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Vorwort 

Jahresbericht der Deutschen Mathematiker-Vereinigung, 106. Bd. 2004, Nr. 3 

Vorwort 

In dem vorliegenden Heft 3 des Jahresberichts können wir Ihnen drei Übersichtsartikel 
anbieten. Bei der Arbeit von Elliott Lieb handelt es sich um eine Ausarbeitung seines 
letztjährigen Hauptvortrags auf der DMV-Jahrestagung in Rostock, der der mathema-
tischen Physik zuzuordnen ist. 

Bereits auf der Jahrestagung 2002 in Halle hat Klaus Mohnke einen Plenarvortrag 
aus dem Bereich der Differentialgeometrie gehalten. Eine Ausarbeitung davon finden 
Sie als zweiten Beitrag. 

Der Jahresbericht gibt auch in regelmäßigen Abständen Nachwuchswissenschaftlern 
die Chance, ihr Arbeitsgebiet zu präsentieren. Martin Väth ist Heisenberg-Stipendiat 
und hat einen Ubersichtsartikel über topologische Methoden in der nichtlinearen Ana-
lysis verfasst. 

A. Krieg 
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Quantum Mechanics,The Stability 
of Matter and Quantum Electrody - 
namics 
Elliott H. Lieb 

Abstract 

• Mathematics Subject Ciassification: 81V 10, 81 V70, 81 V45, 81 T 16 
• Keywords and Phrases: Quantum-mechanics, Quantum-electrodynamics, Stability 

of Matter, Atoms, Radiation-field 

Much progress has been made in the last few decades in developing the necessary 
mathematics for understanding the full implications of the quantum-mechanical many-
body problem and why the material world appears to be as stable as it is despite the ser-
ious —lllxl singularity of the Coulomb potential that attracts negative electrons to po-
sitive atomic nuclei. Many problems remain, however, especially the understanding of 
the interaction of matter and the quantized radiation field discovered by Planck in 
1900. A short review of some of the main topics is given. 

This paper is an extended version of a taik at the DMV Jahrestagung in Rostock, 17 September, 
2003 [1], © by Elliott H. Lieb. This article may be reproduced, in its entirety, for noncommercial 
purposes. Work partially supported by U.S. National Science Foundation grant PHY 0139984-
AO1. 

Eingegangen: 01.01.2004 	 DMV 
JAHRESBERICHT 

Departments of Mathematics and Physics, Princeton University, 	 DER DMV 
P0. Box 708, Princeton, NJ 08544-0708, USA, lieb@princeton.edu 	 B. G. Teubner 2004 
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1 Introduction 

This paper is a brief survey of the quantum-mechanical many-body problem, especially 
the question of the interaction of matter with radiation. The quantum-mechanical revo-
lution of the 1920's brought with it many successes, but also a few problems that have 
yet to be resolved. The realization that there were a few problems with the simple text-
book theory surfaced three or four decades ago. Since then some of the mathematical 
questions have been answered, but some big ones remain. This brief overview might, it 
is hoped, encourage some mathematicians to look into this fascinating topic. 

We begin with a sketch ofthe topics that will concern us here. 

1.1 Triumph 01 Quantum Mechanics 

One of the basic problems of classical physics (after the discovery of the point electron 
by Thomson and of the (essentially) point nucleus by Rutherford) was the stability of 
atoms. Why do the electrons in an atom not fall into the nucleus? Quantum mechanics 
explained this fact. lt starts with the ciassical Hamiltonian of the system (nonrelativistic 
kinetic energy for the electrons plus Coulomb's law of electrostatic energy among the 
charged particles). By virtue of the non-commutativity of the kinetic and potential ener-
gies in quantum mechanics the stability of an atom in the sense of a finite lower bound 
to the energy - was a consequence of the fact that any attempt to make the electrostatic 
energy very negative would require the localization of an electron dose to the nucleus 
and this, in turn, would result in an even greater, positive, kinetic energy. 

Thus, the basic stability problem for an atom was solved by an inequality that says 
that (1/x), the expected value of l/x, can be made large only at the expense ofmak-
ing the kinetic energy, which is proportional to p 2 ), even larger. A fundamental hy-
pothesis of quantum mechanics is that p is represented by the differential Operator 
—ihV with h = h/27r and h =Planck's constant. In elementary presentations of the sub-
ject it is often said that the mathematical inequality that ensures this fact is the famous 
uncertainty principle of Heisenberg (proved by Weyl), which states that (p2)(x2) > 
(9/8)h 2 . 

While this principle is mathematically rigorous it is actually insufficient for the pur-
pose, as explained, e.g., in [19, 21], and thus gives only a heuristic explanation of the 
power of quantum mechanics to prevent collapse. A more powerful inequality, such as 
Sobolev's inequality (9), is needed (see, e.g., [23]). The utility of the latter is made possi-
ble by Schrödinger's representation of quantum mechanics (which earlier was a some-
what abstract theory of operators on a Hilbert space) as a theory of differential opera-
tors on the space of square integrable functions on JR3 . The importance of Schrödin-
ger's representation is sometimes underestimated by formalists, but it is of crucial 
importance because it permits the use of functional analytic methods, especially in-
equalities such as Sobolev's, which are not easily visible on the Hilbert space level. 
These methods are essential for the developments reported here. 
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E. Lieb: Stability of Matter and Quantum Electrodynamics 

To summarize, the understanding of the stability of atoms and ordinary matter re-
quires a formulation of quantum mechanics with two ingredients: 

• A Hamiltonian formulation in order to have a clear notion of a lowest possible 
(ground state) energy. Lagrangian formulations, while popular, do not always lend 
themselves to the identification of that quintessential quantum mechanical notion of 
a ground state energy. In quantum mechanics a Hamiltonian is not a function on 
phase space but rather a (pseudo-) differential Operator. 

• A formulation in terms of concrete function spaces instead of abstract Hilbert 
spaces so that the power ofmathematical analysis can be fully exploited. 

1.2 Same Basic Definitions 

As usual, we shall denote the lowest energy (eigenvalue) of a quantum mechanical sys-
tem by E0. (More generaily, E0 denotes the infimum ofthe spectrum of the Hamiltonian 
H in case this infimum is not an eigenvalue of H or is —.) Our intention is to investi-
gate arbitrarily large systems, not just atoms. In general we suppose that the system is 
composed of N electrons and K nuclei of various kinds. Of course we could include 
other kinds of particles but N and K will suffice here. N = 1 for a hydrogen atom and 
N = 1023  for a mole of hydrogen. We shall use the following terminology for two no-
tions of stability: 

E0 > — Do 	 Stability of the first kind, 	(1) 

E0  > C(N + K) 	Stability of the second kind 	(2) 

for some constant C < 0 that is independent of N and K, but which may depend on the 
physical parameters of the system (such as the electron charge and mass). Usually, 
C < 0, which means that there is a positive binding energy per particle. 

Stability of the second kind is absolutely essential if quantum mechanics is going to 
reproduce some of the basic features of the ordinary material world: The energy of or-
dinary matter is extensive (i.e., it is proportional to the number ofparticles), the thermo-
dynamic limit exists (i.e., the N — c limit exists) and the laws ofthermodynamics hold. 
Bringing two stones together might produce a spark, but not an explosion with a release 
of energy comparable to the energy in each stone. Stability of the second kind does not 
guarantee the existence of the thermodynamic limit for the free energy, but it is an essen-
tial ingredient [22] [19, Sect. V]. 

lt turns out that stability of the second kind cannot be taken for granted, as Dyson 
discovered [9]. If Coulomb forces are involved, then the Pauli exclusion principle is es-
sential. (This means that the L 2  functions of N variables, I'(x 1 , x2 , .. XN), Xi e 1R3 , is 
antisymmetric under all transpositions x, x 1 . Particies, like electrons, whose func-
tions ku obey this principle are called fern1ions. Particles whose iji  functions are sym-
metric under permutations are called bosons.) 

Charged bosons are not stable because for them E0  —N 715  (nonrelativistically) 
and E0 = — for large, but finite N (relativistically, see Sect. 3.2). While positively 
charged bosons exist in the form ofatomic nuclei, negatively charged, long-lived bosons 
do not exist in nature. This is a good thing in view of the instability just mentioned. 
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1.3 The Electromagnetic FieId 

A second big problem handed down from ciassical physics was the 'electromagnetic 
mass' of the electron. This poor creature has to drag around an infinite amount of elec-
tromagnetic energy that Maxweli burdened it with. Moreover, the eiectromagnetic field 
itseifis quantized - indeed, that fact alone started the whole revolution [34]. 

While quantum mechanics accounted for stability with Coulomb forces and Schrö-
dinger led us to think seriously about the 'wave function of the universe', physicists 
shied away from talking about the wave function of the particies in the universe and the 
electromagnetic field in the universe. lt is noteworthy that physicists are happy to dis-
cuss the quantum mechanical many-body problem with external electromagnetic fields 
non-perturbatively, but this is rarely done with the quantized field. The quantized field 
cannot be avoided because it is needed for a correct description of atomic radiation, the 
laser, etc. However, the interaction of matter with the quantized field is almost aiways 
treated perturbativeiy or else in the context ofhighly simplified models (e.g., with two-
levei atoms for lasers). 

The quantized electromagnetic field greatiy complicates the stability of matter ques-
tion. lt requires, ultimately, mass and charge renormalizations. At present such a com-
plete theory does not exist, but a theory must exist because matter exists and because we 
have strong experimental evidence about the manner in which the electromagnetic field 
interacts with matter, i.e., we know the essential features of a Hamiltonian that ade-
quately accounts for the bw energy processes that exist in every day life. In short, nat-
ure teils us that it must be possible to formulate a self-consistent quantum electrody-
namics (QED) non-perturbatively, (perhaps with an ultravioiet, or high frequency, cut-
off of the field at a few MeY). lt should not be necessary to have recourse to quantum 
chromodyriamics (QCD) or some other high energy theory to explain ordinary matter. 

Physics and other natural sciences are successful because physical phenomena asso-
ciated with each range of energy and other parameters are expiainable to a good, if not 
perfect, accuracy by an appropriate self-consistent theory. This is true whether it be hy-
drodynamics, celestial dynamics, statistical mechanics, etc. If bw energy physics (atom-
ic and condensed matter physics) is not explainable by a self-consistent, non-perturba-
tive theory on its own levei one can speak of an epistemological crisis. 

Some readers might say that QED is in good shape. After all, it accurately predicts 
the outcome of some very high precision experiments (Lamb shift, g-factor of the elec-
tron). But the theory does not reaily work well when faced with the problem, which is 
explored here, ofunderstanding the many-body (N 1023)  problem and the stable bw 
energy world in which we spend our everyday lives. 

1.4 Relativistic Mechanics 

When the classical kinetic energy of a particle, p2 12m, is replaced by its relativistic ver-
sion /+ m 2 c4  the stability question becomes much more complicated, as will be 
seen iater. lt turns out that even stability of the first kind is not easy to obtain and it dc-
pends on the values of the physical constants, notably the fine structure constant 
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(3) c = e2 /hc = 1/137.04 

where —e is the electric charge of the electron. 
For ordinary matter relativistic effects are not dominant but they are noticeable. In 

large atoms these effects severely change the innermost electrons and this has a notice-
able effect on the overall electron density profile. Therefore, some version of relativistic 
mechanics is needed, which means, presumably, that we must know how to replace 
p2 12m by the Dirac operator (see (18)). 

The combination of relativistic mechanics plus the electromagnetic field (in addition 
to the Coulomb interaction) makes the stability problem difficult and uncertain. Major 
aspects ofthis problem have been worked out in the last few years (about 35) and that is 
the subject ofthis paper. 

2 Nonrelativistic Matter without the Mag netic FieId 

Maxwell's equations define the electric and magnetic fields in terms ofpotentials. While 
the equations determine the fields, the potentials are not determined uniquely; the 
choice of potentials is called the choice of gauge. We work in the 'Coulomb' gauge for 
the electromagnetic field. Despite the assertion that quantum mechanics and quantum 
field theory are gauge invariant, it seems to be essential to use this gauge, even though 
its relativistic covariance is not as transparent as that of the Lorentz gauge. The reason 
is the following. 

The Coulomb gauge is the gauge in which electrostatic part of the interaction of 
matter with the electromagnetic field is just the conventional Coulomb "action at a dis-
tance" potential V given by (4) below (in energy units mc 2  and length units the Comp-
ton wavelength h/mc). This part of the interaction depends only on the coordinates of 
the particles and not on their velocities. The dependence of the interaction on velocities, 
or currents, comes about through the magnetic part of the interaction. Despite appear-
ances, this picture is fully Lorentz invariant (even ifit is not gauge invariant). 

N K 
Zk   

(4) Vc = > 	Rl+ 	
1 + 	

ZkZ1 

i=1 k=1 	 1<i<j<N xi - xjI 1<k<1<K  Rk - Rjl 

The first sum is the interaction of the electrons (with dynamical coordinates x 1 ) and 
fixed nuclei located at Rk of positive charge Zk times the (negative) electron charge e. 
The second is the electron-electron repulsion and the third is the nucleus-nucleus repul-
sion. The nuclei are fixed because they are so massive relative to the electron that their 
motion is irrelevant. lt could be included, however, but it would change nothing essen-
tial. Likewise, there is no nuclear structure factor because if it were essential for stability 
then the size of atoms would be the size ofnuclei, about 1013  cm, instead ofabout 10 8  
cm, contrary to what is observed. 

Although the nuclei are fixed points the constant C in the stability of matter (2) is re-
quired to be independent of the Rk's.  Likewise (1) requires that E0 have a finite lower 
bound that is independent of the Rk's. 
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For simplicity of exposition we shall assume here that all the Zk are identical, je., 
Zk=Z. 

The magnetic field, which will be introduced later, is described by a vector potential 
A(x) which is a dynamical variable in the Coulomb gauge. The magnetic field is 
B = curlA. 

There is a basic physical distinction between electric and magnetic forces which does 
not seem to be well known, but which motivates this choice of gauge. In electrostatics 
"like charges repel" while in magnetostatics "like currents attract". A consequence of 
these facts is that the correct magnetostatic interaction energy can be obtained by mmi-
mizing the energy functional f B2 

- f j . A with respect to the vector field A, where j is 
the electric current density. The electrostatic energy, on the other hand, cannot be ob-
tained by a minimization principle with respect to the field (e.g., minimizing 
f 

IVOI2 
- f öp with respect to (b). 

The Coulomb gauge, which puts in the electrostatics correctly, by hand, so to speak, 
and aliows us to minimize the total energy with respect to the A field, is the gauge that 
gives us the correct physics and is consistent with the "quintessential quantum mechani-
cal notion of a ground state energy" mentioned in Sect. 1.1. In any other gauge one 
would have to look for a critical point of a Hamiltonian rather than a true global mini-
mum. 

The type of Hamiltonian that we wish to consider in this section is 

(5) HN=TN+c1VC . 

Here, TN is the kinetic energy ofthe N electrons and has the form 

(6) TN=>Tj, 

where Ti  acts on the coordinate of the ih electron. The nonrelativistic choice is T = 
with p = —iV andp 2  = —A in appropriate units. 

2.1 Nonrelativistic Stability tor Fermions 

The problem of stability of the second kind for nonrelativistic quantum mechanics was 
recognized in the early days by a few physicists, e.g., Onsager, but not by many. lt was 
not solved until 1967 in one of the most beautiful papers in mathematical physics by 
Dyson and Lenard [10]. 

They found that the Pauli principle, i.e., Fermi-Dirac statistics, is essential. Mathe-
matically, this means that the Hilbert space is the subspace of antisymmetric functions, 
i.e., NphYs = AVL2(IR3; T2 ) This is how the Pauli principle is interpreted post-Schrödin-
ger; Pauli invented his principle a year earlier, however! 

Their value for C in (2) was rather high, about —10' eV (electron volts) for Z = 1. 
(The ground state energy of a hydrogen atom is —13 eV.) The situation was improved la-
ter by Thirring and myself [31] to about —20 eV for Z = 1 by introducing an inequality 
that holds only for the kinetic energy offermions (not bosons) in an arbitrary state W. 
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E. Lieb: Stability of Matter and Quantum Electrodynamics  

(7) (' TNW) > (const.) 
11R3 

pe (x) 513  d3x, 

where pp is the one-body density in the (normalized) fermionic wave function '1' (of 
space and spin) given by an integration over (N - 1) coordinates and N spins as fol-
lows. 

(8) p p (x)=N 	
11R3(N- 1)  

Inequality (7) aliows one simply to reduce the quantum mechanical stability pro-
blem to the stability of Thomas-Fermi theory, which was worked out earlier by Simon 
and myseif [30]. 

The older inequality of Sobolev, mentioned in Sect. 1.1, 

	

(I1R3 		

\I/3 

(9) (W, TN) >  (const.)0(x) 3 d3 x 

is not as useful as (7) for the many-body problem because its right side is proportional 
to N instead of N 513 . lt is, however, strong enough to yield the stability of a system, like 
an atom, that has only a few electrons. 

lt is amazing that from the birth of quantum mechanics until 1967 none of the lu-
minaries of physics had quantified the fact that electrostatics plus the uncertainty prin-
ciple do not suffice for stability of the second kind, and thereby make thermodynamics 
possible (although they do suffice for the first kind). See Sect. 2.2. lt was noted, how-
ever, that the Pauli principle was responsible for the large sizes of atoms and bulk mat-
ter (see, e.g., [9,101). 

2.2 Nonrelativistic Instability tor Bosons 

What goes wrong if we have charged bosons instead of fermions? Stability of the first 
kind (1) holds in the nonrelativistic case, but (2) fails. If we assume the nuclei are infi-
nitely massive, as before, and N = KZ then E0  ' — N 513  [10, 20]. To remedy the situa-
tion we can let the nuclei have finite mass (e.g., the same mass as the negative particles). 
Then, as Dyson showed [9], E0  < —(const.)N 715 . This calculation was highly non-tri-
vial! Dyson had to construct a variational function with pairing of the Bogolubov type 
in a rigorous fashion and this took several pages. 

Thus, finite nuclear mass improves the situation, but not enough. The question 
whether N 7/ 5  is the correct power law remained open for many years. A lower bound of 
this type was needed and that was finally obtained in [6]. 

The resuits ofthis Section 2 can be summarized by saying that stability ofthe hydro-
gen atom is one thing but stability ofmany-body physics is something else 
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3 ReIatvistic Kinematics (no magnetic field) 

The next step is to try to get some idea of the effects of relativistic kinematics, which 
means replacing p2  by ' 12  + 1 in non-quantum physics. (Recall that mc2  = 1 in our 
units.) The simplest way to do this is to substitute /111 for T in (6). The Dirac Op-
erator will be discussed later on, but for now this choice of T will suffice. Actually, it 
was Dirac's choice before he discovered his Operator and it works well in some cases. 
For example, Chandrasekhar used it successfully, and accurately, to calculate the col-
lapse of white dwarfs (and later, neutron stars). 

Since we are interested only in stability, we may, and shall, substitute p = v'3 for 
T. The error thus introduced is bounded by a constant times N since Ipl < 

<Ipi + 1 (as an Operator inequality). Our Hamiltonian is now HN 

PJ + 

3.1 One-Electron Atom 

The touchstone of quantum mechanics is the Hamiltonian for 'hydrogen' which is, in 
our case, 

(10)  

lt is weil known (also to Dirac) that the analogous operator with Ipl replaced by the 
Dirac operator (18) ceases to make sense when Zn> 1. Something similar happens for 
(10). 

(11) E0 
= f0 	if Zn < 2/7r; 

t — oc ifZo'>2I7r. 

The reason for this behavior is that both Ipl and x scale in the same way. Either 
the first term in (10) wins or the second does. 

A result similar to (11) was obtained in [11] for the free Dirac operator D(0) in place 
of I pl, but with the wave function '1' restricted to iie in the positive spectral subspace of 
D(0). Here, the critical value is cZ < (47r)/(4 + 7r2 ) > 2/7r. 

The moral to be drawn from this is that relativistic kinematics plus quantum me-
chanics is a 'critical' theory (in the mathematical sense). This fact will plague any relati-
vistic theory ofelectrons and the electromagnetic field —primitive or sophisticated. 

3.2 Many Electrons and Nuclei 

When there are many electrons is it true that the condition Zcr < const. is the only one 
that has to be considered? The answer is no! One also needs the condition that a itself 
must be small, regardless of how small Z might be. This fact can be called a 'discovery' 
but actuaily it is an overdue realization of some basic physical ideas. lt should have been 
realized shortly after Dirac's theory in 1927, but it does not seem to have been noted un-
til 1983 [8]. 
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The underlying physical heuristics is the following. With u fixed, suppose 
zu = 10-6 < 1, so that an atom is stable, but suppose that we have 2 x 106  such nuclei. 
By bringing them together at a common point we will have a nucleus with Zu = 2 and 
one electron suffices to cause collapse into it. Then (1) fails. What prevents this from 
happening, presumably, is the nucleus-nucleus repulsion energy which goes to +CC as 
the nuclei come together. But this repulsion energy is proportional to (Zu) 2 /u and, 
therefore, ifwe regard Zu as fixed we see that l/u must be large enough in order to pre-
vent collapse. 

Whether or not the reader believes this argument, the mathematical fact is that there 
is a fixed, finite number c <2.72 ([32]) so that when u > u, (1) fails for every positive 
Z and for every N > 1 (with or without the Pauli principle). 

The open question was whether (2) holds for all N and K if Zu and u are both small 
enough. The breakthrough was due to Conlon [5] who proved (2), for fermions, if 
Z = 1 and u < 10200. The situation was improved by Fefferman and de la Llave [13] to 
Z = 1 and u <0.16. Finally, the expected correct condition Zu < 2/7r and u < 1/94 
was obtained in [32]. (This paper contains a detailed history up to 1988.) The situation 
was further improved in [27]. The multi-particle version of the use of the free Dirac op-
erator, as in Sect. 3.1, was treated in [18]. 

Finaily, it has to be noted that charged bosons are always unstable of the first kind 
(not merely the second kind, as in the nonrelativistic case) for every choice of 
Z > 0, u > 0. E.g., there is instability ifZ2 / 3 uN" 3  > 36 ([32]). 

We are indeed fortunate that there are no stable, negatively charged bosons. 

4 Interaction of Matter with Ciassical Magnetic Fields 

The magnetic field B is defined by a vector potential A(x) and B(x) = curl A(x). In this 
section we take a first step (warmup exercise) by regarding A as classical, but indetermi-
nate, and we introduce the classical field energy 

(12) Hf= -- / B(x) 2  

87rJ& 	
d3x 

3  

The Hamiltonian is now 

(13) HN(A) = TN(A) + uV + Hf, 

in which the kinetic energy operator has the form (6) but depends on A. We now define 
E0 to be the infimum of (W, HN(A)4' both with respect to ijj  and with respect to A. 

4.1 Nonrelativistic Matter with Magnetic FieIcJ 

The simplest situation is merely 'minimal coupling' without spin, namely, 

(14) T(A) = p + v'A(x) 2  

This choice does not change any of our previous resuits qualitatively. The field energy is 
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not needed for stability. On the one-particle level, we have the 'diamagnetic inequality' 
(' lp +A(x)I) > ' p 2 ). The same holds for lp +A(x) and I p l . More impor-
tantly, inequality (7) for fermions continues to hold (with the same constant) with T(A) 
in place ofp 2 . (There is an inequality similar to (7) for I p l , with 5/3 replaced by 4/3, 
which also continues to hold with minimal substitution [7].) 

The situation gets much more interesting if spin is included. This takes usa bit closer 
to the relativistic case. The kinetic energy operator is the Pauli Operator 

(15) ff(A) = p +
V C, A(x) 2  + vlä B(x) . 

where o-  is the vector of 2 x 2 Pauli spin matrices and L 2 (1R 3 ) is replaced by 
L 2 (1R 3 ; cE3 ). 

4.1.1 One-Electron Atom 

The stability problem with T"(A) is complicated, even for a one-electron atom. With-
out the field energy Hf  the Hamiltonian is unbounded below. (For fixed A it is bounded 
but the energy tends to - like —(logB) 2  for a homogeneous field [2].) The field energy 
saves the day, but the result is surprising [14] (recall that we must minimize the energy 
with respect to '1' andA): 

(16)  

is bounded below if and only (fZcl 2  < C, where C is some constant that can be bounded 
as 1 <C < 9 2 /8 

The proof of instability [33] is difficult and requires the construction of a zero mode 
(soliton) for the Pauli operator, i.e., a finite energy magnetic field and a square integr-
able e such that 

(17) T"(A)0=0. 

The usual kinetic energy l p + A(x) 12  has no such zero mode for any A, even when 0 is 
the bottom ofits spectrum. 

The original magnetic field [33] that did thejob in (17) is independently interesting, 
geometrically (many others have been found since then). 

B(x) = 	12 3[(1—x2)w+2(w.x)x+2wAx] 
(1+xl) 

with lw = 1. The field lines ofthis magnetic field form a family ofcurves, which, when 
stereographically projected onto the 3-dimensional unit sphere, become the great circles 
in what what is known as the Hopffibration. 

Thus, we begin to see that nonrelativistic matter with magnetic fields behaves like re-
lativistic matter without fields - to some extent. 

The moral of this story is that a magnetic field, which we might think of as possibly 
self-generated, can cause an electron to fall into the nucleus. The uncertainty principle 
cannot prevent this, not even for an atom! 
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41,2 Many Electrons and Many Nudel 

In analogy with the relativistic (no magnetic field) case, we can see that stability of the 
first kind fails if Z 2  or c is too large. The heuristic reasoning is the same and the proof 
is similar. 

We can also hope that stability of the second kind holds if both Zc 2  and a are small 
enough. The problem is complicated by the fact that it is the field energy Hf that will 
prevent collapse, but there there is only one lTield energy while there are N» 1 elec-
trons. 

The hope was finaily realized, however. Fefferman [12] proved stability of the sec-
ond kind for HN(A) with the Pauli T'(A) for Z = 1 and "cv sufficiently small". A few 
months later it was proved [28] for Zo 2  <0.04 and a < 0.06. With a = 1/137 this 
amounts to Z < 1050. This very large Z region of stability is comforting because it 
means that perturbation theory (in A) can be reliably used for this particular problem. 

Using the resuits in [28], Bugliaro, Fröhlich and Graf [3] proved stability of the same 
nonrelativistic Hamiltonian - but with an ultraviolet cutoff, quantized magnetic field 
whose field energy is described below. (Note: No cutoffs are needed for classical fields.) 

There is also the very important work of Bach, Fröhlich, and Sigal [4] who showed 
that this nonrelativistic Hamiltonian with ultraviolet cutoff, quantized field and with 
sufficiently small values of the parameters has other properties that one expects. E.g., 
the excited states of atoms dissolve into resonances and only the ground state is stable. 
The infrared singularity notwithstanding, the ground state actually exists (the bottom 
of the spectrum is an eigenvalue); this was shown in [4] for small parameters and in [15], 
[26] for all values of the parameters. (See Sect. 7.) 

5 Relativity Plus Mag netic Fielcls 

As a next step in our efforts to understand QED and the many-body problem we intro-
duce relativity theory along with the classical magnetic field. 

5.1 Relativity Plus Classical Magnetic Fields 

Originally, Dirac and others thought of replacing T"(A) by \‚/ A.)+i but this was 
not successful mathematically and does not seem to conform to experiment. Conse-
quently, we introduce the Dirac operator for T in (6), (13) 

(18) D(A)=cp+•A(x)+3in, 

where i and 3 denote the 4 >< 4 Dirac matrices and 	is the electron charge as before. 
(This notation of c and a is historical and is not mine.) The Hilbert space for N elec-
trons is now changed to 

(19) R=AIVL2(1R3;«). 

The well known problem with D(A) is that it is unbounded below, and so we cannot 
hope to have stability of the first kind, even with Z = 0. Let us imitate QED (but with- 
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out pair production or renorrnalization) by restricting the electron wave function to lie 
in the positive spectral subspace ofa Dirac Operator. 

Which Dirac Operator? 
There are two natural operators in the problem. One is D(0), the free Dirac Opera-

tor. The other is D(A) that is used in the Hamiltonian. In almost all formulations of 
QED the electron is defined by the positive spectral subspace ofD(0). Thus, we can de-
fine 

(20) Nphys = 	
= 

where 	= N I 7ri , and 7ri is the projector of onto the positive spectral subspace of 
D 1 (0) = a p, + /3m, the free Dirac Operator for the th  electron. We then restrict the al-
lowed wave functions in the variational principle to those W satisfying 

(21) '1' = p ii, 	i.e., '1' E 	
phys 

Another way to say this is that we replace the Hamiltonian (13) by Pl  HN Pl 011 71 
and look for the bottom of its spectrum. 

lt turns out that this prescription !eads to disaster! While the use of D(0) makes 
sense for an atom, it fails miserably for the many-fermion problem, as discovered in [29] 
and refined in [16]. The result is: 

For all a > 0 in (18) (with or without the Coulomb terni a V) one can find N large 
enough so that E0  = —cc. 

In other words, the term \/c . A in the Dirac Operator can cause an instability that 
the field energy cannot prevent. 

lt turns out, however, that the situation is saved if one uses the positive spectral sub-
space of the Dirac operator D(A) to define an electron. (This makes the concept of an 
electron A dependent, but when we make the vector potential into a dynamical quantity 
in the next section, this will be less peculiar since there will be no definite vector poten-
tial but only a fluctuating quantity.) The definition of the physical Hilbert space is as in 
(20) but with 7ri  being the projector onto the positive subspace of the full Dirac Operator 
D 1 (A) = p, + la c A(x,) + /3m. Note that these 7ri projectors commute with each 
other and hence their product P+  is a projector. 

The result [29] for this model ((13) with the Dirac operator and the restriction to the 
positive spectral subspace of D(A)) is reminiscent of the situations we have encountered 
before: 

Ifci and Z are small enough stability ofthe second kind holdsfor this model. 
Typical stability values that are rigorously estab!ished [29] are Z < 56 with 

o= 1/137orc< 1/8.2withZ= 1. 

6 Quantized Electromagnetic Fiekis 

Let us now try to analyze some of the problems connected with the quantization of the 
e!ectromagnetic field. The great discovery of Max Planck [34], which was the first step 
in the new quantum theory, was that the energy of the e!ectromagnetic field came in 
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quantized units. The energy unit of electromagnetic waves of frequency v is hv, and in 
terms of wave number k (i.e., the wave is proportional to exp(ik. x)) it is hckt since 
27rv/k 1 = c = speed oflight. 

We begin with the problem of generalizing the results in the previous subsection to 
the quantized field. 

6.1 Relativity Plus Quantized Magnetic Field 

The obvious next step is to try to imitate the strategy of Sect. 5.1 but with the quantized 
A field. This was done in [24]. The quantized A field is described by an operator-valued 
Fourier transform as 

(22) A(x) 
= 2L<AkI 

[a(k)e + a(k)ex]d3k, 

where A is the ultraviolet cutoff on the wave-numbers Jkj. The operators a, a satisfy 
the usual canonical commutation relations 

(23) [ax(k), a(q)] = ö(k - q)6. 	[a(k), a v (q)] = 0, etc 

and the vectors E (k) are two orthonormal polarization vectors perpendicular to k and 
to each other. 

The field energy Hf is now given by a normal-ordered version of(12) 

(24) Hf = 	11R3 
k a(k)a(k)d 3 k 

=1,2  

The Dirac Operator is the same as before, (18). Note that D(A) and D,(A) still com-
mute with each other (since A(x) commutes with A(y)). This is important because it al-
lows us to imitate Sect. 5.1. 

In analogy with (19) we define 

(25) N = 7\NL2(1R3;E4) ®F, 

where .F is the Fock space for the photon field. We can then define the physical Hilbert 
space as before 

(26) RPhYS=HN=flR, 

where the projectors 7r i  project onto the positive spectral subspace of either D1 (0) or 
D,(A). 

Perhaps not surprisingly, the former case leads to catastrophe, as before. This is so, 
even with the ultraviolet cutoff, which we did not have in Sect. 5.1. Because of the cutoff 
the catastrophe is milder and involves instability of the second kind instead of the first 
kind. This result relies on a coherent state construction in [16]. 
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The latter case (use of D(A) to define an electron) leads to stability of the second 
kind ifZ and a are not too large. Otherwise, there is instability of the first kind. The rig-
orous estimates are comparable to the ones in Sect. 5.1. 

Clearly, many things have yet to be done to understand the stability of matter in the 
context of QED. Renormalization and pair production have to be included, for exam-
ple. 

The resuits of this section suggest, however, that a significant change in the Hilbert 
space structure of QED might be necessary. We see that it does not seem possible to 
keep to the current view that the Hilbert space is a simple tensor product of a space for 
the electrons and a Fock space for the photons. That leads to instability for many parti-
des (or large charge, if the idea of 'particle' is unacceptable). The bare' electron is not 
really a good physical concept and one must think of the electron as always accompa-
nied by its electromagnetic field. Matter and the photon field are inextricably linked in 
the Hilbert space Hphy,.  

The following tables [24] summarize some of the resuits of this and the previous sec-
tions 

Electrons defined by projection onto the positive 
subspace of D(0), the free Dirac operator 

Ciassical or quantized field Ciassical or quantized field 
without cutoff A with cutoff A 

ce > 0 but arbitrarily small. a > 0 but arbitrarily small. 

Without Coulomb Instability of Instability of 
potential cV the first kind the second kind 
With Coulomb Instability of Instability of 
potential cV the first kind the second kind 

Electrons defined by projection onto the positive 
subspace of D(A), the Dirac operator with field 

Classical field with or without cutoff A 
or quantized field with cutoff A 

Without Coulomb The Hamiltonian is positive 
potential csV  

Instability of the first kind when either 
With Coulomb ce or Zce is too large 
potential cV Stability of the second kind when 

both a and Zc are small enough 
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6.2 Mass Renormalization 

In both ciassical and quantum electrodynamics there is a problem ofmass renormaliza-
tion. This means that when a charge is accelerated its accompanying electromagnetic 
field is also accelerated and acts like an additional mass. The 'bare mass' of the particle 
(which is the mass that appears in the Hamiltonian) must be chosen so that the final, 
physical mass (as measured in experiments) agrees with the physically measured value. 

For a point particle, the additional mass is infinity, classically. For QED it is also in-
finite, but the divergence is less rapid as the radius of the charge goes to zero. In any 
case, with a finite ultraviolet cutoff A the additional mass is finite, but it is far from clear 
that, for each A> 0 one can adjust the bare mass (while keeping it positive) to give the 
correct physical mass. Opinions differ on this point and very little is known rigorously 
about the problem outside ofperturbation theory. See [17]. 

There are two ways to define mass renormalization. Take one particle (N = 1) and 
then either 

1. Find the bottom of the spectrum of T + Hf under the condition that the total mo-
mentum of particle plus field isp. Call it E(p) and write, for small p, 

E(p) = E(p = 0) +p2 /2mphys ica l 

or else 

2. Compute the binding energy of hydrogen (N = 1, K = 1, Z = 1). Call it E0  and 
set 

E0 = mpi ys icaic2 c 2 /2h2  

The first way is the usual one; the second is motivated by the earliest experiment in 
quantum mechanics. These two definitions are not the same. In any case, we [25] can 
now obtain non-trivial bounds on the binding energy (in the context of the Schrödinger 
Hamiltonian or the Pauli Hamiltonian interacting with the quantized field) and thereby 
get some bounds on the renormalized mass using definition 2. For large cutoff A, these 
bounds differ in their A dependence from what might be expected from perturbation 
theory. 

7 Existence of Atoms in Non-relativistic QED 

One of the most recent topics concerns the seemingly trivial question of the existence of 
atoms. In some sense this question is the opposite ofthe stability of matter question. 

The Hamiltonian we shall use to describe an atom or molecule with N electrons is 

(27) Hy=T[(A)+cV+Hf 

where Tr(A)  is the Pauli kinetic energy operator (15), but A is the quantized magnetic 
field given by (22), and H1 is the energy of the quantized field given by (24). As before, 
1/, is the Coulomb potential (4) of some fixed nuclei whose total nuclear charge is de-
rioted by Z = 7 Z. 
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To show the existence of stable atoms we need to establish two things about HN. 

1. The ground state energy (bottom of the spectrum) of HN is lower than that of HN 
i.e., of a system with N' < N electrons (with the remaining N - N' electrons being al-
lowed to escape to infinity). This is called the binding condition. 

2. The bottom of the spectrum of HN is actually an eigenvalue, i.e., Schrödingers 
equation has a square integrable solution with E = the bottom ofthe spectrum. 

In the case of the Schrödinger equation without the field, problem 1. was solved by 
Zhislin in 1960 for the case N < Z + 1, which includes the neutral molecule. He did this 
by using a localization technique, whose positive localization energy (r 2) is more than 
offset by the Coulomb attraction (—r') ofa positively charged system (Z - N') to a ne-
gatively charged electron. The existence of the ground state (problem 2.) foliows from 
standard arguments because in this case the bottom of the spectrum is negative while 
the bottom of the essential spectrum (which, in this case, is the bottom of the conti-
nuum) starts at zero. Thus, there is a gap in the spectrum and the technique of taking 
weak limits easily yields a non-zero eigenfunction [23]. 

When we turn on the interaction with the quantized magnetic field the situation 
changes significantly. One major difference is that the bottom of the essential spectrum 
is now the bottom of the spectrum because we can always create photons with arbitra-
rily small energy (recall that the energy ofa photon with momentum k is k). Therefore, 
if a ground state exists it necessarily lies at the bottom of the essential spectrum and is 
not isolated. Eigenvalues in the continuum are notoriously difficult to handle, even for 
the simple Schrödinger Operator. 

A second major difference is that it is necessary to localize the A field as well as the 
electrons. This localization costs an energy r 1 , not r 2  as before, essentially because the 
field energy is proportional to lkl instead of k2 . Thus, the field localization competes 
with the Coulomb attraction. 

Problems 1. and 2. were solved in [4] under the condition that a and A are small en-
ough. 

The first general result, valid for all values of the various constants, was in [15], 
where it was shown that 2. holds whenever 1. holds. 

Finally, 1. was shown to hold for all values of the constants [26] under the same nat-
ural condition as Zhislin's, i.e., N < Z + 1. 
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Holomorphe Kurven, 
Hamiltonsche Dynamik und 
symplektische Topologie 
Klaus Mohnke 

Abstract 

• Keywords and Phrases: sympletic manifolds, Lagrangian embeddings, Hamiltonian 
dynamics, pseudoholomorphic curves 

• Mathematics Subject Ciassification: 57R 17; 53D 12,40,45 

Ziel dieses Artikels ist es zu zeigen, wie man ein altes Problem der symplektischen Topo-
logie mit Hilfe neuer Techniken, die auf Eigenschaften gewisser nicht kompakter pseu-
doholomorpher Kurven beruhen, effektiv beweisen kann: Es gibt keine Lagrange Ein-
bettung der Kleinschen Flasche in den W2.  Die allgemeine Fragestellung wird erläutert 
und eine kurze Einführung in die entsprechenden Invarianten gegeben. 

We demonstrate how to prove an old problem of symplectic topology very effective-
ly by means of new techniques which rely on properties of certain non-compact hob-
morphic curves: there exists no Lagrangian embedding of the Klein bottle into (12•  The 
general problem is outlined. We give a short introduction into the corresponding inva-
riants. 
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Symplektische Formen sind die grundlegenden Strukturinvarianten der klassischen 
Mechanik. Der Phasenraum, d. h. der Raum der Orts—und Impulskoordinaten (pi, qi), 
ist mit einer kanonischen symplektischen Form versehen (siehe 2.1., Beispiel 5). Durch 
sie wird jeder differenzierbaren Funktion H das sogenannte Hamiltonsche Vektorfeld 
XH zugeordnet. Insbesondere beschreibt das Hamiltonsche Feld der Totalenergie die in-
finitesimale Veränderung des mechanischen Systems, gegeben durch die bekannten Ha-
miltonschen Gleichungen: 

= 

(siehe Arnolds „Klassiker" [1] - auch für die folgende Diskussion). Der Fluss läßt die 
Energie H invariant. Diese Eigenschaft gilt nicht mehr für nicht—autonome Systeme, 
dass heißt solchen, bei denen die Hamiltonfunktion zeitabhängig ist. Die Diffeomor-
phismen der Familie, die man als Lösung zeitabhängiger Hamiltonscher Gleichungen 
erhält, nennt man Hamiltonsche Diffeomorphismen. Sie lassen immer noch die sym-
plektische Struktur invariant. Allgemein nennt man Diffeomorphismen mit dieser Ei-
genschaft Symplektomorphismen. Systeme mit periodischer Hamiltonfunktion erhält 
man zum Beispiel bei der Untersuchung von Modellen der Himmelsmechanik, an denen 
mehr als zwei Himmelskörper beteiligt sind. Das autonome System mit zwei Himmels-
körpern (Sonne—Erde oder Erde—Mond) und deren gegenseitige Anziehung ist integrier -
bar, und seine Lösungen werden durch Kepplers Gesetze beschrieben. Ein ganz brauch-
barer Ansatz, um die Auswirkung zu studieren, die andere Himmelskörper auf dieses 
System haben, ist diese als periodische Störung der autonomen Hamiltonfunktion zu 
beschreiben, wobei die Rückwirkung des Systems auf die anderen Himmelskörper ver -
nachlässigt wird. Poincar stieß beim Studium solcher Systeme auf den Fakt, dass flä-
chentreue, orientierungserhaltende Diffeomorphismen des Annulus, die den äußeren 
Rand im positiven Sinn und den inneren im negativen Sinn drehen, wenigstens zwei Fix-
punkte haben müssen. Birkhoff bewies dies mit strikt zwei-dimensionalen Methoden. 
Arnold entdeckte schließlich, dass das Poincar-Birkhoff-Theorem ein Phänomen sym-
plektischer Diffeomorphismen ist. Er machte darum seine berühmt gewordene Ver -
mutung über untere Schranken für die Zahl von Fixpunkten Hamiltonscher Diffeomor -
phismen. In Hinblick auf periodische Hamiltonsche Systeme sind Fixpunkte aber gera-
de deren periodische Lösungen. Arnolds Vermutungen waren der Anlass für die 
Entwicklung vieler neuer Methoden aus der Variationsrechnung (z. B. die Entdeckung 
der Kapazitäten), aus der komplexen Analysis und der Theorie partieller Differential-
gleichungen (z. B. pseudoholomorphe Kurven und Floer-Theorie) für das Studium der 
Hamiltonschen Dynamik. 

Symplektische Strukturen findet man auch auf vielen Modulräumen der Lösungen 
von Feldgleichungen. Oft begegnet man dabei auf natürliche Weise Lagrangen Unter-
mannigfaltigkeiten. Dies sind Untermannigfaltigkeiten halber Dimension, auf denen 
die symplektische Form verschwindet. Viele Eigenschaften von Objekten der symplekti-
schen Geometrie können direkt durch Eigenschaften Lagranger Untermannigfaltigkei-
ten ausgedrückt werden. Beispielsweise ist ein Symplektomorphismus einer symplekti-
schen Mannigfaltigkeit (M, w) dadurch charakterisiert, dass sein Graph Lagrange 
bzgl. der symplektischen Struktur w (—w) auf dem Produkt M x M ist. Der Null- 

112 	 JB 106. Band (2004), Heft 3 



K. Mohnke: Holomorphe Kurven, Hamiltonsche Dynamik u. symplektische TopoIogie 

schnitt, jede Faser im Kotangentialbüridel einer Mannigfaltigkeit sowie der Graph einer 
geschlossenen 1-Form darauf sind weitere wichtige Beispiele Lagranger Untermannigfal-
tigkeiten. Es scheint zudem so, dass viele Phänomene der symplektischen Geometrie auf 
oft nicht so offensichtliche Weise auf Eigenschaften Lagranger Untermannigfaltigkei-
ten beruhen; kurz gesagt: „Alles ist Lagrange" (Weinstein, siehe [5] für einige Beispiele). 

Das durch eine symplektische Form definierte Maß ist ebenfalls invariant unter 
Symplektomorphismen. Für klassische mechanische Systeme ist dies genau der Inhalt 
des Satzes von Liouville über die Invarianz des Phasenvolumens. Diese Invariante ist 
offenbar robust: Konvergiert eine Folge von Symplektomorphismen gleichmäßig, so 
lässt ihr Grenzwert, obwohl er nur noch stetig ist, das Maß ebenfalls invariant. Lange 
Zeit war unklar, ob es neben dem durch die symplektische Form definierten Maß und 
einigen offensichtlichen topologischen Invarianten überhaupt andere robuste Invarian-
ten einer symplektischen Form gibt. Anders formuliert lautete die Frage: Was ist der 
Abschluss der Menge der Symplektomorphismen im Raum der stetigen Abbildungen? 
Besteht er aus allen das Maß erhaltenden Abbildungen oder einer echten Teilmenge? 
Schliesslich bewies Gromov in [10], dass sich das Volumen einer symplektischen Man-
nigfaltigkeit im Allgemeinen nicht mit einer symplektisch eingebetteten Kugel aus-
schöpfen lässt. Das Supremum der Radien von Kugeln in IR2FI,  die sich symplektisch in 
eine 2n-dimensionale Mannigfaltigkeit einbetten lassen, ist somit eine solche Invariante, 
die sich nicht durch das Volumen ausdrücken lässt. Konkret besagt Gromov's Non-
Squeeze-Theorem, dass für einen symplektisch eingebetteten Ball vom Radius r in einen 
symplektischen Zylinder vom Radius R, B 2'(r) B2 (R) x C', immer r < R gilt. 
Das Volumen des Bildraumes ist jedoch unendlich. Daraus folgt, dass der gleichmäßige 
Grenzwert einer Folge von Symplektomorphismen selbst ein Symplektomorphismus 
ist, falls er differenzierbar ist. Das war die Geburtssturide der symplektischen Topologie 
(siehe z. B. [16]). Sie ist heute eine beliebte Spielwiese vieler Mathematiker. Das hat si-
cher viel mit der eingangs erwähnten engen Verknüpfung mit physikalischen Fragestel-
lungen zu tun. Andererseits liegt ihr Reiz darin begründet, dass sich viele der interessan-
ten Probleme relativ elementar formulieren lassen. Für ihre Lösungen müssen hingegen 
oft alle Register der Geometrie und Analysis gezogen werden. 

Eine Fülle von Beispielen hierfür findet sich in Gromovs bahnbrechender Arbeit 
[10]. Er studiert darin Abbildungen von kompakten Riemannschen Flächen in eine 
symplektische Mannigfaltigkeit, die holomorphe Funktionen einer komplexen Ver-
änderlichen verallgemeinern (siehe 1.2.(2)). Diese pseudoholomorphen Kurven stellen 
sich als mysteriöse Dolmetscher zwischen symplektischer Topologie und Hamiltonscher 
Dynamik heraus. Beispielsweise übersetzen sie Gromovs oben beschriebene Non-
Squeeze-Eigenschaft in die Existenz geschlossener Bahnen des Hamiltonfeldes auf fast 
allen (kompakten) Niveauflächen einer eigentlichen Hamiltonfunktion (siehe [12]). Ein 
anderes prominentes Beispiel ist die Existenz einer holomorphen Scheibe mit Rand auf 
einer gegebenen geschlossenen Lagrangen Untermannigfaltigkeit L c E' (siehe 
Theorem 1). Daraus folgt, dass die erste Homologie von L nicht verschwindet und man 
erhält eine neue Obstruktion gegen die Existenz von Lagrangen Einbettungen. In [18] 
wird mit Hilfe dieser holomorphen Scheibe die Existenz von Hamilton-Sehnen für soge-
nannte Legendre-Untermannigfaltigkeiten der Niveaumengen gezeigt. Die Anzahl sol-
cher kompakter holomorpher Kurven führt schließlich zu den Gromov-Witten-Inva- 
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rianten und der Quantenkohomologie, die das Zählen auf effektive Weise organisieren 
(siehe [15]). 

Für den Beweis von Arnolds Vermutung konstruierte Floer eine Homologie, die ei-
ner Art Morse-Theorie auf dem unendlich-dimensionalen Schleifenraum entspricht [8, 
9]. Dafür wird die Klasse der betrachteten holomorphen Kurven auf Abbildungen vom 
(nicht kompakten) Zylinder in die symplektische Mannigfaltigkeit erweitert. Diese ha-
ben viele Eigenschaften der punktierten holomorphen Kurven, die hier besprochen wer-
den sollen (siehe Abschnitt 2). Letztere sind pseudoholomorphe Abbildungen einer 
punktierten Riemannschen Fläche in eine symplektische Mannigfaltigkeit mit zylindri-
schen Enden und translationsinvarianten Strukturen darauf, den sogenannten symplek-
tischen Kobordismen. Nahe der Punktierungen sind sie asymptotisch zu Zylindern über 
geschlossenen Bahnen des Hamiltonflusses der Höhenfunktion auf den Enden. Die An-
zahl von solchen punktierten holomorphen Kurven definiert wieder Invarianten für die-
se symplektischen Kobordismen. Die von Givental, Hofer und Eliashberg in [7] 
entwickelte Symplektische Feldtheorie (SFT) beschreibt eine Möglichkeit zur kombina-
torischen Berechnung der Gromov-Witten-Invarianten aus diesen neuen Invarianten. 
Geschlossene symplektische Mannigfaltigkeiten werden in (möglichst einfache) sym-
plektische Kobordismen zerlegt. Den zylindrischen Enden ist ein linear-algebraisches 
Objekt zugeordnet, die Kontakthomologie. Dies ist eine graduierte superkommutative 
Algebra, die von allen periodischen Hamiltonbahnen auf der Basis des Zylinders frei er-
zeugt wird. Die Gromov-Witten-Invarianten der symplektischen Kobordismen sind 
dann algebraische Morphismen in der entsprechenden Kategorie. Die Philosophie ist 
also ganz analog zur Idee einer Topologischen Feldtheorie (siehe [2]), aber mit einem 
symplektischen Twist. Es gibt eine Dychotomie für die Ränder der Teile. Sie sind entwe-
der (symplektisch) konvex oder konkav. 

Wie in der Floer-Homologie ist die Hamiltonsche Dynamik bereits in die Definition 
der punktierten holomorphen Kurven eingebaut. Anders als bei kompakten holomor -
phen Kurven stellen punktierte holomorphe Kurven den Zusammenhang zwischen Ha-
miltonscher Dynamik und symplektischer Topologie also direkt her. Zum Beispiel folgt 
aus der Existenz nichtkompakter punktierter holomorpher Kurven direkt die Existenz 
von geschlossenen Hamilton-Bahnen. Dieser Umstand wurde erstmals von Hofer in 
[13] benutzt. Die Existenz der punktierten holomorphen Kurven wird z. B. aus dem 
Nichtverschwinden von Gromov-Witten-Invarianten geschlossen, d. h. der symplekti-
schen Topologie der Systems (siehe auch 2.5., Theorem 15). Natürlich gibt es auch den 
umgekehrten Effekt. Kennt man beispielsweise die Gromov-Witten Invarianten der 
symplektischen Mannigfaltigkeit und die Dynamik des Geodätenflusses einer Riemann-
schen Mannigfaltigkeit halber Dimension, erhält man Aussagen über die Lagrangen 
Einbettungen letzterer in erstere. Dies soll hier am Beispiel der Kleinschen Flasche mit 
der flachen Metrik und der komplex projektiven Ebene mit der Fubini-Study-Form stu-
diert werden (Abschnitt 3). 

Danksagung. Ich möchte mich bei der Deutschen Mathematikervereinigung für die 
Einladung zum Vortrag auf ihrer Jahrestagung 2002 sowie beim Gutachter dieser Ar-
beit und Herrn Alois Krieg für die Geduld und die vielen konstruktiven Hinweise be-
danken. Für ihre Hilfe möchte ich auch Janko Latschev, Janett Mohnke und Thomas 
Neukirchner herzlich danken. 
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1 Das Problem der Lagrangen Einbettungen 

Wir beginnen die Exposition mit einer (stark verkürzten) Darstellung der Geschichte 
des Studiums Lagranger Untermannigfaltikeiten, speziell im V. Dabei soll ein wesentli-
ches Merkmal der symplektischen Topologie herausgearbeitet werden. Es stellt sich 
nämlich heraus, dass die Eigenschaft, Lagrange zu sein, auf der Grenze zwischen diffe-
rential-topologischer Flexibilität und geometrischer Starrheit liegt. Ersteres wird durch 
Gromovs Arbeiten zum h-Prinzip untermauert (siehe [11]), letzteres durch seine Kon-
struktion holomorpher Kurven in [10]. 

1.1 Lagrange Immersionen und h-Prinzip 

Für ein detailliertes Verständnis der Diskussionen in diesem und im nächsten Abschnitt 
sei der interessierte Leser auf [4] verwiesen. Eine symplektische Struktur auf einer Man-
nigfaltigkeit W ist eine geschlossene 2-Form w E 92 (W) (dw = 0), die auf jedem Tan-
gentialraum eine nicht ausgeartete (antisymmetrische) Bilinearform definiert. Das be-
deutet, dass durch 

(1) X E TM w(X,.) E TM 

ein Isomorphismus zwischen Tangential- und Kotangentialräumen erklärt wird, oder 
äquivalent dazu, dass die 2n-Form w A... A w =: wn eine Volumenform auf W ist. In je-
dem Fall folgt daraus, dass W notwendigerweise gerad-dimensional und orientierbar 
sein muss. Sei H W - IR eine glatte Funktion. Wegen der Nichtdegeneriertheit, (1), 
von w ist ihr sogenanntes Hamiltonsches Vektorfeld, XH, durch w(XH ,.) = — dH ein-
deutig bestimmt. 

Wir nennen die Immersion L 	(M 2 , w) einer Mannigfaltigkeit in eine sym- 
plektische Mannigfaltigkeit doppelter Dimension Lagrange, falls das pull-back der sym-
plektischen Form darauf verschwindet: tw = 0. Für C lässt sich die Lagrange-Bedin-
gung alternativ auch einfach geometrisch charakterisieren: Die Rotation des Bildes des 
Tangentialraumes inp e L, t(TL), mittels Mutiplikation mit /Jf  steht senkrecht auf 
diesem. Es gibt einen guten Grund, dies nicht zur Definition zu machen. Die Bedingung 
suggeriert fälschlicherweise, dass Lagrange zu sein, eine Eigenschaft der Hermiteschen 
Geometrie des 1E' 1  ist. Die ursprüngliche Definition ist aber allgemeiner: Jede komplexe 
Isometrie des C1  ist natürlich ein Symplektomorphismus. Der Raum dieser Isometrien 
ist die endlich-dimensionale Liesche Gruppe U(n). Andererseits ist der Fluss einer belie-
bigen glatten Funktion mit kompaktem Träger auf eine Familie von Symplektomor -
phismen. Demnach ist der Raum der Symplektomorphismen unendlich-dimensional 
und daher viel größer als der der Isometrien. 

Die Lagrange-Bedingung im 	kann man nun abschwächen, indem man nur 
noch fordert, dass sich L(TL) und '/1T((TL) transversal schneiden. Solche Im-
mersionen wollen wir total reell nennen. Es stellt sich heraus, dass sich Lagrange Im-
mersionen rein differential-topologisch mittels des sogenannten h-Prinzips studieren 
lassen. Gromov und Lees bewiesen so, dass die folgenden Räume von Immersionen 
für eine gegebene geschlossene Mannigfaltigkeit L schwach homotopieäquivalent zu- 
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einander sind: 

{t : L 	E' 1 L Lagrange } { t : L '- 	t total reell } {: TL ø t--*L x CJ 

sind komplex-lineare Trivialisierungen des komplexifizierten Tangentialbündels von 
L. Demnach ist dies die einzige Obstruktion gegen die Existenz Lagranger Immersionen 
von L in ', und sie ist klassisch topologisch. Beispielsweise lassen alle Sphären S in 
den jeweiligen t1' Lagrange Irnmersionen zu. Solche Probleme nennt Gromov auch 
„weich". Man verwechsele dabei aber „weich" nicht mit leicht. Die Lösungen weicher 
Probleme können trotzdem sehr hart oder besser gesagt schwer sein. 

Diese Einheitlichkeit zwischen total reeller und Lagranger Bedingung geht verloren, 
sobald man Einbettungen betrachtet. Total reelle Einbettungen sind immer noch diffe-
rential-topologisch vollständig beschreibbar, also immer noch weich. Audin beschrieb 
diese in vielen Fällen in [3]. Ganz anders verhält es sich mit Lagrangen Einbettungen. 
Natürlich bilden diese eine Teilmenge total reeller Einbettungen. Aber es stellt sich her-
aus, dass die Existenz total reeller Einbettungen einer gegebenen geschlossenen Mannig-
faltigkeit L in den C nicht einmal notwendig die Existenz von Lagrange-Einbettungen 
impliziert, wie wir im nächsten Abschnitt sehen werden. Gromov bezeichnet solche Pro-
bleme als „hart". Mittels h-Prinzip fand er eine Reihe von Fragestellungen, die durch ei-
ne kleine Abschwächung der Voraussetzungen weich werden. Seine Arbeit über pseudo-
holomorphe Kurven [10] lieferte schließlich den Beweis, dass die ursprünglichen Proble-
me jedoch tatsächlich hart waren. 

1.2 Holomorphe Scheiben 

Folgendes Resultat aus Gromovs Arbeit liefert neue, überraschende Obstruktionen ge-
gen die Existenz Lagranger Einbettungen in den C. 

Theorem 1. Für jede geschlossene Lagrange Untermannigfaltigkeit L c C' gibt es 
eine nicht-konstante holomorphe Abbildung auf der Einheitskreisscheibe u = 
(u 1 , ...‚ u,) : A -* C mit der Randbedingung u(0L) c L. E 

Für die Existenz der holomorphen Abbildung benutzte Gromov Invarianz-Eigen-
schaften von Räumen pseudoholomorpher Kurven in C' x T zusammen mit seinem 
Kompaktheitsresultat für Folgen solcher Abbildungen mit „Bubbling". 

Dieses Theorem wird nun in der folgenden Weise ausgenutzt. Die symplektische 
Form wo = >I dx1  A dy1  ist exakt, denn wo = d00  für die 1-Form 00 = xjdy1 . Al-
so folgt aus der Lagrange-Bedingung, wo L  = 0, dass die Einschränkung 1. eine ge-
schlossene Form ist: 

d(OoL) = (dOo)(L  = W0L = 0. 

Andererseits ist für die holomorphe Scheibe u : A - 

f 	f (auau\ 
j Uwo =  1 wo—,-----jdsdt 

J 	J 	\e9s Dti 

in Koordinaten z = s + / Tt e A ci L. Die Cauchy-Riemann-Gleichungen besagen 
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nun, dass 

(2) 

wobei J0 E End(lR2 ) die übliche komplexe Struktur auf C ist, die eindeutig durch 
= 	und J = —Id charakterisiert wird. zk := xk + \/Tyk sind dabei die kom- 

plexen Koordinaten (zi, ...‚ zj) auf C. Es ist leicht zu sehen, dass die Bilinearform 

wo (v,Jo w) = vw 

gleich dem Skalarprodukt auf 01" IR21  ist. Allgemein nennt man eine Familie 
J = J(x) E End( T W) auf einer Mannigfaltigkeit W mit J2  = — Id eine fast-komplexe 
Struktur. Ist W mit einer symplektischen Form w versehen und wird durch w(v, Jw) eine 
Riemannsche Metrik auf W definiert, so nennt man J ui-kompatibel. Die Cauchy-Rie-
mann-Gleichung (2) lässt sich für jedes J hinschreiben. Deren Lösungen nennt Gromov 
pseudoholomorph. 

In unserem Fall folgt, dass 

IAu*wo = fJdsdt>o, 

da das Verschwinden implizieren würde, dass du 0 und somit u konstant ist. Mit dem 
Satz von Stokes erhalten wir 

[ uäo= [u*wo>0. 
JL 

Damit beantwortete Gromov die Frage von Arnold, ob es eine geschlossene Lagrange 
Untermannigfaltigkeit L gibt, für die 00 1 L exakt ist, d. h. für die es eine glatte Funktion 
f L - lRgibtmitdf = 

Folgerung 2. Die Einschränkung OOIL  auf eine geschlossene Lagrange Untermanni-
faltigkeit L c C ist nicht exakt. Insbesondere verschwindet die erste Betti-Zahl von L 
nicht. 

Da L insbesondere nicht einfach zusammenhängend sein kann, folgt zum Beispiel, 
dass es für keine n-Sphäre S eine Lagrange Einbettung in den I2 geben kann. Für 
n = 3 blieb dies mit den „weichen" Methoden ein offenes Problem: S3  lässt nämlich (als 
einzige der Sphären) sogar eine total reelle Einbettung in den t zu. 

1.3 Lagrange Flächen in F2  

Die Frage, für welche geschlossene Flächen es eine Lagrange Einbettung in den E 2  gibt, 
ist fast vollständig äquivalent zur Frage, ob es eine total reelle Einbettung gibt. Jede 
Fläche, die sich total reell in den ff 2  einbetten läßt, besitzt nämlich auch eine Lagrange 
Einbettung - mit einer Ausnahme: der Kleinschen Flasche. Diese läßt zwar eine total 
reelle Einbettung zu. Eine Lagrange Einbettung ließ sich aber nicht konstruieren, so 
dass man seit langem annahm, dass es keine gibt. Ihre erste Betti-Zahl ist aber gleich 1. 
Also ergibt sich aus Gromovs Theorem noch kein Widerspruch zur Existenz einer La- 
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grangen Einbettung. Mit den (nicht-kompakten) punktierten holomorphen Kurven 
kann man schließlich zeigen 

Theorem 3 ([19]). Es gibt keine Lagrange Einbettung der Kleinschen Flasche in den 

Die bewiesene Aussage ist stärker als die Frage nach der Existenz einer solchen Ein-
bettung in den F2.  Man kann nämlich durch Reskalierung annehmen, dass eine Lang-
range Einbettung in den (1:2  in einer beliebig kleinen Kugel liegt. Andererseits besagt 
Darbouxs Theorem, dass jeder Punkt einer symplektischen Mannigfaltigkeit (W 2 , w) 
eine Umgebung besitzt, die symplektomorph zu einer (kleinen) Kugel im (C, WO) ist. 
Also bekommt man für jede Lagrange Einbettung einer geschlossenen Mannigfaltigkeit 
in den C eine Lagrange Einbettung in jede beliebige symplektische Mannigfaltigkeit 
der gleichen Dimension. Somit folgt die Nichtexistenz einer Lagrangen Einbettung in 
den (1:2  aus der Nichtexistenz einer solchen Einbettung in irgend eine symplektische 
Mannigfaltigkeit. 

Zum Beweis des Theorems 3 konstruieren wir eine Reihe von punktierten holomor-
phen Kurven, die einen Teil des Grenzwertes einer Folge pseudoholomorpher Kurven 
in P2  bilden. Die zur Fubini-Study-Form kompatiblen fast-komplexen Strukturen 
degenerieren dabei in den Punkten der Lagrange-Untermannigfaltigkeit. 

Satz 4. Sei L c E1P2  eine Lagrange-Einbettung einer flachen geschlossenen Fläche 
(Torus oder Kleinsche Flasche) bezüglich der Fubini-Study-Form w. Dann gibt es eine 
w-kompatible fast-komplexe Struktur J und drei J-holomorphe Sphären F, G und 
H: S2 (1p2 \ L. F, G und H kann man somit als 2-Zyklen verstehen. Deren Homolo-
gieklassen sind gleich und jede erzeugt H 2 ((1P2 ; 71) Z. Außerdem gibt es noch zwei 
glatte Scheiben D und E: flp 2  mit Rand auf L, die den folgenden homologischen 
Schnittbedingungen genügen: 

F•D=l, GD=O, H.D=O, 

F•E=O, GE=l, H.E=O. 

Zuerst überzeugen wir uns einmal davon, dass dieser Satz das Problem der Klein-
sehen Flasche auch löst. 

Beweis von Theorem 3. Wir zeigen, daß die Ränder 3D, 3E linear unabhängig in 
H1  (L; (1) sind. Sei also 

k[0D] + 10E] = 0 e Hi (L;7Z) 

für ein Paar ganzer Zahlen (k, 1). Dass heißt, es gibt eine 2-Kette C E C2 (L: 71) mit 
0C = k3D +l3E. Somit ist kD + lE - C e Z2 (ElP2 ;71) ein 2-Zyklus, den wir jetzt ge-
gen die pseudoholomorphen Sphären testen: 

(kD + lE - C) F = k 

(kD + 1E - C) . G = 1 

(kD + lE - C) H =0. 
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Da [F] = G] = [H] e H2 (U1P2 ;7Z) muß k = 1 = 0 sein, und die Behauptung ist gezeigt. 
Also ist b 1  (L) > 2 und L kann somit nicht die Kleinsche Flasche sein. 

In [19] wird auch noch geschlossen, dass alle Lagrange Tori in E1P2  glatt isotop zu-
einander sind, d. h. dass es keine verknoteten Lagrangen Tori in «JP 2  gibt. 

Der Rest der Abhandlung dient der Einführung der Elemente der Symplektischen 
Feldtheorie und der Demonstration ihrer Arbeitsweise anhand des Beweises von Satz 4. 

2 Elemente der symplektischen Feldtheorie 

Wir beschreiben hier die Zerlegung und Verklebung symplektischer Mannigfaltigkeiten, 
kompatible fast-komplexe Strukturen auf den symplektischen Kobordismen sowie 
punktierte holomorphe Kurven, deren Anzahl die Invarianten der Symplektischen 
Feldtheorie (SFT) definiert. Für die Konstruktion und Beschreibung der SFT sei der 
Leser auf [7] verwiesen. 

2.1 Symplektische Kobordismen 

Sei (W, w) eine symplektische Mannigfaltikeit mit einer Produktstruktur auf den En-
den: Das Komplement einer genügend großen kompakten Teilmenge besteht aus positi-
ven und negativen Haibzylindern über Hyperflächen. Die Translation ist kein Symplek-
tomorphismus, aber lässt die symplektische Form bis auf Skalierung invariant. Wir 
können annehmen, dass die Skalierung infinitesimal konstant ist. Wir wollen die Trans-
lationsrichtung so orientieren, dass dieser Faktor positiv wird. Insbesondere ist das Ha-
miltonfeld der Funktion, die diese Translation mit der auf IR vertauscht und die auf der 
Hyperfläche konstant ist, translationsinvariant. Dann nennen wir (W, w) einen sym-
plektischen Kobordismus. Die positiven Halbzylinder nennen wir konvexe, die negativen 
konkave Enden. 

Eine fast-komplexe Struktur auf einem symplektischen Kobordismus heißt kompati-
bel, falls sie kompatibel zu w und auf den Enden translationsinvariant ist sowie das zur 
Translation gehörige Vektorfeld mit dem obigen Hamiltonfeld vertauscht. Zu jedem 
symplektischen Kobordismus ist der Raum aller kompatiblen fast-komplexen Struktu-
ren nicht-leer und kontrahierbar. 

Beispiel 5. (1) Sei L eine beliebige Mannigfaltigkeit. Ihr Kotangentialbündel PL 
besitzt eine natürliche symplektische Struktur, die auf' die folgende Weise gegeben wird. 
Die kanonische 1-Form 9 e f 1  (T*L)  wird durch 

91 (X) = l(irX) 

definiert, wobei 1 e PL ein Kotangentialvektor ist. X c Ti(T*L)  ist ein Tangentialvektor 
an T*L  in 1, und ir, ist das D(fferential  der Projektion T*L - L. Man prüft leicht nach, 
z. B. durch Wahl lokaler Koordinaten auf L, dass das äußere D(fferential  dü 
symplektisch ist. Jetzt wählen wir noch eine Riemannsche Metrik g auf L. Bezeichne 

JB 106. Band (2004), Heft 3 	 119 



Übersichtsartikel 	HistorischerArtikel 	Buchbesprechungen 

S*L c T*L  das zugehörige Einheitssphärenbündel. Die Identifikation des offenen Endes 
von T*L  mit dem Haibzylinder lR x S*L  sei so gewählt, dass die Multiplikation mit 
exp(r) in T*L  übergeht in die Translation um r e JR in der ersten Komponente im Zylin-
der. Das Kotangentialbündel T*L  ist dann ein symplektischer Kobordismus mit einem kon-
vexen Ende der Form IR+  x S*L.  Die FluJ3linien des zugehörigen translationsinvarianten 
Hamiltonfeldes (in T*L)  projizieren (natürlich) auf Geodäten in (L, g)! Bahnen des Vek -
torfeldes entsprechen somit genau den orientierten Geodäten mit Längenparametrisie-
rung. 

(2) Sei L c W eine geschlossene Lagrange Untermannigfaltigkeit in einer geschlosse-
nen symplektischen Mannigfaltigkeit (W, w). Nach Weinstein lässt sich Darbouxs Theo-
rem wie folgt verallgemeinern: Eine hinreichend kleine Umgebung von L ist symplekto-
morph zu einer Umgebung des Nullschnittes in (T*L,  d0). Nach Reskalierung einer gege-
benen Metrik kann man annehmen, dass dies das Einheitskugelbündel bezüglich dieser ist. 
Demnach ist W \ L ein symplektischer Kobordismus mit konkavem Ende IR_ x S*L .  

(3) Über die Translationsinvarianz der symplektischen Form bis auf (translationsinva-
riante) Skalierungen bekommt man eine symplektische Struktur auf dem Zylinder 
JR x SL, gegeben durch d(era),  der sogenannten Symplektisierung. Dabei ist a = üIs*L. 
Das ist (formal) ein trivialer symplektischer Kobordismus mit Halbzylinder-Enden über 
S*L .  Ist die fast-komplexe Struktur auf dem ganzen Zylinder translationsinvariant, spre-
chen wir von einer c-kompatiblen Struktur. Die Hamilton-Bahnen der entsprechenden 
Funktion H(r, x) = r nennt man auch die (a-)Reeb-Bahnen. 

2.2 Aufspaltung und Verklebung von symplektischen Kobordismen 

Man kann eine symplektische Mannigfaltigkeit (W, w) unter folgender Voraussetzung 
in symplektische Kobordismen „zerlegen". Sei M ci W eine geschlossene Hyperfläche 
deren Kragenumgebung eine Produktstruktur ähnlich der Enden eines symplektischen 
Kobordismus besitzt. Wir setzen voraus, dass W durch M in W \ M = W Li zer-
legt wird. Die Signatur der Teile W wird durch die Forderung bestimmt, dass das 
Translationsvektorfeld in W,1  hineinzeigt. 

Beispiel 6. Die Menge S*L ci  T*L erfüllt diese Bedingung. Wir haben bereits gese-
hen, dass man sie auch als HyperJläche in W auffassen kann, falls L ci W Lagrange Un-
termannigfaltigkeit ist. Sie erbt dann die Produktstruktur auf einer Umgebung. 

Man kann W durch Verkleben der Kragen der Ränder mit den Kragen der Ränder 
der Halbzylinder über M zu symplektischen Mannigfaltigkeiten (W, w) „vervollstän-
digen". Sind wir mit einem symplektischen Kobordismus (W, w) gestartet, so sind beide 
so erhaltenen (W±,  w) wieder symplektische Kobordismen. 

Beispiel 7. In unserem Beispiel ist also (W,w) symplektomorph zu (W\ L, 

WW\L), und(W,w) zu (T*L , dO) .  

Eine Umkehrung dieser Aufspaltung einer symplektischen Mannigfaltigkeit kann 
wie folgt durch eine Verklebung von zwei symplektischen Kobordismen (W±, w±) be-
schrieben werden. Nehmen wir an, dass ein konkaves Ende von (W+, w+) und ein kon- 
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vexes Ende von (W,w) Haibzylinder über derselben Mannigfaltigkeit sind. Dann 
kann man nach Reskalierung von w und Stutzen der beiden Enden beide Teile zu einer 
symplektischen Mannigfaltikeit verkleben. Die beiden Enden sind durch einen symplek-
tischen Zylinder endlicher Länge, sagen wir r, ersetzt worden. Die symplektische Man-
nigfaltigkeit bezeichnen wir mit (W, w). Sind J kompatible fast-komplexe Struktu-
ren auf W, so erhalten wir durch diese Verklebung eine Familie {J} von w-kompati-
blen fast komlexen Strukturen auf Wo-. 

2.3 Punktierte holomorphe Kurven 

Ein Zylinder über einer geschlossenen c-Reeb-Bahn y  in der Symplektisierung einer 
Kontaktmannigfaltigkeit mit a-kompatibler fast komplexer Struktur ist eine komplexe 
Kurve. Dies ist der Prototyp einer punktierten holomorpheri Sphäre mit einer positiven 
und einer negativen Punktierung, die wir einfach Zylinder über der Reeb-Bahn 'y  nennen 
werden. 

Definition 8. Eine punktierte J-holomorphe Sphäre ist eine J-holomorphe Abbildung 
von einer punktierten Riemannschen Fläche nach W, die nahe der Punktierun gen entwe-
der in ein konvexes Ende (wir sprechen dann von einer positiven Punktierung) oder in ein 
konkaves Ende (entsprechend negative Punktierung genannt) abbildet und dort asympto-
tisch (bezüglich r) zu dem entsprechenden Halbzylinder über einer Reeb-Bahn ist. 

Bemerkung 9. Punktierte holomorphe Kurven (in Symplektisierun gen) wurden erst-
mals von Hofer in [13] durch Analyse von nicht-konvergenten Folgen (kompakter) 
pseudoholomorp her Kurven konstruiert. Die wesentliche Eigenschaft, die für eine beliebi-
ge J-holomorphe Abbildungf : -* W entweder die Hebbarkeit in den Punktierungen 
oder die Asymptotik garantiert, ist die Endlichkeit einer „Energie". 

Beispiel 10. Eine Riemannsche Struktur auf einer Mannigfaltigkeit L induziert eine 
fast-komplexe Struktur Jo auf T*L,  die zwar kompatibel zu dü, nicht aber zur Kontakt-
form a ist. Sie ist insbesondere nicht translations-invariant unter der symplektischen 
Identifizierung T*L \ L JR x S*L.  In ihr ist der Anullator der Normalenrichtungen ei-
ner Geodätischen 'y ein komplexer Zylinder. Durch Streckung und Stauchung sind alle 
p-Sphärenbündel 

{e T*L MvM =p} 

mit dem Einheitssphärenbündel identifiziert. Somit kann man die dort definierte komplexe 
Struktur auf der Kontaktdistribution translationsinvariant auf alle p-Sphärenbündel trans-
portieren. Mittels Abschneidefunktion in p auf TL definieren wir eine fast-komplexe 
Struktur J, die in der Nähe des Nullschnittes mit J o  übereinstimmt. Mit Parameter 
r ln p ist sie translationsinvariant außerhalb einer kompakten Umgebung des Null-
schnittes °L•  J() ist das Reebvektorfeld (Geodätenfeld) auf dem Einheitskotangential-
bündel für p» 0. Dies ist überall parallel zu Jo (). Dann ist die vorher beschriebene Or 
.Jo -komplexe Kurve ebenfalls J-komplex und kann als 2-fach punktierte J-holomorphe 
Sphäre parametrisiert werden. Diese Kurve bezeichnen wir mitf. 
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Lemma 11 ([19]). Sei (L, g) der flache 2-Torus oder die flache Kleinsche Flasche. 
Dann sind alle J-holomorphen zweifach punktierten Sphären, die den Nullschnitt °L 
schneiden, von der in Beispiel 10 beschriebenen Form. L 

2.4 Fortsetzungen punktierter holomorpher Kurven 

Wir benutzen die Asymptotik punktierter holomorpher Kurven, um diese zu glatten 
Abbildungen auf kompakten Flächen mit Rand fortzusetzen. 

Für eine punktierte Riemannsche Fläche definieren wir die glatte, kompakte Fläche 
mit Rand dadurch, dass wir jede Punktierung mit einer Randkomponente abschließen 
(aus einem Kreis S' bestehend). Wegen der Asymptotik bekommen wir eine Fortset-
zung der holomorphen Abbildung auf diese Fläche zu einer differenzierbaren Abbil-
dung. Wir kompaktifizieren dabei den Bildraum unter Benutzung der Produktstruktur 
auf den Enden. 

Beispiel 12. Sei WI = W \ L das Komplement einer Lagrangen Untermannigfaltig-
keit aus unserem Beispiel 7. Mit Hilfe der Projektion {} x 5* - L bekommen wir 
eine glatte Abbildung 'v: W \ L - W. Somit definiert 7r of : —W eine glatte Abbil -
dung, die wir ebenfalls einfach mitf bezeichnen werden. Es gilt f(>) c L. 

Bemerkung 13. Die soeben eingeführte Abbildung 7 : E -* W ist keine pseudoholo-
morphe Kurve in W bezüglich einer kompatiblen fast-komplexen Struktur. Um für den 
mit dem Riemann-Hilbert-Problem vertrauten Leser Konfusion zu ersparen, werden im 
Folgenden einige wesentliche Unterschiede zu diesen aufgelistet. 

(1) Die konforme Struktur bezüglich derer f holomorph ist, degeneriert auf dem Rand 
von E. 

(2) Ähnliches gilt für die kompatible fast-komplexe Struktur auf W \ L. Sie ist in den 
Punkten von L entartet. 

(3) f erfüllt sehr starke „ Randbedingungen": Jede Komponente überlagert eine Geodäte 
auf L. Solche Bedingungen sindfürpseudoholomorphe Kurven (mit Rand) nicht wohl-
gestellt, d. h. dass es sie generisch gar nicht gibt! 

(4) f bildet die inneren Punkte c E in das Komplement von L ab. Es gibt keine einfache 
Möglichkeit, dies apriori für eine pseudoholomorphe Kurve mit Rand auf L zu kon-
trollieren. 

2.5 Grenzwerte holomorpher Kurven 

Punktierte holomorphe Kurven erhält man beispielsweise als Grenzwerte von Folgen 
J-holomorpher Kurven, wenn der Parameter - dabei beliebig groß wird. 

Satz 14 ([6]). Sei die Fubini-Study-Form w auf E1P so normiert, dass ihr Integral 
über die Erzeugende c von H 2 (cElP; 71) 71 gleich 7 ist. Sei M c «IlPn  eine geschlosse-
ne Hyperfläche, die EIP in zwei symplektische Kobordismen W wie oben beschrieben 
zerlegt, J, J0  seien kompatible fast-komplexe Strukturen auf W bzw. JR x M, J- sei 
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die entsprechende Familie kompatibler fast-komplexer Strukturen auf ffIP'1 . Sei Tj } ei-
ne Folge J -holomorpher Sphären 

pl4Jpn 

mit konstanter primitiver Fundamentalklasse, f] = c und - oc. Dann bekommt man 
für eine Teilfolge als wohldefiniertes Grenzobjekt eine Aufspaltung in eine endliche Familie 
F = (F('), ...‚ F(N)) punktierter holomorp her Kurven mit den folgenden Eigenschaften: 

(1) Jedes der 	ist die Vereinigung punktierter holomorpher Sphären in W (für 
= 1), mIR x M(füri= 2,...,N— 1)sowiein W (füri = N) 

(2) Die negativen Asymptotiken von F' stimmen mit den positiven Asymptotiken von 
überein. 

(3) Die in diesem Sinne entlang den entsprechenden Randkomponenten der kompaküfl-
Zier ten Flächen formal verklebten Definitionsbereiche ergeben eine Sphäre. 

(4) Die Homologieklasse der formalen Verklebung der Abbildungen stimmt mit c überein. 
Dabei identifizieren wir die Verklebung der (kompaktfizierten) Kobordismen entlang 
der entsprechenden Randkomponenten mit der ursprünglichen Mannigfaltigkeit, 
EIP'. 

(5)  

f (F 1 w = 

Wir erhalten sofort einen Beweis für folgendes 

Theorem 15 ([14]). Jede reguläre Niveaumenge vom Kontakttyp einer Hamiltonfunk-
tion auf ElP'1  trägt wenigstens eine periodische Bahn des Hamiltonflusses. 

Beweis:Jede solche Hyperfläche zerteilt E1P' in zwei Teile. Wegen des Nichtver-
schwindens der entsprechenden Gromov-Witten-Invariante gibt es für zwei beliebige 
Punkte und jede kompatible fast komplexe Struktur wenigstens eine pseudoholomor-
phe Kurve, deren Fundamentaiklasse primitiv ist und deren Bild jeden der beiden 
Punkte enthält. Wir wählen nun je einen Punkt in jeder der Komponenten des Korn-
piements der Hyperfläche und wenden Satz 14 auf die entsprechende Familie JT -holo-
morpher Kurven an. Dann bekommen wir im Grenzwert punktierte holomorphe Kur-
ven in beiden (mit Zylindern vervollständigten) Teilen. Diese müssen wenigstens eine 
Punktierung enthalten, da sie sich entlang dieser wieder zu einer Sphäre verkleben 
müssen. Eine Punktierung entspricht aber einer geschlossenen Hamilton-Bahn. 1 3 

2.6 Schnittverhalten holomorpher Kurven in Dimension 4 

Pseudoholomorphe Kurven haben viele Eigenschaften mit holomorphen Kurven ge-
meinsam. Eine sehr wichtige Eigenschaft ist das Schnittverhalten in Dimension 4: 

Satz 16. [Theorems 7.1. aus [17]] Auf T2  sei eine fast-komplexe Struktur J gegeben 
mit J(0) = ‚/iif auf To2 2 Seienf : A - zwei J-holomorphe Abbildungen mit 
fi (0) =f2(0).  Dann gibt es Umgebungen U i  und U2  der 0, so dass entweder 
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.fi(Ui ) =f2(U2), oder 
•fi (z i ) 7~ f2(z2)füralle(O,O) 	(zi,z) e U1 x U2. 

Im zweiten Fall können wir 0 einen Schnittindex zuordnen, der genau der (wohl-definier-
ten) transversalen Schnittzahl von Störungen derf in kleinen Umgebun gen V, c V1  c U 
entspricht. Dieser Index ist immer positiv. Er ist gleich 1 genau dann, wenn sichfi undf2 in 
0 transversal schneiden. 

3 Holomorphe Sphären im Komplement von L 

Wir kommen nun zum Beweis von Satz 4. Wir reskalieren die flache Metrik so, dass, 
wie in unseren Beispielen, das Einheitskugelbündel in T*L  symplektomorph zu einer 
Umgebung von L c gElp2  wird. Wir fixieren eine fast-komplexe Struktur auf L1P 2 , die 
kompatibel zur Fubini-Study-Form sowie zur Kontaktform 9S*L  auf der Umgebung 
S*L c V ( — e, r) x S*L  ist. Somit bekommen wir kompatible Strukturen J' auf den 
symplektischen Bordismen CIP2 \ L, TtL. 

3.1 Konstruktion der Scheiben 

Wir wählen einen Punkt x e L (auf einer der beiden isolierten Geodäten, falls L die 
Kleinsche Flasche ist) und fixieren eine J-komplexe Gerade e im Tangentialraum, die 
keinen Tangentialvektor an L enthält. Die Wahl dieses konkreten Punktes wird erst im 
nächsten Schritt (Abschnitt 3.2) wichtig. Aus den Gromov-Witten-Invarianten für ho-
lomorphe Sphären (siehe [15]) folgt, dass es für jedes T genau eine J-holomorphe Sphä- 
re 	: ElP' - FIP2  gibt, wobei [f] C H2 (EIP2 ;7L) Z erzeugt, fT (0) = x sowie 
(f)(ToøT.lP 1 ) = ist. Eine Folgef-, mit r 	wird nun im Sinne von Satz 14 gegen 
einen Grenzwert F = (F(1), ...‚ F(N)) konvergieren. F(N)  enthält eine Komponente, de-
ren Bild durch x E °L  verläuft. Dieses hat aufgrund der Wahl mindestens drei Punktie-
rungen: Die Wahl der tangentialen Richtung verhindert, dass diese vollständig in einer 
der Kurvenf7  einer Geodäten 'y liegt. Da E «hP', gibt es zu jeder dieser Punktierun-
gen eine (andere) Komponente in f(1) : 

- «1P2  \L, i = 1,2,3.....die eine 
punktierte holomorphe Sphäre mit genau einer negativen Punktierung ist. Dann setzen 
wir 

D  

E :=j(2)(). 

Dieser erste Schritt ist die zentrale Idee bei der Konstruktion solcher Obstruktionen. 
In jeder der Situationen muss man dann Eigenschaften von F zeigen. Das soll durch die 
folgenden beiden Resultate illustriert werden. 

Theorem 17 (Viterbo). Sei L c «JP(n > 3) eine geschlossene Lagrange Unterman-
nigfaltigkeit. Dann gibt es auf L keine Riemannsche Metrik mit negativer Krümmung. 
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Beweis: Durch jeden Punkt in TIK und jedes J gibt es eine J-holomorphe Sphäre 
mit primitiver Fundamentalklasse. Demnach gibt es durch jeden Punkt in T*L  eine 
punktierte J -holomorphe Kurve. Die Geodäten einer negativ gekrümmten Rie-
mannschen Mannigfaltigkeit sind aber alle minimal und isoliert. Daraus kann man 
schließen, dass keine der punktierten holomorphen Kurven in T*L  deformiert werden 
kann. Darum kann man einen Punkt finden, der in keiner solchen enthalten ist und er-
hält einen Widerspruch. E 

Theorem 18 (CieliebaklMohnke). Sei L c ElP' ein Lagranger n-Torus. Dann gibt 
es eine Scheibe u: A -  E1P mit Rand auf L, u(O/.) c L, so dass 

0< IA 	n+1 

Beweis. Die beschrieben Konstruktion für beliebige Dimension liefert einen Grenz-
wert, dessen Komponente F' wenigstens (n + 1) einfach punktierte Sphären enthält. 
Nun ist nach Satz 14 

f (F)w = 

Da die 2-Form (F(l))*w+  auf allen Komponenten von F') nicht-negativ ist und nicht 
verschwindet, folgt die Ungleichung für eine dieser einfach punktierten Sphären 
f: E - Wt Die Behauptung folgt dann mit 

ff+ = 

3.2 Konstruktion der holomorphen Sphären 

Mit jeder der punktierten holomorphen Kurven f(1)  verfahren wir nun wie folgt: Wir 
wählen auf ihr einen glatten Punkt y und eine J-komplexe Richtung 77 derart, dass eine 
einfache punkierte holomorphe Sphäre, die durch y verläuft, und dort tangential an 0 
ist, mindestens 4 reelle (effektive) Deformationsparameter hat. Wie schon bei der vor-
angegangenen Konstruktion benutzen wir, dass es für jedes T genau eine JT -holomorphe 
Sphäre gT : 'LlP' E1P 2  gibt, [gy ] ü H2(E1P2 ; 7Z) ZL ist ein Erzeuger, g(0) = y sowie 
(g)(To (lP') = 77. Eine Teilfolge gTfl  konvergiert dann im Sinne von Satz 14 gegen ei-
nen Grenzwert G = ( G('), ...‚ G(N)). Der zentrale Punkt des Arguments ist nun die fol-
gende Beobachtung: 

Lemma 19 ([19]). Für den oben erhaltenen Grenzwert G gilt N = 1, d. h. wir erhalten 
eine glatte J-holomorphe Sphäre in W = ff1p2 \ L. 

Zum Beweis: G 1  enthält eine Komponente, deren Bild durch y verläuft. Durch die 
generische Wahl von y und - ist garantiert, dass diese einen Deformationsindex von 
wenigstens 4 hat. Allgemein gilt, dass der Index von G (bzw. die Summe der Indizes 
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der Komponenten) nicht größer als 4 sein kann, wobei Gleichheit eintritt, genau dann 
wenn die Summe der Eulercharakteristiken der Komponenten G2), ...‚ G (N) ver-
schwindet. Hier benutzt man, dass es keine einfach punktierten Sphären unter diesen 
Komponenten gibt, also jede einen nicht-positiven Beitrag liefert. Letzteres wiederum 
folgt aus der Nichtexistenz einer kontrahierbaren Geodäte für Torus bzw. Kleinsche 
Flasche. Da die formale Verklebung der Komponenten von G eine Sphäre ergibt, gibt 
es wenigstens eine einfach punktierte Sphäre in Im Falle, dass T2  der Torus ist, 
hat diese einen ungeraden Index. Dann wäre folglich für eine gebrochene holomorphe 
Kurve G der Index aller Komponenten von G 1  nicht größer als 3, und die Aussage 
folgt in diesem Fall. 

Für den Fall der Kleinschen Flasche schließt man hingegen zuerst, dass alle anderen 
Komponenten von G 1  vom Index 0 sind. Daraus folgert man, dass alle Punktierungen 
asymptotisch zu (den Reeb-Bahnen) von isolierten Geodäten sind. Somit gibt es in G(N) 

eine zwei-punktierte Sphäref, für eine isolierte Geodäte -y. Mit Argumenten, die wieder 
Satz 16 benutzen, zeigt man, dass diese Geodäte einfach sein muß, und dassf höchstens 
einmal in G(N)  auftauchen darf. Es gibt jedoch nur zwei einfache isolierte geschlossene 
Geodäten. Deren Schnittindex mit dem Nulischnitt istf, - = 1 in 712. Andererseits ist 
[L] = 0 E H2 (41P2 ; 712). Somit muss die Anzahl solcherff, mit isolierter Geodäte y gera-
de sein. Ist N> 1, so müssen also beide möglichenf auftauchen. Dann enthält aber 
G(N) auchf für die Geodäte 'y, auf der wir in 3.1 den Punkt x gewählt hatten. Da die 
Richtung insbesondere transversal zu diesem f in x ist, erhalten wir einen zweiten 
transversalen Schnittpunkt zwischen G und F. Daraus würde f, . g > 2 im Wider-
spruch zur Primitivität folgen. Somit muß auch für diesen Fall N = 1 sein und das Lem-
mafolgt. EI 

Nehmen wir nun an, dass diese Sphäre G noch eine der anderen einfach punktierten 
Sphären irgendwo schneidet. Wegen der Schnitteigenschaft, Satz 16, geschieht dies mit 
einem endlichen, positiven algebraischen Index. Dann müssten sich aber in kleinen Um-
gebungen von y und diesem Punkt (für hinreichend große n)f und g mit einem Index 
größer als 1 schneiden. Wegen der Positivität aller eventuellen weiteren Beiträge zum al-
gebraischen Schnittindex der beiden Kurven, wäre dieser somit größer als 1 im Wider -
spruch zur Primitivität der beiden Kurven. 

Wir bezeichnen die Sphären, die ich auf diese Weise erhalte, nacheinander mit F, G 
und H. Sie genügen somit den Forderungen des Satzes 4. 
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1 Einleitung 

Die nichtlineare Analysis ist das Gebiet der Mathematik, das sich mit dem Lösen nicht-
linearer Gleichungen beschäftigt, insbesondere von Gleichungen in unendlichdimensio-
nalen Räumen, also etwa von (nichtlinearen) Differential- oder Integralgleichungen. 
Hierzu wird natürlich eine Vielzahl mathematischer Disziplinen herangezogen. Als be-
sonders fruchtreich hat sich hier insbesondere die Topologie erwiesen. E. Zeidler hat im 
Ubersichtswerk [62] —[66] die nichtlineare Analysis grob in drei Gebiete eingeteilt: Mo-
notoniemethoden, Variationsmethoden und topologische Methoden. Obwohl zwar ins-
besondere die modernen Variationsmethoden auch viel Topologie benutzen, beschrän-
ken wir uns in diesem Artikel auf topologische Methoden im obigen Sinne. Der wohl 
bekannteste Satz dieses Gebiets dürfte der Fixpunktsatz von Schauder sein: 

Satz 1 (Schauder). Sei X normierter Raum und K C X nichtleer und konvex. Sei 
F: K - K stetig. Weiterhin sei K kompakt, oder zumindest sei F(K) relativkompakt in 
K, d. h. in einer kompakten Teilmenge von K enthalten'. Dann hat F einen Fixpunkt, 
d. h. die Gleichung x = F(x) hat eine Lösung. 

Für den Fall, dass K eine abgeschlossene Kugel in X = JR ist, ist dies der Brouwer-
sehe Fixpunktsatz. 

Als bekannteste und typische Anwendung des Satzes von Schauder sei der Satz von 
Peano genannt: 

Satz 2 (Peano). Falls f: JR x 1W1 	JR'S  stetig ist, hat das Anfangswertproblem 
x'(t) =f(t,x(t)), x(0) = 0, eine lokale Lösung. 

Beweis. Wende den Satz von Schauder an für X := C([—T, T], 1R'), K :={x e X: 

MxM <1},und 

F(x)(t) := f f(s,x(s))ds. 

Für genügend kleine T rechnet man leicht nach, dass F: K - K, und nach Arzelä-Asco-
li ist F(K) El K kompakt. Die Lösung der Gleichung x = F(x) löst nach dem HDI das 
Anfangswertproblem auf [- T, T]. 

Der Satz von Schauder stellt in gewissem Sinne das Herzstück der gesamten Theorie 
dar. Er ist eine gewisse Idealsituation: Wie einfache Beispiele zeigen, darf in diesem Satz 
keine einzige der Voraussetzungen ersatzlos gestrichen werden; aber andererseits stellt 
sich heraus, dass man jede einzelne der Voraussetzungen entscheidend abschwächen 
kann. Jede dieser Abschwächungen führt in ein anderes Gebiet der Theorie. Daher wer-
den nun die verschiedenen Abschwächungen der Voraussetzungen in verschiedenen Ab-
schnitten beschrieben. 

Nur eine Voraussetzung scheint wesentlich zu sein, nämlich die Stetigkeit von F - 
schließlich basiert ja alles auf topologischen Methoden. Aber bei genauem Hinsehen 
lässt sich auch diese Voraussetzung abschwächen, wenn man sich damit zufrieden gibt, 
anstelle einer Lösung der Gleichung x = F(x) nur eine Lösung der Ungleichung 

- F(x)M <E zu erhalten: Inder Tat, der Beweis des Satzes von Schauder fußt auf der 
Beobachtung, dass man aufgrund der Kompaktheit die Abbildung F durch eine end- 
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lichdimensionale (nichtlineare) Abbildung approximieren kann; für diese Approximati-
on wendet man dann den Fixpunktsatz von Brouwer an. Man benötigt also tatsächlich 
nur eine Stetigkeit von F auf gewissen endlichdimensionalen Teilräumen von X, was ei-
ne wesentliche Erleichterung sein kann. 

2 Retrakte und absolute Retrakte 

Zunächst soll diskutiert werden, inwiefern man die Voraussetzung abschwächen kann, 
dass die Menge K in Satz 1 eine konvexe abgeschlossene Teilmenge eines normierten 
Raums sein muss. Die erste Beobachtung, die man dabei wohl macht, ist, dass es voll-
kommen genügt, dass K homöomorph zu einer solchen Menge K0  ist. In der Tat, wenn 
h: K - K0 ein entsprechender Homöomorphismus ist, so hat die Komposition 
h o Fa h nach dem Fixpunktsatz von Schauder einen Fixpunkt xo E K0, und h' (XO) 

ist dann ein Fixpunkt von F. 
Ebenso bleibt der Fixpunktsatz von Schauder aber auch gültig, wenn K nur ein Re-

trakt einer Menge M wie eben ist. Es sei kurz an die Definition erinnert: 

Definition 1. Eine stetige Abbildung p: M - M eines topologischen Raums M 
heißt Retraktion, wenn p o  p = p. Das Bild p(M) ist ein Retrakt von M. 

Anders formuliert: Eine Menge K C M ist ein Retrakt von M, wenn man die Identi-
tätsabbildung id: K -* K zu einer stetigen Abbildung p: M - K fortsetzen kann. 

Falls der Fixpunktsatz von Schauder für M gilt, so gilt er auch für jeden Retrakt K 
von M, denn für die zugehörige Retraktion p und stetiges f: K -* K (mit relativkom-
paktem f(K)) hat die Abbildung f a p: M - M dann einen Fixpunkt xo c M, also 
x 0  =f(p(xo )) c K, was p(xo) = x0  und damit x0 =f(xo) impliziert. Diese Uberlegun-
gen zeigen, dass der Satz von Schauder sogar für jeden sog. AR-Raum K gilt: 

Definition 2. Ein metrischer Raum K heißt absoluter Retrakt (AR), wenn er ho-
möomorph ist zu einem Retrakt einer konvexen Teilmenge M eines normierten Rau-
mes. Ein metrischer Raum K heißt absoluter Umgebungsretrakt (ANR), wenn er ho-
möomorph ist zu einem Retrakt einer (in M) offenen Teilmenge einer konvexen Teil-
menge M eines normierten Raumes. 

Diese Begriffe wurden von Borsuk (s. z. B. [141) eingeführt. Die Klasse der ANR-
Räume ist immens groß: Jeder „lokal gutartige" Raum ist ein ANR. Insbesondere ist je-
de Mannigfaltigkeit ein ANR. Außerdem ist jede endliche Vereinigung konvexer Teil-
mengen eines normierten Raumes (und jeder dazu homöomorphe Raum) ein ANR. 
Grob gesprochen kann man einen ANR als die topologische Version einer Mannigfal-
tigkeit interpretieren. Im Gegensatz zu einer Mannigfaltigkeit sind allerdings „Ecken 
und Kanten" erlaubt, und die Dimension muss nicht konstant (oder auch nur definiert 
oder endlich) sein. Im wesentlichen schließt die Klasse der ANR-Räume nur einige pa-
thologische Räume aus, die häufig zur Konstruktion von Gegenbeispielen herangezo-
gen werden (wie etwa den Graphen der Funktion x sin 1 und ähnliche Räume, bei 
denen vergleichbare „Häufungseffekte" auftreten). In der Literatur findet man meist ei- 
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ne andere Definition von AR- und ANR-Räumen, die hier nur als Satz wiedergegeben 
wird: 

Satz 3. Ein metrischer Raum K ist genau dann ein ANR, wenn es für jeden metri-
schen Raum X, jede abgeschlossene Teilmenge A C X und jede stetige Abbildung 
f: A - K eine Umgebung U von A und eine stetige Fortsetzung F: U -* K vonf gibt. K 
ist genau dann ein AR, wenn man sogar stets eine stetige Fortsetzung F: X - Kfindet. 

Beweis. Der Fortsetzungssatz von Dugundji [18] besagt, dass jede konvexe Teilmenge 
M eines normierten Raums die genannte Fortsetzungseigenschaft besitzt, also dass jede 
Abbildung f: A - M wie oben eine stetige Fortsetzung F: X - M besitzt. Ist nun K 
ein ANR, etwa V C M offen, p: V -* N Retraktion auf N und h: N ---> K ein Homöo-
morphismus, so kann man die Abbildung g := h' o f : A - N zu einer stetigen Abbil-
dung G: X - M fortsetzen; für die Einschränkung G 0  von G auf U := G ( V) gilt 
dann: h o p o G0 : U - K ist die gesuchte Fortsetzung. Falls K ein AR ist, kann man na-
türlich V := M wählen und hat folglich U = X. 

Umgekehrt ist nach dem Einbettungssatz von Arens-Eells [9] jeder metrische Raum 
K isometrisch zu einer abgeschlossenen Teilmenge N eines normierten Raums M, es 
gibt also insbesondere einen Homöomorphismus h: N -* K. Hat nun K die genannte 
Fortsetzungseigenschaft, so lässt sich h zu einer stetigen Abbildung H: U - K mit offe-
nem U D N (bzw. U = M) fortsetzen. Damit ist p := h -1  o H: U -* N die gesuchte Re-
traktion auf N. 

Es sei bemerkt, dass der Beweis des Fortsetzungssatzes von Dugundji (und damit 
des obigen Satzes) massiv vom Auswahlaxiom Gebrauch macht nur für separables A 
und vollständiges metrisches M ist ein alternativer Beweis bekannt, für den das abzähl-
bare Auswahlaxiom genügt. Da der Fortsetzungssatz von Dugundji nicht nur für nor-
mierte, sondern sogar für lokalkonvexe Räume richtig ist, folgt aus obigem Beweis so-
gar, dass wir in Definition 2 äquivalent auch lokalkonvexe Räume hätten zulassen dür-
fen. 

Unsere Uberlegungen vor Definition 2 haben gezeigt: 

Satz 4 (Granas). Sei K ein AR, und F: K - K stetig mit relativkompaktem Bild. 
Dann hat F einen Fixpunkt. 

Für Satz 4 hätten wir den Begriff von ANR-Räumen gar nicht gebraucht, sondern 
die Definition von AR-Räumen hätte ausgereicht. Die Tragweite dieses Satzes wird al-
lerdings besonders deutlich, wenn man folgendes Ergebnis kennt: 

Satz 5. Die AR-Räume sind genau die kontrahierbaren ANR -Räume. 

Wir erinnern daran, dass ein Raum kontrahierbar heißt, wenn die Identität homotop 
zu einer konstanten Abbildung ist. 

Beweis. Sei K ein AR, ohne Einschränkung K = p(M) mit einer konvexen Menge M ei-
nes normierten Raums und einer Retraktion p. Für x 0  e M ist die Abbildung 
H: [0,1] >< K -* K, H(t,x) := p(txo + (1 - t)x) eine Kontraktion von K. 

Sei umgekehrt Kein ANR mit einer Kontraktion H: [0, 1] x K -* Kauf einen Punkt 
x0 E K. Sei X metrischer Raum, A C X abgeschlossen, undf: A - K stetig. Da X nor- 
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maL und K ein ANR ist, gibt es ein offenes U 9 A und eine stetige Fortsetzung 
F0: U - K. Nach dem Lemma von Urysohn gibt es eine stetige Funktion ): X - [0, 1] 
mit )'tA = 0 und A IaU = 1. Definiere F: X K durch 

{  
(x) 	

H(,\(x),Fo(x)) falls x e j 
XO 

F 	:= 	 falls x e U. 

Da F eine stetige Fortsetzung vonf definiert, ist K ein AR (Satz 3). 	 EI 

Grob gesprochen ist ein AR also ein ANR „ohne endlich-kodimensionale Löcher". 
Dies ist besonders überraschend, wenn man bedenkt, dass unendlichdimensionale 
Sphären hingegen stets kontrahierbar sind [18]. Man erhält so sofort als frappierende 
Folgerung des Granasschen Fixpunktsatzes: 

Korollar 1. Sei S eine Sphäre in einem unendlichdimensionalen normierten Raum X, 
undF: 5 - 5 stetig mit relativkompaktem Bild. Dann hat Feinen Fixpunkt. 

Beweis. 5 ist als Retrakt von U := X \ {0} ein ANR-Raum, wegen der Kontrahierbar- 
keit also ein AR-Raum. 	 EI 

Korollar 1 gilt auch für die Sphäre S in einem endlichdimensionalen Raum, wenn 
man zusätzlich voraussetzt, dass F(S) S (was in unendlichdimensionalen Räumen 
bei kompaktem F(S) automatisch erfüllt ist). In der Tat, sei etwa Xü e 5 \ F(S). Dann 
bildet F den Raum S0  := 5 \ {xo } in sich ab (mit F(So) C F(S) C So) und S0  ist ein 
AR-Raum, denn offensichtlich ist so  kontrahierbar und als Retrakt von U := 
{)xo : .\ > 01 ein ANR-Raum. 

Tatsächlich hat A. Granas den Fixpunktsatz sogar für ANR-Räume formuliert. In 
diesem Fall gilt der Satz aber natürlich nicht für beliebige kompakte Abbildungen (z. B. 
sind ja Drehungen des Kreises S 1  fixpunktfrei), sondern nur für solche, deren sog. Lef-

schetz-Zahl nicht verschwindet [31]. Auf die (mit Methoden der Homologietheorie defi-
nierte) Lefschetz-Zahl soll hier aber nicht weiter eingegangen werden. Es sei allerdings 
erwähnt, dass im Falle eines azyklischen Raumes (also eines Raumes mit der selben Ho-
mologie wie ein einpunktiger Raum - insbesondere ist jeder kontrahierbare Raum azy-
klisch), die Lefschetz-Zahl stets 1 ist, so dass unser obiger Satz 4 also tatsächlich ein 
Spezialfall des Satzes von Granas ist. 

3 Abschwächung der Kompaktheitsvoraussetzung 

Der mathematischen Folklore zufolge soll Schauder (sinngemäß) gesagt haben, dass die 
Kompaktheitsvoraussetzung zwar nicht schön, aber unverzichtbar sei. Tatsächlich ist 
bis heute noch kein nützlicher Satz der Theorie bekannt, in dem eine Kompaktheits-
voraussetzung keine wesentliche Rolle spielt: Letztlich basieren alle Beweise der Theorie 
auf eine Reduktion auf einen endlichdimensionalen Fall, der dann z. B. kombinatori-
schen Methoden zugänglich ist. Aber schon die obige Formulierung von Satz 1 zeigt, 
dass man die Kompaktheitsvoraussetzung „verschieben" kann: Anstelle von Kompakt-
heit für K zu fordern, genügt es zu fordern, dass die Abbildung F kompakt ist. Zumin-
dest falls K abgeschlossene konvexe Teilmenge eines Banachraum ist (was wir im fol- 
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genden annehmen), ist der Grund offensichtlich: Da die abgeschlossene konvexe Hülle 
K0  := ö(F(K)) dann konvex und kompakt ist, kann man die Version des Satzes für 
kompakte Mengen einfach auf F: K0  - Ko  anwenden. 

Man könnte jetzt die Frage stellen, ob es z. B. mit einem ähnlichen Argument mög-
lich ist, nur die Kompaktheit einer Iterierten Fn zu fordern (in Anlehnung an den Ba-
nachschen Fixpunktsatz). Aber dies ist ein noch ungelöstes Problem, das wohl erstmals 
von R. D. Nussbaum gestellt wurde (siehe z. B. [50]). 

Wie G. Darbo viel früher bemerkt hatte, kann man allerdings eine positive Antwort 
geben, wenn man anstatt der reinen Iterierten der Abbildung F die Iteration von Men-
gen unter der Abbildung F betrachtet, wenn man also etwa einen Punkt xo e K festhält 
und iterativ K0  := K und K := F(K 1 ) U {xo}) für n = 1,2,... definiert. Die 
Menge K. := fl0 K ist nichtleer (wegen x 0  E K), konvex, abgeschlossen und es gilt 
F: K - K. Ist also insbesondere K. kompakt, so besitzt F einen Fixpunkt. Es ge-
nügt also insbesondere, die Kompaktheit von einer der Mengen F(K) zu überprüfen. 

Für Anwendungen ist zur Uberprüfung der Kompaktheit der Menge K der Begriff 
eines Nich tkompakheitsmaßes praktisch. Es gibt hiervon viele, es seien nur zwei er-
wähnt: Das Hausdorffsche Nichtkompaktheitsmaß xx(A) einer Menge A in einem Ba-
nachraum X ist das Infimum aller > 0, so dass A ein endliches e-Netz N C X hat, d. h. 
dass für jedes a ü A die Ungleichung dist(a, N) < r gilt. Das Kuratowskische Nichtkom-
paktheitsmaß c(A) ist das Infimum aller 6> 0, so dass A in endlich viele Teilmengen A, 
mit diam A, <6 zerlegt werden kann. Die beiden Definitionen sind qualitativ äquiva-
lent, aber nicht quantitativ: 

x(A) <c(A) <2xx(A) 	(A C X). 

Grob gesprochen gilt: Je größer das Nichtkompaktheitsmaß ist, desto „weniger kom-
pakt" ist die Menge. Genauer kann man für -y E  {Xx, c} nachrechnen: 

1. 1(A) <oc 	A ist beschränkt. 

2. (A) = 0 	ist kompakt. 

3. ACB=y(A)<(B). 

4. y(A) = y(üöVA). 

5. y(A+B) <y(A)+y(B). 

6. y(AUB) =max{-y(A),-y(B)}. 

Seien nun X und Y Banachräume, M C X, und F: M - Y. Häufig gibt es eine Zahl 
L > 0 mit 

-y(F(A)) <L-y(A) 	(A C M beschränkt). 

Es gibt dann stets eine kleinste solche Zahl, und diese nennen wir [F]. Sie kann als 
quantitatives Maß für die Kompaktheit von F interpretiert werden: 

1. [F] = 0 	F bildet beschränkte Mengen in relativkompakte ab. 

2. [F+G] 	[F]+[G]. 
3. [F]' < L falls Flipschitzstetig ist mit Lipschitzkonstanter L. Falls Feine lipschitzste-

tige Fortsetzung auf X(mit Konstanter L) besitzt, so ist auch [F]x < L. 
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Falls [F]2  < 1 heißt F kondensierend. Wir können nun den Fixpunktsatz von G. 
Darbo [161 beweisen: 

Satz 6 IDarbol. Sei XBanachraum, und K C X nichtleer, konvex, abgeschlossen und 
beschränkt. Sei F: K — K stetig und kondensierend. Dann hat Feinen Fixpunkt. 

Beweis. Für die oben definierten Mengen K gilt: 

y(K) = 7(öi(F(K 1 ) U {xo})) = '7(F(K 1 ) U {xo}) = y(F(K1)) < Fy(Ki). 

Durch Induktion folgt y(K) < ([F]')'y(Ko) — 0, also y(K) = 0, d.h. K ist kom-
pakt. Wie oben erklärt, folgt die Behauptung also aus dem Fixpunktsatz von Schauder 
fürF:K— K. 

Beachte, dass jede Kontraktion [F] < 1 erfüllt. Man erhält also auch den Fixpunkt-
satz von Banach als Spezialfall. Benutzt man die Abschätzung [f + g]7 < [f] + [g], 
erhält man aber sogar den folgenden Fixpunktsatz von M. A. Krasnoselskii [36] als Spe-
zialfall, der sowohl den Banachschen als auch Schauderschen Fixpunktsatz auf natürli-
che Art verallgemeinert: 

Satz 7 (Krasnoselskff). Sei X Banachraum, und K C X nichtleer, konvex, abgeschlos-
sen und beschränkt. Es sei F =f + g : K — K mit einer Kontraktionf und kompaktem 
g(K). Dann hat Feinen Fixpunkt. 

Für den ursprünglichen (elementaren) Beweis von Krasnoselskir ist zusätzlich die 
Voraussetzung f(K) + g(K) C K notwendig es ist bislang wohl noch kein Weg be-
kannt, wie man ohne Benutzung von Nichtkompaktheitsmaßen einsehen könnte, dass 
diese Voraussetzung in Wirklichkeit überflüssig ist. 

Tatsächlich gilt Satz 6 anders als der Fixpunktsatz von Banach auch noch im 
Falle [F]' = 1, wenn man voraussetzt, dass 7(F(A)) < 7(A) für alle nichtkompakten 
abgeschlossenen Mengen A gilt. Dies hatte B. N. Sadovskii bewiesen, indem er die Fol-
ge K mit transfiniter Induktion weiter fortsetzte: Dieser Zugang benötigt allerdings das 
Auswahlaxiom. Es gibt aber einen alternativen Zugang, der sich als viel praktischer he-
rausstellt: Man muss ja nur eine nichtleere kompakte konvexe Menge K0 C K mit 
F(Ko ) C K0 finden. Sei hierzu xo e K fest, und U das System aller konvexen abgeschlos-
senen Mengen U C K mit x 0  E U und F(U) ci U. Dann ist K0  := flU konvex, abge-
schlossen und nichtleer, und es gilt 

(1) 	öiiV(F(K o ) u {xO}) = K0 . 

In der Tat, wenn wir die Menge links mit M bezeichnen, so gilt für jedes U ü 11, dass 
M ci cöi'iV(F(U) ci {x o }) C U, mithin M ci K0 . Dies impliziert auch F(M) C F(K0 ) 
ci M, also folgt M e 11 und somit K0 ci M; insgesamt also M = K0. 

Die Menge K0 ist nach Konstruktion sogar die kleinste Menge, die (1) erfüllt. Wenn 
wir sichern können, dass K0 kompakt ist, hat F einen Fixpunkt (nach Schauder wegen 
F(Ko ) ci K0 ). 

Satz 8 (Sadovskii). Sei XBanachrauni, undK ci X nichtleer, konvex und abgeschlos-
sen. Sei F: K —* K stetig. Falls für jede abgeschlossene konvexe nichtkompakte Menge 
A ci K die Beziehung 'y(F(A)) 'y(A) für ein 'y e {ci, xx} gilt, dann hat F einen Fix-
punkt. 
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Beweis. Für K0 wie oben und e {a, Xx}  gilt 

= 7(F(K0) U {xo}) = y(ÖV (F(K o ) U {xo})) = 7(K0). 

Dies ist nach unserer Annahme nur möglich, wenn K0 kompakt ist. 	 EI 

Tatsächlich ist unser obiger Satz in gewissem Sinne allgemeiner als der Fixpunktsatz 
von SadovskiT [51]: Es ist auch 'y(F(A)) > 7(A) zulässig, und die Wahl von 'y darf von 
der Menge A abhängen. 

Als eine typische Anwendung des Fixpunktsatzes von Darbo sei hier eine Verall-
gemeinerung des Satzes von Peano für Differentialgleichungen von Funktionen mit 
Werten in einem Banachraum (E, 1 . ) skizziert: Es ist bekannt, dass selbst für stetiges 
und beschränktesf: [- T, T] x E - E das Anfangswertproblem 

x'(t) =f(t, x(t)), 	x(0) = 0 

keine lokale Lösung besitzen muss. Wir werden allerdings im folgenden skizzieren, wes-
halb eine lokale Lösung immer existieren muss, falls man zusätzlich voraussetzt, dass es 
ein L < cc gibt mit [f(t, )] <L. 

Wie im Beweis von Satz 2 wird man hierzu natürlich versuchen, den Satz von Darbo 
im Raum X := C([—T, T],E) auf die Menge K := {x üX: llxll < l} und den Picard-
Lindelöf-Operator 

F(x)(t) := f f(s,x(s))ds 

anzuwenden. Das Problem hierbei ist, dass die Menge F(K) C X zwar gleichgradig ste-
tig und beschränkt, aber im allgemeinen dennoch nicht relativkompakt ist. Für gleich-
gradig stetige beschränkte Mengen A El X kann man allerdings - ähnlich wie im Beweis 
des Satzes von Arzelit-Ascoli —nachrechnen, dass 

xx(A) = sup XE({x(t) : x e Al) 
tE[—T,T] 

gilt; ohne die Voraussetzung der gleichgradigen Stetigkeit gilt stets „>". Falls man nun 
wüsste, dass 

(2) xE({ff(sx(s))  ds : x e Al) < 10 XE({f(s, x(s)) : x E A}) ds 

gilt (den Integranden rechts ersetze man ggf. durch eine messbare Majorante), so könn-
te man damit dann also folgern, dass 

xx(F(A)) = sup XE({f  f(s, x(s)) ds : x E A}) 
tE[—T,T] 	0 

TL sup XE({x(s)xeA})TLXx(A), 
sE[—T,Tj 

mithin [F]c < TL gilt (und damit besitzt das Anfangswertproblem dann für genügend 
kleine T eine Lösung). Leider ist (2) i. a. nicht richtig, fallsf nicht gleichmäßig stetig ist, 
siehe etwa [34]. Man kann jedoch mit einigem technischem Aufwand nachweisen, 
dass (2) für abzählbare Mengen A gültig ist, wenn man rechts noch den Faktor 2 hin- 
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zufügt (auf diesen Faktor darf man unter gewissen Zusatzvoraussetzungen auch ver -
zichten), siehe etwa [7], [34], [42], [45]. Die Einschränkung auf abzählbare Mengen A 
kann man auf zweierlei Weise umgehen: Entweder, man beobachtet, dass (2) auch für 
überabzählbares A richtig bleibt, wenn man rechts ein weiteres mal den Faktor 2 
einfügt [7], oder man benutzt eine Verallgemeinerung des obigen Satzes von SadovskiT, 
bei der man die Kompaktheitsvoraussetzung nur für abzählbare Mengen verifizieren 
muss, siehe etwa [44] oder [54] (siehe auch Satz 12). Letzteres hat natürlich den Vorteil, 
dass man ein größeres Existenzintervall für die Lösung nachweisen kann. Für weitere 
Details und Verallgemeinerungen sei auf[7] oder die Monographien [35], [56] verwiesen. 
Weitere Nichtkompaktheitsmaße und Anwendungen sind etwa in [1] zu finden. 

4 Verzicht auf Selbstabbildungen 

Wir werden nun die Voraussetzung F(K) EI K abschwächen. Ein wichtiges Ergebnis in 
diese Richtung ist der Satz der besten Approximation von Ky Fan [23]: 

Satz 9 (Ky Fan). Sei K konvexe kompakte Menge eines Banachraums X, und 
F:K - Xstetig. Dann gibt es ein xo E Kmit F(xo) - xoM = dist(F(xo ),K). 

Der Spezialfall F(K) EI K ist gerade der Fixpunktsatz von Schauder. 
Eine andere Art der Verallgemeinerung hat sich jedoch als wichtiger herausgestellt, 

nämlich, wenn man einen Fixpunkt von F: K -* X sucht, und K = Q der Abschluss ei-
ner offenen Menge 9 C X ist: In diesem Fall kann man Abbildungsgradtheorie (oder 
den sog. Fixpunktindex) benutzen; hierauf wird später eingegangen. Die Konvexität 
von 9 ist in diesem Fall überflüssig, aber die Konvexität von X ist bedeutsam. Wir be-
schränken uns hier auf den Fall eines Banachraums X. 

Tatsächlich geht diese Theorie aber in vielen Fällen nicht weit genug, denn oft hat 
man nicht F() C X, sondern F: Q - Y mit einem ganz anderen Banachraum Y. Dies 
ist beispielsweise bei allen Differentialoperatoren der Fall: Zwar wird häufig „künst-
licherweise" ein Differentialoperator als ein Operator von einem Banachraum in sich 
selbst aufgefasst, aber viel natürlicher ist es, z. B. einen Differentialoperator zweiter 
Ordnung als stetigen(!) Operator von C2  (oder H2 ' 2) nach C (bzw. L2) aufzufassen. 

In dieser Situation ist es natürlich nicht sinnvoll, von Fixpunkten von F zu reden, 
sondern man ersetzt in der Fixpunktgleichungx = F(x) die Iderititätsabbildung auf der 
linken Seite durch eine andere Abbildung J: Q -+ Y, die sich „ähnlich gutartig" wie die 
Identitätsabbildung verhalten soll. Man sucht also allgemeiner Koinzidenzpunkte, also 
Lösungen der Gleichung J(x) = F(x). Die Essenz dieser Idee ist in folgender Definition 
zusammengefasst, die unabhängig von mehreren Autoren eingeführt wurde, z. B. in [25], 
[33] (leider auch unter verschiedenen Bezeichnungen; bei Granas z. B. heißt die folgende 
Klasse „essentiell"). 

Definition 3. Sei X ein normaler topologischer Raum, und Y ein topologischer 
(Hausdorff) Vektorraum. Sei 9 EI X offen und J: -* Y stetig. Die Abbildung J 
heißt 
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1. 0-zulässig,wenn0 e J(39), 	 - 
2. 0-epi, wenn für jede stetige Abbildung F: - Y mit relativkompaktem Bild und 

F[ = 0 die Gleichung J(x) = F(x) eine Lösung besitzt. 

Natürlich hat jede 0-epi Abbildung eine Nullstelle (setze F(x) 0). Wir werden bald 
sehen, dass die 0-epi Abbildungen genau jene sind mit „homotop stabilen" Nullstellen. 

Der Fixpunktsatz von Schauder besagt gerade, dass die Identitätsabbildung 0-epi 
ist. 

Proposition 1 (Normalisierung). Für einen normierten Raum X = Y und offenes 
C Y ist J = id genau dann 0-zulässig und 0-epi, wenn 0 E Q. 

Beweis. Wenn 0 e 9, so hat J(x) = 0 keine Lösung. Wenn 0 E 2 und F: Q - Y wie 
oben ist, so setze F trivial fort. Da F eine (genügend große) Kugel kompakt und stetig 
in sich abbildet, hat Feinen Fixpunkt x 0  = F(xo ) E 9 nach Satz 1. 	 D 

Die wichtigste Eigenschaft von 0-epi Abbildungen ist die Homotopieinvarianz: 

Proposition 2 (Homotopieinvarianz). Sei J1  : 0 - Y eine 0-zulässige homotope Stö-
rung von .J: 9 -* Y, d. h. es gelte J 1  = Jo - H(l, -)' wobeiH: [0, 1] x Q -* Y stetig mit 
relativkompaktem Bild und H(0, •) = 0 sei, und jede der Abbildungen .1 0  - H(t, •) sei 
0-zulässig. Genau dann ist Ji 0-epi, wenn .Jo  0-epi ist. 

Beweis. Sei ohne Einschränkung Jo 0-epi, und F: Q -* Y stetig mit relativkompaktem 
Bild und F 30  = 0. Wegen der Kompaktheit von [0, 1] ist die Projektion r: [0, l]x 

-* 9 abgeschlossen (siehe etwa [15, Prop. 1.8.2]). Daher ist 

M = U {x e : Jo (x) - H(t,x) = F(x)1 = ({(t,x) : Jo (x) - H(t,x) = F(x)}) 
tE [0,1] 

abgeschlossen. Wähle eine stetige (Urysohn-)Funktion ): X - [0, 1] mit Aj a, = 0 und 
Al m  = 1 und setze G(x) := F(x) +H((x),x). Da Jo 0-epi und Gan = 0 ist, hat 
Jo (x) = G(x) eine Lösung xo  E ft Es folgt x E M und daher (xO) = 1, also 
Ji (xo )=F(xo ). 

Korollar 2. Eine 0-zulässige Abbildung J: Q - Y ist genau dann 0-epi, wenn jede 
0-zulässige homotope Störung eine Nullstelle besitzt. 

Also grob gesprochen: Eine Abbildung ist 0-epi, wenn sie eine „stabile" Nullstelle 
besitzt. Diese Eigenschaft wird zur Definition in allgemeineren Situationen (etwa auf 
ANR-Räumen) benutzt. 

Korollar 3. Falls J: Q - Y 0-epi und 0-zulässig mit abgeschlossenem J(09) ist, so 
enthält J() eine Nullumgebung, nämlich mindestens die Zusammenhangskomponente 
der0in Y\J(DQ). 

Beweis. Da jedes y aus dieser Komponente mit 0 durch einen Wegf in Y \ J(32) ver- 
bunden werden kann, ist J - y eine 0-zulässige homotope Störung von J (setze 
H(t, x) := J(x) —f(1 - t)), besitzt also eine Nullstelle. 	 EI 

Als typische Anwendung der Homotopieinvarianz beweisen wir nun einen Fix-
punktsatz für Nicht-Selbstabbildungen: 
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Korollar 4. (,‚Continuation Principle" von Leray-Schauder). Sei X = Y normiert, 
fI C X offen mit 0 E 9, und F: fl -* Y sei stetig mit relativkompaktem Bild. Dann hat 
entweder F einen Fixpunkt in l, oder es gibt ein x0 E 499 und ein ‚\ > 1 mit 
F(xo) = 

Beweis. Betrachte die Homotopie H(t, x) := tF(x). Da Jo  := id 0-epi ist, muss entweder 
J1 := J0 - H(l,.) = J0  - F 0-epi sein (dann hat F einen Fixpunkt), oder J1 ist keine 
0-zulässige homotope Störung (dann hat x - H(t, x) = 0 eine Lösung auf 09 für ein 
tE(0,1]). EI 

Das folgende einfache Ergebnis macht besonders deutlich, dass es bei 0-epi Abbil-
dungen tatsächlich um die Existenz von Nullstellen geht: 

Proposition 3 (Einschränkung). Es sei J: 9 - Y 0-epi, und 90 c Q sei offen und ent-
halte alle Nullstellen von J. Dann ist J: 90 - Y 0-epi. 

Beweis. Sei F: no  - Y stetig mit kompaktem Bild und F 00  = 0. Setze F trivial fort. 
Dann hat J(x) = F(x) eine Lösung xo e Q, und die Voraussetzung impliziert xo E 90. 12 

Korollar 2 und Proposition 3 machen plausibel: Eine Abbildung J hat genau dann 
eine „physikalisch relevante" Nullstelle, wenn eine geeignete Einschränkung von J 0-epi 
ist. Man kommt allerdings nicht umhin, Einschränkungen zu betrachten: 

Beispiel 1. Sei X = Y = JR. Die Abbildung Ji(x) := lxl ist in keinem Gebiet 
Q El JR 0-epi (und hat auch keine Nullstelle, die nicht unter „beliebig kleinen Störun-
gen" verschwinden kann); die Abbildung J2(x) := lxl - 1 hingegen hat etwa auf 

(-2,0) tJ (0,2) gleich zwei „stabile" Nullstellen, eine auf 9 1  := (-2,0), eine an-
dere auf 92  := (0,2). Auf dem größeren Gebiet f := (-2,2) ist J2 allerdings nicht 
0-epi. 

Der Grund, weshalb J2 in obigem Beispiel auf Q nicht 0-epi ist, ist, dass J2  in Umge-
bungen der beiden Nullstellen „entgegengesetzt orientiert" ist. Topologisch wird dies 
dadurch ausgedrückt, dass der Abbildungsgrad verschiedenes Vorzeichen hat: 

Für den Fall, dass X = Y ein Banachraum, 9 C X offen, und J eine 0-zulässige 
kompakte Störung der Identität ist (d. h. J = id - F wobei F: Q - Y stetig mit relativ-
kompakten Bild ist), so kann man den Abbildungsgrad von Leray-Schauder deg(J, f) 
definieren, der ganz analoge Eigenschaften hat wie 0-epi Abbildungen (siehe z. B. [17], 
[22], [37], [63]): 

Satz 10. deg ist die eindeutig bestimmte Abbildung, die jedem (J, ) wie oben eine 
ganze Zahl zuordnet mit folgenden Eigenschaften: 

1. (Normalisierung). Für J = id - c ist 

(1 fallsceQ. 
deg(J,Q)=0 fallsc. 

2. (Homotopieinvarianz). Falls J1  eine 0-zulässige homotope Störung von J 0  ist, so ist 

	

deg(Ji , 	= deg(Jo . ). 
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3. (Additivität).Falls91,9 2 C9offenunddisjunktsindund91U9 2 alleNullstellenvon 
J enthält, so ist 

deg(J,) = deg(Jj1 1 ) + deg(J, 2 ). 

Die Additivität impliziert im Falle deg(J, l) 54 0 insbesondere, dass J eine Nullstelle 
hat. Wegen der Homotopieinvarianz ist J dann also sogar 0-epi. Da J = id - F auto-
matisch abgeschlossene Mengen auf abgeschlossene Mengen abbildet (insbesondere ist 
J(0) abgeschlossen), ist 0 dann sogar stets ein innerer Punkt des Bildes (Korollar 3). 

In gewissem Sinne könnte man Abbildungsgradtheorie als eine „quantitative" Ver-
sion der „qualitativen" Theorie der 0-epi Abbildungen auffassen: deg(J, ) „zählt" die 
(stabilen) Nullstellen von J in 9 „gemäß ihrer Vielfachheit" (die allerdings auch negativ 
sein kann). In obigem Beispiel 1 ist der Abbildungsgrad von J = J2  auf (0, 2) gleich 1 
(Normalisierung), und da •J auf (-2,2) nicht 0-epi ist, muss der Abbildungsgrad dort 0 
sein; zusammen mit der Additivität folgt, dass J auf(-2, 0) den Abbildungsgrad —1 ha-
ben muss. 

In ihrer Natur sind die Definitionen grundverschieden: Während 0-epi Abbildungen 
auf rein homotope Art definiert sind (Korollar 2), basiert Abbildungsgradtheorie auf 
Homologietheorie (obwohl es für den obigen Spezialfall auch rein analytische Zugänge 
gibt diese versagen aber häufig beim Nachweis „feinerer" Eigenschaften). Die Topolo-
gen wissen, dass ein Hauptunterschied zwischen Homotopietheorie und Homologie-
theorie darin besteht, dass Homotopietheorie nicht das „Ausschneidungsaxiom" von 
Eilenberg-Steenrod [21] erfüllt. Daher ist es nicht allzu überraschend, dass der Abbil-
dungsgrad die obige mächtige Additivitätseigenschaft hat, während für 0-epi Abbildun-
gen nur Proposition 3 gilt. Insbesondere gilt nicht die Umkehrung dieser Proposition, 
wie das obige Beispiel 1 zeigt - es wäre daher falsch, 0-epi Abbildungen nur als einen 
„Abbildungsgrad modulo 2" zu interpretieren. 

Da eine triviale Homotopie eine triviale Homologie impliziert, ist es auch nicht allzu 
überraschend, dass ein nichttrivialer Abbildungsgrad impliziert, dass die entsprechende 
Abbildung 0-epi ist. Da andererseits der Satz von Hopf aber eine Beziehung zwischen 
Homotopie- und Homologietheorie darstellt, könnte man auch eine gewisse Umkeh-
rung erwarten. Dies ist in der Tat unter erstaunlich schwachen Zusatzvoraussetzungen 
richtig (siehe [27], [57]): 

Satz 11. Falls deg(J, ) definiert und 9 zusammenhängend ist, dann gilt: 

J ist O-epi 	deg(J, ) 54 0. 

Es ist wesentlich, dass 9 zusammenhängend ist, wie das obige Beispiel 1 zeigt. Von 
größerer Bedeutung ist aber, dass selbst im Falle X = Y nur für eine kleine Klasse von 
Abbildungen (nämlich gewisse Störungen der Identität) ein Abbildungsgrad definiert 
ist, und im Falle X 54 Y gibt es bislang nur in Ausnahmefiillen eine Abbildungsgrad-
theorie, während der Begriff einer 0-epi Abbildung natürlich immer definiert ist. 

Der Fixpunktsatz von Schauder, der Ausgangspunkt unserer Uberlegungen war, be-
trifft nur den Spezialfall deg(J, ) = 1; und umgekehrt benötigt man in diesem Spezial-
fall die komplizierte Abbildungsgradtheorie gar nicht, da man sie mit Hilfe der Theorie 
der 0-epi Abbildungen auf den Satz von Schauder reduzieren kann, ähnlich wie wir es in 
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Korollar 4 getan haben. Es gibt aber mindestens zwei weitere wichtige Fälle mit 
deg(J,) e {0, l}: 

1. Falls J eine ungerade Abbildung auf 9 mit 0 E 9 = - (und deg(J, ) definiert) ist, 
so ist deg(J, ) stets ungerade (insbesondere ungleich 0, aber i. a. auch nicht 1). Dies 
ist ein Satz von Borsuk. Insbesondere muss jede zu J 0-zulässige homotope Störung 
im Bild eine Nullumgebung enthalten. Allein mit diesem Sachverhalt kann man oh-
ne großen Aufwand (nur durch Betrachten geeigneter Homotopien) sowohl den be-
rühmten Antipodensatz von Borsuk-Ulam als auch den Satz von der offenen Abbil-
dung beweisen. Letzterer besagt, dass jede Injektion (für die der Abbildungsgrad de-
finiert werden kann) offene Mengen in offene Mengen abbildet. Ein Spezialfall ist 
der nichttriviale Teil der Fredholmschen Alternative: Jede lineare injektive kompak-
te Störung der Identität ist offen und damit surjektiv. 

2. Im Raum X = Y = 1W hat die Abbildung (—id): 9 - Y den Abbildungsgrad 
(—l) (falls 0 a Q C X), woraus für ungerades n folgt, dass 0-zulässige homotope 
Störungen von (—id) keine 0-zulässigen homotopen Störungen von id sein können, 
und umgekehrt: Hieraus kann man den berühmten Satz vom Igel folgern. 

Es ist bemerkenswert, dass man für die in 1. skizzierten Beweise der berühmten Sätze 
nur wissen muss, dass ungerade kompakte Störungen der Identität 0-epi sind: Alles an-
dere folgt dann unmittelbar aus einem Homotopieargument. Dies macht deutlich, wes-
halb es sinnvoll ist, 0-epi Abbildungen unabhängig von Abbildungsgradtheorie zu stu-
dieren. Andererseits benötigt man die Abbildungsgradtheorie, um nachzuweisen, dass 
ungerade Abbildungen 0-epi sind. 

5 Mehrwertige Abbildungen 

Der Satz von Schauder bleibt auch richtig, wenn F eine oberhalbstetige mehrwertige 
Abbildung F: K -o K ist, deren Bilder F(x) kompakt und 
1. konvex oder zumindest 
2. azyklisch bzgl. der Cech-Kohomologietheorie (mit rationalen oder zumindest ganz-

zahligen Koeffizienten) sind. 

Selbstverständlich enthält hier der zweite Fall den ersten, aber da die zugehörigen Be-
weise grundverschieden sind und verschiedene Erweiterungen besitzen, sind beide inte-
ressant. Die Beweisidee im ersten Fall ist einfach zu beschreiben: Man zeigt, dass man 
den Graph von F (oder zumindest einen geeigneten „Teilgraph") durch Graphen von 
einwertigen Abbildungen approximieren kann und gewinnt das Ergebnis durch Anwen-
dung des (einwertigen) Fixpunktsatzes von Schauder. Diesen Zugang nennen wir „Ap-
proximationsmethode". 

Der Zugang für den zweiten Fall wurde erstmals in [20] beschrieben: Sei F C K x X 
der Graph von F: K -o K EI X, und p: F - Kund q: F - X seien die kanonischen Pro-
jektionen. Genau dann hat F einen Fixpunkt x e F(x), wenn es ein y e F gibt mit 
p(y) = q(y): Der Fixpunkt ist dann x = p(y). Statt mehrwertige Abbildungen zu be-
trachten, sucht man also Koinzidenzpunkte der stetigen Abbildungen p und q. Hierbei 
ist es hilfreich, dass p eine sog. Vietoris-Abbildung ist, d. h. p ist stetig, eigentlich (d. h. 
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Urbilder kompakter Mengen sind kompakt) und surjektiv mit azyklischen Fasern 
p 1  ({x}). Aufgrund eines Satzes von Vietoris induziert p in der Cech-Homologie eine 
Bijektion. Durch Betrachten der Inversen dieser Bijektion kann man nun (zumindest im 
Rahmen der Homologietheorie) ganz analog argumentieren, als wenn F = q o  p 1 eine 
einwertige Abbildung (mit stetigem p') wäre. 

Dieser Zugang hat den Vorteil, dass er prinzipiell auch Aussagen über Koinzidenzen 
p(y) = q(y) erlaubt, wenn p: F - K eine Vietoris-Abbildung (mit einem beliebigen 
Raum F) und q: F - X D K stetig ist. Dies erlaubt es insbesondere auch, zu beweisen, 
dass der Satz von Schauder gültig bleibt, wenn F = g o G: K —o K die Komposition ei-
ner oberhalbstetigen kompakten azyklischen Abbildung G und einer stetigen Abbil-
dung g ist: Betrachte dazu die kanonischen Projektionen p, qo des Graphen von G auf 
die Koordinaten, und setze q := g o q. 

Diese Klasse von Abbildungen spielt eine wichtige Rolle bei Differentialgleichungen 
und -inklusionen, bei denen man keine Eindeutigkeit der Lösung voraussetzt: Es ist be-
kannt, dass z. B. für oberhalbstetiges beschränktes f : [0, T] x 1W —o 1W mit konvexen 
kompakten Werten die Menge der Lösungen des Anfangswertproblems 

x' (t) e f(t, x(t)), 	x(0) = XO  

eine sog. R5-Menge im Raum C([0, T], 1W) ist, d.h. der Durchschnitt einer absteigen-
den Folge kompakter AR-Räume. Insbesondere ist diese Menge azyklisch. Darüber -
hinaus ist die Abbildung G, die jedem x0 die entsprechende Lösungsmenge zuordnet, 
oberhalbstetig und kompakt. Definiert mang: C([0, T], IR'1 ) - 1W durch g(x) := x(T), 
so kann man also den (mehrwertigen) Translationsoperator 

F:x0  H+ {x(T) : x löst das AWP} 

als Komposition F = g o G schreiben und den Fixpunktsatz anwenden, um z. B. T-peri-
odische Lösungen zu finden. Beachte, dass F(xo) selbst i. a. nicht azyklisch ist (aber 
G(x o ) ist azyklisch). 

6 Kombination der Zugänge 
Die neuere Forschung in dem beschriebenen Gebiet beschäftigt sich u. a. mit der Frage, 
wie man die oben skizzierten Ideen kombinieren kann, um beispielsweise einen „Abbil-
dungsgrad" für nichtkompakte mehrwertige Abbildungen auf ANR-Räumen zu gewin-
nen. Man spricht im Zusammenhang mit ANR-Räumen meist von einem Fixpunkt-
bzw. Koinzidenzindex statt von einem Abbildungsgrad: Der entscheidende technische 
Unterschied bei ANR-Räumen ist, dass die beim Abbildungsgrad betrachtete Menge 
nicht mehr offen in einem Banachraum sein muss, sondern z. B. nur offen bzgl. der Re-
lativtopologie eines invarianten ANR-Teilraums zu sein braucht. Dies ist etwa wichtig, 
wenn man eine Abbildung des positiven Kegels von L hat, da Teilmengen dieses Kegels 
niemals offen in L sind. 

Wenn wir uns statt allgemeiner ANR-Teilräume zunächst auf konvexe Teilmengen 
normierter Räume beschränken, ist die Existenz eines Index für einwertige (nichtkom-
pakte) Abbildungen weitgehend geklärt, siehe etwa [48], [51]; das wohl allgemeinste Er-
gebnis mit Kompaktheitsvoraussetzungen auf nur abzählbaren Mengen folgt aus [55]. 
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Die Grundidee dabei ist es jeweils, durch geeignete Voraussetzungen (etwa, dass der 
Operator kondensierend ist), die Existenz einer sog. fundamentalen konvexen kompak-
ten Menge zu sichern, auf der sich alles topologisch Relevante abspielt. Für den entspre-
chenden Abbildungsgrad kondensierender Abbildungen gilt ein analoges Ergebnis zu 
Satz 11 [27]. 

Auch der mehrwertige Fall wird in [55] weitgehend abgedeckt, allerdings gibt es eine 
immer noch ungeklärte technische Schwierigkeit hierbei: Man weiß nicht, ob der Index 
eindeutig ist, und insbesondere ist unklar, ob der Index eine topologische Invariante ist. 
Man kann zwar einen topologisch invarianten Index mit anderen Methoden definieren 
[191, [52], aber es ist ungeklärt, ob dieser Index stets ganzzahlige Werte annimmt und 
mit der „natürlicheren" Definition übereinstimmt. Falls die Abbildung allerdings so 
einfach ist, dass man Approximationsmethoden benutzen kann, kann man damit die 
Eindeutigkeit eines Index nachweisen [40], [59], und man kann dann auch Satz 11 in ge-
wissem Sinne übertragen [59] (beachte aber die Bemerkungen weiter unten hierzu). Es 
sei betont, dass diese Approximationsmethoden nicht nur für (mehrwertige) Abbildun-
gen mit konvexen Werten, sondern auch für Abbildungen mit R8 -Werten (ggf. kom-
poniert mit einwertigen Abbildungen) sowie unter gewissen Bedingungen an endliche 
(Uberdeckungs-)Dimension auch für Kompositionen azyklischer Abbildungen an-
wendbar sind, siehe etwa [2], [3], [10], [30], [38], [39], [41]. Da praktisch jede azyklische 
Menge, die in Anwendungen auftaucht, auch eine Rt-Menge  ist, rechtfertigt dies im 
Nachhinein eine Bemerkung von K. Deimling in [17, Remark 24.8(3)], wo er meinte, 
dass in praktisch allen Fällen azyklischer mehrwertiger Abbildungen ein Approximati-
onsargument benutzt werden kann. 

Man ist aber auch an einem Index auf allgemeinen (nichtkonvexen) ANR-Räumen 
interessiert. Dies ist insbesondere im Zusammenhang mit der Nielsen-Zahl bedeutsam, 
die es erlaubt, Aussagen über Vielfachheiten von Lösungen zu machen, aber die in kon-
trahierbaren (insbesondere konvexen) Räumen nichts Neues liefert. Eine Indextheorie 
auf ANR-Räumen wurde für kompakte Abbildungen von Granas [32] entwickelt (für 
den mehrwertigen Fall siehe die oben zitierten Referenzen [19], [40], [52]; die entspre-
chende Lefschetz-Zahl - die „Normierung" des Index - wurde von L. Görniewicz [28] 
eingeführt). Für nichtkompakte Abbildungen sind die Ideen aus Abschnitt 3 aber kaum 
direkt übertragbar, da diese auf der konvexen Hülle basieren; beim Index wird die Kon-
vexität der fundamentalen Mengen zusätzlich benötigt, um gewisse Homotopien zu 
konstruieren, die für die Definition des Index wesentlich sind. Dennoch lässt sich in ein-
fachen Situationen die „Iterationsidee" aus dem Beweis des Darboschen Fixpunktsatzes 
verallgemeinern [49] (für mehrwertige Abbildungen siehe z. B. [24], [60]), aber für den 
allgemeinen Fall und die mächtigere Idee aus dem Beweis des Fixpunktsatzes von Sa-
dovskir bedarf es eines größeren technischen Apparats [5]. 

Für weiterführende Literatur der Indextheorie ein- und mehrwertiger Abbildungen 
möge der Leser etwa die Ubersichtsartikel [1 1]-[13] oder die Monographien [29] oder 
[4] (und deren umfangreiche Referenzen) konsultieren. 

Die Theorie der 0-epi Abbildungen ist noch weitaus weniger entwickelt. Es ist aller-
dings bekannt, dass auch für solche Abbildungen „nichtkompakte" Ergebnisse existie-
ren. Insbesondere sei hier ein Spezialfall eines Satzes aus [58] wiedergegeben: 
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Sei K vollständiger metrischer Raum und 9 C K offen. Sei Y ein Banachraum, und 
J: Q - Y sei stetig. Es gebe ein 6 > 0 mit 

	

(3) 'y(J(A)) > &y(A) 	(A C abzählbar). 

Die Beziehung (3) impliziert, dass J eigentlich ist, und sie bedeutet in gewissem Sinne, 
dass diese Eigentlichkeit „gleichmäßig" ist. Es gibt dann ein maximales solches 
6 E (0, ]' und dieses bezeichnen wir mit [J]. Man sieht schnell, dass 

[F+G]> [F]—[G], 

insbesondere ist im Falle J = id - F mit kondensierendem F stets [J]7  > 1 - [F]. 

Satz 12. Es sei J: - Y stetig, 0-zulässig und 0-epi. Sei F: -* Y stetig mit 
Flan  = 0 und 

'y(F(A)) < [J]7 y(A) 

für alle abzählbaren Mengen A C 9 mit 'y(A) > 0 (was im Falle y() <oo insbesondere 
gilt wenn F]7  < [J). Dann hat die GleichungJ(x) = F(x) eine Lösung x e ft 

Wenn man benutzt, dass J = id 0-epi ist, enthält dieses Ergebnis die früher erwähnte 
Verallgemeinerung des Satzes von Schauder mit Kompaktheitsbedingungen auf nur ab-
zählbaren Mengen als Spezialfall. Wichtiger ist aber, dass Satz 12 auch impliziert, dass 
0-epi Abbildungen J mit [J]7  > 0 auch unter nichtkompakten 0-zulässigen homotopen 
Störungen H mit [H] < [J] 0-epi bleiben. Insbesondere kann man dies benutzen, um 
Klassen von 0-epi Abbildungen zu definieren, die unter „kleinen" (nichtkompakten) 
Störungen stabil bleiben: Dies spielt eine wichtige Rolle in der Spektraltheorie nicht-
linearer Operatoren [6]. 

Es stellt sich auch heraus, dass eigentliche 0-epi Abbildungen J aufgrund von Ap-
proximationsmethoden auch automatisch eine entsprechende „0-epi Eigenschaft" für 
mehrwertige Abbildungen F besitzen [8]. 

Leider sind immer noch fast keine homologen (Abbildungsgrad-)Methoden be-
kannt, die im Falle verschiedener Banachräume Y X 3 9 ein Kriterium dafür liefern 
könnten, dass eine gegebene Abbildung J: Q - Y 0-epi ist. Auf den ersten Blick könnte 
man meinen, dass man für den Fall einer Vietoris-Abbildung J die in Abschnitt 5 be-
schriebenen Zugänge für die Koinzidenzgleichung J(x) = F(x) benutzen könnte, aber 
dies ist nur bis zu einem gewissen Grad richtig: Die Voraussetzungen und Aussagen der 
Ergebnisse aus diesem Zugang betreffen stets die mehrwertige Abbildung F o J 1 , wäh-
rend man bei der Theorie der 0-epi Abbildungen in gewissem Sinne an der Abbildung 

o F interessiert ist: Beispielsweise gilt Satz 12 i. W. bereits unter schwachen Korn-
paktheitsvoraussetzungen nur an J 1  o couv F. Frappierender ist, dass Satz 11 in die-
sem Zusammenhang zunächst sinnlos ist, da man in einem Fall Mengen 9 C Y und im 
anderen Fall Mengen f 3 X betrachtet. Man kann jedoch die Definition der 0-epi Ab-
bildungen geeignet modifizieren, so dass ein Vergleich dennoch möglich ist und Satz 11 
richtig bleibt, auch im nichtkompakten Fall [59]. Diese Modifikation scheint mit Koho-
motopie zusammenzuhängen, ebenso wie auch der Index für F o J eigentlich auf Ko-
homologietheorie basiert. Für viele Anwendungen wäre es aber viel nützlicher, wenn 
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man nicht die Definition von 0-epi Abbildungen modifizieren müsste, sondern auch ei-
nen entsprechenden (homologen) Index oder Abbildungsgrad hätte. 

Von Skrypnik wurde ein Abbildungsgrad für den Fall Y = X* entwickelt (der i. W. 
für monotone Abbildungen anwendbar ist) [53], und von Mawhin [43] gibt es einen Ko-
inzidenzindex für den Fall, dass J eine (kompakte Störung einer) Fredholm-Abbildung 
mit Index 0 ist. Nirenberg hat als erster auch Fredholm-Abbildungen mit positivem In-
dex (also insbesondere X = JRtm  und Y = 1R mit n <m) zugelassen [46], [47], aber letzt-
lich basiert auch diese Definition auf Homotopietheorie. Man kann diesen Mawhin-Ni-
renberg-Index auch mit den Ideen aus Abschnitt 5 kombinieren, was aber äußerst diffi-
zil ist [26], [41]. 

Damit sind die bisher bekannten Abbildungsgradtheorien für X Y schon im We-
sentlichen erschöpft (einige weitere Zugänge sind im Ubersichtsartikel [61] zu finden, 
der auch eine umfangreiche Bibliographie enthält). Dass das Problem extrem schwer ist, 
sieht man schon an den obigen Dimensionsvoraussetzungen, die kein Zufall sind: Im 
Falle m <n kann es keine 0-epi Abbildung geben (und somit auch keinen Abbildungs-
grad), da die entsprechenden Homotopiegruppen 7rm (S'1 ) trivial sind. 

Anmerkung 

1 Anders ausgedrückt: Der Abschluss F(K) sei eine kompakte Teilmenge von K; hierbei ist es egal, 
ob man den Abschluss in X oder in K nimmt. 
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M. Zeman 
Inner Models and 
Larqe Cardinals 

Berlin, New York, de Gruyter 2002, 369 S., 
€ 138,- 

Zeman gibt in seinem Buch eine Einführung 
in die Kernmodelltheorie, die ein wichtiger 
Zweig der modernen Mengenlehre ist. Die 
Darstellung beruht wesentlich auf hand-
schriftlichen Manuskripten von Jensen, die 
seit längerer Zeit kursieren. Es ist erfreulich, 
dass diese Ergebnisse nun endlich in dieser 
ausgearbeiteten Form vorliegen. 

In gewisser Weise ist die Kernmodelltheo-
ne eine natürliche Fortsetzung klassischer 
Untersuchungen von Gödel. Ein inneres 
Modell ist eine transitive Klasse, die alle Or-
dinalzahlen enthält und in der die üblichen 
Axiome gelten. Gödel zeigte, dass ein kleins-
tes inneres Modell existiert, welches er das 
konstruktible Universum L nannte. Dieses 
ist kanonisch. Gödel konnte zeigen, dass in 
L die allgemeine Kontinuumshypothese gilt. 

Später konnte Jensen den kanonischen 
Charakter von L wesentlich stärker bestim-
men. Er entwickelte seine Feinstruktur von 
L. Mit ihrer Hilfe lässt sich fast jede kom-
binatorische Frage für das konstruktible 
Universum beantworten. 

Nun hatte jedoch schon vorher Scott ge-
zeigt, dass in L keine sehr großen Kardinal-
zahlen existieren können. Genauer gesagt 
gilt dies schon für messbare Kardinalzahlen. 
Ihre Existenz ist äquivalent dazu, dass auf ei-
ner Menge X ein nichttriviales zweiwertiges 
Maß existiert, welches auf allen Teilmengen 
von X definiert ist. 

Es stellt sich daher die folgende natürliche 
Frage. Gibt es ein kanonisches inneres Mo-
dell, das eine Feinstruktur besitzt, und in 
welchem sehr große Kardinalzahlen existie-
ren können? Solche Modelle werden Kern-
modelle genannt. 

Zeman beschreibt in seinem Buch drei Va-
rianten solcher Modelle, die von wachsender 
Komplexität sind. Er möchte den Leser 
schrittweise in diesen komplizierten Gegen-
stand einführen. Am ausführlichsten behan-
delt er das Kernmodell K für Maße der Ord-
nung Null. In diesem kann die Klasse der 
messbaren Kardinalzahlen unbeschränkt 
sein, aber nicht viel mehr gelten. Allerdings 
tauchen in der Konstruktion von diesem K 
schon viele der Hauptideen auf. Sie wird in 
Kapitel 7 beschrieben. 

Es beginnt mit einer natürlichen indukti-
ven Definition von K. Diese ist analog zum 
Aufbau der konstruktiblen Hierarchie. Es 
werden nur zusätzlich an geeigneten Stellen 
eindeutig bestimmte normale Maße auf dem 
bisher konstruierten Anfangsschritt hin-
zugenommen. Es ist aber nicht offensicht-
lich, dass diese Definition das Gewünschte 
liefert. Um dies zu erreichen, wird eine äqui-
valente Charakterisierung von K gegeben. 
Dann werden grundlegende Eigenschaften 
von K bewiesen, wie z. B. die generische Ab-
solutheit und der schwache Uberdeckungs-
satz. 

In den ersten sechs Kapiteln wird der um-
fangreiche technische Apparat entwickelt, 
der notwendig ist, um die Ergebnisse von 
Kapitel 7 zu erlangen. Die Grundlagen in 
den ersten drei Kapiteln dienen allerdings in 
ihrer Allgemeinheit auch schon für die Un-
tersuchung der noch höheren Kernmodelle. 

Die Kapitel 4 bis 6 sind hingegen auf die 
Konstruktion des speziellen Kernmodells K 
aus Kapitel 7 zugeschnitten. Es werden die 
zugehörigen Mäuse untersucht, d. h. Struk-
turen, die wie Anfangsabschnitte von K aus-
sehen und iterierbar sind. Iterierbarkeit be-
deutet hierbei, dass man immer fundierte 
Strukturen erhält, wenn man sukzessive Ul-
trapotenzen und direkte Limites bildet. Die-
se Eigenschaft liefert die fundamentale Ver- 
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gleichbarkeit von Mäusen, die man durch 
Koiteration erhält. Hiermit erhält man das 
geeignete Kriterium für die eindeutige Wahl 
der Maße in der Konstruktion von K. 

In Kapitel 8 wird ein Kernmodell konstru-
iert, welches eine starke Kardinalzahl besit-
zen kann. Hierzu müssen Maße durch Ex-
tender ersetzt werden. Da ansonsten viele 
Argumente analog verlaufen, werden einige 
Verallgemeinerungen dem Leser überlassen. 

Schließlich erhält der Leser in Kapitel 9 ei-
nen Einblick in den gegenwärtigen Stand der 
Forschung. Hier werden Mäuse untersucht, 
die bei der Konstruktion sehr großer Kern-
modelle benutzt werden. Dabei wird ins-
besondere die Iterierbarkeitsbedingung viel 
komplizierter. Die Feinstruktur dieser Mäu-
se wird vollständig behandelt. Die Kons-
truktion der zugehörigen Kernmodelle wird 
allerdings nicht mehr durchgeführt. 

Insgesamt ist Zeman ein ausgezeichnetes 
Lehrbuch über Kernmodelltheorie gelun-
gen. Es ist sehr gut zum Selbststudium geeig-
net. Zeman konzentriert sich ganz auf die 
Grundlagen der Theorie. Für Anwendungen 
verweist er aber auf die entsprechenden Ori-
ginalarbeiten. 

München 	 H.-D. Donder 

AHolme 

Geometry, Our Cultural 

Heritage 

Berlin u. a., Springer 2002, 378 5., € 34,95 

Die vorliegende Monographie von A. Holme 
besteht aus zwei Teilen, überschrieben mit A 
Cultural Heritage und Introduction to Geo-
metry. 

In einem Bogen beginnend mit der Vor-
und Steinzeit, über Agypter, Babylonier und 
Griechen bis hin zur Neuzeit werden im ers-
ten Teil die Ursprünge und Weiterentwick-
lungen der Geometrie aufgezeichnet. Dabei 
werden aber nicht einfach die zur jeweiligen 
Zeit neu erlangten Erkenntnisse aufgezählt, 
sondern es werden die mathematischen (da-
mals zumeist geometrischen) Erkenntnisse 
in die politische bzw. gesellschaftliche Situa-
tion eingebettet und mit Anekdoten und Le-
genden verziert. In einem Abschnitt über 
den Ursprung der klassischen Probleme wird 
z. B. erzählt, wie Perikles' Lehrer Anaxago-
ras sich im Gefängnis sitzend mit der Qua-
dratur des Kreises beschäftigt, oder, wie eine 
Delegation der von der Pest gegeißelten und 
sich zugleich im Krieg mit Spartakus befind-
lichen Stadt Athen im Orakel von Delos, um 
Ausweg aus ihrer Miesere fragend den Rat 
bekommt, den Altar des Apollo zu verdop-
peln! Dieser ist würfelförmig und so ging die 
Verdopplung des Würfels als Delisches Prob-
lem in die Geschichte ein. Darüber hinaus 
werden die meisten der erwähnten mathema-
tischen Resultate bewiesen, teils mit moder-
nen Methoden. In den meisten Fällen jedoch 
gab sich der Autor viel Mühe die überliefer-
ten Beweise bzw Konstruktionen ausführlich 
in zeitgemäßer mathematischer Sprache vor-
zustellen. 

Wie der Autor selber deutlich sagt, erhebt 
dieser erste Teil des Buches nicht den An-
spruch, eine Abfassung über die Geschichte 
der Mathematik zu sein. Es soll vielmehr als 
Motivation und Quelle für Hintergrundwis-
sen für den zweiten Teil des Buches dienen. 

Inhalt des zweiten Teils, Introduction to 
Geometry, ist die mathematische Seite der 
Geometrie. Bekanntermaßen ist Geometrie 
ein weiter Begriff, das spiegelt sich auch in 
der Vielseitigkeit der im zweiten Teil abge-
handelten Themen wieder. So finden sich 
dort Kapitel über Axiomatische Geometrie, 
Axiomatische Projektive Geometrie, Nicht-
euklidische Geometrie, den Projektiven 
Raum, affine und projektive Geometrie in 
der Ebene, algebraische Kurven höheren 
Grades in JR2 . höhere Geometrie in der pro- 
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jekiven Ebene, Fraktale Geometrie und Ka-
tastrophen Theorie. Das ist natürlich ein 
umfangreiches Programm für die ca 200 zur 
Verfügung stehenden Seiten. Dementspre-
chend werden die einzelnen Themen zügig 
bzw. nur punktuell abgehandelt. Erstaunli-
cherweise geht das aber nicht auf Kosten der 
Verständlichkeit. 

Im Gegensatz zu vielen anderen Geo-
metriebüchern wird in dem vorliegenden 
Band kein Aufgebot an speziellen Bezeich-
nungen verwandt. So kann man eigentlich in 
jedem Kapitel anfangen zu lesen, bzw, das 
Buch auch als Nachschlagewerk verwenden. 
Damit wird es auch dem vom Autor sich 
selbst gesetzten Ziel gerecht, die Leser nicht 
durch eine pedandische und formalistische 
Presentation von der Dynamik und Schön-
heit der Geometrie abzulenken. Wie Holme 
in seiner Einleitung schreibt, will er ins-
besondere unseren künfigen Lehrern und 
ebenso einer darüber hinaus gehenden an 
der Mathematik interessierten Gemeinschaft 
in seinem Buch ein umfangreiches und abge-
rundetes Bild der Geometrie präsentieren. 
Gleichzeitig soll die Monographie auch als 
Grundlage für Vorlesungen über Geometrie 
dienen. Meiner Ansicht nach ist der Autor 
seinem Ziel gerecht geworden. 

Erlangen 	 Ch. Birkenhake 

ABarvinok 

A Gourse in Convexity 

Grad. Studies 

in Math. 54 

Providence, Am. Math. Soc., 2002, 366S., 
$ 59,- 

Barvinoks Buch ist aus mehreren Graduate 
Courses an der University of Michigan in 
Ann Arbor entstanden. Auf seinen gut 360 
Seiten enthält es Stoff für mehrere durchaus 
anspruchsvolle Vorlesungen über diverse 
Aspekte der Konvexgeometrie und Anwen-
dungen dazu, vor allem in Optimierung, aber 
auch Zahlentheorie. 

Der übersichtliche und gut gegliederte 
Aufbau des Buches ermöglicht es auf vielfäl-
tige Weise, je nach Neigung und Zielrich-
tung, eine einsemestrige (4-stündige) Vor-
lesung daraus zu extrahieren, und Barvinok 
macht im Vorwort einige Vorschläge dazu. 

Programm und Inhalt des Buches werden 
durch die Titel der acht Kapitel gut charak-
terisiert: 

1) Konvexe Mengen allgemein, 2) Seiten 
und Extrempunkte, 3) Konvexe Mengen in 
topologischen Vektorräumen, 4) Polarität, 
Dualität und Linear Programming, 5) Kon-
vexe Körper und Ellipsoide, 6) Seiten 
(-struktur) von Polytopen, 7) Gitter und 
konvexe Körper, 8) Gitterpunkte und Poly-
eder. 

Naturgemäß haben die ersten beiden Ka-
pitel einführenden Charakter: Das erste be-
handelt eher globale Aspekte (z. B. Helly-
Typ-Sätze, Euler-Charakteristik), das zweite 
eher lokale Aspekte (Struktur des Randes) 
und Trennungssätze sowie Anwendungen 
auf einfache Optimierungsprobleme. 

Bei den übrigen Kapiteln bestätigt sich, 
was der Autor schon im Vorwort erwähnt, 
dass es wegen der Stofffülle unmöglich ist, 
ein Textbook über Konvexität insgesamt zu 
schreiben. Also ist eine Auswahl notwendig, 
die naturgemäß subjektiv ist. In der Tat fällt 
sofort das Fehlen der Brunn-Minkowski-
schen Theorie auf; dem Herzstück klassi-
scher analytischer Konvexgeometrie. 

Eher rudimentär findet man dazu einiges 
in Kap. 1 und 5, z. B. etliche der klassischen 
Ungleichungen als Probleme und Aufgaben. 
Trotzdem ist dies kein wesentlicher Nachteil 
von Barvinoks Buch, denn einerseits gibt es 
gute Bücher zur Brunn-Minkowskischen 
Theorie (an der Spitze R. Schneiders gleich-
namiges Werk, Cambridge 1993) und ande- 
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rerseits sind diejenigen Bereiche, die Barvi-
nok eingehender behandelt, zumindest teil-
weise bis an den neuen Stand der Forschung 
herangeführt. 

Dies ist eine der Stärken von Barvinoks 
Buch: Obwohl es im Kern ein Lehrbuch ist, 
kommen immer wieder harte oder offene 
Probleme vor, mit Literaturhinweisen, Tips 
und gelegentlich auch Teilbeweisen; erkenn-
bar als Apetizer für Studenten und junge 
(oder auch ältere) Wissenschaftler auf-
gemacht. 

Ein weiteres wichtiges Plus des Buches ist 
die schon erwähnte enge Verknüpfung zwi-
schen Theorie und Anwendung; der Studie-
rende und Leser erlebt dies konkret an Bei-
spielen und nicht nur als Hinweis. 

Parade-Beispiele sind die Anwendung von 
Dualität auf Linear Programming in Kap. 4 
sowie in Kap. 5, der Weg vom Löwner-John-
Ellipsoid zur Ellipsoid-Methode von Shor 
und Khachian und in Kap. 3 der Weg von 
Konvexität in topologischen Vektorräumen 
mit dem Krein-Milman-Theorem zu Anwen-
dungen in Kontrolltheorie und dem (Kon-
vexitäts-)Satz von Lyapunov. Das Kap. 6 
über die Seitenstruktur von Polytopen ist in 
sich abgeschlossen. Sein Kern sind die Euler -
Poincarsche Identität, die Dehn-Sommer-
ville Gleichungen und McMullens Upper 
Bound Theorem. 

Die auffälligsten Kapitel des Buches sind 
sicher die letzten beiden, da alle vorherigen 
zumindest teilweise zum Pflichtprogramm 
eines Buches oder einer Vorlesung über 
Konvexität gehören, während diese eher in 
Bücher über Diskrete Geometrie oder Geo-
metrie der Zahlen zu finden sind. Diese bei-
den Kapitel, etwa ein Viertel des Buches, bil-
den quasi das Kürprogramm. Hier, ins-
besondere in Kapitel 8, hat der Autor im 
Laufe des letzten Jahrzehnts Bemerkenswer-
tes beigetragen. 

Das 7te Kapitel, anfangs eine Einführung 
in Geometrie der Zahlen, enthält neben den 
Standardbegriffen die Sätze von Blichfeldt, 
Minkowski und Minkowski-Hlawka (letzte-
ren leider nicht mit dem eleganten Rogers-
Davenport-Beweis), das „Flatness" Theo- 

rem und Reduktionstheorie, insbesondere 
die für diskretes Optimieren wichtige Len-
stra-Lenstra-Lovasz Reduktion. 

Während das 7te Kapitel eher metrische 
Aspekte behandelt, wird im letzten Kapitel 
die Gitterpunktanzahl konvexer Polyeder 
untersucht. 

Hauptwerkzeug sind hier die erzeugenden 
Funktionen (Exponentialsummen), und der 
Autor entwickelt die in den letzten Jahren 
von Stanley, McMullen, Brion, Pommers-
heim und ihm selbst entwickelte Theorie der 
Algebra rationaler Polyeder, bei der Klassi-
ker wie das Ehrhart-Polynom und das zuge-
hörige Reziprozitätsgesetz beiläufig als Ne-
benergebnisse abfallen, und mit dieser kraft-
und eindrucksvollen Theorie endet das 
Buch. 

Zur Darstellung sei bemerkt, dass die ein-
leitenden Uberblicke zu Beginn eines jeden 
Kapitels oder Abschnitts sowie die histori-
schen Bemerkungen mit Literaturhinweisen 
am Ende sehr hilfreich sind. Ebenso erleich-
tern die gut über das Buch verteilten Abbil-
dungen das Verständnis und den Uberblick. 

Das Literaturverzeichnis ist angemessen, 
reichhaltig, doch nicht überbordend. Dage-
gen hätte man sich das Stichwortverzeichnis 
etwas detaillierter und ausführlicher ge-
wünscht. 

Insgesamt kann man aber nach der Lektü-
re von Barvinoks Buch der Bemerkung des 
Autors im Vorwort nur zustimmen, dass das 
Schreiben eines Buches über Konvexität eine 
erfreuliche Erfahrung ist. Man spürt, dass er 
diese Freude am Thema an den Leser weiter-
geben möchte, was ihm auch weitgehend ge-
lungen ist. 

Siegen 	 J. M. Wills 
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6eorreik 
Nurier ca 
Itegrauer 

p) 	r E. Hairer, C. Lubich, 
Equ 

G.Wanner 

Geometric Numerical 
Integration ANNO Comput, Math. 31 

Berlin u. a., Springer, 2002, 515 S., $84,95 

Seit bahnbrechenden Arbeiten von Feng 
Kang (Beijing) und Sanz-Serna (Valladolid) 
haben sich symplektische Diskretisierungen 
Hamiltonscher Differentialgleichungen als 
äußerst aktives Forschungsfeld im Gebiet 
‚Numerische Mathematik von Anfangswert-
problemen bei gewöhnlichen Differential-
gleichungen' entfaltet. Aus Sicht der Anwen-
dungen spielen Hamiltonsche Differential-
gleichungen insbesondere in der Astronomie 
und der Moleküldynamik eine Rolle. Der 
vorgelegte Band erweitert das Spektrum auf 
symmetrische Diskretisierungen allgemeiner 
reversibler Differentialgleichungen. Diskre-
tisierungen dieses Typs verdienen besonde-
res Augenmerk mit Blick auf die Erhaltung 
von Invarianten (wie etwa der Gesamtener -
gie eines mechanischen Systems), zumindest 
im asymptotischen Mittel über exponentiell 
lange Zeiten. 

Das Buch gliedert sich in 14 Kapitel, ein 
umfangreiches Literaturverzeichnis und ei-
nen hilfreichen Index. Es enthält zahlreiche 
Ubungsaufgaben. 

Zunächst werden numerische Beispiele 
Hamiltonscher Differentialgleichungen vor-
gestellt und der Effekt symplektischer und 
nichtsymplektischer Diskretisierungen illus-
triert. Die Arnoldsche Katze veranschau-
licht den diskreten Fluss im Vergleich mit 
dem kontinuierlichen. Sodann wird das In-
stumentarium zur Konstruktion von Runge-
Kutta-Integratoren höherer Ordnung bereit-
gelegt, wobei natürlicherweise partitionierte 

Runge-Kutta-Methoden (PRK) besonders 
zum Zug kommen; erstaunlicherweise exis-
tiert hier eine Alternative zur Herleitung mit-
tels PRK-Bäumen, nämlich die Erzeugung 
aus der Baker-Campbell-Hausdorff-Formel, 
wobei die erhaltenen Bedingungsgleichun-
gen zwar unterschiedlich, aber natürlich 
äquivalent sind. Später werden die PRK auf 
symmetrische Verfahren für reversible Diffe-
rentialgleichungen spezialisiert. Dieses Ka-
pitel ist etwas technisch, jedoch für die Kons-
truktion von Verfahren höherer Ordnung 
unverzichtbar. 

Ein zentraler Punkt ist naturgemäß die 
Theorie der Hamiltonschen Invarianten 
(nach Sophus Lie) und ihre Umsetzung ins 
Diskrete. Hier werden die schon erwähnten 
Arbeiten von Sanz-Serna und seiner Schule 
sowie der Autoren mit ihrem Anhang in ein-
heitlichem Gewand dargestellt. Die ‚diskre-
ten variationellen Integratoren' nach Mars-
den et al. werden kurz gestreift. Für den Ge-
schmack des Rezensenten kommt dieses al-
ternative Konzept etwas zu kurz, obwohl es 
in der Praxis extrem erfolgreich ist und ge-
wisse Einschränkungen der konkurrierenden 
Verfahren zu umgehen erlaubt. Zum Thema 
Differentialgleichungen auf Mannigfaltig-
keiten, insbesondere zu holonomen und 
nichtholonomen Zwangsbedingungen bei 
mechanischen Systemen, hätte sich ein Aus-
flug in die Theorie von Rabier und Rhein-
boldt sicherlich gelohnt (jüngst ebenfalls als 
Monographie erschienen, aber erstaunli-
cherweise nicht zitiert). Besonders verdienst-
voll ist die Darstellung von Details der Im-
plementierung symplektischer und sym-
metrischer Integratoren, die oft von Anwen-
dern übersehen werden und dann die ganze 
schöne zugrundliegende Theorie zur Wir-
kungslosigkeit verdammen. 

Aus Sicht der Numerischen Analysis wich-
tig ist die moderne Interpretation symplekti-
scher Integratoren über eine Rückwärtsana-
lyse, bei der im Diskreten eine leicht gestörte 
schrittweitenabhängige Hamiltonfunktion 
generiert wird. (Allerdings sollte der Leser 
hierzu nicht die gleiche Erwartung hegen, die 
er vielleicht von Problemen der numerischen 
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linearen Algebra mitbringt: in der Molekül-
dynamik etwa können die in der Theorie im-
plizit angegebenen Schrittweitenumgebun-
gen verschwindend klein sein verglichen mit 
typischen Zeitkonstanten der Probleme; bei 
keplerartigen Problemen tritt dieses Phäno-
men allerdings in der Regel so nicht auf.) Mit 
dieser Interpretation können die Autoren so-
dann eine Störungstheorie Hamiltonscher 
Systeme auf die spezielle Störung durch sym-
plektische Diskretisierungen anwenden. Da-
bei gehen sie von einer äußerst transparenten 
Darstellung der KAM-Theorie aus und mo-
difizieren sie geeignet, um sie im Diskreten 
anwenden zu können. Anschließend spielen 
sie das gleiche Spiel nochmals im komplizier-
teren Fall symmetrischer Diskretisierungen 
reversibler Probleme. Dazu können die Au-
toren aus dem Vollen schöpfen, da diese 
Thematik durch jüngste eigene Arbeiten 
etabliert worden ist. Die Ubertragung auf 
dissipative Störungen Hamiltonscher Syste-
me folgt schließlich demselben Muster - 
ganz offenbar ein äußerst fruchtbarer theo-
retischer Zugang! 

Dem Kapitel über hochoszillatorische 
Differentialgleichungen kommt besondere 
Bedeutung mit Blick auf die diskretisierte 
Schrödingergleichung zu. Hier öffnet sich 
ein interessantes neues Feld der Numeri-
schen Mathematik, das in den nächsten Jah-
ren gewiss noch mehr Aufmerksamkeit er-
langen wird. Das letzte Kapitel über Mehr-
schrittverfahren zeigt deutlich, wie schwierig 
oft die Ubertragung physikalischer oder 
analytischer Prinzipien bei diesem Typus 
von Diskretisierung sein kann: so bedarf 
schon die Frage, was symplektisch ist, in die-
sem Fall einer genaueren Uberlegung. Dem-
entsprechend ist dieses Kapitel etwas tech-
nisch und nur für Spezialisten geeignet. 

Zusammenfassend ist zu sagen: Wie von 
diesen vielgelesenen und vielzitierten Auto-
ren nicht anders erwartet, ist das Buch eine 
bibliophile Kostbarkeit (zahlreiche Illustra-
tionen mit historischem Bezug), professio-
nell geschrieben (äußerste Klarheit in Dar -
stellung und Diktion) und voller mathema-
tisch interessanter Querbezüge. Wie schon in  

ihren bisherigen Büchern, ist es den Autoren 
auch hier wiederum gelungen, ein internatio-
nal sichtbares Standardwerk zum Thema zu 
verfassen. Faszinierend ist die Breite des be-
handelten Stoffs, vom Kerngebiet Numerik 
weit hinein in die Analysis und in die klassi-
sche Mechanik. Der Band eignet sich als 
Grundlage von Spezialkursen der Numeri-
schen Mathematik im Hauptstudium und als 
begleitendes Material für Standardkurse in 
Numerik und Analysis. 

Hätte der Rezensent noch einen Wunsch 
frei gehabt, so hätte er sich gewünscht, dass 
sich die dargestellten theoretischen Konzep-
te gegen Ende des Buches weniger stark an 
integrable bzw. fast-integrable Systeme an-
gelehnt hätten: solche Probleme treten zwar 
in der Astronomie, aber kaum in der Moli-
küldynamik auf; zum von den Autoren ge-
wählten Blickwinkel passt denn auch, dass 
der größte Teil der zahlreichen illustrieren-
den numerischen Beispiele vom Typ all-
gemeines Keplerproblem ist. Sowie man die-
sen engeren Problemkreis verlässt, ergeben 
sich neue zentrale Fragen, deren Diskusstion 
in die Stochastik und die Ergodentheorie 
führt vielleicht ohnehin ein zu weites Feld. 
Von diesem Blickwinkel aus hätte allerdings 
die Erhaltung von Invarianten im Diskreten 
eine ganz andere, zum Teil relativierte Be-
deutung. 

Dies trübt natürlich nicht den Gesamtein-
druck: ein wunderschönes Buch zu einem 
wichtigen modernen Gebiet der Numeri-
schen Analysis. 

Berlin 	 P. Deuflhard 
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J. Buchmann 	 D. Bump 

Introduction to Cryptography 
From the reviews: "lt gives a clear and systematic 
introduction into the subject whose popularity is 
ever increasing, and can be recommended 10 all 
who would like to learn about cryptography. The 
book contains many exercises and examples...' 

Lie Groups 
This book is intended for a one year graduate 
course on Lie groups. Rather than providing a com-
prehensive treatment, Ehe author emphasizes Ehe 
beautiful representation theory of compact groups. 

2004. Approx. 410 p. 50 i)Ius. (Graduate Texts in Math- 
ZENTRALBLATT MATH 	ematjcs. Vol. 225) Hardcover € 64,95; sFr 115,00; £50,00 

2nd ed. 2004. XVI, 335 p. (Ursdergrsduate Tests in Mathematics) 	ISBN 0-387-21154-3 

Hardcover €79,95; sEt 135,50; £61,50 
ISBN 0-387-21156-X 	 R. K. Guy 
Also available in softcover 

€ 39,95; sFr 73,00; £30,50 ISBN 0-387-20756-2 

H. P. Langtangen 

Python Scripting for 
Computational Science 
The author teaches you how to develop taiored, 
flexible, and efficient working environments built 
from small programs written in Python. The focus 
iS On examples and applications of relevance to 
computational science. 

2004. XX, 726 p. (Texts in Compstational Science and 
Eng ineering. Vol. 3) Hardcover €49,95; sFr 88,50; £38,50 
ISBN 3-540-43505-5 

S. GaIlot, D. Huhn, J. Lafontaine 

Riemannian Geometry 
This book, based 00 a graduate course on Rieman-
nian geometry and analysis on manifolds, covers the 
topics of differential manifolds, Riemannian metrics, 
connections, geodesics and curvature, with special 
emphasis on the intrinsic features ofthe subject. 

3rd ed. 2004. XVI, 322 p. (Universitext( Softcover 
€ 34,95; sFr 64,00; £27,00 
ISBN 3-540-20493-8 

Unsolved Problems in 
Number Theory 
About thefirst Edition: "...many talented young 
mathematicians will write their first papers starting 
out from problems found in this book' 

Andrcis Scirközi, MathSciNet 

3rd ed. 2004. XVIII, 437 p. 18 illus. 
(Problem Books in Mathematics) Hardcover 
€69,95; sFr 123,50; £54,00 
ISBN 0-387-20860-7 

J. D. Logan 

Applied Partial 
Differential Equations 
This text is written for the standard, one-semester, 
undergraduate course in elementary partial dif-
ferentia( equations. The topics include derivations 
of some of the standard equations of mathematical 
physics and methods for solving those equations on 
bounded and unbounded domains. 

2nd ed. 2004. XII, 209 p. 40 illus. (Undergraduate Tests 
in Mathematics( Hardcover €79,95; sFr 135,50; £61,50 
ISBN 0-387-20935-2 

Also available in softcover 

€ 39,95; sFr 73,00; £30,50 ISBN 0-387-20953-0 
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Haberstr. 7-69126 Heidelberg, Gernrany 
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Eberhard Zeidler (Hrsg.) 
Teubner-Taschenbuch 	2., durchges. Aufl. 2003. XXVI, 1298 S. Geb. 

der Mathematik 	€ 34,90 	 ISBN 3-519-20012-0 
Formeln und Tabellen - Elementarmathematjk - 
Mathematik auf dem Computer - Differential-
und Integralrechnung - Vektoranalysis - 
Gewöhnliche Differentialgleichungen - Partielle 
Differentialgleichungen - Integraitransforma-
tionen - Komplexe Funktionentheorie - Algebra 
und Zahlentheorie - Analytische und algebrai-
sche Geometrie - Differentialgeometrie - Mathe-
matische Logik und Mengentheorie - Variati-
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