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Vorwort
Jahresbericht der Deutschen Mathematiker-Vereinigung, 106. Bd. 2004, Nr. 3

Vorwort

In dem vorliegenden Heft 3 des Jahresberichts konnen wir Thnen drei Ubersichtsartikel
anbieten. Bei der Arbeit von Elliott Lieb handelt es sich um eine Ausarbeitung seines
letztjihrigen Hauptvortrags auf der DM V-Jahrestagung in Rostock, der der mathema-
tischen Physik zuzuordnen ist.

Bereits auf der Jahrestagung 2002 in Halle hat Klaus Mohnke einen Plenarvortrag
aus dem Bereich der Differentialgeometrie gehalten. Eine Ausarbeitung davon finden
Sie als zweiten Beitrag.

Der Jahresbericht gibt auch in regelméBigen Abstinden Nachwuchswissenschaftlern
die Chance, ihr Arbeitsgebiet zu présentieren. Martin Vith ist Heisenberg-Stipendiat
und hat einen Ubersichtsartikel iiber topologische Methoden in der nichtlinearen Ana-
lysis verfasst.

A. Krieg

JB 106. Band (2004), Heft 3 91






Ubersichtsartikel Historischer Artikel Buchbesprechungen

Quantum Mechanics, The Stability
of Matter and Quantum Electrody-
namics

Elliott H. Lieb

Abstract

=  Mathematics Subject Classification: 81 V10, 81 V70,81 V45,81 T16
s  Keywords and Phrases: Quantum-mechanics, Quantum-electrodynamics, Stability
of Matter, Atoms, Radiation-field

Much progress has been made in the last few decades in developing the necessary
mathematics for understanding the full implications of the quantum-mechanical many-
body problem and why the material world appears to be as stable as it is despite the ser-
ious —1/|x| singularity of the Coulomb potential that attracts negative electrons to po-
sitive atomic nuclei. Many problems remain, however, especially the understanding of
the interaction of matter and the quantized radiation field discovered by Planck in
1900. A short review of some of the main topics is given.

This paper is an extended version of a talk at the DMV Jahrestagung in Rostock, 17 September,
2003 [1], © by Elliott H. Lieb. This article may be reproduced, in its entirety, for noncommercial
purposes. Work partially supported by U.S. National Science Foundation grant PHY 0139984-
A01.

Eingegangen: 01.01.2004 DMV

_ JAHRESBERICHT
Departments of Mathematics and Physics, Princeton University, DER DMV
P.O. Box 708, Princeton, NJ 08544-0708, USA, lieb@princeton.edu B. G. Teubner 2004
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1 Introduction

This paper is a brief survey of the quantum-mechanical many-body problem, especially
the question of the interaction of matter with radiation. The quantum-mechanical revo-
lution of the 1920°s brought with it many successes, but also a few problems that have
yet to be resolved. The realization that there were a few problems with the simple text-
book theory surfaced three or four decades ago. Since then some of the mathematical
questions have been answered, but some big ones remain. This brief overview might, it
is hoped, encourage some mathematicians to look into this fascinating topic.
We begin with a sketch of the topics that will concern us here.

1.1 Triumph of Quantum Mechanics

One of the basic problems of classical physics (after the discovery of the point electron
by Thomson and of the (essentially) point nucleus by Rutherford) was the stability of
atoms. Why do the electrons in an atom not fall into the nucleus? Quantum mechanics
explained this fact. It starts with the classical Hamiltonian of the system (nonrelativistic
kinetic energy for the electrons plus Coulomb’s law of electrostatic energy among the
charged particles). By virtue of the non-commutativity of the kinetic and potential ener-
gies in quantum mechanics the stability of an atom — in the sense of a finite lower bound
to the energy — was a consequence of the fact that any attempt to make the electrostatic
energy very negative would require the localization of an electron close to the nucleus
and this, in turn, would result in an even greater, positive, kinetic energy.

Thus, the basic stability problem for an atom was solved by an inequality that says
that (1/|x|), the expected value of 1/|x|, can be made large only at the expense of mak-
ing the kinetic energy, which is proportional to (p*), even larger. A fundamental hy-
pothesis of quantum mechanics is that p is represented by the differential operator
—ihV with 7 = h/27 and h =Planck’s constant. In elementary presentations of the sub-
ject it is often said that the mathematical inequality that ensures this fact is the famous
uncertainty principle of Heisenberg (proved by Weyl), which states that (p?)(x?) >
(9/8)R>.

While this principle is mathematically rigorous it is actually insufficient for the pur-
pose, as explained, e.g., in [19, 21], and thus gives only a heuristic explanation of the
power of quantum mechanics to prevent collapse. A more powerful inequality, such as
Sobolev’s inequality (9), is needed (see, e.g., [23]). The utility of the latter is made possi-
ble by Schrddinger’s representation of quantum mechanics (which earlier was a some-
what abstract theory of operators on a Hilbert space) as a theory of differential opera-
tors on the space of square integrable functions on IR>. The importance of Schrodin-
ger’s representation is sometimes underestimated by formalists, but it is of crucial
importance because it permits the use of functional analytic methods, especially in-
equalities such as Sobolev’s, which are not easily visible on the Hilbert space level.
These methods are essential for the developments reported here.
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E. Lieb: Stability of Matter and Quantum Electrodynamics

To summarize, the understanding of the stability of atoms and ordinary matter re-
quires a formulation of quantum mechanics with two ingredients:

® A Hamiltonian formulation in order to have a clear notion of a lowest possible
(ground state) energy. Lagrangian formulations, while popular, do not always lend
themselves to the identification of that quintessential quantum mechanical notion of
a ground state energy. In quantum mechanics a Hamiltonian is not a function on
phase space but rather a (pseudo-) differential operator.

m A formulation in terms of concrete function spaces instead of abstract Hilbert
spaces so that the power of mathematical analysis can be fully exploited.

1.2 Some Basic Definitions

As usual, we shall denote the lowest energy (eigenvalue) of a quantum mechanical sys-
tem by Ey. (More generally, Ey denotes the infimum of the spectrum of the Hamiltonian
H in case this infimum is not an eigenvalue of H or is —co.) Our intention is to investi-
gate arbitrarily large systems, not just atoms. In general we suppose that the system is
composed of N electrons and K nuclei of various kinds. Of course we could include
other kinds of particles but N and K will suffice here. N = 1 for a hydrogen atom and
N = 10? for a mole of hydrogen. We shall use the following terminology for two no-
tions of stability:

Ey > —0 Stability of the first kind, (1)
Ey > C(N +K) Stability of the second kind (2)

for some constant C < 0 that is independent of N and K, but which may depend on the
physical parameters of the system (such as the electron charge and mass). Usually,
C < 0, which means that there is a positive binding energy per particle.

Stability of the second kind is absolutely essential if quantum mechanics is going to
reproduce some of the basic features of the ordinary material world: The energy of or-
dinary matter is extensive (i.e., it is proportional to the number of particles), the thermo-
dynamic limit exists (i.e., the N — oo limit exists) and the laws of thermodynamics hold.
Bringing two stones together might produce a spark, but not an explosion with a release
of energy comparable to the energy in each stone. Stability of the second kind does not
guarantee the existence of the thermodynamic limit for the free energy, but it is an essen-
tial ingredient [22] [19, Sect. V].

It turns out that stability of the second kind cannot be taken for granted, as Dyson
discovered [9]. If Coulomb forces are involved, then the Pauli exclusion principle is es-
sential. (This means that the L? functions of N variables, ¥(x1, x2,...,Xy), X; € IR3, is
antisymmetric under all transpositions x; < x;. Particles, like electrons, whose func-
tions ¥ obey this principle are called fermions. Particles whose ¥ functions are sym-
metric under permutations are called bosons.)

Charged bosons are not stable because for them Ey ~ —N’/° (nonrelativistically)
and Ey = —oco for large, but finite N (relativistically, see Sect. 3.2). While positively
charged bosons exist in the form of atomic nuclei, negatively charged, long-lived bosons
do not exist in nature. This is a good thing in view of the instability just mentioned.
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1.3 The Electromagnetic Field

A second big problem handed down from classical physics was the ‘electromagnetic
mass’ of the electron. This poor creature has to drag around an infinite amount of elec-
tromagnetic energy that Maxwell burdened it with. Moreover, the electromagnetic field
itself is quantized — indeed, that fact alone started the whole revolution [34].

While quantum mechanics accounted for stability with Coulomb forces and Schro-
dinger led us to think seriously about the ‘wave function of the universe’, physicists
shied away from talking about the wave function of the particles in the universe and the
electromagnetic field in the universe. It is noteworthy that physicists are happy to dis-
cuss the quantum mechanical many-body problem with external electromagnetic fields
non-perturbatively, but this is rarely done with the quantized field. The quantized field
cannot be avoided because it is needed for a correct description of atomic radiation, the
laser, etc. However, the interaction of matter with the quantized field is almost always
treated perturbatively or else in the context of highly simplified models (e.g., with two-
level atoms for lasers).

The quantized electromagnetic field greatly complicates the stability of matter ques-
tion. It requires, ultimately, mass and charge renormalizations. At present such a com-
plete theory does not exist, but a theory must exist because matter exists and because we
have strong experimental evidence about the manner in which the electromagnetic field
interacts with matter, i.e., we know the essential features of a Hamiltonian that ade-
quately accounts for the low energy processes that exist in every day life. In short, nat-
ure tells us that it must be possible to formulate a self-consistent quantum electrody-
namics (QED) non-perturbatively, (perhaps with an ultraviolet, or high frequency, cut-
off of the field at a few MeV). It should not be necessary to have recourse to quantum
chromodynamics (QCD) or some other high energy theory to explain ordinary matter.

Physics and other natural sciences are successful because physical phenomena asso-
ciated with each range of energy and other parameters are explainable to a good, if not
perfect, accuracy by an appropriate self-consistent theory. This is true whether it be hy-
drodynamics, celestial dynamics, statistical mechanics, etc. If low energy physics (atom-
ic and condensed matter physics) is not explainable by a self-consistent, non-perturba-
tive theory on its own level one can speak of an epistemological crisis.

- Some readers might say that QED is in good shape. After all, it accurately predicts
the outcome of some very high precision experiments (Lamb shift, g-factor of the elec-
tron). But the theory does not really work well when faced with the problem, which is
explored here, of understanding the many-body (N = 10%) problem and the stable low
energy world in which we spend our everyday lives.

1.4 Relativistic Mechanics

When the classical kinetic energy of a particle, p> /2m, is replaced by its relativistic ver-
sion \/p%c? + m2c* the stability question becomes much more complicated, as will be
seen later. It turns out that even stability of the first kind is not easy to obtain and it de-
pends on the values of the physical constants, notably the fine structure constant
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(3) a=é*/fic=1/137.04,

where —e is the electric charge of the electron.

For ordinary matter relativistic effects are not dominant but they are noticeable. In
large atoms these effects severely change the innermost electrons and this has a notice-
able effect on the overall electron density profile. Therefore, some version of relativistic
mechanics is needed, which means, presumably, that we must know how to replace
p?/2m by the Dirac operator (see (18)).

The combination of relativistic mechanics plus the electromagnetic field (in addition
to the Coulomb interaction) makes the stability problem difficult and uncertain. Major
aspects of this problem have been worked out in the last few years (about 35) and that is
the subject of this paper.

2 Nonrelativistic Matter without the Magnetic Field

Maxwell’s equations define the electric and magnetic fields in terms of potentials. While
the equations determine the fields, the potentials are not determined uniquely; the
choice of potentials is called the choice of gauge. We work in the ‘Coulomb’ gauge for
the electromagnetic field. Despite the assertion that quantum mechanics and quantum
field theory are gauge invariant, it seems to be essential to use this gauge, even though
its relativistic covariance is not as transparent as that of the Lorentz gauge. The reason
is the following.

The Coulomb gauge is the gauge in which electrostatic part of the interaction of
matter with the electromagnetic field is just the conventional Coulomb “action at a dis-
tance” potential ¥, given by (4) below (in energy units mc? and length units the Comp-
ton wavelength 7/mc). This part of the interaction depends only on the coordinates of
the particles and not on their velocities. The dependence of the interaction on velocities,
or currents, comes about through the magnetic part of the interaction. Despite appear-
ances, this picture is fully Lorentz invariant (even if it is not gauge invariant).

1 ZvZ;
;kz; Ixi — Rk\ 1<i2<j:§N Ixi — xj] " 13;51( IRe —Ry[

The first sum is the interaction of the electrons (with dynamical coordinates x;) and
fixed nuclei located at Ry of positive charge Z; times the (negative) electron charge e.
The second is the electron-electron repulsion and the third is the nucleus-nucleus repul-
sion. The nuclei are fixed because they are so massive relative to the electron that their
motion is irrelevant. It could be included, however, but it would change nothing essen-
tial. Likewise, there is no nuclear structure factor because if it were essential for stability
then the size of atoms would be the size of nuclei, about 10~!? cm, instead of about 108
cm, contrary to what is observed.

Although the nuclei are fixed points the constant C in the stability of matter (2) is re-
quired to be independent of the Ry’s. Likewise (1) requires that Ej have a finite lower
bound that is independent of the Ry’s.

JB 106. Band (2004), Heft 3 97



L Ubersichtsartikel T Historischer Artikel Buchbesprechungen

For simplicity of exposition we shall assume here that all the Z; are identical, i.e.,
Zi =2

The magnetic field, which will be introduced later, is described by a vector potential
A(x) which is a dynamical variable in the Coulomb gauge. The magnetic field is
B = curlA.

There is a basic physical distinction between electric and magnetic forces which does
not seem to be well known, but which motivates this choice of gauge. In electrostatics
“like charges repel” while in magnetostatics “like currents attract”. A consequence of
these facts is that the correct magnetostatic interaction energy can be obtained by mini-
mizing the energy functional 1 [ B> — [j- A with respect to the vector field A, where j is
the electric current density. The electrostatic energy, on the other hand, cannot be ob-
tained by a minimization principle with respect to the field (e.g., minimizing
1 [1Vg[* — [ o with respect to ¢).

The Coulomb gauge, which puts in the electrostatics correctly, by hand, so to speak,
and allows us to minimize the total energy with respect to the A field, is the gauge that
gives us the correct physics and is consistent with the “quintessential quantum mechani-
cal notion of a ground state energy” mentioned in Sect. 1.1. In any other gauge one
would have to look for a critical point of a Hamiltonian rather than a true global mini-
mum.

The type of Hamiltonian that we wish to consider in this section is

(5) Hy =Ty +aV, .

Here, Ty is the kinetic energy of the N electrons and has the form
N

(6) Tn=) T;,
i=1

where T; acts on the coordinate of the i electron. The nonrelativistic choice is 7' = p?
with p = —iV and p?> = —A in appropriate units.

2.1 Nonrelativistic Stability for Fermions

The problem of stability of the second kind for nonrelativistic quantum mechanics was
recognized in the early days by a few physicists, e.g., Onsager, but not by many. It was
not solved until 1967 in one of the most beautiful papers in mathematical physics by
Dyson and Lenard [10].

They found that the Pauli principle, i.e., Fermi-Dirac statistics, is essential. Mathe-
matically, this means that the Hilbert space is the subspace of antisymmetric functions,
i.e., HPS = ANL2(IR3; @%). This is how the Pauli principle is interpreted post-Schrédin-
ger; Pauli invented his principle a year earlier, however!

Their value for C in (2) was rather high, about —10'3 eV (electron volts) for Z = 1.
(The ground state energy of a hydrogen atom is —13 eV.) The situation was improved la-
ter by Thirring and myself [31] to about —20 eV for Z = 1 by introducing an inequality
that holds only for the kinetic energy of fermions (not bosons) in an arbitrary state U.
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() (¥, Ty¥) > (const. / Lou(x) dx,
R

where gy is the one-body density in the (normalized) fermionic wave function ¥ (of
space and spin) given by an integration over (N — 1) coordinates and N spins as fol-
lows.

(8) ouw(x)= NUIZ;N /1R3<N—1) |W(X, X2, ..o, XN 01, - - on) | d3xa - - - dPxy

Inequality (7) allows one simply to reduce the quantum mechanical stability pro-
blem to the stability of Thomas-Fermi theory, which was worked out earlier by Simon
and myself [30].

The older inequality of Sobolev, mentioned in Sect. 1.1,

1/3
9) (¥, TnT) > (const.)(/]R3 g\p(x)3d3x> ;

is not as useful as (7) for the many-body problem because its right side is proportional
to N instead of N°/3. It is, however, strong enough to yield the stability of a system, like
an atom, that has only a few electrons.

It is amazing that from the birth of quantum mechanics until 1967 none of the lu-
minaries of physics had quantified the fact that electrostatics plus the uncertainty prin-
ciple do not suffice for stability of the second kind, and thereby make thermodynamics
possible (although they do suffice for the first kind). See Sect. 2.2. It was noted, how-
ever, that the Pauli principle was responsible for the large sizes of atoms and bulk mat-
ter (see, e.g., [9,10]).

2.2 Nonrelativistic Instability for Bosons

What goes wrong if we have charged bosons instead of fermions? Stability of the first
kind (1) holds in the nonrelativistic case, but (2) fails. If we assume the nuclei are infi-
nitely massive, as before, and N = KZ then £y ~ —N>3[10, 20]. To remedy the situa-
tion we can let the nuclei have finite mass (e.g., the same mass as the negative particles).
Then, as Dyson showed [9], Ey < —(const.)N7/3. This calculation was highly non-tri-
vial! Dyson had to construct a variational function with pairing of the Bogolubov type
in a rigorous fashion and this took several pages.

Thus, finite nuclear mass improves the situation, but not enough. The question
whether N7/° is the correct power law remained open for many years. A lower bound of
this type was needed and that was finally obtained in [6].

The results of this Section 2 can be summarized by saying that stability of the hydro-
gen atom is one thing but stability of many-body physics is something else !
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3 Relativistic Kinematics (no magnetic field)

The next step is to try to get some idea of the effects of relativistic kinematics, which
means replacing p> by /p? + 1 in non-quantum physics. (Recall that mc> = 1 in our
units.) The simplest way to do this is to substitute 1/p? + 1 for T in (6). The Dirac op-
erator will be discussed later on, but for now this choice of 7" will suffice. Actually, it
was Dirac’s choice before he discovered his operator and it works well in some cases.
For example, Chandrasekhar used it successfully, and accurately, to calculate the col-
lapse of white dwarfs (and later, neutron stars).

Since we are interested only in stability, we may, and shall, substitute [p| = v/—A for
T. The error thus introduced is bounded by a constant times N since |p| <
VpP*+1<|p|+1 (as an operator inequality). Our Hamiltonian is now Hy =

Z?;l Ip;| + aVe.

3.1 One-Electron Atom

The touchstone of quantum mechanics is the Hamiltonian for ‘hydrogen’ which is, in
our case,

(10) H=|p| - Zo/|x| = V-A - Za/|x| .

It is well known (also to Dirac) that the analogous operator with |p| replaced by the
Dirac operator (18) ceases to make sense when Za > 1. Something similar happens for
(10).

_Jo if Za < 2/
(1) EO_{—oo if Za > 2/m .

The reason for this behavior is that both |p| and \X\_I scale in the same way. Either
the first term in (10) wins or the second does.

A result similar to (11) was obtained in [11] for the free Dirac operator D(0) in place
of |p|, but with the wave function ¥ restricted to lie in the positive spectral subspace of
D(0). Here, the critical value is «Z < (47)/(4 + ) > 2/m.

The moral to be drawn from this is that relativistic kinematics plus quantum me-
chanics is a ‘critical’ theory (in the mathematical sense). This fact will plague any relati-
vistic theory of electrons and the electromagnetic field — primitive or sophisticated.

3.2 Many Electrons and Nuclei

When there are many electrons is it true that the condition Za < const. is the only one
that has to be considered? The answer is no! One also needs the condition that « itself
must be small, regardless of how small Z might be. This fact can be called a ‘discovery’
but actually it is an overdue realization of some basic physical ideas. It should have been
realized shortly after Dirac’s theory in 1927, but it does not seem to have been noted un-
til 1983 [8].
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The underlying physical heuristics is the following. With « fixed, suppose
Za = 107% « 1, so that an atom is stable, but suppose that we have 2 x 10° such nuclei.
By bringing them together at a common point we will have a nucleus with Za = 2 and
one electron suffices to cause collapse into it. Then (1) fails. What prevents this from
happening, presumably, is the nucleus-nucleus repulsion energy which goes to +oo as
the nuclei come together. But this repulsion energy is proportional to (Za)2 /o and,
therefore, if we regard Za as fixed we see that 1/« must be large enough in order to pre-
vent collapse.

Whether or not the reader believes this argument, the mathematical fact is that there
is a fixed, finite number o, < 2.72 ([32]) so that when « > «. (1) fails for every positive
Z and for every N > 1 (with or without the Pauli principle).

The open question was whether (2) holds for a// N and K if Za and « are both small
enough. The breakthrough was due to Conlon [5] who proved (2), for fermions, if
Z = 1and o < 10729, The situation was improved by Fefferman and de la Llave [13] to
Z =1 and « < 0.16. Finally, the expected correct condition Zaw < 2/m and o < 1/94
was obtained in [32]. (This paper contains a detailed history up to 1988.) The situation
was further improved in [27]. The multi-particle version of the use of the free Dirac op-
erator, as in Sect. 3.1, was treated in [18].

Finally, it has to be noted that charged bosons are always unstable of the first kind
(not merely the second kind, as in the nonrelativistic case) for every choice of
Z > 0,a > 0. E.g., there is instability if Z%/3aN'/? > 36 ([32]).

We are indeed fortunate that there are no stable, negatively charged bosons.

4 Interaction of Matter with Classical Magnetic Fields

The magnetic field B is defined by a vector potential A(x) and B(x) = curl A(x). In this
section we take a first step (warmup exercise) by regarding A as classical, but indetermi-
nate, and we introduce the classical field energy

1 2 g2
(12) Hf_87T/1R3B(X) d’x .
The Hamiltonian is now
(13) HN(A) = TN(A) + al, +Hf 5

in which the kinetic energy operator has the form (6) but depends on A. We now define
E, to be the infimum of (¥, Hy(A)¥) both with respect to ¥ and with respect to A.

4.1 Nonrelativistic Matter with Magnetic Field

The simplest situation is merely ‘minimal coupling” without spin, namely,

(14) T(A) = |p+ VoARx)

This choice does not change any of our previous results qualitatively. The field energy is
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not needed for stability. On the one-particle level, we have the ‘diamagnetic inequality’
(6, Ip+AX)]*0) > (¢, p*|¢]). The same holds for |p + A(x)| and |p|. More impor-
tantly, inequality (7) for fermions continues to hold (with the same constant) with 7'(A)
in place of p*. (There is an inequality similar to (7) for |p|, with 5/3 replaced by 4/3,
which also continues to hold with minimal substitution [7].)

The situation gets much more interesting if spin is included. This takes us a bit closer
to the relativistic case. The kinetic energy operator is the Pauli operator

(15) TP(A)=|p+Va AX)’+VaB(x) o,

where @ is the vector of 2 x 2 Pauli spin matrices and L?(IR®) is replaced by
LY(R?; @).

411 QOne-Electron Atom

The stability problem with 77(A) is complicated, even for a one-electron atom. With-
out the field energy Hy the Hamiltonian is unbounded below. (For fixed A it is bounded
but the energy tends to —oo like —(log B)2 for a homogeneous field [2].) The field energy
saves the day, but the result is surprising [14] (recall that we must minimize the energy
with respect to ¥ and A):

(16) [p+VaAX) +vaB(x)-o - Za/|x| + Hy

is bounded below if and only if Za* < C, where C is some constant that can be bounded
as1 < C < 97%/8.

The proof of instability [33] is difficult and requires the construction of a zero mode
(soliton) for the Pauli operator, i.e., a finite energy magnetic field and a square integr-
able 1 such that

(17) TP(A)=0.

The usual kinetic energy |p + A(x)|* has no such zero mode for any A, even when 0 is
the bottom of its spectrum.

The original magnetic field [33] that did the job in (17) is independently interesting,
geometrically (many others have been found since then).

B(x) = — 2 [(1 = X))+ 2(W- X)X + 2w A X]
(1+x])

with |w| = 1. The field lines of this magnetic field form a family of curves, which, when
stereographically projected onto the 3-dimensional unit sphere, become the great circles
in what what is known as the Hopf fibration.

Thus, we begin to see that nonrelativistic matter with magnetic fields behaves like re-
lativistic matter without fields — to some extent.

The moral of this story is that a magnetic field, which we might think of as possibly
self-generated, can cause an electron to fall into the nucleus. The uncertainty principle
cannot prevent this, not even for an atom!
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412 Many Electrons and Many Nuclei

In analogy with the relativistic (no magnetic field) case, we can see that stability of the
first kind fails if Za? or « is too large. The heuristic reasoning is the same and the proof
is similar.

We can also hope that stability of the second kind holds if both Za? and o are small
enough. The problem is complicated by the fact that it is the field energy H; that will
prevent collapse, but there there is only one field energy while there are N > 1 elec-
trons.

The hope was finally realized, however. Fefferman [12] proved stability of the sec-
ond kind for Hy(A) with the Pauli T7(A) for Z = 1 and “« sufficiently small”. A few
months later it was proved [28] for Za? < 0.04 and « < 0.06. With « = 1/137 this
amounts to Z < 1050. This very large Z region of stability is comforting because it
means that perturbation theory (in A) can be reliably used for this particular problem.

Using the results in [28], Bugliaro, Frohlich and Graf [3] proved stability of the same
nonrelativistic Hamiltonian — but with an ultraviolet cutoff, quantized magnetic field
whose field energy is described below. (Note: No cutoffs are needed for classical fields.)

There is also the very important work of Bach, Frohlich, and Sigal [4] who showed
that this nonrelativistic Hamiltonian with ultraviolet cutoff, quantized field and with
sufficiently small values of the parameters has other properties that one expects. E.g.,
the excited states of atoms dissolve into resonances and only the ground state is stable.
The infrared singularity notwithstanding, the ground state actually exists (the bottom
of the spectrum is an eigenvalue); this was shown in [4] for small parameters and in [15],
[26] for all values of the parameters. (See Sect. 7.)

5 Relativity Plus Magnetic Fields

As a next step in our efforts to understand QED and the many-body problem we intro-
duce relativity theory along with the classical magnetic field.

5.1 Relativity Plus Classical Magnetic Fields

Originally, Dirac and others thought of replacing 77(A) by 1/T?(A) + 1 but this was
not successful mathematically and does not seem to conform to experiment. Conse-
quently, we introduce the Dirac operator for 7 in (6), (13)

(18) D(A)=a-p+ Vo a-Ax)+ Om,

where « and 3 denote the 4 x 4 Dirac matrices and +/« is the electron charge as before.
(This notation of @ and « is historical and is not mine.) The Hilbert space for N elec-
trons is now changed to

(19) H=AVLH(R®; @Y.

The well known problem with D(A) is that it is unbounded below, and so we cannot
hope to have stability of the first kind, even with Z = 0. Let us imitate QED (but with-

JB 106. Band (2004), Heft 3 103



L Ubersichtsartikel Historischer Artikel Buchbesprechungen 1

out pair production or renormalization) by restricting the electron wave function to lie
in the positive spectral subspace of a Dirac operator.

Which Dirac operator?

There are two natural operators in the problem. One is D(0), the free Dirac opera-
tor. The other is D(A) that is used in the Hamiltonian. In almost all formulations of
QED the electron is defined by the positive spectral subspace of D(0). Thus, we can de-
fine

N
20) H=PtH=]]mH,
i=1
where Pt =¥ m;, and m; is the projector of onto the positive spectral subspace of

D;(0) = a - p; + fm, the free Dirac operator for the i! electron. We then restrict the al-
lowed wave functions in the variational principle to those ¥ satisfying

(21) ¥=P" 0¥ ie., UeHPYS

Another way to say this is that we replace the Hamiltonian (13) by P* Hy PT on H
and look for the bottom of its spectrum.

It turns out that this prescription leads to disaster! While the use of D(0) makes
sense for an atom, it fails miserably for the many-fermion problem, as discovered in [29]
and refined in [16]. The result is:

For all o > 0 in (18) (with or without the Coulomb term o'V,) one can find N large
enough so that Ey = —o0.

In other words, the term v/a « - A in the Dirac operator can cause an instability that
the field energy cannot prevent.

It turns out, however, that the situation is saved if one uses the positive spectral sub-
space of the Dirac operator D(A) to define an electron. (This makes the concept of an
electron A dependent, but when we make the vector potential into a dynamical quantity
in the next section, this will be less peculiar since there will be no definite vector poten-
tial but only a fluctuating quantity.) The definition of the physical Hilbert space is as in
(20) but with 7; being the projector onto the positive subspace of the full Dirac operator
D;(A) = a - p; + Va a- A(x;) + fm. Note that these m; projectors commute with each
other and hence their product P* is a projector.

The result [29] for this model ((13) with the Dirac operator and the restriction to the
positive spectral subspace of D(A)) is reminiscent of the situations we have encountered
before:

If « and Z are small enough stability of the second kind holds for this model.

Typical stability values that are rigorously established [29] are Z < 56 with
a=1/13Tora<1/82withZ = 1.

6 Quantized Electromagnetic Fields

Let us now try to analyze some of the problems connected with the quantization of the
electromagnetic field. The great discovery of Max Planck [34], which was the first step
in the new quantum theory, was that the energy of the electromagnetic field came in
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quantized units. The energy unit of electromagnetic waves of frequency v is hv, and in
terms of wave number & (i.e., the wave is proportional to exp(ik - x)) it is Ac|k| since
2nv/|k| = ¢ = speed of light.

We begin with the problem of generalizing the results in the previous subsection to
the quantized field.

6.1 Relativity Plus Quantized Magnetic Field

The obvious next step is to try to imitate the strategy of Sect. 5.1 but with the quantized
A field. This was done in [24]. The quantized A field is described by an operator-valued
Fourier transform as

2

(22) Ax) =L / ) oy @)™ + a3 0] @'k,
2m 51 Jiisa V/1K]

where A is the ultraviolet cutoff on the wave-numbers [k|. The operators a,, aj, satisfy

the usual canonical commutation relations

(23) [an(K),a(q)] = 6(k — q)éry ,  [ar(k),au(q)] =0, etc

and the vectors €, (k) are two orthonormal polarization vectors perpendicular to k and
to each other.
The field energy Hy is now given by a normal-ordered version of (12)

(24) H; :A;; /]R LK a;(k)ay (k)d’k

The Dirac operator is the same as before, (18). Note that D;(A) and D;(A) still com-
mute with each other (since A(x) commutes with A(y)). This is important because it al-
lows us to imitate Sect. 5.1.

In analogy with (19) we define

(25) H=A"L2(R}; @Y o F,
where F is the Fock space for the photon field. We can then define the physical Hilbert
space as before

(26) HPWS =TI H =

N
ﬂ-iHv

i=1

where the projectors 7; project onto the positive spectral subspace of either D;(0) or
D;(A).

Perhaps not surprisingly, the former case leads to catastrophe, as before. This is so,
even with the ultraviolet cutoff, which we did not have in Sect. 5.1. Because of the cutoff
the catastrophe is milder and involves instability of the second kind instead of the first
kind. This result relies on a coherent state construction in [16].
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The latter case (use of D(A) to define an electron) leads to stability of the second
kind if Z and « are not too large. Otherwise, there is instability of the first kind. The rig-
orous estimates are comparable to the ones in Sect. 5.1.

Clearly, many things have yet to be done to understand the stability of matter in the
context of QED. Renormalization and pair production have to be included, for exam-
ple.

The results of this section suggest, however, that a significant change in the Hilbert
space structure of QED might be necessary. We see that it does not seem possible to
keep to the current view that the Hilbert space is a simple tensor product of a space for
the electrons and a Fock space for the photons. That leads to instability for many parti-
cles (or large charge, if the idea of "particle’ is unacceptable). The ‘bare’ electron is not
really a good physical concept and one must think of the electron as always accompa-
nied by its electromagnetic field. Matter and the photon field are inextricably linked in
the Hilbert space HPYYs.

The following tables [24] summarize some of the results of this and the previous sec-
tions

Electrons defined by projection onto the positive
subspace of D(0), the free Dirac operator

Classical or quantized field | Classical or quantized field
without cutoff A with cutoff A
« > 0 but arbitrarily small. | @ > 0 but arbitrarily small.

Without Coulomb Instability of Instability of
potential o'V, the first kind the second kind
With Coulomb Instability of Instability of
potential o'V, the first kind the second kind

Electrons defined by projection onto the positive
subspace of D(A), the Dirac operator with field

Classical field with or without cutoff A
or quantized field with cutoff A

Without Coulomb The Hamiltonian is positive
potential aV,

Instability of the first kind when either
With Coulomb a or Zo is too large
potential oV, Stability of the second kind when
both o and Z« are small enough
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6.2 Mass Renormalization

In both classical and quantum electrodynamics there is a problem of mass renormaliza-
tion. This means that when a charge is accelerated its accompanying electromagnetic
field is also accelerated and acts like an additional mass. The ‘bare mass’ of the particle
(which is the mass that appears in the Hamiltonian) must be chosen so that the final,
physical mass (as measured in experiments) agrees with the physically measured value.

For a point particle, the additional mass is infinity, classically. For QED it is also in-
finite, but the divergence is less rapid as the radius of the charge goes to zero. In any
case, with a finite ultraviolet cutoff A the additional mass is finite, but it is far from clear
that, for each A > 0 one can adjust the bare mass (while keeping it positive) to give the
correct physical mass. Opinions differ on this point and very little is known rigorously
about the problem outside of perturbation theory. See [17].

There are two ways to define mass renormalization. Take one particle (N = 1) and
then either

1. Find the bottom of the spectrum of 7" 4 Hy under the condition that the total mo-
mentum of particle plus field is p. Call it E(p) and write, for small p,

E(p) = E(p = 0) +p2/2mphysical
or else

2. Compute the binding energy of hydrogen (N =1,K = 1,Z = 1). Call it Ey and
set

2 2 2
EO = MphysicalC” & /Zh

The first way is the usual one; the second is motivated by the earliest experiment in
quantum mechanics. These two definitions are not the same. In any case, we [25] can
now obtain non-trivial bounds on the binding energy (in the context of the Schrodinger
Hamiltonian or the Pauli Hamiltonian interacting with the quantized field) and thereby
get some bounds on the renormalized mass using definition 2. For large cutoff A, these
bounds differ in their A dependence from what might be expected from perturbation
theory.

7 Existence of Atoms in Non-relativistic QED

One of the most recent topics concerns the seemingly trivial question of the existence of
atoms. In some sense this question is the opposite of the stability of matter question.
The Hamiltonian we shall use to describe an atom or molecule with N electrons is

N
(27) Hy =) T(A)+aV.+Hy
i=1

where TF(A) is the Pauli kinetic energy operator (15), but A is the quantized magnetic
field given by (22), and Hy is the energy of the quantized field given by (24). As before,
V. is the Coulomb potential (4) of some fixed nuclei whose total nuclear charge is de-
notedby Z =3 Z;.
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To show the existence of stable atoms we need to establish two things about Hy.

1. The ground state energy (bottom of the spectrum) of Hy is lower than that of H,,
i.e., of a system with N’ < N electrons (with the remaining N — N’ electrons being al-
lowed to escape to infinity). This is called the binding condition.

2. The bottom of the spectrum of Hy is actually an eigenvalue, i.e., Schrédinger's
equation has a square integrable solution with E = the bottom of the spectrum.

In the case of the Schrédinger equation without the field, problem 1. was solved by
Zhislin in 1960 for the case N < Z + 1, which includes the neutral molecule. He did this
by using a localization technique, whose positive localization energy (r~2) is more than
offset by the Coulomb attraction (—r~') of a positively charged system (Z — N’) to a ne-
gatively charged electron. The existence of the ground state (problem 2.) follows from
standard arguments because in this case the bottom of the spectrum is negative while
the bottom of the essential spectrum (which, in this case, is the bottom of the conti-
nuum) starts at zero. Thus, there is a gap in the spectrum and the technique of taking
weak limits easily yields a non-zero eigenfunction [23].

When we turn on the interaction with the quantized magnetic field the situation
changes significantly. One major difference is that the bottom of the essential spectrum
is now the bottom of the spectrum because we can always create photons with arbitra-
rily small energy (recall that the energy of a photon with momentum k is |k|). Therefore,
if a ground state exists it necessarily lies at the bottom of the essential spectrum and is
not isolated. Eigenvalues in the continuum are notoriously difficult to handle, even for
the simple Schrodinger operator.

A second major difference is that it is necessary to localize the A4 field as well as the
electrons. This localization costs an energy r~!, not 72 as before, essentially because the
field energy is proportional to |k| instead of k2. Thus, the field localization competes
with the Coulomb attraction.

Problems 1. and 2. were solved in [4] under the condition that « and A are small en-
ough.

The first general result, valid for all values of the various constants, was in [15],
where it was shown that 2. holds whenever 1. holds.

Finally, 1. was shown to hold for all values of the constants [26] under the same nat-
ural condition as Zhislin's,i.e., N < Z + 1.
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Symplektische Formen sind die grundlegenden Strukturinvarianten der klassischen
Mechanik. Der Phasenraum, d. h. der Raum der Orts—und Impulskoordinaten (p;, ¢:),
ist mit einer kanonischen symplektischen Form versehen (siehe 2.1., Beispiel 5). Durch
sie wird jeder differenzierbaren Funktion H das sogenannte Hamiltonsche Vektorfeld
Xy zugeordnet. Insbesondere beschreibt das Hamiltonsche Feld der Totalenergie die in-
finitesimale Verdnderung des mechanischen Systems, gegeben durch die bekannten Ha-
miltonschen Gleichungen:

pi = _Hq,-
qi = Hpi

(siehe Arnolds ,,Klassiker® [1] — auch fiir die folgende Diskussion). Der Fluss 148t die
Energie H invariant. Diese Eigenschaft gilt nicht mehr fiir nicht-autonome Systeme,
dass heiBt solchen, bei denen die Hamiltonfunktion zeitabhingig ist. Die Diffeomor-
phismen der Familie, die man als Losung zeitabhidngiger Hamiltonscher Gleichungen
erhélt, nennt man Hamiltonsche Diffeomorphismen. Sie lassen immer noch die sym-
plektische Struktur invariant. Allgemein nennt man Diffeomorphismen mit dieser Ei-
genschaft Symplektomorphismen. Systeme mit periodischer Hamiltonfunktion erhilt
man zum Beispiel bei der Untersuchung von Modellen der Himmelsmechanik, an denen
mehr als zwei Himmelskorper beteiligt sind. Das autonome System mit zwei Himmels-
korpern (Sonne-Erde oder Erde-Mond) und deren gegenseitige Anziehung ist integrier-
bar, und seine Lésungen werden durch Kepplers Gesetze beschrieben. Ein ganz brauch-
barer Ansatz, um die Auswirkung zu studieren, die andere Himmelskorper auf dieses
System haben, ist diese als periodische Storung der autonomen Hamiltonfunktion zu
beschreiben, wobei die Riickwirkung des Systems auf die anderen Himmelskorper ver-
nachléssigt wird. Poincaré stie beim Studium solcher Systeme auf den Fakt, dass fli-
chentreue, orientierungserhaltende Diffeomorphismen des Annulus, die den duBeren
Rand im positiven Sinn und den inneren im negativen Sinn drehen, wenigstens zwei Fix-
punkte haben miissen. Birkhoff bewies dies mit strikt zwei-dimensionalen Methoden.
Arnold entdeckte schlieBlich, dass das Poincaré-Birkhoff-Theorem ein Phinomen sym-
plektischer Diffeomorphismen ist. Er machte darum seine berithmt gewordene Ver-
mutung iiber untere Schranken fiir die Zahl von Fixpunkten Hamiltonscher Diffeomor-
phismen. In Hinblick auf periodische Hamiltonsche Systeme sind Fixpunkte aber gera-
de deren periodische Losungen. Arnolds Vermutungen waren der Anlass fiir die
Entwicklung vieler neuer Methoden aus der Variationsrechnung (z. B. die Entdeckung
der Kapazititen), aus der komplexen Analysis und der Theorie partieller Differential-
gleichungen (z. B. pseudoholomorphe Kurven und Floer-Theorie) fiir das Studium der
Hamiltonschen Dynamik.

Symplektische Strukturen findet man auch auf vielen Modulrdumen der Lésungen
von Feldgleichungen. Oft begegnet man dabei auf natiirliche Weise Lagrangen Unter-
mannigfaltigkeiten. Dies sind Untermannigfaltigkeiten halber Dimension, auf denen
die symplektische Form verschwindet. Viele Eigenschaften von Objekten der symplekti-
schen Geometrie konnen direkt durch Eigenschaften Lagranger Untermannigfaltigkei-
ten ausgedriickt werden. Beispielsweise ist ein Symplektomorphismus einer symplekti-
schen Mannigfaltigkeit (M,w) dadurch charakterisiert, dass sein Graph Lagrange
bzgl. der symplektischen Struktur w @ (—w) auf dem Produkt M x M ist. Der Null-
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schnitt, jede Faser im Kotangentialbiindel einer Mannigfaltigkeit sowie der Graph einer
geschlossenen 1-Form darauf sind weitere wichtige Beispiele Lagranger Untermannigfal-
tigkeiten. Es scheint zudem so, dass viele Phdnomene der symplektischen Geometrie auf
oft nicht so offensichtliche Weise auf Eigenschaften Lagranger Untermannigfaltigkei-
ten beruhen; kurz gesagt: ,,Alles ist Lagrange™ (Weinstein, siehe [5] fiir einige Beispiele).

Das durch eine symplektische Form definierte MaB ist ebenfalls invariant unter
Symplektomorphismen. Fiir klassische mechanische Systeme ist dies genau der Inhalt
des Satzes von Liouville iiber die Invarianz des Phasenvolumens. Diese Invariante ist
offenbar robust: Konvergiert eine Folge von Symplektomorphismen gleichmaBig, so
lasst ihr Grenzwert, obwohl er nur noch stetig ist, das MaB} ebenfalls invariant. Lange
Zeit war unklar, ob es neben dem durch die symplektische Form definierten MaB und
einigen offensichtlichen topologischen Invarianten {iberhaupt andere robuste Invarian-
ten einer symplektischen Form gibt. Anders formuliert lautete die Frage: Was ist der
Abschluss der Menge der Symplektomorphismen im Raum der stetigen Abbildungen?
Besteht er aus allen das MaB erhaltenden Abbildungen oder einer echten Teilmenge?
Schliesslich bewies Gromov in [10], dass sich das Volumen einer symplektischen Man-
nigfaltigkeit im Allgemeinen nicht mit einer symplektisch eingebetteten Kugel aus-
schopfen lisst. Das Supremum der Radien von Kugeln in IR?", die sich symplektisch in
eine 2n-dimensionale Mannigfaltigkeit einbetten lassen, ist somit eine solche Invariante,
die sich nicht durch das Volumen ausdriicken ldsst. Konkret besagt Gromov’s Non-
Squeeze-Theorem, dass fiir einen symplektisch eingebetteten Ball vom Radius r in einen
symplektischen Zylinder vom Radius R, B¥(r) — B*(R) x €', immer r < R gilt.
Das Volumen des Bildraumes ist jedoch unendlich. Daraus folgt, dass der gleichméBige
Grenzwert einer Folge von Symplektomorphismen selbst ein Symplektomorphismus
ist, falls er differenzierbar ist. Das war die Geburtsstunde der symplektischen Topologie
(siehe z. B. [16]). Sie ist heute eine beliebte Spielwiese vieler Mathematiker. Das hat si-
cher viel mit der eingangs erwdhnten engen Verkniipfung mit physikalischen Fragestel-
lungen zu tun. Andererseits liegt ihr Reiz darin begriindet, dass sich viele der interessan-
ten Probleme relativ elementar formulieren lassen. Fiir ihre Lésungen miissen hingegen
oft alle Register der Geometrie und Analysis gezogen werden.

Eine Fiille von Beispielen hierfiir findet sich in Gromovs bahnbrechender Arbeit
[10]. Er studiert darin Abbildungen von kompakten Riemannschen Flichen in eine
symplektische Mannigfaltigkeit, die holomorphe Funktionen einer komplexen Ver-
dnderlichen verallgemeinern (siehe 1.2.(2)). Diese pseudoholomorphen Kurven stellen
sich als mysteriése Dolmetscher zwischen symplektischer Topologie und Hamiltonscher
Dynamik heraus. Beispielsweise iibersetzen sie Gromovs oben beschriebene Non-
Squeeze-Eigenschaft in die Existenz geschlossener Bahnen des Hamiltonfeldes auf fast
allen (kompakten) Niveaufldchen einer eigentlichen Hamiltonfunktion (siehe [12]). Ein
anderes prominentes Beispiel ist die Existenz einer holomorphen Scheibe mit Rand auf
einer gegebenen geschlossenen Lagrangen Untermannigfaltigkeit L C @ (siehe
Theorem 1). Daraus folgt, dass die erste Homologie von L nicht verschwindet und man
erhilt eine neue Obstruktion gegen die Existenz von Lagrangen Einbettungen. In [18]
wird mit Hilfe dieser holomorphen Scheibe die Existenz von Hamilton-Sehnen fiir soge-
nannte Legendre-Untermannigfaltigkeiten der Niveaumengen gezeigt. Die Anzahl sol-
cher kompakter holomorpher Kurven fiihrt schlieBlich zu den Gromov-Witten-Inva-
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rianten und der Quantenkohomologie, die das Zdhlen auf effektive Weise organisieren
(siehe [15]).

Fiir den Beweis von Arnolds Vermutung konstruierte Floer eine Homologie, die ei-
ner Art Morse-Theorie auf dem unendlich-dimensionalen Schleifenraum entspricht [8,
9]. Dafiir wird die Klasse der betrachteten holomorphen Kurven auf Abbildungen vom
(nicht kompakten) Zylinder in die symplektische Mannigfaltigkeit erweitert. Diese ha-
ben viele Eigenschaften der punktierten holomorphen Kurven, die hier besprochen wer-
den sollen (siche Abschnitt 2). Letztere sind pseudoholomorphe Abbildungen einer
punktierten Riemannschen Fliche in eine symplektische Mannigfaltigkeit mit zylindri-
schen Enden und translationsinvarianten Strukturen darauf, den sogenannten symplek-
tischen Kobordismen. Nahe der Punktierungen sind sie asymptotisch zu Zylindern tiber
geschlossenen Bahnen des Hamiltonflusses der Hohenfunktion auf den Enden. Die An-
zahl von solchen punktierten holomorphen Kurven definiert wieder Invarianten fiir die-
se symplektischen Kobordismen. Die von Givental, Hofer und Eliashberg in [7]
entwickelte Symplektische Feldtheorie (SFT) beschreibt eine Moglichkeit zur kombina-
torischen Berechnung der Gromov-Witten-Invarianten aus diesen neuen Invarianten.
Geschlossene symplektische Mannigfaltigkeiten werden in (mdoglichst einfache) sym-
plektische Kobordismen zerlegt. Den zylindrischen Enden ist ein linear-algebraisches
Objekt zugeordnet, die Kontakthomologie. Dies ist eine graduierte superkommutative
Algebra, die von allen periodischen Hamiltonbahnen auf der Basis des Zylinders frei er-
zeugt wird. Die Gromov-Witten-Invarianten der symplektischen Kobordismen sind
dann algebraische Morphismen in der entsprechenden Kategorie. Die Philosophie ist
also ganz analog zur Idee einer Topologischen Feldtheorie (siche [2]), aber mit einem
symplektischen Twist. Es gibt eine Dychotomie fiir die Rander der Teile. Sie sind entwe-
der (symplektisch) konvex oder konkav.

Wie in der Floer-Homologie ist die Hamiltonsche Dynamik bereits in die Definition
der punktierten holomorphen Kurven eingebaut. Anders als bei kompakten holomor-
phen Kurven stellen punktierte holomorphe Kurven den Zusammenhang zwischen Ha-
miltonscher Dynamik und symplektischer Topologie also direkt her. Zum Beispiel folgt
aus der Existenz nichtkompakter punktierter holomorpher Kurven direkt die Existenz
von geschlossenen Hamilton-Bahnen. Dieser Umstand wurde erstmals von Hofer in
[13] benutzt. Die Existenz der punktierten holomorphen Kurven wird z. B. aus dem
Nichtverschwinden von Gromov-Witten-Invarianten geschlossen, d. h. der symplekti-
schen Topologie der Systems (siche auch 2.5., Theorem 15). Natiirlich gibt es auch den
umgekehrten Effekt. Kennt man beispielsweise die Gromov-Witten Invarianten der
symplektischen Mannigfaltigkeit und die Dynamik des Geodéatenflusses einer Riemann-
schen Mannigfaltigkeit halber Dimension, erhédlt man Aussagen iiber die Lagrangen
Einbettungen letzterer in erstere. Dies soll hier am Beispiel der Kleinschen Flasche mit
der flachen Metrik und der komplex projektiven Ebene mit der Fubini-Study-Form stu-
diert werden (Abschnitt 3).

Danksagung. Ich m6chte mich bei der Deutschen Mathematikervereinigung fiir die
Einladung zum Vortrag auf ihrer Jahrestagung 2002 sowie beim Gutachter dieser Ar-
beit und Herrn Alois Krieg fiir die Geduld und die vielen konstruktiven Hinweise be-
danken. Fiir ihre Hilfe mochte ich auch Janko Latschev, Janett Mohnke und Thomas
Neukirchner herzlich danken.
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1 Das Problem der Lagrangen Einbettungen

Wir beginnen die Exposition mit einer (stark verkiirzten) Darstellung der Geschichte
des Studiums Lagranger Untermannigfaltikeiten, speziell im C". Dabei soll ein wesentli-
ches Merkmal der symplektischen Topologie herausgearbeitet werden. Es stellt sich
namlich heraus, dass die Eigenschaft, Lagrange zu sein, auf der Grenze zwischen diffe-
rential-topologischer Flexibilitdt und geometrischer Starrheit liegt. Ersteres wird durch
Gromovs Arbeiten zum A-Prinzip untermauert (siehe [11]), letzteres durch seine Kon-
struktion holomorpher Kurven in [10].

1.1 Lagrange Immersionen und h-Prinzip

Fir ein detailliertes Verstandnis der Diskussionen in diesem und im néchsten Abschnitt
sei der interessierte Leser auf [4] verwiesen. Eine symplektische Struktur auf einer Man-
nigfaltigkeit W ist eine geschlossene 2-Form w € Q?(W) (dw = 0), die auf jedem Tan-
gentialraum eine nicht ausgeartete (antisymmetrische) Bilinearform definiert. Das be-
deutet, dass durch

(1) XeT M- wX,)eT'M

ein Isomorphismus zwischen Tangential- und Kotangentialrdumen erkliart wird, oder
dquivalent dazu, dass die 2n-Formw A ... A w =: " eine Volumenform auf W ist. In je-
dem Fall folgt daraus, dass W notwendigerweise gerad-dimensional und orientierbar
sein muss. Sei H : W — IR eine glatte Funktion. Wegen der Nichtdegeneriertheit, (1),
von w ist ihr sogenanntes Hamiltonsches Vektorfeld, Xy, durch w(Xy,.) = —dH ein-
deutig bestimmt.

Wir nennen die Immersion ¢ : L" — (M?",w) einer Mannigfaltigkeit in eine sym-
plektische Mannigfaltigkeit doppelter Dimension Lagrange, falls das pull-back der sym-
plektischen Form darauf verschwindet: :*w = 0. Fiir €" lasst sich die Lagrange-Bedin-
gung alternativ auch einfach geometrisch charakterisieren: Die Rotation des Bildes des
Tangentialraumes in p € L, ¢.(T,L), mittels Mutiplikation mit v/—1 steht senkrecht auf
diesem. Es gibt einen guten Grund, dies nicht zur Definition zu machen. Die Bedingung
suggeriert falschlicherweise, dass Lagrange zu sein, eine Eigenschaft der Hermiteschen
Geometrie des €" ist. Die urspriingliche Definition ist aber allgemeiner: Jede komplexe
Isometrie des ©" ist natiirlich ein Symplektomorphismus. Der Raum dieser Isometrien
ist die endlich-dimensionale Liesche Gruppe U (n). Andererseits ist der Fluss einer belie-
bigen glatten Funktion mit kompaktem Tréiger auf €" eine Familie von Symplektomor-
phismen. Demnach ist der Raum der Symplektomorphismen unendlich-dimensional
und daher viel groBer als der der Isometrien.

Die Lagrange-Bedingung im €" kann man nun abschwichen, indem man nur
noch fordert, dass sich ¢.(7,L) und v/—1(¢,(T,L) transversal schneiden. Solche Im-
mersionen wollen wir total reell nennen. Es stellt sich heraus, dass sich Lagrange Im-
mersionen rein differential-topologisch mittels des sogenannten h-Prinzips studieren
lassen. Gromov und Lees bewiesen so, dass die folgenden Raume von Immersionen
fiir eine gegebene geschlossene Mannigfaltigkeit L” schwach homotopiedquivalent zu-
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einander sind:
{t:L— @"|L Lagrange } = {¢: L — @C" | total reell } =~ {®: TL g C>L x C"}.

® sind komplex-lineare Trivialisierungen des komplexifizierten Tangentialbiindels von
L. Demnach ist dies die einzige Obstruktion gegen die Existenz Lagranger Immersionen
von L in €", und sie ist klassisch topologisch. Beispielsweise lassen alle Sphéiren S” in
den jeweiligen €" Lagrange Immersionen zu. Solche Probleme nennt Gromov auch
»weich®“. Man verwechsele dabei aber ,,weich® nicht mit leicht. Die Losungen weicher
Probleme konnen trotzdem sehr hart oder besser gesagt schwer sein.

Diese Einheitlichkeit zwischen total reeller und Lagranger Bedingung geht verloren,
sobald man Einbettungen betrachtet. Total reelle Einbettungen sind immer noch diffe-
rential-topologisch vollstindig beschreibbar, also immer noch weich. Audin beschrieb
diese in vielen Fillen in [3]. Ganz anders verhélt es sich mit Lagrangen Einbettungen.
Natiirlich bilden diese eine Teilmenge total reeller Einbettungen. Aber es stellt sich her-
aus, dass die Existenz total reeller Einbettungen einer gegebenen geschlossenen Mannig-
faltigkeit L in den €" nicht einmal notwendig die Existenz von Lagrange-Einbettungen
impliziert, wie wir im nichsten Abschnitt sehen werden. Gromov bezeichnet solche Pro-
bleme als ,,hart“. Mittels h-Prinzip fand er eine Reihe von Fragestellungen, die durch ei-
ne kleine Abschwachung der Voraussetzungen weich werden. Seine Arbeit iiber pseudo-
holomorphe Kurven [10] lieferte schlieBlich den Beweis, dass die urspriinglichen Proble-
me jedoch tatsdchlich hart waren.

1.2 Holomorphe Scheiben

Folgendes Resultat aus Gromovs Arbeit liefert neue, tiberraschende Obstruktionen ge-
gen die Existenz Lagranger Einbettungen in den C".

Theorem 1. Fiir jede geschlossene Lagrange Untermannigfaltigkeit L C " gibt es
eine nicht-konstante holomorphe Abbildung auf der Einheitskreisscheibe u =
(U1, ..oy tty) : A — @" mit der Randbedingung u(dA) C L. a

Fir die Existenz der holomorphen Abbildung benutzte Gromov Invarianz-Eigen-
schaften von Raumen pseudoholomorpher Kurven in € x € zusammen mit seinem
Kompaktheitsresultat fiir Folgen solcher Abbildungen mit ,,Bubbling*.

Dieses Theorem wird nun in der folgenden Weise ausgenutzt. Die symplektische
Form wy = 377 dx; A dy; ist exakt, denn wy = df, fiir die 1-Form 6o = 377, x;dy;. Al-
so folgt aus der Lagrange-Bedingung, wo|, = 0, dass die Einschrankung 6|, eine ge-
schlossene Form ist:

d(6o|,) = (dbo)|, = wo|, = 0.
Andererseits ist fiir die holomorphe Scheibe u : A — C"

on [ o (0 O
/Au wo—/A(Uo(as,at)det

in Koordinaten z = s+ +v—17 € A C €. Die Cauchy-Riemann-Gleichungen besagen
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nun, dass
ou ou\
2) E+JO<E) =0

wobei Jo € End(IR*") die iibliche komplexe Struktur auf €" ist, die eindeutig durch
J (%) = % und J? = —Id charakterisiert wird. z; := xx + v/— 1y sind dabei die kom-
plexen Koordinaten (zy, ..., zx) auf €". Es ist leicht zu sehen, dass die Bilinearform

wo(v, Jow) =v-w

gleich dem Skalarprodukt auf @€” = JR* ist. Allgemein nennt man eine Familie
J = J(x) € End(T,W) auf einer Mannigfaltigkeit W mit J?> = —Id eine fast-komplexe
Struktur. Ist W mit einer symplektischen Form w versehen und wird durch w(v, Jw) eine
Riemannsche Metrik auf W definiert, so nennt man J w-kompatibel. Die Cauchy-Rie-
mann-Gleichung (2) ldsst sich fiir jedes J hinschreiben. Deren Losungen nennt Gromov
pseudoholomorph.

In unserem Fall folgt, dass

/A i /A ‘%}std»o,

da das Verschwinden implizieren wiirde, dass du = 0 und somit u konstant ist. Mit dem
Satz von Stokes erhalten wir

/ u* b, z/u*wo >0,
A A

Damit beantwortete Gromov die Frage von Arnold, ob es eine geschlossene Lagrange
Untermannigfaltigkeit L gibt, fiir die 6|, exakt ist, d. h. fiir die es eine glatte Funktion
f L — IR gibtmitdf = 6|

Folgerung 2. Die Einschrinkung 0|, auf eine geschlossene Lagrange Untermanni-
faltigkeit L C @©" ist nicht exakt. Insbesondere verschwindet die erste Betti-Zahl von L
nicht. O

Da L insbesondere nicht einfach zusammenhingend sein kann, folgt zum Beispiel,
dass es fiir keine n-Sphire S” eine Lagrange Einbettung in den ©" geben kann. Fiir
n = 3 blieb dies mit den ,,weichen* Methoden ein offenes Problem: S3 lisst nimlich (als
einzige der Sphiren) sogar eine total reelle Einbettung in den € zu.

1.3 Lagrange Flichen in @2

Die Frage, fiir welche geschlossene Flichen es eine Lagrange Einbettung in den @€ gibt,
ist fast vollstindig dquivalent zur Frage, ob es eine total reelle Einbettung gibt. Jede
Fliche, die sich total reell in den @7 einbetten 14Bt, besitzt nimlich auch eine Lagrange
Einbettung — mit einer Ausnahme: der Kleinschen Flasche. Diese 148t zwar eine total
reelle Einbettung zu. Eine Lagrange Einbettung lieB sich aber nicht konstruieren, so
dass man seit langem annahm, dass es keine gibt. Ihre erste Betti-Zahl ist aber gleich 1.
Also ergibt sich aus Gromovs Theorem noch kein Widerspruch zur Existenz einer La-
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grangen Einbettung. Mit den (nicht-kompakten) punktierten holomorphen Kurven
kann man schlieBlich zeigen

Theorem 3 ([19]). Es gibt keine Lagrange Einbettung der Kleinschen Flasche in den
CP.

Die bewiesene Aussage ist starker als die Frage nach der Existenz einer solchen Ein-
bettung in den 2. Man kann nimlich durch Reskalierung annehmen, dass eine Lang-
range Einbettung in den C? in einer beliebig kleinen Kugel liegt. Andererseits besagt
Darbouxs Theorem, dass jeder Punkt einer symplektischen Mannigfaltigkeit (%", w)
eine Umgebung besitzt, die symplektomorph zu einer (kleinen) Kugel im (C",wy) ist.
Also bekommt man fiir jede Lagrange Einbettung einer geschlossenen Mannigfaltigkeit
in den " eine Lagrange Einbettung in jede beliebige symplektische Mannigfaltigkeit
der gleichen Dimension. Somit folgt die Nichtexistenz einer Lagrangen Einbettung in
den @€ aus der Nichtexistenz einer solchen Einbettung in irgend eine symplektische
Mannigfaltigkeit.

Zum Beweis des Theorems 3 konstruieren wir eine Reihe von punktierten holomor-
phen Kurven, die einen Teil des Grenzwertes einer Folge pseudoholomorpher Kurven
in CIP? bilden. Die zur Fubini-Study-Form kompatiblen fast-komplexen Strukturen
degenerieren dabei in den Punkten der Lagrange-Untermannigfaltigkeit.

Satz 4. Sei L C CIP? eine Lagrange-Einbettung einer flachen geschlossenen Fliche
( Torus oder Kleinsche Flasche) beziiglich der Fubini-Study-Form w. Dann gibt es eine
w-kompatible fast-komplexe Struktur J und drei J-holomorphe Sphiren F,G und
H : S? — CIP*\ L. F, G und H kann man somit als 2-Zyklen verstehen. Deren Homolo-
gieklassen sind gleich und jede erzeugt H,(CWP* ) = &. Auferdem gibt es noch zwei
glatte Scheiben D und E : A — CIP? mit Rand auf L, die den folgenden homologischen
Schnittbedingungen geniigen:

F-D=1, G-D=0, H-D=0,
F«E=0, G:E=1, H-E=0,

Zuerst liberzeugen wir uns einmal davon, dass dieser Satz das Problem der Klein-
schen Flasche auch 16st.

Beweis von Theorem 3. Wir zeigen, dal die Rénder 0D, OF linear unabhéngig in
H,(L; @) sind. Sei also

k[OD)] + [[0E] = 0 € H;(L; Z)

fiir ein Paar ganzer Zahlen (k,/). Dass heilt, es gibt eine 2-Kette C € C»(L;Z) mit
dC = kdD + IOE. Somit ist kD + IE — C € Z,(CIP?; Z) ein 2-Zyklus, den wir jetzt ge-
gen die pseudoholomorphen Sphéren testen:

(kD+IE—-C)-F=k

(kD+IE-C)-G=1

(kD+IE—-C)-H=0.
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Da [F] = [G] = [H] € Hy(CIP%;Z) muB k = [ = 0 sein, und die Behauptung ist gezeigt.
Alsoist b1 (L) > 2 und L kann somit nicht die Kleinsche Flasche sein. O

In [19] wird auch noch geschlossen, dass alle Lagrange Tori in CIP? glatt isotop zu-
einander sind, d. h. dass es keine verknoteten Lagrangen Tori in CIP? gibt.

Der Rest der Abhandlung dient der Einfiihrung der Elemente der Symplektischen
Feldtheorie und der Demonstration ihrer Arbeitsweise anhand des Beweises von Satz 4.

2 Elemente der symplektischen Feldtheorie

Wir beschreiben hier die Zerlegung und Verklebung symplektischer Mannigfaltigkeiten,
kompatible fast-komplexe Strukturen auf den symplektischen Kobordismen sowie
punktierte holomorphe Kurven, deren Anzahl die Invarianten der Symplektischen
Feldtheorie (SFT) definiert. Fiir die Konstruktion und Beschreibung der SFT sei der
Leser auf [7] verwiesen.

2.1 Symplektische Kobordismen

Sei (W,w) eine symplektische Mannigfaltikeit mit einer Produktstruktur auf den En-
den: Das Komplement einer geniigend groBen kompakten Teilmenge besteht aus positi-
ven und negativen Halbzylindern iiber Hyperflachen. Die Translation ist kein Symplek-
tomorphismus, aber ldsst die symplektische Form bis auf Skalierung invariant. Wir
koénnen annehmen, dass die Skalierung infinitesimal konstant ist. Wir wollen die Trans-
lationsrichtung so orientieren, dass dieser Faktor positiv wird. Insbesondere ist das Ha-
miltonfeld der Funktion, die diese Translation mit der auf IR vertauscht und die auf der
Hyperfldche konstant ist, translationsinvariant. Dann nennen wir (W, w) einen sym-
plektischen Kobordismus. Die positiven Halbzylinder nennen wir konvexe, die negativen
konkave Enden.

Eine fast-komplexe Struktur auf einem symplektischen Kobordismus heiBt kompati-
bel, falls sie kompatibel zu w und auf den Enden translationsinvariant ist sowie das zur
Translation gehorige Vektorfeld mit dem obigen Hamiltonfeld vertauscht. Zu jedem
symplektischen Kobordismus ist der Raum aller kompatiblen fast-komplexen Struktu-
ren nicht-leer und kontrahierbar.

Beispiel 5. (1) Sei L eine beliebige Mannigfaltigkeit. IThr Kotangentialbiindel T*L
besitzt eine natiirliche symplektische Struktur, die auf die folgende Weise gegeben wird.
Die kanonische 1-Form 6 € Q'(T*L) wird durch

0,(X) = (7. X)

definiert, wobei | € T*L ein Kotangentialvektor ist. X € T;(T*L) ist ein Tangentialvektor
an T*L in [, und =, ist das Differential der Projektion T*L — L. Man priift leicht nach,
z. B. durch Wahl lokaler Koordinaten auf L, dass das iufere Differential d§ € Q*(T*L)
symplektisch ist. Jetzt wihlen wir noch eine Riemannsche Metrik g auf L. Bezeichne
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S*L C T*L das zugehdorige Einheitssphirenbiindel. Die Identifikation des offenen Endes
von T*L mit dem Halbzylinder IR, x S*L sei so gewdhlt, dass die Multiplikation mit
exp(r) in T*L iibergeht in die Translation um r € R in der ersten Komponente im Zylin-
der. Das Kotangentialbiindel T* L ist dann ein symplektischer Kobordismus mit einem kon-
vexen Ende der Form R, x S*L. Die Fluflinien des zugehirigen translationsinvarianten
Hamiltonfeldes (in T* L) projizieren (natirlich) auf Geoddten in (L,g)! Bahnen des Vek-
torfeldes entsprechen somit genau den orientierten Geoditen mit Liingenparametrisie-
rung.

(2) Sei L C W eine geschlossene Lagrange Untermannigfaltigkeit in einer geschlosse-
nen symplektischen Mannigfaltigkeit (W,w). Nach Weinstein lisst sich Darbouxs Theo-
rem wie folgt verallgemeinern: Eine hinreichend kleine Umgebung von L ist symplekto-
morph zu einer Umgebung des Nullschnittes in (T*L,d60). Nach Reskalierung einer gege-
benen Metrik kann man annehmen, dass dies das Einheitskugelbiindel beziiglich dieser ist.
Demnach ist W \ L ein symplektischer Kobordismus mit konkavem Ende IR _ x S*L.

(3) Uber die Translationsinvarianz der symplektischen Form bis auf ( translationsinva-
riante) Skalierungen bekommt man eine symplektische Struktur auf dem Zylinder
IR x S*L, gegeben durch d(e'c), der sogenannten Symplektisierung. Dabei ist o = 6|« ;.
Das ist (formal) ein trivialer symplektischer Kobordismus mit Halbzylinder-Enden iiber
S*L. Ist die fast-komplexe Struktur auf dem ganzen Zylinder translationsinvariant, spre-
chen wir von einer a-kompatiblen Struktur. Die Hamilton-Bahnen der entsprechenden
Funktion H (r,x) = r nennt man auch die ( o) Reeb-Bahnen.

2.2 Aufspaltung und Verklebung von symplektischen Kobordismen

Man kann eine symplektische Mannigfaltigkeit (7, w) unter folgender Voraussetzung
in symplektische Kobordismen ,,zerlegen®. Sei M C W eine geschlossene Hyperfliche
deren Kragenumgebung eine Produktstruktur dhnlich der Enden eines symplektischen
Kobordismus besitzt. Wir setzen voraus, dass W durch M in W\ M = W U Wy zer-
legt wird. Die Signatur der Teile W wird durch die Forderung bestimmt, dass das
Translationsvektorfeld in ;" hineinzeigt.

Beispiel 6. Die Menge S*L C T*L erfillt diese Bedingung. Wir haben bereits gese-
hen, dass man sie auch als Hyperfliche in W auffassen kann, falls L C W Lagrange Un-
termannigfaltigkeit ist. Sie erbt dann die Produktstruktur auf einer Umgebung.

Man kann W durch Verkleben der Kragen der Réander mit den Kragen der Rénder
der Halbzylinder iiber M zu symplektischen Mannigfaltigkeiten ( W=+, w*) , vervollstin-
digen®. Sind wir mit einem symplektischen Kobordismus (W ,w) gestartet, so sind beide
so erhaltenen (W=, w) wieder symplektische Kobordismen.

Beispiel 7. In unserem Beispiel ist also (W™ ,w") symplektomorph zu (W '\ L,
wlpnr), und (W=, w™) zu (T*L,d9).

Eine Umkehrung dieser Aufspaltung einer symplektischen Mannigfaltigkeit kann
wie folgt durch eine Verklebung von zwei symplektischen Kobordismen (W*, w*) be-
schrieben werden. Nehmen wir an, dass ein konkaves Ende von (W', w") und ein kon-
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vexes Ende von (W ~,w™) Halbzylinder iiber derselben Mannigfaltigkeit sind. Dann
kann man nach Reskalierung von w™ und Stutzen der beiden Enden beide Teile zu einer
symplektischen Mannigfaltikeit verkleben. Die beiden Enden sind durch einen symplek-
tischen Zylinder endlicher Lange, sagen wir 7, ersetzt worden. Die symplektische Man-
nigfaltigkeit bezeichnen wir mit (W,,w,). Sind J* kompatible fast-komplexe Struktu-
ren auf W*, so erhalten wir durch diese Verklebung eine Familie {J:} von w,-kompati-
blen fast komlexen Strukturen auf W,.

2.3 Punktierte holomorphe Kurven

Ein Zylinder iiber einer geschlossenen a-Reeb-Bahn « in der Symplektisierung einer
Kontaktmannigfaltigkeit mit a-kompatibler fast komplexer Struktur ist eine komplexe
Kurve. Dies ist der Prototyp einer punktierten holomorphen Sphére mit einer positiven
und einer negativen Punktierung, die wir einfach Zylinder iiber der Reeb-Bahn ~y nennen
werden.

Definition 8. Eine punktierte J-holomorphe Sphére ist eine J-holomorphe Abbildung
von einer punktierten Riemannschen Fliche nach W, die nahe der Punktierungen entwe-
der in ein konvexes Ende (wir sprechen dann von einer positiven Punktierung) oder in ein
konkaves Ende (entsprechend negative Punktierung genannt) abbildet und dort asympto-
tisch (beziiglich r) zu dem entsprechenden Halbzylinder iiber einer Reeb-Bahn ist.

Bemerkung 9. Punktierte holomorphe Kurven (in Symplektisierungen) wurden erst-
mals von Hofer in [13] durch Analyse von nicht-konvergenten Folgen (kompakter)
pseudoholomorpher Kurven konstruiert. Die wesentliche Eigenschaft, die fiir eine beliebi-
ge J-holomorphe Abbildung f : > — W entweder die Hebbarkeit in den Punktierungen
oder die Asymptotik garantiert, ist die Endlichkeit einer ,, Energie”.

Beispiel 10. Eine Riemannsche Struktur auf einer Mannigfaltigkeit L induziert eine
Sfast-komplexe Struktur Jy auf T*L, die zwar kompatibel zu d, nicht aber zur Kontakt-
form « ist. Sie ist insbesondere nicht translations-invariant unter der symplektischen
Identifizierung T*L \ L =~ IR x S*L. In ihr ist der Anullator der Normalenrichtungen ei-
ner Geoditischen ~y ein komplexer Zylinder. Durch Streckung und Stauchung sind alle
p-Sphdarenbiindel

{veT'L||lvll = p}

mit dem Einheitssphirenbiindel identifiziert. Somit kann man die dort definierte komplexe
Struktur auf der Kontaktdistribution translationsinvariant auf alle p-Sphdirenbiindel trans-
portieren. Mittels Abschneidefunktion in p auf T*L definieren wir eine fast-komplexe
Struktur J, die in der Nihe des Nullschnittes mit Jo iibereinstimmt. Mit Parameter
r:=1Inp ist sie translationsinvariant auferhalb einer kompakten Umgebung des Null-
schnittes Or. J (g) ist das Reebvektorfeld (Geoditenfeld) auf dem Einheitskotangential-
biindel fiir p >> 0. Dies ist tiberall parallel zu Jo(%). Dann ist die vorher beschriebene
Jo-komplexe Kurve ebenfalls J-komplex und kann als 2-fach punktierte J-holomorphe
Sphire parametrisiert werden. Diese Kurve bezeichnen wir mit f,.
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Lemma 11 ([19]). Sei (L,g) der flache 2-Torus oder die flache Kleinsche Flasche.
Dann sind alle J-holomorphen zweifach punktierten Sphiren, die den Nullschnitt Oy
schneiden, von der in Beispiel 10 beschriebenen Form. a

2.4 Fortsetzungen punktierter holomorpher Kurven

Wir benutzen die Asymptotik punktierter holomorpher Kurven, um diese zu glatten
Abbildungen auf kompakten Flachen mit Rand fortzusetzen.

Fiir eine punktierte Riemannsche Flache definieren wir die glatte, kompakte Fldche
mit Rand dadurch, dass wir jede Punktierung mit einer Randkomponente abschlieBen
(aus einem Kreis S! bestehend). Wegen der Asymptotik bekommen wir eine Fortset-
zung der holomorphen Abbildung auf diese Fliche zu einer differenzierbaren Abbil-
dung. Wir kompaktifizieren dabei den Bildraum unter Benutzung der Produktstruktur
auf den Enden.

Beispiel 12. Sei W+ = W\ L das Komplement einer Lagrangen Untermannigfaltig-
keit aus unserem Beispiel 7. Mit Hilfe der Projektion {—oco} x S*L — L bekommen wir
eine glatte Abbildung w: W \ L — W. Somit definiert tof : 5 — W eine glatte Abbil-
dung, die wir ebenfalls einfach mit f bezeichnen werden. Es gilt f (0%) C L.

Bemerkung 13. Die soeben eingefiihrte Abbildung f : S — W ist keine pseudoholo-
morphe Kurve in W beziiglich einer kompatiblen fast-komplexen Struktur. Um fiir den
mit dem Riemann-Hilbert-Problem vertrauten Leser Konfusion zu ersparen, werden im
Folgenden einige wesentliche Unterschiede zu diesen aufgelistet.

(1) Die konforme Struktur beziiglich derer f holomorph ist, degeneriert auf dem Rand
von ¥.

(2) Ahnliches gilt fiir die kompatible fast-komplexe Struktur auf W \ L. Sie ist in den
Punkten von L entartet.

(3) f erfiillt sehr starke , Randbedingungen”: Jede Komponente iiberlagert eine Geodiite
auf L. Solche Bedingungen sind fiir pseudoholomorphe Kurven (mit Rand) nicht wohl-
gestellt, d. h. dass es sie generisch gar nicht gibt!

(4) f bildet die inneren Punkte 3 C Y in das Komplement von L ab. Es gibt keine einfache
Moglichkeit, dies a priori fiir eine pseudoholomorphe Kurve mit Rand auf L zu kon-
trollieren.

2.5 Grenzwerte holomorpher Kurven

Punktierte holomorphe Kurven erhilt man beispielsweise als Grenzwerte von Folgen
J--holomorpher Kurven, wenn der Parameter 7 dabei beliebig groB3 wird.

Satz 14 ([6]). Sei die Fubini-Study-Form w auf CIP" so normiert, dass ihr Integral
itber die Erzeugende ¢ von Hy(CIP"; Z) = 7 gleich  ist. Sei M C CIP" eine geschlosse-
ne Hyperfliche, die CIP" in zwei symplektische Kobordismen W=+ wie oben beschrieben
zerlegt, J*, Jy seien kompatible fast-komplexe Strukturen auf W= bzw. R x M, J, sei
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die entsprechende Familie kompatibler fast-komplexer Strukturen auf CIP". Sei {f,} ei-
ne Folge J,,-holomorpher Sphdiren

f: CIP!—CIP",

mit konstanter primitiver Fundamentalklasse, [f,| = ¢ und 7, — co. Dann bekommt man
fiir eine Teilfolge als wohldefiniertes Grenzobjekt eine Aufspaltung in eine endliche Familie
F = (FW, ..., F™)) punktierter holomorpher Kurven mit den folgenden Eigenschaften:

(1) Jedes der F ist die Vereinigung punktierter holomorpher Sphiiren in W+ (fiir
i=1),mRx M (furi=2,...,N — 1) sowiein W~ (firi=N)

(2) Die negativen Asymptotiken von FY stimmen mit den positiven Asymptotiken von
FU* jiberein.

(3) Die in diesem Sinne entlang den entsprechenden Randkomponenten der kompaktifi-
zierten Fliichen formal verklebten Definitionsbereiche ergeben eine Sphdre.

(4) Die Homologieklasse der formalen Verklebung der Abbildungen stimmt mit c iiberein.
Dabei identifizieren wir die Verklebung der (kompaktifizierten) Kobordismen entlang
der entsprechenden Randkomponenten mit der urspriinglichen Mannigfaltigkeit,
cr.

/(F(”)*uﬁ = .
Wir erhalten sofort einen Beweis fiir folgendes

Theorem 15 ([14]). Jede regulire Niveaumenge vom Kontakttyp einer Hamiltonfunk-
tion auf CIP" trigt wenigstens eine periodische Bahn des Hamiltonflusses.

Beweis:Jede solche Hyperfliache zerteilt CIP” in zwei Teile. Wegen des Nichtver-
schwindens der entsprechenden Gromov-Witten-Invariante gibt es fiir zwei beliebige
Punkte und jede kompatible fast komplexe Struktur wenigstens eine pseudoholomor-
phe Kurve, deren Fundamentalklasse primitiv ist und deren Bild jeden der beiden
Punkte enthdlt. Wir wihlen nun je einen Punkt in jeder der Komponenten des Kom-
plements der Hyperflache und wenden Satz 14 auf die entsprechende Familie J,-holo-
morpher Kurven an. Dann bekommen wir im Grenzwert punktierte holomorphe Kur-
ven in beiden (mit Zylindern vervollstindigten) Teilen. Diese miissen wenigstens eine
Punktierung enthalten, da sie sich entlang dieser wieder zu einer Sphére verkleben
miussen. Eine Punktierung entspricht aber einer geschlossenen Hamilton-Bahn. O

2.6 Schnittverhalten holomorpher Kurven in Dimension 4

Pseudoholomorphe Kurven haben viele Eigenschaften mit holomorphen Kurven ge-
meinsam. Eine sehr wichtige Eigenschaft ist das Schnittverhalten in Dimension 4:

Satz 16. [Theorems 7.1. aus [17]] Auf @ sei eine fast-komplexe Struktur J gegeben
mit J(0) = v —1 auf To@? = @2. Seien f; : A — @2 zwei J-holomorphe Abbildungen mit
f1(0) = £2(0). Dann gibt es Umgebungen U, und U, der 0, so dass entweder
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® f1(U1) = f2(U), oder

® f1(21) # fa(z2) fiir alle (0,0) # (z1,22) € Uy x U,.

Im zweiten Fall konnen wir O einen Schnittindex zuordnen, der genau der (wohl-definier-
ten) transversalen Schnittzahl von Storungen der f; in kleinen Umgebungen V; C V; C U;
entspricht. Dieser Index ist immer positiv. Er ist gleich | genau dann, wenn sich f und f5 in
0 transversal schneiden.

3 Holomorphe Sphéren im Komplement von L

Wir kommen nun zum Beweis von Satz 4. Wir reskalieren die flache Metrik so, dass,
wie in unseren Beispielen, das Einheitskugelbiindel in 7*L symplektomorph zu einer
Umgebung von L ¢ CIP? wird. Wir fixieren eine fast-komplexe Struktur auf CIP?, die
kompatibel zur Fubini-Study-Form sowie zur Kontaktform 6|¢.; auf der Umgebung
S*L C V =2 (—¢,€) x S*L ist. Somit bekommen wir kompatible Strukturen J* auf den
symplektischen Bordismen CIP? \ L, T*L.

3.1 Konstruktion der Scheiben

Wir wéhlen einen Punkt x € L (auf einer der beiden isolierten Geoditen, falls L die
Kleinsche Flasche ist) und fixieren eine J-komplexe Gerade £ im Tangentialraum, die
keinen Tangentialvektor an L enthalt. Die Wahl dieses konkreten Punktes wird erst im
ndchsten Schritt (Abschnitt 3.2) wichtig. Aus den Gromov-Witten-Invarianten fiir ho-
lomorphe Sphéren (siehe [15]) folgt, dass es fiir jedes 7 genau eine J,-holomorphe Spha-
re f,: CIP! — CIP? gibt, wobei [f] € Hy(CIP*;Z) = Z erzeugt, f,(0) =x sowie
(f,).(To@IP') = ¢ ist. Eine Folge f;, mit 7, — oo wird nun im Sinne von Satz 14 gegen
einen Grenzwert F = (F() ..., F™)) konvergieren. F) enthilt eine Komponente, de-
ren Bild durch x € 0 verlduft. Dieses hat aufgrund der Wahl mindestens drei Punktie-
rungen: Die Wahl der tangentialen Richtung verhindert, dass diese vollstindig in einer
der Kurven £, einer Geoditen v liegt. Da ¥ = CIP', gibt es zu jeder dieser Punktierun-
gen eine (andere) Komponente in F), £ : 0 — CIP*\ L, i=1,2,3,..., die eine
punktierte holomorphe Sphére mit genau einer negativen Punktierung ist. Dann setzen
wir

D =7"(a)
E:=7% ().

Dieser erste Schritt ist die zentrale Idee bei der Konstruktion solcher Obstruktionen.
In jeder der Situationen muss man dann Eigenschaften von F zeigen. Das soll durch die
folgenden beiden Resultate illustriert werden.

Theorem 17 (Viterbo). Sei L C CIP"(n > 3) eine geschlossene Lagrange Unterman-
nigfaltigkeit. Dann gibt es auf L keine Riemannsche Metrik mit negativer Kriimmung.
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Beweis: Durch jeden Punkt in CIP" und jedes J. gibt es eine J.-holomorphe Sphére
mit primitiver Fundamentalklasse. Demnach gibt es durch jeden Punkt in 7*L eine
punktierte J~-holomorphe Kurve. Die Geoditen einer negativ gekriimmten Rie-
mannschen Mannigfaltigkeit sind aber alle minimal und isoliert. Daraus kann man
schlieBen, dass keine der punktierten holomorphen Kurven in 7L deformiert werden
kann. Darum kann man einen Punkt finden, der in keiner solchen enthalten ist und er-
hélt einen Widerspruch. O

Theorem 18 (Cieliebak/Mohnke). Sei L C CIP" ein Lagranger n-Torus. Dann gibt
es eine Scheibe u : A — CIP" mit Rand auf L, u(0A) C L, so dass

0</u*w§ LI
A n+1

Beweis. Die beschrieben Konstruktion fiir beliebige Dimension liefert einen Grenz-
wert, dessen Komponente F(!) wenigstens (n + 1) einfach punktierte Sphiren enthalt.
Nun ist nach Satz 14

/(F(l))*ufr =4
Da die 2-Form (F()*w* auf allen Komponenten von F(!) nicht-negativ ist und nicht

verschwindet, folgt die Ungleichung fiir eine dieser einfach punktierten Sphiren
f: € — W.Die Behauptung folgt dann mit

/a:f*w+:/Af*w' 0O

3.2 Konstruktion der holomorphen Sphéren

Mit jeder der punktierten holomorphen Kurven /) verfahren wir nun wie folgt: Wir
wihlen auf ihr einen glatten Punkt y und eine J-komplexe Richtung 7 derart, dass eine
einfache punkierte holomorphe Sphére, die durch y verlduft, und dort tangential an 7
ist, mindestens 4 reelle (effektive) Deformationsparameter hat. Wie schon bei der vor-
angegangenen Konstruktion benutzen wir, dass es fiir jedes 7 genau eine J,-holomorphe
Sphire g, : CIP! — CIP? gibt, [g,] € H,(CIP*; Z) = Z ist ein Erzeuger, g,(0) = y sowie
(g-),(ToCIP') = 7. Eine Teilfolge g,, konvergiert dann im Sinne von Satz 14 gegen ei-
nen Grenzwert G = (G, ..., G™)). Der zentrale Punkt des Arguments ist nun die fol-
gende Beobachtung:

Lemma 19 ([19]). Fiir den oben erhaltenen Grenzwert G gilt N = 1, d. h. wir erhalten
eine glatte J*-holomorphe Sphire in W+ = CIP* \ L.

Zum Beweis: GV enthilt eine Komponente, deren Bild durch y verlduft. Durch die
generische Wahl von y und 7 ist garantiert, dass diese einen Deformationsindex von
wenigstens 4 hat. Allgemein gilt, dass der Index von G (bzw. die Summe der Indizes
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der Komponenten) nicht groBer als 4 sein kann, wobei Gleichheit eintritt, genau dann
wenn die Summe der Eulercharakteristiken der Komponenten G®, .. G®™) ver-
schwindet. Hier benutzt man, dass es keine einfach punktierten Sphiren unter diesen
Komponenten gibt, also jede einen nicht-positiven Beitrag liefert. Letzteres wiederum
folgt aus der Nichtexistenz einer kontrahierbaren Geodite fiir Torus bzw. Kleinsche
Flasche. Da die formale Verklebung der Komponenten von G eine Sphére ergibt, gibt
es wenigstens eine einfach punktierte Sphire in G, Im Falle, dass 72 der Torus ist,
hat diese einen ungeraden Index. Dann wére folglich fiir eine gebrochene holomorphe
Kurve G der Index aller Komponenten von G'! nicht groBer als 3, und die Aussage
folgt in diesem Fall.

Fiir den Fall der Kleinschen Flasche schlieBt man hingegen zuerst, dass alle anderen
Komponenten von G\ vom Index 0 sind. Daraus folgert man, dass alle Punktierungen
asymptotisch zu (den Reeb-Bahnen) von isolierten Geoditen sind. Somit gibt es in G&)
eine zwei-punktierte Sphdre f, fiir eine isolierte Geodéte v. Mit Argumenten, die wieder
Satz 16 benutzen, zeigt man, dass diese Geodéte einfach sein muB, und dass 1, hochstens
einmal in GY) auftauchen darf. Es gibt jedoch nur zwei einfache isolierte geschlossene
Geodaiten. Deren Schnittindex mit dem Nullschnitt ist £, - 0z = 1 in Z,. Andererseits ist
[L] = 0 € Hy(CIPy; Z;). Somit muss die Anzahl solcher £, mit isolierter Geodite y gera-
de sein. Ist N > 1, so miissen also beide moglichen f, auftauchen. Dann enthilt aber
G™) auch £, fiir die Geodite v, auf der wir in 3.1 den Punkt x gewahlt hatten. Da die
Richtung ¢ insbesondere transversal zu diesem f; in x ist, erhalten wir einen zweiten
transversalen Schnittpunkt zwischen G und F. Daraus wiirde f, - g, > 2 im Wider-
spruch zur Primitivitdt folgen. Somit muB auch fiir diesen Fall N = 1 sein und das Lem-
ma folgt. O

Nehmen wir nun an, dass diese Sphére G noch eine der anderen einfach punktierten
Sphéren irgendwo schneidet. Wegen der Schnitteigenschaft, Satz 16, geschieht dies mit
einem endlichen, positiven algebraischen Index. Dann miissten sich aber in kleinen Um-
gebungen von y und diesem Punkt (fiir hinreichend grof3e #) f, und g, mit einem Index
groBer als 1 schneiden. Wegen der Positivitét aller eventuellen weiteren Beitrdge zum al-
gebraischen Schnittindex der beiden Kurven, wire dieser somit grofer als 1 im Wider-
spruch zur Primitivitdt der beiden Kurven.

Wir bezeichnen die Sphiren, die ich auf diese Weise erhalte, nacheinander mit F, G
und H. Sie geniigen somit den Forderungen des Satzes 4.
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1 Einleitung

Die nichtlineare Analysis ist das Gebiet der Mathematik, das sich mit dem Ldsen nicht-
linearer Gleichungen beschiftigt, insbesondere von Gleichungen in unendlichdimensio-
nalen Rdumen, also etwa von (nichtlinearen) Differential- oder Integralgleichungen.
Hierzu wird natiirlich eine Vielzahl mathematischer Disziplinen herangezogen. Als be-
sonders fruchtreich hat sich hier insbesondere die Topologie erwiesen. E. Zeidler hat im
Ubersichtswerk [62]—[66] die nichtlineare Analysis grob in drei Gebiete eingeteilt: Mo-
notoniemethoden, Variationsmethoden und topologische Methoden. Obwohl zwar ins-
besondere die modernen Variationsmethoden auch viel Topologie benutzen, beschrin-
ken wir uns in diesem Artikel auf topologische Methoden im obigen Sinne. Der wohl
bekannteste Satz dieses Gebiets diirfte der Fixpunktsatz von Schauder sein:

Satz 1 (Schauder). Sei X normierter Raum und K C X nichtleer und konvex. Sei
F:K — K stetig. Weiterhin sei K kompakt, oder zumindest sei F(K) relativkompakt in
K, d h. in einer kompakten Teilmenge von K enthalten'. Dann hat F einen Fixpunkt,
d. h. die Gleichung x = F(x) hat eine Losung.

Fiir den Fall, dass K eine abgeschlossene Kugel in X = IR” ist, ist dies der Brouwer-
sche Fixpunktsatz.

Als bekannteste und typische Anwendung des Satzes von Schauder sei der Satz von
Peano genannt:

Satz 2 (Peano). Fualls f:IR x IR" — IR" stetig ist, hat das Anfangswertproblem
X'(t) = f(t,x(2)), x(0) = 0, eine lokale Losung.

Beweis. Wende den Satz von Schauder an fir X := C([-7,T],IR"), K ={x € X :
]l < 1}, und

F(x)(1) = /Olf(s, x(s)) ds.

Fiir gentigend kleine 7 rechnet man leicht nach, dass F: K — K, und nach Arzela-Asco-
liist F(K) C K kompakt. Die Losung der Gleichung x = F(x) 16st nach dem HDI das
Anfangswertproblem auf [— 7', T7. |

Der Satz von Schauder stellt in gewissem Sinne das Herzstiick der gesamten Theorie
dar. Er ist eine gewisse Idealsituation: Wie einfache Beispiele zeigen, darf in diesem Satz
keine einzige der Voraussetzungen ersatzlos gestrichen werden; aber andererseits stellt
sich heraus, dass man jede einzelne der Voraussetzungen entscheidend abschwichen
kann. Jede dieser Abschwachungen fiihrt in ein anderes Gebiet der Theorie. Daher wer-
den nun die verschiedenen Abschwéchungen der Voraussetzungen in verschiedenen Ab-
schnitten beschrieben.

Nur eine Voraussetzung scheint wesentlich zu sein, namlich die Stetigkeit von F —
schlieBlich basiert ja alles auf topologischen Methoden. Aber bei genauem Hinsehen
lasst sich auch diese Voraussetzung abschwichen, wenn man sich damit zufrieden gibt,
anstelle einer Losung der Gleichung x = F(x) nur eine Losung der Ungleichung
|lx — F(x)|| < e zu erhalten: In der Tat, der Beweis des Satzes von Schauder fu3t auf der
Beobachtung, dass man aufgrund der Kompaktheit die Abbildung F durch eine end-
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lichdimensionale (nichtlineare) Abbildung approximieren kann; fiir diese Approximati-
on wendet man dann den Fixpunktsatz von Brouwer an. Man bendtigt also tatsidchlich
nur eine Stetigkeit von F auf gewissen endlichdimensionalen Teilrdumen von X, was ei-
ne wesentliche Erleichterung sein kann.

2 Retrakte und absolute Retrakte

Zunichst soll diskutiert werden, inwiefern man die Voraussetzung abschwichen kann,
dass die Menge K in Satz 1 eine konvexe abgeschlossene Teilmenge eines normierten
Raums sein muss. Die erste Beobachtung, die man dabei wohl macht, ist, dass es voll-
kommen gentigt, dass K homéomorph zu einer solchen Menge Kj ist. In der Tat, wenn
h:K — K, ein entsprechender Homoéomorphismus ist, so hat die Komposition
ho Foh™! nach dem Fixpunktsatz von Schauder einen Fixpunkt xo € K, und A~ (xo)
ist dann ein Fixpunkt von F.

Ebenso bleibt der Fixpunktsatz von Schauder aber auch giiltig, wenn K nur ein Re-
trakt einer Menge M wie eben ist. Es sei kurz an die Definition erinnert:

Definition 1. Eine stetige Abbildung p: M — M eines topologischen Raums M
heiBt Retraktion, wenn p o p = p. Das Bild p(M) ist ein Retrakt von M.

Anders formuliert: Eine Menge K C M ist ein Retrakt von M, wenn man die Identi-
tatsabbildung id: K — K zu einer stetigen Abbildung p: M — K fortsetzen kann.

Falls der Fixpunktsatz von Schauder fiir M gilt, so gilt er auch fiir jeden Retrakt K
von M, denn fir die zugehorige Retraktion p und stetiges f: K — K (mit relativkom-
paktem f(K)) hat die Abbildung f o p: M — M dann einen Fixpunkt xo € M, also
xo = f(p(x0)) € K, was p(xo) = xo und damit x, = f(xo) impliziert. Diese Uberlegun-
gen zeigen, dass der Satz von Schauder sogar fiir jeden sog. AR-Raum K gilt:

Definition 2. Ein metrischer Raum K heiB3t absoluter Retrakt (AR), wenn er ho-
moomorph ist zu einem Retrakt einer konvexen Teilmenge M eines normierten Rau-
mes. Ein metrischer Raum K heilit absoluter Umgebungsretrakt (ANR), wenn er ho-
moomorph ist zu einem Retrakt einer (in M) offenen Teilmenge einer konvexen Teil-
menge M eines normierten Raumes.

Diese Begriffe wurden von Borsuk (s. z. B. [14]) eingefiihrt. Die Klasse der ANR-
Réume ist immens groB: Jeder ,,lokal gutartige™ Raum ist ein ANR. Insbesondere ist je-
de Mannigfaltigkeit ein ANR. Auferdem ist jede endliche Vereinigung konvexer Teil-
mengen eines normierten Raumes (und jeder dazu homdomorphe Raum) ein ANR.
Grob gesprochen kann man einen ANR als die topologische Version einer Mannigfal-
tigkeit interpretieren. Im Gegensatz zu einer Mannigfaltigkeit sind allerdings ,,Ecken
und Kanten“ erlaubt, und die Dimension muss nicht konstant (oder auch nur definiert
oder endlich) sein. Im wesentlichen schliet die Klasse der ANR-R4dume nur einige pa-
thologische Rdume aus, die haufig zur Konstruktion von Gegenbeispielen herangezo-
gen werden (wie etwa den Graphen der Funktion x — sinl und dhnliche Rdume, bei
denen vergleichbare ,,Hiaufungseffekte auftreten). In der Literatur findet man meist ei-
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ne andere Definition von AR- und ANR-R4umen, die hier nur als Satz wiedergegeben
wird:

Satz 3. Ein metrischer Raum K ist genau dann ein ANR, wenn es fiir jeden metri-
schen Raum X, jede abgeschlossene Teilmenge A C X und jede stetige Abbildung
f:A — K eine Umgebung U von A und eine stetige Fortsetzung F: U — K von f gibt. K
ist genau dann ein AR, wenn man sogar stets eine stetige Fortsetzung F: X — K findet.

Beweis. Der Fortsetzungssatz von Dugundji [18] besagt, dass jede konvexe Teilmenge
M eines normierten Raums die genannte Fortsetzungseigenschaft besitzt, also dass jede
Abbildung f: 4 — M wie oben eine stetige Fortsetzung F: X — M besitzt. Ist nun K
ein ANR, etwa V' C M offen, p: ¥V — N Retraktion auf N und #: N — K ein Homoo-
morphismus, so kann man die Abbildung g := 4! o f: A — N zu einer stetigen Abbil-
dung G: X — M fortsetzen; fiir die Einschrinkung Gy von G auf U = G /(V) gilt
dann: ho po Gyp: U — K ist die gesuchte Fortsetzung. Falls K ein AR ist, kann man na-
tirlich V' := M wihlen und hat folglich U = X.

Umgekehrt ist nach dem Einbettungssatz von Arens-Eells [9] jeder metrische Raum
K isometrisch zu einer abgeschlossenen Teilmenge N eines normierten Raums M, es
gibt also insbesondere einen Homdomorphismus #: N — K. Hat nun K die genannte
Fortsetzungseigenschaft, so ldsst sich /4 zu einer stetigen Abbildung H: U — K mit offe-
nem U D N (bzw. U = M) fortsetzen. Damit ist p := 4~! o H: U — N die gesuchte Re-
traktion auf N. a

Es sei bemerkt, dass der Beweis des Fortsetzungssatzes von Dugundji (und damit
des obigen Satzes) massiv vom Auswahlaxiom Gebrauch macht — nur fiir separables 4
und vollstandiges metrisches M ist ein alternativer Beweis bekannt, fiir den das abzihl-
bare Auswahlaxiom geniigt. Da der Fortsetzungssatz von Dugundji nicht nur fiir nor-
mierte, sondern sogar fiir lokalkonvexe Rdume richtig ist, folgt aus obigem Beweis so-
gar, dass wir in Definition 2 dquivalent auch lokalkonvexe Raume hitten zulassen diir-
fen.

Unsere Uberlegungen vor Definition 2 haben gezeigt:

Satz 4 (Granas). Sei K ein AR, und F: K — K stetig mit relativkompaktem Bild.
Dann hat F einen Fixpunkt.

Fiir Satz 4 hitten wir den Begriff von ANR-Rdumen gar nicht gebraucht, sondern
die Definition von AR-Raumen hitte ausgereicht. Die Tragweite dieses Satzes wird al-
lerdings besonders deutlich, wenn man folgendes Ergebnis kennt:

Satz 5. Die AR-Rdume sind genau die kontrahierbaren ANR-Riume.

Wir erinnern daran, dass ein Raum kontrahierbar heiB3t, wenn die Identitdt homotop
zu einer konstanten Abbildung ist.

Beweis. Sei K ein AR, ohne Einschrankung K = p(M) mit einer konvexen Menge M ei-
nes normierten Raums und einer Retraktion p. Fir xo € M ist die Abbildung
H:[0,1] x K — K, H(t,x) = p(txo + (1 — t)x) eine Kontraktion von K.

Sei umgekehrt K ein ANR mit einer Kontraktion H: [0, 1] x K — K auf einen Punkt
xo € K. Sei X metrischer Raum, 4 C X abgeschlossen, und /: 4 — K stetig. Da X nor-
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mal und K ein ANR ist, gibt es ein offenes U O 4 und eine stetige Fortsetzung
Fy: U — K. Nach dem Lemma von Urysohn gibt es eine stetige Funktion A\: X — [0, 1]
mit A| , = Ound A|;; = 1. Definiere F: X' — K durch

_ [HO\x),Fo(x)) falls x € T,
F(X)-—{x0 O fguziwf.

Da F eine stetige Fortsetzung von f definiert, ist K ein AR (Satz 3). O

Grob gesprochen ist ein AR also ein ANR ,,ohne endlich-kodimensionale Locher®.
Dies ist besonders iiberraschend, wenn man bedenkt, dass unendlichdimensionale
Sphiren hingegen stets kontrahierbar sind [18]. Man erhilt so sofort als frappierende
Folgerung des Granasschen Fixpunktsatzes:

Korollar 1. Sei S eine Sphiire in einem unendlichdimensionalen normierten Raum X,
und F: S — S stetig mit relativkompaktem Bild. Dann hat F einen Fixpunkt.

Beweis. S ist als Retrakt von U == X \ {0} ein ANR-Raum, wegen der Kontrahierbar-
keit also ein AR-Raum. m|

Korollar 1 gilt auch fiir die Sphére S in einem endlichdimensionalen Raum, wenn
man zusitzlich voraussetzt, dass F(S) # S (was in unendlichdimensionalen Rdumen
bei kompaktem F(S) automatisch erfiillt ist). In der Tat, sei etwa xo € S\ F(S). Dann
bildet F den Raum Sy := S\ {xo} in sich ab (mit F(Sy) C F(S) € Sp) und Sy ist ein
AR-Raum, denn offensichtlich ist S, kontrahierbar und als Retrakt von U = X'\
{A\x0 : A > 0} ein ANR-Raum.

Tatsichlich hat A. Granas den Fixpunktsatz sogar fiir ANR-Raume formuliert. In
diesem Fall gilt der Satz aber natiirlich nicht fiir beliebige kompakte Abbildungen (z. B.
sind ja Drehungen des Kreises S' fixpunktfrei), sondern nur fiir solche, deren sog. Lef-
schetz-Zahl nicht verschwindet [31]. Auf die (mit Methoden der Homologietheorie defi-
nierte) Lefschetz-Zahl soll hier aber nicht weiter eingegangen werden. Es sei allerdings
erwihnt, dass im Falle eines azyklischen Raumes (also eines Raumes mit der selben Ho-
mologie wie ein einpunktiger Raum — insbesondere ist jeder kontrahierbare Raum azy-
klisch), die Lefschetz-Zahl stets 1 ist, so dass unser obiger Satz 4 also tatséchlich ein
Spezialfall des Satzes von Granas ist.

3 Abschwéchung der Kompaktheitsvoraussetzung

Der mathematischen Folklore zufolge soll Schauder (sinngeméf3) gesagt haben, dass die
Kompaktheitsvoraussetzung zwar nicht schén, aber unverzichtbar sei. Tatsédchlich ist
bis heute noch kein niitzlicher Satz der Theorie bekannt, in dem eine Kompaktheits-
voraussetzung keine wesentliche Rolle spielt: Letztlich basieren alle Beweise der Theorie
auf eine Reduktion auf einen endlichdimensionalen Fall, der dann z. B. kombinatori-
schen Methoden zuginglich ist. Aber schon die obige Formulierung von Satz 1 zeigt,
dass man die Kompaktheitsvoraussetzung ,,verschieben® kann: Anstelle von Kompakt-
heit fiir K zu fordern, geniigt es zu fordern, dass die Abbildung F kompakt ist. Zumin-
dest falls K abgeschlossene konvexe Teilmenge eines Banachraum ist (was wir im fol-
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genden annehmen), ist der Grund offensichtlich: Da die abgeschlossene konvexe Hiille
K, = conv(F(K)) dann konvex und kompakt ist, kann man die Version des Satzes fir
kompakte Mengen einfach auf F: Ky — Ky anwenden.

Man konnte jetzt die Frage stellen, ob es z. B. mit einem dhnlichen Argument mog-
lich ist, nur die Kompaktheit einer Iterierten F” zu fordern (in Anlehnung an den Ba-
nachschen Fixpunktsatz). Aber dies ist ein noch ungelostes Problem, das wohl erstmals
von R. D. Nussbaum gestellt wurde (siehe z. B. [50]).

Wie G. Darbo viel frither bemerkt hatte, kann man allerdings eine positive Antwort
geben, wenn man anstatt der reinen Iterierten der Abbildung F die Iteration von Men-
gen unter der Abbildung F betrachtet, wenn man also etwa einen Punkt xo € K festhilt
und iterativ Ky := K und K, = conv(F(K,_1) U{xo}) fur n=1,2,... definiert. Die
Menge K., = [, K» ist nichtleer (wegen xo € K,,), konvex, abgeschlossen und es gilt
F: Ky — K. Ist also insbesondere K, kompakt, so besitzt F einen Fixpunkt. Es ge-
niigt also insbesondere, die Kompaktheit von einer der Mengen F(K,,) zu iiberpriifen.

Fiir Anwendungen ist zur Uberpriifung der Kompaktheit der Menge K., der Begriff
eines Nichtkompakheitsmafes praktisch. Es gibt hiervon viele, es seien nur zwel er-
wahnt: Das Hausdorffsche Nichtkompaktheitsmaf} xx(A) einer Menge A in einem Ba-
nachraum X ist das Infimum aller € > 0, so dass 4 ein endliches e-Netz N C X hat, d. h.
dass fiir jedes a € 4 die Ungleichung dist(a, N) < e gilt. Das Kuratowskische Nichtkom-
paktheitsmaf; a(A) ist das Infimum aller § > 0, so dass 4 in endlich viele Teilmengen A;
mit diam 4; < ¢ zerlegt werden kann. Die beiden Definitionen sind qualitativ dquiva-
lent, aber nicht quantitativ:

xx(4) < a(d) <2xx(4) (4CX).

Grob gesprochen gilt: Je groBer das Nichtkompaktheitsmalf ist, desto ,,weniger kom-
pakt® ist die Menge. Genauer kann man fiir v € {xx, @} nachrechnen:

1. v(A4) < co <= A ist beschrinkt.

2. y(4) = 0 <= A ist kompakt.

3. ACB=>(4) <v(B).

4. y(A) = ~(coAV 4).

5. 4(A4+ B) < 7(4) +7(B).

6. (4 U B) = max{y(4),v(B)}.

Seien nun X und Y Banachrdume, M C X, und F: M — Y. Haufig gibt es eine Zahl

L > 0mit

v(F(A)) < Ly(4) (A € M beschrinkt).

Es gibt dann stets eine kleinste solche Zahl, und diese nennen wir [F]”. Sie kann als

quantitatives Maf fiir die Kompaktheit von F interpretiert werden:

1. [F]” = 0 <= F bildet beschrankte Mengen in relativkompakte ab.

2. [F+G) <[F]"+[qG]".

3. [F]* < Lfalls Flipschitzstetig ist mit Lipschitzkonstanter L. Falls F eine lipschitzste-
tige Fortsetzung auf X (mit Konstanter L) besitzt, so ist auch [F]* < L.
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Falls [F]” <1 heiBt F kondensierend. Wir kénnen nun den Fixpunktsatz von G.
Darbo [16] beweisen:

Satz 6 [Darbo]. Sei X Banachraum, und K C X nichtleer, konvex, abgeschlossen und
beschrinkt. Sei F: K — K stetig und kondensierend. Dann hat Feinen Fixpunkt.

Beweis. Fir die oben definierten Mengen X, gilt:
Y(Kn) = y(CONV(F (Ky-1) U {x0})) = 7(F(Kn-1) U {x0}) = V(F(Ky-1)) < [F]"y(Kn-1)-

Durch Induktion folgt v(K,) < ([F]")"v(Ko) — 0, also v(Kx) =0, d. h. K ist kom-
pakt. Wie oben erklért, folgt die Behauptung also aus dem Fixpunktsatz von Schauder
fir F: Koo — K. O

Beachte, dass jede Kontraktion [F]* < 1 erfiillt. Man erhélt also auch den Fixpunkt-
satz von Banach als Spezialfall. Benutzt man die Abschitzung [f +g]” < [f]” + [g]”,
erhélt man aber sogar den folgenden Fixpunktsatz von M. A. Krasnoselskii [36] als Spe-
zialfall, der sowohl den Banachschen als auch Schauderschen Fixpunktsatz auf natiirli-
che Art verallgemeinert:

Satz 7 (Krasnoselskii). Sei X Banachraum, und K C X nichtleer, konvex, abgeschlos-
sen und beschrinkt. Es sei F = f + g: K — K mit einer Kontraktion f und kompaktem
g(K). Dann hat F einen Fixpunkt.

Fir den urspriinglichen (elementaren) Beweis von Krasnoselskii ist zusétzlich die
Voraussetzung f(K) + g(K) C K notwendig — es ist bislang wohl noch kein Weg be-
kannt, wie man ohne Benutzung von NichtkompaktheitsmalBen einsehen konnte, dass
diese Voraussetzung in Wirklichkeit tiberfliissig ist.

Tatsédchlich gilt Satz 6 — anders als der Fixpunktsatz von Banach — auch noch im
Falle [F]” = 1, wenn man voraussetzt, dass v(F(4)) < v(4) fur alle nichtkompakten
abgeschlossenen Mengen A gilt. Dies hatte B. N. Sadovskii bewiesen, indem er die Fol-
ge K, mit transfiniter Induktion weiter fortsetzte: Dieser Zugang benoétigt allerdings das
Auswahlaxiom. Es gibt aber einen alternativen Zugang, der sich als viel praktischer he-
rausstellt: Man muss ja nur eine nichtleere kompakte konvexe Menge Ky C K mit
F(Kj) C K finden. Sei hierzu x € K fest, und U das System aller konvexen abgeschlos-
senen Mengen U C K mit xo € U und F(U) C U. Dann ist K := (| U konvex, abge-
schlossen und nichtleer, und es gilt

(1) conv(F(Kop)U{xo}) = Ko.

In der Tat, wenn wir die Menge links mit M bezeichnen, so gilt fiir jedes U € 1, dass
M Cconv(F(U)U{xo}) C U, mithin M C K,. Dies impliziert auch F(M) C F(Ky)
C M, also folgt M € U und somit Ky C M; insgesamt also M = Kj.

Die Menge Kj ist nach Konstruktion sogar die kleinste Menge, die (1) erfiillt. Wenn
wir sichern konnen, dass K, kompakt ist, hat F einen Fixpunkt (nach Schauder wegen
F(Ky) C Kp).

Satz 8 (Sadovskii). Sei X Banachraum, und K C X nichtleer, konvex und abgeschlos-
sen. Sei F: K — K stetig. Falls fiir jede abgeschlossene konvexe nichtkompakte Menge
A C K die Beziehung y(F(A)) # ~(A) fiir ein v € {o, xx} gilt, dann hat F einen Fix-
punkt.
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Beweis. Fiir Ky wie oben und v € {a, xx} gilt
V(F(Ko)) = ~(F(Ko) U {x0}) = ~y(conv (F(Ko) U {xo})) = v(Ko).
Dies ist nach unserer Annahme nur moglich, wenn Ky kompakt ist. ]

Tatséchlich ist unser obiger Satz in gewissem Sinne allgemeiner als der Fixpunktsatz
von Sadovskil [51]: Es ist auch y(F(A4)) > v(A) zuléssig, und die Wahl von v darf von
der Menge 4 abhiangen.

Als eine typische Anwendung des Fixpunktsatzes von Darbo sei hier eine Verall-
gemeinerung des Satzes von Peano fiir Differentialgleichungen von Funktionen mit
Werten in einem Banachraum (E, |- |) skizziert: Es ist bekannt, dass selbst fiir stetiges
und beschrénktes f: [-T, T] x E — E das Anfangswertproblem

X(0)=ftx@®),  x(0)=

keine lokale Losung besitzen muss. Wir werden allerdings im folgenden skizzieren, wes-
halb eine lokale Lésung immer existieren muss, falls man zusétzlich voraussetzt, dass es
ein L < oo gibt mit [f(¢,)]” < L.

Wie im Beweis von Satz 2 wird man hierzu natiirlich versuchen, den Satz von Darbo
im Raum X := C([-7,T], E) auf die Menge K := {x € X : ||x|| € 1} und den Picard-
Lindel6f-Operator

F(0 = [ ' f (s, x(5))ds

anzuwenden. Das Problem hierbei ist, dass die Menge F(K) C X zwar gleichgradig ste-
tig und beschrinkt, aber im allgemeinen dennoch nicht relativkompakt ist. Fiir gleich-
gradig stetige beschrankte Mengen 4 C X kann man allerdings — dhnlich wie im Beweis
des Satzes von Arzela-Ascoli — nachrechnen, dass
xx(4) = sup xe({x(t):x € 4})
te[-T,T)

gilt; ohne die Voraussetzung der gleichgradigen Stetigkeit gilt stets ,,>“. Falls man nun
wiisste, dass

(2) XE({/Otf(s, x(s))ds:x e A}) <

/OIXE({f(s, x(s)) : x € A})ds

gilt (den Integranden rechts ersetze man ggf. durch eine messbare Majorante), so konn-
te man damit dann also folgern, dass

xx(F(4)) = Sup XE{ fsx ))ds:x € A})

[E—

< TL sup XE({x(s) :x € A}) < TLxx(4),
se[-T,T)
mithin [F]” < TL gilt (und damit besitzt das Anfangswertproblem dann fiir geniigend
kleine 7 eine Losung). Leider ist (2) i. a. nicht richtig, falls / nicht gleichméBig stetig ist,
siche etwa [34]. Man kann jedoch mit einigem technischem Aufwand nachweisen,
dass (2) fiir abzdhlbare Mengen A giiltig ist, wenn man rechts noch den Faktor 2 hin-
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zufiigt (auf diesen Faktor darf man unter gewissen Zusatzvoraussetzungen auch ver-
zichten), siehe etwa [7], [34], [42], [45]. Die Einschriankung auf abzdhlbare Mengen A
kann man auf zweierlei Weise umgehen: Entweder, man beobachtet, dass (2) auch fiir
iiberabzdhlbares A4 richtig bleibt, wenn man rechts ein weiteres mal den Faktor 2
einfiigt [7], oder man benutzt eine Verallgemeinerung des obigen Satzes von Sadovskii,
bei der man die Kompaktheitsvoraussetzung nur fiir abzdhlbare Mengen verifizieren
muss, siche etwa [44] oder [54] (siehe auch Satz 12). Letzteres hat natirlich den Vorteil,
dass man ein groBeres Existenzintervall fiir die Lésung nachweisen kann. Fiir weitere
Details und Verallgemeinerungen sei auf [7] oder die Monographien [35], [56] verwiesen.
Weitere NichtkompaktheitsmaBe und Anwendungen sind etwa in [1] zu finden.

4 Verzicht auf Selbstabbildungen

Wir werden nun die Voraussetzung F(K) C K abschwichen. Ein wichtiges Ergebnis in
diese Richtung ist der Satz der besten Approximation von Ky Fan [23]:

Satz 9 (Ky Fan). Sei K konvexe kompakte Menge eines Banachraums X, und
F:K — X stetig. Dann gibt es ein xo € K mit ||[F(xo) — xo|| = dist(F(xp), K).

Der Spezialfall F(K) C K ist gerade der Fixpunktsatz von Schauder.

Eine andere Art der Verallgemeinerung hat sich jedoch als wichtiger herausgestelit,
ndmlich, wenn man einen Fixpunkt von F: K — X sucht, und K = Q der Abschluss ei-
ner offenen Menge (2 C X ist: In diesem Fall kann man Abbildungsgradtheorie (oder
den sog. Fixpunktindex) benutzen; hierauf wird spéter eingegangen. Die Konvexitit
von (2 ist in diesem Fall Uiberfliissig, aber die Konvexitit von X ist bedeutsam. Wir be-
schranken uns hier auf den Fall eines Banachraums X .

Tatséchlich geht diese Theorie aber in vielen Féllen nicht weit genug, denn oft hat
man nicht F(Q2) C X, sondern F: Q — Y mit einem ganz anderen Banachraum Y. Dies
ist beispielsweise bei allen Differentialoperatoren der Fall: Zwar wird haufig , kiinst-
licherweise® ein Differentialoperator als ein Operator von einem Banachraum in sich
selbst aufgefasst, aber viel natiirlicher ist es, z. B. einen Differentialoperator zweiter
Ordnung als stetigen(!) Operator von C? (oder H>?) nach C (bzw. L,) aufzufassen.

In dieser Situation ist es natiirlich nicht sinnvoll, von Fixpunkten von F zu reden,
sondern man ersetzt in der Fixpunktgleichung x = F(x) die Identitdtsabbildung auf der
linken Seite durch eine andere Abbildung J: Q — Y, die sich ,,dhnlich gutartig® wie die
Identitdtsabbildung verhalten soll. Man sucht also allgemeiner Koinzidenzpunkte, also
Losungen der Gleichung J(x) = F(x). Die Essenz dieser Idee ist in folgender Definition
zusammengefasst, die unabhingig von mehreren Autoren eingefithrt wurde, z. B. in [25],
[33] (leider auch unter verschiedenen Bezeichnungen; bei Granas z. B. heiBt die folgende
Klasse ,,essentiell).

Definition 3. Sei X ein normaler topologischer Raum, und Y ein topologischer
(Hausdorff) Vektorraum. Sei 2 C X offen und J:{) — Y stetig. Die Abbildung J
heiB3t
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0-zuldssig, wenn 0 ¢ J(092),
. 0-epi, wenn fiir jede stetige Abbildung F:Q — Y mit relativkompaktem Bild und
F|,, = 0die Gleichung J(x) = F(x) eine Losung besitzt.
Natiirlich hat jede 0-epi Abbildung eine Nullstelle (setze F(x) = 0). Wir werden bald
sehen, dass die 0-epi Abbildungen genau jene sind mit ,,homotop stabilen“ Nullstellen.

Der Fixpunktsatz von Schauder besagt gerade, dass die Identitdtsabbildung 0-epi
ist.

N —

Proposition 1 (Normalisierung). Fiir einen normierten Raum X = Y und offenes
Q C Y ist J = id genau dann 0-zulissig und 0-epi, wenn 0 € Q.

Beweis. Wenn 0 ¢ Q, so hat J(x) = 0 keine Losung. Wenn 0 € Q und F:Q — Y wie
oben ist, so setze F trivial fort. Da F eine (genligend groBe) Kugel kompakt und stetig
in sich abbildet, hat F einen Fixpunkt xo = F(x() € Q nach Satz 1. O

Die wichtigste Eigenschaft von 0-epi Abbildungen ist die Homotopieinvarianz:

Proposition 2 (Homotopieinvarianz). Sei J,:Q — Y eine 0-zulissige homotope Sto-
rung von Jo: Q@ — Y, d h. es gelte J; = Jy — H(1, - ), wobei H: [0, 1] x Q — Y stetig mit
relativkompaktem Bild und H(0, -) = 0 sei, und jede der Abbildungen Jy — H (1, -) sei
0-zuldssig. Genau dann ist J; 0-epi, wenn Jjy 0-epi ist.

Beweis. Sei ohne Einschrinkung Jy 0-epi, und F: Q — Y stetig mit relativkompaktem
Bild und Fly, = 0. Wegen der Kompaktheit von [0,1] ist die Projektion m:[0, 1]x
Q — ) abgeschlossen (siche etwa [15, Prop. 1.8.2]). Daher ist

M = U {x€Q:Jo(x)— H(t,x) = F(x)} = 7({(¢,x) : Jo(x) — H(t,x) = F(x)})
tef0,1]

abgeschlossen. Wihle eine stetige (Urysohn-)Funktion A: X — [0, 1] mit A, = 0 und
Ay =1 und setze G(x) = F(x)+ H(A(x),x). Da Jy 0-epi und G|z, =0 ist, hat
Jo(x) = G(x) eine Losung xo € Q. Es folgt xo € M und daher A(xp) =1, also
J1(x0) = F(xo). O

Korollar 2. Eine 0-zuliissige Abbildung J:Q — Y ist genau dann 0-epi, wenn jede
0-zuldssige homotope Storung eine Nullstelle besitzt.

Also grob gesprochen: Eine Abbildung ist 0-epi, wenn sie eine ,,stabile” Nullstelle
besitzt. Diese Eigenschaft wird zur Definition in allgemeineren Situationen (etwa auf
ANR-Riumen) benutzt.

Korollar 3. Falls J:Q — Y 0-epi und 0-zuléissig mit abgeschlossenem J(99) ist, so
enthdlt J(2) eine Nullumgebung, namlich mindestens die Zusammenhangskomponente
der0in Y \ J(0Q).

Beweis. Da jedes y aus dieser Komponente mit 0 durch einen Weg f in Y \ J(09) ver-
bunden werden kann, ist J —y eine 0-zuldssige homotope Stérung von J (setze
H(t,x) = J(x) — f(1 — 1)), besitzt also eine Nullstelle. O

Als typische Anwendung der Homotopieinvarianz beweisen wir nun einen Fix-
punktsatz fiir Nicht-Selbstabbildungen:
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Korollar 4. (,,Continuation Principle“ von Leray-Schauder). Sei X = Y normiert,
Q C X offen mit 0 € Q, und F:Q — Y sei stetig mit relativkompaktem Bild. Dann hat

entweder F einen Fixpunkt in ), oder es gibt ein xo € 00 und ein A\ >1 mit
F(X()) = /\Xo.

Beweis. Betrachte die Homotopie H (t,x) := tF(x). Da Jy := id 0-epi ist, muss entweder
Jy:=Jy— H(l,:) = Jy — F 0-epi sein (dann hat F einen Fixpunkt), oder J; ist keine
0-zuldssige homotope Stérung (dann hat x — H(z,x) = 0 eine Losung auf 0 fiir ein
t € (0,1]). O

Das folgende einfache Ergebnis macht besonders deutlich, dass es bei 0-epi Abbil-
dungen tatsdchlich um die Existenz von Nullstellen geht:

Proposition 3 (Einschrinkung). Es sei J: Q — Y 0-epi, und Qy C Q sei offen und ent-
halte alle Nullstellen von J. Dann ist J: Qg — Y 0-epi.

Beweis. Sei F:Qy — Y stetig mit kompaktem Bild und F| 0y = 0. Setze F trivial fort.
Dann hat J(x) = F(x) eine Losung xy € 2, und die Voraussetzung impliziert xo € Q.0

Korollar 2 und Proposition 3 machen plausibel: Eine Abbildung J hat genau dann
eine ,,physikalisch relevante® Nullstelle, wenn eine geeignete Einschriankung von J 0-epi
ist. Man kommt allerdings nicht umhin, Einschrankungen zu betrachten:

Beispiel 1. Sei X = Y = IR. Die Abbildung J;(x) := |x| ist in keinem Gebiet
Q C IR 0-epi (und hat auch keine Nullstelle, die nicht unter ,,beliebig kleinen Stérun-
gen® verschwinden kann); die Abbildung J>(x) :=|x| — 1 hingegen hat etwa auf
Qo := (—2,0) U (0,2) gleich zwei ,,stabile” Nullstellen, eine auf 2; := (-2, 0), eine an-
dere auf , := (0,2). Auf dem groBeren Gebiet Q := (—2,2) ist J, allerdings nicht
0-epi.

Der Grund, weshalb J; in obigem Beispiel auf {2 nicht 0-epi ist, ist, dass J> in Umge-
bungen der beiden Nullstellen ,,entgegengesetzt orientiert™ ist. Topologisch wird dies
dadurch ausgedriickt, dass der Abbildungsgrad verschiedenes Vorzeichen hat:

Fir den Fall, dass X = Y ein Banachraum, Q2 C X offen, und J eine 0-zuldssige
kompakte Storung der Identitit ist (d. h. J = id — F wobei F: Q — Y stetig mit relativ-
kompakten Bild ist), so kann man den Abbildungsgrad von Leray-Schauder deg(J,2)
definieren, der ganz analoge Eigenschaften hat wie 0-epi Abbildungen (siehe z. B. [17],
[22], [37], [63]):

Satz 10. deg ist die eindeutig bestimmte Abbildung, die jedem (J,Q) wie oben eine
ganze Zahl zuordnet mit folgenden Eigenschaften:
1. (Normalisierung). Fiir J = id — cist
|1 falls c € Q,
deg(/, ) = {o falls ¢ ¢ 9.
2. (Homotopieinvarianz). Falls J, eine 0-zuldssige homotope Stérung von Jy ist, so ist
deg(']l ) Q) = deg(']()*, Q)
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3. (Additivitat). Falls Q,,Q, C Q offen und disjunkt sind und Q, U Q, alle Nullstellen von
J enthiilt, so ist

deg(J,2) = deg(J, (1) + deg(J, D).

Die Additivitdt impliziert im Falle deg(J, ) # 0 insbesondere, dass J eine Nullstelle
hat. Wegen der Homotopieinvarianz ist J dann also sogar 0-epi. Da J = id — F auto-
matisch abgeschlossene Mengen auf abgeschlossene Mengen abbildet (insbesondere ist
J(09) abgeschlossen), ist 0 dann sogar stets ein innerer Punkt des Bildes (Korollar 3).

In gewissem Sinne kdnnte man Abbildungsgradtheorie als eine ,,quantitative” Ver-
sion der ,,qualitativen” Theorie der 0-epi Abbildungen auffassen: deg(/, ) ,,z&hlt“ die
(stabilen) Nullstellen von J in  ,,gema0B ihrer Vielfachheit® (die allerdings auch negativ
sein kann). In obigem Beispiel 1 ist der Abbildungsgrad von J = J;, auf (0,2) gleich 1
(Normalisierung), und da-J auf (—2,2) nicht 0-epi ist, muss der Abbildungsgrad dort 0
sein; zusammen mit der Additivitét folgt, dass J auf (—2,0) den Abbildungsgrad —1 ha-
ben muss.

In ihrer Natur sind die Definitionen grundverschieden: Wahrend 0-epi Abbildungen
auf rein homotope Art definiert sind (Korollar 2), basiert Abbildungsgradtheorie auf
Homologietheorie (obwohl es fiir den obigen Spezialfall auch rein analytische Zuginge
gibt — diese versagen aber hiufig beim Nachwesis ,,feinerer” Eigenschaften). Die Topolo-
gen wissen, dass ein Hauptunterschied zwischen Homotopietheorie und Homologie-
theorie darin besteht, dass Homotopietheorie nicht das ,,Ausschneidungsaxiom® von
Eilenberg-Steenrod [21] erfiillt. Daher ist es nicht allzu iberraschend, dass der Abbil-
dungsgrad die obige méchtige Additivitdtseigenschaft hat, wiahrend fiir 0-epi Abbildun-
gen nur Proposition 3 gilt. Insbesondere gilt nicht die Umkehrung dieser Proposition,
wie das obige Beispiel 1 zeigt — es wére daher falsch, 0-epi Abbildungen nur als einen
»Abbildungsgrad modulo 2 zu interpretieren.

Da eine triviale Homotopie eine triviale Homologie impliziert, ist es auch nicht allzu
iiberraschend, dass ein nichttrivialer Abbildungsgrad impliziert, dass die entsprechende
Abbildung 0-epi ist. Da andererseits der Satz von Hopf aber eine Beziechung zwischen
Homotopie- und Homologietheorie darstellt, konnte man auch eine gewisse Umkeh-
rung erwarten. Dies ist in der Tat unter erstaunlich schwachen Zusatzvoraussetzungen
richtig (siehe [27], [57]):

Satz 11. Falls deg(J, Q2) definiert und Q zusammenhiingend ist, dann gilt:
J ist 0-epi <= deg(J, ) # 0.

Es ist wesentlich, dass 2 zusammenhéangend ist, wie das obige Beispiel 1 zeigt. Von
groBerer Bedeutung ist aber, dass selbst im Falle X = Y nur fiir eine kleine Klasse von
Abbildungen (nédmlich gewisse Storungen der Identitédt) ein Abbildungsgrad definiert
ist, und im Falle X # Y gibt es bislang nur in Ausnahmeféllen eine Abbildungsgrad-
theorie, wihrend der Begriff einer 0-epi Abbildung natiirlich immer definiert ist.

Der Fixpunktsatz von Schauder, der Ausgangspunkt unserer Uberlegungen war, be-
trifft nur den Spezialfall deg(J, Q2) = 1; und umgekehrt bendtigt man in diesem Spezial-
fall die komplizierte Abbildungsgradtheorie gar nicht, da man sie mit Hilfe der Theorie
der 0-epi Abbildungen auf den Satz von Schauder reduzieren kann, dhnlich wie wir es in
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Korollar4 getan haben. Es gibt aber mindestens zwei weitere wichtige Fille mit

deg(/,Q)¢{0,1}:

1. Falls J eine ungerade Abbildung auf Q mit 0 € Q = — (und deg(J, Q) definiert) ist,
so ist deg(/, ) stets ungerade (insbesondere ungleich 0, aber i. a. auch nicht 1). Dies
ist ein Satz von Borsuk. Insbesondere muss jede zu J 0-zuldssige homotope Stérung
im Bild eine Nullumgebung enthalten. Allein mit diesem Sachverhalt kann man oh-
ne groBen Aufwand (nur durch Betrachten geeigneter Homotopien) sowohl den be-
riihmten Antipodensatz von Borsuk-Ulam als auch den Satz von der offenen Abbil-
dung beweisen. Letzterer besagt, dass jede Injektion (fiir die der Abbildungsgrad de-
finiert werden kann) offene Mengen in offene Mengen abbildet. Ein Spezialfall ist
der nichttriviale Teil der Fredholmschen Alternative: Jede lineare injektive kompak-
te Stérung der Identitdt ist offen und damit surjektiv.

2. Im Raum X =Y =IR" hat die Abbildung (—id):Q2 — Y den Abbildungsgrad
(=1)" (falls 0 € 2 C X), woraus fiir ungerades n folgt, dass 0-zuldssige homotope
Stoérungen von (—id) keine 0-zuldssigen homotopen Stérungen von id sein konnen,
und umgekehrt: Hieraus kann man den berithmten Satz vom Igel folgern.

Es ist bemerkenswert, dass man fiir die in 1. skizzierten Beweise der berithmten Sitze
nur wissen muss, dass ungerade kompakte Stérungen der Identitiit 0-epi sind: Alles an-
dere folgt dann unmittelbar aus einem Homotopieargument. Dies macht deutlich, wes-
halb es sinnvoll ist, 0-epi Abbildungen unabhingig von Abbildungsgradtheorie zu stu-
dieren. Andererseits bendtigt man die Abbildungsgradtheorie, um nachzuweisen, dass
ungerade Abbildungen 0-epi sind.

5 Mehrwertige Abbildungen

Der Satz von Schauder bleibt auch richtig, wenn F eine oberhalbstetige mehrwertige
Abbildung F: K —o K ist, deren Bilder F(x) kompakt und

1. konvex oder zumindest
2. azyklisch bzgl. der Cech-Kohomologietheorie (mit rationalen oder zumindest ganz-
zahligen Koeffizienten) sind.

Selbstverstidndlich enthilt hier der zweite Fall den ersten, aber da die zugehorigen Be-
weise grundverschieden sind und verschiedene Erweiterungen besitzen, sind beide inte-
ressant. Die Beweisidee im ersten Fall ist einfach zu beschreiben: Man zeigt, dass man
den Graph von F (oder zumindest einen geeigneten ,, Teilgraph®) durch Graphen von
einwertigen Abbildungen approximieren kann und gewinnt das Ergebnis durch Anwen-
dung des (einwertigen) Fixpunktsatzes von Schauder. Diesen Zugang nennen wir ,,Ap-
proximationsmethode®.

Der Zugang fiir den zweiten Fall wurde erstmals in [20] beschrieben: Sei I’ C K x X
der Graphvon F: K —o K C X, und p:T' — K und ¢:T' — X seien die kanonischen Pro-
jektionen. Genau dann hat F einen Fixpunkt x € F(x), wenn es ein y € I' gibt mit
p(¥) = q(): Der Fixpunkt ist dann x = p(y). Statt mehrwertige Abbildungen zu be-
trachten, sucht man also Koinzidenzpunkte der stetigen Abbildungen p und ¢. Hierbei
ist es hilfreich, dass p eine sog. Vietoris-Abbildung ist, d. h. p ist stetig, eigentlich (d. h.
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Urbilder kompakter Mengen sind kompakt) und surjektiv mit azyklischen Fasern
' ({x}). Aufgrund eines Satzes von Vietoris induziert p in der Cech-Homologie eine
Bijektion. Durch Betrachten der Inversen dieser Bijektion kann man nun (zumindest im
Rahmen der Homologietheorie) ganz analog argumentieren, als wenn F = g o p~! eine
einwertige Abbildung (mit stetigem p~') wiire.

Dieser Zugang hat den Vorteil, dass er prinzipiell auch Aussagen iiber Koinzidenzen
p(») = q(y) erlaubt, wenn p:I' — K eine Vietoris-Abbildung (mit einem beliebigen
Raum I') und ¢: T — X D K stetig ist. Dies erlaubt es insbesondere auch, zu beweisen,
dass der Satz von Schauder giiltig bleibt, wenn F = g o G: K — K die Komposition ei-
ner oberhalbstetigen kompakten azyklischen Abbildung G und einer stetigen Abbil-
dung g ist: Betrachte dazu die kanonischen Projektionen p, go des Graphen von G auf
die Koordinaten, und setze g := g o gy.

Diese Klasse von Abbildungen spielt eine wichtige Rolle bei Differentialgleichungen
und -inklusionen, bei denen man keine Eindeutigkeit der Losung voraussetzt: Es ist be-
kannt, dass z. B. fiir oberhalbstetiges beschréinktes f: [0, 7] x IR" —o IR" mit konvexen
kompakten Werten die Menge der Losungen des Anfangswertproblems

X(1) ef(6,x(0),  x(0) = xo

eine sog. Rs-Menge im Raum C([0, 7], IR") ist, d. h. der Durchschnitt einer absteigen-
den Folge kompakter AR-Rdume. Insbesondere ist diese Menge azyklisch. Dariiber-
hinaus ist die Abbildung G, die jedem x, die entsprechende Losungsmenge zuordnet,
oberhalbstetig und kompakt. Definiert man g: C([0, 7], IR") — IR" durch g(x) := x(T),
so kann man also den (mehrwertigen) Translationsoperator

F:xo — {x(T) : x 16st das AWP}

als Komposition F = g o G schreiben und den Fixpunktsatz anwenden, um z. B. T-peri-
odische Losungen zu finden. Beachte, dass F(xo) selbst i.a. nicht azyklisch ist (aber
G(xo) ist azyklisch).

6 Kombination der Zugange

Die neuere Forschung in dem beschriebenen Gebiet beschiftigt sich u. a. mit der Frage,
wie man die oben skizzierten Ideen kombinieren kann, um beispielsweise einen ,,Abbil-
dungsgrad*® fiir nichtkompakte mehrwertige Abbildungen auf ANR-Ré&umen zu gewin-
nen. Man spricht im Zusammenhang mit ANR-R4umen meist von einem Fixpunki-
bzw. Koinzidenzindex statt von einem Abbildungsgrad: Der entscheidende technische
Unterschied bei ANR-R4umen ist, dass die beim Abbildungsgrad betrachtete Menge 2
nicht mehr offen in einem Banachraum sein muss, sondern z. B. nur offen bzgl. der Re-
lativtopologie eines invarianten ANR-Teilraums zu sein braucht. Dies ist etwa wichtig,
wenn man eine Abbildung des positiven Kegels von L, hat, da Teilmengen dieses Kegels
niemals offen in L, sind.

Wenn wir uns statt allgemeiner ANR-Teilrdume zunichst auf konvexe Teilmengen
normierter Raume beschrinken, ist die Existenz eines Index fiir einwertige (nichtkom-
pakte) Abbildungen weitgehend geklért, siche etwa [48], [51]; das wohl allgemeinste Er-
gebnis mit Kompaktheitsvoraussetzungen auf nur abzihlbaren Mengen folgt aus [55].
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Die Grundidee dabei ist es jeweils, durch geeignete Voraussetzungen (etwa, dass der
Operator kondensierend ist), die Existenz einer sog. fundamentalen konvexen kompak-
ten Menge zu sichern, auf der sich alles topologisch Relevante abspielt. Fiir den entspre-
chenden Abbildungsgrad kondensierender Abbildungen gilt ein analoges Ergebnis zu
Satz 11 [27].

Auch der mehrwertige Fall wird in [55] weitgehend abgedeckt, allerdings gibt es eine
immer noch ungeklérte technische Schwierigkeit hierbei: Man weil nicht, ob der Index
eindeutig ist, und insbesondere ist unklar, ob der Index eine topologische Invariante ist.
Man kann zwar einen topologisch invarianten Index mit anderen Methoden definieren
[19], [52], aber es ist ungeklért, ob dieser Index stets ganzzahlige Werte annimmt und
mit der ,,natiirlicheren® Definition iibereinstimmt. Falls die Abbildung allerdings so
einfach ist, dass man Approximationsmethoden benutzen kann, kann man damit die
Eindeutigkeit eines Index nachweisen [40], [59], und man kann dann auch Satz 11 in ge-
wissem Sinne iibertragen [59] (beachte aber die Bemerkungen weiter unten hierzu). Es
sei betont, dass diese Approximationsmethoden nicht nur fiir (mehrwertige) Abbildun-
gen mit konvexen Werten, sondern auch fiir Abbildungen mit Rs-Werten (ggf. kom-
poniert mit einwertigen Abbildungen) sowie — unter gewissen Bedingungen an endliche
(Uberdeckungs-)Dimension — auch fiir Kompositionen azyklischer Abbildungen an-
wendbar sind, siehe etwa [2], [3], [10], [30], [38], [39], [41]. Da praktisch jede azyklische
Menge, die in Anwendungen auftaucht, auch eine Rs;-Menge ist, rechtfertigt dies im
Nachhinein eine Bemerkung von K. Deimling in [17, Remark 24.8(3)], wo er meinte,
dass in praktisch allen Fillen azyklischer mehrwertiger Abbildungen ein Approximati-
onsargument benutzt werden kann.

Man ist aber auch an einem Index auf allgemeinen (nichtkonvexen) ANR-Riumen
interessiert. Dies ist insbesondere im Zusammenhang mit der Nielsen-Zahl bedeutsam,
die es erlaubt, Aussagen iiber Vielfachheiten von Lésungen zu machen, aber die in kon-
trahierbaren (insbesondere konvexen) Raumen nichts Neues liefert. Eine Indextheorie
auf ANR-Riumen wurde fiir kompakte Abbildungen von Granas [32] entwickelt (fiir
den mehrwertigen Fall siche die oben zitierten Referenzen [19], [40], [52]; die entspre-
chende Lefschetz-Zahl — die ,,Normierung* des Index — wurde von L. Gorniewicz [28]
eingefiihrt). Fiir nichtkompakte Abbildungen sind die Ideen aus Abschnitt 3 aber kaum
direkt ibertragbar, da diese auf der konvexen Hiille basieren; beim Index wird die Kon-
vexitit der fundamentalen Mengen zusétzlich benétigt, um gewisse Homotopien zu
konstruieren, die fiir die Definition des Index wesentlich sind. Dennoch lisst sich in ein-
fachen Situationen die ,,Iterationsidee aus dem Beweis des Darboschen Fixpunktsatzes
verallgemeinern [49] (fiir mehrwertige Abbildungen siehe z. B. [24], [60]), aber fiir den
allgemeinen Fall und die méchtigere Idee aus dem Beweis des Fixpunktsatzes von Sa-
dovskii bedarf es eines groBeren technischen Apparats [5].

Fiir weiterfithrende Literatur der Indextheorie ein- und mehrwertiger Abbildungen
moge der Leser etwa die Ubersichtsartikel [11]-[13] oder die Monographien [29] oder
[4] (und deren umfangreiche Referenzen) konsultieren.

Die Theorie der 0-epi Abbildungen ist noch weitaus weniger entwickelt. Es ist aller-
dings bekannt, dass auch fiir solche Abbildungen ,,nichtkompakte* Ergebnisse existie-
ren. Insbesondere sei hier ein Spezialfall eines Satzes aus [58] wiedergegeben:
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_Sei K vollstandiger metrischer Raum und Q2 C K offen. Sei Y ein Banachraum, und
J:Q — Y seistetig. Es gebe ein § > 0 mit

(3) ~(J(A4)) > 6v(4) (A C abzéhlbar).

Die Beziehung (3) impliziert, dass J eigentlich ist, und sie bedeutet in gewissem Sinne,
dass diese Eigentlichkeit ,gleichmiBig® ist. Es gibt dann ein maximales solches
6 € (0, 00|, und dieses bezeichnen wir mit [J] - Man sieht schnell, dass

[F+Gl, > [F], - [6]",
insbesondere ist im Falle J = id — F mit kondensierendem F stets [J], > 1 — [F]".

Satz 12. Es sei J:Q — Y stetig, 0-zulissig und 0-epi. Sei F:Q — Y stetig mit
Fly0 =0und

V(F(4)) < [J],7(4)

fiir alle abziihlbaren Mengen A C Q mit v(A) > 0 (was im Falle v(Q) < oo insbesondere
gilt wenn [F|" < [J],). Dann hat die Gleichung J(x) = F(x) eine Losung x € Q2.

Wenn man benutzt, dass J = id 0-epi ist, enthalt dieses Ergebnis die frither erwéhnte
Verallgemeinerung des Satzes von Schauder mit Kompaktheitsbedingungen auf nur ab-
zahlbaren Mengen als Spezialfall. Wichtiger ist aber, dass Satz 12 auch impliziert, dass
0-epi Abbildungen J mit [J], > 0 auch unter nichtkompakten 0-zuléssigen homotopen
Stérungen H mit [H]” < [J],, 0-epi bleiben. Insbesondere kann man dies benutzen, um
Klassen von 0-epi Abbildungen zu definieren, die unter ,kleinen® (nichtkompakten)
Storungen stabil bleiben: Dies spielt eine wichtige Rolle in der Spektraltheorie nicht-
linearer Operatoren [6].

Es stellt sich auch heraus, dass eigentliche 0-epi Abbildungen J aufgrund von Ap-
proximationsmethoden auch automatisch eine entsprechende ,,0-epi Eigenschaft® fiir
mehrwertige Abbildungen F besitzen [8].

Leider sind immer noch fast keine homologen (Abbildungsgrad-)Methoden be-
kannt, die im Falle verschiedener Banachrdume Y # X D  ein Kriterium dafiir liefern
konnten, dass eine gegebene Abbildung J: Q — Y 0-epi ist. Auf den ersten Blick kénnte
man meinen, dass man fiir den Fall einer Vietoris-Abbildung J die in Abschnitt 5 be-
schriebenen Zugénge fiir die Koinzidenzgleichung J(x) = F(x) benutzen konnte, aber
dies ist nur bis zu einem gewissen Grad richtig: Die Voraussetzungen und Aussagen der
Ergebnisse aus diesem Zugang betreffen stets die mehrwertige Abbildung F o J~!, wih-
rend man bei der Theorie der 0-epi Abbildungen in gewissem Sinne an der Abbildung
J~1 o F interessiert ist: Beispielsweise gilt Satz 12 i. W. bereits unter schwachen Kom-
paktheitsvoraussetzungen nur an J~! o conv F. Frappierender ist, dass Satz 11 in die-
sem Zusammenhang zunéchst sinnlos ist, da man in einem Fall Mengen Q2 C Y und im
anderen Fall Mengen 2 C X betrachtet. Man kann jedoch die Definition der 0-epi Ab-
bildungen geeignet modifizieren, so dass ein Vergleich dennoch mdglich ist und Satz 11
richtig bleibt, auch im nichtkompakten Fall [59]. Diese Modifikation scheint mit Koho-
motopie zusammenzuhingen, ebenso wie auch der Index fiir F o J~! eigentlich auf Ko-
homologietheorie basiert. Fiir viele Anwendungen wire es aber viel niitzlicher, wenn
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man nicht die Definition von 0-epi Abbildungen modifizieren miisste, sondern auch ei-
nen entsprechenden (homologen) Index oder Abbildungsgrad hitte.

Von Skrypnik wurde ein Abbildungsgrad fiir den Fall ¥ = X* entwickelt (der i. W.
fiir monotone Abbildungen anwendbar ist) [53], und von Mawhin [43] gibt es einen Ko-
inzidenzindex fiir den Fall, dass J eine (kompakte Stérung einer) Fredholm-Abbildung
mit Index 0 ist. Nirenberg hat als erster auch Fredholm-Abbildungen mit positivem In-
dex (also insbesondere X = IR” und Y = IR" mit n < m) zugelassen [46], [47], aber letzt-
lich basiert auch diese Definition auf Homotopietheorie. Man kann diesen Mawhin-Ni-
renberg-Index auch mit den Ideen aus Abschnitt 5 kombinieren, was aber duBerst diffi-
zil ist [26], [41].

Damit sind die bisher bekannten Abbildungsgradtheorien fiir X # Y schon im We-
sentlichen erschopft (einige weitere Zuginge sind im Ubersichtsartikel [61] zu finden,
der auch eine umfangreiche Bibliographie enthilt). Dass das Problem extrem schwer ist,
sieht man schon an den obigen Dimensionsvoraussetzungen, die kein Zufall sind: Im
Falle m < n kann es keine 0-epi Abbildung geben (und somit auch keinen Abbildungs-
grad), da die entsprechenden Homotopiegruppen 7, (S") trivial sind.

Anmerkung

1 Anders ausgedriickt: Der Abschluss F(K) sei eine kompakte Teilmenge von K; hierbei ist es egal,
ob man den Abschluss in X oder in K nimmt.
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Martin Zeman

inner Models
and Large Cardinais

M.Zeman
Inner Models and
Large Cardinals

de Gruyter

Berlin, New York, de Gruyter 2002, 369 S.,
€138,—

Zeman gibt in seinem Buch eine Einfithrung
in die Kernmodelltheorie, die ein wichtiger
Zweig der modernen Mengenlehre ist. Die
Darstellung beruht wesentlich auf hand-
schriftlichen Manuskripten von Jensen, die
seit langerer Zeit kursieren. Es ist erfreulich,
dass diese Ergebnisse nun endlich in dieser
ausgearbeiteten Form vorliegen.

In gewisser Weise ist die Kernmodelltheo-
rie eine natiirliche Fortsetzung klassischer
Untersuchungen von Godel. Ein inneres
Modell ist eine transitive Klasse, die alle Or-
dinalzahlen enthilt und in der die iiblichen
Axiome gelten. Godel zeigte, dass ein kleins-
tes inneres Modell existiert, welches er das
konstruktible Universum L nannte. Dieses
ist kanonisch. Gddel konnte zeigen, dass in
L die allgemeine Kontinuumshypothese gilt.

Spéter konnte Jensen den kanonischen
Charakter von L wesentlich stirker bestim-
men. Er entwickelte seine Feinstruktur von
L. Mit ihrer Hilfe ldsst sich fast jede kom-
binatorische Frage fiir das konstruktible
Universum beantworten.

Nun hatte jedoch schon vorher Scott ge-
zeigt, dass in L keine sehr groBen Kardinal-
zahlen existieren konnen. Genauer gesagt
gilt dies schon fiir messbare Kardinalzahlen.
Thre Existenz ist Aquivalent dazu, dass auf ei-
ner Menge X ein nichttriviales zweiwertiges
MaB existiert, welches auf allen Teilmengen
von X definiert ist.

Es stellt sich daher die folgende natiirliche
Frage. Gibt es ein kanonisches inneres Mo-
dell, das eine Feinstruktur besitzt, und in
welchem sehr groBe Kardinalzahlen existie-
ren konnen? Solche Modelle werden Kern-
modelle genannt.

Zeman beschreibt in seinem Buch drei Va-
rianten solcher Modelle, die von wachsender
Komplexitdt sind. Er mochte den Leser
schrittweise in diesen komplizierten Gegen-
stand einfithren. Am ausfiihrlichsten behan-
delt er das Kernmodell K fiir MaBe der Ord-
nung Null. In diesem kann die Klasse der
messbaren Kardinalzahlen unbeschrinkt
sein, aber nicht viel mehr gelten. Allerdings
tauchen in der Konstruktion von diesem K
schon viele der Hauptideen auf. Sie wird in
Kapitel 7 beschrieben.

Es beginnt mit einer natiirlichen indukti-
ven Definition von K. Diese ist analog zum
Aufbau der konstruktiblen Hierarchie. Es
werden nur zusitzlich an geeigneten Stellen
eindeutig bestimmte normale MaBe auf dem
bisher konstruierten Anfangsschritt hin-
zugenommen. Es ist aber nicht offensicht-
lich, dass diese Definition das Gewiinschte
liefert. Um dies zu erreichen, wird eine dqui-
valente Charakterisierung von K gegeben.
Dann werden grundlegende Eigenschaften
von K bewiesen, wie z. B. die generische Ab-
solutheit und der schwache Uberdeckungs-
satz.

In den ersten sechs Kapiteln wird der um-
fangreiche technische Apparat entwickelt,
der notwendig ist, um die Ergebnisse von
Kapitel 7 zu erlangen. Die Grundlagen in
den ersten drei Kapiteln dienen allerdings in
ihrer Allgemeinheit auch schon fiir die Un-
tersuchung der noch héheren Kernmodelle.

Die Kapitel 4 bis 6 sind hingegen auf die
Konstruktion des speziellen Kernmodells K
aus Kapitel 7 zugeschnitten. Es werden die
zugehorigen Méuse untersucht, d. h. Struk-
turen, die wie Anfangsabschnitte von K aus-
sehen und iterierbar sind. Iterierbarkeit be-
deutet hierbei, dass man immer fundierte
Strukturen erhélt, wenn man sukzessive Ul-
trapotenzen und direkte Limites bildet. Die-
se Eigenschaft liefert die fundamentale Ver-
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gleichbarkeit von Méausen, die man durch
Koiteration erhilt. Hiermit erhdlt man das
geeignete Kriterium fiir die eindeutige Wahl
der MaB3e in der Konstruktion von K.

In Kapitel 8 wird ein Kernmodell konstru-
iert, welches eine starke Kardinalzahl besit-
zen kann. Hierzu missen MaBe durch Ex-
tender ersetzt werden. Da ansonsten viele
Argumente analog verlaufen, werden einige
Verallgemeinerungen dem Leser tiberlassen.

SchlieBlich erhalt der Leser in Kapitel 9 ei-
nen Einblick in den gegenwértigen Stand der
Forschung. Hier werden Méuse untersucht,
die bei der Konstruktion sehr groBer Kern-
modelle benutzt werden. Dabei wird ins-
besondere die Iterierbarkeitsbedingung viel
komplizierter. Die Feinstruktur dieser Mau-
se wird vollstindig behandelt. Die Kons-
truktion der zugehorigen Kernmodelle wird
allerdings nicht mehr durchgefiihrt.

Insgesamt ist Zeman ein ausgezeichnetes
Lehrbuch iiber Kernmodelltheorie gelun-
gen. Es ist sehr gut zum Selbststudium geeig-
net. Zeman konzentriert sich ganz auf die
Grundlagen der Theorie. Fiir Anwendungen
verweist er aber auf die entsprechenden Ori-
ginalarbeiten.

H.-D. Donder

Minchen

A Holme
Geometry, Our Gultural
Heritage

Berlin u. a., Springer 2002, 378 S., € 34,95

Die vorliegende Monographie von A. Holme
besteht aus zwei Teilen, iberschrieben mit 4
Cultural Heritage und Introduction to Geo-
metry.

In einem Bogen beginnend mit der Vor-
und Steinzeit, tiber Agypter, Babylonier und
Griechen bis hin zur Neuzeit werden im ers-
ten Teil die Urspriinge und Weiterentwick-
lungen der Geometrie aufgezeichnet. Dabei
werden aber nicht einfach die zur jeweiligen
Zeit neu erlangten Erkenntnisse aufgezéhlt,
sondern es werden die mathematischen (da-
mals zumeist geometrischen) Erkenntnisse
in die politische bzw. gesellschaftliche Situa-
tion eingebettet und mit Anekdoten und Le-
genden verziert. In einem Abschnitt iiber
den Ursprung der klassischen Probleme wird
z. B. erzéhlt, wie Perikles’ Lehrer Anaxago-
ras sich im Gefangnis sitzend mit der Qua-
dratur des Kreises beschiftigt, oder, wie eine
Delegation der von der Pest gegeifelten und
sich zugleich im Krieg mit Spartakus befind-
lichen Stadt Athen im Orakel von Delos, um
Ausweg aus ihrer Miesere fragend den Rat
bekommt, den Altar des Apollo zu verdop-
peln! Dieser ist wiirfelférmig und so ging die
Verdopplung des Wiirfels als Delisches Prob-
lem in die Geschichte ein. Dariiber hinaus
werden die meisten der erwdhnten mathema-
tischen Resultate bewiesen, teils mit moder-
nen Methoden. In den meisten Féllen jedoch
gab sich der Autor viel Miihe die tiberliefer-
ten Beweise bzw Konstruktionen ausfiihrlich
in zeitgemaBer mathematischer Sprache vor-
zustellen.

Wie der Autor selber deutlich sagt, erhebt
dieser erste Teil des Buches nicht den An-
spruch, eine Abfassung iiber die Geschichte
der Mathematik zu sein. Es soll vielmehr als
Motivation und Quelle fiir Hintergrundwis-
sen fir den zweiten Teil des Buches dienen.

Inhalt des zweiten Teils, Introduction to
Geometry, ist die mathematische Seite der
Geometrie. BekanntermaBen ist Geometrie
ein weiter Begriff, das spiegelt sich auch in
der Vielseitigkeit der im zweiten Teil abge-
handelten Themen wieder. So finden sich
dort Kapitel iiber Axiomatische Geometrie,
Axiomatische Projektive Geometrie, Nicht-
euklidische Geometrie, den Projektiven
Raum, affine und projektive Geometrie in
der Ebene, algebraische Kurven hoheren
Grades in IR?, héhere Geometrie in der pro-
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jekiven Ebene, Fraktale Geometrie und Ka-
tastrophen Theorie. Das ist natiirlich ein
umfangreiches Programm fiir die ca 200 zur
Verfiigung stehenden Seiten. Dementspre-
chend werden die einzelnen Themen ziigig
bzw. nur punktuell abgehandelt. Erstaunli-
cherweise geht das aber nicht auf Kosten der
Verstandlichkeit.

Im Gegensatz zu vielen anderen Geo-
metrieblichern wird in dem vorliegenden
Band kein Aufgebot an speziellen Bezeich-
nungen verwandt. So kann man eigentlich in
jedem Kapitel anfangen zu lesen, bzw, das
Buch auch als Nachschlagewerk verwenden.
Damit wird es auch dem vom Autor sich
selbst gesetzten Ziel gerecht, die Leser nicht
durch eine pedandische und formalistische
Presentation von der Dynamik und Schén-
heit der Geometrie abzulenken. Wie Holme
in seiner Einleitung schreibt, will er ins-
besondere unseren kiinfigen Lehrern und
ebenso einer dariiber hinaus gehenden an
der Mathematik interessierten Gemeinschaft
in seinem Buch ein umfangreiches und abge-
rundetes Bild der Geometrie prisentieren.
Gleichzeitig soll die Monographie auch als
Grundlage fiir Vorlesungen iiber Geometrie
dienen. Meiner Ansicht nach ist der Autor
seinem Ziel gerecht geworden.

Ch. Birkenhake

Erlangen

A Barvinok

A Gourse in Gonvexity
Grad. Studies

in Math. 54

Providence, Am. Math. Soc., 2002, 366 S.,
$59,~

Barvinoks Buch ist aus mehreren Graduate
Courses an der University of Michigan in
Ann Arbor entstanden. Auf seinen gut 360
Seiten enthélt es Stoff fiir mehrere durchaus
anspruchsvolle Vorlesungen iiber diverse
Aspekte der Konvexgeometrie und Anwen-
dungen dazu, vor allem in Optimierung, aber
auch Zahlentheorie.

Der iibersichtliche und gut gegliederte
Aufbau des Buches ermdoglicht es auf vielfal-
tige Weise, je nach Neigung und Zielrich-
tung, eine einsemestrige (4-stiindige) Vor-
lesung daraus zu extrahieren, und Barvinok
macht im Vorwort einige Vorschlage dazu.

Programm und Inhalt des Buches werden
durch die Titel der acht Kapitel gut charak-
terisiert:

1) Konvexe Mengen allgemein, 2) Seiten
und Extrempunkte, 3) Konvexe Mengen in
topologischen Vektorrdumen, 4) Polaritit,
Dualitdt und Linear Programming, 5) Kon-
vexe Korper und Ellipsoide, 6) Seiten
(-struktur) von Polytopen, 7) Gitter und
konvexe Korper, 8) Gitterpunkte und Poly-
eder.

Naturgema haben die ersten beiden Ka-
pitel einfithrenden Charakter: Das erste be-
handelt eher globale Aspekte (z. B. Helly-
Typ-Sitze, Euler-Charakteristik), das zweite
eher lokale Aspekte (Struktur des Randes)
und Trennungssitze sowie Anwendungen
auf einfache Optimierungsprobleme.

Bei den iibrigen Kapiteln bestitigt sich,
was der Autor schon im Vorwort erwihnt,
dass es wegen der Stofffiille unmdoglich ist,
ein Textbook iiber Konvexitdt insgesamt zu
schreiben. Also ist eine Auswahl notwendig,
die naturgemaB subjektiv ist. In der Tat fallt
sofort das Fehlen der Brunn-Minkowski-
schen Theorie auf; dem Herzstiick klassi-
scher analytischer Konvexgeometrie.

Eher rudimentér findet man dazu einiges
in Kap. 1 und 5, z. B. etliche der klassischen
Ungleichungen als Probleme und Aufgaben.
Trotzdem ist dies kein wesentlicher Nachteil
von Barvinoks Buch, denn einerseits gibt es
gute Biicher zur Brunn-Minkowskischen
Theorie (an der Spitze R. Schneiders gleich-
namiges Werk, Cambridge 1993) und ande-
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rerseits sind diejenigen Bereiche, die Barvi-
nok eingehender behandelt, zumindest teil-
weise bis an den neuen Stand der Forschung
herangefiihrt.

Dies ist eine der Stirken von Barvinoks
Buch: Obwohl es im Kern ein Lehrbuch ist,
kommen immer wieder harte oder offene
Probleme vor, mit Literaturhinweisen, Tips
und gelegentlich auch Teilbeweisen; erkenn-
bar als Apetizer fiir Studenten und junge
(oder auch éltere) Wissenschaftler auf-
gemacht.

Ein weiteres wichtiges Plus des Buches ist
die schon erwdhnte enge Verkniipfung zwi-
schen Theorie und Anwendung; der Studie-
rende und Leser erlebt dies konkret an Bei-
spielen und nicht nur als Hinweis.

Parade-Beispiele sind die Anwendung von
Dualitét auf Linear Programming in Kap. 4
sowie in Kap. 5, der Weg vom Léwner-John-
Ellipsoid zur Ellipsoid-Methode von Shor
und Khachian und in Kap. 3 der Weg von
Konvexitdt in topologischen Vektorrdumen
mit dem Krein-Milman-Theorem zu Anwen-
dungen in Kontrolltheorie und dem (Kon-
vexitdts-)Satz von Lyapunov. Das Kap. 6
iiber die Seitenstruktur von Polytopen ist in
sich abgeschlossen. Sein Kern sind die Euler-
Poincarésche Identitdt, die Dehn-Sommer-
ville Gleichungen und McMullens Upper
Bound Theorem.

Die auffilligsten Kapitel des Buches sind
sicher die letzten beiden, da alle vorherigen
zumindest teilweise zum Pflichtprogramm
eines Buches oder einer Vorlesung iiber
Konvexitdt gehoren, wéhrend diese eher in
Biicher iiber Diskrete Geometrie oder Geo-
metrie der Zahlen zu finden sind. Diese bei-
den Kapitel, etwa ein Viertel des Buches, bil-
den quasi das Kirprogramm. Hier, ins-
besondere in Kapitel 8, hat der Autor im
Laufe des letzten Jahrzehnts Bemerkenswer-
tes beigetragen.

Das 7te Kapitel, anfangs eine Einfithrung
in Geometrie der Zahlen, enthélt neben den
Standardbegriffen die Sdtze von Blichfeldt,
Minkowski und Minkowski-Hlawka (letzte-
ren leider nicht mit dem eleganten Rogers-
Davenport-Beweis), das ,,Flatness“ Theo-

rem und Reduktionstheorie, insbesondere
die fiir diskretes Optimieren wichtige Len-
stra-Lenstra-Lovasz Reduktion.

Wihrend das 7te Kapitel eher metrische
Aspekte behandelt, wird im letzten Kapitel
die Gitterpunktanzahl konvexer Polyeder
untersucht.

Hauptwerkzeug sind hier die erzeugenden
Funktionen (Exponentialsummen), und der
Autor entwickelt die in den letzten Jahren
von Stanley, McMullen, Brion, Pommers-
heim und ihm selbst entwickelte Theorie der
Algebra rationaler Polyeder, bei der Klassi-
ker wie das Ehrhart-Polynom und das zuge-
horige Reziprozititsgesetz beildufig als Ne-
benergebnisse abfallen, und mit dieser kraft-
und eindrucksvollen Theorie endet das
Buch.

Zur Darstellung sei bemerkt, dass die ein-
leitenden Uberblicke zu Beginn eines jeden
Kapitels oder Abschnitts sowie die histori-
schen Bemerkungen mit Literaturhinweisen
am Ende sehr hilfreich sind. Ebenso erleich-
tern die gut iiber das Buch verteilten Abbil-
dungen das Verstindnis und den Uberblick.

Das Literaturverzeichnis ist angemessen,
reichhaltig, doch nicht iiberbordend. Dage-
gen hitte man sich das Stichwortverzeichnis
etwas detaillierter und ausfiihrlicher ge-
wiinscht.

Insgesamt kann man aber nach der Lektii-
re von Barvinoks Buch der Bemerkung des
Autors im Vorwort nur zustimmen, dass das
Schreiben eines Buches iiber Konvexitit eine
erfreuliche Erfahrung ist. Man spiirt, dass er
diese Freude am Thema an den Leser weiter-
geben mochte, was ihm auch weitgehend ge-
lungen ist.

Siegen J. M. Wills
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E. Hairer, C. Lubich,

G. Wanner

Geometric Numerical
Integration

Comput. Math. 31

Berlin u. a., Springer, 2002, 515S., $ 84,95

Seit bahnbrechenden Arbeiten von Feng
Kang (Beijing) und Sanz-Serna (Valladolid)
haben sich symplektische Diskretisierungen
Hamiltonscher Differentialgleichungen als
duBerst aktives Forschungsfeld im Gebiet
,Numerische Mathematik von Anfangswert-
problemen bei gewohnlichen Differential-
gleichungen‘ entfaltet. Aus Sicht der Anwen-
dungen spielen Hamiltonsche Differential-
gleichungen insbesondere in der Astronomie
und der Molekiildynamik eine Rolle. Der
vorgelegte Band erweitert das Spektrum auf
symmetrische Diskretisierungen allgemeiner
reversibler Differentialgleichungen. Diskre-
tisierungen dieses Typs verdienen besonde-
res Augenmerk mit Blick auf die Erhaltung
von Invarianten (wie etwa der Gesamtener-
gie eines mechanischen Systems), zumindest
im asymptotischen Mittel iiber exponentiell
lange Zeiten.

Das Buch gliedert sich in 14 Kapitel, ein
umfangreiches Literaturverzeichnis und ei-
nen hilfreichen Index. Es enthilt zahlreiche
Ubungsaufgaben.

Zundchst werden numerische Beispiele
Hamiltonscher Differentialgleichungen vor-
gestellt und der Effekt symplektischer und
nichtsymplektischer Diskretisierungen illus-
triert. Die Arnoldsche Katze veranschau-
licht den diskreten Fluss im Vergleich mit
dem kontinuierlichen. Sodann wird das In-
stumentarium zur Konstruktion von Runge-
Kutta-Integratoren hoherer Ordnung bereit-
gelegt, wobei natiirlicherweise partitionierte

Runge-Kutta-Methoden (PRK) besonders
zum Zug kommen; erstaunlicherweise exis-
tiert hier eine Alternative zur Herleitung mit-
tels PRK-Bdaumen, ndmlich die Erzeugung
aus der Baker-Campbell-Hausdorff-Formel,
wobei die erhaltenen Bedingungsgleichun-
gen zwar unterschiedlich, aber natiirlich
aquivalent sind. Spéter werden die PRK auf
symmetrische Verfahren fiir reversible Diffe-
rentialgleichungen spezialisiert. Dieses Ka-
pitel ist etwas technisch, jedoch fiir die Kons-
truktion von Verfahren hoherer Ordnung
unverzichtbar.

Ein zentraler Punkt ist naturgemill die
Theorie der Hamiltonschen Invarianten
(nach Sophus Lie) und ihre Umsetzung ins
Diskrete. Hier werden die schon erwdhnten
Arbeiten von Sanz-Serna und seiner Schule
sowie der Autoren mit ihrem Anhang in ein-
heitlichem Gewand dargestellt. Die ,diskre-
ten variationellen Integratoren‘ nach Mars-
den et al. werden kurz gestreift. Fiir den Ge-
schmack des Rezensenten kommt dieses al-
ternative Konzept etwas zu kurz, obwohl es
in der Praxis extrem erfolgreich ist und ge-
wisse Einschriankungen der konkurrierenden
Verfahren zu umgehen erlaubt. Zum Thema
Differentialgleichungen auf Mannigfaltig-
keiten, insbesondere zu holonomen und
nichtholonomen Zwangsbedingungen bei
mechanischen Systemen, hétte sich ein Aus-
flug in die Theorie von Rabier und Rhein-
boldt sicherlich gelohnt (jiingst ebenfalls als
Monographie erschienen, aber erstaunli-
cherweise nicht zitiert). Besonders verdienst-
voll ist die Darstellung von Details der Im-
plementierung symplektischer und sym-
metrischer Integratoren, die oft von Anwen-
dern iibersehen werden und dann die ganze
schone zugrundliegende Theorie zur Wir-
kungslosigkeit verdammen.

Aus Sicht der Numerischen Analysis wich-
tig ist die moderne Interpretation symplekti-
scher Integratoren iiber eine Riickwértsana-
lyse, bei der im Diskreten eine leicht gestorte
schrittweitenabhiangige Hamiltonfunktion
generiert wird. (Allerdings sollte der Leser
hierzu nicht die gleiche Erwartung hegen, die
er vielleicht von Problemen der numerischen
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linearen Algebra mitbringt: in der Molekiil-
dynamik etwa konnen die in der Theorie im-
plizit angegebenen Schrittweitenumgebun-
gen verschwindend klein sein verglichen mit
typischen Zeitkonstanten der Probleme; bei
keplerartigen Problemen tritt dieses Phidno-
men allerdings in der Regel so nicht auf.) Mit
dieser Interpretation konnen die Autoren so-
dann eine Storungstheorie Hamiltonscher
Systeme auf die spezielle Storung durch sym-
plektische Diskretisierungen anwenden. Da-
bei gehen sie von einer duBerst transparenten
Darstellung der KAM-Theorie aus und mo-
difizieren sie geeignet, um sie im Diskreten
anwenden zu konnen. AnschlieBend spielen
sie das gleiche Spiel nochmals im komplizier-
teren Fall symmetrischer Diskretisierungen
reversibler Probleme. Dazu kénnen die Au-
toren aus dem Vollen schopfen, da diese
Thematik durch jiingste eigene Arbeiten
etabliert worden ist. Die Ubertragung auf
dissipative Storungen Hamiltonscher Syste-
me folgt schlieBlich demselben Muster —
ganz offenbar ein duBerst fruchtbarer theo-
retischer Zugang!

Dem Kapitel iiber hochoszillatorische
Differentialgleichungen kommt besondere
Bedeutung mit Blick auf die diskretisierte
Schrédingergleichung zu. Hier 6ffnet sich
ein interessantes neues Feld der Numeri-
schen Mathematik, das in den nichsten Jah-
ren gewiss noch mehr Aufmerksamkeit er-
langen wird. Das letzte Kapitel iiber Mehr-
schrittverfahren zeigt deutlich, wie schwierig
oft die Ubertragung physikalischer oder
analytischer Prinzipien bei diesem Typus
von Diskretisierung sein kann: so bedarf
schon die Frage, was symplektisch ist, in die-
sem Fall einer genaueren Uberlegung. Dem-
entsprechend ist dieses Kapitel etwas tech-
nisch und nur fiir Spezialisten geeignet.

Zusammenfassend ist zu sagen: Wie von
diesen vielgelesenen und vielzitierten Auto-
ren nicht anders erwartet, ist das Buch eine
bibliophile Kostbarkeit (zahlreiche Illustra-
tionen mit historischem Bezug), professio-
nell geschrieben (duBerste Klarheit in Dar-
stellung und Diktion) und voller mathema-
tisch interessanter Querbeziige. Wie schon in

ihren bisherigen Biichern, ist es den Autoren
auch hier wiederum gelungen, ein internatio-
nal sichtbares Standardwerk zum Thema zu
verfassen. Faszinierend ist die Breite des be-
handelten Stoffs, vom Kerngebiet Numerik
weit hinein in die Analysis und in die klassi-
sche Mechanik. Der Band eignet sich als
Grundlage von Spezialkursen der Numeri-
schen Mathematik im Hauptstudium und als
begleitendes Material fiir Standardkurse in
Numerik und Analysis.

Haitte der Rezensent noch einen Wunsch
frei gehabt, so hétte er sich gewiinscht, dass
sich die dargestellten theoretischen Konzep-
te gegen Ende des Buches weniger stark an
integrable bzw. fast-integrable Systeme an-
gelehnt hitten: solche Probleme treten zwar
in der Astronomie, aber kaum in der Moli-
kiildynamik auf; zum von den Autoren ge-
wihlten Blickwinkel passt denn auch, dass
der groBte Teil der zahlreichen illustrieren-
den numerischen Beispiele vom Typ all-
gemeines Keplerproblem ist. Sowie man die-
sen engeren Problemkreis verldsst, ergeben
sich neue zentrale Fragen, deren Diskusstion
in die Stochastik und die Ergodentheorie
fihrt — vielleicht ohnehin ein zu weites Feld.
Von diesem Blickwinkel aus hitte allerdings
die Erhaltung von Invarianten im Diskreten
eine ganz andere, zum Teil relativierte Be-
deutung.

Dies triibt natiirlich nicht den Gesamtein-
druck: ein wunderschones Buch zu einem
wichtigen modernen Gebiet der Numeri-
schen Analysis.

Berlin P. Deuflhard
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