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Vorwort

Das vorliegende Heft enthilt drei Arbeiten. Die behandelten Themen zeigen dabei die
Spannweite, die der Jahresbericht abdecken mochte. Auf der anwendungsbezogenen
Seite steht die Arbeit ,,Don’t shed tears over breaks“ von G. Winkler, O. Wittich,
V. Liebscher und A. Kempe. Hier wird die Frage behandelt: wie kann man groBe Da-
tenmengen, etwa aus dem Bereich der ,,Life Sciences”, sinnvoll interpretieren? Aus-
gangspunkt sind zwei konkrete Beispiele, eines aus der Hirnforschung, das andere aus
dem Bereich der DNA-Analyse. Die Autoren zeigen in ihrer Arbeit, wie mathematische
Methoden eingesetzt werden konnen, um solche Datenmengen so aufzubereiten, dass
eine moglichst zuverldssige Interpretation moglich wird. Solche Methoden sind essen-
tiell fur eine erfolgreiche Forschung in Biologie, Medizin und auf anderen Gebieten.

Der Beitrag von O. Deiser iiber den Multiplikationssatz der Mengenlehre behandelt
auf der anderen Seite ein Thema, das die Grundlagen der Mathematik betrifft. Anhand
der Geschichte dieses Satzes diskutiert der Autor wesentliche Entwicklungslinien der
Mengenlehre in der Zeit von ca. 1875-1945.

E. Kaniuth und G. Schlichting wiirdigen in ihrem Nachruf auf E. Thoma Leben und
Werk dieses Mathematikers.

Wie stets wird das Heft durch eine Reihe aktueller Buchbesprechungen abgerundet.

K. Hulek
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G. Winkler 0. Wittich V. Liebscher A. Kempe*

Don’t Shed Tears over Breaks

Abstract

s Keywords and Phrases: edge preserving smoothing, variational problems, epicon-
vergence, wavelet shrinkage, regularization, nonlinear filters, Potts model, Mum-
ford-Shah functional, segmentation, time-series, fractionation curves, functional
magnetic resonance imaging

®  Mathematical Subject Classification: 93E 14, 62G 08, 68 T45, 49M 20, 90C 31

This essay deals with ‘discontinuous phenomena’ in time-series. It is an introduction to,
and a brief survey of aspects concerning the concepts of segmentation into ‘smooth’
pieces on the one hand, and the complementary notion of the identification of jumps,
on the other hand. We restrict ourselves to variational approaches, both in discrete, and
in continuous time. They will define ‘filters’, with data as ‘inputs’ and minimizers of
functionals as ‘outputs’.

The main example are complexity penalized sums of squared deviations from data.
We will argue that it is an appropriate tool for the extraction of the simplest and most
basic morphological features from data. This is an attempt to interpret data from a
well-defined point of view. It is in contrast to restoration of a true signal — perhaps dis-
torted and degraded by noise — which is not in the main focus of this paper. The discus-
sion proceeds along two real-world data sets, one from brain mapping, and one from

* Partially supported by DFG Graduate Programme ‘Applied Algorithmic Mathematics’ at the
TU Miinchen and DFG grant SFB 386 at the LMU Miinchen
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functional genomics. These are typical examples, where little or no ground truth is
available. In view of the indistinct nature of such data, the whole procedure should fol-
low the principle of parsimony or sparsity.

In edge-preserving smoothing, various formally similar variational models appear
in the literature. We aim at an integral view; to this end we embed them into a para-
metric family, and study continuous dependence on parameters and sample size.

1 Prologue

In this essay, we reflect on the extraction of morphological features from data in the
natural and in the life sciences. Partially, it is a survey of variational methods and their
use in statistics; partially, it should be understood as a programme how to proceed
further in this direction, both in theory and practice. The final aim is to support the
work of natural scientists by sound interpretations of data, as well as the falsification or
modification of present, and the generation of new hypotheses.

In the classical framework, models should be built on knowledge about the mechan-
isms of, and information gained by, experiments. In the examples we have in mind, fo-
cus is on data for which there is little or no ground truth. Let us only think of living or-
ganisms or other complex biological systems. It is by far not evident whether it is rea-
sonable to believe in any (tractable) model of the underlying mechanism. Therefore, we
must go beyond the established theory of estimation and test theory. What we can do in
such cases is to ask nature simple questions, trying to extract specific features from data.
And then we can endeavour to formulate the answer in a precise, transparent, and well-
structured way as a basis for the discussion with natural scientists.

Here, we will restrict ourselves to features of time-series like persistent, steady, or
smooth behaviour on the one hand, and rapid changes, or breaks on the other hand.
For sake of brevity, the latter will be called jumps. The term jump implies that between
subsequent jumps, or inside a boundary, the signal behaves ‘smoothly’, i.e. that the rele-
vant characteristics do not change, or vary only moderately. Jump detection and identi-
fication of smooth regions are nonlocal and complementary concepts.

In this text, we will give examples of time-series from brain mapping and gene ex-
pression, and we will argue that jumps are the relevant features. But if this is our believe,
then it is natural to examine and develop filters or estimators which transform data into
representations based on jumps and segmentation. This is closely related to our second
aim. We will discuss and illustrate by way of the mentioned data and some probabilistic
models what we mean by parsimonious modelling and statistics. We will argue that par-
simony is an important concept for the explanation of such data.

1.1 Two Data Sets from Life Sciences

In many situations, we are confronted with experiments, where the (stochastic) mechan-
ism generating data essentially is unknown. This is particularly the case in a conglom-
eration of classical and new scientific disciplines like medicine, ecology, and biology, or
genomics, proteomics, metabolomics, cellomics etc., for which in the last years the fash-
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ionable name ‘life sciences’ was created. Compared to physics, which certainly is the dis-
cipline with the highest degree of mathematization among the natural sciences, there
are seldom hard mechanistic models explaining the chains and loops of causes and ef-
fects, and nearly all disciplines in the life sciences are — due to the complexity of their
questions and problems — still far from stringent mathematical formalization. Neverthe-
less there is a desire for precise mathematical formulations and arguments. In such
cases, the only way to associate data to some hidden reality is to verify or falsify rough
and basic criteria which characterize the event in question. Such criteria frequently are
based on primitive signal features. In images these may be boundaries between regions
of different intensity or texture, in time-series they may be morphological features like
modes or ‘ups and downs’, domains of monotony, or plateaus where the signal is con-
stant. A list of past work on such and related topics can be found in Section 1.4 of P. L.
Davies and A. Kovac (2001).

We start the discussion with two one-dimensional data sets, one from brain mapping
and one from functional genomics. In these examples, we expect that the observation
period can be partitioned into intervals where the underlying signal can reasonably be
represented by a constant. This is a very simple morphological feature, but the resulting
representations by step functions allow for sound biological interpretations.

The first set of data consists of time-series from functional magnetic resonance ima-
ging (fMRI) of the human brain. Please note that we selected an almost ideal example
for the illustrations in order to make our intentions clearly visible. The second type of
data are melting or fractionation curves for spots on a cDNA microchip.

Example 1.1 (fMRI Brain Data: Identification of Response Regions) In this example, the
final aim is to identify regions of increased activity in the human brain in response to
outer stimuli. Frequently, such stimuli are boxcar shaped as indicated in Fig. 1. They
may represent ‘light or sound on and off’, i.e. visual or acoustic stimuli, or tactile ones
like finger tipping on a desk. Functional magnetic resonance imaging (fMRI) exploits the
blood oxygenation level dependent (BOLD) effect which basically is a change of para-
magnetic properties caused by an increase of blood flow in response to the demand of
activated neurons for more oxygen. The degradation mechanism along the path ‘(very
complex) eye — (highly complex) visual cortex — (complicated) measuring device’ is only
partially known. Moreover, measurement is indirect, since the recorded BOLD effect is
a physiological quantity related to a local increase of blood flow and not a direct func-
tion of cortical activation.

In the present example, fMRI records for each brain voxel the BOLD effect along
70 time points. The voxel size is about 3 x 3 x 5 mm?. Typical time-series are displayed
in Fig 1. Each single value of a time-series is interpreted as a measure for the mean acti-
vation of the about 2 or 3 Millions of neurons inside the voxel. The final aim is to decide
on the basis of these time-series, whether a majority of neurons in the voxel answers to
the external stimulus or not. We claim, that a minimal requirement for the classification
of a voxel as a response to the boxcar stimulus is that it shows the same number of pla-
teaus or ‘ups and downs’ as the stimulus, irrespective of time shift, trend, scale, ‘random
noise’ etc. Hence a parsimonious approach based on significant plateaus should be ap-
propriate.
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Figure 1: A box car shaped signal representing ‘on-
off” stimuli; three types of recorded time-series from
fMRI brain mapping. Activation is unambiguous in
the right frame.

Example 1.2 (Gene Expression Experiments: Fractionation Curves) The aim of this ex-
periment is to judge the quality of cDNA chips in order to increase the reliability of con-
ventional microarray experiments.

Single stranded sections of known cDNA are put on spots of a microchip; one chip typi-
cally consists of about 20.000 spots. Each cDNA section is characterized by a finite
chain of nucleic acids, which are coded by the letters A(denine), C(ytosine), G(uanine),
and T(hymine). If further — unknown — nucleic acids are added then they tend to bind to
the target nucleic acids, where T binds to A, and G binds to C.

Hence sections of single stranded unknown cDNA tend to pair with known cDNA of si-
milar sequences. The binding energy is maximal for perfect matches like

A C T A C A G T A C C C A
T G A T G TC A TG G G T

and such a perfect match has high stability. In this case, the unknown sequence could be
identified perfectly. A main problem is cross-hybridization, which means that DNA sec-
tions also pair with DNA of nearly, but not precisely complementary sequence, for ex-
ample

A C T A|C|A G T A C|C|C A
T G A T|T|T C A T G|A|G T

A new and innovative biochemical experiment, designed to improve the quality control,
provides data which hopefully will allow to identify mismatch dissociation at low strin-
gency. It is called ‘Specificity Assessment From Fractionation Experiments’ or in short-
hand notation ‘SAFE’, see A. L. Drobyshev et al. (2003). Washing the chip repeatedly
with formamide solutions of increasing concentration removes pieces of single stranded
DNA with higher and higher binding energy. The chips are washed 29 times and fractio-
nation curves like in Fig. 2 are recorded. Basically, they represent the fraction of binding
DNA present on the spot at the different formamide concentrations. It is clear that ideal
fractionation curves decrease. The aim of the statistical analysis is to identify locations
and heights of abrupt decreases. Locations of jumps correspond to melting tempera-
tures and indicate that a certain type of cross-hybridizing cDNA was washed away.
There is still no satisfactory model which captures the relevant mechanisms.
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Figure 2: Typical fractionation curves of single spots: no specific binding, specific
binding, cross-hybrydization. Data are normalized to have the same range.

In view of such data, one may doubt about too ‘specific’ methods or too detailed models
for their analysis, and in fact we do so. Estimates rely sensitively on the validity of the
models, and therefore are not robust against even slight changes in the assumptions.
Fitting too many parameters introduces more variance despite slight decrease in bias.

Figure 3: Median plot of fractionation curves (from the
red channel): The pointwise median of 20000 fractionation
curves derived from a DNA-microchip which were ro-
bustly normalized by forcing the 3/29-quantile (approxi-
mately the median of the last 7 time points) to be 0 and the
24/29-quantile (approximately the median of the first 9
time points) to be 1.

A way out of this misery is to try a parsimonious approach. The principle of parsimony
is a philosophical matter and will be addressed in the next section. The relevant features
in Example 1.1 are successions of high and low plateaus and in Example 1.2, the posi-
tions of rapid decreases and their height. The form of typical signal representations in
the second example is suggested by physical arguments, but also by statistical ones like
the median plot in Fig. 3. It displays for each time-point the median over data in the
about 20.000 spots on a microarray. It clearly indicates that typical features of typical
signals are sharp decreases.

In summary, in both examples there is ample evidence for well-defined, and charac-
teristic, morphological features. Therefore, we try to fit piecewise constant functions to
these data. We will argue in Section 2.1 that minimizers of the Potts functional (4) with
proper hyperparameters extract step functions with few jumps. This nourishes the hope
that they will be appropriate for the explanation of data like those in the Examples 1.1
and 1.2.

Example 1.2 conceals another interesting aspect. Theory predicts that ideal fractio-
nation curves are (decreasing) superpositions of sigmoids (with sharper turns on the
lower right than on the upper left). Nevertheless, we want to see sharp breaks for the
identification of cross-hybridization, insert jumps where the underlying signal is steep.
This will be discussed in Section 1.3 below.
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1.2 Why Parsimony?

The principle of parsimony is often called Ockham’s Razor, named after the medieval
philosopher Wilhelm von Ockham, who was born about 1285 at Ockham, Surrey, and
who died about 1349 at Miinchen, Bavaria. He advanced the theory with phrases like
“What can be explained by the assumption of fewer things is vainly explained by the as-
sumption of more things.” Another formulation reads “Entia non sunt multiplicanda
sine necessitate.” (The being should not be multiplied without necessity). It remains un-
clear from these passages just what these ‘things’ really are. This becomes also evident
in the words of B. Russel (1953): “What science does, in fact, is to select the simplest for-
mula that will fit the facts. But this, quite obviously, is merely a methodological precept,
not a law of nature. If the simplest formula ceases, after a time, to be applicable, the
simplest formula that remains applicable is selected.” There remains the question what
‘simple” means. We quote from P. L. Davies (1995): “... it will often be possible to find
a model which almost reproduces the data. The simplest example is that of linear regres-
sion with a large number of explanatory variables. In such a case the interesting ques-
tion is therefore not what is the ‘correct’ number of explanatory variables but what is
the smallest number required to give an adequate model. In this case parsimony is mea-
sured by the number of coefficients but it is also possible to use other measures such as
continuity or the number of local extreme values.”

Adapting the paradigm of parsimony o the data we have in mind, the rules of the
game are as follows: Explain data by a minimal number of smooth pieces. The one who
needs least, is the winner. In other cases, one may aim at the minimal number of modes,
monotonous pieces etc. Explaining data includes a proper balance between complexity
and fidelity to data.

1.3 Jumps and Segmentations

For the present, let a signal be a real function on the unit interval U = [0, 1], or on a dis-
crete subset of U. We are interested in rapid changes of this signal, or in jumps. This is a
rather intricate matter, and we will shortly argue that naive concepts can be misleading.

For a finite stepfunction like in Fig. 4 (a), the discontinuities are natural candidates,
and it certainly does not make sense to locate jumps inside the plateaus. Therefore it is
reasonable to require the necessary condition that a step function is discontinuous at each
Jjump location. How to formulate a sufficient condition is — even for step functions — less
obvious. The naive definition as analytical discontinuities in general is problematic. In
fact, the tiny jump in Fig. 4 (a) has a quite different quality as the large one. A continu-
ous function does not have any analytical discontinuities at all.
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Figure 4: Analytical discontinuities versus an intuitive
> notion of jump.

(b) (¢) (d)

Nevertheless, one may want to interpret the steep ascent of the sigmoid function f from
Fig. 4 (b) as a jump. This is reasonable since one cannot tell / from a step function like
that in (c) from sparse samples. A natural choice for time-continuous signals are cadlag
functions which in each point are right-continuous and have limits from the left. These
can also have analytical discontinuities which are very small compared to the variation
of the signal in continuous parts like the shadowed one in Fig. 4 (d). In such situations
the identification of jumps as analytical discontinuities can be severely misleading and
not desirable. This is underlined by the data from Example 1.2, in particular Fig. 3.

In summary, a notion of jump should be non-local: a time-point should be identified
as a jump if the variation of the signal in a neighbourhood exceeds the variation in adja-
cent segments remarkably. This implies that a notion of smoothness is required if one
wants to define what a jump is. In order to capture the antagonism of jumps and
smoothness, we will write signals in terms of segmentations.

Let us start with continuous time. The first ingredient are finite subsets
{tr=0<1 <--- <t <ty =1} C U. They are the edges of the closed subintervals
I; = [ti-1,1] C U between the ; and of their interiors /7. By slight abuse of notation, we
call the set P = {I; : 1 <j <r+ 1} a partition of U. The second ingredient are tuples
fp= (i, ..., fry1) of functions f; on the J; or on the interiors /7. The single pieces f; will
be required to be in some ‘smoothness class’, for example in a space of polynomials or
in a Sobolev space W'?(I?). Each segmentation (P, fp) induces a function f on U,
which coincides on /7 with f; . The set of segmentations will be denoted by S. In general,
f is not defined on the ¢;; this will not bother us, since we will work in the L?-context
anyway. Let us call functions admitting a representation by a segmentation admissible.

The same idea works in the discrete case. We simply partition the time-set
{1,2, ... ,n}or{1/n,2/n, ... 1} into mutually disjoint discrete intervals /; and specify
the smoothness classes. A typical example are the subspaces of RY with w =
whenever the neighbours &, k& + 1 both are in /;. Other examples of smoothness classes
are given by |ux.; — uy| < 6 for some § > 0 whenever the neighbours &, k + 1 both are
in I;. We will pursue this aspect in the next sections.
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2 \Variational Approaches

Our concern is the decomposition of signals into smooth pieces, and simultaneously,
the identification of boundaries between the regions of smoothness. Moreover, data
have to be explained in a parsimonious way; in the present context this means by a mini-
mal number of jumps.

We are now going to report on variational approaches to this problem. The general
paradigm is to design a real-valued functional of signals and data, which captures and
rates the relevant signal features and, simultaneously, measures the fit of signals to data.
Usually, such functionals are a sum of a penalty or regularization term G(f') for the sig-
nal f, and a term D(g,f) measuring fidelity of the signal f to the recorded data g. The
generic functional has the form

(1) F(f) = G(f) + D(f8)-

Then — given data g — one selects a minimizer /™ of this functional, and decides that /* is
the desired ‘filter output’, or representation.

The functionals in this text will have a more special structure. Recall from Section
1.3 that each admissible signal has a representation as a (minimal) segmentation
(P, fp). We may and will identify admissible functions with their segmentations and
write fp for both. All the functionals will have a penalty for the size of the partition P,
penalties for the roughness of each f;, and penalties for their deviation from the data g|/
on /. In summary, we will consider functionals of the form

2) FE(P.fp) =~(P|-1) Z O(fi)+ > er(gll fr),

IeP IepP
with control parameters v > 0 and p > 0. If we agree that the jumps are located at the
endpoints of the intervals 7 of smoothness, then the first penalty is simply the weighted
number of jumps. This formulation allows a significant simplification of the optimiza-
tion problem, which reads

(3) min FE(P, fp) = min (v(1P| - 1) me (i(f) + er(glL. 1)) )-
(P.fp) =

Recall that F© is defined for admissible segmentations only, whereas pairs (P, (f7);cp)
on the right-hand side need not be admissible. We shall therefore require ¥ ; <
Ur+ ¥y and opus(glf U J, frur) < er(gll,f1) + os(g|J, f7) for all adjacent I,J € P
which are both not maximal. Then the minimum cannot be attained for non-admissible
segmentations, since the fusion of non-maximal intervals decreases |P| and does not
change the other terms.

Frequently, solutions of the inner optimization problem can be determined analyti-
cally, or computed with reasonable effort. Then minimization boils down to that on the
space of partitions which is considerably smaller than the original search-space. In the
discrete-time setting the problem is even reduced to the finite set of finite partitions,
which is easy to handle by dynamic programming.

Two further remarks are in order here: (1) Such functionals formally are similar to
posterior or penalized log-likelihood functions from statistics, and there is a close con-
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nection to maximum posterior estimation in Bayesian signal and image analysis.
(2) The set of jumps may be interpreted as a ‘boundary’ between smooth regions. In di-
mension one, such a boundary consists of a number of isolated points. In higher dimen-
sion, boundaries are discrete or continuous ‘manifolds’ with an own structure. One ex-
ample is regularity in real-world pictures at large scale, called ‘continuity of discontinu-
ities” in D. Marr (1982).

2.1 Time-Discrete Functionals

Let us start with time-discrete models. Suppose that data vy, ..., v, with a sample size
n € N and values v, € IR is recorded. The candidates for a representation then are
time-series uy, ..., u, € IR. Let us mention in advance, that in the examples all u € IR"
are admissible.

The simplest instance of an edge detecting functional counts each time-point k& with
ur # tger, k=1,...,n—1,as ajump location. Let J(u) denote the set of these jump lo-
cations, and |J ()| their number. The distance of a u to data v may be measured by var-
ious distances, for example by the sum of squared deviations. In this case the functional
has the form

@) P R—IR, u=(u,... up) — I @)+ lu— |

with Euclidean norm || - || on IR". The first term penalizes the number of jumps of the
representation u, and the second term rates fidelity of the representation u to data v. We
call (4) the one-dimensional time-discrete real-valued Potts functional. The original Potts
model is a Gibbs field introduced in R.B. Potts (1952) as a generalization of the well-
known Ising model from E. Ising (1925), for a binary spin system, to more than two
states. The three concepts discussed above are incorporated in this model:

(i) Jumps: Changes in the signal. In the Potts functional there are jumps where the va-
lues in two subsequent time-points differ.

(ii) Smoothness: The behaviour between two subsequent jumps. It is a consequence of
(i) that in the Potts functional a signal is constant there.

(iii ) Fidelity to data: A distance between data and signal.

The item (i) is a fairly strict notion of smoothness: in fact, the signal is ‘smooth’ only in
regions where it is constant. Note that this is parsimony at its best, since the number of
values in a smooth part is one and hence minimal. The first term in (4) penalizes the
number of jumps irrespective of their size, and the parameter v > 0 controls the degree
of smoothness.

For the general considerations, the explicit form of the data term addressed in (ii)
is irrelevant. The sum of squares could be replaced by other distances, for instance by
the sum of absolute deviations. Given the set of jumps, this term determines the con-
stant value of the signal between subsequent jumps. For the sum of squares, it is the em-
pirical mean of data values inbetween; for the sum of absolute deviations, it is an em-
pirical median. For the mathematical and the numerical analysis, on the other hand, the
special form of the data term plays an important role.
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Remark 2.1 Each minimizer «, of the Potts functional (4) is the representation with the
least number of jumps among all representations not farther away from data v than u:

i, € argmin | J(y)|, subject to [lu—v|* < [|u; — v||*.
uclR” '
In view of the tradeoff between penalty and data term this is obvious. This constraint

optimization problem depends on v only through the map v — . Note that this is an-
other indication for parsimony of the Potts functional.

Let us illustrate the concept of segmentations by way of this simple example. Let us
start from a signal u. It induces a partition of {1, ... ,n} into intervals I with u = py
for some u; € IR and each k € I. The correspondence is one-to-one and onto if the in-
tervals are maximal. If we take for each 7 the diagonal in IR’, consisting of the constant
vectors ¢ - (1, ..., 1), as the smoothness class then the correspondence between signals
and segmentations is one-to-one and onto as well. In terms of such segmentations, and
with v; = (vi),¢;, the functional (4) reads

P32 @ — R, (P, (ur)ep) — APl = 1)+ llvr = will7,

1eP
where || - ||; is Euclidean norm on IR. This is (2) with ¢; = 0.

We consider the Potts functional as the simplest variational approach to the theore-
tical study of edge preserving smoothing, and simultaneously as a parsimonious statisti-
cal model for signals, in cases were there is little ‘ground truth’.

Let us give a second — closely related — example. It is a reformulation of the elasticity
model, discussed in detail in the article A. Blake (1983) and in the monograph A. Blake
and A. Zisserman (1987); for a comprehensive view see also G. Winkler et al. (1999), G.
Winkler and V. Liebscher (2002), and the monograph G. Winkler (2003). Like the Potts
functional, this Blake-Zisserman functional can be written in several forms. The one clo-
sest to (4) reads

n—1

(5) By R — R, u=(u,...,u) — > p(thers — ) + [Ju— ]
k=1

with the truncated square function
(6) P(A) = uy(A) = min{A*/p?,7},7 > 0.

Here a difference A = |ugy1 — uy| is considered to be a jump if it is greater than
8 = 7'/ and then @(A) = ~. It treats values A greater than § like the Potts functional,
again irrespective of their size. At low values, this functional prefers signals  which are
smooth between two subsequent jump locations in the £2-sense p(A) = A?/p?.

Formally, we get the Potts functional, if we let ¢(A) =0 if A =0 and p(A) =~ if
A # 0 in (5). This shows that Blake-Zisserman functionals converge pointwise to the
Potts functionals as § — 0. They also converge in the epi- or I'-topology which even im-
plies convergence of the respective minimizers. This aspect will be addressed in Section
5.2.
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All this becomes more transparent in the language of segmentations. The discussion
is similar to that for the Potts functional. The smoothness class for each interval / is

{()es € R’ : |upyy — ux| <6, whenever k, k+1¢€I}.

If we denote the generic element by u; and the restriction of v to I by vy, the functional
becomes

(7) B®,,:S — R,

Yy sV

1 2 2
(P, () ep) — VPl =D+ > (e —we)” + Y Il —will7)
P TeP k krler Tep
To put this into the general context of (2) we observe that tl%e data term is the same as in
the Potts model and ¥;(ur) = 3 ;cp >k ks1er (Uns1 — uk) . Respective segmentations
of the same signal are displayed in Fig. 5.

Figure 5: A Potts and a Blake-Zisserman segmentation

We can easily convince ourselves, that (5) and (7) are equivalent. Equivalence of the
penalty terms is read off from the following identity. Let u be a signal and (P, up) the as-
sociated minimal segmentation and note that (u.; — uk)2 Ju? < if and only if
|uk+1 = ukl < 6. Then

n—1
> " minf(ues1 — we)?/1?, 7}
=1

=y|{k : [ugs1 — ug| > 6} +L2 Z (g1 — uk)z.

g1 —up <6

It is now clear that the right sum can be split into sums over maximal discrete intervals
on which |upi ) —ug| < 6. They define a minimal partition P with |P|—1=|{k:
|tge+1 — ux| > 6}|. This completes the proof. We will later refer to arguments like this as
the reduction principle.

The functional (7) can be interpreted as a discretisation of the Mumford-Shah func-
tional (10) which lives on continuous spaces. It will be addressed in Section 2.2.

A. Blake and A. Zisserman (1987) started their discussion from the functional (8) be-
low which is very close to (7). They work with the original signal « but introduce auxili-
ary or co-variables indicating the presence or absence of a jump. In one dimension these
are binary variables by € {0,1}, k =1,...,n— 1; the functional depends on the two
variables u = (ux) and b = (by) in the following way
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(8) ((u1,...,u,,),(b1,...,b,,_l))r—»

n—1

Gruo0,0) = (s = 10e) (1 = bi) 1 + 90 ) + = .

k=1
The variables by are indicators of jumps; there is a jump between k and k + 1 if and only
if by = 1. The configurations b € {0, 1}"“1 represent boundaries. In one dimension they
correspond to our #; in higher dimension they live on dual grids. It is clear from the
above discussion that (8) is equivalent to (5). The explicit representation of boundaries
was introduced in A. Blake and A. Zisserman (1987) since these authors considered (8)
mainly as an edge detector. The form (5) for them was a tool to develop the Graduated
Non-Convexity algorithm for minimization.

S. Geman and D. Geman (1984) started from similar functionals, but they augmen-
ted them by penalty terms for selected edge configurations; in one dimension these
could be ‘double boundaries’ like by_; = 1, b = 0, by, = 1. Most other penalized local
edge configurations from S. Geman and D. Geman (1984) — like crosses or dead ends —
do not appear in dimension one. These authors work in the Bayesian framework and let
the variables u take values in finite discrete spaces. They also experimented with var-
ious smooth cup-shaped functions instead of the square penalty. These are conceptually
much harder to grasp.

There is a close relation between edge preservation and robustness. In fact, the pen-
alty in (5) can be interpreted as a robustification of an £2-penalty — where A? is used in-
stead of p(A) — in the sense of F.R. Hampel et al. (1986). A closely related robustifica-
tion is the popular ¢'-penalty with |A|. The taut-string algorithm allows fast computa-
tions for the corresponding functionals, see P.L. Davies and A. Kovac (2001). A
theoretical study is E. Mammen and S. van de Geer (1997). A mixture of £'- and £2-pe-
nalties results from functions ¢ of the (convex) Huber type

MY im<s
®) “A)‘{zwmlfu—v it x| > 8 0 0= VK

see P.J. Huber (1981). The above discussion shows that only a strict truncation like in ¢
allows the unambiguous identification of jump locations.
The performances of some of the methods are illustrated and compared in Fig. 6.

2.2 Continuous Time and the Mumford-Shah Functional

Let us now turn to continuous time. D. Mumford and J. Shah (1985, 1989) introduced a
time-continuous functional in IR?, similar in spirit to the time-discrete functionals
above.

In the time-continuous setting, ‘data’ are functions g on the unit interval U = [0, 1].
We continue with notation from Section 1.3. If (P, fp) is a segmentation, we denote the
components of fp by f;. The smoothness classes are Sobolev spaces W'?(I°), and hence
each f; has a square integrable generalized derivative. Then, apart from technical de-
tails, one version of the Mumford-Shah functional, for parameters 7, . > 0 and a signal
g € L*(U), may be written in the form
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(10) E°, :G — R,

T B

(P, fp) — (P = 1) + 2Z/|f, )|2dt+2/1(ﬁ(r)—glm)zdt,

IeP IeP

where f] denotes the Sobolev derivative of f; on I°.

7 3 T 0 O IR S T e Ty
D 40 o0 8@ W0 o 40 w0 ®0 W 2 © © ®m W @ w W w w m

Figure 6: Intensity profiles along the horizontal line through the middle of the pupils
in a portrait: original image (upper left); typical minimizers of three functionals: sum
of squares penalty (upper right), Blake-Zisserman functional (lower left), and Potts
functional (lower right). Jumps are indicated by the almost vertical lines. Compare
the characteristic pupil shapes of the profiles, from 108 to 119 for the right eye and
175 to 185 for the left eye.

In analogy to (4) and (5), it will be convenient to define this and other functionals on
signals rather than on segmentations. Albeit the natural ranges of definition of the var-
ious functionals will be different, they all can be embedded into the space L?(U) of
square integrable functions. It contains for example all signals which are admissible for
the above segmentations. We will set the functionals to co on the nonadmissible func-
tions. We will argue in Section 4.1 that the subspace SBV,(U) of L*(U) is the natural
range of definition of the Mumford-Shah functional. It consists of functions which are
the sum of a stepfunction and of an absolutely continuous function with square-integr-
able derivative. We set

(11) E, ,:L*(U) — RU{o0},
s [ [1rof + [ (o -so)a i sesavyw)
U U
o0

otherwise
A more detailed discussion of the Mumford-Shah functional and the space SBV,(U)
will follow in Section 4. It will also reveal, that each function which minimizes (10) is a
representative of an equivalence class in L?(U) minimizing (11) and vice versa.
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2.3 All Together Now

In the last two sections, we discussed typical functionals for jump detection and jump
preserving smoothing of time-series, both in discrete and in continuous time. All these
models depend on hyperparameters — which we denoted by « and p. By means of them
we can control the number of jumps and the degree of smoothness. Time-discrete func-
tionals depend also on the sample size #n. We aim at an integral view of all these models,
in order to understand their mutual interrelations. The first step towards this aim sim-
ply is to draw up a stock list of the functionals; next we will embed them into a common
setting; and finally, we will study the space of all these functionals from a topological
point of view. Of main interest is the behaviour of minimizers as hyperparameters vary,
in particular as time-discrete functionals tend to the continuous ones. For example, the
Mumford-Shah functionals, and its relatives, are time-continuous limits of time-discrete
models for increasing sampling rate, in a sense to be made precise. This would also be a
prerequisite for the numerical optimization of the latter. In this section, we just give an
overview. Rigorous results on the asymptotics and the relations between the functionals
will be presented in Section 5.

Our strategy is to interpret all functionals in a common time-continuous setting.
Since the Mumford-Shah functional (11) is already defined on L?(U), this space is a
natural candidate. We will first embed time-discrete signals into L?(U) as finite step-
functions, and this way carry the time-discrete functionals over to functionals on
L*(U). To fix the problem of notation once and for all let us agree about the following
convention:

Let F denote a space of functions on U. If each f € F is the unique representative of
some equivalence class [f], say in some L?(U), then we write F C L?(U) and say that
f € Fisanelement of L?(U).

The mutual interrelation between the spaces IR” and L?(U) is described by the map

n 2
R" — L (U), (ul, ,u,,) — [;ukl[#“ﬁ‘)}Lz(U)’
where [ -] denotes equivalence classes, and its left inverse
k/n
[A(U) — R, g (g;:(l/n)-l/ g(i)di:1<k<n).
(k=1)/n
These maps are isomorphisms between the Euclidean spaces IR” endowed with scaled
Euclidean norm n~'/2|| - ||, and the subspaces 7, of L?>(U) spanned by the indicator
functions Ijx_i/n k/m), k=1, ... ,n—1, and 1y. For each g € L*(U), we define finite

step-functions
n—1
g = &ili1y/miim + Eylin1)/n1)-
k=1
Note that the g” are cadlag versions of the conditional expectation of g with respect to
the o-algebras A, generated by the intervals [(k — 1)/n,k/n), k=1, ... ,n—1, and
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[(n—1)/n,1] on [0, 1], and as such they are unique. The definition is in accordance with
the assumption that observations consist of means of the underlying signals over short
time-periods.

It is now straightforward to define the time-continuous version of the Blake-Zisser-
man functional. Basically, it makes sense only on .4,-measurable functions. Since each
equivalence class has a cadlag representative f/ in 7 ,, we define for each f € T, and
g € L*(U) the functional

n—1

n—1
. 2 1 2
Gl/n,m;t(f) = Zmln {n(f(k/n) _f((k - 1)/") /,U‘za’)/} +;Z (f - gn) (k/}’l)
k=1 k=0
To simplify notation, let us write e = 1/n. To extend the functional to all of L?(U) we
define for each g € L?(U) and p > 0 the functional as

2 Ge.'\/. f if f = Tn
(12) Fequ: L7(U) — RU{co}, f+— { Og( ) iffELz(U)\T,,.
Note that we introduced the sampling rate 1/# as an additional parameter. We call (12)
the scaled time-continuous Blake-Zisserman functional. This is the time-continuous
counterpart of (5). The degenerate version in the limit z — 0 is the scaled time-continu-
ous discrete Potts functional. Let J(f) be the set of discontinuities of a stepfunction
f € T,. Then the functional reads

(13) F.qp0: L*(U) — RU{oc},
n—1

Fon LWL (f =) (k/m) if feT,
k=0 P
00 if feLX(U\T,

Let us write e = 0 if we are in continuous time. Then the Mumford-Shah functional be-
comes Fo, ,. It will turn out that, as u — 0, it tends to the (time-continuous) continuous
Potts functional. If T denotes the space of all finite cadlag step functions

r—1

f= Zakl[(k—l)/r.k/r) + ard{(r—1y/n
=1

then it is given by
(14) FO‘»,,,O 2 LZ(U) — JRU {OO},

r k/r
# s WO+ [ (a—g@)d if feT
k=1 (k=1/r) .
o0 if feL2(U\T

We give now an overview of all these functionals (and another two). Once and for
all, we fix a signal g € L*(U). The parameters v > 0, x> 0 and ¢ > 0 form a subset of
IR* with closure

C={(e,y,p):ee{l/n:ne N}U{0},, u >0}
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In the first component it is discrete with an accumulation point at zero. C is a vertical
pile of two-dimensional cones pinned at the positions 1/n and 0. To most of the para-
meters 7, 41, € ~ 1/n we associated functionals F; , ,. Recall that we reserved ¢ = 0 for
time-continuous functionals. To some combinations of parameters we did not yet as-
sociate functionals; this will be done shortly to complete the picture.

The various functionals correspond to parameters according to the following list, il-
lustrated in Fig. 7:

— fory >0, x> 0, e =0 (the interior of the top-face of the cube) we have the Mum-
ford-Shah functional E, , = Fy,,, from (11),

— fory>0,u>0,e~ 1/n> 0 (the interior of the cube) we have the scaled Blake-Zis-
serman functional F , , from (12),

— fory>0, =0, e~ 1/n>0 (the interior of the right front face) we have the dis-
crete scaled Potts functional F; o from (13),

— forvy >0, u =0, e =0 (the intersection of the right front and the top face excluding
the origin) we have the continuous scaled Potts functional F , o from (14)

— for the interior of the left front face including the right boundary, but excluding the
origin, we have the discretized L>-distance in the sense

Fooo) =3 ) (2 - &)’

k=1

— for the upper boundary of the left front face including the origin, we simply have the
L?-distance

Foo,u(f) = llg = fII*.

Note that the last functional does not depend on . We will argue in Section 5 that the
map (e,7, p) — F.,, , is continuous, in a suitable topology, on the whole range of para-
meters, including the extreme cases. This is not only a beautiful mathematical result,
but of practical importance: Denote the set of minimizers of F. , , by ArgMin(e,, u).
This set is in general not a singleton. We can show that the map (e,v, u) —
ArgMin(e, ~, p) is continuous as well.

3 Time-Discrete Potts Functionals

We will now describe an example for the statistical analysis and segmentation of data
like those presented in Section 1.1. We adopt the simplest variational approach based
on Potts functionals. We will first report on some — from the mathematical point of view
— typical rigorous results, including existence and uniqueness theorems, a real-time al-
gorithm for the computation of minimizers, results about continuous dependence on
parameters, and — as a straightforward consequence — first consistency results. Then we
discuss the crucial problem of model choice, or choice of hyperparameters; we start with
the classical context, and then suggest new criteria like ‘interval estimators’. Finally, we
will illustrate the performance of the classical and of the new criteria in practice.
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Mumford-Shah

b o - (0,0.0)
| continuous Potts

discretized _ Figure 7: Symbolic display of mod-
[-distance ™ . discrete Potts el classes in terms of their hyper-

2y Biake Zissernmn parameters y and +, and the sam-
i~ pling rate e ~ 1/n

3.1 Rigorous Results

We present now some rigorous results for the Potts filter to be defined shortly. To be
consistent, we formulate them for one time dimension only. Some results like the Theo-
rems 3.1 and 3.2 hold mutatis mutandis in all finite dimensions. Given data v € IR”, and
a hyperparameter v > 0, a “filter output’ &, (v) is defined as a signal which minimizes
the Potts functional P, , from (4). The next two thorems are taken from A. Kempe
(2004) and O. Wittich et al. (2005). Let us start with the basic analytical result. In gener-
al, @,(v) is not unique; but fortunately the following result guarantees uniqueness al-
most surely:

Theorem 3.1 For each v € IR", a minimizer of the functional P., in (4) exists. For each
single ~, it is unique outside a Lebesgue nullset of signals v. In particular, the filter output
9. (v) is well-defined Lebesgue almost surely, and for each Borel measure on IR" with a
Lebesgue density, and each v > 0, it is unique for almost all data v.

The exceptional set of data is a finite union of manifolds of codimension one, and hence
it is of first Baire category too.

In view of Theorem 3.1, a Potts estimator or Potts filter can be defined for Lebesgue
almost all v by

(15) &,(v) = arginin Ps(6).

We are going now to report on some of its essential properties. The first one states that
the range of hyperparameters  can be partitioned into intervals, on which &.(v) does
not change. In the following, we suppress the dependence of v on the hyperparameters
~. Dependence on hyperparameters is illustrated in Fig. 8.

Theorem 3.2 For Lebesgue almost all data v there are an integer k(v), 1 < k(v) <n -2,
and hyperparameters 0 = o < 1 (v) < --- < Y()(V) < s1 = 0o such that

(i) &,(v) is unique for and does not depend on the hyperparameters v; < v < ;1.
@) &,(v) =vfory <.
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(iii) ®.(v) is a constant signal for each vy > .

(iv) The number of jumps of ®.(v) on the intervals (vy;,;+1) decreases in j.

(v) Foreach 0 < j <k, the functional Pﬂ,j._,v has precisely the two minimizers belonging to
the y-intervals adjacent to ;.

>y = 00
0 251 72 Yk—1 Yk
data v more jumps > 1 jumps representation constant

Figure 8: Intervals on which &.(v) does not change. Terms like ‘more jumps’ refer
to the approach from right to left.

Relevant simulations can only be carried out with exact optimization. Algorithms were
sketched in G. Winkler and V. Liebscher (2002).

Theorem 3.3 For each v > 0, there is an algorithm to compute a minimizer of P, in
time complexity O(n?). There is an algorithm to compute minimizers of P.,, for all
7y € (0, 00) simultaneously, in time complexity O(n?).

The Potts filter has pleasant properties. For example, it locates jumps precisely, and
does not insert additional ones. Let J(v) be the set of all k£ with vy # viy1.

Theorem 3.4 J(&.(v)) C J(v) for all data v and all hyperparameters -y.

Iteration of the Potts filter stops after one single step which means that the filter is idem-
potent, or more precisely, that &, 0 &, = &,.

Theorem 3.5 The Potts filter is idempotent. In particular, u is a fixed point of ., if and
only ifu = &.(v) for some v € IR".

@., shares this property with the morphological filters from J. Serra (1982, 1988), see G.
Winkler and V. Liebscher (2002). It is not a morphological filter in the strict sense of J.
Serra (1982, 1988), since it is not order-preserving. Let us finish this section with some
results on continuity and stability. Suppose that for a pair (v*,v*) the filter output
®.+(v*) is unique. Then Theorem 3.2 tells us that v +— &, (v*) does not change in a
whole open interval around +*. We even have joint continuity in y and v.

Theorem 3.6 Suppose that for a pair (v*,v*) the filter output . (v*) is unique. Then
there is a neighbourhood of (v*,v*) on which @.(v) exists and is unique, and moreover,
the map (vy,v) +— @,(v) is continuous.

This has a consequence important in practice.

Theorem 3.7 Suppose that for a pair (v*,v*) the filter output ®.«(v*) is unique. Suppose
further that v, — 7w, and that Y,, and Y, are random signals with Y,, — Y in prob-
ability, or almost surely. Then ., (Y,,) — P, (Y) in probability, and almost surely,
respectively.

We are not interested in a ‘restoration’ but in feature extraction. This is reflected by the
theorem since we recover @, (Y )—and not Y —in the limit.
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Figure 9: The first four and two later steps of a scan through v — &,(v) for fMRI
brain data along decreasing hyperparameters . Dots indicate data v. Upper rights
is desired, cf. the display of stimulus in Fig. 1.

Example 3.1 If u,, is degraded by random noise ¢,, according to Y, = u + &,,, and
noise ¢,, tends to zero, then ¢.(Y,,) tends to & (ux).

Statistical consistency of the estimators defined by the minimizers of Potts functionals
is studied in L. Boysen et al. (2005). The Theorems 3.4 and 3.5 are from G. Winkler and
V. Liebscher (2002).

3.2 Equivariance

Scanning the filter outputs &, (v) along the hyperparameter v, in view of Theorem 3.2,
is illustrated in the Figures 9 and 10 for the brain and gene expression data. Such a scan
contains the complete potential of the Potts functional for data v. There remains the
crucial problem to decide on the right hyperparameter. Visual inspection of the plots re-
veals clearly the proper segmentations. On the other hand, it is hard to find a universal
unsupervised method for the identification of hyperparameters.

Before we discuss examples of such methods, let us comment on invariance of
jumps. The notion of a jump is genuinely non-local, since it compares the variation of a
signal in one region with the variation in a larger one. We want to identify a time-point
as a jump or change-point whenever the change in intensity near the point is consider-
ably larger than the variation in a larger surrounding. This relation should not be af-
fected by a change of scale since it increases or decreases both, the variation around and
off the jump point, by the same factor. Thus, a jump map, which assigns to each signal /'
aset J(f) C U of jump locations should be invariant with respect to a change of scale.
The latter is induced by the action of the affine group

A={4,c  R— R:4, . x=ax+c, ac R\{0},ce R}
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On signals f, it is pointwise given by A, f () := af (t) + ¢. A jump map J will be called
invariant under affine scale changes, if J(Af) = J(f) for all signals f and every 4 € A.

Remark 3.1 Scale invariance over the whole range of data is not always appropriate in
practice. For example, very weak recorded signals may correspond to various failures in
the experiment: in a microarray experiment the spotter may miss a spot, evaluation may
be wrong, or there is no binding of cDNA. Then no meaningful information can be ex-
tracted. An example of such a signal is contrasted to meaningful ones on different scales
in Fig. 11. It should be treated in a different way than those of larger range. One can sin-
gle out such data by preprocessing, and on the rest equivariant jump detection makes
sense.

For situations like those sketched in Section 1.1, equivariance definitely is necessary.
There is an enormous number of different time-series — about 10° for the brain data and
about 2 x 10* for microarrays — with a wide range of scales. Because of this high
throughput, automatic evaluation must rely on the same scheme for all time-series to be
processed.

In summary, it is worthwhile to reflect on scale invariant jump maps. We illustrate the
concept by the following simple example:

Example 3.2 Let f be a cadlag function and set

A(n) = f(5) = f(t=)l.
On the space of finite step functions the jump map Jo(f) = {7 € U : A(¢) > 0} is A-in-
variant, whereas J,(f) = {t € U : A(¢) > 7} with a global threshold 7 > 0 is not. The
adaptive threshold

Ly(f)={te U: A@) > 1V()}, V(f) = sup | f(1) = f(7)],

t,/eU

It > gemma > 17662720 7000223 » gumma > 17662720 176002 » qumma » 2808223 96808.125 » gamma - 176802

o

P

w0
0

T
=

v Figure 10: Scanning &.(v) along decreas-

! ing hyperparameters « for geneexpression

— T b / data; steps 1, 2, 3,4, 7, and 11 of the scan
i i displayed. Dots indicate data v.
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Figure 11: Strong and weak signals from gene expression: cross-hybridization (two
jumps) on large and small scale, ‘noise’ on very small scale.

depends on the global range of the signal and is A-invariant. This implies in particular
that

awﬂ=14ﬁ%%ﬁ)

where m(f) may be some normalization like the midrange m = (max, f(x)+
min, f(x))/2 or a mean is an invariant jump map. Hence application of J, y amounts
to a standardization of the signal, followed by hard thresholding J.

It is evident, that step functions will play a special role. Since they are constant between
consecutive points of discontinuity, jumps can only be located at analytical discontinu-
1ties.

In view of the Potts functional, let us consider the simple case where each analytical
discontinuity of a step function defines a jump. In terms of Example 3.2 this corre-
sponds to the jump map Jy(¢) = disc(t), where ¢ is a finite step function, and disc(t) the
set of its discontinuities. Then for each estimator @ with values in the space of finite step
functions the jump map J(f) = Jo(@(f)) is A-invariant, if the filter is A-equivariant,
1.e. P(Af) = AD(f) forall 4 € A and all signals /. This follows readily from

J(Af) = Jo(8(4f)) = disc(4 8(f)) = Jo(2(S)) = J (/).

This suggests that in this case we should watch out for filters which transform signals to
step functions, and which are A-equivariant.

By way of example, let us discuss the Potts filters v — &, (v) for parameters y > 0,
introduced in (15). These maps are not A-equivariant; in fact, a simple calculation
shows

(16) @y(av+c)=ad ja(v)+ec

Normalization is a standard procedure to enforce equivariance of filters.

Example 3.3 Choose vy > 0 and let O(f) := {Af : A € A} be the orbit of a signal f un-
der the A-action. Then the section

w) =L e o)

through the orbits, with m and V' from Example 3.2 leads to the equivariant filter

O(f) = V()2 () +m(f))-
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In this example nothing was said about . It has still to be determined properly on the
basis of external criteria. This means that the crucial problem is just shifted but not
solved.

Remark 3.2 By external criteria we mean something like testing the residuals for being
noise, like the run- or wavelet-coefficient criteria in P.L. Davies and A. Kovac (2001).
Such criteria may be meaningful, for example in denoising, where the residuals defi-
nitely should be noise. For the data we discuss in this essay they are not. In fact, if we
want to extract a Heaviside function from a noisy sigmoid, then we cannot expect the
residuals to be noise.

We want to choose 7o on the basis of information contained in the map v — &,(v).
Therefore, we shall introduce equivariant data-driven parameter choices. This amounts
to the construction of maps I' : R” — IR, v — I'(v) (with IR, = [0, 00)) which assign
to each data set v a hyperparameter I'(v). In combination with Potts filters, a sufficient
condition for equivariance reads:

Lemma 3.1 If $p,)(v) = & Fav+e) /aZ(") thenv — ®p,)(v) is A-equivariant.

This is a straightforward calculation using (16) and the assumption.

3.3 Interval Criteria

There is a host of model selection criteria like the classical ones from H. Akaike (1974)
and G. Schwarz (1978). They provide rules to select (and reduce) the parameter dimen-
sion for a family of parametric models. It is easy to verify that the Akaike as well as the
Schwarz information criterion provide equivariant Potts filters. Applied to the brain
data, both methods more or less returned data, see Fig. 12, third frame.

Figure 12: Brain data: stimulus, data, &.(v) for hyperparameter from Akaike’s and
Schwarz’ information criterion and longest interval from Section 3.3. The latter
gives a decent estimate whereas the former basically return data.

All our suggestions or attempts to find equivariant data-driven choices of hyperpara-
meters are based on Theorem 3.2. Since the minimizers of the Potts functional do not
change over entire intervals of y-values, we may decide on estimators depending only
on these intervals and not on single values of 7. Such interval criteria use the complete
information about the map v — &, (f). Even morphological features of the outcomes
may be incorporated.

A first naive idea is to aim at stability under changes of the hyperparameter v and of
data v. For this reason, and in view of the continuity results in Section 3.1, we tried
®.+(yy(v) with (an arbitrary) v*(v) from the longest interval of ~v-values between 0 and
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V() (v) from Theorem 3.2. For the brain data from Example 1.1, this simple method
worked. The outcome is contrasted to those of Akaike’s and Schwarz’ information cri-
teria in Fig. 12. Another — and different — example are the gene expression data. There
the crucial restriction is that the representation should be decreasing. With parsimony
in mind, we chose — starting from the right — the last interval before the first nondecreas-
ing estimate. Fig. 13 displays some of these estimates. The morphological information
of monotony is not fully exploited by this method and further work on this topic has to
be done.

The motivation for interval criteria is twofold: First of all, they yield equivariant fil-
ter maps as required for the construction of invariant jump maps. This will be shown be-
low. To understand the second feature of interval criteria recall from Example 3.3 that
it is easy to construct equivariant Potts filters by normalization of data. On the other
hand, nothing is gained by normalization, since the hyperparameter still has to be deter-
mined. In case of the brain data, inspection of the results for the model selection criteria
shows clearly that equivariance is only a minimal requirement. What we really want is a
parameter choice, which relies only on the structure of the functionals and on data.

We are going to show now that the ‘longest interval filter’ is equivariant. Let
G(v) ={0,71(v), ... ;% (v)}. We choose a hyperparameter from the longest y-inter-
val; to be definite let I';(v) be the middle point of the longest interval between 0 and
Vi(v) (v), or, formally (with vo(v) = 0):

<y (v) O<isk(y

0 if Gv)=190
I)(v) =4 argmax min )|’y —(v)] otherwise -

Proofs for the next results can be found in A. Kempe (2004).

Proposition 3.1 &, is A-equivariant. In particular, the associated jump map is A-invar-
iant.

In the next example — related to the gene expression data — we impose the additional re-
striction that &.(v) is monotonically decreasing. Tracking &, (v) from right to left, we
find ~-intervals on which @.(v) is monotonically decreasing and such where it is not. If
we desire a monotone filter output, we take the (middle point of the) last interval in ser-
ies where @, (v) decreases. This defines a filter @r,(v(v). Since the map v — av + ¢ for
a > 0 preserves monotony the considerations from Example 3.2 apply and we can state

Proposition 3.2 &, is A-equivariant. In particular, the associated jump map is A-invar-
iant.

Figure 13: Estimates with leftmost y-interval with decreasing &, (v): gene data.
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4 Time-Continuous Signals and Revisited

For us, the Mumford-Shah functional is tke typical example of variational approaches
to edge preserving smoothing in the time-continuous setting. Therefore, it deserves a
more detailed investigation. The general form as a combination of a data term, a pen-
alty for the number of breaks, and a control term for smoothness clearly is the first, nat-
ural, choice, in particular in view of the time-discrete analogues, and therefore out of
question. On the other hand, there are subtle questions about the notion of admissible
signals, and in consequence, about the range of definition. Due to its simplicity, the
one-dimensional setting is a perfect playground for such discussions.

4.1 Spaces of Signals

In this section, we discuss again suitable notions of signals, justify the segmentations in-
troduced in Sections 1.3 and 2.2, and bridge the gap between segmentations and the
function spaces used in most of the literature. We continue from Section 2.2.

Let us first append the basics of the theory underlying the discussion in Section 2.2.
Let I be a compact interval on the real line. Recall that a locally integrable function
h € L. (I°) is k times differentiable in the generalized sense, if there is a locally integrable
function 4%¥) such that

k
1) ) g = (21 [ AP (x)g(x) dx
I° dx J°
for every infinitely often differentiable test function ¢ on I° with compact support. Note
that all 1), [ < k, are square-integrable if 4¥) is square integrable. The generalized deri-
vative is defined only almost surely.

Denote by W*2(I°) the Hilbert-Sobolev space of functions with k generalized deri-
vatives and for which the k”* generalized derivative is square integrable. By the Sobolev
Embedding Theorem, we have W'2(I°) C Cy(I) and even W?*(1°) C C'(I) in the sense
that in every equivalence class of functions in the respective Sobolev space there is a re-
presentative which extends continuously to the closure. In Section 2.2, the spaces
W12(I°) were used as smoothness classes. This choice will be justified shortly from a
different point of view.

Recall that U denotes the unit interval [0, 1]. At the first sight, the space BV (U) of
functions with finite total variation seems to be the natural object. Plainly we have
BV (U) c L?(U) for every p > 0. Let us have a closer look at the functions /' € BV (U).
Each of them is regular, i.e. it has everywhere left and right limits f(b,) and f(b-), cf.
H.v. Weizsicker and G. Winkler (1990), Proposition 5.1.8. It induces a finite signed
measure m on the Borel-o-field on U by the relation

m((aab]) :f(b+) _f(a—)a a<belRR.
A cadlag cumulative distribution function
Gr(t) =m((—o0,1]),1 € R
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is associated to f it is unique due to the normalization Gy(—o0) = 0. The signed mea-
sures m have unique decompositions into three components, namely

m=mg + m, + my,

where m, is the regular part, admitting a Lebesgue density, where my is the singular-dis-
crete part, consisting of a discrete measure, and where mi; is the singular-continuous part,
living on a Lebesgue nullset, but without discrete component. One reference is M. Reed
and B. Simon (1980), Theorem I.14, page 22, and the preceding definition. Clearly, the
support J,(f) of the discrete measure m,; will play the role of the jump set of /. A major
question in this context is whether the optimization problem for the Mumford-Shah
functional is well-posed. For the version defined in (17) below the problem lies in the
singular-continuous component, see A. Chambolle (2000), page 27. Hence we exclude
it, and set

SBV(U) = {f € BV(U) : my = 0}.

A member of this class is called function of special bounded variation. With this defini-
tion we meet the setting adopted in large parts of the literature. Note that a SBV (U)-
function can be written as the sum of a continuous and a (not necessarily cadlag) step-
function. It follows easily from Proposition 4.1 below that it has a cadlag version.

Let us now establish the connection to the Sobolev segmentations introduced in Sec-
tion 2.2 before (10). To this end, we write the functions induced by Sobolev segmenta-
tions in closed form and call a function f a piecewise (k, p)-Sobolev function if there is a
(possibly countable) cadlag stepfunction ¢ such that /' — ¢ € W*#(I°). Let us further call
a function f € SBV (I°) with " € L?(1°) of p-special bounded variation and denote the
space of these functions by SBV,(1°), cf. G. Dal Maso (1993).

Proposition 4.1 For each piecewise (1,2)-Sobolev function [ there is f € SBV,(I°) with
f = f Lebesgue almost everywhere, and vice versa.

This shows that the Definitions 10, based on segmentations, and (11) on LZ(U) from
Section 1.3 are equivalent.

4.2 The Mumford-Shah Functional

As has been shown, the definition (11) of the Mumford-Shah functional makes sense.
Let us formally state

Definition 4.1 The one dimensional Mumford-Shah functional with parameters ji,~v > 0
and g € L*(U) is given by

(17) E,,:L*(U) — RU{cc},
P RO / (£(1) - g(0))? +7j§ fiOPde if feSBVAU)

(%) otherwise
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One of the first and main problems is the mere existence of a minimizer. In two and
higher dimension this is an intricate problem. Present solutions rely on special function
spaces which are chosen with the explicit aim to guarantee a minimum. In one dimen-
sion the situation is much more pleasant.

Theorem 4.1 For all g € L*(U) the Mumford-Shah functional (17) has a minimizer.
Each minimizer has a cadlag representative.

V. Liebscher et al. (2004) contains a proof. In general, minimizers are not unique.

Remark 4.1 Let us briefly comment on the scales of hyperparameters. Consider the ac-
tion of S = R, x IR, on L?(U) given by

(a,d)f(x) = af (dx).
Then

a/Eu/az‘v/u’-(a-a/)g((a’ d)f) = Euy.e(f)-

This means that fixing parameters p and + simply amounts to the choice of a special x-
and y-scale for signals in L*(U).

5 The Space of Functionals

In Section 2.3 we gave an overview of various functionals in discrete and continuous
time which were of similar form. To study their relation, and their behaviour in depen-
dence of hyperparameters, as well as the asymptotics of time-discrete functionals as the
sampling rate increases, suitable topological concepts are needed. A main requirement
is that they should, under natural conditions, yield continuous dependence of minimi-
zers on hyperparameters. For the numerical analysis, the notion of I'-convergence is
frequently adopted, which is a purely sequential approach. We prefer the topological
concept of epiconvergence. It is based on the hit-and-miss topology on closed subsets of
L*(U) x IR; restricted to the epigraphs of lower semicontinuous functionals it is called
the epitopology. Continuous dependence in the epitopology of functionals and minimi-
zers will be addressed in Section 5.2.

5.1 Epiconvergence, Semicontinuity, and /-Convergence

A function f on X taking values in R = IR U {—oc, oo} is called a numerical function. A
numerical function f is called lower semicontinuous (1.s.c.) if all sets { f(x) > A}, A € IR,
are open. The epigraph of f is the set

Af) ={(x,y) e X x R:y > f(x)}.

Semi-continuity of a functional on X is equivalent to the closedness of its epigraph in
X x IR, endowed with the product topology of G and the usual topology on IR.
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Proposition 5.1 A numerical function is lower semi-continuous if and only if its epigraph is
closed.

For a proof see K.T. Rockafellar (1996) or G. Matheron (1975).

Recall the functionals F. , , introduced in Section 2.3 (and in Section 4.2). To sim-
plify notation let IL. = {1/n : n € IN} U {0} endowed with its natural topology.

Theorem 5.1 All functionals Fy, : L>(U) — IR, h € IL x IR2+, are lower semicontinuous.

A proofis given in V. Liebscher et al. (2004). Since lower semicontinuous functions are
characterized by their (closed) epigraphs we need a suitable topology on the set of
closed subsets of X = X x IR. The following definitions do not rely on the product
structure of X. Let hence again (X,G) be a topological space with the topology G of
open subsets. It is convenient to start with two topologies on the set F(X) = F of
closed subsets of X. Denote the set of all compact subsets of X by K.

Definition 5.1 Let T, and T* denote the topologies on F which are generated by the fa-
milies

T={{4eF:AnG£0}:GeG}, T, ={{d€F:AnK=0}:K €K},
respectively. The hit-and-miss topology T is the topology generated by T, U .
The topologies T, and T* may be interpreted as the hir- and miss-topologies on F with
hit-sets in T and miss-sets in T, respectively. By definition, a sequence (A4y) K>y I F
converges to 4 € F with respect to T, if and only if (i) GNA4 # 0, G € G, implies
GN Ay # 0 eventually. Similarly, (4;),-, converges to 4 in T* if and only if (ii)
KNA=0, K€K, implies KN Ay = () eventually. We have convergence in ¥ if and
only if both (i) and (ii) hold. In view of Proposition 5.1, the following definition makes
sense now:

Definition 5.2 Let us call the restriction of the T-topology on F to the set
Ay ={A) CXxR:f: X - R, f Ls.c}

of epigraphs the epitopology. A map h — F), from a topological space into the space of
Ls.c. functions on X will be called epicontinuous if the map h — A(F},) is continuous for
the epitopology.

A sequential version is known as I'-convergence, cf. G. Dal Maso (1993). Let now
ArgMin F denote the set of minimizers of a functional F on X.

Lemma 5.1 IfF : X — R is lower semicontinuous then ArgMin F is closed.

The proof is an easy exercise. The following ‘semicontinuity’ assertion makes sense by
Lemma 5.1 and holds without further hypotheses.

Theorem 5.2 The map
F D Ay — F, A(F) — ArgMin F
is continuous with respect to the T-topology on Ay and T* on F(X).

Note that T* in general does not enjoy the Hausdorff separation property.
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5.2 Joint Gontinuity in Hyperparameters

The last topic in this paper is joint continuity of the functionals F; , , in all the para-
meters €, v and p, symbolically displayed in Fig. 7. Another question is how this carries
over to their (sets of) minimizers. This fulfills the promise given in Section 2.3. Proofs of
the main results are given in V. Liebscher et al. (2004).

Theorem 5.3 Let g € L>(U). The map
IL x IR+ X IR+ = IR7 (67’% ,U«) — FE.’y./l.'
is epicontinuous.

The proof is divided into several parts according to the list in Section 2.3. It is given in

V. Liebscher et al. (2004). For some specific examples in the purely time-continuous set-
ting see G. Alberti (2000).
Concerning minimization, let us report the following results:

Theorem 5.4 Each functional F , , attains its minimum.
Theorem 5.3 in combination with Theorem 5.2 implies:
Theorem 5.5 Let g € L*(U). The map

L x R, x R, — F(L*(U)),(&,7, ) — ArgMin F., ,.
is continuous with respect to the miss topology T* on F(L*(U)).
A more concrete result in this spirit is the following one:

Theorem 5.6 Let iy € IL x ]Ri, k > 1, and suppose that the sequence (hy),, converges
toh eIl x IRi. Let further for each k > 1 the function f;} be any minimizers of the func-
tional Fy, . Then the following hold:

(i) Theset {f; : k > 1} isrelatively compact in L*(U).
(ii) The limit of each L*(U)-convergent subsequence of ( f;;) minimizes F.

The situation is particularly pleasant if F, has only one single minimizer.

Corollary 5.1 Suppose that F, has one and only one minimizer [*. Then any sequence
(fi i1 With fi € ArgMin F), converges to f* in LA(U).

With this statement we conclude the discussion of continuous dependence of minimizers
on parameters and the sampling rate, and also this essay. The discussion is continued in
the forthcoming papers L. Boysen et al. (2005) and V. Liebscher et al. (2004).

Summary and Final Remarks

This essay had essentially three aims: Firstly, to give an integral view over a variety of
variational approaches to signal analysis. Motivated by discrete-time models we argued
that time-continuous models must be incorporated in order to describe the ‘closure’ of
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the set of discrete-time models. Conversely, the transition from continuous to discrete
time justifies the notion of smoothness in discrete time, captured by the penalty.

Secondly, we wanted to exemplify by way of the simplest of these models the first
steps of a rigorous and in parts complete mathematical analysis.

The third aim was to establish the connection to relevant real-world data of a special
kind. The main two properties of these data are that they consist of relatively short
time-series, and that the relevant features are of qualitative, or more precisely, morpho-
logical nature.

Therefore the classical justifications like validity of model assumptions or asympto-
tics are idle in these cases, and we must resort to other, more basic criteria. A first one is
equivariance, which for us was a partial justification of the interval estimators for the
Potts functional. Plainly, this can only be the starting point for future discussions and
investigations.

Let us finally mention, that closely related variational models appear in various dis-
guises. Let us give an example from wavelet theory, cf. A. Chambolle et al. (1998).

Example 5.1 Consider a function f € L?(IR) with a wavelet decomposition

F=) e =Y itk Gult) =29t —k), j ke,
J kel J kel
where 1) € L*(IR) is a ‘mother wavelet’ such that {¢);  : j, k € Z} is an orthonormal ba-
sis of L2(IR). Soft Wavelet Thresholding amounts to the operation

Grk—A if ¢ > A
(Zﬁ,\(Cj, k) = 0 if |C,/\| < A, A>0.
Gi+A i ¢ < =X

on the wavelet-coefficients and the subsequent transformation f +— f =
> kem PA(¢j. k)Y k- Because of vanishing first moments, large coefficients correspond
to steep parts of f, this can be used for edge preserving smoothing. The shrinkage
¢j.k — ¢k £ A removes further noise related to the surviving coefficients. Then f solves
the variational problem

(18) f = argmin C|ig||{ + ||/ — gl3,
¢€L?(R)

where ||g||{"is the wavelet dependent ¢'-norm on the coefficients ((g, % x)). Under stan-
dard conditions on ¢ this norm is equivalent to the usual Besov norm. It generalizes the
W!2.notion of smoothness.
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1 Einfiihrung

Der Multiplikationssatz der Mengenlehre lautet:
Ist M eine unendliche Menge, so existiert eine Bijektion zwischen M x M und M.

Dieser Satz bedarf aufgrund seiner iiberzeugend schlichten Antwort auf ein sehr natiirli-
ches und zundchst schwieriges Problem keinerlei WerbemaBnahmen, jedoch ist das In-
teresse, das dem Satz zukommt, vielgestaltig: Von der mengentheoretischen Sternwarte
aus ist der Satz Teil des Ergebnisses, daf3 alle kanonischen arithmetischen Operationen
mit Michtigkeiten letztendlich trivial sind mit Ausnahme der Exponentiation, deren
Natur dafiir um so schwerer zu ergriinden ist. Geschichtlich trug der Spezialfall des Sat-
zes fiir die reellen Zahlen — die Existenz einer Bijektion zwischen der Ebene und der Ge-
raden —, viel zur Fundierung der Analysis bei, die sich gegen Ende des 19. und zu An-
fang des 20. Jahrhunderts vollzog. Weiter spiegelt die sich {iber drei Jahrzehnte erstrek-
kende Geschichte des allgemeinen mengentheoretischen Satzes den gesellschaftlichen
Wachstum einer Theorie wieder, die aus einer schopferischen Einzelleistung hervorging,
und dann etwas frithreif als blue chip der mathematischen Borse dastand und ihren
Crash ausloste. Was fiir die gesamte Mengenlehre gilt, gilt hier speziell fiir ein einzelnes
Resultat: Georg Cantor geht den Weg zunichst ganz alleine, und 146t dabei geniigend
Raum fiir seine Epigonen iibrig, seine Ideen nicht nur weiterzuentwickeln, sondern fiir
sich neu zu ordnen und zu interpretieren. Seine schwindende mathematische Kraft ge-
gen Ende des 19. Jahrhunderts markiert eine Unstetigkeitsstelle in der Entwicklung des
Gebiets, die Tradierung seiner Intuition und seines Wissens gelingt nur bruchstiickhaft.
Seine Einsichten etwa iiber die Paradoxien der ,,absolut unendlichen Vielheiten®, der
»groen® echten Klassen im Gegensatz zu den ,,kleinen“ Mengen sind heute nur briefli-
chen Spuren folgend zu rekonstruieren. Daf3 Cantor einen Beweis des Multiplikations-
satzes gesehen hat, ist nicht einmal handschriftlich dokumentiert, sondern nur einer Be-
merkung von Felix Bernstein in seiner Dissertation von 1901 zu entnehmen, die dann ei-
nige Jahre lang in nebelhafter Weise verwendet wird.

Im Jahre 1905 veroffentlichte ein bis heute obskurer Herr A. E. Harward, angeregt
durch nichts als Russells ,,Principles of Mathematics* und zwei nicht gerade glinzende
Artikel von Philip Jourdain einen ersten vollstindigen Beweis, der von der Mathemati-
kergilde nicht wahrgenommen wurde. Harward war Verwaltungsangestellter in Indien,
und gibt der ganzen Geschichte eine kuriose und exotische Note. Er skizziert in einem
Anhang seiner Arbeit zudem noch einen zweiten Beweis, den Hausdorff erst 1914 wie-
derentdecken wird, und der im wesentlichen den heute Uiblichen darstellt. Innerhalb der
professionellen Mathematik gelingt Gerhard Hessenberg unabhiangig von Harward un-
gefédhr zeitgleich ein weiterer Beweis, der 1906 in seinem Lehrbuch ,,Grundbegriffe der
Mengenlehre* erscheint, und seither als erster Beweis des Satzes zitiert wird.

Ein wichtiger Satz der Mengenlehre, der zudem mit dem heute zentralen Begriff der
Regularitdt von Kardinalzahlen in enger Beziehung steht, blieb durch einen mathemati-
schen Generationenwechsel, gepaart mit der Nichtbeachtung eines Auenseiters, an der
Jourdain nicht unschuldig ist, schatzungsweise ein ganzes Jahrzehnt verdeckt. Das Un-
gliick der frithen Mengenlehre ist die mangelnde Zentrumsbildung um Cantor in den
80er und 90er Jahren, ihr Gliick die Wiederaufnahme seiner Ideen in zwei vollig ver-
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schiedenen Richtungen durch Ernst Zermelo und Felix Hausdorff nach dem Jahrhun-
dertwechsel, die in eine Zeit des allgemeinen Interesses an mathematischen Grundlagen-
fragen fiel.

Wir diskutieren im folgenden ausfiihrlich die Geschichte des Satzes, kénnen die fiinf darin eine
Rolle spielenden Beweise aber aufgrund physikalischer Limitationen nur andeuten. Den an voll-
stdndigen mathematischen Beweisen interessierten Leser miissen wir auf die modernen Kommuni-
kationsmittel verweisen: Auf der Homepage des Autors findet sich eine ldngere Version der Arbeit,
die vollstindige Beweise enthélt. Es wurde versucht, sie so zu prisentieren, daB sie nach Moglich-
keit jedem Mathematiker zugénglich sind.

Weiter kann auch auf die Geschichte des Dimensionsbegriffs hier nicht genauer eingegangen
werden; siehe hierzu [Katetov / Simon 1997] fiir eine eingehende Darstellung und weitere Literatur.

2 Notationen und zentrale mengentheoretische Sitze

Wir referieren kurz die wichtigsten Bausteine der Méchtigkeitstheorie und der Theorie
der Wohlordnungen. Das Biithnenbild ist das der klassischen Mathematik. Technisch
gesprochen heilit das: Wir arbeiten in der tiblichen Mengenlehre mit Auswahlaxiom.
Die Verwendung des Auswahlaxioms ist fiir den behandelten Gegenstand von Bedeu-
tung und wird daher jeweils notiert.

Sind M und N Mengen, so schreiben wir [M| = |N|, falls eine Bijektion von M auf
N existiert; |[M| < |N|, falls eine Injektion von M nach N existiert; |[M| < |N]|, falls |[M|
< |NJ, aber [M| # |N| gilt. Ist [M| = |N|, so nennen wir M und N gleichmdichtig f: ist
IM| < |N|, so sagen wir, daB die Mdichtigkeit von M kleiner ist als die Michtigkeit von
N. Dies ist die relationale Definition der Machtigkeiten — wir haben nicht definiert, was
»die Michtigkeit von M“ selbst ist, und brauchen dies auch nicht tun.

Eine Menge M heiB3t ( Dedekind-) unendlich, falls es eine echte Teilmenge N von M
gibt mit [N| = |M|. Aquivalent hierzu ist: Es gilt |IN| < |M]|. (Diese Aquivalenz verwen-
det das Auswahlaxiom nicht. Es wird aber verwendet, um zu zeigen: M ist genau dann
endlich, wenn gilt: es gibt ein n € N mit [M|=1{0, ....,n-1}].)

Wir notieren nun offiziell das Thema dieses Artikels:

Multiplikationssatz (Harward 1905, Hessenberg 1906)
Ist M eine unendliche Menge, so ist|M x M| =|M].

Hessenberg beweist zugleich auch den verwandten Additionssatz: Die Vereinigung
zweier disjunkter Kopien einer unendlichen Menge ist gleichméchtig zur Ausgangsmen-
ge. Hierzu definieren wir fiir Mengen M und N: M + N =M x {0} UN x {I}. Die Men-
gen M’ =M x {0} und N’ = N x {1} sind gleichmichtige ,, Kopien“ von M bzw. N, und
es gilt M’ NN’ = &. Wir schreiben dann den Additionssatz wie folgt:

Additionssatz
Ist M eine unendliche Menge, so ist|[M + M| =|M].

Fir viele Beweise des Multiplikationssatzes ist der Additionssatz ein fahrplanmBi-
ger Halt auf der Beweisstrecke. Zeigt man den Multiplikationssatz direkt, so ergibt sich
umgekehrt der Additionssatz als Korollar mit Hilfe des folgenden Satzes, der pausenlos
im Einsatz ist:
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Satz (Satz von Cantor-Bernstein; Cantor 1883, Dedekind 1887, Bernstein 1897)
Seien M, N Mengen mit [M| < |N|und |N| < |M].
Dann gilt [M| =|N].

Cantor hat diesen Sachverhalt 1883 formuliert und einen Beweis angekiindigt. Aber erst Felix
Bernstein konnte den Satz 1897 in einem von Cantor veranstalteten Seminar in Halle vollstindig be-
weisen. Dedekind hatte bereits 1887 einen Beweis entdeckt, der sich heute in seinem NachlaB findet.

Fiir den Beweis des Satzes mull das Auswahlaxiom nicht verwendet werden.

Offenbar gilt [ M| < |M + M| < |M x M| fiir Mengen M mit mindestens zwei Ele-
menten, und daher folgt der Additionssatz aus dem Multiplikationssatz mit Hilfe von
Cantor-Bernstein.

Max Zorn hat 1944 einen Beweis des Multiplikationssatzes gegeben, der keine Ordi-
nalzahlen verwendet. Das wesentliche Hilfsmittel ist hier:

Satz (Zornsches Lemma; Zorn 1935)

Ist P eine partiell geordnete Menge, in der jede total geordnete Teilmenge eine obere
Schranke besitzt, so existiert ein maximales Element der Ordnung, d. h. ein x € P mit:
IstyePund x <y,soistx=y.

Das Zornsche Lemma ist geeignet, den recht filigranen Begriff der Wohlordnung aus bestimm-
ten Argumenten zu vertreiben, und ist auch zu dieser zuweilen etwas grobschlachtigen Anwendung
ins Leben gerufen worden: Zorn gab 1935 das Lemma als Prinzip ohne Beweis an. Das Zornsche
Lemma ist ein einfaches Korollar des Hausdorffschen Maximalititsprinzips [Hausdorff 1914].
Aufgrund seiner einfachen Handhabung wurde es zum Exportschlager.

Das Zornsche Lemma ist, auf der Basis der anderen Axiome der Mengenlehre, 4qui-
valent zum Auswahlaxiom. Gleiches gilt fiir den folgenden Satz:

Satz (Vergleichbarkeitssatz, Cantor 1878, Zermelo 1904)
Seien M, N Mengen. Dann gilt |[M| <|N|oder |[N| <|M].

Beweis

0. E.sind M, N # . Sei P die Menge aller Injektionen f: M’ — N mit M’ C M, ge-
ordnet durch Inklusion, d. h. f < g, falls f C g (d. h. g setzt f fort). Das Zornsche Lemma
findet Anwendung. Sei also f € P maximal.
Dannist f: M — Ninjektiv oder f' : N — M injektiv.

Der Vergleichbarkeitssatz wurde von Cantor zunichst als ,,offensichtlich® angesehen [vgl. den
ersten Absatz von Cantor 1878], spiter hat er den Satz dann als Problem formuliert [Cantor 1895,
Ende § 2] und bewiesen, aus heutiger Sicht jedoch nicht in vollstindiger Strenge. Erst der Zermelo-
sche Wohlordnungssatz von 1904 lieferte einen liickenlosen Beweis. Die Aquivalenz zum Auswahl-
axiom (und damit zum Zornschen Lemma) hat Friedrich Hartogs gezeigt [Hartogs 1915].

Eine totale Ordnung (W, <) ist eine Wohlordnung, falls jede nichtleere Teilmenge
von W ein <-kleinstes Element besitzt. X C W ist ein (echtes) Anfangsstiick von W, falls
ein b € W existiert mit X = {a € W |a < b}. Wir schreiben im folgenden oftmals nur W
fiir eine Wohlordnung (W, <). Eine die Menge W wohlordnende Relation < C W x W
ist dann stillschweigend mit dabei.

Zwei Wohlordnungen W, und W5, sind ordnungsisomorph oder gleichlang, falls eine
Bijektion f: W; — W, existiert, sodaB fiir allea, b € W, gilt: a < b gdw f(a) < f(b) [gdw
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steht wie in der Logik iiblich fiir ,,genau dann, wenn*]. W, ist (strikt) kiirzer als W,
falls Wy isomorph zu einem Anfangsstiick von W, ist.
Ein Hauptmerkmal von Wohlordnungen ist die Vergleichbarkeit ihrer Langen:

Satz (Vergleichbarkeitssatz fiir Wohlordnungen, Cantor 1897)

Seien W, und W, zwei Wohlordnungen. Dann tritt genau einer der drei folgenden
Falle ein:

(1) Wy und W, sind gleichlang,

(1) W, ist kiirzer als W,.

(iii) W, ist kiirzer als W .

Insbesondere sind Wohlordnungen niemals gleichlang zu ihren eigenen Anfangs-
stiicken.

Der Vergleichbarkeitssatz fiir Wohlordnungen ist ohne Auswahlaxiom beweisbar.
Allgemein wird das Auswahlaxiom beim Jonglieren mit Wohlordnungen nie gebraucht,
da man immer auf einen kleinsten Zeugen innerhalb irgendetwas Nichtverschwinden-
dem zugreifen kann, anstatt nur auf einen Zeugen, was der Job einer Auswahlfunktion
wire. Lediglich um die nackte Existenz von Wohlordnungen zu sichern ist das Aus-
wahlaxiom bitter notig:

Satz ( Wohlordnungssatz; Zermelo 1904, zweiter Beweis 1908 )
Jede Menge 143t sich wohlordnen:
Ist M eine Menge, so existiert eine Wohlordnung < auf M.

Der Zermelosche Wohlordnungssatz ist 4quivalent zum Auswahlaxiom.

Noch ein paar Worte zu Ordinalzahlen und Kardinalzahlen. In der Mengenlehre de-
finiert man Ordnungstypen oder Ordinalzahlen nach Cantor informal als das allen
Wohlordnungen gleicher Lénge Gemeinsame, oder formal nach von Neumann und
Zermelo als bestimmte natiirliche und uniform definierbare Repriisentanten fiir Wohl-
ordnungen — je ein Reprisentant pro Lange. Die transfiniten Zahlen sind dann in beiden
Versionen einfach diejenigen Ordinalzahlen, die den unendlichen Wohlordnungen zuge-
ordnet sind.

Man kann mit Wohlordnungen (und folglich mit Ordinalzahlen) arithmetisch ope-
rieren: Hintereinanderhéngen zweier Ordnungen fithrt zur Summe, lexikographische
Ordnung des kartesischen Produkts (oder iterierte Summation) fiithrt zur Multiplikati-
on, iterierte Multiplikation zur Exponentiation.

Ganz dhnlich kann man Kardinalzahlen informal als das allen Mengen gleicher
Michtigkeit Gemeinsame definieren. Eine formale Definition ist mdglich, auch in einer
Mengenlehre ohne Auswahlaxiom (mit einer nichttrivialen Konstruktion). Alephs sind
nun diejenigen Kardinalzahlen, die zu den unendlichen und wohlordenbaren Mengen
gehoren. Mit Hilfe des Wohlordnungssatzes sind alle Mengen gleichmichtig zu einer
Wohlordnung, und die Alephs fallen dann mit den unendlichen Kardinalzahlen zusam-
men. In einer Mengenlehre ohne Auswahlaxiom bilden die Alephs eine Teilklasse der
unendlichen Kardinalzahlen, und bzgl. der Vergleichbarkeit von Kardinalzahlen kann
dann nur noch fiir die Alephs Garantie {ibernommen werden.

Mit Kardinalzahlen kann man ebenfalls rechnen, die Operationen sind hier iiber die
Michtigkeiten von Summe, kartesischem Produkt und, fiir die Exponentiation, der
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Menge aller Funktionen von einer Menge der Michtigkeit des Exponenten in eine Men-
ge der Méachtigkeit der Basis definiert.

Diese knappen Bemerkungen geniigen hoffentlich, weite Strecken des folgenden hi-
storischen Teils fiir jeden Leser zugdnglich zu machen.

3 AbriB der Geschichte des Multiplikationssatzes

Georg Cantor hat das Konzept der Méachtigkeit von unendlichen Mengen in den siebzi-
ger Jahren des 19. Jahrhunderts entwickelt und untersucht. Zu dieser Zeit bewies er
auch den Multiplikationssatz fiir abzdhlbare Mengen und fiir Mengen der Méchtigkeit
der reellen Zahlen. Der erste Beweis des allgemeinen Satzes erschien 1905 in einer furio-
sen, aber kaum bekannten Arbeit von A. E. Harward, ,,Indian Civil Servantin Calcut-
ta®. Unabhéngig hiervon erschien 1906 Hessenbergs erster Beweis. Ein Jahr spater ver-
offentlichte Hessenberg dann noch einen zweiten Beweis des Satzes, seiner Natur nach
wie der erste arithmetisch, abervon ihm doch wesentlich verschieden. Ein dritter Beweis
wurde 1908 von Philip Jourdain gefiihrt, und eine Vereinfachung dieses Beweises, die
sich ebenfalls schon bei Harward 1905 findet, fand dann Eingang in das Buch von Felix
Hausdorff von 1914, und dadurch weite Verbreitung. Auch der heute iibliche Beweis
folgt der Harward-Hausdorffschen ,,zweidimensionalen Argumentationslinie”, die als
direkteste Verallgemeinerung der Cantorschen Diagonalaufzihlung von IN? angesehen
werden kann. Hessenbergs Beweise dagegen sind in Vergessenheit geraten — sicher zu
unrecht, zumal besonders Hessenbergs erster Beweis direkt auf Cantors Arbeiten auf-
baut, und dadurch noch den unverwechselbaren Glanz der erwachenden Mengenlehre
an sich tragt. SchlieBlich gab Max Zorn 1944 noch einmal einen ganz anderen Beweis
mit Hilfe des Zornschen Lemmas, der Wohlordnungen ganz vermeidet. Auch dieser Be-
weis ist heute groBflachig vergessen.

4 Cantors Paarungsfunktion und die Machtigkeit der Ebene (1878)

In einem Brief an Richard Dedekind vom 29.11.1873 stellt Cantor die Frage, ob sich die
natiirlichen Zahlen bijektiv auf die reellen Zahlen abbilden lassen. Er bemerkt, daB sich
eine Bijektion zwischen den natiirlichen Zahlen und den (positiven) rationalen Zahlen
leicht angeben 148t. Die Gleichung |[IN x IN| = |IN | war ihm zu diesem Zeitpunkt bereits
vollig klar. Wenige Tage spdter kann Cantor die von ihm gestellte Frage selbst beant-
worten. In der 1874 erschienenen Arbeit ,,Uber eine Eigenschaft des Inbegriffes aller re-
ellen algebraischen Zahlen“ zeigt Cantor dann der mathematischen Welt die Abzahl-
barkeit der algebraischen Zahlen und die Uberabzihlbarkeit der reellen Zahlen. Die Ar-
beit ist von Cantor mit ,,Berlin, den 23. Dezember 1873 unterzeichnet, doch was hier
als hiibsch verpacktes Weihnachtsgeschenk fiir die Kollegen daherkommt entpuppt sich
schnell als StartschuB fiir eine aufregende Epoche des fundamental Neuen und der neu-
en Fundamente. Insbesondere flieBt aus Cantors Ergebnis so ganz nebenbei die Exi-
stenz transzendenter Zahlen, ein groBes Ergebnis von Liouville aus dem Jahre 1847.
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In ,,Ein Beitrag zur Mannigfaltigkeitslehre von 1878 gibt Cantor, eher beildufig,
die bekannte Diagonalaufzihlung von IN? konkret an: Das einfache Polynom zweiten
Grades

fn,m)=m+(m+n)(m+n+1)/2
bildet die Menge aller Paare von natiirlichen Zahlen bijektiv auf natiirlichen Zahlen ab
—und ist als Polynom zweiten Grades in dieser Hinsicht einzigartig. Das Hauptresultat
der Arbeitvon 1878 ist jedoch, daB |IR"| = |IR| gilt fiir alle natiirlichen Zahlen n > 1.
Das Problem hatte Cantor bereits Jahre frither in einem Brief an Dedekind vom
5.1.1874 aufgeworfen. In dem Brief heil3t es:

,,Lasst sich eine Flache (etwa ein Quadrat mit Einschlu3 der Begrenzung) eindeutig auf eine Li-
nie (etwa eine gerade Strecke mit Einschluss der Endpuncte) eindeutig beziehen, so dass jedem
Puncte der Flache ein Punct der Linie und umgekehrt zu jedem Puncte der Linie ein Punct der Fl4-
che gehort?

Mir will es Augenblick noch scheinen, dass die Beantwortung dieser Fragen, — obgleich man

auch hier zum Nein sich so gedréingt sieht, dall man den Beweis dazu fast fiir iiberfliissig halten
mochte, — grosse Schwierigkeiten hat. —

(Diese und die weiteren zitierten Briefstellen finden sich in [Cantor 1991].)

Die Losung lieB diesmal nicht Tage, sondern Jahre auf sich warten. Cantor teilte ei-
nen Beweis seines kontraintuitiven Resultates Dedekind brieflich am 20.6.1877 mit — in
der Tat ist die Frage mit einem Ja zu beantworten. Er verwendet das ,,Rei3verschluf3-
verfahren®, um zwei reelle Zahlen des Einheitsintervalls, die in unendlicher Dezimaldar-
stellung vorliegen, zu einer neuen reellen Zahl zu verschmelzen: Die Nachkommastellen
der beiden Zahlen werden abwechselnd aneinandergereiht, aus 0,1223... und 0,9267...
wird etwa 0,19222637... Dedekind antwortet ihm, daf3 die entstehende Abbildung nicht
surjektiv ist — Cantors Beweis zeigtnur |IR?| < |IR|. Die Zahl 0,11101010... etwa liegt
nicht im Bild der Funktion. Cantor bemerkt, daf3 dieser Einwand nicht das Herz der Sa-
che triife: Sein Beweis liefert eine Bijektion zwischen IR* und einer Teilmenge von IR,
und das scheint ja irgendwie noch mehr zu sein, als er wollte. Dennoch sucht er nach ei-
nem Beweis von |IR?| = |IR|. Der Satz von Cantor-Bernstein stand ihm damals noch
nicht zur Verfiigung, und Cantor verwickelt sich in unangenehme technische Probleme.
Die gewlinschte Bijektion wird sehr aufwendig konstruiert, an die Stelle der Dezimal-
bruchentwicklungen treten Kettenbriiche, und Cantor argumentiert umstandlich, daf3
die irrationalen Zahlen gleichmichtig zu den reellen Zahlen sind. Und obwohl er
schlieBlich ein einfaches Argument hierfiir sieht und auch angibt [Cantor 1878, § 6], will
er in der Verdffentlichung auf seine kompliziertere Konstruktion nicht verzichten. Die
Arbeit ist, ganz abgesehen von dem tiberraschenden Resultat, in vielerlei Hinsicht inter-
essant: Sie ist Photographie des Nebels, der iiber neuen Begriffen in ihren Morgenstun-
den liegt, und zugleich ein Dokument der Psyche von Wissenschaftlern, denen allzu ein-
fache Losungen oft gar nicht so gelegen kommen, da diese vorangehende Kraftakte
iiberfliissig machen.

Nachdem Cantor die Gleichung |IR?| = |IR| bewiesen und sein Vorgehen diskutiert
hat, beendet er die die Arbeit mit der Kontinuumshypothese: Jede {iberabzihlbare Men-
ge von reellen Zahlen ist gleichméchtig mit IR. Moglicherweise war der entdeckte Zu-
sammenfall der beiden vermeintlich verschiedenen Méchtigkeiten | IR | und | IR?| der Aus-
16ser fiir die Hypothese, die ja auch den Zusammenfall vieler Méachtigkeiten vermutet.
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Die Gleichméchtigkeit der Ebene IR? mir der Geraden IR war fiir die damalige Zeit
eine groBe Uberraschung, wobei schon die Fragestellung ungewdhnlich genug erschien.
Cantor schreibt in einem Brief an Dedekind vom 25.6.1877:

,,Die meisten, welchen ich diese Frage [nach der Gleichméachtigkeit von IR" mit IR] vorgelegt,
wunderten sich sehr dariiber, dass ich sie habe stellen konnen, da es sich ja von selbst verstiinde, dass
zur Bestimmung eines Punctes in einer Ausgedehntheit von p Dimensionen immer p unabhéngige
Coordinaten gebraucht werden. Wer jedoch in den Sinn der Frage eindrang musste bekennen, dass
es mindestens eines Beweises bediirfe, warum sie mit dem ,selbstverstandlichen® nein zu beantwor-
ten sei. Wie gesagt gehorte ich selbst zu denen, welche es fiir das Wahrscheinlichste hielten, dass
jene Frage mit einem Nein zu beantworten sei, — bis ich vor ganz kurzer Zeit durch ziemlich verwik-
kelte Gedankenreihen zu der Uberzeugung gelangte, dass jene Frage ohne all Einschrankung zu be-
Jjahen ist. Bald darauffand ich den Beweis, welchen Sie heute vor sich sehen.*

Gemeint ist der komplizierte Beweis von der Arbeit von 1878. Es gibt einen einfa-
chen Beweis von |IR?| = |IR| mit Hilfe einer modifizierten ReiBverschluBtechnik, der
den Satz von Cantor-Bernstein nicht bendtigt, und als Trick von Julius K6nig bekannt
ist. Cantor hat dieses einfache Argument tibersehen. Die Idee ist, das Reiverschluf3-
verfahren mit sog. Ziffernblocken anstelle von einzelnen Ziffern durchzufiihren; ist a #
0 eine Ziffer einer reellen Zahl in unendlicher Dezimaldarstellung, so bildet a zusammen
mit allen vorangehenden Nullen einen Block der Zahl, der dann also die Form 00..0a
hat. Die ersten Blocke von 0,102002304... sind etwa 1, 02, 002, 3, 04. Werden nun je zwei
reelle Zahlen des offenen Einheitsintervalls I durch Verzahnung von Blocken anstatt
von Einzelziffern amalgamiert, so entsteht eine bijektive Abbildung von I x I nach L.

Die erste dem Autor bekannte Referenz auf die Beobachtung von Koénig ist die im Buch von
Schoenflies [1900, p. 23]. Dort heiB}t es: ,,... und zweitens denke man sich die eventuellen Nullen mit
der ersten auf sie folgenden Ziffer [ungleich 0] zu je einer Gruppe verbunden, und dehne das Abbil-
dungsgesetz [das ReiBverschluBverfahren] auf diese Zahlengruppen aus".“ Die Anmerkung 1 hier-
zu ist dann: ,,1) Dieser Gedanke rithrt von J. Konigher.“ Auch in [Fraenkel 1928] — vielfach ein hi-
storisches Miniaturenmuseum - findet sich lediglich die Bemerkung: ,,Durch diesen von J. Kénig
stammenden Kunstgriff wird also der vorstehende Beweis liickenlos“[eb., p. 100].

In seinen Antwortschreiben wies Dedekind auf die Unstetigkeit der konstruierten
Bijektionen hin, und warf damit neue Fragen auf. Giuseppe Peano gab dann 1890 eine
stetige Surjektion von der Geraden auf die Ebene an. Die Frage, ob die Injektivitit einer
solchen Abbildung notwendig verletzt sein miisse, blieb offen. Erst 1911 gelang Brou-
wer der vollstandige Beweis des Satzes, dal3 es keine stetigen Bijektionen zwischen ver-
schiedendimensionalen Kontinua geben kann.

Aus heutiger Sicht — oder genauer seit Hausdorffs Einfiihrung der allgemeinen Topologie 1914
[vgl. speziell hierzu Hausdorff 1914, p. 377f] — ist das Resultat fiir IR und IR? relativ einfach zu be-
weisen: Die Ebene bleibt nach Entfernung eines Punktes zusammenhingend, die Gerade wird da-
gegen durch Entfernung eines Punktes unzusammenhéngend. Es folgt, daB3 es keine stetige Bijek-
tion zwischen IR? und IR geben kann. Wegen der in diesem Fall automatischen Stetigkeit der Um-
kehrabbildung kann es dann weiter auch keine stetige Bijektion zwischen IR und IR geben.
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5 Cantors Kalkiil der Kardinalzahlarithmetik (1895)

Den néchsten groBeren Fortschritt in der Geschichte des Problems bildet die Entdek-
kung des algebraischen Kalkiils der Kardinalzahlarithmetik durch Cantor. Ein Beweis
von |IR|? = | IR | liest sich darin dann einfach so:

IR = (2%)?= 2% = 2% =|R|.

Cantor fiihrt den Kalkiil im ersten Teil seiner ,,Beitrdge zur Begriindung der transfiniten
Mengenlehre® von 1895 ein, und notiert begeistert, daB sich die Beweise der Arbeit von
1878 nun auf ,,wenige Striche® verkiirzen. Der Kalkiil selbst wurzelt in Cantors Entdek-
kung des Diagonalverfahrens fiir Abbildungen einer Menge M in die Menge {0, 1}.
(Cantor trug das Diagonalverfahren auf der ersten Jahrestagung der DMV 1891 vor.)
Solche 0-1-Belegungen suggerieren eine Potenzierung fiir Kardinalzahlen, etwa 2!™!,
und die vertrauten und leicht zu beweisenden Rechengesetze, wie etwa (2/™M!)INI =
2IMI > INI fjefern niitzliche, zuvor nur durch mithsame Manipulation von Bijektionen zu
gewinnende Ergebnisse. Entscheidend ist zudem die Gleichung |IR| = [{f]| f: N —
{0, 1}}|, die die Briicke zwischen |IR | und 2 %o schligt.

6 Zermelo iiber die Addition von Kardinalzahlen (1901)

Zermelo widmet seine erste mengentheoretische Arbeit der Untersuchung der Addition
von unendlichen Kardinalzahlen. Er zeigt (hier in kardinalzahlfreier Notation wieder-
gegeben): Gilt [M| = |[M +N,| fiir Mengen M, N, n € N, so gilt [M| = |[M+
Une wINp|. Insbesondere folgt hieraus: Gilt [M| = |M + N fiir zwei Mengen M und N,
so gilt auch die Gleichung [M|=|M + (IN x N)|. Die Argumentation erweist sich inter-
essanterweise als eine Verallgemeinerung des Bernsteinschen Beweises des Satzes von
Cantor-Bernstein, und dieser Punkt scheint ein Hauptanliegen von Zermelo gewesen zu
sein. Eine allgemeine Additions- oder Multiplikationshypothese stellt Zermelo in sei-
nem Artikel nicht auf, und auch ein Additions- oder Multipliaktionssatz fiir wohlorden-
bare Mengen wird nicht diskutiert.

Zermelo spielt in der Geschichte des Satzes noch in zweierlei Hinsicht eine Rolle:
Zum einen beweist er 1904 den Wohlordnungssatz, der den Multiplikationssatz auf das
Problem reduziert, |M?| = | M| fiir wohlgeordnete Mengen M zu beweisen. Alle Beweise
mit Ausnahme des Beweises von Zorn folgen dieser Reduktionsmdoglichkeit. Fiir den
Beweis von | IN?| = |IN| durch diagonale Aufzihlung ist die Ordnung von N wesentlich,
und ebenso hilft eine einer unendlichen Menge M zugrundeliegende Wohlordnung fiir
einen Beweis von |[M?| = |M|. Zum anderen hat Zermelo die Liickenhaftigkeit der Ar-
gumentation einer frithen Arbeit von Jourdain betont [Jourdain 1904b], in der Jourdain
zumindest den Spezialfall des Multiplikationssatzes fiir Mengen der kleinsten iiberab-
zahlbaren Machtigkeit beweisen wollte, also die Gleichung R; - R; = R;. In seiner Arbeit
von 1908 weist Jourdain auf Zermelos berechtigte frithere Kritik hin, und dankt ihm
weiter fiir kritische Kommentare zur vorliegenden Arbeit: ,,I must here refer gratefully
to the trouble which Prof. Zermelo has taken in repeatedly critisising weak points in my
proofs and suggesting improvements.“ [Jourdain 1908, p. 512]. Zermelo brachte also
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dem Problem kontinuierliches lebhaftes Interesse entgegen, und er unterstiitzte in seiner
bekannten kritischen Art Jourdain auf seinem langen und holprigen Weg zu einem kor-
rekten Beweis.

Ein dritter Punkt betreffend Zermelos Anteil und Teilnahme am Multiplikationsproblem ist
die Ankiindigung, daB Zermelo einen andersartigen Beweis des Satzes gefunden habe und ihn dem-
néchst verdffentlichen werde. Die Ankiindigung findet sich im Buch von Hessenberg 1906 und
wird in der Arbeit von Jourdain 1908 referiert, aber nicht weiter erlautert. Obwohl Zermelo also
Jourdains Beweise zum Problem priifte und kritisierte, scheint er ihm seinen eigenen Beweis nicht
mitgeteilt zu haben. Wir kommen unten auf die Bemerkung bei Hessenberg noch kurz zuriick.

7 Die Hypothek der Dissertation von Bernstein (1901)

Zur Multiplikation noch groBerer Mengen als der Menge der reellen Zahlen hat Cantor
nichts veroffentlicht und auch in seinen Briefen duBert er sich hierzu nicht. Aus seinem
algebraischen Kalkil folgen aber unmittelbar Gleichungen wie [(P(R))?| =
| P(IR)|, und damit gilt der Multiplikationssatz auch fiir die Menge aller reellen Funk-
tionen, also fiir F = {f | : IR — IR}.

Nach Aussagen von Felix Bernstein hat Cantor aber einen Beweis des Multiplikati-
onssatzes fiir wohlordenbare Mengen gesehen, und ihm diesen miindlich mitgeteilt. In
seiner Dissertation von 1901 verwendet Bernstein den Multiplikationssatz fiir wohlor-
denbare Mengen als Hilfssatz, und schreibt zum Beweis lakonisch:

,,Den Beweis des Satzes, den ich aus miindlicher Mitteilung von G. Cantor kenne, fithrt man ana-
log wie im einfachsten Falle ... [fiir N] durch Verwandlung einer Doppelreihe in eine einfache Reihe
[d. h. man verwandelt eine doppelt indizierte Folge in eine gewohnliche Folge] ...“ [Bernstein 1905,
§12].

Die Dissertation von Bernstein wurde 1905 in den Mathematischen Annalen veroffentlicht, als
eine ,,bis auf einige Verbesserungen und Bemerkungen ... unveranderte Wiedergabe [der Disserta-
tion]“. Zitiert wird hier nach dieser leichter zugdnglichen Arbeit.

Bernstein beldBt es also in seiner Doktorarbeit bei einem argumentum ad au-torita-
tem, anstatt den Cantorschen Beweis durchzufiihren. Es ist gut vorstellbar, daf3 der jun-
ge Bernstein das von Cantor wahrscheinlich nur skizzierte Argument in schweigender
Bewunderung zur Kenntnis genommen hatte und es spater nicht genau rekonstruieren
konnte: Die Details einer Aufzdhlung von M x M bei ,,wohlgeordneten Achsen® sind
nicht ganz trivial, ,,diagonal® im einfachen Sinne wie fiir N x IN kann man sie nicht so
ohne weiteres durchfithren. Bemerkenswerterweise hat nun ein strenger Beweis des
Multiplikationssatzes fiir Wohlordnungen durch eine Art Diagonalaufzédhlung bis zur
Arbeit von Jourdain 1908 auf sich warten lassen, obwohl fiir einen solchen Beweis der
Zermelosche Wohlordnungssatz nicht gebraucht wird, und obwohl die Beweisstrategie
durch Bernsteins Bemerkung vorgezeichnet war. Hessenbergs Beweise von 1906 und
1907 kann man nicht als eine direkte Verallgemeinerung der Diagonalaufzdhlung von
IN? ansehen. Und auch Jourdains Beweis verschleiert die Dinge noch unnétig, erst die
Konstruktion von Hausdorff 1914 machte den Weg frei fiir die aus heutiger Sicht auf
der Strale liegende Verallgemeinung der Cantorschen Paarungsfunktion auf kartesi-
sche Produkte mit Achsen beliebiger Linge.
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Arthur Schoenflies schreibt im zweiten Teil seines Berichts iiber den Stand der Men-
genlehre 1908:

»»Es liegt zunéchst nahe den Beweis [des Multiplikationssatzes fiir Wohlordnungen] in dhnlicher
Wiese zu fiihren wie den [Cantorschen Beweis von [N x IN| = |IN| durch Diagonalaufzihlung]...
Doch bedarf der Begriff der diagonalen Anordnung [fiir allgemeine Wohlordnungen)] ... einer pri-
zisen Erlduterung” ... [FuBnote 1):] In obiger Form erscheint der Beweis z. B. in Bernsteins Disser-
tation ... Eine ausfiihrliche Darstellung des Beweises liegt nicht vor.“ [Schoenflies 1908, p. 13]

Der Bericht von Schoenflies ist mit ,,K&nigsberg i. Pr., im Oktober 1907 unterzeichnet.

Der Multiplikationssatz fiir beliebige Mengen spielt weiter in der Bernsteinschen
Dissertation eine wichtige Rolle. Er erscheint dort als eine Voraussetzung, aus der sich
Vergleichbarkeitsresultate gewinnen lassen. Bernstein zeigt: Gilt fiir ein unter Addition
abgeschlossenes System S von Mengen der Multiplikationssatz, d. h. |M?| = | M| fiir alle
M € 8§, so sind die Elemente des Systems bzgl. ihrer Méchtigkeit vergleichbar, d. h. es
gilt [M| < |N] oder |[N| < M| fiir alle M, N € S [Bernstein 1905, § 4]. Bernstein verwen-
det im Beweis implizit das Auswahlaxiom. Dennoch bildet sein trickreiches Argument
dann das Herzstiick im Beweis des Satzes von Bernstein-Tarski [Tarski 1924], daB nim-
lich der Multiplikationssatz zusammen mit den restlichen Axiomen der Mengenlehre
das Auswahlaxiom impliziert.

8 Die Hausdorff-Formel und eine Regularitatshehauptung (1904)

Im Zusammenhang mit Bernsteins Riickgriff auf einen miindlichen Beweis des Multipli-
kationssatzes fiir Wohlordnungen ist weiter die erste mengentheoretische Arbeit von
Felix Hausdorff ,,Der Potenzbegriff in der Mengenlehre* aus dem Jahr 1904 interes-
sant. In dieser skizzenhaften Arbeit mit dem Untertitel ,,aus dem Sprechsaal® behauptet
Hausdorff die sog. Regularitidt von Nachfolger-Alephs. Diese Behauptung ist, wie
schnell zu zeigen ist, mit dem Multiplikationssatz fiir Wohlordnungen gleichwertig.
(Zum Beweis der Regularitat muf} zusétzlich zum Multiplikationssatz fiir Wohlordnun-
gen auch das Auswahlaxiom verwendet werden.) Hausdorff braucht die Regularitt
zum Beweis seiner ,,Hausdorff-Formel* der Kardinalzahlarithmetik. Sie stellt eine fal-
sche Behauptung aus der Dissertation von Bernstein richtig, die ihrerseits zu dem fal-
schen Beweis der Nichtwohlordenbarkeit des Kontinuums gefiihrt hat, den Julius Ko-
nig 1904 auf dem Heidelberger MathematikerkongreB zur groBen Aufregung seiner Ho-
rer — unter ihnen Cantor — vortrug. Hausdorff scheint hier, wie Bernstein in seiner
Dissertation, den Multiplikationssatz fiir Wohlordnungen aus dem Cantorschen Mun-
de zu iibernehmen.

Hausdorff reicht keinen vollstdndigen Beweis der Hausdorff-Formel, d. h. kein Argument fiir
die nur behauptete der Regularitit von Nachfolger-Alephs nach. In [Hausdorff 1908] gibt er ohne
Beweis und ohne Referenz ,,die Alefgleichung R,>=R,* als Begriindung fiir die Regularitdt von
Ry+1 an. In seinem Buch von 1914 wird die Regularitdtsbehauptung dann unmittelbar nach einem
ausfiihrlichen Beweis der Alephgleichung — gleichwertig: des Multiplikationssatzes fiir Wohlord-
nungen — bewiesen [Hausdorff 1914, p. 129]. Dort wird zudem in einer Anmerkung ausdriicklich
Hessenberg als derjenige genannt, der den Multiplikationssatz 1906 zuerst bewiesen hatte. Haus-
dorffs eigene Arbeit von 1904 bleibt unerwihnt.
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Im Jahr 1904 zeigt Zermelo den Wohlordnungssatz, und damit wird der Multiplika-
tionssatz fiir Wohlordnungen gleichwertig zum vollen Multipliaktionssatz fiir alle Men-
gen. Die nackt im Raum stehende Verallgemeinerung von Cantors Gleichung INP? =
| IN | auf alle wohlgeordneten unendlichen Mengen — und mit Zermelos starkem Resultat
damit dann sogar auf alle unendlichen Mengen — sehnte sich nun in zunehmendem Ma-
Be nach einem richtigen mathematischen Gewand, oder etwas weniger bildhaft: einem
lupenreinen Argument.

Bemerkenswert am Duo [Zermelo 1901] und [Hausdorff 1904] ist, daB3 elementare Fragen der
Kardinalzahlarithmetik in den mengentheoretischen Erstlingen der beiden wichtigsten Erforscher
der Mengenlehre nach Cantor eine zentrale Position einnehmen.

9 Jourdains Versuch (1904) und Harwards Beweis (1905)

Jourdain hat in einer im ,,Philosophical Magazine* 1904 veroffentlichten Arbeit ver-
sucht, den Multiplikationssatz fiir Wohlordnungen zu beweisen [Jourdain 1904b,
p- 298-300]. Er beschreibt aber letztendlich das Problem nur, und beweist gar nichts
(vgl. auch Abschnitt 7). A. E. Harward war es dann, ein mathematischer AuBenseiter
mit bislang unaufgelosten Initialen, der, von Indien aus agierend und auf der vergleichs-
weise recht diinnen Wissensgrundlage von Russells ,,Principles of Mathematics® von
1903 und Jourdains Artikelpaar im ,,Philosophical Magazine* von 1904 stehend, einen
ersten vollstindigen Beweis des Multiplikationssatzes fiir Wohlordnungen geben
konnte. Harward verwendet den Wohlordnungssatz dhnlich wie Cantor als ,,Quasi-
axiom*, und erhilt so den vollen Multiplikationssatz.

Harwards Arbeit ,,On the transfinite numbers™ von 1905 ist eine klargeschriebene
Einfihrung in eine informal-axiomatische Mengenlehre. Harward formuliert ein Erset-
zungsaxiom, und begriindet wie Cantor in seinen spéten Briefen den Wohlordnungssatz
durch Abzdhlen einer Menge entlang der Ordinalzahlen: Dieses mul3 irgendwann en-
den, da sonst die Menge gleichméchtig zur echten Klasse der Ordinalzahlen wére. Wei-
ter zeichnet sich die Arbeit durch eine groBe Sicherheit und Originalitit in der Ordinal-
zahlarithmetik aus, und der Beweis des Multiplikationssatzes fiir Wohlordnungen ruht
auf feinen arithmetischen Beobachtungen. Das Argument verwendet allerdings ver-
steckt das Auswahlaxiom. Diese Schwiche 148t Harwards Beweis des Multipliaktions-
satzes fiir Wohlordnungen aus heutiger Sicht zweitrangig erscheinen. Doch:

In einem Anhang, innerhalb einer Kritik des Arguments von [Jourdain 1904b], skiz-
ziert Harward noch einen zweiten Beweis, und schldgt hier genau die Aufzahlung der
Hilfte eines diagonal halbierten Quadrats liber einer wohlgeordneten Achse vor, die
Hausdorff 1914 als eine Vereinfachung der Jourdain-schen Konstruktion von 1908 wie-
derentdecken wird. Harward schreibt iiber seine beiden Beweise im Anhang seiner Ar-
beit:

,,In order to complete the proof on the lines indicated by Mr. Jourdain, it is necessary that some
rule or formula [analog zur Cantorschen Paarungsfunktion fiir IN?] should be given by which the
required correlation can be established once for all. As I could not succeed in constructing such a

formula, I adopted a different method of proof [gemeint ist der im Hauptteil der Arbeit dargestellte
Beweis].
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I'have recently discovered that by a slight modification of Mr. Jourdain‘s method a simple an-
drigorous proof can beobtained...“ [Harward 1905, p. 458, in ,,Note A* zu seinem Artikel].

Wir diskutieren die Konstruktion von Harward-Hausdorff in Abschnitt 12. Har-
ward unterscheidet allerdings zeittypisch nicht genau zwischen dem ungeordneten Paar
{a, B} und dem geordneten Paar (a, B), was aber der Sache und der klaren Skizze der
Konstruktion und Beweisidee keinen Abbruch tut.

Es ergibt sich ein bemerkenswerter Zirkel: Jourdain, der Harwards Arbeit mit dem
Autor diskutiert hat [vgl. Harward 1905, p. 439], kennt Harwards zweiten Beweis, stellt
aber 1908 seinen eigenen endlich richtigen Beweis ins Rampenlicht, den dann Hausdorff
1914, ohne Kenntnis des Artikels von Harward, zu dem zweiten Harwardschen Beweis
wresimplifiziert! Jourdain hat in seinem Artikel von 1908 sehr unsauber auf Harwards
Leistung hingewiesen, er diskutiert den Artikel zusammen mit Details seiner eigenen
fritheren Arbeiten, anstelle klar anzugeben, da und wie Harward den Beweis vor ihm
gefithrt hat.

Gregory Moore hat 1976 in einer Notiz auf die alleine schon aus rein axiomatischer
Hinsicht bemerkenswerte Arbeit von Harward hingewiesen, und ihre Vernachlissigung
als ein ,,establishment“-Phédnomen interpretiert: ,,Harward [1905] contained the core of
what could have been a worthwile axiomatization of set theory. Nevertheless, his paper
provoked no public response, even fromJourdain who had suggested changes in it prior
to publication. This silence was partly due to the fact that Harward was a self-confessed
amateur vis-a-vis set theory...“ [Moore 1976].

Auch nach Moores (nicht gerade an mathematisch auffilliger Stelle veroffentlichtem) Hinweis
blieb Harwards Beitrag zur Fundierung der Mathematik oder zum Multiplikationsproblem in
(fast?) allen alten wie neueren mathematischen wie historischen Texten zur Mengenlehre vollkom-
men unbeachtet ([Deiser 2004] leider eingeschlossen, in guter Gesellschaft mit z. B. [Hausdorff
2002, p.33 und p. 597f]). Die folgende Geschichte des Satzes liest sich dann auch, als hitte es
Harwards Artikel von 1905 gar nicht gegeben.

10 Hessenbergs erster Beweis des Satzes (1906)

Unabhingig von Harward gelang Hessenberg ein Beweis des allgemeinen Additions-
und Multiplikationssatzes durch ein einfaches, hiibsches und heute fast vergessenes Ar-
gument, das die sogenannte Cantorsche Normalform [Cantor 1897, § 17] fiir Ordinal-
zahlen verwendet. Der Beweis erstreckt sich iiber die §§75-77 der ,,Grundbegriffe
[Hessenberg 1906].

Die Cantorsche Normalform ist, cum grano salis, die N-adische Darstellung transfi-
niter Zahlen. Ganz so, wie sich natiirliche Zahlen eindeutig in der Form

10 -a; + 10" a, + ... + 10™- a,

schreiben lassen mit natiirlichen Zahlenn; > n, >... > n, > 0, 1 < a; < 9, lassen sich Or-
dinalzahlen eindeutig in der Form

Na"a1+Na2'a2+...+lNuk'ak
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schreiben mit (endlich vielen!) Ordinalzahlen a; > a, > ... > o, > 0, und Koeffizienten
a; € IN — {0}. Hierbei ist N* = ©* die von Cantor definierte Ordinalzahlexponentiation
zur Basis IN.

Hessenberg bringt zwei Ordinalzahlen in ihre Cantorsche Normalform, und defi-
niert dann die von ithm sogetaufte natiirliche Summe der beiden Zahlen wie folgt. Er ad-
diert zuerst paarweise die in den Normaldarstellungen auftretenden Glieder mit glei-
chen Exponenten. Diese Summen haben also die Form IN% - a; oder IN% - (a; + b;) oder
IN“- (a;+b;) oder NP b;. AnschlieBend summiert er alle diese Einzeladditionen zu einer
neuen Normalform auf (d. h. die groBeren Glieder kommen zuerst). So verschmelzen
zwei Ordinalzahlen zu einer neuen. Betrachtet man die Operation, so siecht man schnell,
daB immer nur endlich viele Paare dasselbe Ergebnis dieser Verschmelzung hinterlassen.
Der Prozef} ist also ,,fast™ injektiv. Zudem liegt die natiirliche Summe recht nahe am
Maximum der beiden Summanden. Hessenberg gewinnt aus diesen Beobachtungen
dann relativ leicht den Additions- und Multiplikationssatz fiir Wohlordnungen, und
mit Hilfe des Zermeloschen Wohlordnungssatzes folgen dann die uneingeschrankten
Versionen.

Hessenberg hat Bernsteins Andeutungen iiber einen Cantorschen Beweis des Satzes nicht un-
kommentiert gelassen. Sowohl im Vorwort seines Buches als auch am Ende des Beweises des Mul-
tiplikationssatzes spricht er von einer ,,Mitteilung® von Felix Bernstein, derzufolge das Resultat
bereits von Cantor bewiesen worden war [Hessenberg 1906, p. IV und Ende § 77]. Hierbei ist nicht
klar, ob sich Hessenberg lediglich auf die Bernsteinsche Dissertation bezieht oder ob es eine zusétz-
liche Korrespondenz mit Bernstein hieriiber gab. (Ersteres erscheint wahrscheinlicher.) Im Vor-
wort schreibt er iiber diese Mitteilung von Felix Bernstein:

,,ODb der in dieser Mitteilung fliichtig skizzierte Beweis derselbe ist, den ich hier [in §§ 75-77 dieser
Abhandlung] darstelle, vermag ich nicht zu beurteilen.*

DaB die Beweisidee dieselbe ist, erscheint nicht unmdoglich, da alle Zutaten des Hessenberg-
schen Beweises Cantorsche Eigengewédchse sind, allen voran die Normaldarstellung transfiniter
Zahlen. Wahrscheinlicher ist aber, da3 Cantor einen Beweis gesehen hatte, der enger mit der Argu-
mentation von Harward und Jourdain verwandt ist.

Weiter spricht Hessenberg von einem ,,wesentlich verschiedenen® Beweis des Satzes, der ihm
»in jingster Zeit“ von Ernst Zermelo mitgeteilt worden sei, und demnéchst verdffentlicht werde
[Hessenberg 1906, Ende § 77]. Wie Cantors Beweis hat auch Zermelos Beweis nie das Licht der
Welt gesehen. Im Hinblick auf die Arbeiten und Argumente von Zermelo aus dieser Zeit ist der
Zermelosche Beweis vermutlich dem Zornschen Beweis des Satzes dhnlicher als den Beweisen von
Hessenberg und Jourdain.

11 Hessenbergs zweiter Beweis des Satzes

Hessenberg hat 1907 noch einen zweiten arithmetischen Beweis des Multiplikationssat-
zes gegeben, der die Cantorsche Normalform nicht verwendet, dafiir aber von der fei-
nen Dynamik der Ordinalzahlexponentiation in anderer Weise gebraucht macht. Die
Exponentiation wurde von Cantor 1897 [Cantor 1897, § 18] eingefiihrt, und hat Ruhm
erlangt als erstes Beispiel einer Definition durch transfinite Rekursion. Hessenbergs Be-
weis benutzt jedoch eine dquivalente rekursionsfreie Definition der Exponentiation, die
auf Hausdorff zuriickgeht. Modulo dieser Definition ist der zweite Hessenbergsche Be-
weis dann sehr einfach zu fithren.

JB 107. Band (2005), Heft 2 101



Ubersichtsartikel 1 Historische Beitrage ‘Berichte aus der Forschung Buchbesprechungen —t

Ziel ist es zu zeigen, daB unendliche Kardinalzahlen abgeschlossen unter Ordinalzahlmultipli-
kation sind, daB also a* B < k gilt fiir alle a, B < k, wobei k eine unendliche Kardinalzahl ist. Hier-
fir verwendet Hessenberg die Abschitzung B < 2% - 2P = 2% < 2% (DafB a + B < k gilt, ist ein-
fach zu sehen.) Die Behauptung folgt nun einfach daraus, daB fiir unendliche Kardinalzahlen 2* =
K gilt. (2% ist hier die Ordinalzahlexponentiation, nicht die identisch notierte Kardinalzahlexponen-
tiation, fiir die immer 2" > k gilt.) Fir den Beweis dieser Gleichung verwendet Hessenberg die re-
kursionsfreie Hausdorff-Hessenberg-Darstellung der Ordinalzahl-Exponentiation: Er braucht,
daB die Méchtigkeit des Ergebnisses der Exponentiation 2* nur von der Méchtigkeit von o ab-
héngt, was aus der rekursiven Definition von 2“ im Gegensatz zur Hausdorff-Hessenberg-Darstel-
lung nicht unmittelbar hervorgeht.

Schoenflies skizziert die beiden Hessenbergschen Beweise von 1906 und 1907 im
zweiten Teil seines ,,Berichts* [Schoenflies 1908, p. 13 f.]. In seiner Neufassung des er-
sten Teils von 1913 findet sich dann nur noch der erste Beweis [Schoenflies 1913,
p. 131 ff.]. Das schone Argument der Arbeit von 1907 gerit in Vergessenheit.

12 Jourdain (1908), Hausdorff (1914), und der heute iibliche Beweis

Zwei Jahre nach Hessenberg veroffentlicht Philip Jourdain einen weiteren Beweis des
Multiplikationssatzes. Er bildet die Grundlage fiir Hausdorffs Beweis in den ,,Grundzii-
gen der Mengenlehre” von 1914, der, wie erwdhnt, mit Harwards zweitem Beweis von
1905 zusammenfallt. Hausdorff bezeichnet Hessenbergs Beweis von 1906 in einer An-
merkung als ,,umstandlich” [Hausdorff 1914, p. 456], was auf die Darstellung zutrifft,
aber nicht auf den Beweis selber. Der heute iibliche Beweis des Satzes folgt der Har-
ward-Hausdorffschen Argumentation, und unterscheidet sich von ihr nur durch etwas
bessere Feinmechanik und l4uft dadurch etwas glatter; er ist Allgemeingut und mit kei-
nem weiteren Namen verbunden (auBer daB die im Beweis implizit konstruierte Funkti-
on manchmal als Godelsche Paarungsfunktion bezeichnet wird). Alle Beweise verwen-
den wie Hessenberg Ordinalzahlen, wobei die benutzten arithmetischen Operationen im
Lauf der Zeit immer einfacher werden — Jourdain verwendet noch die Addition von Or-
dinalzahlen, der heutige Beweis kommt mit der trivialen Operation der Maximum-Be-
stimmung zweier Elemente einer Wohlordnung aus. Die Kernbeobachtung ist, dal3 aus
einer Wohlordnung einer Menge M sehr einfach eine Wohlordnung von M x M kon-
struiert werden kann, und daB3 dies zudem in einer fortsetzbaren Weise geschehen kann:
Wird die Wohlordnung von M verldngert zu einer Wohlordnung von M/, so ist die kon-
struierte Wohlordnung auf M x M ein Anfangsstiick der Wohlordnung auf M’ x M'.
Mit Hilfe dieser Fortsetzungseigenschaft zeigt man dann, daB in vielen wichtigen Spe-
zialféllen die Wohlordnung auf M x M ordnungsisomorph zur Wohlordnung auf M
selbst ist. Dies zeigt den Multiplikationssatz fiir Wohlordnungen, und wie bei Hessen-
berg folgt das allgemeine Ergebnis unter Heranziehung des Zermeloschen Wohlord-
nungssatzes. Und erst fiir diesen letzten Schritt wird das Auswahlaxiom verwendet.
Diese Schliisselidee 146t sich ohne Arithmetik umsetzen, und der Beweis 148t sich da-
her rein mit Hilfe des Wohlordnungsbegriffs bequem fiihren; es ist nicht notwendig mit
Ordinalzahlen zu arbeiten, nicht einmal aus Notationsgriinden. Andererseits wird die
zugrundeliegende Arithmetik nicht wirklich eliminiert, sondern lediglich verborgen:
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Die konstruierten Wohlordnungen sind immer einfach definierbare wohlgeordnete
Summen von Wohlordnungen, und damit letztendlich arithmetischer Natur.

Cantors Diagonalaufzahlung, definierbar
als pPolynom oder durch Vergleich der

Koordinatensumme. Letzteres fuhrt .
\ zu Jourdains allgemeiner Konstruktion.
o l l

Die Jexikographische Harward-Hausdorff- Einweben des unteren Drejecks
wohlordnung des linken oberen Dreiecks Fifrt zur heute Ublichen Aufzéhlung des
des Quadrats uber einer woklgeordneten Achse Quadrats Uber einer wohlgeordneten Achse.

,II

(Hessenbergs wohlordnung liber natirliche Sumpen 1a8t sich nicht leicht visualisieren.
Ehenso ergabe Jourdains Konstruktion von 1908 ein recht kompliziertes Diagrams.)

Allen Konstruktionen der einfachen Wohlordnung auf M x M liegt eine Variation der Cantor-
schen Diagonalaufzidhlung von IN x IN zugrunde. Jourdain schreibt in der Einleitung seines Arti-
kels [Jourdain 1908]: ,,In order to prove that ®, - X, = X, where v is any (finite or transfinite) ordi-
nal number, we shall generalise Cantor’s [...] method of proving that X, - Ry = Ry.“ Jourdain gibt in
einer FuBnote die Cantorsche Bijektion f: N?> — IN als Polynom an, jedoch kommt es ihm hier nur
auf die induzierte Ordnung der Elemente von IN? untereinander an: Will man (a, b) und (c, d) € N?
bzgl. der Diagonalaufzahlung miteinander vergleichen, so ist es nicht nétig, f(a, b) und f(c, d) aus-
zurechnen und diese Werte miteinander zu vergleichen. Denn es gilt: (a, b) < (c,d) gdwa +b<c +
d oder a + b = ¢ + d und zudem a < c. Die Wohlordnung der Diagonalaufzihlung kann geradezu
in dieser Weise definiert werden, und diese Definition liefert dann, wie Jourdain erkannt hat, eine
Wohlordnung von y x y fiir beliebige Ordinalzahlen v: Seien (a, B), (¢, B) € y xy. Dann setzen
wir: (a, B) < (o, '), falls a + B < o/ + B’ oder falls & + B = o’ + B’ und a < . Jourdain zeigt nun,
daB3 diese Wohlordnung von y x y ordnungsisomorph zu v ist, falls ¥ eine unendliche Kardinalzahl
ist. Damit ist |y x y| = |y| fiir unendliche Kardinalzahlen y. Der allgemeine Multiplikationssatz
folgt dann wie bei Hessenberg mit Hilfe des Wohlordnungssatzes von Ernst Zermelo.

Jourdains Beweis beruht also auf einer direkten Verallgemeinerung eines die Cantorsche Dia-
gonalaufzihlung von IN? definierenden Vergleichskriteriums. Jourdains Konstruktion besitzt al-
lerdings die oben erwidhnte Fortsetzungseigenschaft nicht in voller Allgemeinheit.

Dies ist anders bei der Harward-Hausdorff Konstruktion, welche — bei Harward und Hausdorff
mit Ordinalzahlen, hier in der Sprache der Wohlordnungen formuliert — aus einer Wohlordnung
auf M eine Wohlordnung nicht auf M?, sondern auf der Menge {(a, b)|a,be M,a<b} erzeugt,
also auf ,,dem linken oberen Dreieck” von M x M: Die Elemente dieser Menge werden lexikogra-
phisch geordnet, zunichst nach ihrer zweiten Komponente, und bei gleicher zweiter Komponente
nach der ersten. Das gleichmaBige Einweben der analogen Ordnung auf dem anderen Dreieck von
M x M (unter EinschluB der Diagonalen) fithrt zur heute tiblichen ,.kanonischen* Wohlordnung
auf M x M, und verkiirzt den Beweis um einen oder zwei Hilfssitze; Hausdorff muB z. B. zusitz-
lich zeigen, daB3 das ,,obere linke Dreieck” von M x M gleichméchtig zur ganzen Menge M x M ist
fiir unendliche Mengen M.

13 ProblembewuBtsein und Reaktionen

Es scheint, daB3 der allgemeine Multiplikationssatz nie , offiziell“ als offenes Problem
formuliert worden ist. Cantor selbst konzentrierte sich auf Mengen der Michtigkeit
von IN oder IR, und trug mit dem Kontinuumsproblem — ob ndmlich jede unendliche
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Teilmenge von IR die Michtigkeit von IN oder die von IR selbst habe — schwer genug
auf den Schultern. Aus der Bemerkung in Bernsteins Dissertation geht aber hervor, da3
sich Cantor mit dem Multiplikationssatz fiir Wohlordnungen zumindest gedanklich
auseinandergesetzt hat. Auch zur Jahrhundertwende standen die Méchtigkeiten von IN
und IR noch immer im Rampenlicht des Interesses. Als eine Menge noch groBerer
Machtigkeit als IR wurde die Menge F der reellwertigen Funktionen untersucht, und
allgemein zeigte Cantors Diagonalargument von 1891, daB die Menge aller Funktion ei-
ner Menge M in sich selbst immer groBere Méchtigkeit hat als M selbst [siehe etwa
Schoenflies 1900, p. 26]. Aber selbst eine elementar zu beweisende Gleichung wie | F?| =
| F| findet sich z. B. im Bericht von Schoenflies von 1900 nicht. Man rang noch mit rela-
tiv kleinen, erdnahen Machtigkeiten, fiir die Beschéftigung mit astronomischen Gréfen
war es noch etwas zu frith. Als groB3e in voller Allgemeinheit noch zu bewiltigende Auf-
gaben diskutierte man das Wohlordnungsproblem und das Problem der Vergleichbar-
keit von Mengen, daneben machten aber auch die kleinen wiederum erdnahen Dinge
groBere Schwierigkeiten, etwa die Frage, ob eine nach der Méchtigkeit von IN néchst-
groBere Maichtigkeit existiere: ,,Der einzige Fortschritt [im Kontinuumsproblem] ist
der, daBB man inzwischen wenigstens eine bestimmte Menge als zweite [unendliche]
Michtigkeit zu definieren gelernt hat.” So schreibt Schoenflies zur Jahrhundertwende
[eb., p. 27].

Selbst von einer ,,zweiten Méchtigkeit” wie im Zitat von Schoenflies konnte man streng ge-
nommen nur fiir die wohlordenbaren Mengen sprechen: Die ,,bestimmte Menge®, sagen wir A,
war wohlordenbar, aber man wuflte nicht in voller mathematischer Klarheit, daB3 |A| < |M] gilt
fiir alle Mengen M mit |IN| < |M|. Man sah die Giiltigkeit dieser Aussage fiir wohlordenbare M.
Der allgemeine Fall bendtigt eine weit iiber die Mengenlehre ohne Auswahlaxiom hinausgehende
abgeschwichte Form des Wohlordnungssatzes, und erst Zermelos Arbeiten im ersten Jahrzehnt
des 20. Jahrhunderts schalteten in diesem Gew®olbe voller verwirrender Fragen das Licht an. In ei-
ner Bemerkung im zweiten Teil des Berichts geht Schoenflies auf dieses Problem der zweiten Méch-
tigkeit ein: ,,Erst dieser Satz [der Vergleichbarkeit von Mengen] wiirde uns das Recht geben, R,
[oben A genannt] als die zweite Méchtigkeit zu bezeichnen... Freilich hat der Sprachgebrauch sich
langst an diese Bezeichnung gewohnt. Er ist aber ohne den obigen Satz nicht gestattet.” [Schoen-
flies1908, p. 32].

Zwischen Cantors letzter bedeutender mengentheoretischer Arbeit von 1897 und bis
zum wirkungsvollen Auftreten von Zermelo und Hausdorff 1904 fehlte schlichtweg ein
kreativer und jugendlich-kraftvoller mathematischer Kopf ersten Ranges, dervon Can-
tor den stilsicheren Umgang mit den neuen transfiniten Zahlen geerbt hitte. Aus mathe-
matischer Sicht machte erst Hausdorffs allgemeine Untersuchung linearer Ordnungen
ab 1906 die Definition von komplizierteren Ordnungen durch verschiedenste Ver-
gleichskriterien zur handwerklichen Selbstverstandlichkeit, und Hausdorff war es dann
auch, der 1914 den ersten vollstindig ausgefiihrten Beweis zu Papier brachte, der noch
heute in Darstellung und Inhalt gleichermaBen tiberzeugt.

Interessant ist auch, die Reaktionen auf die Losungen des Multiplikationsproblems
zu verfolgen. In seinem Bericht von 1900 erwéhnt Schoenflies ein allgemeines Multipli-
kationsproblem nicht. Im zweiten Teil des Berichts [Schoenflies 1908], beklagt er dann
aber das Fehlen eines ausfiihrlichen Beweises dessen, was Bernstein in seiner Dissertati-
on nur andeutet (siche das Zitat in Abschnitt 3). AnschlieBend referiert er die beiden Be-
weise von Hessenberg von 1906 und 1907. Harwards Beweis dringt, wie erwéahnt, in die
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mathematische Fachwelt gar nicht ein. In der umgearbeiteten Fassung des ersten Teils
aus dem Jahre 1913 schreibt Schoenflies dann zum Hessenbergschen Resultat und zum
Beweis von Jourdain:

,,Es liegt sehr nahe, diese Methode [der Diagonalaufzahlung von IN?] auf beliebige Alephs zu
iibertragen. Tatsdchlich hat die Formel [der Multiplikationssatz fiir wohlgeordnete Mengen] des-
halb auch stets als richtig gegolten, ehe man einen prézisen Beweis fiir sie besessen hat. Ph. Jour-
dain war der erste, der den Cantorschen Grundgedanken in ausfiihrlicher Darstellung auf den Fall
beliebiger Alephs ausgedehnt hat... Einen rein arithmetischen Beweis hat Hessenberg geliefert...
[Schoenflies 1913, p. 132]

Das ,,stets* kann sich hier doch wohl nur auf die Zeit nach der Bernsteinschen Dis-
sertation beziehen, bezeichnet also lediglich einen Zeitraum von fiinf Jahren bis zur end-
giiltigen Losung des Problems 1906: Eine wichtige Formel, die als richtig gilt aber noch
nicht vollstdndig bewiesen ist, sollte in einem Bericht wie dem Schoenfliesschen von
1900 irgendwo notiert sein. Gleichungen wie IN?|=|N[,|IR x N| =|IR|, |R"| = |IR|
werden dort ausfithrlich diskutiert; fiir die Menge F aller Funktionen von IR nach IR
findet sich die Relation |IR| < |F|, aber die Frage | F?| = |F| wird ebensowenig erwihnt
wie eine allgemeine Multiplikationshypothese fiir Mengen oder auch nur fiir wohlor-
denbare Mengen.

Das Multiplikationsproblem scheint also in den beiden letzten Jahrzehnten des 19.
Jahrhunderts nur halbbewuB3t gewesen zu sein; eine groBere Rolle spielt es dann erst seit
der Dissertation von Felix Bernstein 1901. Die Tatsache, dal Hessenberg sein Resultat
im knappen Vorwort seines Buches von 1906 ausfiihrlich diskutiert, und die Besorgtheit
von Jourdain um einen kleinen Platz in der Geschichte, die aus seinen Arbeiten heraus-
zuhoren ist, weisen dann daraufhin, da man sich iiber die Bedeutung des nun vollig be-
wuBten Problems und seiner Losung sofort im klaren war. Eine ungewdhnliche Zwi-
schenstufe in der Geschichte bilden die Bemerkungen von Bernstein tiber Cantors Ein-
sichten in das Problem.

Die Nachwelt griff dann ab [Hausdorff 1914] den Beweis von Harward-Hausdorff
mit Referenzen an Jourdain auf, unwissend um Harwards Prioritdt. Wie erwahnt, gilt
Hausdorff die Hessenbergsche Argumentation als umsténdlicher. Es mag sein, daB3 sich
der Beweis nach Harward-Hausdorff in den ,,normalen* auf Kompaktheit ausgerichte-
ten Aufbau eines Textes oder einer Vorlesung zwangloser einfiigt; die Autoritdt von
Hausdorffs ,,Grundziigen der Mengenlehre™ spielte aber sicher eine Rolle im Selekti-
onsprozeB ,,survival of the fittest proof*. Man darf vermuten: Hétte Cantor selber den
ersten Hessenbergschen Beweis gesehen und ihn als einfaches Korollar zu seiner Nor-
malform notiert [etwa in Cantor 1997, § 19], wire das Argument heute ein bekannter
mengen theoretischer Klassiker.

Ein bemerkenswertes historisches Detail in der Rezeptionsgeschichte des Multiplikationssatzes
ist, daB in der ,,Einleitung in die Mengenlehre® von Abraham Fraenkel [Fraenkel 1928] das Multi-
plikationsproblem und seine Lésung nicht behandelt werden. Das Buch von Fraenkel richtet sich
zwar an einen weiteren Leserkreis als die Uberblicksartikel von Schoenflies oder das Buch von
HausdorfT, jedoch lieBe die Fiille des diskutierten Materials auf eine Erwdhnung des Multiplika-
tionsproblems schlieBen. Fraenkels Text glanzt mit dem vollstdndigsten und sorgfaltigsten Litera-
turverzeichnis der Zeit, die Arbeiten [Jourdain 1908] und [Harward 1905] allerdings fehlen, obwohl
Fraenkel fiinf Arbeiten von Jourdain zwischen 1905 und 1922 auflistet. Das Fehlen des Multiplika-

tionsproblems bedeutet hier sicher keine mangelnde Wertschétzung, sondern ist eher ein Beleg da-
fiir, daB sich das Problem aus einer einfithrenden Darstellung gut ausklammern lat — hat man
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doch schon genug Miihe, den Lesern Gleichungen wie |IR| = [IR]| in ihrer historischen Dimension
vor Augen zu fithren. Als Ubungsaufgaben fiir den Leser notiert Fraenkel aber immerhin die Glei-
chungen |F + F| = |F| und |F x F| = |F| fur F = {f | f: R — IR} [Fraenkel 1928, p. 102 und
p. 120].

14 Multiplikationssatz und Auswahlaxiom (1924)

Alle diskutierten Beweise des Multiplikationssatzes verwendeten mehr oder weniger di-
rekt das Auswahlaxiom. Das Auswahlaxiom wird nicht gebraucht, um den Multiplika-
tionssatz fiir wohlordenbare Mengen zu zeigen. Fiir das allgemeine Resultat wird aber
dann der Zermelosche Wohlordnungssatz herangezogen, der zum Auswahlaxiom dqui-
valent ist. Mit der immer sensibler werdenden Wahrnehmung seiner Verwendung stellte
sich auch die Frage, ob ein Rickgriff auf das Auswahlaxiom fiir einen Beweis des Mul-
tiplikationssatzes unumgénglich ist. Dies ist in der Tat der Fall: Nimmt man zu den um
das Auswahlaxiom reduzierten Axiomen der Mengenlehre die Aussage des Multiplika-
tionssatzes — quasi als Axiom -hinzu, so 148t sich in dieser Theorie das Auswahlaxiom
beweisen. Auswahlaxiom und Multiplikationssatz sind also dquivalent (auf der Basis
der iibrigen Axiome). Dieses Resultat wird gewohnlich einer Arbeit von Tarski aus dem
Jahre 1924 zugeordnet [Tarski 1924], jedoch reichen die Vorarbeiten bis in das Jahr
1901 zuriick. Felix Bernstein bewies in seiner Dissertation den folgenden Satz:

(+) Seien M und N Mengen, und es gelte [M x N| = |M + N|. Dann sind die Méach-
tigkeiten von M und N vergleichbar, d. h. es gilt [M | < |N]| oder |[N| < |M| [Bern-
stein 1905, p. 131ff].

Der allgemeine Vergleichbarkeitssatz stand damals noch nicht zur Verfligung, und die
Suche nach hinreichenden Bedingungen war eine natiirliche Problemstellung der Zeit.
Bernsteins Argument ist hiibsch und kurz, aber nur vermeintlich logisch-elementar: Er
verwendet versteckt das Auswahlaxiom. (Vgl. hierzu auch [Schoenflies 1913, p. 47f.],
wo das Auswahlaxiom immer noch versteckt eingeht.) Dessen ungeachtet ist der Satz
von Interesse, insbesondere aufgrund der binomischen Gleichung

(++) [M+N)’| = [M*+ {0,1} x Mx N + N?|.

Setzt man ndmlich den Multiplikationssatz voraus, so kann man das Quadrat links in
(++) weglassen, und die Gleichung zeigt dann insbesondere |[M x N| < |M + NJ. Die
Ungleichung |[M + N| < |M x NJ ist fiir Mengen mit mehr als einem Element trivial,
und mit Cantor-Bernstein haben wir also |M x N| = |M + N} aus dem Multipliaktions-
satz abgeleitet. Aus (+) folgt dann die Vergleichbarkeit von M und N. Soweit findet sich
alles bereits in der Dissertation von Bernstein 1901. Leider wird aber das Auswahlaxiom
im Beweis von (+) verwendet. Es ist aber aus dem Beweis von (+) abzulesen, dal3 das
Auswahlaxiom nicht gebraucht wird, wenn man eine der beiden Mengen M und N in
(+) als wohlordenbar voraussetzt. Gegeben den allgemeinen Multiplikationssatz und
eine beliebige Menge M, wihlt Tarski nun als N eine Wohlordnung, die sich nicht in M
injektiv einbetten 14B8t. Daf eine derart lange Wohlordnung immer existiert, hat Fried-
rich Hartogs 1915 innerhalb der Zermeloschen Mengenlehre ohne Auswahlaxiom (und
insbesondere ohne Ersetzungsaxiom) gezeigt [Hartogs 1915]. Nun lduft Bernsteins Ar-
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gument ohne Auswahlaxiom durch, und wir erhalten |[M| < |N| oder [N| < [M]. Letz-
teres ist nach Wahl von N ausgeschlossen, also gilt |[M| < |N|. Somit ist M wohlorden-
bar, da sich M in eine wohlordenbare Menge einbetten 1a6t. Dieses Argument liefert al-
so den Wohlordnungssatz aus dem Multiplikationssatz ohne irgendeine Verwendung
des Auswahlaxioms!

Tarski stellte dann die sich aufdringende Frage, ob der Additionssatz ebenfalls zum
Auswahlaxiom #dquivalent ist. Dies ist jedoch nicht der Fall: Der Additionssatz ist echt
schwicher als das Auswahlaxiom (aber dennoch echt starker als eine Mengenlehre ganz
ohne Auswahlaxiom). Beweise dieses Resultats wurden unabhingig voneinander und
mit verschiedenen Methoden von Gershon Sageev sowie Dan Halpern und Paul Ho-
ward gegeben [Segeev 1975, Halpern / Howard 1976]. Es gibt eine Fiille verwandter Re-
sultate, siehe hierzu z. B. [Jech 1973] oder [Halbeisen / Shelah 2001].

15 Max Zorn: Ein wohlordnungsfreier Beweis (1944)

Max Zorn hat 1935 sein heute nach ihm benanntes Lemma veré6ffentlicht — fortan fester
Bestandteil im Werkzeugkoffer des Algebraikers —, und es 1944 fiir einen Beweis des
Additions- und Multiplikationssatzes verwendet [Zorn 1944].

Der Begriff der Wohlordnung kann so ganz vermieden werden, auf Kosten der An-
schaulichkeit und feinen Struktur des Arguments. Der Beweis selbst beruht auf einer
doppelten Anwendung des Zornschen Lemmas. Zunéchst wird der Additionssatz ge-
zeigt (oder bequemer eine verschirfte Form wie etwa |IN x M| = |[M| fiir unendliche
Mengen M, aus der der Additionssatz sofort folgt). AnschlieBend gewinnt man den
Multiplikationssatz, unter Verwendung der Zerlegung von (X U Y)? in die vier Teile
XxX,YxY,XxYundY x X. Beide Schritte benutzen das Zornsche Lemma. Die
zugrundeliegenden partiellen Ordnungen sind jeweils kanonisch. Sparsamkeit ist hier
nicht recht am Ort, und so spielt es keine Rolle, da neben dem Satz von Cantor-Bern-
stein auch noch der Vergleichbarkeitssatz verwendet wird.

Bemerkenswert ist schlieBlich, da die Moglichkeit eines wohlordnungsfreien Beweises in die
Standardliteratur der Mengenlehre allenfalls marginal eingegangen ist [z. B. in Levy 1979, p. 163].
Die relative Unzuginglichkeit der Arbeit [Zorn 1944] mag eine Rolle gespielt haben. Hauptursache
scheint aber die gut begriindbare Ansicht zu sein, dal der Beweis von Zorn zu grob ist, um den
Feinheiten der Gleichung |M?| = M| gerecht zu werden.
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Der Lehenslauf

Am 23. Juli 2002 verstarb Prof. Dr. Elmar Thoma, eme-
ritierter Ordinarius fiir Mathematik an der Technischen
Universitdt Miinchen im Alter von 75 Jahren.

Elmar Thoma wurde am 10. September 1926 in Ba-
den-Baden geboren, wuchs jedoch in Neumarkt in der
Oberpfalz auf und besuchte das Gymnasium in Niirn-
berg. Nach dem Abitur studierte er von 1946 an Mathe-
matik und Physik an den Universitdten Regensburg und
Erlangen und legte 1951 in Erlangen die erste Staatsprii-
fung fiir das Lehramt an Gymnasien ab. Bereits im Jahre
1952 erfolgte die Promotion bei Otto Haupt in Erlangen.
Nach einer Industrietdtigkeit bei der Firma Siemens in
Erlangen war er ab 1954 wissenschaftlicher Assistent bei
Georg Aumann an der Ludwig-Maximilians-Universitat
Miinchen, wo er sich 1957 fiir das Fach Mathematik habilitierte. Daran schlo8 sich ein
zweijdhriger Aufenthalt als Gastprofessor in den USA an, und zwar an der University
of Washington in Seattle.

Nach drei Jahren an der Universitat Heidelberg als wissenschaftlicher Rat und au-
BerplanméBiger Professor folgte Thoma 1964 einem Ruf auf einen Lehrstuhl fiir Ma-
thematik an der Westfélischen Wilhelms-Universitit Minster. In unruhigen und
schwierigen Zeiten war er dort mit 42 Jahren Dekan der groBen Mathematisch-Natur-
wissenschaftlichen Fakultdt und wesentlich beteiligt am beginnenden Ausbau der Ma-
thematik. Obwohl er sich in Miinster ausnehmend wohl fiihlte, war doch die Verbun-
denheit mit der bayerischen Heimat zu stark, um einen ergangenen Ruf an die Tech-
nische Universitdt Miinchen abzulehnen.

Dort war Elmar Thoma als Nachfolger von Robert Sauer von 1970 bis zu seiner
Emeritierung im Jahre 1994 Inhaber des Lehrstuhls fir Hohere Mathematik und Ana-
lytische Mechanik. Dazu kamen Amter in der akademischen Selbstverwaltung. Er war
1973/74 Dekan der damals noch groBen Fakultét fiir Allgemeine Wissenschaften, spéter
Geschiftsfithrender Direktor des Mathematischen Instituts und viele Jahre Vorsitzen-
der des Priifungsausschusses fiir Mathematiker. Bis kurz vor seiner Emeritierung war er
Beauftragter fiir die Fachbereichsbibliothek.

Uber zehn Jahre lang bis 1990 fungierte Elmar Thoma als einer der Herausgeber der
Mathematischen Annalen, seit 1969 war er gemeinsam mit Horst Leptin Organisator
der im zweijahrigen Turnus stattfindenden internationalen Tagung ,Harmonische Ana-
lyse und Darstellungstheorie topologischer Gruppen‘ im Mathematischen Forschungs-
institut Oberwolfach. Er war Mitveranstalter der gemeinsamen Arbeitstagung liber
Gruppen und topologische Gruppen der Universititen Erlangen, Freiburg, Trient,
Technische Universitdt Miinchen und Wiirzburg. Aus diesen und anderen Aktivititen
entstanden zahlreiche Kontakte zu Wissenschaftlern in vielen verschiedenen Lindern.

Elmar Thoma hat sich nie als spezialisierter Vertreter seines Faches Mathematik
verstanden, seine Interessen waren vielseitig, von der Physik und Chemie bis hin zur Ge-
schichte, insbesondere der bayerischen Geschichte.
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Thoma verstand es, seine Begeisterung fiir Mathematik auf die Horer seiner Vor-
lesungen zu iibertragen. Seine Studenten schétzten seinen lebendigen Vortragsstil. In
Miinster etwa versammelte sich alsbald eine ansehnliche Zahl von Schiilern um ihn. Fiir
diese war er jederzeit ansprechbar, und auf Grund seiner ausgeprigten Diskutierfreu-
digkeit und seiner Ideen ein anregender und hilfreicher Gesprichspartner. Seinen Mit-
arbeitern gewahrte er bei ihrer Tétigkeit ein Maximum an Freiheit, deren fachliche Ent-
wicklung stand fiir Thoma im Vordergrund. Der Erfolg des akademischen Lehrers El-
mar Thoma wird insbesondere auch dadurch eindrucksvoll dokumentiert, daB
immerhin neun seiner Doktoranden im Universititsbereich verblieben sind.

Zum wissenschaftlichen Werk

Das Forschungsgebiet von Elmar Thoma war die Darstellungstheorie und Harmo-
nische Analysis lokalkompakter, insbesondere diskreter, Gruppen. Wihrend dieses Ge-
biet, in das Gruppentheorie, Topologie, Funktionalanalysis, MaB- und Integrations-
theorie u.a. einflieBen, Ende der 50er Jahre etwa auf Grund der fundamentalen Arbei-
ten von Mackey in den USA bereits entscheidende Fortschritte gemacht hatte, wartete
es auf seine ErschlieBung und Wiederbelebung im Nachkriegsdeutschland.

GewiB hat der Aufenthalt in Seattle und das durch Edwin Hewitt geprigte mathe-
matische Umfeld Thoma darin bestétigt, Harmonische Analysis zu betreiben. Er hat je-
doch wiederholt erwédhnt, daB3 wiahrend seiner Tatigkeit bei Siemens Fragen theoreti-
scher Physiker zur Darstellungstheorie klassischer Gruppen ihn zur Beschéftigung mit
Darstellungstheorie lokalkompakter Gruppen angeregt hétten.

Ein Kernstiick, auf das hier nidher eingegangen werden soll, des wissenschaftlichen
Werkes von Thoma war die Charakterisierung der diskreten Gruppen vom Typ I [1, 6],
die in der internationalen Fachwelt allergroBtes Aufsehen erregte. Grob gesprochen
sind die lokalkompakten Gruppen vom Typ I diejenigen, deren irreduzible Darstellun-
gen man (zumindest prinzipiell) bestimmen kann. Thomas Ergebnis, das eine Ver-
mutung von Kaplansky [Ka] bestitigt, besagt, daB} eine diskrete Gruppe genau dann
vom Typ I ist, wenn sie einen abelschen Normalteiler von endlichem Index besitzt. Ins-
besondere sind also dann nicht nur alle irreduziblen Darstellungen endlich-dimensional,
sondern die Darstellungsgrade sind sogar beschrankt durch diesen Index. Dieses Resul-
tat stellt eines der tiefsten in der Darstellungstheorie diskreter Gruppen tiberhaupt dar
und war in der Folge AnlaB fiir viele weitere Untersuchungen anderer Mathematiker.

Ein Beispiel hierfiir ist die Mooresche Beschreibung aller derjenigen lokalkompak-
ten Gruppen, deren irreduzible Darstellungen sémtlich endlich dimensional sind [Mo].
Es war naheliegend, daf3 im AnschluB3 an Thomas Satz die Frage gestellt wurde, ob eine
diskrete Gruppe bereits dann einen abelschen Normalteiler von endlichem Index besit-
zen muB, falls ihre reguldre Darstellung vom Typ I ist. Dies wurde in [K 1] bejaht. Spéter
schlossen sich weitere Verallgemeinerungen an [K2, Sc, T1, T2, KS], wie etwa: Explizite
Beschreibung der maximalen Typ I-Projektion in der von Neumann-Algebra der regu-
laren Darstellung, Erweiterung der Resultate auf eine groBere Klasse als die der diskre-
ten Gruppen und auf Darstellungen, die im Unendlichen verschwinden.
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Um das Problem der Charakterisierung der diskreten Gruppen vom Typ I angehen
zu konnen, entwickelte Thoma eine Theorie der sogenannten Charaktere [1,2]. Fiir eine
(diskrete) Gruppe G bezeichne K(G) die Menge aller positiv-definiten Funktionen ¢
auf G mit (e) = 1 und ¢(y~'xy) = p(x) fiir alle x,y € G. Die Menge K(G) ist konvex
und, versehen mit der Topologie der punktweisen Konvergenz, kompakt. Die Elemente
der Menge E(G) aller Extremalpunkte von K(G) heiBen Charaktere. Im abelschen Fall
sind dies also gerade die Elemente der dualen Gruppe von G, im Falle einer endlichen
Gruppe G die normierten Spuren irreduzibler Darstellungen von G. Vermége der Gel-
fand-Naimark-Segal-Konstruktion definiert jedes ¢ € E(G) eine sogenannte Faktor-
darstellung 7, von G von endlichem Typ, und eine solche ist nur dann vom Typ I, wenn
sie endlich-dimensional ist. Die Essenz des Beweises des Thomaschen Satzes ist also zu
zeigen, daBl die Gruppe G einen abelsche Untergruppe von endlichem Index besitzen
muB, wenn alle diese 7, ¢ € E(G), endlich-dimensional sind.

Es war offenkundig, daB8 zumindest fiir diskrete Gruppen G der Raum E(G) ein
niitzliches duales Objekt darstellt. Fiir klassenfinite Gruppen etwa gibt die Zuordnung
¢ — m, AnlaB zu einem Homdomorphismus zwischen E£(G) und dem Raum der pri-
mitiven Ideale der C*-Gruppenalgebra von G. Gleiches gilt fiir endlich-erzeugte nil-
potente Gruppen, wenn man E(G) mit der Seitentopologie versieht.

Thoma hat, wohl auch seiner Neigung zu konkreten Berechnungen folgend, fiir die
Gruppe Sy aller endlichen Permutationen der Menge der natiirlichen Zahlen E(S..)
bestimmt [3]. Der Beweis war tiefsinnig und benutzte Aussagen iiber ganze Funktionen.
Die Arbeit [3] initiierte ein immenses Interesse an der Gruppe S, und anderer diskreter
Gruppen wie GL(oc, F) fiir endliche Korper F [Sk]. Unter verschiedenen Gesichtspunk-
ten wurden die Charaktere der S, von Kerov und Vershik studiert [K'V, VK]. Insbeson-
dere haben diese einen Beweis gefunden, der die Approximation der Charaktere der S,
durch die Charaktere der endlichen symmetrischen Gruppen benutzt. Einen weiteren
Beweis hat Okounkov, Ideen von Olshanskii fortentwickelnd, gegeben [Ok]. GroBe Se-
rien irreduzibler Darstellungen der S, wurden von mehreren Autoren, etwa Hirai [Hi],
konstruiert.
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ISBN 3-11-018346-3

This book is an introduction to financial mathematics. In addition to many
corrections and improvements, this second edition contains several new
sections, including a systematic discussion of law-invariant risk measures and
of the connections between American options, superhedging, and dynamic
risk measures.

Prices are subject to change.
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So versteht man die
Stochastik leicht

Stochastik
einmal anders

Gerd Fischer
Stochastik einmal anders

Parallel geschrieben mit Beispielen
und Fakten, vertieft durch
Erlauterungen

2005. VIil, 327 S. Br. EUR 24,90
ISBN 3-528-03967-1

e Fakien,
sech Fildutorun

Beschreibende Statistik - Wahrscheinlichkeitsrechnung - Schatzen - Testen
von Hypothesen - Anhang: Erganzungen und Beweise

Eine Einfiihrung in die Fragestellungen und Methoden der Wahrscheinlich-
keitsrechnung und Statistik (kurz Stochastik) sowohl fiir Studierende, die
solche Techniken in ihrem Fach benétigen, als auch fiir Lehrer, die sich fiir
den Unterricht mit den nétigen fachlichen Grundlagen vertraut machen
wollen.

Der Text hat einen besonderen Aufbau - als Trilogie ist er in Beispiele,
Fakten und Erlduterungen aufgeteilt.

Was (iberall in der Mathematik gilt, ist noch ausgepragter in der Stochas-
tik: Es geht nichts iiber markante Beispiele, die geeignet sind, die Anstren-
gungen in der Theorie zu rechtfertigen. Um dem Leser dabei méglichst
viele Freiheiten zu geben, ist der Text durchgehend parallel gefiihrt: links
die Beispiele, rechts die Fakten.

Abraham-Lincoin-StraBe 46 Andert halten.
D-65189 Wiesbaden : ol

k Fax 0611.78 78-420
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G. Aubert, P. Kornprobst
Mathematical

G. Aubert, P. Kornprobst

Mathematical Probl inl
Problnsoin roblems in Image
Image Processing,  Processing, Partial
PartialDifferential  ;q0r0ntia) Equations
Equations and
the Calculus and the Calculus
of Vaziations of Variations
Appl. Math.
Sciences 147

Berlin, u. a., Springer, 2002, 286 S., € 74,95

Dies ist ein wunderbares Buch. Der Weg zu
dieser Erkenntnis war allerdings etwas ldn-
ger.

Beim Lesen des Titels dieses Buches wur-
den meine Erwartungen sehr hoch ge-
schraubt:

Endlich, das ldngst Giberfallige Buch, das
die Grundlagen der mathematischen Bildver-
arbeitung knapp und zugleich umfassend
darstellt und die faszinierende Entwicklung
der letzten Jahre dieses vergleichsweise neuen
Wissenschaftsbereichs wiirdigt. Ein derarti-
ges Buch wiirde eine seit langem beobachtete
Liicke fiillen, die jeder zu spiiren bekommt,
der sich bei der Vorbereitung auf eine Vor-
lesung zu diesem Thema schon einmal iiber
die unzureichende Literaturlage gedrgert hat.

Auch das sehr anregend geschriebene
Vorwort von Olivier Faugeras erhoht noch
die Erwartungen an Inhalt und Lesbarkeit
des Textes: er empfiehlt dieses Buch auch
der Computer Vision Gemeinde, die eher in
der Informatik zu Hause ist. Diese Empfeh-
lung ist allerdings mit der Warnung ver-
sehen, dass diese Leserschaft vielleicht nicht
alle Details der Beweise verstehen aber
zumindest doch auch schon beim ersten Le-
sen die wesentlichen Ideen erfassen konne.

Dieser Satz ist wohl dem verstdndlichen
aber in diesem Fall irrefiihrenden Bestreben
des Verlags, eine moglichst breite Leserschaft
anzusprechen, geschuldet. Bereits der Unter-
titel des Buches ,partial differential equations
and the calculus of variations‘ hitte den auf-

merksamen Betrachter mit etwas Vorsicht
auf das Kommende ausstatten konnen.

Dieses Buch konzentriert sich ausschlieB3-
lich auf den Themenbereich des Untertitels,
der in den vergangenen Jahren einige der be-
deutendsten neuen Beitrdge zur mathemati-
schen Theorie der Bildverarbeitung geleistet
hat. Ein vollstindiges Buch zur Mathemati-
schen Bildverarbeitung ist es allerdings
nicht, zentrale Themen aus Anwendersicht
(Image Fusion, Pattern recognition, Klassi-
fikation, etc.) oder einige der wichtigsten
mathematischen Methoden (Abtasttheorie
und die Theorie diskreter Filter, Wavelet
Analysis) fehlen ebenso wie alle elementaren
Basismethoden (Morphologische Verfahren,
Histogramm-Methoden, u.v.a.).

Und noch eine Einschriankung sollte hin-
zugefiigt werden: selbst der Untertitel ist
noch zu weit gefasst. Die Autoren beschrei-
ben im wesentlichen die Ergebnisse der fran-
zo6sischen Schule. Den Ergebnissen von Wei-
ckert werden ganze 4 Seiten gewidmet, der
Rudin-Osher-Ansatz und seine weitreichen-
den Weiterentwicklungen werden auf 2 Sei-
ten abgehandelt, die fruchtbaren Verbindun-
gen zu Operatorgleichungen und inversen
Problemen werden in Kapitel 3.2 zwar ange-
sprochen, die schonen Ergebnisse von Scher-
zer fehlen allerdings vollig ebenso wie die
sehr gut strukturierten und anschaulichen
Arbeiten von Keeling. Auch die mathemati-
schen Probleme der numerischen Umset-
zung werden im Anhang kurz und im Sinne
einer groben Programmieranleitung gut ver-
stindlich beschrieben, die mathematischen
Aspekte dieser Fragestellungen werden
kaum bertihrt.

Nachdem diese leichte Verdrgerung iiber
den irrefithrenden Titel verflogen ist, erkennt
man allerdings schnell, dass dies ein sehr
schones und duBerst sorgféltig geschriebenes
Buch ist. Es gibt meines Erachtens kein ver-
gleichbares Buch, das die Ergebnisse der
franzosischen Schule zu diesem Thema fir
ein mathematisches Publikum derart kom-
petent und umfassend darstellt.

Die Voraussetzungen, die der Leser oder
ein Student hoheren Semesters, der eine sich
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an diesem Buch orientierende Vorlesung be-
sucht, mitbringen sollte, sind allerdings nicht
gering. Grundkenntnisse der nichtlinearen
Funktionalanalysis und ein solides Grund-
wissen Uber die Existenzheorie elliptischer
und parabolischer Probleme sowie solide
Kenntnisse der Theorie von Funktionenrdu-
men werden vorausgesetzt.

Nun aber endlich zum Inhalt des Buchs:
Die Autoren sind im Grunde genommen
strenge Analytiker, dementsprechend be-
ginnt das Buch in Kapitel 2 mit einem knapp
40-seitigen Kapitel Mathematical Prelimina-
ries. Hier werden u. a. einige Ergebnisse der
nichtlinearen Funktionalanalysis und Varia-
tionsrechnung inklusive der Gamma-Kon-
vergenz, Eigenschaften des BV-Raumes so-
wie einige Ergebnisse der Losungstheorie
von PDE'S (Eikonal-Gleichung, Viskositéts-
16sungen) zusammengefasst.

Dieses Kapitel wire ohne die vorangestell-
te 20-seitige, hervorragende Einleitung mit
einem detaillierten ,Plan‘ des Buchs sehr ab-
schreckend. Dieser in Kapitel 1.4 vorgestell-
te Plan hat auf mich wie ein Ruhepol beim
Lesen des Buchs gewirkt. Man kann immer
wieder zu diesem Kapitel zuriickkehren, um
z. B. die Einordnung des gerade Gelesenen in
dem Gesamtzusammenhang zu erkennen
oder um einen gewagten Sprung iiber einige
Kapitel des Buchs vorzubereiten, oder auch
nur, um die wesentlichen Aspekte dieses Bu-
ches nochmals in komprimierter Form zu
iberfliegen.

Die nachfolgenden Kapitel heiBen Image
restoration, segmentation problem, und other
challenging applications. D. h. sie sind nach
den Anwendungsaspekten geordnet, im
Kern sind sie aber mathematisch aufgebaut:
image restoration steht fiir Energie-Funk-
tionale und nicht- lineare Diffusion, Seg-
mentation fiir mean curvature flow, Mum-
ford-Shaw-Funktionale und , Level-Set Me-
thoden.

Der abschlieBende Anhang zu Finiten Dif-
ferenzen wird einen Numeriker nicht zufrie-
den stellen. Er ist aber gut geeignet, um Stu-
denten einer Vorlesung im Hauptstudium ei-
ne gut verstdndliche Anleitung fiir eigene,

einfache Simulationsrechnungen zu geben,
ohne vorher eine komplette Veranstaltung
Numerik partieller Differentialgleichungen
besuchen zu miissen.

Es folgen noch drei kurze Bemerkungen
zum Inhalt des Buches.

1. Als einen typischen Testfall fiir die Les-
barkeit des Buche habe ich versucht, auf kiir-
zestem Weg den beriihmten Beweis von
Catte, Lions et al. zur Existenz einer Losung
des regularisierten Perona-Malik-Modells
nachzuvollziehen (S. 111 ff). Zwar wire hier-
fiir ein Einstieg tiber das vorhergehende Ka-
pitel (nonlinear diffusion) leichter, aber auch
so lisst sich dieses zentrale Ergebnis sehr gut
verstehen.

2. Diese Buch ist auBergewdhnlich sorgfil-
tig aufgebaut und duBerst gut geschrieben.
Besonders der Aufbau des Buches ist positiv
hervorzuheben. Der Leser wird iiber mehre-
re Stufen (Detailed Plan Kapitel 1.4, mathe-
matical preliminaries Kapitel 2 und die nach-
folgenden ausfiihrlichen Kapitel zu den ein-
zelnen Spezialthemen) angenehm an die The-
matik heranfihrt. AuBerdem muss die sehr
sorgfiltige Gestaltung des Buches gelobt
werden, es ist eine wirkliche Freude dieses
Buch in die Hand zu nehmen!

3. Der Wille der Autoren zur Abstraktion
ist stark ausgepréigt. Gelegentlich hétte die
Beschrinkung auf konkrete Funktionen-
rdume die Lesbarkeit erhoht. Von dem Leser
wird ein selbstverstdndlicher Umgang mit
z.B. der BV-w*-Topologie erwartet, den
z. B. der Referent dieses Buches nicht vor-
zuweisen hat.

Wer wird dieses Buch lesen? Dieses Buch
ist meines Erachtens ein Muss fiir jeden Ma-
thematiker, der sich mit Bildverarbeitung be-
schiiftigt. Das MaB an notwendiger abstrak-
ter Analysis ist fiir diesen Leserkreis sehr gut
gewihlt und notwendig, wenn man in knap-
per Form die zentralen Ergebnisse dieses
Forschungsgebietes vorstellen will.

Ebenso hervorragend geeignet ist das
Buch fiir einen Analytiker, der sich diesem
Gebiet von der theoretischen Seite ndhern
mochte. Er wird mit der analytischen Prizi-
sion dieses Buches mehr als zufrieden sein
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und — hoffentlich — mit einer inneren Befrie-
digung und einigem Erstaunen erkennen,
welche Beitrage die angewandte Analysis zu
der Entwicklung dieses Anwendungsgebiets
geleistet hat.

Zu guter Letzt sollte noch betont werden,
dass die zahlreichen, perfekt illustrierten und
dabei anspruchsvollen Beispiele dieses Bu-
ches ein optischer Genuss sind und dieses
Buch fiir Mathematiker aller Ausrichtungen
und Spielarten interessant macht.

Bremen P. Maal}
J.L.Nazareth
Differentiable
Ol tanaiia J. L. Nazareth
Equation Solving, Differentiable Optimi-
ATreatise on Algo- 7
AT Botetios and zation and ECIUi.ltIOIl
the Karmarkar Solving, ATreatise on
Revolution Algorithmic Science
and the Karmarkar
Revolution

Berlin u. a., Springer, 2003, 256 S., € 79,95

Die vorliegende Monographie beschiftigt
sich mit einigen ausgewihlten Verfahren zur
Losung von differenzierbaren Optimie-
rungsproblemen und nichtlinearen Glei-
chungssystemen. Das Buch umfasst 15 Kapi-
tel, die sich hauptséchlich mit der unrestrin-
gierten Optimierung und den linearen Pro-
grammen auseinandersetzen. Es enthélt so
gut wie keine Theoreme und auch keine
Ubungsaufgaben, ist allerdings auch nicht
als Lehrbuch konzipiert. Vielmehr erwartet
der Autor bereits entsprechende Grund-
kenntnisse aus dem Bereich der algorith-
mischen Optimierung.

Die Auswahl des Stoffes in den 15 Kapi-
teln hdngt sehr stark von den persdnlichen
Forschungsinteressen des Autors ab. Im We-
sentlichen werden hier die eigenen For-
schungsleistungen des Autors zusammen-

hiangend dargestellt. Aus diesem Grund feh-
len wohl auch eine Reihe von wichtigen Teil-
gebieten der differenzierbaren Optimierung.
Beispielsweise wird die nichtlineare restrin-
gierte Optimierung striflich vernachléssigt,
obwohl auch hier durch die sonst ausfiihrlich
vertretenen Inneren-Punkte-Methoden we-
sentliche Neuerungen stattgefunden haben.

Die einzelnen Kapitel beschiftigen sich
meistens mit einem bestimmten Verfahren
oder einer Klasse von Verfahren. Dabei han-
delt es sich iberwiegend um bekannte Me-
thoden aus dem Bereich der Optimierung.
Diese Verfahren werden entweder nur ange-
geben oder, in einigen Fillen, auch hergelei-
tet. Danach werden mdgliche Varianten be-
sprochen, wie man sie in der Originallitera-
tur noch nicht findet. Somit enthélt das Buch
eine Reihe von Ideen, die allerdings nicht
weiter ausgefiihrt werden.

Ein Beispiel mag die Vorgehensweise bes-
ser illustrieren. Wir betrachten dazu das Ka-
pitel S, welches sich mit den CG-Verfahren
beschiftigt. Hier wird zunéchst an das linea-
re CG-Verfahren zur Losung eines linearen
Gleichungssystems mit positiv definiter Ko-
effizientenmatrix erinnert. AnschlieBend
folgt eine Wiederholung der wichtigsten CG-
Verfahren zur Losung des nichtlinearen Op-
timierungsproblems
minimiere f(x)
mit einer glatten Funktionf : R” — IR. Die-
se sind meist von der Gestalt
Xpal =X +apdr, k=0,1,...

fir eine Schrittweite oy > 0 und eine Such-
richtung dj, die bei den nichtlinearen CG-
Verfahren ebenfalls einer Rekursion der Ge-
stalt

i1 = =V (Xp11) + Bk

genligt, wobei unterschiedliche Vorschriften
fiir B, € R verschiedene Verfahren liefern.
Zwei bekannte Vertreter sind

T
B = (8k+1)" 8k+1

= (Fletcher-Reeves)
(gk)" 8k

JB 107. Band (2005), Heft 2
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und

T
B = %—I)T—XE (Hestenes-Stiefel)

(8k)" yi
mit g := —Vf(xx) und yy := gx+1 — gk. Der
Autor schldgt nun vor, die neue Formel
By = Ak(gZ+1gk+l) +(1— Ak)(glz;lyk)
i (gfgr) + (1 — ) (df yi)

fur zwei Parameter g,y € [0, 1] zu unter-
suchen. Konkrete Vorschldge fiir eine mog-
lichst gute Wahl dieser Parameter finden sich
nicht, und die zugehorigen numerischen Re-
sultate sind ebenfalls nicht sehr aufschluss-
reich.

Diese Vorgehensweise ist typisch fiir die
meisten Kapitel. Wer dies mag, dem wird
das Buch eine Reihe von dhnlichen Ideen ge-
ben. Fiir alle anderen ist die vorliegende Mo-
nographie eher weniger geeignet.

Wiirzburg C. Kanzow
L Elshakoffand Y. Ren
, - |. Elshakoffand Y. Ren
Finite Element s
methods for Finite Element
Structures with methods for Struc-
L”Vges.mhasm tures with Large
ariations
Stochastic Variations
Oxford Texts in Applied
and Engeneering
Mathemtics

Oxford University Press, 2003, 260 S., £45,—

This monograph is written by engineers for
engineers, though applied mathematicians
may find it an interesting source of informa-
tion on the types of problems that arise in en-
gineering and how engineers tackle them.
There is an extensive list of over 300 refer-
ences and the authors provide many useful
historical comments about the development
of the subject, which, loosely speaking, is

about stochastic finite element methods,
although, strictly speaking, the finite ele-
ments considered are deterministic and the
parameters in the problems being treated are
random or stochastic. The authors thus use
the expression finite element methods for
stochastic problems, which they abbreviate
FEMSP. They concentrate on the mean and
covariance analysis of displacements in
structures, restricting attention to linear and
static problems. Their goal is to introduce
non-perturbative methods, which allow
large stochastic variations to be handled.

There are seven chapters, an epilogue, ele-
ven short appendices as well as an extensive
bibliography, author index and subject in-
dex. Chapter 1 briefly reviews the finite ele-
ment formulation for beam bending and pla-
nar stress/strain analysis. The finite element
methods for stochastic structures (FEMSS)
is reviewed in Chapter 2, where traditional
perturbation methods involving series ex-
pansions as well as homogeneous chaos are
discussed and improvements suggested,
which are then illustrated and compared in a
very simple but instructive example. Chapter
3 treats FEMSS when an exact inverse of the
stiffness matrix is available and Chapter 4 in-
troduces exact solutions of stochastic shear
and Bernoulli-Euler beams as benchmark
problems. Variational principle-based FEM
for stochastic beams, including stochastic
versions of Bubunov-Galerkin and Ray-
leigh-Ritz methods, are discussed in Chapter
5 and element-level flexibility-based FEM
for stochastic structures in Chapter 6. Final-
ly, Chapter 7 provides a brief comparison of
stochastic and interval matrix methods for
the problems under consideration.

The monograph is very well written, the
material is clearly explained and is illumi-
nated through many examples. The numer-
ous quotations from the cited literature
further enhance its readability.

Frankfurt P. Kloeden
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Der Zahlen
gigantische Schatten
Y =
Rudolf Taschner

Der Zahlen
gigantische Schatten

Mathematik im Zeichen der Zeit
2., verb. Aufl. 2005. 200 S. Geb.
EUR 39,90

ISBN 3-528-13211-6

INHALT

Pythagoras: Zahl und Symbol - Bach: Zahl und Musik - Hofmannsthal: Zahl
und Zeit - Descartes: Zahl und Raum - Leibniz: Zahl und Logik - Laplace:
Zahl und Politik - Bohr: Zahl und Materie - Pascal: Zahl und Geist

DAS BUCH

Wie sehr Zahlen die vielfaltigen Aspekte des Daseins durchdringen, ist
wenig bekannt, und kaum jemand scheint bisher ermessen zu haben, wie
unfassbar weit der Zahlen lange Schatten reichen. Nicht was die Zahlen
sind, wird hier erzahlt, sondern was sie bedeuten.

Dass ein halbes Jahr nach Erscheinen der ersten Auflage bereits der Druck
einer zweiten Auflage erfolgt, belegt die These, dass viele Menschen
Mathematik vor allem als wesentlichen Bestandteil unserer Kultur empfin-
den und dariiber mehr erfahren wollen. In der zweiten Auflage wurden eini-
ge Druckfehler korrigiert.

Die Anregung, das Buch durch einen Index zu ergénzen, hat der Verlag auf-
gegriffen; dadurch hat das Buch eine wertvolle Abrundung gewonnen.

Abraham-Lincoln-StraBe 46 Anderungen vorbehalten. a
D-65189 Wiesbaden Erhéltlich beim Buchhandel oder beim Verlag.

k Fax 0611.78 78-420







