(x,u) [P']. 
Thus, we obtain a polar factorization theorem in the 'weak sense' without any non-

degeneration condition on h. 

Corollary 4.6 The polar factorization theorem holds in the extended sense (4.15) 
without anyfurt her nondegeneration assumption. 

This extension also holds for McCann's (2001) version of the polar factorization 
theorem in Riemannian manifolds. 

4.2 General coupling function 

For the case of general coupling (resp. cost) functions c = c(x, y) and probability mea-
sures P, Q we consider the corresponding optimal coupling (transport) problem 

S(c) = sup{fcd[u;lL E M(P, Q)} 	 (4.16) 
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with dual problem 

I(c)=inf{fhidP+fh2dQ:c<hiOh7hiEL'} 	 (4.17) 

The following notions from nonconvex optimization theory as discussed in Elster and 
Nehse (1974) and Dietrich (1988) are useful and were introduced in the context of the 
transportation problem in Rü (1991b). A proper functionf: IRk —* IR u {cc} is called 
c-convex ifit has a representation ofthe form 

f(x) = sup(c(x,y) + a(y)) 	 (4.18) 

for some function a. The cconjugatefc off is defned by 
fC(y) = sup(c(x,y) —f(x)), 	 (4.19) 

the sup being over the domain off. Defining further the double c-conjugatef" by 
fcc(x) = sup(c(x,y) fC(y)) 	 (4.20) 

thenfc, f" are c-convex, f" is the largest c-convex function majorized byf andf =f 
ifand only iff is c-convex. The pairf, fC(  is an admissible pair in the sense that 

fC(y) +f(x) > c(xy) for all x,y. 	 (4.21) 

Obviously this construction is similarly possible on a general pair Ui, U2 of spaces 
replacing IR" and c: Ui  x U2 — JR u {oo}. The (double) c-conjugate functions are ba-
sic for the theory of inequalities as in (4.21). The generalized c-subgradient of a function 
f at a point x is defined by 

f(x) = {v:f(:) —J(x) > c(z,y) — c(x,y) Vz E domf} 	 (4.22) 

further 

3f = {(x,y) C UI x U7;y E 
	

(4.23) 

Denoting by t := {W;y e U2 ,a E JR} the dass of all shifts and translates of c, 
W ya (x) := c(x,y) + a, c-convexity ofJ is equivalent to a representation of the form 
f(x) = sup q 	I'(x) for some (' c (f and further (with a :=f(x) — c(x,yo)) 

Yo E def(X)  if and only if 3 a e JR such that 

W y0 ,a (X) =f(x) 	 (4.24) 

W y0a (X ' ) < f(x'), Vx' E domf. 	 (4.25) 

This geometric description of c-subgradients generalizes the corresponding description 
in the case ofconvex functions and is very useful and intuitive. 

The following is an extension of the optimal coupling (transportation) result in The-
orem 4.1 to general cost functions and general measure spaces Ui  as in the basic Duality 
Theorem 4.1. 

Theorem 4.7 (Optimal c-couplings.) (Rü (1991b)) Let c be a lower majorizedfunc-
tion (i.e. c(x,y) >fi(x) +f2(y) for some fi E L'(P), f2 E L'(Q)) and assume that 
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1(c) <oc. Then a pair (X, Y) with X P, Y Q is an optimal c-coupling between P 
and Q ifand only if 

(X, Y) C 0j a.s. 	 (4.26) 

for some c-convexfunctionf, equivalently, Y E 13j(X) a.s. 

The characterization in (4.26) is equivalent to the condition that the support F ofthe 
joint distribution of X, Y is c-cyclically monotone, i.e. for all (Xj,yj) E F, 1 < i < n, 

:= Xt holds 

(c(x j+j,y) 	C(Xj,yj)) <0. 	 (4.27) 

This notion was introduced in Smith and Knott (1992), who reformulated Theorem 
4.7 in terms of c-cyclical monotonicity. For the equivalence see also Rü (1995, 1996b) 
and Gangbo and McCann (1996). Note that for the corresponding infproblem (trans-
portation problem) the inequality sign in (4.27) has to be chosen in the opposite direc-
tion. 

Without the moment assumptions in Theorem 4.7 c-cyclically monotone support is 
in general not a sufficient condition for optimality (see Ambrosio and Pratelli (2003)). 
Gangbo and McCann (1996) have developed a characterization ofc-optimality based on 
c-cyclically monotone support plus a uniqueness property. They also have studied some 
regularity properties of c-convex functions. The moment assumptions ofthe duality the-
orem have been weakened in Ambrosio and Pratelli (2003) and Schachermayer and 
Teichmann (2006) for lower semicontinuous cost functions c. The notion of 'strongly c-
monotone' support is introduced and shown as a sufficient condition in their paper. 

The characterization of solutions of the optimal coupling problem and the resuits 
on existence ofsolutions (X. Y) resp.f imply the following necessary condition for dif-
ferentiable cost functions: If (X, Y),f are solutions of the optimal c-coupling problem 
on jRk  and if P « )i andf is differentiable almost everywhere, then 

Vf(X) = Vc(X, Y) a.s. 	 (4.28) 

(see Rü (1991b)). 
In this direction Gangbo and McCann (1996) have shown that if c = c(x - y) is lo-

cally Lipschitz, then c-convex functions are differentiable almost everywhere. For an ex-
tension see (Villani, 2006, p. 125). As consequence one obtains: 
If(4.28) has a unique solution in Y = (X), then 

(X. (X)) is a Monge solution. 	 (4.29) 

In the case where c(x.y) = h(x - y), h strictly convex, c-convex functionsf are con-
vex and thus Vf exists almost everywhere and then (4.28) implies 

Y = X Vh*(Vf(X)) =: (X) 	 (4.30) 

where h is the convex conjugate ofh (see Gangbo and McCann (1996)). A similar ex-
ample for the concave functions h(x - y) is in Rü and Uckelmann (2000). Note that 
Monge solutions for (4.16) are solutions in weak sense for generalized PDE's ofMonge-
Ampre type. 
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Remarks 4.8 a) Call a function c-cyclically monotone ifF = graph() is c-cycli-
cally monotone. Several sufficient and several necessary conditions for to be c-cycli-
cally monotone have been given in Smith and Knott (1992) and in Rü (1995). For the 
optimal -coupling with c(x,y) = ll x - y(P, (the Euclidean norm, one obtains e.g. 
forp> 1 that for h cyclically monotone 

(x) := (h(x)( P'h(x)+x 	 (4.31) 

is c-cyclically monotone. Similar extensions hold forp-norms 	(j,• In particular it 
is shown that radial transformations 

(x) = ((x() x , Q(t) > t 	 (4.32) 

are optimal. This allows e.g. to determine optimal couplings between uniform distri-
butions on two ellipsoids. For the Euclidean norm = ( andp = 1, the classi-
cal Monge case, one obtains that the optimal transport is concentrated on lines 
Y e {X + tvf(X); 0 < t < T}. lt is however not uniquely deterrnined by this prop-
erty. Existence of Monge-solutions for the classical Monge case where c is the Euch-
dean norm has a long history, starting with early work of Sudakov (1979) (for de-
tails see Villani (2006)). 

b) One-dimensional case. In the one-dimensional case the optimal coupling result in 
Theorem 4.7 has been applied to determine optimal couplings for some classes of 
nonconvex functions, see Uckelmann (1997), Rü and Uckelmann (2000), and, based 
on a direct analysis ofmonotonicity properties, in McCann (1999). In the case where 
P = Q = U(0, 1) and c(x. y) = 'I(x + y) and for coupling functions 1 such that 

>0 t e [0.ki) u (k2.2] 	
(4.33) 

<0 tE(k1.k2), 

i.e. 4V is of the type: convex-concave-convex, the following result was proved in 
Uckelmann (1997): 

Proposition 4.9 IJc, are solutions of 

- 	+ ß) + (ß - 	'( + ) =0, 	 (4.34) 
(2ß) - (c + 3) + (c 	'(c H- B) = 0, 

0 <s </3 < 1, then (X. T(X)) is an optimal c-coupling where 

xE [0.Iu[i3.1]. 
T(x) = 	' 	 (4.35) 

c+j3—x, xe(,/3). 

Similar results have been shown for c(x,y) = (x — y), I convex-concave for the 
case of uniform marginals. Extensions of these results are in RÜ and Uckelmann 
(2000). Also some resuits for nonuniform marginals and numerical resuits are given 
there. These resuits confirm some general conjectures on the solutions in the one di- 
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mensional case. The case c(x,y) = 	- 	concave was studied in McCann 
(1999) in detail. 

c) Discrete distributions, Voronoi cells. In the case where one distribution is discrete 
Q = the relevant c-convex functions for the optimal couplings are of the 
form 

f(x) = max(c(x, xj) + 	 (4.36) 

The subgradients are to be the support points x1  of Q and we have to determine only 
the shifts a. Let 

A1  := {x :f(x) = c(x,x j ) + aj} 	
(437) 

={x:x1 eaj(x)} 

denote the corresponding Voronoi cells, then the subgradients are unique except at 
the boundaries ofA 1 . This observation implies a uniqueness result for discrete distri-
butions (see Cuesta-Albertos and Tuero-Diaz (1993)). The optimal transportation 
problem between P and Q reduces to finding shifts a1  such that P(A1 ) = csj , 1 
j < n. For the case ofc(x,y) = ll x -  y(' one gets for a = 2 linear boundaries. Some 
cases for a = 1, 2, 4 are dealt with explicitly in Rü and Uckelmann (1997, 2000) in 
the case where P is uniform on a square in JR2  or a cube in 1R3 . For the solution in 
not too large discrete cases one can apply sophisticated linear programming techni-
ques or algorithms developed for Voronoi cells (see Rü and Uckelmann (2000)). For 
an alternative continuous time algorithm see Brenier (1999). 

4.3 The ii -coupling problem 

The coupling problem between two distributions on lRk  is naturally extended to the op-
timal coupling (transportation) between n probability measures P 1  ... ‚ P on lRk.  This 
might be used as discrete time approximation of a continuous time flow along some 
time interval [0, T] where P, are intermediate distributions on the transport from P1 to 
P,,. A new problem arises only if in the formulation of the coupling problem there is a 
cycle or a back coupling e.g. between P,, and P1. For the L 2 -cost one version of this pro-
blem is 

E 	= max 	 (4.38) 

overallX1 	P,1 <i < n. 
For the case n = 3 arid P, = N(0, j) this problem was posed in Olkin and Rachev 

(1993). lt is for n = 3 equivalent to 

E((X, Y) + (Y,Z) + (X,Z)) = max! 	 (4.39) 

and thus includes cycles: some mass should be cycled around three places from 1) to 2) 
from 2) to 3) but then also back from 3) to 1) in an optimal way. Knott and Smith 
(1994) (in the case n = 3) proposed the fruitful idea that "optimal coupling to the sum 
T = X1  should imply multivariate optimal coupling in the sense of(4.38)". 
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The reason for this conjecture is the equivalence of (4.38) with the problem 

EX — TM 2 = min 	 (4.40) 

In the case ofmultivariate normal distributions Pi  = N(0, )' 1 < i < 3, this idea leads 
then to the following algorithm: Let T N(O, so),  Eo positive definite, and define 

X=S 1 T, Y=S2T, Z=S3 T 
	

(4.41) 

the optimal 2-couplings with 

s, = 	1/2 (>i/2i/2)  -1/21/2 

Then one needs that T = X + Y + Z = (S 1  + S2 + S2)T and thus one needs the iden-
tity S1 + S2 + S2 = 1. This leads to the following nonlinear equation for o: 

(1/21/2) 1/2 =0.
(4.42) 

As consequence ofthis idea one gets the following result: 

If(4.42) has a positive definite solution E O , then X, Y, Z as defined in (4.41) are optimal 
solutions ofthe 3-coupling problem (see Knott and Smith (1994)). 

The natural iterative algorithm for the solution of (4.42) converges rapidly in d = 2 
(as reported in Knott and Smith (1994)) but in d = 3 it turns out that convergence de-
pends very sensitive on the initial conditions. 

lt was shown only in Rü and Uckelmann (2002) based on the uniqueness result for 
optimal couplings that this idea ofKnott and Smith is valid in the normal case (in parti-
cular (4.42) has a solution) for any n > 3. 

For general distributions P, however optimal coupling to the sum is not sufficient 
for optimal n-coupling. There are some simple counter-examples. But a positive result is 
given in Rü and Uckelmann (2002) saying that optimal coupling to the sum T, continu-
ity of pT « ) and 'maximality' of the domain of pT  imply optimal n-coupling. 

The paper contains also a simple proof of the existence result of Gangbo and Swich 
(1998) on Monge solutions (in the case without cycles) ofthe form 

X = (X1 ,7(X1 ),...,(x 1 )) 	 (4.43) 

if P « )//' and gives a one-to-one equivalence of the n-coupling problem with several 
modified 2-coupling problems. 

5 A Variant of the minimal £-metric - application to the analysis 
of algorithms 

Many algorithms of recursive structure (divide and conquer type algorithms) allow to 
derive limit theorems for their important parameters by the contraction method (see 
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Rösler and Rü (2001) and Neininger and Rü (2004)). The limits then are characterized 
by stochastic fix point equations typically of the form 

X 	(AX 1 +b) 	 (5.1) 

where X1  are independent copies of X and where (X 1 ) and the random coefficients 
(A, h) are also independent. 

Für example: The internal path length Y, ofthe Quicksort a!gorithm satisfies the re-
cursive equation 

y11 	 IY 1  + (n - I - 1)Y_ 1, 1  + (n - 1), 	 (5.2) 

where I is uniform on {0..... n - 11 distributed and (Y) are independent copies of 
(Yk). 

The normalization X, := Yn EYn satisfies the recursive equation 

Yn 	+ - 
In  + 1 	

+ C,,(I) 	 (5.3) 
n 	n 

and leads to the limit equation 

X UX+(1—U)+C(U), 	 (5.4) 

where the entropy function C(x) = xlnx + (1 x)ln(1 x) + 1 arises as the limit of 
j C, and U 

d = U0, 1] as the limit of-. The contraction method then gives general condi- 
tions which imply existence and uniqueness of solutions of (5.4) and convergence of X 
to this solution. 

The solution of(5.4) resp. (5.1) can be described as fixpoint ofthe Operator 

T: M .' M, Tt = ( 
	

(A 1 X + b 1 )) 	 (5.5) 

where (Xi) are iid and Xi 	M, is the dass of distributions with finite s-th moments. 
A natural contraction condition is: 

E Ls , 	EALv < 1. 	 (5.6) 

This condition has been shown to imply the fixpoint result für 0 < s < 1 and für s = 2 
(with the additional restriction of a fixed first moment). For 1 <s < 2 one has only an 
inequality ofthe form 

£:(T i,  Tv) <K(EA i V)(buv) 	 (5.7) 

with some constant K> 1. This inequality yields on!y an existence result für the fix-
point equation (5.1) under restrictive conditions. To solve this problem a new modifica-
tion ofthe minimal £-metric was introduced in Rü (2006). Define 

£‚ v) := inf{MX - 	: X 	‚ Y 	v. and X 	Y} 	 (5.8) 
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Here X Y is defined by the conditions 

E(X - Y) = 0, EX yS < 	 ( 5.9) 

Note that condition (5.9) does not need that s, ii a M. 
With this new variant of the minimal -metric which is defined by a modification of 

the transportation problem one obtains the existence offixpoints under the natural con-
dition (5.6) on the coefficients (see Rü (2006)). 

Theorem 5.1 IfA 1 , b, e Lv,  1 <s < 2, E>I A(s < 1 and iifJr  some io E M, 
Tso) < cc, then there exists a unique solution of(5.1) in 

M(to) = {P E M; £.o) <cc}. 	 (5.10) 

In the proof of this theorem it is shown that (M° (,o), £) is a complete metric space 
and with the heip of weighted branching processes it is shown that some power T n o of 
T satisfjes a contractjon condition on M(1i o ) w.r.t. the new variant £ of the minimal 
l?-metric. 

An interesting corollary of this result is an equivalence principle for homogeneous 
and inhomogeneous stochastic equations. 

Corollary 5.2 Under the assumptions of Theorem 5.1 there is a one-to-one relation-
ship between solutions of the homogeneous stochastic equation 

(5.11) 

and the inhomogeneous stochastic equation 

K 	
(5.12) 

More exactly: For any solution X of (5.11) there exists exactl,v one solution Y of (5.12) 
with distribution /t E M?(uo), it'here po = .C(X) and conversely. 

Thus the modification of the minimal l-metric aliows to investigate solutions of fix-
point equations (5.1) without any moment conditions. 
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In this survey article we discuss a number of mathematical questions related to the be-
havior of light pulses in dispersive media. Mathematically, we analyze the dynamics of 
modulating pulse solutions of a nonlinear wave equation. Such solutions consist of a 
puise-hke envelope advancing in the laboratory frame and modulating an underlying 
wave-train. We exp!ain the role of the Nonlinear Schrödinger equation in the descrip-
tion ofpulses with the same carrier wave. We show that there is almost no interaction of 
weil prepared pulses with different carrier waves. Finaily, we discuss the question: Do 
modulating pulse solutions exist for all times? We discuss the relevance ofthe presented 
resuits for fiber optics and photonic crystais. 
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1 Introduction 

The transport of information over long distances through optical fibers is one of the 
key technologies of the post-industrial society. Information is encoded digitaily by ones 
and zeroes, je., by sending a light pulse through the optical fiber or not. Physically such 
a light pulse is a complicated structure. lt consists of an underlying electromagnetic car-
rier wave moving with phase velocity Ct)  and of a pulse-like envelope moving with group 
velocity Cg  and modulating the underlying carrier wave, see Fig. 1. 

Figure 1: Os and is are encoded physically by sending a Iight pulse or not; thus, für instance, 
the above electromagnetic wave encodes the sequence 101101. 

The analysis of the evolution of such a light pulse is a nontrivial task. The System 
shows dispersion and (weak) dissipation, i.e., harmonic waves with different wave num-
bers travel at different speeds and energy is lost in a wave number dependent way. 
Moreover, there is a nonlinear response by the optical fiber. Thus, at a first glance it 
looks like a typical example for the application ofnumerical methods. However, a direct 
Simulation of Maxwell's equations which describe these electromagnetic waves is be-
yond any present possibilities. This can be seen as follows: The wavelength ofthe under-
lying carrier wave is around 1 0 m. Resolving this structure in a fiber of 10 km =l04  m 
gives in uniform one dimensional spatial discretization 10 points, not to speak about 
the transverse directions and the temporal discretization. Therefore, before making any 
numerical investigations, the System has to be analyzed and simpler, numerically more 
suitable, models have to be derived. Interestingly, by using only a pencil and a sheet of 
paper a lot of things can be concluded without using any computer. This will be the sub-
ject ofthis survey article. 

Using multiple scaling analysis we derive a formula for the optimal shape of the en-
velope of the pulse. Optimal means that it is more or less of a permanent form, i.e., in 
the ideal case the pulse is time periodic in a frame moving with the group velocity of the 
envelope. We will explain that the dynamics of pulses with the same carrier wave, 
i.e. with the same wave length, can be described by the dynamics of the envelope alone 
which is governed by a Nonlinear Schrödinger equation (NLS equation). The NLS 
equation is a universal nonlinear partial differential equation. Universal here means 
that additional to nonlinear optics it appears in the above sense in many contexts, for 
instance water waves, plasma physics, and lattice vibrations. Moreover, the NLS equa-
tion is a completely integrable Hamiltonian system. As a result, the NLS equation can 
(in principle) be solved explicitly. The method is called the inverse scattering scheme. In 
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particular, the NLS equation has explicit so-called N-soliton solutions. These are spe-
cial localized waves with N humps, N e N, where the humps interact asymptotically in 
a very unexpected way which is similar to the superposition principle in linear equa-
tions. 

We will also explain that pulses with different carrier waves, i.e. different wave 
lengths, do not interact in lowest order. This fact allows to increase the information rate 
through the fiber by using different bands, i.e. a number of different carrier waves. 

Photonic crystals play an important role in nanotechnological devices. One of the 
ultimate goals is to use them as optical storage. We will explain the possibility of stand-
ing light pulses in photonic crystals. 

Finally, we will explain that the formula for the pulses of permanent form is correct 
to any polynomial order in the amplitude parameter, but that exponentially small terms 
will hinder the existence of a modulating pulse of permanent form with finite energy. 
However, it turns out that such modulating pulses of permanent form exist with infinite 
energy and exponentially small tails. 

The paper starts with a short description of the physical background in order to mo-
tivate the description of nonlinear optics by nonlinear wave equations. We concentrate 
on rigorous mathematical results and skip in our presentation almost all purely formal 
results. We use ideas from finite and infinite dimensional dynamical systems theory, 
from perturbation theory and from a functional analytic treatment of partial differen-
tial equations over unbounded domains in Sobolev spaces. 

The subsequent methods and results are not restricted to models from nonlinear op-
tics. They essentially apply to all equations for which a NLS equation can be derived as 
an amplitude equation. For systems with (significant) dissipation the role of the NLS 
equation is taken by other but related amplitude equations, for instance of Ginzburg-
Landau type. We refrain from any details in case of dissipation and refer to the litera-
ture, for instance [Sch99, Mie02] and the references therein. 

Acknowledgment. The work is partially supported by the Deutsche Forschungsge-
meinschaft DFG and the Land Baden-Württemberg through the Graduiertenkolleg 
GRK 1294/1: Analysis, Simulation und Design nanotechnologischer Prozesse. 

2 Physical background 

Light pulses are electromagnetic waves and described by Maxwell's equations, namely 

Vx-3=f, 

with 25 = 	± P and iI = 	Ü. Here 	= 	t) is the electric field, . = 
(x.y.:) e lR3 , t E IRis the time, g o  the permittivity ofvacuum, P the material polariza-
tion, B the magnetic flux, p o  the magnetic permeability ofvacuum, M the material mag-
netization, p the charge density and J the electric current. These equations have to be 
closed with constitutive laws J = (E. H) and M = M(. ) describing the behavior 
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of the medium. Depending on this choice there are linear and nonlinear, instantaneous 
and history dependent, dispersive and dissipative models. 

In typical optical fibers there is no magnetization M, no charge density p, and no 
electric current 1, and therefore, using V x VÜ = LE - V(V . )' Maxwell's equations 
for light in nonlinear optical material are given by 

AE - \7(V . - 	= 

where we scaled the speed oflight in vacuum and the dielectric constant to 1. 
The constitutive law for the polarization P = Pi + P1 splits into a linear and a non-

linear part, which in general both depend on the history of the electric field. In centro-
Symmetrie isotropic bulk material, the constitutive law for the linear response P1  is given 
by an inStantaneous part P, t) = (' E( '  t)) and a history dependent term 

' t) = ( xi *1 )(' t) = 
	

- )' ) dy. 	 (2) 

where Xi  in (2) is a scalar function, independent of ‚ with X, (t) = 0 for t <0 due to 
causality, and similar for the nonlinear polarization. In case of optical fibers X, does 
also depend on the transverse directions 1'.:, and in case ofphotonic crystals also on the 
longitudinal direction x. 

In the simplest case E is linearly polarized and only depends on x, je., 

= u(x,t)i 	with 	IR3 = 1, 	(1,0,0) i = 0. 	 (3) 

Then, (1) simplifies to 

3u(x. t) = 3u(x, t) - 3pi(x, t) - 0p,,i(x, t), 	 (4) 

with u(x. t) . p1 (x, t),p,i(x, t) e IR such that 	1(t, ) = pt(x, t), 	111(t, ) = p,11 (x, t)i. 
The symmetry (y. z) 	(y, z), which is present in most optical materials, prevents the 
occurrence of even terms in p with respect to u, thus, in general Pi  starts with cubic 
terms. 

Due to the fact that we are mainly interested in the underlying mathematical struc-
tures, throughout the rest ofthe paper we choose 

dp(x, t) = u(x, t) - u 3 (x, t) 

as constitutive law, thus the toy problem for this paper is 

= 	 - u + u3 . 

	 (5) 

This choice is rather unphysical; however, it delivers a system with all properties in 
which we are interested, namely dispersive and nonlinear behavior. We refer to [SU03] 
for a mathematical discussion of a physically more realistic choice which includes dissi-
pation and history dependence additional to dispersion and nonlinearity. Dissipation, 
i.e., wave number dependent damping, is usually very weak in the so-called transmis-
sion windows of optical fibers. However, it may become important over very long 
scales, while history dependence does not alter the analysis in an essential way. 
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3 Single pulses 1 

The description oflight pulses, i.e. here oflocalized solutions of(5), is based on the den-
vation of a NLS equation by formal perturbation analysis. Therefore we introduce a 
small perturbation parameter 

which will relate the amplitude with the spatial and temporal scales. We seek 0(6)-am-
plitude solutions which are slow spatial and temporal modulations of an underlying 
wave train e1(kov_ot),  where k0 and wo, are related by the dispersion relation w 2 = k 2 

0 	0 + 1 
ofthe linearized problem 0u = 0'u - u. Thus we substitute the ansatz 

UA(X, t) = e(A(X, T) e  Ox_Oo) + c.c.) + 0(62), 	 (6) 

into (5), where X = 6(x - ct) with c to be determined, where T = e2 t, where cc. means 
complex conjugate, and where A (X. T) is a complex-valued amplitude. We sort the 
coefficients ofthe carrier wave e 1 ( k O .J0 t) with respect to powers ofe and obtain 

0(6 1 ) : 	—. A = —(k + l)A, dispersion relation, 
0(e2 ) : 2iccoAx = 2ikoA x 	c = ko /wo  = 	=: c', linear group velocity, 

while at 0(63 e 1 ( k O x _O t)) we find that A should satisfy the NLS equation 

2WOaTA + (1 - (c) 2 )3A + 3A 2 A = 0. 	 (7) 

In fact, the Fourier transform of the ansatz_(6) is strongly localized around k0 . There-
fore, only the local shape of,, 2  = ±v'k 2  + 1 near k0 is important to determine c = 
in (6) and the coefficients ofthe linear terms in (7), see Fig. 2. 

w2(k) 

Figure 2: The two curves of eigenvalues j 1. , = + t/PiI. The Fourier transform of(6) is con-
centrated in an 0(f) neighborhood around +k0. Therefore, the dynamics of (6) is determined 
by the expansion ofw 1  at k0. 21  (k0) gives the linear group velocity c', and the group velocity 
dispersion J'(k0) occurs as coefficient in the NLS equation. The concentration of Fourier 
modes n(k) is respected by the nonlinear interaction, i.e. convolution in Fourier space. 
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Equation (7) has a four dimensional family of solutions ofthe form 

A(X, T) = Ä(X - vT - Xo)e_7OT*0O), 	= (wo v)/(l - (c) 2 ), 

in which the real-valued functionÄ satisfies the second-order ordinary differential equa-
tion 

= 	- C2Ä 3 , 	 ( 8) XA 

where 

2 	270w0 	 3 Cl - - v 
- - (c, 	

2 	
(1 - (c) 2 ) .  

Since c < 1, we always have C2 > 0, and for C 1  > 0 there exist the two explicit solu-
tions 

Äpuise(X) = 	sech (C 2 X) 	 (9) 

to (8). These are called homoclinic since they connect the origin (0,0) as a fixed point of 
the first order formulation of (8) with itseif, see the left panel of Fig. 3, while solutions 
which connect different fixed points ofa dynamical System are called heteroclinic. 

The derivation of the NLS equation (7) was only formal in the sense that we simply 
ignored terms that are higher order w.r.t. e or appeared at a different wave-number. 
They are contained in the residual, i.e. 

Res(u) := 

contains the terms which do not cancel after inSerting an approximation into (5). If 
Res(u)=0, then u is an exact solution of(5). lt is important to note that due to a possible 
'accumulation of errors' the smallness of the residual alone does not imply the so-called 
validity of the approximation where validity means that there are solutions of (5) which 
behave as predicted by the NLS equation on the relevant O(l/s.2)  time-scale. 

However, there are a number of mathematical validity resuits for (5), see [Ka188, 
KSM92, Sch98] and also §4. The above procedure thus identifies modulating pulse solu-
tions of (5) which are described by the approximate formula 

pulse(x, t) = E(Apulse(X - vT - Xo )ei( 	OT+bO)eiOwOt) + cc.) + 0(E 2 ) 

= E(Apulse(6(x - C'gt - xo - Evt))ei 	 + c.c.) + 0(E2 ) 

accurately over time-scales of order 0(l/E2 ). In particular, for w.l.o.g. v = 0, x0  = 0 
and 00  = 0 we have 

UpulSe (X t) = E(Apulse(E(x - c t)) etk0_ 	Tt2)') + c.c.) + 0(E2 ), 

where 	=(1 + k)' 12  /k0 is the linear phase velocity and 'y' = yo/ko. 
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0(E) 

Co 

Figure 3: The (Ä, (9xÄ)-phase portralt for (8), and a modulating pulse for (5) described by the 
NLS equation. 

For the transport of information the global existence of modulating pulse solutions 
would be an important goal, je., we investigate if there are exact solutions to equation 
(5) ofthe form 

u(x, t) = v(x - c g t,ko (x - c 1,t)), 

where v is 2r-periodic in its second argument with 

um v(,y) = 0. 

This question will be discussed in detail in §7. As a first result we note [GSO1] that such 
solutions can be computed approximately to any polynomial order in r by extending 
the ansatz (6) by higher order terms and applying a small correction to the linear group 
speed, je., using c = egl + 0(r2 ) see the right panel of Fig. 3. In other words, the fol-
lowing Lemma allows to find modulating pulse solutions which make the residual arbi-
trarily smal!. 

To measure the residual we use Sobolev spaces [Ada75] HS = Hs(IR ,  F). For simpli-
city we restrict to s e N. Then H 5  consists of all functions / : JR - (U which together 
with their distributional derivatives up to order s are square integrable, equipped with 
the norm 

1=0 

In our spatially one-dimensional setting, H is a subset of the space of uniformly 
bounded and rn times continously differentiable functions C(JR. E) if s> m + 1/2, 
m c N, and the embedding is continuous, je., < C(U)HS. These so-called Sobo-
1ev embeddings can be used to show that nonlinear terms such as u3  are well-defined 
and continuous mappings from H —* HS ifs> 1/2. 

Lemma 3.1 Let s > 2, k0  > 0, n e N, and -71  < 0. For sufficiently small r > 0 there 
exists a two-dimensionalfamily, parameterized hy envelope shft x o  c JR andphase sh(/t 
o e [0, 27r), of approximate modulatingpulse solutions to (5) oftheform 

u(x, t) = rvk0(x Cg t — x o ,ko (x — ct) + )' 
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t'here v is 27r-periodic in its second argument, Cr) = C'0  + iE2 , Cg = 1/c0 , and where, for 
somer >0, EVk0 (,y) = 6Ap u 1 Se (E)e + O(e3eEIäl) + c.c., and 

Res(EvkO)MH., <C?12 

4 lnteraction of pulses with the same frequency 

By the derivation of the NLS equation for the nonlinear wave equation (5) not only 
modulating pulse solutions of the nonhinear wave equation are identified. The complete 
dynamics known for the NLS equatiori can also be expected to be found approximately 
in the nonlinear wave equation. 

We refer to the excellent textbooks [AS81, DJ89, SS99] about the various dynamics 
known for the NLS equation. For our purposes the fact is essential that the NLS equa-
tion is a completely integrable Hamiltonian system. Hamiltonian means that (7) can be 
written as DTA = J6H(A) where J = —i/(2u.ro) is a skew symmetric Operator and 8 dc-
notes the variational derivative ofthe Hamiltonian 

1 	'2 

H(A)=f[g 10x A 2  3 A 4] dx. 

An immediate consequence is that the Hamiltonian H(A) is conserved by the flow of 
(7), but in fact various further properties follow. Completely integrable means here that 
there are infinitely many independent conserved quantities for (7), and that there exists 
a transformation which is called inverse scattering scheme and which uses these con-
served quantities to map (7) to a linear System which can (in principle) be solved expli-
citly. As a result, there are explicit though somewhat lengthy formulae (similar to (9)) 
for so-called N-soliton solutions of the NLS equation. In general, N-solitons are loca-
lized solutions which consist of N humps and which for t -* +oc asymptote to N soli-
tons with different speeds. In particular, the individual humps interact in a very special 
way which is rather unexpected in a nonlinear equation: asymptotically for t -* +00 the 
interaction preserves the shapes and speeds of the individual humps, and only alters the 
relative positions. Thus, the humps are similar to elastic particles, and this motivates 
the name soliton. The change of position after interaction is 0(1) in the NLS equation 
and is called a pulse shift. Formally, the N-solitons yieid modulating N-pulse solutions 
for the nonlinear wave equation (5) with O(l/E) pulse-shifts after interaction, see Fig. 4. 

However, as already said in §3, the formal derivation of the NLS equation for the 
nonlinear wave equation (5) alone does not imply that the dynamics found in the NLS 
equation can also be found in the nonlinear wave equation (5): There are amplitude 
equations derived in a formally correct way by multiscale analysis which do not reflect 
the dynamics ofthe original system, see, e.g., [Sch951. We now discuss the validity ofthe 
approximation, that is, how weil solutions of the nonlinear wave equation (5) can be ap-
proximated via the solutions of the NLS equation. 
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c) u(x, 1) (in co-moving frame with speed cg ) 
	

d) ReA. 

t=0 

x = 0 	 x=O() 

Figure 4: A 2-soliton A with interaction in the NLS equation and the associated modulating 2-
pulse solution in the nonlinear wave equation (a)—(c). with interaction at (X. T) = (0,0), and 
a time periodic 2-solution A in the NLS equation (d). For graphical reasons, black has been as-
signed to u = 0 in c). 

Let A e C([0. To], H (JR. (L)) be a solution ofthe NLS equation (7) with SA > 1 dc-
fined below. Then 

6)(x, t) = rA(E(x - ct). 5t)e 0x_ot) +C.C .  

defines a formal approximation of die solutions u of the nonlinear wave equation (5). 
For our purposes it turns out to be advantageous to consider the extended approxima-
tion 

EY(x. t) = EA (r(x - ct). r2t)e 0v_0t) + r3 A3((x - ct), r2t)e3 0x_w01) + cc. 

(11) 

where A1 = A 3 /(9w 	9k 	1) is also in C([0. T0], HSA  (JR. E)), ifsA > 1. In summary, 
ifsA > m + 1/2, then there exist C, s > 0 such that for all E G (0. Eo) 

JB 109. Band (2007), Heft 3 	 147 



EI0bersichtse_J 	Historische Beiträge 	Berichte aus der Forschung 	Buchbesprechung 

II 	In snp 	(.' t) - 	(‚ t))' 	C 	sup 	E3A3(E., E2t)e30x_0t) + C.C.IIcb  Evl 
tofO.T0/ 2 ] 	 tefO.T0/ 2 J 

	

sup 	A3(E,E 2 t)Mc< Ce3  sup A3(, T)Mc 
Te[O.Tg] 

sup A3(, T)(HSA 
Te[O,T0] 

due to Sobolev's embedding theorem. As a consequence, if u can be approximated by 
ä up to an error of order O() then it can also be approximated up to an error of or-
der O(Emm(33) ) by 0, In detail this means that 

- 6cn, <)U - 	+ )) 6 cCm <C + C3 <2c51(3:3). 

In order to estimate the difference u - 	E32 R we derive an equation for R and esti- 
mate R. In order to do so we need estimates for the residual Res(s5). By the choice ofA 

and A3 all terms up to formal order O(s 4 ) are eliminated in the residual. Therefore there 
exist C, äg > 0 such that for allE E (0 so) 

sup 	{Res(6t(t))( H .v < Cs712 . 

The loss ofs" 2  comes from the scaling properties ofthe L 2 -norm. 
With u = s + s312 R we find 

	

+ s312R) = 	+ s32R) - (sä + s3/2R) - (s + s312 R) 3  

such that R satisfies 

0R=0R—R+f 	 ( 12) 

with 

f = 	3s52 5R 2  E3 R 3  + 

Thus, 

(fMHs 	CtE2 MRMHS + C2(CR)E2(R)S  + C3s2 	 (13) 

as long as R(t)MHs < CR with a constant CR determined below, constants Cl, C- inde- 
pendent of CR and s e (0, 1) and a constant C2 depending 011 CR but independent of 

e (0,1). 
The equation for R is solved here for simplicity with zero initial conditions. We use 

energy estimates and define the energy 

E(R) = 	 + ( t t R) 2  + (dR)2 dx. 

Forj = 0 and f = 	we obtain 
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1 (0,R)2 + (DR) 2  + R 2 cLv = J(0R)(0R) + (R)(3,0R) + R(0,R)dx 

= /[(a1 R)(3R) (0 1 R)R + (3,R)1' ± (0R)(0,R) + R(3R)]dx 

= f(01 R)Jax 

which can be estimated with the Cauchy Schwarz inequality by 

	

f (3,R)fdx <O,R( L 7 (JL2 	M3rRL2(C1a2(R)Hs + C2(CR)e 5/ 2 (R( 2HS + Cia2 ) 

• ci() + Cl(CR)652 E(R) 32  + C3a2 E(R) 1 / 2  

<(C1 + C3)a2 E(R) + 7(CR)aE(R) 312  + C3a2 . 

Since exactly the same estimates hold forj = 1.,. .. ‚ s we finally find 

d1 E(R) < (C1 + C3)a2 E(R) + C7(CR)a5<E(R) 32  + C3a2 . 	 (14) 

Now assume that a' 2 C7(CR)E'/ 2 (R) < 1. Then, for 0 < t < To/a 2 , 

E(R(t)) < C3e13*1) T0 =: C 
	

(15) 

by Gronwall's lemma which transiates differential inequalities like (14) into pointwise 
estimates like (15), see, e.g., [Hen8 1, Lemma 7.1.1] for a very general version. 

Choosing -co > 0 so small that 

EC7(CR)C 	< 1 	 (16) 

we are done. In detail, to a given CR = CR(TO, C l . C3) defined in (15) we have a C'2(CR) 
by (13) and to this c'2 we have an 60 > 0 by (16). Hence, there are solutions u of (5) 
which behave for all t e [0, To /a2 ] as predicted by the NLS equation (7). 

Theorem 4.1 Fix SA > s + 3 > 4. Let A E C([0. T0]. HA) he a solution oJthe NLS 
equation (7). There exist C, 60 > 0, such t/iatJr alla E (0. 60)  there exist solutions u of 
(5) such that SUP,»T/ 2 ] Mu( t) - (. t) MH Ca32 

Remark 4.2 The time scale 0(To /a2 ) is necessary to describe non-trivial dynamics. 
The error of order 0(a312)  is much smaller than the approximation which is of order 
0(a). Adding higher order terms, like A3, to the approximation a aliows to decrease 
the magnitude of the residual further, in particular we can obtain 0(11/2).  This results 
in an error of order 0(7/2)  instead of0(a3 !2 ). However, the time scale 0(1/a2)  ofva-
lidity in general can not be extended. 

As a consequence of Theorem 4.1 modulating pulse solutions for the nonlinear wave 
equation (5) with the same carrier wave interact as predicted by the NLS equation, i.e., 
we have approximately the persistence of the modulating pulse solutions after the non-
linear interaction and 0(1/a) pulse-shifts in the nonlinear wave equation (5). For the 
transport of information through optical fibers the interaction ofpulses is in general un-
desirable. However, even if the envelopes are in a very general form, like in real world 
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technical devices, the NLS equation can now be used to compute numerically how far 
the modulating pulse solutions have to be separated such that there is no nonlinear in-
teraction during the journey through the fiber. 

5 lnteraction of pulses with different frequencies 

The information rate through the fiber can be increased by using different bands, je., 
different basic wave numbers, cf. [AceOO]. As explained in Remark 5.1 below (after fix-
ing some notation), there is a simple argument why wave packets with different wave 
numbers do not interact in lowest order w.r.t. E. Moreover, for pulses from Lemma 3.1 
the argument can be refined, and in this section we exp!ain that there is almost no inter-
action of such pulses associated to different carrier waves by giving an 0(s)-bound for 
the possible shift ofthe envelope resulting from the interaction. For general wave pack-
ets the shift of the envelope will bein general 0(1). Thus, it is advantageous to use weil-
prepared pulses for the transport ofinformation. 

We introduce subscripts A and B to indicate the wave numbers kA 7~ k B  of each 
pulse, the associated group velocities Cg.A and CgB, the envelope shifts XA and XB and so 
on. If the two pulses are separated initially, and, say, XA > xB and kA <kB such that 
C g ,4 < CgB and the faster pulse is in front, then, since the pulses are exponentia!ly loca-
lized, it is natural to expect that the dynamics ofthe two pulses can be described by the 
sum ofthe two individual pulses, at least on the natural 0(1/e 2 ) time-scale. However, if 
the two pulses are, say, 0(l/E) separated initially, with XA > XB and kA > kB, then, 
since the group velocities differ by 0(1), the two pulses must interact on an 0(l/e2 ) 
time-scale. Clearly this is the mathematically more interesting case. 

For notational simplicity we assume that (PA = 9B= 0 and thus study the interac-
tion of 

EVkA (x CgAt + XA, kA(x - cp,At)) and EVkB(X - CgBt + Xß, kB(x - CpBt)), kA ~ k 

We prove that the form of the pulses is almost preserved and that the interaction mainly 
ieads to phase-shifts EQA  and EB with QA 9B e JR bounded independent ofe. 

Remark 5.1 That the amplitude equations for EvkA  and EVkB  decouple in lowest or-
der can be seen as foliows. Going into the scaling of the envelope, EvkA  and EVkB  have 
an amplitude and a width of order 0(1). But since the group velocities differ by an or-
der l/e in this scaling the interaction time of EvkA and EVkB  is only 0(E). Thus, the in-
fluence of a term vkA VkB on the dynamics of vkA  and VkB  is 0(e) in the NLS scaling and 
therefore in lowest order the evolution equations for VkA  and VkB  decouple. This argu-
ment is not restricted to vk4  and vkB.  lt holds for all wave-packets. Moreover, this 
property can be observed in a number of problems. For modulating pulse solutions 
such a statement can be found for instance in [PW96] where it has been shown that the 
two NLS equations for counter-propagating waves decouple. 

The estimates from [PW96] still only transfer into 0(l)-bounds for the possible envel- 
ope shifts ofthe pulses for e-40. However, for well-prepared pulses, i.e., n>5 in Lemma 
3.1, by extracting explicitly the phase shift ofthe underlying carrier wave we can refine 
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the bound on the envelope shifts to 0(e). In detail, we show that after interaction the so-
lution is dose to 

EVkA(X - Cg.At + XA, kA(x - C.AI) + EQA(?]B)) 	
(17) 

+ CVkB(X - C g,Bt + XB, kn(x - CpBt) * eQB(T)A)), 

with explicit functions Q A i -QB, given by 

J 	3B1J2 
QA 

- 

dB + 	+ 0(e2e_rhBl), 
77B = e(x + XB 	g,Bt), 	(18) 

- 	 WA(CA — CB) 

'JA =  f 3A1 2 

dA +  QB + 0(52e_rhBl), 	= e(x + XA - Cg.At) : 	(19) 
'B(CB - c) 

where B 1  and A 1  are given by (9) with constants CIB. C7B and CiA. C7 4 , respectively, 
and where Q and 	are constants which normalize the initial phases, see Fig. 5. Note 
that 2A  depends on x - Cg,Bt and QB on x - Cg.At as the phase shift accounts for S0 

cal!ed cross phase modulation. 

B 	XA
C9,A 	

XB 	
QA 

t

= 

after interaction 	
. 	

--- 

Figure 5: Illustration of the interaction of two pulses E UA  and 	with the associated cross- 
phase modulatins PA  and f2. Here k,, > k 8  and the siower pulse is in front. Thus, C 	CA < 0 
in (19) and f1,, isa decaying function ofx. The constants Qo and fd have been chosen in such a 
way that at t = 0 (upper two pictures) there are no phase-shift for the pulses, i.e., 0B  5 expo-
nentially small near the position xB ofevkB, while f2,4  is exponentially small near the position 
— XA of(v/, .1.  Note that B  travels with and tlA with EVJS.B. 

Theorem 5.2 Let s > 2, kA.ks >0, k 7~ kB, 'i.Ayi.B <0, XA.XB E IRin Lelnn2a 
3.1, and T0  > 0. There exist e0 > 0 and C > 0 such thalfor alle e (0, e0) there exist so-
lutions u oJ (5) such that 
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sup 	ju(x, t)EvkA(x - CgAt + XA, kA(x cpAt) + äA(17B)) 
re [0, T0/ 2 ] 

- EVkB(X - Cg ,t + xB,kB(x Cp,Bt + EQB(7],4))Ucs_l < Cä 

(20) 

with vkA, vk B lrorn Lemma 3.] and2A QBglven by (18),(19). 

Remark 5.3 To obtain an estimate for the physically relevant shift of the envelope, 
suppose that the error comes from a shift of tite envelope. Then, due to the long wave 
form ofthe envelope, "vertical" estimates of order 0(ä3 ) in L can lead on a pulse of 
amplitude O(ä) only to a possible envelope shift äa of order 0(ä), due to 

äg(ä(x ± sa)) - äg(äx) = äg'(äx)ä2 a + 0(ä(ä2 a)2 ) = 0(r3 ) 

Idea of the proof ofTheorem 5.2 (See [CBSU06] for more details.) We make the ansatz 

u(x,t) =ä5(x,t) :=äAl(1]A)E±EBI(1]B)F 	
(21) 

+ E 3A2(A, T)E + 
E3  B7(IJB, T)F + cc. + bot. 

where T = r2 1, and where 

E = e1Av_wAtBA()B)), F = e t BxBt+ B('IA)), 7)A = e(x cg.4t), 71B = ä(x - CgBt). 

In (21), h.o.t. stands for terms ofhigher order in r, which are algebraically determined 
similar to A3 in (11), and which do not lead to new aspects compared to Section 3. We 
choose A1 and B 1  as given by Lemma 3.1. Ifwe choose 2 A, QB to satisfy 

	

3B 2 
	

and 	
2 

1 
01BA = 	 dIA B = 	 (22) 

WA(Cg,A - Cg.B) 	 WB(C g.B 	C5 ,A) 

which yields (18) and (19), then the coefficients at E 3 E and r3 F vanish. At r5 E and r5 F 
we find that A,, B2 satisfy the linear equations 

2iWADTA2 + ( 1 - cA) 3, A A2 + GA = 0, 	 (23) 

2WBa7 - B2 + ( 1 - C9 B) 05ß B2 + GB = 0 	 (24) 

with, by construction, zero initial data, and where 

GA = 6Al 2 A2 + 3AA 2  + 6(B 1 B 2  + B2B1)A 1  

	

+ ä [i(1 - c5 A) 	QAAI + 2i(cg,Acg,B - 

GB = 6B 1  1 2 B2  + 3BB7 + 6(A i A 2  + A2A 1 )B 1  

+ ä [j(1 - cgB)0eABB1 + 2i(Cg.ACg B 

The argument given in Remark 5.1 applied to the terms multiplied by r' shows 

Lemma 5.4 There exists a C> 0 such thatfor alir e (0, 1] there exists a unique so/u 
tion (A 2 , B2 ) e C([0, T0], H' x HS)  to (23)-(24) with zero initialdata. lt satisfies 
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Slip ((A2 1  B7)(T) HS x H 	C. 
[0, 

This shows that Res(E)(H.V = O(6H12). Similar to the proof ofTheorem 4.1 we write 
u(x, t) = a(x, t) + E72 R, where we can employ the higher weight of R due to the smal-
1er residual. The equation for R looks exactly as (14). Thus, sup10 T0/2[ RHS < C as 
above, which concludes the proof of Theorem 5.2. 

Theorem 5.2 can be extended in at least two directions. On a time scale O(1/E 2 ) a 
modulating pulse can pass at most O(1/) many modulating pulses of width 0(1/a). 
The interaction of such a modulating pulse with O(l/s) many modulating pulses with a 
different carrier wave can lead at most to an O(1)-pulse shift. Thus, with respect to the 
question ofthe transport ofinformation through optical fibers the influence ofdifferent 
frequencies to the dynamics at some frequency is negligible. Finaily, a possibility to in-
crease the rate ofinformation through the fibers is to decrease the gap between the wave 
numbers. Formally we find for kA - kB = 0(6") with 0 < p < 1 a pulse shift of order 
0(sl_2/). Thus we must expect a certain payoffbetween the number of different carrier 
frequencies l/(kA kB) and the spacing ofbits. 

6 Pulses in photonic crystals: Standing light 

One of the major goals of nanotechnology is photonics, i.e. the construction of 'electro-
nic devices where the electrons are completely replaced by photons. In this context, the 
question of optical storage plays a major role. One theoretical possibility are photonic 
crystals. These are optical materials with a periodic structure with a wave length com-
parable to the wave length oflight. Due to the periodic structure the linearized problem 
is no longer solved by Fourier modes, but by so-called Bloch modes. The curves of ei-
genvalues plotted as a function over the Bloch wave numbers can now possess horizon-
tal tangencies, i.e. vanishing group velocities. Thus, in principle, standing light pulses 
are possible. This will be explained in detail in the following, see also [BSTU06] for 
more details. 

Again we consider a semilinear wave equation 

	

0u(x. t) = Xi (x)Ou(x, t) 	X2(X)U(X, t) 	x3(x)u 3 (x. t) 	 (25) 

with x e IR and t e IR, u = u(x, t) e JR, but now in a spatially periodic medium. This 
means that the coefficient functions Xi = x1(x) satisfy Xj(x) = y i (x + L) forj = 1. 2. 3. 
We assume here that the Xj  are smooth functions, that j (x) > 0 and that x2(x) > 0 for 
all x E [0 1  L), and, without loss of generality, L = 27i-  throughout this section. The line-
arized problem 

3v(x. t) = Xi (x)3v(x, t) - X2(x)V(X, t) 

is solved by the Bloch waves 

v(x. t) = ',, (' x)evei1 

JB 109. Band (2007), Heft 3 	 153 



L Übersichtsartikel 	Historische Beiträge 	Berichte aus der Forschung 	Buchbesprechungen 

where n E 7Z \ {O}, £ e (-1/2, 1/2], with i',, and w,, determined by (27) below. Here, 
u(j?) E JR satisfies w,, () > w(f), w() = —w,,(/?), and i(x. £) satisfies 

LIC = 	+ 27r) and 	11 (x) = 	1,x)e. 	 (26) 

The Bloch wave transform of a function u: JR - (Eis a generalization of Fourier trans-
form and formally given by 

ii(, x) = 	e(f +1). 
j7L 

By construction, ii satisfies (26), and £ E (-1/2, 1/2] is called a Bloch or pseudo wave 
number. From Parseval's identity 11U11L2 = MuML2 it follows that Bloch transform is an 
isomorphism from H'(lR, (E) to the Bloch space L 2 ((— 1/2, 1/2], H((O,  27r))), and its pe 
inverse is given by 

u(x) = f 	x) di?. 
 /2 

See [RS78, Sca99] for further properties and applications of Bloch transform. 
For fixed Bloch wave number £ the Bloch modes 	x) satisfy the spatially periodic 

eigenvalue problem 

—Ä(, 0x)n(,) = Xi ()(dx + if)2(,) - X2()Vn(:) = _(())2( 
	

). 	(27) 

Since the operator Ä(e,0) is elliptic in the bounded domain ]0,27,) with periodic 
boundary conditions we have for fixed £ countable many eigenvalues ) = w, n E N. 
In the space L 1  (0, 27r) where 

- 	f ,(u(?..).v(f,.))51 = 
l
— u@/x)v( , x) --- dx, 	 (28) 

the Operator Ä(e, 0) is positive definite and self adjoint such that the eigenvalues ) () 
are real and positive. They are ordered by (f) < )ä+t (). 

We now explain the possibility of horizontal tangencies for the curves £ 	w,, () by 
discussing periodic coefficients as perturbation of the spatially homogeneous case. 

Example 6.1 The solutions ofthe constant coefficient case 

0v(x, t) = Ov(x, t) 	v(x, t) 	 (29) 

are given by the Fourier modes v(x, t) = e1((), where (p(k)) 2  = k 2  + 1. We consid-
er artificially the problem in a spatially periodic set-up. In a Bloch wave representation 
we have 

v(x. t) = 

where k = n+, with ne 71 here and £ E (—.']. The eigenvalues are related by 
= ±p(n + £)‚ i.e., they are obtained from wrapping +a() around a cylinder, see 

the left panel of Fig. 6. 
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4 

w() andui 2 () 
w() andw 1 (e)j 

0 	 0 

-4 
	

wj () and 	() 
w) andw 2 () 
	

W_3() 

	

tJ 	 U. Z> 	-05 	 0 	 0.5 

Figure 6: The curves of eigenvalues for the homogeneous case (29) in Bloch-representation, 
and the splitting of eigenvalues for (30). The Bloch modes of the ansatz (31) are strongly con-
centrated on an O() neighborhood of the basic Bloch wave numbers ± and the evolution of 
the wave packet will be strongly determined by the associated curves at ±. Thus, the oc-
currence of horizontal tangencies as explained in Example 6.2 corresponds to vanishing group 
velocity c, i.e. to standing light pulses. 

For all 	(-1/2,1/2] except for £ = 0,1/2 all eigenvalues ofÄ(,3) in Example 6.1 
are simple. By ciassical perturbation arguments [Kat66], for periodic Xi = 1 H- 0(6) the 
eigenvalues are smooth functions of 6 and stay separated for 6> 0 sufficiently small. 
However, for £ = 0, 1/2 all eigenvalues are double and generically for small 6> 0 the ei-
genvalues will split. This is exactly what happens in the spatially periodic case. 

Example 6.2 Let x2(x) = 1 + 26cos(2nx) = 1 + 6(e121  + e'2") with 6> 0 small 
and a fixed n e N. Setting 

x) = 
k7L 

the eigenvalue problem (27) is given by the infinitely many equations 

(l + (k + £)2))  + 6(i+2n () + 	- '()) = 0, 	(k e ). 	(30) 

For 6 = 0 we have (with some abuse ofnotation) )„(0) = )_(0), i.e. a crossing ofthe 
curves of eigenvalues at 6 = 0. Due to the continuity of single eigenvalues or subspaces 
to eigenvalues separated from the rest, for small 6> 0 and £ = 0, the infinite dimensional 
eigenvalue problem in lowest order can be reduced to the two-dimensional problem 

det(1 1(0) 	 =ü. 

	

6 	1 + (n) - 

for i'n and ",,. Hence )±‚(0) = 1 + n 2  + 6. Thus, )„f) and .\.M(6)  split at the crossings, 
i.e. at £ = 0, and recombine in a different way. These new curves are also denoted with 

now ordered such that () > .\„(f) but now and in the following indexed with 
n e N. As before we let )„ie) = w(6) and w,,(6) = —ai..() > 0, see the right panel of 
Fig. 6. 
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Thus, on a linear level we have a situation as in the spatially homogeneous case: we 
have curves ofeigenvalues over wave numbers except that associated eigenfunctions are 
no longer Fourier modes, but Bloch modes. Then, similar to the spatially homogeneous 
case, slow modulations in time and space of such a Bloch mode (indexed with np) may 
be described by the ansatz 

u(x, t) = A (e(x — ct), 2 t) 0  (o. x)ett0e'° ((g)r + CC.. 	 (31) 

where cc. means complex conjugate, where 0 < E « 1 is a small parameter, and where 
c = o,(e0 ) is the linear group velocity. The complex valued amplitude A(X. T) e 
describes slow modulations in time T = E 2 t, and space X = E(x ct), of the underly-
ing wave iv0(?o, x)eUoe1wF7o(o)(. The Bloch modes of the ansatz are strongly concen-
trated in an 0(e) neighborhood of the basic Bloch wave numbers ±o and the evolution 
of the wave packet will be strongly determined by the associated curves at ± o . 
Plugging the ansatz into (25) one finds that A has to satisfy a NLS equation 

0TA = iz'10A + iv2AA 2 	 (32) 

with coefficients v l 	3w 0  (to) E JR and 

3 	X3(X) 

=() f — 	v 0  &o,  x) dx E JR. 
x(x) 

The occurrence of the nonlinear term iu,AA 2  is a priori not clear at all. However, the 
nonlinear interaction corresponds in Bloch space to a convolution with respect to the 
Bloch wave numbers. Thus, the concentration ofmodes is respected by the nonhnear in-
teraction which can be described in lowest order by iv2 AA 2 . 

In general, the dispersion relation £ —* og(f) and hence the coefficient ii as weil as 
L12 have to be calculated numerically. On the other hand, for a given material, these coef-
ficients can be taiiored by adjusting the grating, i.e. the periodic functions Xi-  This is a 
highiy nontrivial optimization problem [HFB WO!]. 

The justification of (32) for (25) in the sense of error estimates proceeds similar to 
the proof of Theorem 4.1, but the functionai analysis becornes somewhat more compli-
cated [BSTU06]. The physical detection of the pulses predicted by (32) is a nontrivial 
task, since they are localized in the photonic crystal and cannot be 'seen'. One possibi-
lity wou!d be the interaction with other modulating pulses. However, similar to the ana-
lysis in §5, only pulses with carrier waves dose to the carrier wave of the standing pulse 
will have any relevant, in terms oLe, effect on the standing pulse, and vice versa. Never-
theless, due to the higher dispersion, the influence is in general much larger than in 
homogeneous optical fibers, cf. [TPB04]. 

7 Single pulses II 

We found approximate modulating pulse solutions with the help of the NLS equation 
up to a time-scale oforder 0(1/ e2 ) .  Since these solutions are essentiai for the transport 
of information the following question occurs: do these solutions exist for all t e IR? 
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More precisely, are there 'breather solutions', which are time-periodic solutions in a 
moving frame and which are spatially localized, i.e., which decay to zero for Ix - oc? 
Such solutions are known explicitly for the sine-Gordon equation 

= Ou - sin(u), 

which first appeared in differential geometry in the description of surfaces with constant 
negative curvature [Enn70], but which also appears in crystallography and in particle 
physics. In fact, like the NLS equation, the sine-Gordon equation is a completely integr-
able Hamiltonian system. See [DJ89] for more background and references. 

Thus, the question is whether 'breathers' can also exist in other nonlinear wave 
equations, for instance of the type 

= 0u— u+g(u), 

where g: JR - JR is a smooth, odd function which satisfies g(u) = 0(u3 ) and 
g"(0) > 0. lt turns out that for g(u) dose to u - sin(u) the sine-Gordon equation is the 
only such equation. For a precise statement see [BMW94, Den93]. In the following we 
explain why this 'non existence ofbreathers' result holds. Moreover, we will explain po-
sitive results for generalized breather solutions. 

The solutions we are interested in are obtained from the ansatz 

u(x. t) = v(x - Cg t, x - ct) = v(,y), 

where v is periodic in y with period 27r/ko for some k0  > 0. They are homoclinic solu-
tions of the evolutionary System 

(1 - c)0v + (1 - c)Ov - v + g(v) = 0. 	 (33) 

which generalizes the spatial dynamics approach of Kirchgässner [Kir82], i.e., we look 
for 1' with 

um v(,y) = 0. 

In order to obtain (33) we have chosen Cg = l/c, according to the linear relation 
= 1/c,. 
Hence, v has to be in the intersectiori of the stable and unstable manifold of the ori-

gin. The stable and unstable manifolds are the nonlinear counterparts to the stable and 
unstable subspaces in case of linear equations and are tangential to these subspaces. 
Therefore, we look at the linearization around the fixed point (v. Otv)  (0,0) in order 
to compute the dimensions ofthese manifolds. The linearization of(33) is given by 

(1 —c3)3v+(1  —c)0v--v=0. 	 (34) 

Since we are interested in periodic solutions w.r.t. y we use Fourier series 

= 	v,,()e'OY 

‚HElL 

and find 02 1,= — vH  which is solved by ti,,,(x) = e1Äu,(0) where ‚ = 	
(1 -e) 
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Due to the cubic nonhinearity we can restrict to odd m e Z. Therefore, for c dose to 
the eigenvalues )g, are on the imaginary axis for I ml > 3. The eigenvalues )± are on the 
real axis for c < C ) . Hence we have a two-dimensional stable and a two-dimensional 

unstable manifold. These manifolds intersect for the sine-Gordon equation, but in gen-
eral two two-dimensional manifolds will not intersect in an infinite-dimensional phase 
space. This makes the sine-Gordon equation exceptional in this dass ofequations. 

Figure 7: The spectrum of the linearization (34), where s is defined in Theorem 7.1. 

A time-periodic solution in a moving frame is called generalized moving breather or 
generalized modulating pulse solution ifnot necessarily 

hirn v(y) = 0, 

but v(,y) is small for 	- cc. In [GS01], the existence ofgeneralized modulating pulse 
solutions with O(s')-tails has been established. For simp!icity we restrict to g(u) = u3 . 

Theorem 7.1 Fix a positive integer n and a positive real number k0 . For srfficiently 
small e > 0 (depending upon n and k0) there exists an infinite-dimensional, continuous 
family of modulatingpulse solutions to equation (5) oftheforrn 

u(x, t) = v(x - Cg t,X - 

where v is 27r/k o-periodic in its secondarguinent andc1)  = 	+ "iE2 , Cg  = 1/c. These so- 
lutions satisfy 

v(,y) = v(—,y), 	v(,y) - 2h(,y,e) <n+l, 

where h(, y, s) = Bpuise() Sfl koy + cc. + 0(s2 ) and hiiri 	h(. y. s) = 0. 
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O(e'+ 1 ) 0(e) 

Figure 8: A generalized modulating pulse solution. 

The modulating pulse solutions of Theorem 7.1 are found in the intersection of the 
infinite-dimensional center stable and infinite-dimensional center unstable manifold. 
For :c the solutions converge with some exponential rate towards the center 
manifold. Thus, a secular growth of the solutions is possible. However, for this special 
equation the boundedness for ~ foliows with the heip of the Hamiltonian struc-
ture due to the fact that the Hamiltonian restricted to the center manifold is positive dc-
finite. 

For general, especially quasilinear, systems the norm induced by the Hamiltonian is 
too weak compared with the norm used for the construction ofthe invariant manifolds. 
Thus, in general, generalized modulating pulse solutions can only be constructed for 

< 1 /e, cf. [GS05]. This result has been improved in [GS06] to exponentially small 
tails and exponentially large intervals, je., 	< exp(-1/e). 

8 Outlook and related fields 

The above analysis can be extended into a number of directions. First we may consider 
different constitutive laws for the polarization, as for instance 

Op(x, t) = u(x, t) + d(u(x 7  t) 3 ) 

leading to quasilinear systems, cf. [GS05]. 
Recently so-called ultra-short pulses have attracted a lot of interest, cf. [SW04]. 

They play an important role in spectroscopy. For such pulses the length ofthe envelope 
and the wavelength ofthe underlying carrier wave have a comparable size. 

In materials with broken up-down symmetry also quadratic terms are present. Then, 
from a mathematical point of view, the proof of the above approximation resuits is a 
much more challenging task. The idea is to use normal form transforms or averaging 
methods to eliminate the quadratic terms and to reduce the proof to the cubic case, 
cf. [Sch98. BSTU06]. The case of quadratic resonant media has been treated recently in 
[SchO5]. 
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There is another famous System with dispersive behavior for which the NLS equa-
tion can be derived, namely the water wave problem, cf. [Zak68]. Estimates for the resi-
dual can be found in [CSS92I. Here, quadratic terms are present. The elimination of 
these terms is complicated due to some resonance at the wavenumber k = 0 and other 
resonances present in case of small positive surface tension. Estimates for model pro-
blems can be found in [DS05]. A first attempt for the water wave problem as been made 
in [SW06] where the validity of the approximation over at least the right time scale has 
been shown. 

More generaily, as already pointed out in the introduction, the methods reviewed 
here can be applied to all dispersive nonhinear equations for which the NLS equation 
can be derived. 

There are still many open questions. A serious difficulty in the description of photo-
nie crystals comes from the fact that the coefficient functions X/  very often are step func-
tions, i.e., they are not smooth. Another challenging problem is the justification of the 
NLS equation when the original equation possesses quasilinear quadratic terms. The 
elimination of these terms by normal form transforms gives a loss of regularity compli-
cating the local existence and uniqueness theory of solutions substantially. 
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Das vorliegende Buch ist ein Lehrbuch, das 
aus Vorlesungen des Autors für Informati-
ker und Mathematiker an der TU München 
hervorgegangen ist. In 8 Kapiteln und 2 An-
hängen wird eine Auswahl von grundlegen-
den Algorithmen aus verschiedenen Berei-
chen der Computeralgebra vorgestellt. 

Der Autor geht wie folgt vor. Die ersten 
vier Kapitel, die fast die Hälfte des Buches 
darstellen, sind Grundlagen gewidmet. Ka-
pitel 1 ist eine kurze Einleitung, in der ins-
besondere andere Quellen zur Einführung in 
die Computeralgebra sowie vergleichende 
Literatur zu Computeralgebrasystemen auf -
gelistet werden. In Kapitel 2 werden grund-
legende Themen wie Algorithmen und ihre 
Komplexität, Resultanten oder Mignotte-
Schranken angesprochen. Kapitel 3 ist dem 
Rechnen mit homomorphen Bildern (chine-
sicher Restsatz und Hensel-Liftung) gewid-
met. Kapitel 4 ist das mit Abstand längste 
Kapitel des Buches. Behandelt werden die 
Darstellung und Arithmetik von Zahlen und 
Polynomen. 

In Kapitel 5 werden Algorithmen zur Fak-
torisierung ganzer Zahlen vorgestellt (Pol-
lard-p, Pollard-(p - 1), Lenstras Elliptische-
Kurven-Methode, Kettenbruch-Methode 
von Morrison-Brillhart, quadratisches Zah-
lensieb). Kapitel 6 beschäftigt sich mit den 
Anfängen der univariaten Polynomfaktori-
sierung (Algorithmen von Berlekamp, Can-
tor-Zassenhaus und Zassenhaus). Gegen-
stand von Kapitel 7 ist die unbestimmte 

Summation. Vorgestellt werden die Algo-
rithmen von Moenck und Gosper. Kapitel 8 
ist eine sehr kurze Einführung in das Kon-
zept der Gröbner-Basen (Algorithmus von 
Buchberger). Die Anhänge lieferen einige In-
formationen zu ausgewählten Computeral-
gebrasystemen. 

Das Buch vermittelt einen ersten Eindruck 
von verschiedenen Bereichen der Compute-
ralgebra. Die behandelten Algorithmen wer-
den in Pseudocode dargestellt, analysiert 
und durch zahlreiche, gut ausgewählte Bei-
spiele illustriert. Es sind gerade die Beispiele, 
die vorlesungsbegleitend oder beim Selbst-
studium nützlich sind. 

Zum tieferen Verständnis der Materie 
müssen jedoch auch andere Quellen heran-
gezogen werden. So fehlt etwa die schnelle 
Fourier-Transformation im Kapitel über 
Arithmetik. Es werden Algorithmen zur 
Faktorisierung ganzer Zahlen vorgestellt, 
nicht aber Primzahltests. Im Kapitel über 
Polynomfaktorisierung werden die 1965-
1970 entworfenen Algorithmen zur univaria-
ten Faktorisierung beschrieben (diese sind 
auch heute noch von zentraler Bedeutung). 
Neuere Entwicklungen zur univariaten Fak-
torisierung, die Faktorisierung über Zahl-
körpern, modulare gcd-Algorithmen, multi-
variate Polynomfaktorisierung oder absolu-
te Polynomfaktorisierung werden aber nicht 
angesprochen. Die fundamentale Bedeutung 
von Buchbergers Algorithmus zur Berech-
nung von Gröbnerbasen wird nicht klar ge-
nug herausgearbeitet. Einige Bemerkungen 
zu Querverbindungen zwischen den einzel-
nen Kapiteln (etwa Polynomfaktorisierung 
+ Gröbner-Basen Zerlegung von Varie-
täten oder die klassische Anwendung von 
Resultanten zur Elimination) sowie ausführ-
hcher besprochenene Beispiele für prakti-
sche Anwendungen würden das Buch gut er-
gänzen. 

Etwas irritiert hat mich der Klappentext. 
Das dort angedeutete Vorhaben, an Beispie-
len die Leistungsfähigkeit von Computeral-
gebrasystemen aufzuzeigen, wird weder qua-
litativ noch quantitativ in Angriff genom-
men. 
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Zusammenfassend kann gesagt werden, 
dass das Buch eine erste Einführung in die 
Computeralgebra darstellt, die durch die be-
handelten Beispiele besticht. Es ist deswegen 
eine empfehlenswerte Ergänzung der vor-
handenen Literatur. 

Saarbrücken 	 W. Decker 

IAS/ PARK UTY 
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Theor' A Widgerson 
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0 lASIPark City Mathem. 

Series,VoI. 10 

American Math. Soc., 2004, 389 5., 869,- 

Seit Beginn der 90er Jahre widmet sich das 
Park City Mathematics Institute in Zusam-
menarbeit mit dem Institute for Advanced 
Study in Princeton der Förderung der ma-
thematischen Ausbildung und Forschung 
mit einem breiten Spektrum an Veranstal-
tungen für Lehrer, Studenten, Dozenten und 
Forscher. In jedem Jahr wird ein Schwer-
punktthema gewählt, das dann auch Gegen-
stand einer dreiwöchigen Graduate Summer 
School ist, deren Teilnehmer, mehrheitlich 
Doktoranden und Postdoktoranden und 
Forscher aus anderen Bereichen, von den 
Grundlagen des jeweiligen Gebiets bis zu ak-
tuellen Themen der Forschung geführt wer-
den sollen. Im Sommer des Jahres 2000 war 
mit Coniputational Complexity Theory erst-
mals ein Thema aus der Theoretischen Infor-
matik Schwerpunkt. Der vorliegende Band 
gibt (mit einer Ausnahme) die von den Do-
zenten, die ohne Einschränkung zu den füh-
renden Köpfen der Szene gerechnet werden 
dürfen, gehaltenen Vorlesungen wieder. An 
der Fülle des Materials und den technischen 

Ansprüchen erkennt man klar den „Steil-
kurs"-Charakter dieser Veranstaltung. Ne-
ben motivierenden Erläuterungen zu den 
Themen und Begriffen, Definitionen und 
Resultaten, die der Orientierung in der 
Landschaft der Komplexitätstheorie dienen, 
geben die Beiträge mit ihren ausgeführten 
Beweisen und Beweisskizzen einen guten 
Eindruck von der Arbeitsweise in diesem Ge-
biet. Inhaltlich kann der Band für sich in An-
spruch nehmen, in konzentrierter Form eine 
Art Bestandsaufnahme der Komplexitäts-
theorie (oder doch wenigstens von wichtigen 
Teilen davon), etwa 30 Jahre nach den Ar-
beiten von Stephen Cook, Leonid Levin und 
Richard Karp, zu geben, mit denen dieses 
Forschungsgebiet begründet wurde. 

Die einführenden acht kompakten Vor-
lesungen Complexity Theory: From Gödel to 
Feynman von Steven Rudich stecken den 
Rahmen dieser Sommerschule ab. Aus-
gehend von den grundlegenden Begriffsbil-
dungen um das notorische P-vs.-NP-Pro-
blem, über Komplexitätsmaße, Komplexi-
tätsklassen, Reduktionen und Relativierun-
gen bis hin zu unteren Schranken für Schalt-
kreise und im Rahmen der Beweiskomplexi-
tät, wird ein Panorama vorgeführt, das in 
vielen Punkten in den folgenden Beiträgen 
vertieft behandelt wird. Der Titel dieser Vor-
lesungen ist allerdings etwas irreführend: 
zwar wird Kurt Gödels berühmter Brief an 
John von Neumann aus dem Jahr 1956 abge-
druckt (im originalen Deutsch und in eng-
lischer Ubersetzung) und kurz diskutiert, 
aber über Richard Feynman und seine Ideen 
erfährt man (auch später) so gut wir nichts. 
Ergänzt werden diese einführenden Vor-
lesungen durch eine sehr knappe, aber in-
struktive Darstellung der A verage Case 
Complexity von Avi Widgerson und drei 
Vorlesungen Exploring Complexity through 
Reductions von Sanjeev Arora, wo das wich-
tige Thema der Probabilisticallg Checkable 
Proojs und der Nicht-Approximierbarkeit 
der exakten Lösungen von manchen NP-
schwierigen Problemen schon einmal behan-
delt wird. Dazu wird mit dem Beweis von 
Todas Theorem zu Zähiproblemen und po- 
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lynomieller Hierachie auch ein echter „Klas-
siker" der Komplexitätstheorie geboten. Die 
folgenden drei Vorlesungen von Ran Raz 
über Quanturn Computing beschränken sich 
auf eine elementare Einführung in den For-
malismus und ein Darstellung von Shor's 
polynomiellen Faktorisierungsalgorithmus 

sicher ein bahnbrechendes Resultat, das 
man aber inzwischen ähnlich dargeboten 
auch in vielen Lehrbüchern findet, was man 
von den meisten anderen Beiträgen so nicht 
sagen kann. Andere Bereiche des Quanten-
computing und der Quanteninformation 
werden nicht angesprochen. 

Die zweite Woche der Sommerschule, mit 
der Uberschrift Lower Bounds, hatte drei 
Themen: Circuit and Corninunication Corn-
piexity (Ran Raz), Proof Coinplexity (Paul 
Beame) und Arithmetic and Algehraic Corn-
plexity (Michael Ben-Or). An den beiden 
erstgenannten Beiträgen erkennt man, wie 
unterschiedlich die Dozenten an ihre Auf -
gabe herangegangen sind: Ran Raz gibt eine 
exemplarische und - inklusive Beweise - 
leicht nachvollziehbare Einführung in sein 
Thema. Paul Beame geht sein Thema sehr 
systematisch an, was bei die Vielzahl von for-
malisierten logischen Beweiskonzepten die 
Ubersicht erleichtert. Aber daher können 
viele der in dieses umfassende Bild gehören-
den Resultate nur ohne Beweis zitiert wer-
den. Zum letzten der drei genannten Thema 
fehlt bedauerlicherweise eine Ausarbeitung 
in dem vorliegenden Band - dieses umfang-
reiche und wichtige Teilgebiet der Komplexi-
tätstheorie ist somit hier überhaupt nicht 
vertreten. 

Der große Themenbereich Randoinness in 
Computation bestimmte die dritte Woche, 
wobei zwei Schwerpunkte auszumachen 
sind: einmal die Untersuchung von Pseudo-
zufallsgeneratoren und Pseudozufallsfunk-
tionen, sowie der Technik des Derandornisie-
rens, die in den beiden Beiträgen Pseudoran-
dornness 1 und II von Oded Golddreich bzw. 
Luca Trevisan dargestellt sind; sodann die 
faszinierenden Konzepte für interaktives, 
probabilistisches Beweisen (Interactive Pro-
o/.s, Zero-Knoti'ledge Pro(?,fs, Probabilistical- 

IY 	Proojs) mit ihren erstaunlichen 
Resultaten, von Salil Vadha und Madhu Su-
dan kompetent präsentiert. Angesichts der 
Kompliziertheit der Methoden und Resulta-
te, die zu den PCP-Charakterisierungen der 
Komplexitätsklasse NP führen, darf man in 
diesem Rahmen natürlich keine lehrbuch-
artige komplette Aufarbeitung erwarten, 
aber eine wertvolle Wegleitung aus erster 
Hand ist es allemal. 

Ein solcher Band mit Beträgen verschiede-
ner Autoren (teilweise wohl auch auf studen-
tischen Mitschriften beruhend) hat wie an-
gedeutet fast zwangsläufig Unausgewogen-
heiten. Der Vorzug, in vielen Bereichen von 
ausgewiesenen Experten einen authentischen 
Eindruck von der Denk- und Arbeitsweise in 
deren Spezialgebieten anhand von grund-
legenden und aktuellen Resultaten zu erhal-
ten, ist greifbar. Aber ein durchstrukturiertes 
Lehrbuch hält man nicht in der Hand, eher 
eine Sammlung von interessanten, anregen-
den, unterschiedlich konzipiertenTutorials 
auf durchwegs hohem Niveau, das den state 
of the art nach dreissig Jahren Komplexitäts-
theorie widerspiegelt. 

Erlangen 	 V. Strehl 

Berlin u. a., Springer, 2004, 213 5., € 84.95 

This book provides a survey of knotted sur-
faces in Euclidian 4-space including their re-
cent results on quandle cocycle invariants 
and its applications. 2-dimensional knot the- 

S. Carter, 
S. Kamada, 
M. Sado 
Surfaces in 4-Space 
Enz. Math. Sciences 
142 
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ory is a higher version ofclassical 1-dirnen-
sional knot theory, but it has very different 
properties from the ciassical case. 

In Chapter 1 ofthe book they discuss basic 
methods of drawing pictures of knotted sur-
faces, such as motion pictures, normal 
forms, broken surface diagrams, and braid 
chart descriptions. These methods are used 
in the area, and the pictures illustrated in this 
book are very beautiful. 

Chapter 2 is devoted to the known meth-
ods ofconstructing knotted surfaces. In par-
ticular, deform-spun knots and ribbon knots 
play important rolls of the study. They also 
explain how to construct a compact 3-mani-
fold, whose boundary is a given knotted sur-
face, by the Seifert algorithm. 

In Chapter 3 they review the invariants of 
knotted surfaces derived from the exterior of 
a knotted surface in the space. The Wirtinger 
presentation ofthe fundamental group of an 
exterior is given in various ways by using the 
descriptions in Chapter 1. They also explain 
the Faber-Levine pairing and its generaliza-
tion due to Kawauchi. 

Chapter 4 contains their most recent, in-
teresting works on quandles. They develop 
quandle homology and cohomology theory 
and define the invariants by using quandle 
cocycles in a state-sum form. The quandle 
cocycle invariants of knotted surfaces are 
natural generalizations of the Dijkgraaf-
Witten invariant for 3-manifolds. They also 
have many applications, for example, a low-
er bound of triple point numbers and non-in-
vertibility of knotted surfaces. 

The appendix is devoted to the tables of 
quandles with at most six elements and their 
homology groups due to Uegaki, which are 
useful to caiculating the cocycle invariants of 
knotted surfaces. 

This book is intended for graduate stu-
dents and mathematicians who are studying 
bw dimensional topology. 

Chiba (Japan) 	 S. Satoh 
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Lmntw 	D. Wuensch 
Zwei wirkliche Kerle: 

Neues zur Entdeckung 

der Gravitations- 

	

.‚zwi wirkikhr K" 
	

gleichungen der All- 

gemeinen Relativitäts-

theorie durch Albert 

Einstein und David 

Hilbert 

Termessos, Göttingen, 2005, 120 5., f 24,95 

In seiner Unsichtbaren Loge schreibt Jean 
Paul „Die Anstrengung der empfindenden 
Phantasie ist unter allen geistigen die entner-
vendste; ein Algebraist überlebt allemal ei-
nen Tragödiensteller." Lichtenberg vermute-
te aus ähnlichen Gründen, dass Mathematik 
zur Verlängerung des Lebens beitragen kön-
ne. Mit anderen Worten, die rationale, adre-
nalinarme Tätigkeit des Mathematikers 
macht zuweilen Mühe, ist aber sicher gesund! 

Nun hat es gerade in den letzten Jahren ei-
ne Entwicklung, wenn auch nicht in der Ma-
thematik selbst, so doch in der Geschichte 
der Mathematik gegeben, die den Adrenalin-
spiegel - zumindest bei den Beteiligten - in 
die Höhe trieb. Das Buch von Frau Wuensch 
enthält eine präzise Darstellung und Be-
standsaufnahme dieses Falles, logisch, sach-
lich, frei von Emotionen und trotzdem span-
nend wie ein Kriminalroman. 

Zur Sache: Im Jahre 1915 hatte Albert 
Einstein mit seiner bekannten Arbeit Zur all-
gemeinen Relativitätstheorie die Physik 
durch eine neue aufregende Sichtweise berei-
chert, die seiner speziellen Relativitätsheorie 
einen umfassenden einheitlichen Rahmen 
gab. Im gleichen Jahre reichte David Hilbert 
eine Arbeit Die Grundlagen der Physik zum 
gleichen Thema ein. Beide Arbeiten wurden 
nahezu zeitgleich eingereicht, die Hilbertsche 
Publikation erschien jedoch erst im Jahre 
1916. Die beiden Autoren standen vor den 
Veröffentlichungen in lebhaftem Kontakt 
miteinander, das heißt, die beiden Arbeiten 
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sind nicht unabhängig entstanden. Nach bis-
heriger Meinung hat Albert Einstein von 
David Hilbert bei der Formulierung der ma-
thematischen Grundlagen der allgemeinen 
Relativitätstheorie profitiert. 

Im Jahre 1997 erschien in der Zeitschrift 
Science ein Artikel von Leo Corry, Jürgen 
Renn und John Stachel, in dem die sensatio-
nelle Behauptung aufgestellt wurde, dass 
umgekehrt Hilbert von Einstein profitiert 
habe. Das Hauptargument dieser Autoren 
war, dass in den von dem ersten Autor in der 
Staats- und Universitätsbibliothek Göttin-
gen aufgefundenen Fahnenkorrekturen von 
Hilberts Arbeit eine Formel fehle, die in der 
endgültigen Arbeit zu finden sei. Hilbert 
habe zwar die Einsteinschen Gravitations-
gleichungen in der impliziten Form auf -
geführt, jedoch in den Fahnenkorrekturen 
daraus nicht den zugehörigen Variations-
term hergeleitet. Diese sensationelle Nach-
richt provozierte eine Anzahl von Reaktio-
nen und Gegenreaktionen, nicht nur in wis-
senschaftshistorischen Zeitschriften, auch in 
der Washington Post, der Neuen Zürcher 
Zeitung und natürlich auch im Internet. Ei-
ne Website mit recht kräftigen Anwürfen in 
ausgesprochen unakademischer Wortwahl 
musste inzwischen nach Einschreiten eines 
Anwalts zurückgezogen werden. 

Im Jahre 2004 hat Friedwardt Winterberg 
eine nicht minder aufregende Entdeckung 
publiziert: Hilberts Fahnenkorrekturen sind 
offenbar nicht mehr im Originalzustand, ir-
gend jemand hat sie auseinandergerissen und 
ausgerechnet die Stelle herausgeschnitten, 
an der sich die fragliche Formel befinden 
müsste. Dieser Tatbestand wird von Corry, 
Renn und Stachel auch nicht bestritten. Wir 
haben hier also die absurde Situation, dass 
die „Anklage" gegen Hilbert auf die Nicht-
existenz einer Formel begründet ist, die sich 
auf einem Teil der Fahnenkorrekturen be-
funden hätte, der ebenfalls nichtexistent ist. 
Ein solcher, zweifach auf Nichtexistenz 
gegründeter Beweis erweckt Unbehagen 
(Schliemann hat in Troja keine Drähte aus-
gegraben, also besaßen die Trojaner drahtlo-
se Telegraphie!). 

In dem Buch von Frau Wuensch wird in 
umfassender und minutiöser Weise Spuren-
sicherung betrieben. Sie hat das Umfeld der 
beiden Kontrahenten zur Tatzeit gründlich 
untersucht, und man begegnet hier guten Be-
kannten wie Felix Klein, Walter Baade, Max 
Born und anderen. Sie hat sich intensiv mit 
den in den Archiven noch vorhandenen Ma-
nuskripten Hilberts auseinandergesetzt, und 
sie hat überzeugend versucht, die Vorgänge, 
die zu dem jetzigen Zustand der Fahnenkor-
rekturen geführt haben, zu analysieren. Die-
ser Teil des Buches liest sich spannend wie 
ein Kriminalroman. Die Autorin hat am 
„Tatort" in der Staats- und Universitäts-
bibliothek Göttingen akribisch recherchiert 
und zahlreiche spannende Details zutage ge-
bracht, wie die Faltung der Fahnenkorrektu-
ren oder die Art und Weise der Ausschnei-
dung, aber sie befasst sich auch mit der Per-
sönlichkeit Hilberts: Welche Motive hätte er 
gehabt, sein Manuskript zu verstümmeln, 
wie hielt er es generell mit Ausschneidungen? 
Dies geht so weit, dass die Autorin ab-
schätzt, welche Größe der verschwundene 
Ausschnitt gehabt hatte und wieviel Inhalt 
sich auf einer Fläche dieser Größe unterbrin-
gen lässt. Sie hat die Manuskripte Hilberts 
statistisch untersucht, um zum Beispiel fest-
zustellen, auf welche Weise Hilbert Manu-
skripte bezifferte. Sie hat die Handschrift 
Hilberts analysiert und sie ist der Frage 
nachgegangen, warum die Fahnenkorrektu-
ren auf die nun vorliegende Weise gefaltet 
sind. Ihre Schlussfolgerung ist eindeutig und 
nachvollziehbar: Die Manipulationen an 
den Fahnenkorrekturen sind in neuerer Zeit 
—genauer nach 1985 —entstanden. 

Neben diesen materiellen Indizien gibt es 
natürlich auch noch den modus operandi der 
Beteiligten. Ist es einsichtig, dass David Hil-
bert, der die „Weiterführung der Methoden 
der Variationsrechnung" im Jahre 1900 als 
23. Problem gestellt hatte, der auf dem Ge-
biet der Variationsrechnung und der Inva-
riantentheorie Grundlegendes geleistet hat-
te, eine - zumindest für ihn - relativ nahelie-
gende Konsequenz, die er in seinem publi-
zierten Artikel mit den Worten .....wie leicht 
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ohne Rechnung... folgt .....erst gesehen ha-
ben soll, nachdem er die inzwischen erschie-
nene Arbeit Einsteins in Händen hatte? 
Auch diesen innermathematischen Fragen 
geht Frau Wuensch mit der ihr eigenen 
Gründlichkeit und Sauberkeit nach. Dabei 
steht sie nicht allein mit dieser Vorgehens-
weise, zum Beispiel haben sich auch A. A. 
Logunov, M. A. Mestvirishvili und V. A. Pc-
trov in einem unlängst in den Phys. Uspekhi 
erschienenen Artikel in die Debatte einge-
schaltet. In einer sehr klaren und gründli-
chen physikalischen Argumentation kom-
men sie zu dem Resultat .....the conclusions 
drawn in these papers [Corry, Renn, Stachel] 
are completely groundless." 

Es ist bezeichnend, dass die beiden drama-
tis personae selbst das hier angesprochene 
Problem bemerkenswert gelassen hinnah-
men, was die eingangs zitierte Theorie von 
der besonderen Art der Konfliktbewältigung 
unter Mathematikern zu stützen scheint. Ei-
ne anfängliche Verstimmung - Hilbert äu-
ßerte sich ungehalten darüber, dass Einstein 
ihn in seiner Arbeit nicht zitiert hatte - wur-
de alsbald beigelegt. Weitaus wichtiger ist - 
und dies wird von Frau Wuensch besonders 
hervorgehoben - dass hier Unvergleichbares 
verglichen wird. Einstein war Physiker, Hil-
bert Mathematiker. Das eigentliche Anlie-
gen Hilberts in seiner Arbeit ist der Versuch 
einer Axiomatisierung der Physik (6. Hil-
bertsches Problem: Mathematische Behand-
lung der Axiome der Physik). Die Gleichung, 
die heute die Gemüter so erregt, war sicher-
lich für Hilbert eine naheliegende Kon-
sequenz, steht aber eher am Rande der Hil-
bertschen Uberlegungen. Für Einstein hin-
gegen war die Mathematik ein wichtiges 
Werkzeug, aber eben nur ein Werkzeug, wo-
bei er nach Felix Klein „mehr von einem 
starken physikalischen Instinkt als von kla-
rer mathematischer Einsicht gleitet wird." 
So sehen es auch Logunov, Mestvirishvili 
und Petrov, die bezüglich Einsteins Darstel-
lung auf „intuitive considerations" hinwei-
sen und darauf, dass die Gleichungen nicht 
immer „hergeleitet" (derived) sondern „gera-
ten" (guessed) seien. 

Frau Wuensch gibt der Versuchung nicht 
nach, aus ihren Untersuchungen ihrerseits 
eine neue Anklage zu formulieren, auf eine 
Person zu zeigen und auszurufen „Thou art 
the man!" Es bleibt dem Leser überlassen, 
seine eigenen Schlüsse zu ziehen. Nach den 
eingangs erwähnten Emotionen wirkt sie 
sachliche Kühle dieses - nichtsdestoweniger 
ungemein spannenden - Buches sehr wohl-
tuend. 

Man kann das Buch aus verschiedenen 
Gründen empfehlen. Zum einen ist es ein-
fach eine fesselnde Lektüre, darüber hinaus 
liefert es einen interessanten Einblick in das 
wissenschaftliche Umfeld von Einstein und 
Hilbert und zeigt den mühevollen Weg bis 
zur endgültigen Formulierung der allgemei-
nen Relativitätstheorie. Das Buch zeigt auch 
auf eine - wie ich meine mustergültige Art, 
wie mathematikhistorische Forschung sein 
sollte: Man muss die Fakten mit Akribie und 
wissenschaftlicher Ehrlichkeit recherchieren, 
und erst wenn diese nur noch eine einzige 
Schlussfolgerung zwingend zulassen, dann 
sollte man diese ziehen, auch wenn die Ver-
suchung, ein sensationelles Ergebnis vor-
schnell zu publizieren, manchmal verlockend 
ist. Wie Brecht es im Leben des Galilei for-
dert: 

Ja, wir werden alles, alles noch einmal 
in Frage stellen. Und wir werden nicht mit 
Siebenmeilenstiefeln vorwärtsgehen, son-
dern im Schneckentempo. Und was wir 
heute finden, werden wir morgen von der 
Tafel streichen und erst wieder anschrei-
ben, wenn wir es noch einmal gefunden ha-
ben. Und was wir zu finden wünschen, das 
werden wir, gefunden, mit besonderem 
Misstrauen ansehen. ... Sollte uns dann 
aber jede andere Annahme als diese unter 
den Händen zerronnen sein, dann keine 
Gnade mehr mit denen, die nicht geforscht 
haben und doch reden. 

Mein Resumee über das Buch lässt sich am 
besten in Einsteins Worten formulieren: 
„Lieber Leser! Resümiert wäre profaniert. 
Selber lesen!" Ich würde sogar so weit gehen 
wollen, mit Lichtenberg zu empfehlen: „Wer 
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zwei Paar Hosen hat, mache eins zu Geld 
und schaffe sich dieses Buch an." 

Man darf auf das Buch der gleichen Auto-
rin über Theodor Kaluza gespannt sein. 

Hamburg 	 U. Eckhardt 

J.AppeIi, E. De Pascale, 

A.VignuIi 

Nonhinear Spectral 

Theory 

de Gruyter Ser. in Non-

in. Anal. and AppI. 10 

Berlin u. a., dc Gruyter, 2004.408 S., € 148,- 

This is a unique book in the mathematical lit-
erature which systematically deals with the 
nonlinear spectral theory, looks for the com-
mon points with the classical linear spectral 
theory on one hand and points out the strik-
ing differences on the other hand. 

Nonlinear spectral theory is relatively new 
field of mathematics. Its origin falls within 
the second half of the twenties century. lt is 
far from being complete and many funda-
mental questions remain to be open here. 
The main focus of this book is therefore for-
mulated by the authors in the following 
question: "How should we define a spectrurn 
for nonlinear operators which attempts to 
preserve the useful properties of the linear 
case, but admits applications to a possibly 
large variety ofnonlinear problems?" 

Since the spectral theory for linear opera-
tors appeared to be one of the most impor-
tant topics of functional analysis and one of 
the most important tools in solving linear 
Operator equations, it is natural to look for 
analogies of the notion "spectrum' in the 
nonlinear theory. 

lt was always tacitly assumed that a rea-
sonable definition ofa spectrum ofa contin-
uous nonlinear Operator should satisfy some 
minimal requirements, namely: 

• it should reduce to the familiar spectrum 
in case of linear operators 

• it should share some of the usual proper-
ties with the linear spectrum (e. g. com-
pactness) 

• it should contain the eigenvalues of the 
operator involved 

• it should have nontrivial applications, i.e. 
those which may not be obtained by other 
known means. 

As the authors show, in contrast to the linear 
case, the spectrum of a nonlinear Operator 
contains practically no information on this 
Operator. The authors finally convince the 
reader that it is not the intrinsic structure of 
the spectrum itseif which leads to interesting 
applications, but its property of being a use-
ful tool for solving nonlinear equations. The 
reason consists in the fact that the authors 
are more interested in studying specific non-
linear equations rather than abstract spec-
tra. 

This book is an excellent presentation of 
the "state-of-the-art" of contemporary non-
linear spectral theory as weil as the glimpse 
ofthe diversity ofthe directions in which cur-
rent research is moving. The whole text con-
sists of 12 chapters. The authors recall the 
basic facts obout the spectrum of a bounded 
linear Operator in a Banach space in the first 
chapter. In Chapter 2 some numerical char-
acteristics which provide a quantitative dc-
scription of certain mapping properties of 
nonlinear operators are studied. The classi-
cal Kuratowski measure of noncompactness 
plays the key role here. Chapter 3 is devoted 
to the general invertibility results. In particu-
lar, the conditions which guarantee that the 
local invertibility ofa nonlinear Operator im-
plies its global invertibihty are of interest. 
The Rhodins and the Neuberger spectra are 
studied in Chapter 4. In Chapter 5 the 
authors study a spectrum for Lipschitz con-
tinuous operators first proposcd by Kachu- 
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rovskij in 1969 and a spectrum for linearly 
bounded operators introduced recently by 
Dörfner. Chapter 6 is concerned with a spec-
trum for certain special continuous opera-
tors introduced by Furi, Martelli and Vigno-
ii in 1978 and its modification introduced re-
cently by Appell, Giorgieri and Väth. The 
Feng spectrum is discussed in detail in Chap-
ter 7. Chapter 8 is devoted to the study of 
"local spectrum" due to Väth, which is called 
in the literature as "phantom". In Chapter 9 
the authors investigate the modification of 
Feng spectrum proposed by Feng and Webb 
and another spectra introduced by Singhof-
Weyer, Weberand Infante-Webb. Chapter 
10 is devoted to the study of nonlinear eigen-
value problems. The authors focus on the 
notion of a "nonlinear eigenvalue", non-
linear analogue of the Krein-Rutman theo-
rem, connected eigenvalues, etc. In Chapter 
11 they show how numerical ranges may be 
used to localize the spectrum of a nonlinear 
Operator on the real line or in the complex 
plane. Selected applications are presented in 
the last Chapter 12. 

The exposition of nonlinear spectral theo-
ry in this book is self-contained. All major 
statements are proved, each definition and 
notion is carefully illustrated by examples. 
To understand this text does not require any 
special knowledge and only modest back-
ground of nonlinear analysis and Operator 
theory is required. Due to these facts this 
book can be used also as a "textbook" for 
graduate students who are looking for new 
and interesting problems. Especially, those 
who are interested in the solvability and bi-
furcation of nonlinear Operator equations 
which represent nonlinear boundary value 
problems or nonlinear integral equations 
will find a lot of inspiration there. The book 
is addressed not only to mathematicians 
working in analysis but also to non-specia-
lists who want to get on idea of the develop-
ment of spectral theory for nonlinear opera-
tors in the last 30 years. The bibliography is 
rather exhaustive and so this text will cer-
tainly serve as an excellent reference book 
for many years. This volume should not be  

missing at any department of mathematics 
and in any mathematical library. 

Pilsen 	 P. Dräbek 

Y. Pesin 
Lectures on partial 

hyperbolicity and 

stable ergodicity 

Zürich Lec. in Adv. 
Math. 

Zürich, European Math. Soc., 2004, 122 S., 
€28,- 

Das vorliegende Buch ist eine Einführung in 
die Theorie der partiell hyperbolischen Sys-
teme, einem sich in letzter Zeit schnell ent-
wickelten Zweig der Theorie der glatten dy-
namischen Systeme. Der Autor zählt zu den 
weltweit führenden Experten auf diesem Ge-
biet und ist einer der Begründer dieser mo-
dernen Theorie. Obwohl dieses Gebiet seit 
etwa 30 Jahren erforscht wird, sind gerade in 
den letzten Jahren sehr viele Publikationen 
erschienen. Das Buch von Pesin kann aber 
als das erste umfassende und einführende 
Lehrbuch angesehen werden. Es ist sowohl 
für fortgeschrittene und interessierte Stun-
denten und Doktoranden als auch für Wis-
senschaftler, die sich mit dynamischen Syste-
men beschäftigen äußerst empfehlenswert. 

Das Buch beginnt mit der grundlegenden 
Theorie der hyperbolischen Systeme. Dabei 
wird besonders die Theorie der stabilen und 
instabilen Blätterungen beschrieben. Aus-
gehend von ihrer Existenz werden ihre wei-
tergehenden Eigenschaften wie absolute Ste-
tigkeit und Hölderstetigkeit diskutiert. Da-
ran anknüpfend wird der Beweis der struktu-
rellen Stabilität von Anosovsystemen skiz-
ziert. 
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Nach diesen Grundlagen der Theorie der 
hyperbolischen Systeme wird die Theorie der 
partiell hyperbolischen Systeme untersucht. 
Diese unterscheiden sich von den hyperboli-
schen durch das Auftreten „neutraler" Rich-
tungen. Nach Beschreibung deren Eigen-
schaften wird das Hauptaugenmerk auf den 
Beweis des fundamentalen Satzes von Pugh 
und Shub über die stabile Ergodizität von 
partiell hyperbolischen Systemen gerichtet. 
Ein zentraler Punkt dabei ist die Unter-
suchung der stabilen Erreichbarkeit (stable 
accesibility). 

Das Buch ist in einem hervorragendem Stil 
geschrieben. Die Beweise und Ideen sind klar 
strukturiert. Der Aufbau ist in sich schlüssig 
und logisch klar strukturiert. Die Notatio-
nen verzichten auf unnötige Kompliziert-
heit. Das alles trägt zu einer sehr guten Les-
barkeit bei. Obwohl ein gewisses Grundwis-
sen über die Theorie der glatten dyna-
mischen Systeme hilfreich sein kann, speziell 
wenn man an den vollständigen Beweisen 
der Grundlagen der hyperbolischen Theorie 
interessiert ist, ist dieses Buch in sich ge-
schlossen und kommt weitgehend ohne zu-
sätzliche Literatur aus. 

Lund 	 J. Schmeling 

L. Ambrosio, P. TilIi 

Topics on Analysis 
on Metric Spaces 
Oxford Lect. Ser. in 

MaIh. and its Appl. 25 

Oxford University Press, 2004, 133 5., 
£29,50 

Bei der Behandlung von Problemen im Be- 
reich Partieller Differentialgleichungen und 
Mathematischer Physik finden grundlegen- 

dc Konzepte der Analysis und der Maßtheo-
ne auf euklidischen Räumen Anwendung. In 
den letzten Jahren setzte sich jedoch die Er-
kenntnis durch, dass diese fundamentalen 
Konzepte verallgemeinert werden können, 
indem man die zugrunde liegenden eukli-
dischen Räume durch geeignete Klassen von 
metrischen Räumen ersetzt, was neben ei-
nem tieferen Verständnis der zugrunde lie-
genden Strukturen auch zu eleganten und 
verständlichen Beweisen der Resultate führt. 

Ziel des vorliegenden Buches ist eine ele-
mentare Einführung in die Grundlagen der 
Analysis auf metrischen Räumen. Das Buch 
selbst basiert auf einer Vorlesung des ersten 
Autors, die er an der Scuola Normale in Pisa 
im Jahre 1999 abgehalten hat. 

Kapitel 1 gibt eine Einführung in die Maß-
theorie. Dabei wird der Zugang von Cara-
thäodory über äußere Maße entwickelt. Ne-
ben der grundlegenden Definition werden 
die wichtigsten Begiffe wie reguläre Maße, 
die Messbarkeit von Mengen bzgl. des Ma-
ßes und das Kriterium von Carathäodory für 
Messbarkeit vorgestellt. Danach wenden 
sich die Autoren den signierten und vektor-
wertigen Maßen zu. Insbesondere diskutie-
ren sie den Rieszschen Darstellungssatz für 
beschränkte lineare Funktionale auf einem 
lokal-kompakten topologischen Hausdorff-
Raum E mit Werten in JR' und skizzieren 
dessen Beweis. Schließlich wird das wichtige 
Konzept der schwachen Konvergenz von 
Maßen etabliert. 

In Kapitel 2 führen die Autoren dann das 
k-dimensionale Hausdorff-Mass 7- , k > 0, 
auf einem metrischen Raum (E, d) ein und 
studieren dessen wichtigste Eigenschaften. 
Derartige Maße stellen eine Verallgemeine-
rung der klassischen Konzepte von Länge, 
Flächeninhalt und Volumen dar. Auf den 
Spezialfall (E, cl) = (JR". 1 . )' k = n, wird 
besonders eingegangen und gezeigt, dass das 
n-dimensionale Hausdorff-Maß auf JR' mit 
dem n-dimensionalen Lebesgue-Maß C 
übereinstimmt. Schließlich wird noch auf die 
für viele Anwendungen wichtige Frage ein-
gegangen, ob ein gegebenes Radon-Maß j 
durch ein Hausdorff-Maß darstellbar ist 
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oder ob man zumindest die Hausdorff-Di- 
mension des Trägers von u kontrollieren 
kann. Dazu betrachtet man [1(Br (x))/r" im 
Limes r 1 0 und wird auf die Definition der 
k-dimensionalen oberen (unteren) sphäri- 
schen Dichte bzw. der sphärischen Dichte ge- 
führt. Die Annahme an die k-dimensionale 
obere (untere) Dichte, dass sie > t (< t), 
t > 0, auf B ci E ist, erlaubt die Abschätzung 

> t7?(B) (bzw. <t2k7k(B)).  Die im 
Beweis benötigten Uberdeckungssätze (etwa 
der Uberdeckungssatz von Vitali), die den 
Schluss vom Lokalen zum Globalen ermög- 
lichen, werden zuvor ausführlich diskutiert. 

Das dritte Kapitel beschäftigt sich mit der 
Klasse der Lipschitz-stetigen Funktionen 
Lip(E, F) zwischen metrischen Räumen 
(E, dE) und (F, dF) und deren Verbindungen 
zum Hausdorff-Maß. Zunächst wird der 
Frage nachgegangen, inwieweit es möglich 
ist, Lipschitz-Funktionen, die auf einer Teil-
menge A von E definiert sind, zu einer Lip-
schitz-Funktion auf E fortzusetzen. Im Fall 
(F, dF) = (JR. 	) wird dies durch den ele- 
mentaren Satz von McShane geklärt. All-
gemeinere Aussagen werden diskutiert, aber 
nicht bewiesen (etwa der Satz von Kirsz-
braun, Lipschitz-Funktionen zwischen mc-
trischen Räumen mit Krümmungsschranken 
in Sinne von Alexandrov, etc.). Danach 
werden Anwendungen vorgestellt, die das 
Verhalten des Hausdoff Maßes unter Lip-
schitz-Funktionen betreffen. Unter anderem 
wird eine Vorstufe der Koflächenformel dis-
kutiert. Genauer: Ist <p e Lip(E,F), Rk(E) 
<cxc und m < k, so lässt sich das Integral 
des (k - m)- dimesionalen Flächeninhaltes 

der Niveaumengen 
y E F, bzgl. d7-(y) durch Cm5 Lip(q)m  
7-(E) abschätzen. 

Im Anschluss wird auf die wichtige Cha-
rakterisierung der Lipschitz-Funktionen 
Lip(JR, IR), als genau derjenigen L'(JR)
Funktionen mit Distributions-Gradient 
Vu E L(JR, JR"), und den Satz von Rade- 
macher eingegangen. Letzterer garantiert, 
dass jede Lipschitz-Funktion fast überall 
(bzgl. des Lebesgue-Maßes) differenzierbar 
ist. 

Zum Abschluss von Kapitel 3 wird die all-
gemeine Flächenformel für Lipschitz-Funk-
tionen da JR -* 1R, n > k, vorgestellt und 
diskutiert. Auf den technisch aufwendigen 
Beweis wird verzichtet. Statt dessen wird 
die eindimensionale Flächenformel, d. h. 
k = in = 1, für die Klasse der fast überall dif-
ferenzierbaren Funktionen da JR - IR, die 
Nullmengen in Nulimengen abbilden, voll-
ständig bewiesen. 

Das vierte Kapitel ist zunächst dem Be-
griff der Geodätischen in einem metrischen 
Raum (E, d) gewidmet. Für Kurven 'y: [0. 1] 
-* E werden die Begriffe der totalen Varia-
tion und der Rektifizierbarkeit eingeführt. 
Dies erlaubt die parametrische Formulie-
rung des Problems der kürzesten Verbin-
dungskurve zwischen zwei Punkten x. y E E 
als 

ruin Var('y) . . 'yELip([O,l],E) <, 
y(0) = x, 7(1) = y 

Daneben hat man auch die intrinsische For- 
mulierung: 

nu 

	

• n 

t  

 711 (C) 	
C abgeschlossen und 

zusammenhangend, x. i' E C 

Das Ziel ist nun zu zeigen, dass sowohl die 
parametrische als auch die intrinsische For-
mulierung des Problems der kürzesten Ver-
bindung eine Lösung besitzt und dass diese 
übereinstimmen. Dazu wird zunächst das 
Konzept der metrischen Ableitung einge-
führt. Eine Kurve y: [a. b] -# E ist in 
E (a, b) metrisch differenzierbar, falls der 

Grenzwert 

d(7(t + h),7(t)) 

	

um 	 E JR 

	

h-o 	h 

existiert. Für Lipschitz-Kurven 'y: [a. b[ - E 
zeigt sich dann, dass die metrische Ableitung 
in fast allen Punkten in la, b] existiert und 
dass die totale Variation Var() gerade das 
Integral der metrischen Ableitung [(t) über 
[a. b] ist. Dies bedeutet insbesondere, dass 
für fast alle t e [ab] gilt: £(t) = '(t), wobei 
£(t) = Var('y). D.h. die metrische Ablei-
tung ist für fast alle Punkte gerade die Ande-
rungsrate der Länge der Kurve. Damit ist 
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man dann in der Lage jede Lipschitz-Kurve 
: [a, b[ - E nach der Bogenlänge umzupa-

rametrisieren, d. h. man findet eine Lip-
schitz-Kurve ': [0, L[ -a E, L := Var(7), mit 
metrischer Ableitung ' = 1 fast überall auf 
[0.L] und ([0,L[) = 7([a,b]). Die Existenz 
pararnetrischer geodätischer Verbindungs-
kurven ergibt sich dann wie im klassischen 
Riemannschen Fall, indem man eine Mmi-
malfolge geeignet nach der Bogenlänge um-
parametrisiert und auf die umparametrisier-
ten Kurven den Satz von Arzelä-Ascoli an-
wendet (dabei ist natürlich vorauszusetzen, 
dass die Klasse der Lipschitz-Kurven, die x 
mity verbinden, nicht leer ist). 

Der Beweis, dass die intrinsische Formu-
lierung oder allgemeiner, das Variationspro-
blem 

f 1 	 C abgeschlossen, 
min1i(C): 

zusammenhangend. C c C 

mit einer gegebenen abgeschlossenen nicht-
leeren Menge C c E, eine Lösung besitzt, 
ist tiefliegender und benötigt Methoden der 
geometrischen Maßtheorie. So wird unter 
anderem benutzt, dass eine abgeschlossene, 
zusammenhängende Teilmege C eines voll-
ständigen metrischen Raumes mit 71 (C) 
< x kompakt ist und je zwei Punkte 
x. y  e C durch eine injektive rektifizierbare 
Kurve verbunden werden können. Deswei-
teren ist Cabzählbar 1-rektifizierbar, d.h. es 
gibt höchstens abzählbar viele Lipschitz-
Kurven 7j: [0,1] C, sodass 7.1t(c\U t  
'y([O. 1])) = 0. Im Zusammenspiel mit Ei-
genschaften der Hausdorff-Konvergenz für 
abgeschlossene Mengen ergeben diese Struk-
turresultate einen Unterhalbstetigkeitssatz 
für das 1-dimensionale Hausdorff-Maß bzgl. 
Konvergenz im Hausdorf-Abstand: genauer 
gilt in einem vollständigen metrischen 
Raum: Ist C1 eine Folge nicht leerer abge-
schlossener zusammenhängender Mengen, 
die im Hausdorff-Abstand gegen C konver-
giert, so ist C zusammenhängend und es gilt 

N'(C) <li rn infNt(C) .  
J-.:K  

Mit Hilfe dieses Unterhalbstetigkeitsresul-
tats lässt sich der Beweis, dass die intrinsi-
sche Formulierung des Problems der kürzes-
ten Verbindung zwischen zwei Punkten in ei-
nem metrischen Raum eine Lösung besitzt, 
unter der Annahme, dass jede abgeschlosse-
ne Kugel in E kompakt ist, leicht führen. Da-
rüber hinaus kann jede minimierende Menge 
C mit {.v, y} = C c C durch eine injektive 
Lipschitz-Kurve parametrisiert werden. 
Dies bedeutet insbesondere, dass die intrinsi-
sehe Formulierung äquivalent zur parame-
trischen Formulierung ist. 

Der Abschluss von Kapitel 4 ist dem 
Gromov-Hausdorff-Abstand dGH zwischen 
kompakten metrischen Räumen und dem 
damit verbundenen Konvergenzbegriff auf 
der Menge der Isometrieklassen kompak-
ter metrischer Räume M gewidmet. Neben 
der grundlegenden Eigenschaft, dass 
dcH:M x M - [0.x) eine vollständige 
Metrik auf M ist, wird der Zusammenhang 
zwischen Gromov-Hausdorff- und Haus-
dorff-Konvergenz studiert. Gezeigt wird 
u. a., dass das Konzept der Konvergenz im 
Gromov-Hausdorff-Abstand bis auf den 
Übergang zu einer Teilfolge (modulo einer 
isometrischen Einbettung) äquivalent zur 
Konvergenz im Hausdorff-Abstand ist 
(Gromovscher Einbettungssatz). Die Flexi-
bilität des Konzeptes der Gromov-Haus-
dorff-Konvergenz wird durch den Beweis ei-
nes Existenzsatzes zum Steiner Problem in 
gewissen metrischen Räumen E untermau-
ert. 

Kapitel 5 ist dem Konzept der Sobolev-
Räume auf metrischen Räumen gewidmet. 
Ausgehend von zwei metrischen Räumen 
(E.dF) und (F,dF), einem Borel Maß i auf 
E, das auf beschränkten Mengen endlich ist, 
und p c [1. [ definiert man nach Hajasz: 
u: E F gehört zur Sobolev-Klasse tV[; 
(E, i, F), falls es eine nicht-negative Funk-
tion g e LP(E.1i) und eine i-Nullmenge 
N c E gibt, sodass für alle x. y e E \ N gilt 

(1) dF(u(x).u(y)) <dE (x.y)(g(x) +g()). 

Als unmittelbare Konsequenzen werden vor- 
gestellt: Die Existenz eines minimalen g, d. h. 
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mit minimaler L-Norm, im Fall 1 <p < oc , 
eines Lipschitz-Approximationssatzes vom 
Lusin-Typ, die Charakterisierung der Sobo-
1ev-Funktionen W,P(E, j, F) vermöge Lip-
schitz-Funktionen : F - IR und schließlich 
im euklidischen Fall E = 9 c JW, Q offen, 

= das n-dimesionale Lebesgue Maß f', 
die Folgerung, dass der Distributionsgra-
dient einer Funktion aus J4/;P(E, i. IR) in 
LP(ft IR'1 ) liegt. Insbesondere handelt es 
sich bei Funktionen u e WP(Q, £") fl L" 
um klassische Sobolev-Funktionen, d. h. 
uE WtP(t1) .  

Nach diesen eher elementaren Folgerun-
gen wird das Konzept der Hardy-Littlewood 
Maximalfunktion im Kontext der metri-
schen Räume eingeführt. Dazu betrachtet 
man nur Borel-Maße t, die eine Verdopp-
lungseingenschaft besitzen, d. h. es existiert 
eine Konstante C, sodass gilt 

bt(B2(x)) < Cii(B r (x)) V X e E, T> 0. 

Für eine Borel Funktion f: E - [0, [ ist 
die Hardy-Littlewood Maximalfunktion 
dann definiert durch 

Mf(x):=sup_1 f f(y)d(y). 
/i(Br(X) B(x) 

Als wichtige Eigenschaften der Maximal-
funktion werden die schwache Lt-Abschät-
zung und die Stetigkeit des Maximalfunktio-
nenoperators 

LP(Ejt) D .f 	Mf E LP(E,1i), 

1 <p < m, nachgewiesen. 
Die Einführung der Hardy-Littlewood 

Maximalfunktion erlaubt dann im eukli-
dischen Fall unter milden Voraussetzungen 
an 9 den Beweis der Aquivalenz: fl/P 

(Q,C) flLP(Q,C 1 ) = W'P(ll). Dazu zeigt 
man, dass für u e W"P(IR') (1) mit g = 
M(Vu) gilt. Dies ist auch die Motivation 
für die von Hajasz gegebene Defintion. Den 
Abschluss des Kapitels bilden Poincar- und 
Sobolev-Ungleichungen und der Auswahl-
satz von Rellich für Funktionen aus metri-
schen Sobolev Räumen. 

Abgerundet wird das Buch durch eine kur-
ze Einführung in die lntegrationstheorie. 

Ausgangspunkt ist die Formel von Cavalieri, 
alsofud = j!1({u> t})dt,diemanzur 
Definition des Integrals macht. Dabei ist 
/1: 2x - [0 1 

 [ 
nicht fallend und u: X 

[01 [. Dieser Zugang wurde von DeGiorgi 
im Jahre 1983 in einer Reihe von Vorlesun-
gen an der Scuola Normale Superiore Pisa 
vorgestellt. 

Das Buch von Ambrosio & Tilli stellt eine 
wunderschöne Einführung in die Grund-
lagen der Analysis auf metrischen Räumen 
dar. Es liest sich sehr kurzweilig. Die Beweise 
sind sehr gut verständlich und die Argumen-
te hervorragend motiviert. Jedes Kapitel 
wird abgerundet durch eine Reihe von Auf-
gaben unterschiedlichen Schwierigkeitsgra-
des. Als Grundlage für eine Vorlesung oder 
ein Seminar (ca. drittes Studienjahr) ist das 
Buch hervorragend geeignet. 

Erlangen 	 F. Duzaar 
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