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Vorwort 	 1 
Jahresbericht der Deutschen Mathematiker-Vereinigung, 107. Bd. 2005, Nr, 2 

Vorwort 

Das vorliegende Heft enthält drei Arbeiten. Die behandelten Themen zeigen dabei die 
Spannweite, die der Jahresbericht abdecken möchte. Auf der anwendungsbezogenen 
Seite steht die Arbeit „Don't shed tears over breaks" von G. Winkler, 0. Wittich, 
V. Liebscher und A. Kempe. Hier wird die Frage behandelt: wie kann man große Da-
tenmengen, etwa aus dem Bereich der „Life Sciences", sinnvoll interpretieren? Aus-
gangspunkt sind zwei konkrete Beispiele, eines aus der Hirnforschung, das andere aus 
dem Bereich der DNA-Analyse. Die Autoren zeigen in ihrer Arbeit, wie mathematische 
Methoden eingesetzt werden können, um solche Datenmengen so aufzubereiten, dass 
eine möglichst zuverlässige Interpretation möglich wird. Solche Methoden sind essen-
tiell für eine erfolgreiche Forschung in Biologie, Medizin und auf anderen Gebieten. 

Der Beitrag von 0. Deiser über den Multiplikationssatz der Mengenlehre behandelt 
auf der anderen Seite ein Thema, das die Grundlagen der Mathematik betrifft. Anhand 
der Geschichte dieses Satzes diskutiert der Autor wesentliche Entwicklungslinien der 
Mengenlehre in der Zeit von ca. 1875-1945. 

E. Kaniuth und G. Schlichting würdigen in ihrem Nachruf auf E. Thoma Leben und 
Werk dieses Mathematikers. 

Wie stets wird das Heft durch eine Reihe aktueller Buchbesprechungen abgerundet. 

K. Hulek 
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Don't Shed Tears over Breaks 

Abstract 

Keywords and Phrases: edge preserving smoothing, variational problems, epicon-
vergence, wavelet shrinkage, regularization, nonlinear filters, Potts mode!, Mum-
ford-Shah functional, segmentation, time-series, fractionation curves, functional 
magnetic resonance imaging 
Mathematical Subject Ciassification: 93E 14, 62G08, 68T45, 49M20, 90C31 

This essay deals with 'discontinuous phenomena' in time-series. lt is an introduction to, 
and a brief survey of aspects concerning the concepts of segmentation into 'smooth' 
pieces on the one hand, and the complementary notion of the identification ofjumps, 
on the other hand. We restrict ourselves to variational approaches, both in discrete, and 
in continuous time. They will define 'filters', with data as 'inputs' and minimizers of 
functionals as 'outputs'. 

The main example are complexity penalized sums of squared deviations from data. 
We will argue that it is an appropriate tool for the extraction of the simplest and most 
basic morphological features from data. This is an attempt to interpret data from a 
well-defined point of view. lt is in contrast to restoration ofa true signal– perhaps dis-
torted and degraded by noise which is not in the main focus of this paper. The discus-
sion proceeds along two real-world data sets, one from brain mapping, and one from 

* Partially supported by DFG Graduate Programme 'Applied Algorithmic Mathematics' at the 
TU München and DFG grant SFB 386 at the LMU München 

Eingegangen: 19.07.2004, in überarbeiteter Form am 23. 12.2004 
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for Environment and Health, Postfach 1129, D-85758 Oberschleißheim, 	 DER DMV 
Germany; {gwink1er,wittich,1iebscher,kempe}gsf.de, http://ibb.gsf.de 	© B. G. Teubser 2005 
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functional genomics. These are typical examples, where little or no ground truth is 
available. In view of the indistinct nature of such data, the whole procedure should fol-
bw the principle of parsimony or sparsity. 

In edge-preserving smoothing, various formally similar variational models appear 
in the literature. We aim at an integral view; to this end we embed them into a para-
metric family, and study continuous dependence on parameters and sample size. 

1 Prologue 

In this essay, we reflect on the extraction of morphoiogical features from data in the 
natural and in the !ife sciences. Partially, it is a survey of variational methods and their 
use in statistics; partially, it should be understood as a programme how to proceed 
further in this direction, both in theory and practice. The final aim is to support the 
work of natural scientists by sound interpretations of data, as weil as the falsification or 
modification ofpresent, and the generation ofnew hypotheses. 

In the c!assical framework, models should be built on knowledge about the mechan-
isms of, and information gained by, experiments. In the examples we have in mmd, fo-
cus is on data for which there is little or no ground truth. Let us on!y think of !iving or-
ganisms or other comp!ex biological systems. lt is by far not evident whether it is rea-
sonable to believe in any (tractable) model of the under!ying mechanism. Therefore, we 
must go beyond the estab!ished theory ofestimation and test theory. What we can do in 
such cases is to ask nature simple questions, trying to extract specific features from data. 
And then we can endeavour to formulate the answer in a precise, transparent, and weh-
structured way as a basis for the discussion with natura! scientists. 

Here, we will restrict ourselves to features of time-series like persistent, steady, or 
smooth behaviour on the one hand, and rapid changes, or breaks on the other hand. 
For sake of brevity, the latter will be ca!led jumps. The term jump implies that between 
subsequentjumps, or inside a boundary, the signal behaves 'smoothly', i.e. that the rele-
vant characteristics do not change, or vary only moderately. Jump detection and identi-
fication ofsmooth regions are nonbocal and complementary concepts. 

In this text, we will give examples of time-series from brain mapping and gene ex-
pression, and we will argue thatjumps are the relevant features. But if this is our believe, 
then it is natural to examine and develop filters or estimators which transform data into 
representations based on jumps and segmentation. This is closely related to our second 
aim. We will discuss and illustrate by way of the mentioned data and some probabilistic 
models what we mean by parsimonious modelling and statistics. We will argue that par -
simony is an important concept for the explanation of such data. 

1.1 Two Data Sets trom Ute Sciences 

In many situations, we are confronted with experiments, where the (stochastic) mechan-
ism generating data essentially is unknown. This is particularly the case in a conglom-
eration of classical and new scientific disciplines hike medicine, ecology, and biobogy, or 
genomics, proteomics, metabolomics, celbomics etc., for which in the last years the fash- 
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ionable name 'life sciences' was created. Compared to physics, which certainly is the dis-
cipline with the highest degree of mathematization among the natural sciences, there 
are seldom hard mechanistic models explaining the chains and loops of causes and ef-
fects, and nearly all disciplines in the life sciences are due to the complexity of their 
questions and problems - still far from stringent mathematical formalization. Neverthe-
less there is a desire for precise mathematical formulations and arguments. In such 
cases, the only way to associate data to some hidden reality is to verify or falsify rough 
and basic criteria which characterize the event in question. Such criteria frequently are 
based on primitive signal features. In images these may be boundaries between regions 
of different intensity or texture, in time-series they may be morphological features like 
modes or 'ups and downs', domains of monotony, or plateaus where the signal is con-
stant. A list of past work on such and related topics can be found in Section 1.4 of P. L. 
Davies and A. Kovac (2001). 

We start the discussion with two one-dimensional data sets, one from brain mapping 
and one from functional genomics. In these examples, we expect that the observation 
period can be partitioned into intervals where the underlying signal can reasonably be 
represented by a constant. This is a very simple morphological feature, but the resulting 
representations by step functions allow for sound biological interpretations. 

The first set of data consists of time-series from functional magnetic resonance ima-
ging (fMRI) of the human brain. Please note that we selected an almost ideal example 
for the illustrations in order to make our intentions clearly visible. The second type of 
data are melting or fractionation curves for spots 011 a cDNA microchip. 

Example 1.1 (fMRI Brain Data: Identification of Response Regions) In this example, the 
final aim is to identify regions of increased activity in the human brain in response to 
outer stimuli. Frequently, such stimuli are boxcar shaped as indicated in Fig. 1. They 
may represent 'light or sound on and off', i.e. visual or acoustic stimuli, or tactile ones 
like finger tipping on a desk. Functional magnetic resonance imaging (fMRI) exploits the 
blood oxygenation level dependent (BOLD) effect which basically is a change of para-
magnetic properties caused by an increase of blood flow in response to the demand of 
activated neurons for more oxygen. The degradation mechanism along the path '(very 
complex) eye - (highly complex) visual cortex - (complicated) measuring device' is only 
partially known. Moreover, measurement is indirect, since the recorded BOLD effect is 
a physiological quantity related to a local increase of blood flow and not a direct func-
tion ofcortical activation. 

In the present example, fMRI records for each brain voxel the BOLD effect along 
70 time points. The voxel size is about 3 x 3 x 5 mm3 . Typical time-series are displayed 
in Fig 1. Each single value of a time-series is interpreted as a measure for the mean acti-
vation ofthe about 2 or 3 Millions ofneurons inside the voxel. The final aim is to decide 
on the basis of these time-series, whether a majority of neurons in the voxel answers to 
the external stimulus or not. We claim, that a minimal requirement for the ciassification 
of a voxel as a response to the boxcar stimulus is that it shows the same number of pla-
teaus or 'ups and downs' as the stimulus, irrespective oftime shift, trend, scale, 'random 
noise' etc. Hence a parsimonious approach based on significant plateaus should be ap-
propriate. 
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fJ,J[ 	
Figure 1: A box car shaped signal representing 'on- 
off' stimuli; three types of recorded time-series from 
fMRI brain mapping. Activation is unambiguous in 
the right frame. 

Example 1.2 (Gene Expression Experiments: Fractionation Curves) The aim of this ex-
periment is tojudge the quality of cDNA chips in order to increase the reliability ofcon-
ventional microarray experiments. 
Single stranded sections of known cDNA are put on spots ofa microchip; one chip typi-
cally consists of about 20.000 spots. Each cDNA section is characterized by a finite 
chain of nucleic acids, which are coded by the letters A(denine), C(ytosine), G(uanine), 
and T(hymine). Iffurther - unknown - nucleic acids are added then they tend to bind to 
the target nucleic acids, where T binds to A, and G binds to C. 
Hence sections ofsingle stranded unknown cDNA tend to pair with known cDNA ofsi-
milar sequences. The binding energy is maximal for perfect matches like 

A C T A CA G T A C C C A 
T G A T G T CA T G G G T 

and such a perfect match has high stability. In this case, the unknown sequence could be 
identified perfectly. A main problem is cross-hybridization, which means that DNA sec-
tions also pair with DNA of nearly, but not precisely complementary sequence, for ex-
ample 

A C T A CA G T A CCC A 
T G A T T T CA T GAG T 

A new and innovative biochemical experiment, designed to improve the quality control, 
provides data which hopefully will allow to identify mismatch dissociation at bw strin-
gency. lt is called 'Specificity Assessment From Fractionation Experiments' or in short-
hand notation 'SAFE', see A. L. Drobyshev et al. (2003). Washing the chip repeatedly 
withformamide solutions of increasing concentration removes pieces of single stranded 
DNA with higher and higher binding energy. The chips are washed 29 times andfractio-
nation curves like in Fig. 2 are recorded. Basically, they represent the fraction ofbinding 
DNA present on the spot at the different formamide concentrations. lt is clear that ideal 
fractionation curves decrease. The aim of the statistical analysis is to identify locations 
and heights of abrupt decreases. Locations of jumps correspond to melting tempera-
tures and indicate that a certain type of cross-hybridizing cDNA was washed away. 
There is still no satisfactory model which captures the relevant mechanisms. 
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Figure 2: Typical fractionation curves of single spots: no specific binding, specific 
binding, cross-hybrydization. Data are normalized to have the same range. 

In view of such data, one may doubt about too 'specific' methods or too detailed models 
for their analysis, and in fact we do so. Estimates rely sensitively on the validity of the 
models, and therefore are not robust against even slight changes in the assumptions. 
Fitting too many parameters introduces more variance despite slight decrease in bias. 

Figure 3: Median plot of fractionation curves (from the 
red channel): The pointwise median of 20000 fractionation 
curves derived from a DNA-microchip which were ro-
bustly normalized by forcing the 3/29-quantile (approxi-
mately the median of the last 7 time points) to be 0 and the 
24/29-quantile (approximately the median of the first 9 
time points) to be 1. 

A way out ofthis misery is to try a parsimonious approach. The principle ofparsimony 
is a philosophical matter and will be addressed in the next section. The relevant features 
in Example 1.1 are successions of high and bw plateaus and in Example 1.2, the posi-
tions of rapid decreases and their height. The form of typical signal representations in 
the second example is suggested by physical arguments, but also by statistical ones like 
the median plot in Fig. 3. lt displays for each time-point the median over data in the 
about 20.000 spots on a microarray. lt clearly indicates that typical features of typical 
signals are sharp decreases. 

In summary, in both examples there is ample evidence for well-defined, and charac-
teristic, morphobogical features. Therefore, we try to fit piecewise constant functions to 
these data. We will argue in Section 2.1 that minimizers of the Potts functional (4) with 
proper hyperparameters extract step functions with few jumps. This nourishes the hope 
that they will be appropriate for the expianation of data like those in the Examples 1.1 
and 1.2. 

Example 1.2 conceals another interesting aspect. Theory predicts that ideal fractio-
nation curves are (decreasing) superpositions of sigmoids (with sharper turns on the 
lower right than on the upper left). Nevertheless, we want to see sharp breaks for the 
identification of cross-hybridization, insert jumps where the underlying signal is steep. 
This will be discussed in Section 1.3 below. 
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1.2 Why Parsimony? 

The principle of parsimony is often called Ockham's Razor, named after the medieval 
philosopher Wilhelm von Ockham, who was born about 1285 at Ockham, Surrey, and 
who died about 1349 at München, Bavaria. He advanced the theory with phrases like 
"What can be explained by the assumption of fewer things is vainly explained by the as-
surnption of more things." Another formulation reads "Entia non sunt multiplicanda 
sine necessitate." (The being should not be multiplied without necessity). lt rernains un-
clear from these passages just what these 'things' really are. This becomes also evident 
in the words ofB. Russel (1953): "What science does, in fact, is to select the simplest for-
mula that will fit the facts. But this, quite obviously, is merely a methodological precept, 
not a law of nature. If the simplest formula ceases, after a tirne, to be applicable, the 
simplest formula that remains applicable is selected." There remains the question what 
'simple' means. We quote frorn P. L. Davies (1995): ".. . it will often be possible to find 
a model which almost reproduces the data. The simplest example is that of linear regres-
sion with a large number of explanatory variables. In such a case the interesting ques-
tion is therefore not what is the 'correct' number of explanatory variables hut what is 
the smallest number required to give an adequate model. In this case parsirnony is mea-
sured by the number of coefficients but it is also possible to use other measures such as 
continuity or the number of local extreme values." 

Adapting the paradigm of parsimony to the data we have in mmd, the rules of the 
garne are as follows: Explain data by a minimal number of smooth pieces. The one who 
needs least, is the winner. In other cases, one may aim at the minimal number ofmodes, 
monotonous pieces etc. Explaining data includes a proper balance between complexity 
and fidelity to data. 

1.3 Jumps and Segmentations 

For the present, let a signal be a real function on the unit interval U = [0, 1], or on a dis-
crete subset of U. We are interested in rapid changes ofthis signal, or in jumps. This isa 
rather intricate matter, and we will shortly argue that naive concepts can be misleading. 

For a finite stepfunction like in Fig. 4 (a), the discontinuities are natural candidates, 
and it certainly does not make sense to locate jumps inside the plateaus. Therefore it is 
reasonable to require the necessary condition that a stepfunction is discontinuous at each 
jump location. How to formulate a sufficient condition is - even for step functions - less 
obvious. The naive definition as analytical discontinuities in general is problernatic. In 
fact, the tiny jump in Fig. 4 (a) has a quite different quality as the large one. A continu-
ous function does not have any analytical discontinuities at all. 
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Figure 4: Analytical discontinuities versus an intuitive 
notion ofjump. 

(a) 

(c) 
	

(d) 

Nevertheless, one may want to interpret the steep ascent of the sigmoid functionf from 
Fig. 4 (b) as ajump. This is reasonable since one cannot telif from a step function like 
that in (c) from sparse samples. A natural choice for time-continuous signals are ciid1g 
functions which in each point are right-continuous and have limits from the left. These 
can also have analytical discontinuities which are very small compared to the variation 
of the signal in continuous parts like the shadowed one in Fig. 4 (d). In such situations 
the identification ofjumps as analytical discontinuities can be severely misleading and 
not desirable. This is underlined by the data from Example 1.2, in particular Fig. 3. 

In summary, a notion ofjump should be non-local: a time-point should be identified 
as ajump ifthe variation ofthe signal in a neighbourhood exceeds the variation in adja-
cent segments remarkably. This implies that a notion of smoothness is required if one 
wants to define what a jump is. In order to capture the antagonism of jumps and 
smoothness, we will write signals in terms ofsegnientations. 

Let us start with continuous time. The first ingredient are finite subsets 
{to = 0 < ti < 	< tr < tr±I = 11 c U. They are the edges ofthe closed subintervals 
I = _‚ t1 ] c U between the t1 and oftheir interiors .7. By slight abuse ofnotation, we 
call the set P = {I : 1 < j < r + 1 } a partition of U. The second ingredient are tuples 
fp = (fi, ... J) offunctionsf1  on the I or on the interiors Ij . The single piecesf1  will 
be required to be in some 'smoothness dass', for example in a space of polynomials or 
in a Sobolev space )'V' 2 (I]). Each segmentation (P, fp) induces a function f on U, 
which coincides on I withf . The set of segmentations will be denoted by 3. In general, 
J is not defined on the t1; this will not bother us, since we will work in the L-context 
anyway. Let us call functions admitting a representation by a segmentation adrnissihle. 

The same idea works in the discrete case. We simply partition the time-set 

{ 1,2, ... ‚ n} or { 1 /n. 21n, . . . 1 1 into mutually disjoint discrete intervals I and specify 
the smoothness ciasses. A typical example are the subspaces of IR'i with uk = uk+I 

whenever the neighbours k, k + 1 both are in I. Other examples of smoothness classes 
are given by lUk,1 Ukl <6 for some 6> 0 whenever the neighbours k. k + 1 both are 
in I. We will pursue this aspect in the next sections. 
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2 Variational Approaches 

Our concern is the decomposition of signals into smooth pieces, and simultaneously, 
the identification of boundaries between the regions of smoothness. Moreover, data 
have to be explained in a parsimonious way; in the present context this means by a mini-
mal number ofjumps. 

We are now going to report on variational approaches to this problem. The general 
paradigm is to design a real-valued functional of signals and data, which captures and 
rates the relevant signal features and, simultaneously, measures the fit ofsignals to data. 
Usually, such functionals are a sum of a penalty or regularization term G(f) for the sig-
nalf, and a term D(g,f) measuring fidelity ofthe signalf to the recorded data g. The 
generic functional has the form 

(1) F(f) = G(f)+D(f,g). 

Then - given data g - one selects a minimizerf*  ofthis functional, and decides thatf*  is 
the desired 'filter output', or representation. 

The functionals in this text will have a more special structure. Recall from Section 
1.3 that each admissible signal has a representation as a (minimal) segmentation 
(P,f'p). We may and will identify admissible functions with their segmentations and 
writefp for both. All the functionals will have a penalty for the size of the partition 2, 
penalties for the roughness ofeachf j , and penalties for their deviation from the data gI 
on 1. In summary, we will consider functionals of the form 

(2) F(P,fp) =P— l)+Wj(fj)+Qf(gI,fj), 

with control parameters 'y > 0 and s > 0. If we agree that the jumps are located at the 
endpoints of the intervals 1 of smoothness, then the first penalty is simply the weighted 
number ofjumps. This formulation allows a significant simplification of the optimiza-
tion problem, which reads 

(3) min F(P,f2)=min(7(I2I— 1)+min(Wi (fi)+oi(gIIfi))). 
(JP) 	 /2 JEpfI 

Recall that F3  is defined for admissible segmentations only, whereas pairs (2. (fj)1 0 , ) 

on the right-hand side need not be admissible. We shall therefore require Wiuj 
Wj  + W.j and juj(gl  LJ J, fiuj) < pj(gI,fj) + j (gJ, fj ) for all adjacent 1, J E 2 
which are both not maximal. Then the minimum cannot be attained for non-admissible 
segmentations, since the fusion of non-maximal intervals decreases 1'PI and does not 
change the other terms. 

Frequently, solutions of the inner optimization problem can be determined analyti-
cally, or computed with reasonable effort. Then minimization boils down to that on the 
space of partitions which is considerably smaller than the original search-space. In the 
discrete-time setting the problem is even reduced to the finite set offinite partitions, 
which is easy to handle by dynamic programming. 

Two further remarks are in order here: (1) Such functionals formally are similar to 
posterior or penalized log-likelihood functions from statistics, and there is a dose con- 
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nection to maximum posterior estimation in Bayesian Signal and image analysis. 
(2) The set ofjumps may be interpreted as a 'boundary' between smooth regions. In di-
mension one, such a boundary consists ofa number of isolated points. In higher dimen-
sion, boundaries are discrete or continuous 'manifolds' with an own structure. One ex-
ample is regularity in real-world pictures at large scale, called 'continuity of discontinu-
ities' in D. Marr (1982). 

2.1 Time-Wscrete Functionals 

Let us start with time-discrete models. Suppose that data v1,.. . ‚ v with a sample size 
n e N and values vk e JR is recorded. The candidates for a representation then are 
time-series UI, . . . ‚ E JR. Let us mention in advance, that in the examples all u E JR'1  
are admissible. 

The simplest instance of an edge detecting functional counts each time-point k with 

uk Uh.+, k = 1,... ‚n - 1, as ajump location. Let J(u) denote the set of these jump lo-
cations, and I J(u)i their number. The distance of a u to data v may be measured by var-
ious distances, for example by the sum of squared deviations. In this case the functional 
has the form 

(4) p,:JRJR, u=(ui ,...,u) 	7J(u)+Mu—vM 2  

with Euclidean norm 	on IR". The first term penalizes the number ofjumps of the 
representation u, and the second term rates fidelity of the representation u to data v. We 
call (4) the one-dimensional time-discrete real-valued Pottsfunctional. The original Potts 
model is a Gibbs field introduced in R.B. Potts (1952) as a generalization of the weh-
known Ising model from E. Ising (1925), for a binary spin system, to more than two 
states. The three concepts discussed above are incorporated in this model: 

(i) Jumps: Changes in the signal. In the Potts functional there arejumps where the va-
lues in two subsequent time-points differ. 

(ii) Smoothness: The behaviour between two subsequent jumps. lt is a consequence of 
(i) that in the Potts functional a signal is constant there. 

(iii) Fidelity to data: A distance between data and signal. 

The item (ii) isa fairly strict notion ofsmoothness: in fact, the signal is 'smooth' only in 
regions where it is constant. Note that this is parsimony at its best, since the number of 
values in a smooth part is one and hence minimal. The first term in (4) penalizes the 
number ofjumps irrespective of their size, and the parameter 'y > 0 controls the degree 
of smoothness. 

For the general considerations, the explicit form of the data term addressed in (üi) 
is irrelevant. The sum of squares could be replaced by other distances, for instance by 
the sum of absolute deviations. Given the set ofjumps, this term determines the con-
stant value of the signal between subsequentjumps. For the sum ofsquares, it is the em-
pirical mean of data values inbetween; for the sum of absolute deviations, it is an em-
pirical median. For the mathematical and the numerical analysis, on the other hand, the 
special form of the data term plays an important role. 
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Remark 2.1 Each minimizer u of the Potts functional (4) is the representation with the 
least number ofjumps among all representations not farther away from data v than 

E argmin J(u)I, subject to u - v 2  < 	- v 
u01R 

In view of the tradeoff between penalty and data term this is obvious. This constraint 
optimization problem depends on -y only through the map -y uZ. Note that this is an-
other indication for parsimony ofthe Potts functional. 

Let us illustrate the concept of segmentations by way of this simple example. Let us 
start from a signal u. lt induces a partition of { 1, ... ‚ n} into intervals 1 with uk = MI 
for some M, E JR and each k E 1. The correspondence is one-to-one and onto if the in-
tervals are maximal. Ifwe take for each 1 the diagonal in IR', consisting of the constant 
vectors c - (1, ... ‚ 1), as the smoothness dass then the correspondence between signals 
and segmentations is one-to-one and onto as well. In terms of such segmentations, and 
with vj = ( vk)kEJ, the functional (4) reads 

__ 	 __ 	 2 JR, (P, (Lj)j 0p) ." 7(P 	1) + 	Mvi 	iIL 
IsP 

where 11 11, is Euclidean norm on JR'. This is (2) with t/r1 	0. 
We consider the Potts functional as the simplest variational approach to the theore-

tical study of edge preserving smoothing, and simultaneously as a parsimonious statisti-
cal model for signals, in cases were there is little 'ground truth'. 

Let us give a second - closely related example. lt is a reformulation of the elasticity 
model, discussed in detail in the article A. Blake (1983) and in the monograph A. Blake 
and A. Zisserman (1987); for a comprehensive view see also G. Winkler et al. (1999), G. 
Winkler and V. Liebscher (2002), and the monograph G. Winkler (2003). Like the Potts 
functional, this Blake-Zissermanfunctional can be written in several forms. The one clo-
sest to (4) reads 

(5) B,LV  : JR'S 	JR, u = (ui,.. . ‚u,) 	 uk) + II U - vj 2  

with the truncated square function 

(6) () = 	() = min{ 2 / 2 ,7},7> 0. 

Here a difference A = I'k+1 - Ukl is considered to be a jump if it is greater than 
6 = -yl/2, and then p() = . lt treats values A greater than 6 like the Potts functional, 
again irrespective of their size. At bw values, this functional prefers signals u which are 
smooth between two subsequentjump locations in the 2 -sense p() = 

Formally, we get the Potts functional, if we let o() = 0 if A = 0 and o() = -y if 
0 in (5). This shows that Blake-Zisserman functionals converge pointwise to the 

Potts functionals as 6 - 0. They also converge in the epi- or F-topology which even im-
plies convergence of the respective minimizers. This aspect will be addressed in Section 
5.2. 
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All this becomes more transparent in the language of segmentations. The discussion 
is similar to that for the Potts functional. The smoothness dass für each interval 1 is 

{(uk)kEI E IR' : Uk+1 - ukl <6. whenever k, k + 1 e I}. 

If we denote the generic element by Uj and the restriction of v to 1 by vj, the functional 
becomes 

(7) B 	: 	 - 	JR. 
(P, (uJ)JEP) 	 —1) + 	 - Uk ) 2  + 	Vj - 

IEP 

To put this into the general context of (2) we observe that the data term is the same as in 
the Pütts model and Wj(u,) = k k+1I (uk+1 - uk). Respective segmentations 
ofthe same signal are displayed in Fig. 5. 

:1 L , j 
Figure 5: A Pütts and a Blake-Zisserman segmentatiün 

We can easily convince ourselves, that (5) and (7) are equivalent. Equivalence of the 
penalty terms is read offfrom the following identity. Let u be a signal and (2, up) the as-
sociated minimal segmentation and note that (Uk+j - uk)2//J,2 < 'y if and only if 
Uk+1 - Ukl <6. Then 

n-1 
min{(uk±1 	Uk ) 2 / 2 ,f} 

k= 1 

={k:fuk+1 — uk>6}+ 	 (u+—u) 
2 

lUk+1 -uk+ 

lt is now clear that the right sum can be split into sums over maximal discrete intervals 
on which Uk+1 - Ukl <6. They define a minimal partition 2 with P - 1 = 
Uk+1 - Ukl > 61. This completes the proof. We will later refer to arguments like this as 

the reduction principle. 
The functional (7) can be interpreted as a discretisation of the Mumford-Shah func-

tional (10) which lives on continuous spaces. lt will be addressed in Section 2.2. 
A. Blake and A. Zisserman (1987) started their discussion from the functional (8) be-

bw which is very dose to (7). They work with the original signal u but introduce auxili-
ary or co-variables indicating the presence or absence of a jump. In one dimension these 
are binary variables bk e 10, 11, k = 1,... ‚n - 1; the functional depends on the two 
variables u = ( uk) and b = (b,) in the following way 
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(8) ((u t ,. . ‚u), (b1,. . ‚b_t)) 

' G H v(u,b) = 7  	((ui - Uk) 2 (l 	bk)/ 2  +bk) + 11u - vM2. 

The variables bk are indicators ofjumps; there is ajump between k and k + 1 ifand only 
ifbk  = 1. The configurations b E 10, 1}1  represent boundaries. In one dimension they 
correspond to our t; in higher dimension they live on dual grids. lt is clear from the 
above discussion that (8) is equivalent to (5). The explicit representation of boundaries 
was introduced in A. Blake and A. Zisserman (1987) since these authors considered (8) 
mainly as an edge detector. The form (5) for them was a tool to develop the Graduated 
Non- Convexity algorithm for minimization. 

S. Geman and D. Geman (1984) started from similar functionals, but they augmen-
ted them by penalty terms for selected edge configurations; in one dimension these 
could be 'double boundaries' like bk_1 = 1, b = 0, bk+1 = 1. Most other penalized local 
edge configurations from S. Geman and D. Geman (1984) - like crosses or dead ends - 
do not appear in dimension one. These authors work in the Bayesian framework and let 
the variables uk take values in finite discrete spaces. They also experimented with var-
ious smooth cup-shaped functions instead of the square penalty. These are conceptually 
much harder to grasp. 

There is a dose relation between edge preservation and robustness. In fact, the pen-
alty in (5) can be interpreted as a robustification of an j 2 -penalty - where z 2  is used in-
stead of p() - in the sense of F.R. Hampel et al. (1986). A closely related robustifica-
tion is the popular £ 1 -penalty with JA I . The taut-string algorithm aliows fast computa-
tions for the corresponding functionals, see P.L. Davies and A. Kovac (2001). A 
theoretical study is E. Mammen and S. van de Geer (1997). A mixture oft'- and e2 -pe-
nalties results from functions 0 ofthe (convex) Huber type 

(9) '() 
- r 	2/2 	ifjx<6 
- 	 if 1x1 > 	= 

see P.J. Huber (1981). The above discussion shows that only a strict truncation like in p 
allows the unambiguous identification ofjump locations. 

The performances ofsome ofthe methods are illustrated and compared in Fig. 6. 

2.2 Continuous Time and the Mumford-Shah Functional 

Let us now turn to continuous time. D. Mumford and J. Shah (1985, 1989) introduced a 
time-continuous functional in 1R2 , similar in spirit to the time-discrete functionals 
above. 

In the time-continuous setting, 'data' are functions g on the unit interval U = [0, 1]. 
We continue with notation from Section 1.3. If(P, fp) isa segmentation, we denote the 
components offp byfj . The smoothness ciasses are Sobolev spaces )iV12(10)  and hence 
eachfj  has a square integrable generalized derivative. Then, apart from technical de-
tails, one version ofthe Mumford-Shah functional, for parameters 'y, bi > 0 and a signal 
g C L 2 (U), may be written in the form 

68 	 JB 107. Band (2005), Heft 2 



L_aWinker,O.Wittich,V. LiebscherA. Kempe: Don'tShedlearsoverBreaks 

(10) E 1 	- IR, 

(f) 	- 1)+ 	f If;t2dt+ 	f (J(t) —gj(t)) 2 dt, 
11 102 	 JEP ‚ 

wheref denotes the Sobolev derivative offj  on F. 

0 	 f Lr:\ 	 r\ FiT 
' 

Figure 6: lntensity profiles along the horizontal line through the middle of the pupils 
in a portrait: original image (upper left); typical minimizers of three functionals: sum 
of squares penalty (upper right), Blake-Zisserman functional (lower left), and Potts 
functional (lower right). Jumps are indicated by the almost vertical lines. Compare 
the characteristic pupil shapes of the profiles, from 108 to 119 for the right eye and 
175 to 185 for the left eye. 

In analogy to (4) and (5), it will be convenient to define this and other functionals on 
signals rather than on segmentations. Albeit the natural ranges ofdefinition ofthe var-
ious functionals will be different, they all can be embedded into the space L 2  ( U) of 
square integrable functions. lt contains for example all signals which are admissible for 
the above segmentations. We will set the functionals to oc on the nonadmissible func-
tions. We will argue in Section 4.1 that the subspace SB V2 ( U) of L2 ( U) is the natural 
range of definition of the Mumford-Shah functional. lt consists of functions which are 
the sum of a stepfunction and of an absolutely continuous function with square-integr-
able derivative. We set 

(11) E 	:L2 (U) 

	

J 	+ f f'(t) 2+1 (f(t) - g(1)) 2 dt if J e SBV 2 ( U) 

L U 

otherwise 

A more detailed discussion ofthe Mumford-Shah functional and the space SBV 2 (U) 
will follow in Section 4. lt will also reveal, that each function which minimizes (10) is a 
representative of an equivalence dass in L 2 (U) minimizing (11) and vice versa. 
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2.3 All Together Now 

In the last two sections, we discussed typical functionals for jump detection and jump 
preserving smoothing of time-series, both in discrete and in continuous time. All these 
models depend on hyperparameters which we denoted by ' and M. By means of them 
we can control the number ofjumps and the degree of smoothness. Time-discrete func-
tionals depend also on the sample size n. We aim at an integral view of all these models, 
in order to understand their mutual interrelations. The first step towards this aim sim-
ply is to draw up a stock list ofthe functionals; next we will embed them into a common 
setting; and finally, we will study the space of all these functionals from a topological 
point ofview. Ofmain interest is the behaviour ofminimizers as hyperparameters vary, 
in particular as time-discrete functionals tend to the continuous ones. For example, the 
Mumford-Shah functionals, and its relatives, are time-continuous limits oftime-discrete 
models for increasing sampling rate, in a sense to be made precise. This would also be a 
prerequisite for the numerical optimization of the latter. In this section, we just give an 
overview. Rigorous results on the asymptotics and the relations between the functionals 
will be presented in Section 5. 

Our strategy is to interpret all functionals in a common time-continuous setting. 
Since the Mumford-Shah functional (11) is already defined on L 2 (U), this space is a 
natural candidate. We will first embed time-discrete signals into L2 ( U) as finite step-
functions, and this way carry the time-discrete functionals over to functionals on 
L 2 (U). To fix the problem ofnotation once and for all let us agree about the following 
convention: 

Let .F denote a space offunctions on U. Ifeachf E .F is the unique representative of 
some equivalence dass [f], say in some LP(U), then we write F c LP(U) andsay that 

f e FisanelementofLP(U). 

The mutual interrelation between the spaces IR and L2 ( U) is described by the map 

L(U),(ui, ... ‚u) 1' [Uk1[k)]2 

where [•] denotes equivalence classes, and its left inverse 
k/n 

L 2 (U) 	IW, g 	(g = (l/n)' 	g(t)dt:l <k <n). 
£-1)ln 

These maps are isomorphisms between the Euclidean spaces IR endowed with scaled 
Euclidean norm n'/2 j . 11 , and the subspaces 	of L 2 (U) spanned by the indicator 
functions 	k = 1.....n - 1, and ju  For each g E L 2 (U), we define finite 
step-functions 

n-1 
gfl =g1[(k_1)/ . k/ fl ) + g1 ( _ 1)/ , 1 ]. 

k= 1 

Note that the g are cadlig versions of the conditional expectation of g with respect to 
the o--algebras An  generated by the intervals [(k - l)/n,k/n), k = 1.....n - 1, and 
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[(n 1)/n, 1] on O, 1], and as such they are unique. The definition is in accordance with 
the assumption that observations consist of means of the underlying signals over short 
time.-periods. 

lt is now straightforward to define the time-continuous version of the Blake-Zisser-
man functional. Basically, it makes sense only on ..4-measurable functions. Since each 
equivalence dass has a cdlg representative f in T,, '  we define for each f E T,1  and 
g E L 2 (U) the functional 

G!/ n ,,,(f) = Z min {n(f(k/n) —f((k - 1)/)2/2, 
} + 	(f - g) 2 (k/n). 

To simplify notation, let us write a = 1 /n. To extend the functional to all of L2 ( U) we 
define for each g e L 2  ( U) and p > 0 the functional as 

	

 IR  (12) F, : L2 (U) 	.' 	 U {}' f 	
{ Gg(f) iffEL2(U)\T 

Note that we introduced the sampling rate 1/n as an additional parameter. We call (12) 
the scaled time-continuous Blake-Zisserman Ji3nctional. This is the time-continuous 
counterpart of (5). The degenerate version in the limit i - 0 is the scaled time-continu-
ous discrete Potts functional. Let J(f) be the set of discontinuities of a stepfunction 
f e 7- , 1 . Then the functional reads 

(13) F 0  : L 2 (U) -* IRU {}' 
n—I 

J(f)J+1 (f_g)(k/n) if fET 
k=O 

-- 	 if feL 2 (U)\T 

Let us write e = 0 if we are in continuous time. Then the Mumford-Shah functional be-
comes F0 7  . lt will turn out that, as i -* 0, it tends to the (time-continuous) continuous 
Pottsfunctional. IfT denotes the space ofal/finite cdläg step functions 

f = 	aki [(k— 1 )/r. k/r) + an  [(r_l )/n,1] 

then it is given by 

(14) F0,,0 : L 2 (U) 	IRU {}, 

r 	k/r 

f (a—g(t)) 2 dt iffeT 
kl (k—I/r) 

	

DC 	 if f e L 2 (U)\T 

We give now an overview of all these functionals (and another two). Once and for 
all, we fix a signal g e L 2 (U). The parameters 7> 0, p > 0 and r > 0 form a subset of 
JR 3  with closure 

C = {(s,7, ) :s e {1/n : nE N} U {0}.7. p > 0}. 
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In the first component it is discrete with an accumulation point at zero. C is a vertical 
pile of two-dimensional cones pinned at the positions 1 /n and 0. To most of the para-
meters 'y, ‚ii, r 1/n we associated functionals Recall that we reserved r = 0 for 
time-continuous functionals. To some combinations of parameters we did not yet as-
sociate functionals; this will be done shortly to complete the picture. 

The various functionals correspond to parameters according to the following list, il-
lustrated in Fig. 7: 

- for y> 0, fi> 0, r = 0 (the interior of the top-face of the cube) we have the Mum-
ford-Shah functional 	= F0,, from (11), 

- for 'y > 0, u> 0, e 1 /n > 0 (the interior of the cube) we have the scaled Blake-Zis-
serman functional F 7  from (12), 

- for 'y > 0, ji = 0, r 	l/n > 0 (the interior ofthe right front face) we have the dis- 
crete scaled Potts functional F5 ,. 0  from (13), 
for 'y > 0, i = 0, 6 = 0 (the intersection of the right front and the top face excluding 
the origin) we have the continuous scaled Potts functional F0,7 ,0 from (14) 

- for the interior of the left front face including the right boundary, but excluding the 
origin, we have the discretized L 2 -distance in the sense 

F5,0,o(f) = 1 	- gfl 2 , 

- for the upper boundary of the left front face including the origin, we simply have the 
L 2 -distance 

F00,,(f) = g —f 2 . 

Note that the last functional does not depend on u. We will argue in Section 5 that the 
map (s, 'y, 	- F 	is continuous, in a suitable topology, on the whole range ofpara- 
meters, including the extreme cases. This is not only a beautiful mathematical result, 
but of practical importance: Denote the set of minimizers of F, ‚. by ArgMin(a, y, 
This set is in general not a singleton. We can show that the map (6,7, t) 

ArgMin(s, 7 i) is continuous as weil. 

3 Time-Discrete Potts Functionals 

We will now describe an example for the statistical analysis and segmentation of data 
like those presented in Section 1.1. We adopt the simplest variational approach based 
on Potts functionals. We will first report on some - from the mathematical point ofview 
- typical rigorous resuits, including existence and uniqueness theorems, a real-time al-
gorithm for the computation of minimizers, resuits about continuous dependence on 
parameters, and - as a straightforward consequence - first consistency results. Then we 
discuss the crucial problem ofmodel choice, or choice ofhyperparameters; we start with 
the ciassical context, and then suggest new criteria like 'interval estimators'. Finally, we 
will illustrate the performance ofthe ciassical and ofthe new criteria in practice. 
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Mumford-Shah 
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Figure 7: Symbolic display of mod-
el ciasses in terms of their hyper-
parameters li and 'y, and the sam-
p!ing rate e '--' l/n 

3.1 Rigorous Resuits 

We present now some rigorous resu!ts for the Potts filter to be defined shortly. To be 
consistent, we formulate them for one time dimension only. Some resuits like the Theo-
rems 3.1 and 3.2 hold mutatis mutandis in all finite dimensions. Given data v E JR, and 
a hyperparameter -y> 0, a 'filter output' 7 (v) is defined as a signal which minimizes 
the Potts functional P., from (4). The next two thorems are taken from A. Kempe 
(2004) and 0. Wittich et al. (2005). Let us start with the basic analytical result. In gener-
al, 't (v) is not unique; but fortunately the following result guarantees uniqueness al-
most surely: 

Theorem 3.1 For each v e IR', a ‚'ninimizer ofthefunctional P-, in (4) exists. For each 
single 'y, it is unique outside a Lebesgue nullset ofsignals v. Inparticular, thefilter output 
&‚ (v) is well-defined Lebesgue almost surely, andfor each Borel measure on JR n with a 
Lebesgue density, and each > 0, it is uniquefor almost all data v. 

The exceptional set of data is a finite union of manifolds of codimension one, and hence 
it is of first Baire category too. 

In view ofTheorem 3.1, a Potts estimator or Pottsfilter can be defined for Lebesgue 
almost all v by 

(15) 0, (v) = argrnin P,,(x). 

We are going now to report on some of its essential properties. The first one states that 
the range of hyperparameters can be partitioned into intervals, on which (v) does 
not change. In the following, we suppress the dependence of v on the hyperparameters 

. Dependence on hyperparameters is illustrated in Fig. 8. 

Theorem 3.2 For Lebesgue almost all data v there are an integer k(v), 1 <k(v) <n - 2, 
and hyperparameters 0 7o <21(v) < -- <y,(v) <'yk+l =ocsuchthat 

(i) 0, (v) is uniqueJr and does not depend on the hyperparameters 'y1  < < 
(ii) . (v) = vfor <'. 
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(iii) 7 (v) isa constant signalfor each -y > -y. 
(iv) The number ofjumps of 0, (v) on the intervals (-y, 71+1) decreases in]. 
(v) For each 0 <j < k, the functional 	has precisely the two minimizers belonging to 

the -y-intervals adjacent to 

p. 7=00 
0 	 7i 	 72 	7k-1 	 7k 

data v 	more jumps 	 > 1 jumps 	representation constant 

Figure 8: Intervals on which . (v) does not change. Terms like 'more jumps' refer 
to the approach from right to left. 

Relevant simulations can only be carried out with exact optimization. Algorithms were 
sketched in G. Winkler and V. Liebscher (2002). 

Theorem 3.3 For each -y > 0, there is an algorithm to compute a minimizer of 	in 
time complexity 0(n 2 ). There is an algorithm to compute minimizers of P., for all 

E (0, ) simultaneously, in time complexitv 0(n 3 ). 

The Potts filter has pleasant properties. For example, it locates jumps precisely, and 
does not insert additional ones. Let J(v) be the set of all k with vk 

Theorem 3.4 J( &(v)) c J(v)for all data v and all hyperparameters '-y. 

Iteration of the Potts filter stops after one single step which means that the filter is idem-
potent, or more precisely, that 0. o 0, = 

Theorem 3.5 The Pottsfilter is idempotent. In particular, u is afixedpoint of &. ?fand 
only (fu = (v)for some v e IR. 

shares this property with the morphological filters from J. Serra (1982, 1988), see G. 
Winkler and V. Liebscher (2002). lt is not a morphological filter in the strict sense ofJ. 
Serra (1982, 1988), since it is not order-preserving. Let us finish this section with some 
resuits on continuity and stability. Suppose that for a pair ( y * ,  v *) the filter output 
0.+ (v*)  is unique. Then Theorem 3.2 tells us that -y -e 0, ( v*) does not change in a 
whole open interval around -y. We even have joint continuity in -y and v. 

Theorem 3.6 Suppose that for a pair (-y t , v 5 ) the filter output 0,y . (v*)  is unique. Then 
there isa neighbourhood of(y*,  v 5 ) on which 0, (v) exists and is unique, and moreover, 
the map (-y,  v) -* cE(v) is continuous. 

This has a consequence important in practice. 

Theorem 3.7 Suppose thatfor apair (-y 5 , v 5 ) thefilter output &y*(v*)  is unique. Suppose 
further that 	-* 'Y00' and that Y0, and Y 00  are random signals with Ym -* Y 00  in prob- 
ability, or almost surely. Then m ( Y15) - 	( Y) in probability, and almost surely, 
respectively. 

We are not interested in a 'restoration' but in feature extraction. This is reflected by the 
theorem since we recover 	( Y00 ) - and not Y00  - in the limit. 
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Figure 9: The first four and two later steps ofa scan through -y - tP.(r) for fMRI 
brain data along decreasing hyperparameters -y. Dots indicate data v. Upper rights 
is desired, cf. the display of stimulus in Fig. 1. 

Example 3.1 If u is degraded by random noise Cm according to Y1  = u + ‚ and 
noise Cm tends to zero, then 0, (Y 1 ) tends to &(u). 

Statistical consistency of the estimators defined by the minimizers of Potts functionals 
is studied in L. Boysen et al. (2005). The Theorems 3.4 and 3.5 are from G. Winkler and 
V. Liebscher (2002). 

3.2 Equivariance 

Scanning the filter outputs .‚ (v) along the hyperparameter 'y,  in view of Theorem 3.2, 
is illustrated in the Figures 9 and 10 for the brain and gene expression data. Such a scan 
contains the complete potential of the Potts functional for data v. There remains the 
crucial problem to decide on the right hyperparameter. Visual inspection ofthe plots re-
veals clearly the proper segmentations. On the other hand, it is hard to find a universal 
unsupervised method for the identification ofhyperparameters. 

Before we discuss examples of such methods, let us comment on invariance of 
jumps. The notion ofajump is genuinely non-local, since it compares the variation ofa 
signal in one region with the variation in a larger one. We want to identify a time-point 
as a jump or change-point whenever the change in intensity near the point is consider-
ably larger than the variation in a larger surrounding. This relation should not be af-
fected by a change of scale since it increases or decreases both, the variation around and 
offthejump point, by the same factor. Thus, ajump map, which assigns to each signalf 
a set J(f) c U ofjump locations should be invariant with respect to a change of scale. 
The latter is induced by the action of the affine group 

A={A a( :1R1R:A uc xax+c.aElR\{0},cElR}. 
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On signalsf, it is pointwise given by Aa,cf(t) := af(t) + c. A jump map J will be called 
invariant under affine scale changes, iff(Af) = J(f) for all signalsf and every A e A. 

Remark 3.1 Scale invariance over the whole range of data is not always appropriate in 
practice. For example, very weak recorded signals may correspond to various failures in 
the experiment: in a microarray experiment the spotter may miss a spot, evaluation may 
be wrong, or there is no binding ofcDNA. Then no meaningful information can be ex-
tracted. An example of such a signal is contrasted to meaningful ones on different scales 
in Fig. 11. lt should be treated in a different way than those oflarger range. One can sin-
gle out such data by preprocessing, and on the rest equivariant jump detection makes 
sense. 
For situations like those sketched in Section 1.1, equivariance definitely is necessary. 
There is an enormous number of different time-series - about 10 for the brain data and 
about 2 x 10 for microarrays - with a wide range of scales. Because of this high 
throughput, automatic evaluation must rely on the same scheme for all time-series to be 
processed. 

In summary, it is worthwhile to reflect on scale invariant jump maps. We illustrate the 
concept by the following simple example: 

Example 3.2 Letf be a ciidlg function and set 

(t) = 1 f(t) —f(t—). 

On the space offinite step functions the jump map J0 (f) = {t c U: z(t) > 01 is 4-in-
variant, whereas J(f) = {t E U: (t) > r} with a global threshold T> 0 is not. The 
adaptive threshold 

JT,v(f) = {t e U : ( t) > yV(f)}, V(f) = sup 1 f(t) —f(t'), 
t. ('EU 

H 
Figure 10: Scanning 	(v) along decreas- 
ing hyperparameters 'y for geneexpression 
data; steps 1, 2, 3,4, 7, and 11 ofthe scan 
displayed. Dots indicate data v. 
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Figure 11: Strong and weak signals from gene expression: cross-hybridization (two 
jumps) on large and small scale, 'noise' on very small scale. 

depends on the global range of the signal and is 4-invariant. This implies in particular 
that 

Jv(f)JT 

(f_m(f)) 
 V(f) 

where m(f) may be some normalization like the midrange m = (max f(x) + 
min f(x) ) /2 or a mean is an invariant jump map. Hence application of J, v amounts 
to a standardization ofthe signal, followed by hard thresholding J. 

lt is evident, that step functions will play a special role. Since they are constant between 
consecutive points of discontinuity, jumps can only be located at analytical discontinu-
ities. 

In view of the Potts functional, let us consider the simple case where each analytical 
discontinuity of a step function defines a jump. In terms of Example 3.2 this corre-
sponds to thejump map Jo(t) = disc(t), where t is a finite step function, and disc(t) the 
set of its discontinuities. Then for each estimator 'P with values in the space offinite step 
functions the jump map J(f) = J0 ((f)) is 4-invariant, if the filter is A-equivariant, 
je. (Af) = A «f) for all A e 4 and all signa!sf. This follows readily from 

J(Af) = Jo((Af)) = disc(A«f)) = Jo ((f)) = J(f). 

This suggests that in this case we should watch out for filters which transform signals to 
step functions, and which are A-equivariant. 

By way of example, let us discuss the Potts filters v F- 	(v) for parameters 2 ~ 0, 
introduced in (15). These maps are not 4-equivariant; in fact, a simple calculation 
shows 

(16) 	(av + c) = a/a2(v) + c. 

NormalL-ation is a standard procedure to enforce equivariance offilters. 

Example 3.3 Choose 'yo > 0 and let 0(f) := {Af: A C Al be the orbit ofa signaif un-
der the 4-action. Then the section 

P(f) 
= 	 e 0(f) 

through the orbits, with m and V from Example 3.2 leads to the equivariant filter 

(f) := V(f)(& 0 (p(f)) +m(f)). 

JB 107. Band (2005), Heft 2 	 77 



Obersichtsartikel 	Historische Beiträge 	Berichte aus der Forschung 	Buchbesprechungen 

In this example nothing was said about yo•  lt has still to be determined properly on the 
basis of external criteria. This means that the crucial problem is just shifted but not 
solved. 

Remark 3.2 By external criteria we mean something like testing the residuals for being 
noise, like the run- or wavelet-coefficient criteria in P.L. Davies and A. Kovac (2001). 
Such criteria may be meaningful, for example in denoising, where the residuals defi-
nitely should be noise. For the data we discuss in this essay they are not. In fact, if we 
want to extract a Heaviside function from a noisy sigmoid, then we cannot expect the 
residuals to be noise. 

We want to choose 	on the basis of information contained in the map 'y -* 
Therefore, we shall introduce equivariant data-driven parameter choices. This amounts 
to the construction ofmaps 1': 1W' -* 1R, v F(v) (with IR = [0,)) which assign 
to each data set v a hyperparameter P(v). In combination with Potts filters, a sufficient 
condition for equivariance reads: 

Lemma 3.1 If P(v)  (v) = r(av+c)/a2 (v) then i' 	 (v) is A-equivariant 

This is a straightforward caiculation using (16) and the assumption. 

3.3 Interval Criteria 

There is a host ofmodel selection criteria like the ciassical ones from H. Akaike (1974) 
and G. Schwarz (1978). They provide rules to select (and reduce) the parameter dimen-
sion for a family of parametric models. lt is easy to verify that the Akaike as well as the 
Schwarz information criterion provide equivariant Potts filters. Applied to the brain 
data, both methods more or less returned data, see Fig. 12, third frame. 

J~~]  JUUI 
Figure 12: Brain data: stimulus, data, 	(v) for hyperparameter from Akaike's and 
Schwarz' information criterion and longest interval from Section 3.3. The latter 
gives a decent estimate whereas the former basically return data. 

All our suggestions or attempts to find equivariant data-driven choices of hyperpara-
meters are based on Theorem 3.2. Since the minimizers of the Potts functional do not 
change over entire intervals of -y-values, we may decide on estimators depending only 
on these intervals and not on single values of y.  Such interval criteria use the complete 
information about the map 'y - tP (f). Even morphological features of the outcomes 
may be incorporated. 

A first naive idea is to aim at stability under changes of the hyperparameter 'y  and of 
data v. For this reason, and in view of the continuity resuits in Section 3.1, we tried 

with (an arbitrary) y*(v)  from the longest interval of'y-values between 0 and 
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k()(v) from Theorem 3.2. For the brain data from Example 1.1, this simple method 
worked. The outcome js contrasted to those of Akaike's and Schwarz' information cri-
teria in Fig. 12. Another - and different example are the gene expression data. There 
the crucial restriction is that the representation should be decreasing. With parsimony 
in mmd, we chose - starting from the right - the last interval before the first nondecreas-
ing estimate. Fig. 13 displays some of these estimates. The morphological information 
of monotony is not fully exploited by this method and further work on this topic has to 
be done. 

The motivation for interval criteria is twofold: First of all, they yield equivariant fil-
ter maps as required for the construction of invariant jump maps. This will be shown be-
1. To understand the second feature of interval criteria recall from Example 3.3 that 
it is easy to construct equivariant Potts filters by normalization of data. On the other 
hand, nothing is gained by normalization, since the hyperparameter still has to be deter-
mined. In case ofthe brain data, inspection ofthe results for the model selection criteria 
shows clearly that equivariance is only a minimal requirement. What we really want is a 
parameter choice, which relies only on the structure of the functionals and on data. 

We are going to show now that the 'longest interval filter' is equivariant. Let 
G(v) = {0. 'y (v). . . . ' yk(.)(v)}. We choose a hyperparameter from the longest 'y-inter-
val; to be definite let Fj(v) be the middle point of the longest interval between 0 and 
yk()(v), or, formally (with 7o(v) = 0): 

0 	 if G(v)=Ø 
Fi(v) = 	argmax 	nun 	- 7j (v) otherwise 

v) O<i<k() 

Proofs for the next results can be found in A. Kempe (2004). 

Proposition 3.1 O r, is A-equivariant. In particular, the associatedjurnp map is A-invar-
iant. 

In the next example - related to the gene expression data - we impose the additional re-
striction that . (v) is monotonically decreasing. Tracking &‚ (v) from right to left, we 
find y-intervals on which 'I. (v) is monotonically decreasing and such where it is not. If 
we desire a monotone filter output, we take the (middle point of the) last interval in ser-
ies where (v) decreases. This defines a filter rd(v)(v).  Since the map v av + c,  for 
a > 0 preserves monotony the considerations from Example 3.2 apply and we can state 

Proposition 3.2 pj is Ä-equivariant. In particular, the associatedjump map is A-invar-
iant. 

Figure 13: Estirnates with leftmost --interval with decreasing 	(v): gene data. 
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4 Time-Continuous Signals and Revisited 

For us, the Mumford-Shah functional is the typical example of variational approaches 
to edge preserving smoothing in the time-continuous setting. Therefore, it deserves a 
more detailed investigation. The general form as a combination of a data term, a pen-
alty for the number ofbreaks, and a control term for smoothness clearly is the first, nat-
Ural, choice, in particular in view of the time-discrete analogues, and therefore out of 
question. On the other hand, there are subtle questions about the notion of admissible 
signals, and in consequence, about the range of definition. Due to its simplicity, the 
one-dimensional setting is a perfect playground for such discussions. 

4.1 Spaces 01 Signals 

In this section, we discuss again suitable notions of signals, justify the segmentations in-
troduced in Sections 1.3 and 2.2, and bridge the gap between segmentations and the 
function spaces used in most of the literature. We continue from Section 2.2. 

Let us first append the basics of the theory underlying the discussion in Section 2.2. 
Let 1 be a compact interval on the real line. Recall that a locally integrable function 
h E LI)0(10) is k times d(fferentiable in the generalizedsense, if there isa locally integrable 
function h(k)  such that 

f h(x)d 	dx= (_l)k f h(x)(x)dx 

for every infinitely often differentiable test function 0 on 10  with compact support. Note 
that all 1 < k, are square-integrable ifh(' )  is square integrable. The generalized den-
vative is defined only almost surely. 

Denote by Wk2(10)  the Hilbert-Sobolev space of functions with k generalized den-
vatives and for which the kth  generalized derivative is square integrable. By the Sobolev 

Embedding Theorem, we have iI2(Jo)  ci C(I) and even W22(10)  ci C l  (1) in the sense 
that in every equivalence dass of functions in the respective Sobolev space there is a re-
presentative which extends continuously to the ciosure. In Section 2.2, the spaces 
W12(10) were used as smoothness ciasses. This choice will be justified shortly from a 
different point ofview. 

Recall that U denotes the unit interval [0, 11. At the first sight, the space BV(U) of 
functions with finite total variation seems to be the natural object. Plainly we have 
BV(U) ci LP(U) foreveryp > 0. Let us have a closer look at the functionsf E BV(U). 

Each of them is regular, i.e. it has everywhere left and right limitsf(b +) andf(b_), cf. 
H. v. Weizsäcker and G. Winkler (1990), Proposition 5.1.8. lt induces a finite signed 
measure m 011 the Borel-cr-field on U by the relation 

m((a,b]) =f(b) —f(a), a < b E JR 

A cdlg cumulative distributionfunction 

Gj(t) = m((—oc, t]), t e JR 
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is associated tof; it is unique due to the normalization Gf(—) = 0. The signed mea-
sures m have unique decompositions into three components, namely 

m = md + mr  + m, 

where m r  is the regularpart, admitting a Lebesgue density, where md is the singular-dis-
cretepart, consisting ofa discrete measure, and where m, is the singular-continuouspart, 
living on a Lebesgue nullset, but without discrete component. One reference is M. Reed 
and B. Simon (1980), Theorem 1.14, page 22, and the preceding definition. Clearly, the 
support Jd(f)  ofthe discrete measure md will play the röle ofthejump set off. A major 
question in this context is whether the optimization problem for the Mumford-Shah 
functional is well-posed. For the version defined in (17) below the problem lies in the 
singular-continuous component, see A. Chambolle (2000), page 27. Hence we exclude 
it, and set 

SBV(U) = {f e BV(U) : m = 01. 

A member of this dass is calledftinction of special hounded variation. With this defini-
tion we meet the setting adopted in large parts of the literature. Note that a SB V( U)-
function can be written as the sum of a continuous and a (not necessarily citdläg) step-
function. lt follows easily from Proposition 4.1 below that it has a cädlitg version. 

Let us now establish the connection to the Sobolev segmentations introduced in Sec-
tion 2.2 before (10). To this end, we write the functions induced by Sobolev segmenta-
tions in closed form and call a functionf apieceivise (k.p)-Sobolevjiinction ifthere is a 
(possibly countable) cid1g stepfunction t such thatf - t e WkP(I0).  Let us further call 
a functionf e SBV(I°) withJ' e L(I°) of p-special bounded variation and denote the 
space ofthese functions by SB  V(I 0 ), cf. G. Dal Maso (1993). 

Proposition 4.1 For each piecewise (1, 2)-Soholevfunctionf there ist e SBV 2 (I) with 
f = f Lebesgue almost everywhere, and vice versa. 

This shows that the Definitions 10, based on segmentations, and (11) on L 2 (U) from 
Section 1.3 are equivalent. 

4.2 The Mumford-Shah Functional 

As has been shown, the definition (11) of the Mumford-Shah functional makes sense. 
Let us formally state 

Definition 4.1 The one dimensional Mumjord-Shah functional with parameters 11, 'y > 0 
andg G L 2 (U) isgivenby 

(17) E1  : L2 (U) 	u{}. 

{+

J (f(t)g(t))  2+lf;(t)2dt if feSBV2(U) 
fH  

U 
cx: 	 other:t'ise 
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One of the first and main problems is the mere existence of a minimizer. In two and 
higher dimension this is an intricate problem. Present solutions rely on special function 
spaces which are chosen with the explicit aim to guarantee a minimum. In one dimen-
sion the situation is much more pleasant. 

Theorem 4.1 For allg E L2 (U) the Mumford-Shah functional (17) has a minimL-er. 
Each minimizer has a cidkig representative. 

V. Liebscher et al. (2004) contains a proof. In general, minimizers are not unique. 

Remark 4.1 Let us briefly comment on the scales of hyperparameters. Consider the ac- 
tionofS= lR x IRonL 2 (U)givenby 

(a,a')f(x) = af(a'x). 

Then 

a'E 1i/a2,/(I'.(aa')g ((a, a')f) = E .g  (f) 

This means that fixing parameters ‚ii and 'y  simply amounts to the choice of a special x-
and y-scale for signals in L 2  ( U). 

5 The Space of Functionals 

In Section 2.3 we gave an overview of various functionals in discrete and continuous 
time which were of similar form. To study their relation, and their behaviour in depen-
dence of hyperparameters, as well as the asymptotics of time-discrete functionals as the 
sampling rate increases, suitable topological concepts are needed. A main requirement 
is that they should, under natural conditions, yield continuous dependence of minimi-
zers on hyperparameters. For the numerical analysis, the notion of T-convergence is 
frequently adopted, which is a purely sequential approach. We prefer the topological 
concept ofepiconvergence. lt is based on the hit-and-miss topology on closed subsets of 
L 2  ( U) x IR; restricted to the epigraphs of lower semicontinuous functionals it is called 
the epitopology. Continuous dependence in the epitopology of functionals and minimi-
zers will be addressed in Section 5.2. 

5.1 Epiconvergence, Semicontinuity, and P-Convergence 

A functionf on X taking values in IR = IR u {—x, oc} is called a nuinericalfunction.A 

numerical functionf is called lower sernicontinuous (l.s.c.) if all sets {f(x) > Al, .\ e III, 
are open. The epigraph off is the set 

A(J) = {(x,y) e Xx IR : y >f(x)}. 

Semi-continuity of a functional on X is equivalent to the closedness of its epigraph in 
Xx UI, endowed with the product topology of g and the usual topology on JR. 
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Proposition 5.1 A numericalfunction is lower semi-continuous ifand only jfits epigraph is 
closed. 

For a proof see K.T. Rockafellar (1996) or G. Matheron (1975). 
Recall the functionals 	introduced in Section 2.3 (and in Section 4.2). To sim- 

plify notation let JL = {1/n n e N} u {0} endowed with its naturaltopology. 

Theorem5.1 AllfunctionalsFh : L 2 (U) - 1k, h EL x IR, are lower semicontinuous. 

A proof is given in V. Liebscher et al. (2004). Since lower semicontinuous functions are 
characterized by their (closed) epigraphs we need a suitable topology on the set of 
closed subsets of X = X x JR. The following definitions do not rely on the product 
structure of X. Let hence again (X, ) be a topological space with the topology g of 
open subsets. lt is convenient to start with two topologies on the set F(X) = T of 
closed subsets ofX. Denote the set of all compact subsets ofX by K. 

Definition 5.1 Let Z, and L denote the topologies on F which are generated by thefa-
milies 

zh ={{AE:AnG0}:Ge}. 	1 ={{AE:AnK=0}:KE}, 

respectively. The hit-and-miss topology Z is the topology generated by t U V. 

The topologies Z, and l may be interpreted as the hit- and miss-topologies on .F with 
hit-sets in 	and miss-sets in 	„ respectively. By definition, a sequence (Ak)k>l  in F 
converges to A E .F with respect to 	‚ if and only if (i) G fl A 54 0, G E 9, implies 
G flAk 0 eventually. Similarly, (Ak)k>I  converges to A in if and only if (ii) 
K fl A = 0, K E /C, implies K fl Ak = 0 eventually. We have convergence in Z if and 
only if both (i) and (ii) hold. In view of Proposition 5.1, the following definition makes 
sense now: 

Definition 5.2 Let us call the restriction ofthe -topology on to the set 

A x  = {A(f) c X x 1k :f: X - 1k, f l.s.c.} 

of epigraphs the epitopology. A map h 	Eh from a topological space into the space of 
l.s.c. functions on X will be ca/led epicontinuous ifthe map h -* A(Eh) is continuous für 
the epitopology. 

A sequential version is known as [-convergence, cf. G. Dal Maso (1993). Let now 
ArgMin E denote the set ofminimizers ofa functional F on X. 

Lemma 5.1 IfE: X - 1k is loiver semicontinuous then Argtiin F is closed. 

The proof is an easy exercise. The following 'semicontinuity' assertion makes sense by 
Lemma 5.1 and holds without further hypotheses. 

Theorem 5.2 The map 

3 Ax - F. A(F) F- ArgMin E 

is continuous with respect to the f-topology on A x  andr on .F(X). 

Note that 	in general does not enjoy the Hausdorff separation property. 
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5.2 Joint Continuity in Hyperparameters 

	

The last topic in this paper is joint continuity of the functionals 	in all the para- 

meters E , y and a, symbolically displayed in Fig. 7. Another question is how this carries 
over to their (sets of) minimizers. This fulfills the promise given in Section 2.3. Proofs of 
the main resuits are given in V. Liebscher et al. (2004). 

Theorem5.3 Letg E L 2 (U). Themap 

Lx IR+  x IR+  - IR,(e,y,  

is epicontinuous. 

The proof is divided into several parts according to the list in Section 2.3. lt is given in 
V. Liebscher et al. (2004). For some specific examples in the purely time-continuous set-
ting see G. Alberti (2000). 

Concerning minimization, let us report the following resuits: 

Theorem 5.4 Eachfunctional F ‚ attains its minimum. 

Theorem 5.3 in combination with Theorem 5.2 implies: 

Theorem5.5 Letg E L 2 (U). Themap 

Lx JR+  x JR -* F(L2 (U)),(e,'y, i) -* ArgMin F,L . 

is continuous with respect to the miss topology V on 

A more concrete result in this spirit is the following one: 

Theorem 5.6 Let hk E L x IR, k> 1, andsuppose that the sequence (hk)k>l converges 

to h e L x JR. Letfurtherfor each k> 1 thefunctionJ be any minimizers ofthefunc-

tionalFhk . Then thefollowing hold: 

(i) Theset {f : k > 11 is relatively compact in L 2 (U). 

(ii) The limit of each L 2 (U)-convergent subsequence of(f) minimizes F1 . 

The situation is particularly pleasant if E1, has only one single minimizer. 

Corollary 5.1 Suppose that Eh has one and only one minimizer f* Then any sequence 

(E)k>1 tvithfk E ArgMinEh  converges tof*  in L 2 (U). 

With this statement we conclude the discussion ofcontinuous dependence ofminimizers 
on parameters and the sampling rate, and also this essay. The discussion is continued in 
the forthcoming papers L. Boysen et al. (2005) and V. Liebscher et al. (2004). 

Summary and Final Remarks 

This essay bad essentially three aims: Firstly, to give an integral view over a variety of 
variational approaches to signal analysis. Motivated by discrete-time models we argued 
that time-continuous models must be incorporated in order to describe the 'ciosure' of 
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the set of discrete-time models. Conversely, the transition from continuous to discrete 
timejustifies the notion ofsmoothness in discrete time, captured by the penalty. 

Secondly, we wanted to exemplify by way of the simplest of these models the first 
steps ofa rigorous and in parts complete mathematical analysis. 

The third aim was to establish the connection to relevant real-world data of a special 
kind. The main two properties of these data are that they consist of relatively short 
time-series, and that the relevant features are of qualitative, or more precise!y, morpho-
logical nature. 

Therefore the ciassical justifications like validity of model assumptions or asympto-
tics are idle in these cases, and we must resort to other, more basic criteria. A first one is 
equivariance, which for us was a partial justification of the interval estimators for the 
Potts functional. Plainly, this can only be the starting point for future discussions and 
investigations. 

Let us finaily mention, that closely related variational models appear in various dis-
guises. Let us give an example from wavelet theory, cf. A. Chambolle et al. (1998). 

Example 5.1 Consider a functionf e L 2 (IR) with a wavelet decomposition 

f = 	(f, )/. k)V/.k 	(fkf.k 	'Jk(t) = 2' 2 (2't — k), j, k e K‚ 
j.k7L 	 jkelZ 

where ?J) E L 2  (IR) is a 'mother wavelet' such that {' k :j, k e ZZ} is an orthonormal ba-
sis ofL 2 (IR). Soft Wavelet Thresholding amounts to the Operation 

(ci .  k —\ 	if c1  k 	> ) 

= 	0 	if 	Cjk1 < A ‚ 	‚\ >0. 
]k +\ if CJk < —\ 

on the wavelet-coefficients and the subsequent transformation  
I.k7L (cI,k)!k. Because of vanishing first moments, large coefficients correspond 

to steep parts of f, this can be used for edge preserving smoothing. The shrinkage 
Cf,k cj,k + A removes further noise re!ated to the surviving coefficients. Then f so!ves 
the variational problem 

(18) f = argmin C )g + ( f — g, 
gEL2 (IR) 

where 	is the wavelet dependent £ 1 -norm on the coefficients ((g, fk)). Under stan- 
dard conditions on 5 this norm is equivalent to the usual Besov norm. lt generalizes the 
W 1 ' 2 -notion ofsmoothness. 

Acknow!edgement. K. Hahn and D. Auer provided the brain data, J. Beckers and A.L. 
Drobyshev the gene expression data. M. Wild pointed out Examp!e 5.1; K. Gröchenig 
discussed wavelets with us. Simu!ations were performed with AntslnFields by F. Fried-
rich; a CD-ROM is attached to G. Winkler (2003), free download under F. Friedrich 
(2003). 
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1 Einführung 

Der Multiplikationssatz der Mengenlehre lautet: 

Ist Meine unendliche Menge, so existiert eine Bijektion zwischen M x M und M. 

Dieser Satz bedarf aufgrund seiner überzeugend schlichten Antwort auf ein sehr natürli-
ches und zunächst schwieriges Problem keinerlei Werbemaßnahmen, jedoch ist das In-
teresse, das dem Satz zukommt, vielgestaltig: Von der menger theoretischen Sternwarte 
aus ist der Satz Teil des Ergebnisses, daß alle kanonischen arithmetischen Operationen 
mit Mächtigkeiten letztendlich trivial sind mit Ausnahme der Exponentiation, deren 
Natur dafür um so schwerer zu ergründen ist. Geschichtlich trug der Spezialfall des Sat-
zes für die reellen Zahlen - die Existenz einer Bijektion zwischen der Ebene und der Ge-
raden -‚ viel zur Fundierung der Analysis bei, die sich gegen Ende des 19. und zu An-
fang des 20. Jahrhunderts vollzog. Weiter spiegelt die sich über drei Jahrzehnte erstrek-
kende Geschichte des allgemeinen mengentheoretischen Satzes den gesellschaftlichen 
Wachstum einer Theorie wieder, die aus einer schöpferischen Einzelleistung hervorging, 
und dann etwas frühreif als blue chip der mathematischen Börse dastand und ihren 
Crash auslöste. Was für die gesamte Mengenlehre gilt, gilt hier speziell für ein einzelnes 
Resultat: Georg Cantor geht den Weg zunächst ganz alleine, und läßt dabei genügend 
Raum für seine Epigonen übrig, seine Ideen nicht nur weiterzuentwickeln, sondern für 
sich neu zu ordnen und zu interpretieren. Seine schwindende mathematische Kraft ge-
gen Ende des 19. Jahrhunderts markiert eine Unstetigkeitsstelle in der Entwicklung des 
Gebiets, die Tradierung seiner Intuition und seines Wissens gelingt nur bruchstückhaft. 
Seine Einsichten etwa über die Paradoxien der „absolut unendlichen Vielheiten", der 
„großen" echten Klassen im Gegensatz zu den „kleinen" Mengen sind heute nur briefli-
chen Spuren folgend zu rekonstruieren. Daß Cantor einen Beweis des Multiplikations-
satzes gesehen hat, ist nicht einmal handschriftlich dokumentiert, sondern nur einer Be-
merkung von Felix Bernstein in seiner Dissertation von 1901 zu entnehmen, die dann ei-
nige Jahre lang in nebelhafter Weise verwendet wird. 

Im Jahre 1905 veröffentlichte ein bis heute obskurer Herr A. E. Harward, angeregt 
durch nichts als Russells „Principles of Mathematics" und zwei nicht gerade glänzende 
Artikel von Philip Jourdain einen ersten vollständigen Beweis, der von der Mathemati-
kergilde nicht wahrgenommen wurde. Harward war Verwaltungsangestellter in Indien, 
und gibt der ganzen Geschichte eine kuriose und exotische Note. Er skizziert in einem 
Anhang seiner Arbeit zudem noch einen zweiten Beweis, den Hausdorff erst 1914 wie-
derentdecken wird, und der im wesentlichen den heute üblichen darstellt. Innerhalb der 
professionellen Mathematik gelingt Gerhard Hessenberg unabhängig von Harward un-
gefähr zeitgleich ein weiterer Beweis, der 1906 in seinem Lehrbuch „Grundbegriffe der 
Mengenlehre" erscheint, und seither als erster Beweis des Satzes zitiert wird. 

Ein wichtiger Satz der Mengenlehre, der zudem mit dem heute zentralen Begriff der 
Regularität von Kardinalzahlen in enger Beziehung steht, blieb durch einen mathemati-
schen Generationenwechsel, gepaart mit der Nichtbeachtung eines Außenseiters, an der 
Jourdain nicht unschuldig ist, schätzungsweise ein ganzes Jahrzehnt verdeckt. Das Un-
glück der frühen Mengenlehre ist die mangelnde Zentrumsbildung um Cantor in den 
80er und 90er Jahren, ihr Glück die Wiederaufnahme seiner Ideen in zwei völlig ver- 
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schiedenen Richtungen durch Ernst Zermelo und Felix Hausdorff nach dem Jahrhun-
dertwechsel, die in eine Zeit des allgemeinen Interesses an mathematischen Grundlagen-
fragen fiel. 

Wir diskutieren im folgenden ausführlich die Geschichte des Satzes, können die fünf darin eine 
Rolle spielenden Beweise aber aufgrund physikalischer Limitationen nur andeuten. Den an voll-
ständigen mathematischen Beweisen interessierten Leser müssen wir auf die modernen Kommuni-
kationsmittel verweisen: Auf der Homepage des Autors findet sich eine längere Version der Arbeit, 
die vollständige Beweise enthält. Es wurde versucht, sie so zu präsentieren, daß sie nach Möglich-
keit jedem Mathematiker zugänglich sind. 

Weiter kann auch auf die Geschichte des Dimensionsbegriffs hier nicht genauer eingegangen 
werden; siehe hierzu [Katetov / Simon 1997] für eine eingehende Darstellung und weitere Literatur. 

2 Notationen und zentrale mengentheoretische Satze 

Wir referieren kurz die wichtigsten Bausteine der Mächtigkeitstheorie und der Theorie 
der Wohlordnungen. Das Bühnenbild ist das der klassischen Mathematik. Technisch 
gesprochen heißt das: Wir arbeiten in der üblichen Mengenlehre mit Auswahlaxiom. 
Die Verwendung des Auswahlaxioms ist für den behandelten Gegenstand von Bedeu-
tung und wird daher jeweils notiert. 

Sind M und N Mengen, so schreiben wir 1 M 1 N I falls eine Bijektion von M auf 
N existiert; IM 1 < IN I falls eine Injektion von M nach N existiert; IM 1 < IN, falls IM 1 

INI, aber IMI 7~ INI gilt. Ist IMI = INI, so nennen wir Mund N gleichmächtig f, ist 
1 MI <IN I so sagen wir, daß die Mächtigkeit von M kleiner ist als die Mächtigkeit von 
N. Dies ist die relationale Definition der Mächtigkeiten - wir haben nicht definiert, was 
„die Mächtigkeit von M" selbst ist, und brauchen dies auch nicht tun. 

Eine Menge M heißt (Dedekind-) unendlich, falls es eine echte Teilmenge N von M 
gibt mit IN 1 = IM 1. Aquivalent hierzu ist: Es gilt 1 N  1 < IM 1. (Diese Aquivalenz verwen-
det das Auswahlaxiom nicht. Es wird aber verwendet, um zu zeigen: M ist genau dann 
endlich, wenn gilt: es gibteinn e NmitIMI = I{O..... n— l}I.) 

Wir notieren nun offiziell das Thema dieses Artikels: 

Multiplikationssatz (Harward 1905, Hessenberg 1906) 
Ist M eine unendliche Menge, so ist 1 M x MI = 1 MI. 
Hessenberg beweist zugleich auch den verwandten Additionssatz: Die Vereinigung 

zweier disjunkter Kopien einer unendlichen Menge ist gleichmächtig zur Ausgangsmen-
ge. Hierzu definieren wir für Mengen M und N: M + N = M x {O} u N x {l}. Die Men-
gen M' = M x {O} und N' = N x { 1 } sind gleichmächtige „Kopien" von M bzw. N, und 
es gilt M' fl N' = 0. Wir schreiben dann den Additionssatz wie folgt: 

Additionssatz 
Ist M eine unendliche Menge, so ist 1 M + M 1 IM  1. 
Für viele Beweise des Multiplikationssatzes ist der Additionssatz ein fahrplanmäßi-

ger Halt auf der Beweisstrecke. Zeigt man den Multiplikationssatz direkt, so ergibt sich 
umgekehrt der Additionssatz als Korollar mit Hilfe des folgenden Satzes, der pausenlos 
im Einsatz ist: 
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Satz (Satz von Cantor-Bernstein; Cantor 1883, Dedekind 1887, Bernstein 1897) 
Seien M, N Mengen mit IMI< IN! und INI< IMI. 
Dann gilt IMI= INI. 

Cantor hat diesen Sachverhalt 1883 formuliert und einen Beweis angekündigt. Aber erst Felix 
Bernstein konnte den Satz 1897 in einem von Cantor veranstalteten Seminar in Halle vollständig be-
weisen. Dedekind hatte bereits 1887 einen Beweis entdeckt, der sich heute in seinem Nachlaß findet. 

Für den Beweis des Satzes muß das Auswahlaxiom nicht verwendet werden. 

Offenbar gilt IM 1 < 1 M + Ml < IM x MI für Mengen M mit mindestens zwei Ele-
menten, und daher folgt der Additionssatz aus dem Multiplikationssatz mit Hilfe von 
Cantor-Bernstein. 

Max Zorn hat 1944 einen Beweis des Multiplikationssatzes gegeben, der keine Ordi-
nalzahlen verwendet. Das wesentliche Hilfsmittel ist hier: 

Satz (Zornsches Lemma; Zorn 1935) 
Ist P eine partiell geordnete Menge, in der jede total geordnete Teilmenge eine obere 

Schranke besitzt, so existiert ein maximales Element der Ordnung, d. h. ein x E P mit: 
IstyePund x <y,soistx=y. 

Das Zornsche Lemma ist geeignet, den recht fihigranen Begriff der Wohlordnung aus bestimm-
ten Argumenten zu vertreiben, und ist auch zu dieser zuweilen etwas grobschlächtigen Anwendung 
ins Leben gerufen worden: Zorn gab 1935 das Lemma als Prinzip ohne Beweis an. Das Zornsche 
Lemma ist ein einfaches Korollar des Hausdorffschen Maximalitätsprinzips [Hausdorff 1914]. 
Aufgrund seiner einfachen Handhabung wurde es zum Exportschlager. 

Das Zornsche Lemma ist, auf der Basis der anderen Axiome der Mengenlehre, äqui-
valent zum Auswahlaxiom. Gleiches gilt für den folgenden Satz: 

Satz (Vergleichbarkeitssatz; Cantor 1878, Zermelo 1904) 
Seien M, N Mengen. Dann gilt IM 1 < INI oder IN! < IM. 

Beweis 
0. E. sind M, N zh 0. Sei P die Menge aller Injektionen f: M' - N mit M' C M, ge-

ordnet durch Inklusion, d. h. f < g, falls f C g (d. h. g setzt f fort). Das Zornsche Lemma 
findet Anwendung. Sei also f e P maximal. 
Dann ist f: M 	N injektiv oder 17 1  : N - M injektiv. 

Der Vergleichbarkeitssatz wurde von Cantor zunächst als „offensichtlich" angesehen [vgl. den 
ersten Absatz von Cantor 1878], später hat er den Satz dann als Problem formuliert [Cantor 1895, 
Ende § 2] und bewiesen, aus heutiger Sicht jedoch nicht in vollständiger Strenge. Erst der Zermelo-
sche Wohlordnungssatz von 1904 lieferte einen lückenlosen Beweis. Die Aquivalenz zum Auswahl-
axiom (und damit zum Zornschen Lemma) hat Friedrich Hartogs gezeigt [Hartogs 19151. 

Eine totale Ordnung (W, <) ist eine Wohlordnung, falls jede nichtleere Teilmenge 
von W ein <-kleinstes Element besitzt. X C W ist ein (echtes) Anflingsstück von W, falls 
ein b e W existiert mit X = {a ü W 1 a <b}. Wir schreiben im folgenden oftmals nur W 
für eine Wohlordnung (W, <). Eine die Menge W wohlordnende Relation < C W >< W 
ist dann stillschweigend mit dabei. 

Zwei Wohlordnungen W 1  und W7  sind ordnungsisomorph oder gleichlang, falls eine 
Bijektion f: W 1 	W existiert, sodaß für alle a. b e W gilt: a < b gdw f(a) < f(b) [gdiv 
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steht wie in der Logik üblich für „genau dann, wenn"I. W 1  ist (strikt) kürzer als W 2 , 

falls W isomorph zu einem Anfangsstück von W 2  ist. 
Ein Hauptmerkmal von Wohlordnungen ist die Vergleichbarkeit ihrer Längen: 

Satz ( Vergleichbarkeitssatzfür Wohlordnungen; Cantor 1897) 
Seien W 1  und W2  zwei Wohlordnungen. Dann tritt genau einer der drei folgenden 

Fälle ein: 
(i) W 1  und W2  sind gleichlang, 
(ii) W 1  ist kürzer als W 2 . 

(iii) W2  ist kürzer als W. 

Insbesondere sind Wohlordnungen niemals gleichlang zu ihren eigenen Anfangs-
stücken. 

Der Vergleichbarkeitssatz für Wohlordnungen ist ohne Auswahlaxiom beweisbar. 
Allgemein wird das Auswahlaxiom beim Jonglieren mit Wohlordnungen nie gebraucht, 
da man immer auf einen kleinsten Zeugen innerhalb irgendetwas Nichtverschwinden-
dem zugreifen kann, anstatt nur auf einen Zeugen, was der Job einer Auswahlfunktion 
wäre. Lediglich um die nackte Existenz von Wohlordnungen zu sichern ist das Aus-
wahlaxiom bitter nötig: 

Satz (Wohlordnungssatz; Zermelo 1904, zweiter Beweis 1908) 
Jede Menge läßt sich wohlordnen: 
Ist M eine Menge, so existiert eine Wohlordnung < auf M. 

Der Zermelosche Wohlordnungssatz ist äquivalent zum Auswahlaxiom. 
Noch ein paar Worte zu Ordinalzahlen und Kardinalzahlen. In der Mengenlehre de-

finiert man Ordnungstypen oder Ordinalzahlen nach Cantor informal als das allen 
Wohlordnungen gleicher Länge Gemeinsame, oder formal nach von Neumann und 
Zermelo als bestimmte natürliche und uniform definierbare Repräsentanten für Wohl-
ordnungen —je ein Repräsentant pro Länge. Die transfiniten Zahlen sind dann in beiden 
Versionen einfach diejenigen Ordinalzahlen, die den unendlichen Wohlordnungen zuge-
ordnet sind. 

Man kann mit Wohlordnungen (und folglich mit Ordinalzahlen) arithmetisch ope-
rieren: Hintereinanderhängen zweier Ordnungen führt zur Summe, lexikographische 
Ordnung des kartesischen Produkts (oder iterierte Summation) führt zur Multiplikati-
on, iterierte Multiplikation zur Exponentiation. 

Ganz ähnlich kann man Kardinalzahlen informal als das allen Mengen gleicher 
Mächtigkeit Gemeinsame definieren. Eine formale Definition ist möglich, auch in einer 
Mengenlehre ohne Auswahlaxiom (mit einer nichttrivialen Konstruktion). Alephs sind 
nun diejenigen Kardinalzahlen, die zu den unendlichen und wohlordenbaren Mengen 
gehören. Mit Hilfe des Wohlordnungssatzes sind alle Mengen gleichmächtig zu einer 
Wohlordnung, und die Alephs fallen dann mit den unendlichen Kardinalzahlen zusam-
men. In einer Mengenlehre ohne Auswahlaxiom bilden die Alephs eine Teilklasse der 
unendlichen Kardinalzahlen, und bzgl. der Vergleichbarkeit von Kardinalzahlen kann 
dann nur noch für die Alephs Garantie übernommen werden. 

Mit Kardinalzahlen kann man ebenfalls rechnen, die Operationen sind hier über die 
Mächtigkeiten von Summe, kartesischem Produkt und, für die Exponentiation, der 
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Menge aller Funktionen von einer Menge der Mächtigkeit des Exponenten in eine Men-
ge der Mächtigkeit der Basis definiert. 

Diese knappen Bemerkungen genügen hoffentlich, weite Strecken des folgenden hi-
storischen Teils für jeden Leser zugänglich zu machen. 

3 Abriß der Geschichte des Multiplikationssatzes 

Georg Cantor hat das Konzept der Mächtigkeit von unendlichen Mengen in den siebzi-
ger Jahren des 19. Jahrhunderts entwickelt und untersucht. Zu dieser Zeit bewies er 
auch den Multiplikationssatz für abzählbare Mengen und für Mengen der Mächtigkeit 
der reellen Zahlen. Der erste Beweis des allgemeinen Satzes erschien 1905 in einer furio-
sen, aber kaum bekannten Arbeit von A. E. Harward, „Indian Civil Servantin Calcut-
ta". Unabhängig hiervon erschien 1906 Hessenbergs erster Beweis. Ein Jahr später ver -
öffentlichte Hessenberg dann noch einen zweiten Beweis des Satzes, seiner Natur nach 
wie der erste arithmetisch, abervon ihm doch wesentlich verschieden. Ein dritter Beweis 
wurde 1908 von Philip Jourdain geführt, und eine Vereinfachung dieses Beweises, die 
sich ebenfalls schon bei Harward 1905 findet, fand dann Eingang in das Buch von Felix 
Hausdorff von 1914, und dadurch weite Verbreitung. Auch der heute übliche Beweis 
folgt der Harward-Hausdorffschen „zweidimensionalen Argumentationslinie", die als 
direkteste Verallgemeinerung der Cantorschen Diagonalaufzählung von N 2  angesehen 
werden kann. Hessenbergs Beweise dagegen sind in Vergessenheit geraten - sicher zu 
unrecht, zumal besonders Hessenbergs erster Beweis direkt auf Cantors Arbeiten auf-
baut, und dadurch noch den unverwechselbaren Glanz der erwachenden Mengenlehre 
an sich trägt. Schließlich gab Max Zorn 1944 noch einmal einen ganz anderen Beweis 
mit Hilfe des Zornschen Lemmas, der Wohlordnungen ganz vermeidet. Auch dieser Be-
weis ist heute großflächig vergessen. 

4 Cantors Paarungsfunktion und die Mächtigkeit der Ebene (1878) 

In einem Brief an Richard Dedekind vom 29.11.1873 stellt Cantor die Frage, ob sich die 
natürlichen Zahlen bijektiv auf die reellen Zahlen abbilden lassen. Er bemerkt, daß sich 
eine Bijektion zwischen den natürlichen Zahlen und den (positiven) rationalen Zahlen 
leicht angeben läßt. Die Gleichung 1 N x N 1 = 1 N 1 war ihm zu diesem Zeitpunkt bereits 
völlig klar. Wenige Tage später kann Cantor die von ihm gestellte Frage selbst beant-
worten. Inder 1874 erschienenen Arbeit „Uber eine Eigenschaft des Inbegriffes aller re-
ellen algebraischen Zahlen" zeigt Cantor dann der mathematischen Welt die Abzähl-
barkeit der algebraischen Zahlen und die Uberabzählbarkeit der reellen Zahlen. Die Ar-
beit ist von Cantor mit „Berlin, den 23. Dezember 1873" unterzeichnet, doch was hier 
als hübsch verpacktes Weihnachtsgeschenk für die Kollegen daherkommt entpuppt sich 
schnell als Startschuß für eine aufregende Epoche des fundamental Neuen und der neu-
en Fundamente. Insbesondere fließt aus Cantors Ergebnis so ganz nebenbei die Exi-
stenz transzendenter Zahlen, ein großes Ergebnis von Liouville aus dem Jahre 1847. 
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In „Ein Beitrag zur Mannigfaltigkeitslehre" von 1878 gibt Cantor, eher beiläufig, 
die bekannte Diagonalaufzählung von N 2  konkret an: Das einfache Polynom zweiten 
Grades 

f(n,m)m+(m+n)(m+n+l)/2 

bildet die Menge aller Paare von natürlichen Zahlen bijektiv auf natürlichen Zahlen ab 
- und ist als Polynom zweiten Grades in dieser Hinsicht einzigartig. Das Hauptresultat 
der Arbeitvon 1878 ist jedoch, daß 1 JR11  1 = 1 IR  1 gilt für alle natürlichen Zahlen n > 1. 
Das Problem hatte Cantor bereits Jahre früher in einem Brief an Dedekind vom 
5.1.1874 aufgeworfen. In dem Brief heißt es: 

„Lässt sich eine Fläche (etwa ein Quadrat mit Einschluß der Begrenzung) eindeutig auf eine Li-
nie (etwa eine gerade Strecke mit Einschluss der Endpuncte) eindeutig beziehen, so dass jedem 
Puncte der Fläche ein Punct der Linie und umgekehrt zu jedem Puncte der Linie ein Punct der Flä-
che gehört? 

Mir will es Augenblick noch scheinen, dass die Beantwortung dieser Fragen, - obgleich man 
auch hier zum Nein sich so gedrängt sieht, daß man den Beweis dazu fast für überflüssig halten 
möchte, - grosse Schwierigkeiten hat. -" 

(Diese und die weiteren zitierten Briefstellen finden sich in [Cantor 1991].) 
Die Lösung ließ diesmal nicht Tage, sondern Jahre auf sich warten. Cantor teilte ei-

nen Beweis seines kontraintuitiven Resultates Dedekind brieflich am 20.6.1877 mit - in 
der Tat ist die Frage mit einem Ja zu beantworten. Er verwendet das „Reißverschluß-
verfahren", um zwei reelle Zahlen des Einheitsintervalls, die in unendlicher Dezimaldar-
stellung vorliegen, zu einer neuen reellen Zahl zu verschmelzen: Die Nachkommastellen 
der beiden Zahlen werden abwechselnd aneinandergereiht, aus 0,1223... und 0,9267... 
wird etwa 0,19222637... Dedekind antwortet ihm, daß die entstehende Abbildung nicht 
surjektiv ist - Cantors Beweis zeigtnur 1 IR  1 < 1 JR  1. Die Zahl 0,11101010... etwa liegt 
nicht im Bild der Funktion. Cantor bemerkt, daß dieser Einwand nicht das Herz der Sa-
che träfe: Sein Beweis liefert eine Bijektion zwischen JR2  und einer Teilmenge von IR, 
und das scheint ja irgendwie noch mehr zu sein, als er wollte. Dennoch sucht er nach ei-
nem Beweis von 1 1R2  1 = 1 JR  1. Der Satz von Cantor-Bernstein stand ihm damals noch 
nicht zur Verfügung, und Cantor verwickelt sich in unangenehme technische Probleme. 
Die gewünschte Bijektion wird sehr aufwendig konstruiert, an die Stelle der Dezimal-
bruchentwicklungen treten Kettenbrüche, und Cantor argumentiert umständlich, daß 
die irrationalen Zahlen gleichmächtig zu den reellen Zahlen sind. Und obwohl er 
schließlich ein einfaches Argument hierfür sieht und auch angibt [Cantor 1878, § 6], will 
er in der Veröffentlichung auf seine kompliziertere Konstruktion nicht verzichten. Die 
Arbeit ist, ganz abgesehen von dem überraschenden Resultat, in vielerlei Hinsicht inter-
essant: Sie ist Photographie des Nebels, der über neuen Begriffen in ihren Morgenstun-
den liegt, und zugleich ein Dokument der Psyche von Wissenschaftlern, denen allzu ein-
fache Lösungen oft gar nicht so gelegen kommen, da diese vorangehende Kraftakte 
überflüssig machen. 

Nachdem Cantor die Gleichung 1 JR2  1 = JR 1 bewiesen und sein Vorgehen diskutiert 
hat, beendet er die die Arbeit mit der Kontinuumshypothese: Jede überabzählbare Men-
ge von reellen Zahlen ist gleichmächtig mit JR. Möglicherweise war der entdeckte Zu-
sammenfall der beiden vermeintlich verschiedenen Mächtigkeiten 1 JR  1 und 1 JR2  1 der Aus-
löser für die Hypothese, die ja auch den Zusammenfall vieler Mächtigkeiten vermutet. 
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Die Gleichmächtigkeit der Ebene 1R2  mir der Geraden JR war für die damalige Zeit 
eine große Uberraschung, wobei schon die Fragestellung ungewöhnlich genug erschien. 
Cantor schreibt in einem Brief an Dedekind vom 25.6.1877: 

„Die meisten, welchen ich diese Frage [nach der Gleichmächtigkeit von 1W' mit IR] vorgelegt, 
wunderten sich sehr darüber, dass ich sie habe stellen können, da es sich ja von selbst verstünde, dass 
zur Bestimmung eines Punctes in einer Ausgedehntheit von p Dimensionen immer p unabhängige 
Coordinaten gebraucht werden. Wer jedoch in den Sinn der Frage eindrang musste bekennen, dass 
es mindestens eines Beweises bedürfe, warum sie mit dem ‚selbstverständlichen' nein zu beantwor-
ten sei. Wie gesagt gehörte ich selbst zu denen, welche es für das Wahrscheinlichste hielten, dass 
jene Frage mit einem Nein zu beantworten sei, - bis ich vor ganz kurzer Zeit durch ziemlich verwik-
kelte Gedankenreihen zu der Uberzeugung gelangte, dass jene Frage ohne all Einschränkung zu be-
jahen ist. Bald darauffand ich den Beweis, welchen Sie heute vor sich sehen." 

Gemeint ist der komplizierte Beweis von der Arbeit von 1878. Es gibt einen einfa-
chen Beweis von 1 IR 2 1  = 1 JR 1 mit Hilfe einer modifizierten Reißverschlußtechnik, der 
den Satz von Cantor-Bernstein nicht benötigt, und als Trick von Julius König bekannt 
ist. Cantor hat dieses einfache Argument übersehen. Die Idee ist, das Reißverschluß-
verfahren mit sog. Ziffernblöcken anstelle von einzelnen Ziffern durchzuführen; ist a 
0 eine Ziffer einer reellen Zahl in unendlicher Dezimaldarstellung, so bildet a zusammen 
mit allen vorangehenden Nullen einen Block der Zahl, der dann also die Form 00. .Oa 
hat. Die ersten Blöcke von 0,102002304... sind etwa 1, 02, 002, 3, 04. Werden nun je zwei 
reelle Zahlen des offenen Einheitsintervalls 1 durch Verzahnung von Blöcken anstatt 
von Einzelziffern amalgamiert, so entsteht eine bijektive Abbildung von 1 x 1 nach 1. 

Die erste dem Autor bekannte Referenz auf die Beobachtung von König ist die im Buch von 
Schoenflies [1900, p. 23]. Dort heißt es......und zweitens denke man sich die eventuellen Nullen mit 
der ersten auf sie folgenden Ziffer [ungleich 0] zuje einer Gruppe verbunden, und dehne das Abbil-
dungsgesetz [das Reißverschlußverfahren] auf diese Zahlengruppen aus Die Anmerkung 1 hier-
zu ist dann: „1) Dieser Gedanke rührt von J. Königher." Auch in [Fraenkel 1928] - vielfach ein hi-
storisches Miniaturenmuseum - findet sich lediglich die Bemerkung: „Durch diesen von J. König 
stammenden Kunstgriff wird also der vorstehende Beweis lückenlos"[eb., p. 1001. 

In seinen Antwortschreiben wies Dedekind auf die Unstetigkeit der konstruierten 
Bijektionen hin, und warf damit neue Fragen auf. Giuseppe Peano gab dann 1890 eine 
stetige Surjektion von der Geraden auf die Ebene an. Die Frage, ob die Injektivität einer 
solchen Abbildung notwendig verletzt sein müsse, blieb offen. Erst 1911 gelang Brou-
wer der vollständige Beweis des Satzes, daß es keine stetigen Bijektionen zwischen ver-
schiedendimensionalen Kontinua geben kann. 

Aus heutiger Sicht - oder genauer seit Hausdorffs Einführung der allgemeinen Topologie 1914 
[vgl. speziell hierzu Hausdorff 1914, p. 377fl - ist das Resultat für IR und JR2  relativ einfach zu be-
weisen: Die Ebene bleibt nach Entfernung eines Punktes zusammenhängend, die Gerade wird da-
gegen durch Entfernung eines Punktes unzusammenhängend. Es folgt, daß es keine stetige Bijek-
tion zwischen JR2  und JR geben kann. Wegen der in diesem Fall automatischen Stetigkeit der Um-
kehrabbildung kann es dann weiter auch keine stetige Bijektion zwischen JR und 1R 2  geben. 
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5 Cantors Kalkül der Kardinalzahlarithmetik (1895) 

Den nächsten größeren Fortschritt in der Geschichte des Problems bildet die Entdek-
kung des algebraischen Kalküls der Kardinalzahlarithmetik durch Cantor. Ein Beweis 
von 1 JR 1 2  = 1 JR  1 liest sich darin dann einfach so: 

1 1RI2 = (2N0 )2 	= 	= 1  IRj. 

Cantor führt den Kalkül im ersten Teil seiner „Beiträge zur Begründung der transfiniten 
Mengenlehre" von 1895 ein, und notiert begeistert, daß sich die Beweise der Arbeit von 
1878 nun auf „wenige Striche" verkürzen. Der Kalkül selbst wurzelt in Cantors Entdek-
kung des Diagonalverfahrens für Abbildungen einer Menge M in die Menge {0, l}. 
(Cantor trug das Diagonalverfahren auf der ersten Jahrestagung der DMV 1891 vor.) 
Solche 0-1-Belegungen suggerieren eine Potenzierung für Kardinalzahlen, etwa 21M1, 

und die vertrauten und leicht zu beweisenden Rechengesetze, wie etwa (21M 1)1 N1 = 

211 x It' 1 liefern nützliche, zuvor nur durch mühsame Manipulation von Bijektionen zu 
gewinnende Ergebnisse. Entscheidend ist zudem die Gleichung 1 JR  1 = 1 { f 1 f: N -~ 

{0, 1 } } 1, die die Brücke zwischen 1 JR  1 und 2 o  schlägt. 

6 Zermelo über die Addition von Kardinalzahlen (1901) 

Zermelo widmet seine erste mengentheoretische Arbeit der Untersuchung der Addition 
von unendlichen Kardinalzahlen. Er zeigt (hier in kardinalzahlfreier Notation wieder- 
gegeben): Gilt IM! = IM+NI für Mengen M, N, n 	N, so gilt IM! = IM+ 

Insbesondere folgt hieraus: Gilt 1 MI = IM + Nt für zwei Mengen M und N, 
so gilt auch die Gleichung 1 MI = 1 M + (N >< N) j. Die Argumentation erweist sich inter-
essanterweise als eine Verallgemeinerung des Bernsteinschen Beweises des Satzes von 
Cantor-Bernstein, und dieser Punkt scheint ein Hauptanliegen von Zermelo gewesen zu 
sein. Eine allgemeine Additions- oder Multiplikationshypothese stellt Zermelo in sei-
nem Artikel nicht auf, und auch ein Additions- oder Multipliaktionssatz für wohlorden-
bare Mengen wird nicht diskutiert. 

Zermelo spielt in der Geschichte des Satzes noch in zweierlei Hinsicht eine Rolle: 
Zum einen beweist er 1904 den Wohlordnungssatz, der den Multiplikationssatz auf das 
Problem reduziert, 1 M2  1 M 1 für wohlgeordnete Mengen M zu beweisen. Alle Beweise 
mit Ausnahme des Beweises von Zorn folgen dieser Reduktionsmöglichkeit. Für den 
Beweis von IN 2  1 = IN 1 durch diagonale Aufzählung ist die Ordnung von N wesentlich, 
und ebenso hilft eine einer unendlichen Menge M zugrundeliegende Wohlordnung für 
einen Beweis von 1 M2  1 = 1 MI. Zum anderen hat Zermelo die Lückenhaftigkeit der Ar-
gumentation einer frühen Arbeit von Jourdain betont [Jourdain 1904b], in der Jourdain 
zumindest den Spezialfall des Multiplikationssatzes für Mengen der kleinsten überab-
zählbaren Mächtigkeit beweisen wollte, also die Gleichung = ti. In seiner Arbeit 
von 1908 weist Jourdain auf Zermelos berechtigte frühere Kritik hin, und dankt ihm 
weiter für kritische Kommentare zur vorliegenden Arbeit:,, 1 must here refer gratefully 
to the trouble which Prof. Zermelo has taken in repeatedly critisising weak points in my 
proofs and suggesting improvements." [Jourdain 1908, p. 512]. Zermelo brachte also 
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dem Problem kontinuierliches lebhaftes Interesse entgegen, und er unterstützte in seiner 
bekannten kritischen Art Jourdain auf seinem langen und holprigen Weg zu einem kor- 
rekten Beweis. 

Ein dritter Punkt betreffend Zermelos Anteil und Teilnahme am Multiplikationsproblem ist 
die Ankündigung, daß Zermelo einen andersartigen Beweis des Satzes gefunden habe und ihn dem-
nächst veröffentlichen werde. Die Ankündigung findet sich im Buch von Hessenberg 1906 und 
wird in der Arbeit von Jourdain 1908 referiert, aber nicht weiter erläutert. Obwohl Zermelo also 
Jourdains Beweise zum Problem prüfte und kritisierte, scheint er ihm seinen eigenen Beweis nicht 
mitgeteilt zu haben. Wir kommen unten auf die Bemerkung bei Hessenberg noch kurz zurück. 

7 Die Hypothek der Dissertation von Bernstein (1901) 

Zur Multiplikation noch größerer Mengen als der Menge der reellen Zahlen hat Cantor 
nichts veröffentlicht und auch in seinen Briefen äußert er sich hierzu nicht. Aus seinem 
algebraischen Kalkül folgen aber unmittelbar Gleichungen wie I(P(IR)) 2 1 = 
IP(IR), und damit gilt der Multiplikationssatz auch für die Menge aller reellen Funk-
tionen, also fürF = {fIf:IR-1R}. 

Nach Aussagen von Felix Bernstein hat Cantor aber einen Beweis des Multiplikati-
onssatzes für wohlordenbare Mengen gesehen, und ihm diesen mündlich mitgeteilt. In 
seiner Dissertation von 1901 verwendet Bernstein den Multiplikationssatz für wohlor-
denbare Mengen als Hilfssatz, und schreibt zum Beweis lakonisch: 

„Den Beweis des Satzes, den ich aus mündlicher Mitteilung von G. Cantor kenne, führt man ana-
log wie im einfachsten Falle ... [für NI durch Verwandlung einer Doppe/reihe in eine einfache Reihe 
[d. h. man verwandelt eine doppelt indizierte Folge in eine gewöhnliche Folge] .....[Bernstein 1905, 
§ 12]. 

Die Dissertation von Bernstein wurde 1905 in den Mathematischen Annalen veröffentlicht, als 
eine „bis auf einige Verbesserungen und Bemerkungen ... unveränderte Wiedergabe [der Disserta-
tion]". Zitiert wird hier nach dieser leichter zugänglichen Arbeit. 

Bernstein beläßt es also in seiner Doktorarbeit bei einem argumentum ad au-torita-
tem, anstatt den Cantorschen Beweis durchzuführen. Es ist gut vorstellbar, daß der jun-
ge Bernstein das von Cantor wahrscheinlich nur skizzierte Argument in schweigender 
Bewunderung zur Kenntnis genommen hatte und es später nicht genau rekonstruieren 
konnte: Die Details einer Aufzählung von M x M bei „wohlgeordneten Achsen" sind 
nicht ganz trivial, „diagonal" im einfachen Sinne wie für N x N kann man sie nicht so 
ohne weiteres durchführen. Bemerkenswerterweise hat nun ein strenger Beweis des 
Multiplikationssatzes für Wohlordnungen durch eine Art Diagonalaufzählung bis zur 
Arbeit von Jourdain 1908 auf sich warten lassen, obwohl für einen solchen Beweis der 
Zermelosche Wohlordnungssatz nicht gebraucht wird, und obwohl die Beweisstrategie 
durch Bernsteins Bemerkung vorgezeichnet war. Hessenbergs Beweise von 1906 und 
1907 kann man nicht als eine direkte Verallgemeinerung der Diagonalaufzählung von 
N 2  ansehen. Und auch Jourdains Beweis verschleiert die Dinge noch unnötig, erst die 
Konstruktion von Hausdorff 1914 machte den Weg frei für die aus heutiger Sicht auf 
der Straße liegende Verallgemeinung der Cantorschen Paarungsfunktion auf kartesi-
sche Produkte mit Achsen beliebiger Länge. 
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Arthur Schoenflies schreibt im zweiten Teil seines Berichts über den Stand der Men-
genlehre 1908: 

„Es liegt zunächst nahe den Beweis [des Multiplikationssatzes für Wohlordnungen] in ähnlicher 
Wiese zu führen wie den [Cantorschen Beweis von IN x N 1 = 1 N 1  durch Diagonalaufzählung]... 
Doch bedarf der Begriff der diagonalen Anordnung [für allgemeine Wohlordnungen] ... einer prä-
zisen Erläuterung' ... [Fußnote 1):] In obiger Form erscheint der Beweis z. B. in Bernsteins Disser-
tation ... Eine ausführliche Darstellung des Beweises liegt nicht vor." [Schoenflies 1908, p. 13] 

Der Bericht von Schoenflies ist mit „Königsberg i. Pr., im Oktober 1907" unterzeichnet. 

Der Multiplikationssatz für beliebige Mengen spielt weiter in der Bernsteinschen 
Dissertation eine wichtige Rolle. Er erscheint dort als eine Voraussetzung, aus der sich 
Vergleichbarkeitsresultate gewinnen lassen. Bernstein zeigt: Gilt für ein unter Addition 
abgeschlossenes System 5 von Mengen der Multiplikationssatz, d. h. 1 M 2 1  = 1 M 1 für alle 
M E S, so sind die Elemente des Systems bzgl. ihrer Mächtigkeit vergleichbar, d. h. es 
gilt IMI < INI oder INI < 1 MI für alle M,NE S [Bernstein 1905, §4]. Bernstein verwen-
det im Beweis implizit das Auswahlaxiom. Dennoch bildet sein trickreiches Argument 
dann das Herzstück im Beweis des Satzes von Bernstein-Tarski [Tarski 19241, daß näm-
lich der Multiplikationssatz zusammen mit den restlichen Axiomen der Mengenlehre 
das Auswahlaxiom impliziert. 

8 Die Hausdorff-Formel und eine Regularitätsbehauptung (1904) 

Im Zusammenhang mit Bernsteins Rückgriff auf einen mündlichen Beweis des Multipli-
kationssatzes für Wohlordnungen ist weiter die erste mengentheoretische Arbeit von 
Felix Hausdorff „Der Potenzbegriff in der Mengenlehre" aus dem Jahr 1904 interes-
sant. In dieser skizzenhaften Arbeit mit dem Untertitel „aus dem Sprechsaal" behauptet 
Hausdorff die sog. Regularität von Nachfolger-Alephs. Diese Behauptung ist, wie 
schnell zu zeigen ist, mit dem Multiplikationssatz für Wohlordnungen gleichwertig. 
(Zum Beweis der Regularität muß zusätzlich zum Multiplikation ssatz für Wohlordnun-
gen auch das Auswahlaxiom verwendet werden.) Hausdorff braucht die Regularität 
zum Beweis seiner „Hausdorff-Formel" der Kardinalzahlarithmetik. Sie stellt eine fal-
sche Behauptung aus der Dissertation von Bernstein richtig, die ihrerseits zu dem fal-
schen Beweis der Nichtwohlordenbarkeit des Kontinuums geführt hat, den Julius Kö-
nig 1904 auf dem Heidelberger Mathematikerkongreß zur großen Aufregung seiner Hö-
rer - unter ihnen Cantor - vortrug. Hausdorff scheint hier, wie Bernstein in seiner 
Dissertation, den Multiplikationssatz für Wohlordnungen aus dem Cantorschen Mun-
de zu übernehmen. 

Hausdorff reicht keinen vollständigen Beweis der Hausdorff-Formel, d. h. kein Argument für 
die nur behauptete der Regularität von Nachfolger-Alephs nach. In [Hausdorff 1908] gibt er ohne 
Beweis und ohne Referenz „die Alefgleichung I.a2=  t'L" als Begründung für die Regularität von 

an. In seinem Buch von 1914 wird die Regularitätsbehauptung dann unmittelbar nach einem 
ausführlichen Beweis der Alephgleichung - gleichwertig: des Multiplikationssatzes für Wohlord-
nungen - bewiesen [Hausdorff 1914, p. 129]. Dort wird zudem in einer Anmerkung ausdrücklich 
Hessenberg als derjenige genannt, der den Multiplikationssatz 1906 zuerst bewiesen hatte. Haus-
dorffs eigene Arbeit von 1904 bleibt unerwähnt. 
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Im Jahr 1904 zeigt Zermelo den Wohlordnungssatz, und damit wird der Multiplika-
tionssatz für Wohlordnungen gleichwertig zum vollen Multipliaktionssatz für alle Men-
gen. Die nackt im Raum stehende Verallgemeinerung von Cantors Gleichung IN 1 2  
1 N  1 auf alle wohlgeordneten unendlichen Mengen und mit Zermelos starkem Resultat 
damit dann sogar auf alle unendlichen Mengen sehnte sich nun in zunehmendem Ma-
ße nach einem richtigen mathematischen Gewand, oder etwas weniger bildhaft: einem 
lupenreinen Argument. 

Bemerkenswert am Duo [Zermelo 19011 und [Hausdorff 1904] ist, daß elementare Fragen der 
Kardinalzahlarithmetik in den mengentheoretischen Erstlingen der beiden wichtigsten Erforscher 
der Mengenlehre nach Cantor eine zentrale Position einnehmen. 

9 Jourdains Versuch (1904) und Flarwards Beweis (1905) 

Jourdain hat in einer im „Philosophical Magazine" 1904 veröffentlichten Arbeit ver-
sucht, den Multiplikationssatz für Wohlordnungen zu beweisen [Jourdain 1904b, 
p. 298— 300]. Er beschreibt aber letztendlich das Problem nur, und beweist gar nichts 
(vgl. auch Abschnitt 7). A. E. Harward war es dann, ein mathematischer Außenseiter 
mit bislang unaufgelösten Initialen, der, von Indien aus agierend und auf der vergleichs-
weise recht dünnen Wissensgrundlage von Russells „Principles of Mathematics" von 
1903 und Jourdains Artikelpaar im „Philosophical Magazine" von 1904 stehend, einen 
ersten vollständigen Beweis des Multiplikationssatzes für Wohlordnungen geben 
konnte. Harward verwendet den Wohlordnungssatz ähnlich wie Cantor als „Quasi-
axiom", und erhält so den vollen Multiplikationssatz. 

Harwards Arbeit „On the transfinite numbers" von 1905 ist eine klargeschriebene 
Einführung in eine informal-axiomatische Mengenlehre. Harward formuliert ein Erset-
zungsaxiom, und begründet wie Cantor in seinen späten Briefen den Wohlordnungssatz 
durch Abzählen einer Menge entlang der Ordinalzahlen: Dieses muß irgendwann en-
den, da sonst die Menge gleichmächtig zur echten Klasse der Ordinalzahlen wäre. Wei-
ter zeichnet sich die Arbeit durch eine große Sicherheit und Originalität in der Ordinal-
zahlarithmetik aus, und der Beweis des Multiplikationssatzes für Wohlordnungen ruht 
auf feinen arithmetischen Beobachtungen. Das Argument verwendet allerdings ver-
steckt das Auswahlaxiom. Diese Schwäche läßt Harwards Beweis des Multipliaktions-
satzes für Wohlordnungen aus heutiger Sicht zweitrangig erscheinen. Doch: 

In einem Anhang, innerhalb einer Kritik des Arguments von [Jourdain 1904b], skiz-
ziert Harward noch einen zweiten Beweis, und schlägt hier genau die Aufzählung der 
Hälfte eines diagonal halbierten Quadrats über einer wohlgeordneten Achse vor, die 
Hausdorff 1914 als eine Vereinfachung der Jourdain-schen Konstruktion von 1908 wie-
derentdecken wird. Harward schreibt über seine beiden Beweise im Anhang seiner Ar-
beit: 

„In order to complete the proof on the lines indicated by Mr. Jourdain, it is necessary that some 
rule or formula [analog zur Cantorschen Paarungsfunktion für IN 2] should be given by which the 
required correlation can be established once for all. As 1 could not succeed in constructing such a 
formula, 1 adopted a different method of proof [gemeint ist der im Hauptteil der Arbeit dargestellte 
Beweis]. 
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1 have recently discovered that by a slight modification of Mr. Jourdain's method a simple an-
drigorous proofcan beobtained..." [Harward 1905, p. 458, in „Note A" zu seinem Artikel]. 

Wir diskutieren die Konstruktion von Harward-Hausdorff in Abschnitt 12. Har -
ward unterscheidet allerdings zeittypisch nicht genau zwischen dem ungeordneten Paar 
{a, 13} und dem geordneten Paar (a, j3), was aber der Sache und der klaren Skizze der 
Konstruktion und Beweisidee keinen Abbruch tut. 

Es ergibt sich ein bemerkenswerter Zirkel: Jourdain, der Harwards Arbeit mit dem 
Autor diskutiert hat [vgl. Harward 1905, p. 439], kennt Harwards zweiten Beweis, stellt 
aber 1908 seinen eigenen endlich richtigen Beweis ins Rampenlicht, den dann Hausdorff 
1914, ohne Kenntnis des Artikels von Harward, zu dem zweiten Harwardschen Beweis 
„resimplifiziert"! Jourdain hat in seinem Artikel von 1908 sehr unsauber auf Harwards 
Leistung hingewiesen, er diskutiert den Artikel zusammen mit Details seiner eigenen 
früheren Arbeiten, anstelle klar anzugeben, daß und wie Harward den Beweis vor ihm 
geführt hat. 

Gregory Moore hat 1976 in einer Notiz auf die alleine schon aus rein axiomatischer 
Hinsicht bemerkenswerte Arbeit von Harward hingewiesen, und ihre Vernachlässigung 
als ein „establishment"-Phänomen interpretiert: „Harward [1905] contained the core of 
what could have been a worthwile axiomatization of set theory. Nevertheless, his paper 
provoked no public response, even fromJourdain who had suggested changes in it prior 
to publication. This silence was partly due to the fact that Harward was a self-confessed 
amateur vis-ä-vis set theory..." [Moore 19761. 

Auch nach Moores (nicht gerade an mathematisch auffälliger Stelle veröffentlichtem) Hinweis 
blieb Harwards Beitrag zur Fundierung der Mathematik oder zum Multiplikationsproblem in 
(fast?) allen alten wie neueren mathematischen wie historischen Texten zur Mengenlehre vollkom-
men unbeachtet ([Deiser 2004] leider eingeschlossen, in guter Gesellschaft mit z. B. [Hausdorff 
2002, p. 33 und p. 597ffl. Die folgende Geschichte des Satzes liest sich dann auch, als hätte es 
Harwards Artikel von 1905 gar nicht gegeben. 

10 Hessenbergs erster Beweis des Satzes (1906) 

Unabhängig von Harward gelang Hessenberg ein Beweis des allgemeinen Additions-
und Multiplikationssatzes durch ein einfaches, hübsches und heute fast vergessenes Ar-
gument, das die sogenannte Cantorsche Normalform [Cantor 1897, § 171 für Ordinal-
zahlen verwendet. Der Beweis erstreckt sich über die § § 75-77 der „Grundbegriffe" 
[Hessenberg 1906]. 

Die Cantorsche Normalform ist, cum grano salis, die N-adische Darstellung transfi-
niter Zahlen. Ganz so, wie sich natürliche Zahlen eindeutig in der Form 

1 O1 a1 + 10n2 a2  + ... + lOnk ak 

schreiben lassen mit natürlichen Zahlen n 1  > n2  >... > flk > 0, 1 <a, < 9, lassen sich Or-
dinalzahlen eindeutig in der Form 

Na a1+  Na2 a2 + ... + N ak 
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schreiben mit (endlich vielen!) Ordinalzahlen a 1  > ct2  > . > u > 0, und Koeffizienten 
a i  e N - {0}. Hierbei ist NU = coa die von Cantor definierte Ordinalzahlexponentiation 
zur Basis N. 

Hessenberg bringt zwei Ordinalzahlen in ihre Cantorsche Normalform, und defi-
niert dann die von ihm sogetaufte natürliche Summe der beiden Zahlen wie folgt. Er ad-
diert zuerst paarweise die in den Normaldarstellungen auftretenden Glieder mit glei-
chen Exponenten. Diese Summen haben also die Form Na  a, oder N.  (a, + b) oder 
Na (a1  + b) oder N b 1 . Anschließend summiert er alle diese Einzeladditionen zu einer 
neuen Normalform auf (d. h. die größeren Glieder kommen zuerst). So verschmelzen 
zwei Ordinalzahlen zu einer neuen. Betrachtet man die Operation, so sieht man schnell, 
daß immer nur endlich viele Paare dasselbe Ergebnis dieser Verschmelzung hinterlassen. 
Der Prozeß ist also „fast" injektiv. Zudem liegt die natürliche Summe recht nahe am 
Maximum der beiden Summanden. Hessenberg gewinnt aus diesen Beobachtungen 
dann relativ leicht den Additions- und Multiplikationssatz für Wohlordnungen, und 
mit Hilfe des Zermeloschen Wohlordnungssatzes folgen dann die uneingeschränkten 
Versionen. 

Hessenberg hat Bernsteins Andeutungen über einen Cantorschen Beweis des Satzes nicht un-
kommentiert gelassen. Sowohl im Vorwort seines Buches als auch am Ende des Beweises des Mul-
tiplikationssatzes spricht er von einer „Mitteilung" von Felix Bernstein, derzufolge das Resultat 
bereits von Cantor bewiesen worden war [Hessenberg 1906, p. IV und Ende § 771. Hierbei ist nicht 
klar, ob sich Hessenberg lediglich auf die Bernsteinsche Dissertation bezieht oder ob es eine zusätz-
liche Korrespondenz mit Bernstein hierüber gab. (Ersteres erscheint wahrscheinlicher.) Im Vor-
wort schreibt er über diese Mitteilung von Felix Bernstein: 
„Ob der in dieser Mitteilung flüchtig skizzierte Beweis derselbe ist, den ich hier [in § § 75-77 dieser 
Abhandlung] darstelle, vermag ich nicht zu beurteilen." 

Daß die Beweisidee dieselbe ist, erscheint nicht unmöglich, da alle Zutaten des Hessenberg-
schen Beweises Cantorsche Eigengewächse sind, allen voran die Normaldarstellung transfiniter 
Zahlen. Wahrscheinlicher ist aber, daß Cantor einen Beweis gesehen hatte, der enger mit der Argu-
mentation von Harward und Jourdain verwandt ist. 

Weiter spricht Hessenberg von einem „wesentlich verschiedenen" Beweis des Satzes, der ihm 
„in jüngster Zeit" von Ernst Zermelo mitgeteilt worden sei, und demnächst veröffentlicht werde 
[Hessenberg 1906, Ende § 77]. Wie Cantors Beweis hat auch Zermelos Beweis nie das Licht der 
Welt gesehen. Im Hinblick auf die Arbeiten und Argumente von Zermelo aus dieser Zeit ist der 
Zermelosche Beweis vermutlich dem Zornschen Beweis des Satzes ähnlicher als den Beweisen von 
Hessenberg und Jourdain. 

11 Hessenbergs zweiter Beweis des Satzes 

Hessenberg hat 1907 noch einen zweiten arithmetischen Beweis des Multiplikationssat-
zes gegeben, der die Cantorsche Normalform nicht verwendet, dafür aber von der fei-
nen Dynamik der Ordinalzahlexponentiation in anderer Weise gebraucht macht. Die 
Exponentiation wurde von Cantor 1897 [Cantor 1897, § 18] eingeführt, und hat Ruhm 
erlangt als erstes Beispiel einer Definition durch transfinite Rekursion. Hessenbergs Be-
weis benutzt jedoch eine äquivalente rekursionsfreie Definition der Exponentiation, die 
auf Hausdorff zurückgeht. Modulo dieser Definition ist der zweite Hessenbergsche Be-
weis dann sehr einfach zu führen. 
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Ziel ist es zu zeigen, daß unendliche Kardinalzahlen abgeschlossen unter Ordinalzahlmultipli-
kation sind, daß also a 13 <K gilt für alle a, 3 < K, wobei K eine unendliche Kardinalzahl ist. Hier-
für verwendet Hessenberg die Abschätzung a 3 < 2" = 2" < 2". (Daß a + J3 < K gilt, ist ein-
fach zu sehen.) Die Behauptung folgt nun einfach daraus, daß für unendliche Kardinalzahlen 2" = 
K gilt. (2" ist hier die Ordinalzahlexponentiation, nicht die identisch notierte Kardinalzahlexponen-
tiation, für die immer 2' > K gilt.) Für den Beweis dieser Gleichung verwendet Hessenberg die re-
kursionsfreie Hausdorff-Hessenberg-Darstellung der Ordinalzahl-Exponentiation: Er braucht, 
daß die Mächtigkeit des Ergebnisses der Exponentiation 2" nur von der Mächtigkeit von a ab-
hängt, was aus der rekursiven Definition von 2" im Gegensatz zur Hausdorff-Hessenberg-Darstel-
lung nicht unmittelbar hervorgeht. 

Schoenflies skizziert die beiden Hessenbergschen Beweise von 1906 und 1907 im 
zweiten Teil seines „Berichts" [Schoenflies 1908, p. 13 f.]. In seiner Neufassung des er-
sten Teils von 1913 findet sich dann nur noch der erste Beweis [Schoenflies 1913, 
p. 131 ff.]. Das schöne Argument der Arbeit von 1907 gerät in Vergessenheit. 

12 Jourdain (1908), Hausdorft (1914), und der heute übliche Beweis 

Zwei Jahre nach Hessenberg veröffentlicht Philip Jourdain einen weiteren Beweis des 
Multiplikationssatzes. Er bildet die Grundlage für Hausdorffs Beweis in den „Grundzü-
gen der Mengenlehre" von 1914, der, wie erwähnt, mit Harwards zweitem Beweis von 
1905 zusammenfällt. Hausdorff bezeichnet Hessenbergs Beweis von 1906 in einer An-
merkung als „umständlich" [Hausdorff 1914, p. 456], was auf die Darstellung zutrifft, 
aber nicht auf den Beweis selber. Der heute übliche Beweis des Satzes folgt der Har-
ward-Hausdorffschen Argumentation, und unterscheidet sich von ihr nur durch etwas 
bessere Feinmechanik und läuft dadurch etwas glatter; er ist Allgemeingut und mit kei-
nem weiteren Namen verbunden (außer daß die im Beweis implizit konstruierte Funkti-
on manchmal als Gödelsche Paarungsfunktion bezeichnet wird). Alle Beweise verwen-
den wie Hessenberg Ordinalzahlen, wobei die benutzten arithmetischen Operationen im 
Lauf der Zeit immer einfacher werden Jourdain verwendet noch die Addition von Or-
dinalzahlen, der heutige Beweis kommt mit der trivialen Operation der Maximum-Be-
stimmung zweier Elemente einer Wohlordnung aus. Die Kernbeobachtung ist, daß aus 
einer Wohlordnung einer Menge M sehr einfach eine Wohlordnung von M x M kon-
struiert werden kann, und daß dies zudem in einer fortsetzbaren Weise geschehen kann: 
Wird die Wohlordnung von M verlängert zu einer Wohlordnung von M', so ist die kon-
struierte Wohlordnung auf M x M ein Anfangsstück der Wohlordnung auf M' x M'. 
Mit Hilfe dieser Fortsetzungseigenschaft zeigt man dann, daß in vielen wichtigen Spe-
zialfällen die Wohlordnung auf M x M ordnungsisomorph zur Wohlordnung auf M 
selbst ist. Dies zeigt den Multiplikationssatz für Wohlordnungen, und wie bei Hessen-
berg folgt das allgemeine Ergebnis unter Heranziehung des Zermeloschen Wohlord-
nungssatzes. Und erst für diesen letzten Schritt wird das Auswahlaxiom verwendet. 

Diese Schlüsselidee läßt sich ohne Arithmetik umsetzen, und der Beweis läßt sich da-
her rein mit Hilfe des Wohlordnungsbegriffs bequem führen; es ist nicht notwendig mit 
Ordinalzahlen zu arbeiten, nicht einmal aus Notationsgründen. Andererseits wird die 
zugrundeliegende Arithmetik nicht wirklich eliminiert, sondern lediglich verborgen: 
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Die konstruierten Wohlordnungen sind immer einfach definierbare wohigeordnete 
Summen von Wohlordnungen, und damit letztendlich arithmetischer Natur. 

Dantors Diagonalaufzahlung, definierbar 
als Polynom oder durot vergleich der 

Xoord7natensu?rene. Letzteres führt 
zu Jourdarns allgemeiner Konstruktion, 

Die lexikographische Harward'-Hausdorff- 	Einweben des unteren Dreiecks 
0h7ordnung des linken oberen Dre,ecks 	 führt zur heute üblichen Aufzahlung des 

- des Quadrats über einer wohlgeordneten Achse 	Quadrats uber einer wohlgeordneten Achse. 

Hessenbergs wohlordnung über natürliche Surmen lallt sich nicht leicht visualisieren, 
Ebenso ergdbe Jourdains Konstruktion von 1908 ein recht kompliziertes Diagraem.) 

Allen Konstruktionen der einfachen Wohlordnung auf M x M liegt eine Variation der Cantor-
sehen Diagonalaufzählung von N x N zugrunde. Jourdain schreibt in der Einleitung seines Arti-
kels [Jourdain 1908]: „In order to prove that t-1 t-t = ä where -y is any (finite or transfinite) ordi-
nal number, we shall generalise Cantor's [.1 method of proving that 1'1 0 = o " Jourdain gibt in 
einer Fußnote die Cantorsche Bijektion f: N2 -* N als Polynom an, jedoch kommt es ihm hier nur 
auf die induzierte Ordnung der Elemente von N 2  untereinander an: Will man (a, b) und (c, d) e N 2  
bzgl. der Diagonalaufzählung miteinander vergleichen, so ist es nicht nötig, f(a, b) und f(c, d) aus-
zurechnen und diese Werte miteinander zu vergleichen. Denn es gilt: (a, b) < (c, d) gdw a + b < c + 
d oder a + b = c + d und zudem a <c. Die Wohlordnung der Diagonalaufzählung kann geradezu 
in dieser Weise definiert werden, und diese Definition liefert dann, wie Jourdain erkannt hat, eine 
Wohlordnung von y x y  für beliebige Ordinalzahlen y: Seien (ci, [3), (ci',  13')  c y xy. Dann setzen 
wir: (ci, [3) <(ci', 3'), falls ci + 3 <ci' + [3' oder falls ci + 3 = ci' + [3' und ci < ci'. Jourdain zeigt nun, 
daß diese Wohlordnung von y  x y ordnungsisomorph zu y ist, falls -y  eine unendliche Kardinalzahl 
ist. Damit ist I'i' x  y[ = lyl für unendliche Kardinalzahlen y.  Der allgemeine Multiplikationssatz 
folgt dann wie bei Hessenberg mit Hilfe des Wohlordnungssatzes von Ernst Zermelo. 

Jourdains Beweis beruht also auf einer direkten Verallgemeinerung eines die Cantorsche Dia-
gonalaufzählung von N 2  definierenden Vergleichskriteriums. Jourdains Konstruktion besitzt al-
lerdings die oben erwähnte Fortsetzungseigenschaft nicht in voller Allgemeinheit. 

Dies ist anders bei der Harward-Hausdorff Konstruktion. welche - bei Harward und Hausdorff 
mit Ordinalzahlen, hier in der Sprache der Wohlordnungen formuliert - aus einer Wohlordnung 
auf M eine Wohlordnung nicht auf M 2 , sondern auf der Menge { (a, b) 1 a, b e M, a <b } erzeugt, 
also auf „dem linken oberen Dreieck" von M x M: Die Elemente dieser Menge werden lexikogra-
phisch geordnet, zunächst nach ihrer zweiten Komponente, und bei gleicher zweiter Komponente 
nach der ersten. Das gleichmäßige Einweben der analogen Ordnung auf dem anderen Dreieck von 
M x M (unter Einschluß der Diagonalen) führt zur heute üblichen „kanonischen" Wohlordnung 
auf M x M, und verkürzt den Beweis um einen oder zwei Hilfssätze; Hausdorff muß z. B. zusätz-
lich zeigen, daß das „obere linke Dreieck" von M x M gleichmächtig zur ganzen Menge M x M ist 
für unendliche Mengen M. 

13 Problembewußtsein unI Reaktionen 

Es scheint, daß der allgemeine Multiplikationssatz nie „offiziell" als offenes Problem 
formuliert worden ist. Cantor selbst konzentrierte sich auf Mengen der Mächtigkeit 
von N oder IR, und trug mit dem Kontinuumsproblem - ob nämlich jede unendliche 
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Teilmenge von JR die Mächtigkeit von N oder die von JR selbst habe schwer genug 
auf den Schultern. Aus der Bemerkung in Bernsteins Dissertation geht aber hervor, daß 
sich Cantor mit dem Multiplikationssatz für Wohlordnungen zumindest gedanklich 
auseinandergesetzt hat. Auch zur Jahrhundertwende standen die Mächtigkeiten von N 
und JR noch immer im Rampenlicht des Interesses. Als eine Menge noch größerer 
Mächtigkeit als JR wurde die Menge F der reellwertigen Funktionen untersucht, und 
allgemein zeigte Cantors Diagonalargument von 1891, daß die Menge aller Funktion ei-
ner Menge M in sich selbst immer größere Mächtigkeit hat als M selbst [siehe etwa 
Schoenflies 1900, p. 26]. Aber selbst eine elementar zu beweisende Gleichung wie 1 F2  
1 F 1 findet sich z. B. im Bericht von Schoenflies von 1900 nicht. Man rang noch mit rela-
tiv kleinen, erdnahen Mächtigkeiten, für die Beschäftigung mit astronomischen Größen 
war es noch etwas zu früh. Als große in voller Allgemeinheit noch zu bewältigende Auf-
gaben diskutierte man das Wohlordnungsproblem und das Problem der Vergleichbar -
keit von Mengen, daneben machten aber auch die kleinen wiederum erdnahen Dinge 
größere Schwierigkeiten, etwa die Frage, ob eine nach der Mächtigkeit von N nächst-
größere Mächtigkeit existiere:,, Der einzige Fortschritt [im Kontinuumsproblem] ist 
der, daß man inzwischen wenigstens eine bestimmte Menge als zweite [unendliche] 
Mächtigkeit zu definieren gelernt hat." So schreibt Schoenflies zur Jahrhundertwende 
[eb., p. 27]. 

Selbst von einer „zweiten Mächtigkeit" wie im Zitat von Schoenflies konnte man streng ge-
nommen nur für die wohlordenbaren Mengen sprechen: Die „bestimmte Menge", sagen wir A, 
war wohlordenbar, aber man wußte nicht in voller mathematischer Klarheit, daß 1 A  1 < 1 MI gilt 
für alle Mengen M mit 1 N 1 < MI. Man sah die Gültigkeit dieser Aussage für wohlordenbare M. 
Der allgemeine Fall benötigt eine weit über die Mengenlehre ohne Auswahlaxiom hinausgehende 
abgeschwächte Form des Wohlordnungssatzes, und erst Zermelos Arbeiten im ersten Jahrzehnt 
des 20. Jahrhunderts schalteten in diesem Gewölbe voller verwirrender Fragen das Licht an. In ei-
ner Bemerkung im zweiten Teil des Berichts geht Schoenflies auf dieses Problem der zweiten Mäch-
tigkeit ein: „Erst dieser Satz [der Vergleichbarkeit von Mengen] würde uns das Recht geben, tt 
[oben A genannt] als die zweite Mächtigkeit zu bezeichnen... Freilich hat der Sprachgebrauch sich 
längst an diese Bezeichnung gewöhnt. Er ist aber ohne den obigen Satz nicht gestattet." [Schoen-
flies 1908, p. 32]. 

Zwischen Cantors letzter bedeutender mengentheoretischer Arbeit von 1897 und bis 
zum wirkungsvollen Auftreten von Zermelo und Hausdorff 1904 fehlte schlichtweg ein 
kreativer und jugendlich-kraftvoller mathematischer Kopf ersten Ranges, dervon Can-
tor den stilsicheren Umgang mit den neuen transfiniten Zahlen geerbt hätte. Aus mathe-
matischer Sicht machte erst Hausdorffs allgemeine Untersuchung linearer Ordnungen 
ab 1906 die Definition von komplizierteren Ordnungen durch verschiedenste Ver-
gleichskriterien zur handwerklichen Selbstverständlichkeit, und Hausdorff war es dann 
auch, der 1914 den ersten vollständig ausgeführten Beweis zu Papier brachte, der noch 
heute in Darstellung und Inhalt gleichermaßen überzeugt. 

Interessant ist auch, die Reaktionen auf die Lösungen des Multiplikationsproblems 
zu verfolgen. In seinem Bericht von 1900 erwähnt Schoenflies ein allgemeines Multipli-
kationsproblem nicht. Im zweiten Teil des Berichts [Schoenflies 1908], beklagt er dann 
aber das Fehlen eines ausführlichen Beweises dessen, was Bernstein in seiner Dissertati-
on nur andeutet (siehe das Zitat in Abschnitt 3). Anschließend referiert er die beiden Be-
weise von Hessenberg von 1906 und 1907. Harwards Beweis dringt, wie erwähnt, in die 
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mathematische Fachwelt gar nicht ein. In der umgearbeiteten Fassung des ersten Teils 
aus dem Jahre 1913 schreibt Schoenflies dann zum Hessenbergschen Resultat und zum 
Beweis von Jourdain: 

„Es liegt sehr nahe, diese Methode [der Diagonalaufzählung von N 2  ] auf beliebige Alephs zu 
übertragen. Tatsächlich hat die Formel [der Multiplikationssatz für wohlgeordnete Mengen] des-
halb auch stets als richtig gegolten, ehe man einen präzisen Beweis für sie besessen hat. Ph. Jour-
dain war der erste, der den Cantorschen Grundgedanken in ausführlicher Darstellung auf den Fall 
beliebiger Alephs ausgedehnt hat... Einen rein arithmetischen Beweis hat Hessenberg geliefert..." 
[Schoenflies 1913,p. 1321 

Das „stets" kann sich hier doch wohl nur auf die Zeit nach der Bernsteinschen Dis-
sertation beziehen, bezeichnet also lediglich einen Zeitraum von fünf Jahren bis zur end-
gültigen Lösung des Problems 1906: Eine wichtige Formel, die als richtig gilt aber noch 
nicht vollständig bewiesen ist, sollte in einem Bericht wie dem Schoenfliesschen von 
1900 irgendwo notiert sein. Gleichungen wie 1 N2 1 = INI, JIR x INI = IRI, lJR'I = IlRI 
werden dort ausführlich diskutiert; für die Menge F aller Funktionen von JR nach JR 
findet sich die Relation 1 JR  1 < 1 F ‚aber die Frage 1 F 21 

= 1 F  1 wird ebensowenig erwähnt 
wie eine allgemeine Multiplikationshypothese für Mengen oder auch nur für wohlor-
denbare Mengen. 

Das Multiplikationsproblem scheint also in den beiden letzten Jahrzehnten des 19. 
Jahrhunderts nur halbbewußt gewesen zu sein; eine größere Rolle spielt es dann erst seit 
der Dissertation von Felix Bernstein 1901. Die Tatsache, daß Hessenberg sein Resultat 
im knappen Vorwort seines Buches von 1906 ausführlich diskutiert, und die Besorgtheit 
von Jourdain um einen kleinen Platz in der Geschichte, die aus seinen Arbeiten heraus-
zuhören ist, weisen dann daraufhin, daß man sich über die Bedeutung des nun völlig be-
wußten Problems und seiner Lösung sofort im klaren war. Eine ungewöhnliche Zwi-
schenstufe in der Geschichte bilden die Bemerkungen von Bernstein über Cantors Ein-
sichten in das Problem. 

Die Nachwelt griff dann ab [Hausdorff 1914] den Beweis von Harward-Hausdorff 
mit Referenzen an Jourdain auf, unwissend um Harwards Priorität. Wie erwähnt, gilt 
Hausdorff die Hessenbergsche Argumentation als umständlicher. Es mag sein, daß sich 
der Beweis nach Harward-Hausdorff in den „normalen" auf Kompaktheit ausgerichte-
ten Aufbau eines Textes oder einer Vorlesung zwangloser einfügt; die Autorität von 
Hausdorffs „Grundzügen der Mengenlehre" spielte aber sicher eine Rolle im Selekti-
onsprozeß „survival of the fittest proof". Man darf vermuten: Hätte Cantor selber den 
ersten Hessenbergschen Beweis gesehen und ihn als einfaches Korollar zu seiner Nor-
malform notiert [etwa in Cantor 1997, § 19], wäre das Argument heute ein bekannter 
mengen theoretischer Klassiker. 

Ein bemerkenswertes historisches Detail in der Rezeptionsgeschichte des Multiplikationssatzes 
ist, daß in der „Einleitung in die Mengenlehre" von Abraham Fraenkel [Fraenkel 1928] das Multi-
plikationsproblem und seine Lösung nicht behandelt werden. Das Buch von Fraenkel richtet sich 
zwar an einen weiteren Leserkreis als die Uberblicksartikel von Schoenflies oder das Buch von 
Hausdorff, jedoch ließe die Fülle des diskutierten Materials auf eine Erwähnung des Multiplika-
tionsproblems schließen. Fraenkels Text glänzt mit dem vollständigsten und sorgfältigsten Litera-
turverzeichnis der Zeit, die Arbeiten [Jourdain 1908] und [Harward 1905] allerdings fehlen, obwohl 
Fraenkel fünf Arbeiten von Jourdain zwischen 1905 und 1922 auflistet. Das Fehlen des Multiplika-
tionsproblems bedeutet hier sicher keine mangelnde Wertschätzung, sondern ist eher ein Beleg da-
für, daß sich das Problem aus einer einführenden Darstellung gut ausklammern läßt - hat man 
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doch schon genug Mühe, den Lesern Gleichungen wie 1 IRI = 1 JR 1 in ihrer historischen Dimension 
vor Augen zu führen. Als Ubungsaufgaben für den Leser notiert Fraenkel aber immerhin die Glei-
chungen IF + FI = FI und IF x FI = IFI für F = {f 1 f: JR -+ JR} [Fraenkel 1928, p.  102 und 
p. 1201. 

14 Multiplikationssatz und AuswahlaxÄom (1924) 

Alle diskutierten Beweise des Multiplikationssatzes verwendeten mehr oder weniger di-
rekt das Auswahlaxiom. Das Auswahlaxiom wird nicht gebraucht, um den Multiplika-
tionssatz für wohlordenbare Mengen zu zeigen. Für das allgemeine Resultat wird aber 
dann der Zermelosche Wohlordnungssatz herangezogen, der zum Auswahlaxiom äqui-
valent ist. Mit der immer sensibler werdenden Wahrnehmung seiner Verwendung stellte 
sich auch die Frage, ob ein Rückgriff auf das Auswahlaxiom für einen Beweis des Mul-
tiplikationssatzes unumgänglich ist. Dies ist in der Tat der Fall: Nimmt man zu den um 
das Auswahlaxiom reduzierten Axiomen der Mengenlehre die Aussage des Multiplika-
tionssatzes - quasi als Axiom -hinzu, so läßt sich in dieser Theorie das Auswahlaxiom 
beweisen. Auswahlaxiom und Multiplikationssatz sind also äquivalent (auf der Basis 
der übrigen Axiome). Dieses Resultat wird gewöhnlich einer Arbeit von Tarski aus dem 
Jahre 1924 zugeordnet [Tarski 1924], jedoch reichen die Vorarbeiten bis in das Jahr 
1901 zurück. Felix Bernstein bewies in seiner Dissertation den folgenden Satz: 

(+) Seien M und N Mengen, und es gelte IM x N 1 = M + N 1. Dann sind die Mäch-
tigkeiten von M und N vergleichbar, d. h. es gilt IM 1 < 1 NI oder IN 1 < IM 1 [Bern-
stein 1905, p. 131ff]. 

Der allgemeine Vergleichbarkeitssatz stand damals noch nicht zur Verfügung, und die 
Suche nach hinreichenden Bedingungen war eine natürliche Problemstellung der Zeit. 
Bernsteins Argument ist hübsch und kurz, aber nur vermeintlich logisch-elementar: Er 
verwendet versteckt das Auswahlaxiom. (Vgl. hierzu auch [Schoenflies 1913, p. 47f.1, 
wo das Auswahlaxiom immer noch versteckt eingeht.) Dessen ungeachtet ist der Satz 
von Interesse, insbesondere aufgrund der binomischen Gleichung 

(++) 1 (M + N)21 = M2 +{0,1}xMxN+N2 1. 
Setzt man nämlich den Multiplikationssatz voraus, so kann man das Quadrat links in 
(++) weglassen, und die Gleichung zeigt dann insbesondere IM x N 1 < 1 M + N 1 . Die 
Ungleichung IM + N 1 < IM x N 1 ist für Mengen mit mehr als einem Element trivial, 
und mit Cantor-Bernstein haben wir also 1 M x N 1 = M + N 1 aus dem Multipliaktions-
satz abgeleitet. Aus (+) folgt dann die Vergleichbarkeit von M und N. Soweit findet sich 
alles bereits in der Dissertation von Bernstein 1901. Leider wird aber das Auswahlaxiom 
im Beweis von (+) verwendet. Es ist aber aus dem Beweis von (+) abzulesen, daß das 
Auswahlaxiom nicht gebraucht wird, wenn man eine der beiden Mengen M und N in 
(+) als wohlordenbar voraussetzt. Gegeben den allgemeinen Multiplikationssatz und 
eine beliebige Menge M, wählt Tarski nun als N eine Wohlordnung, die sich nicht in M 
injektiv einbetten läßt. Daß eine derart lange Wohlordnung immer existiert, hat Fried-
rich Hartogs 1915 innerhalb der Zermeloschen Mengenlehre ohne Auswahlaxiom (und 
insbesondere ohne Ersetzungsaxiom) gezeigt [Hartogs 1915]. Nun läuft Bernsteins Ar- 
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gument ohne Auswahlaxiom durch, und wir erhalten 1 MI < IN 1 oder IN 1 < IM 1. Letz-
teres ist nach Wahl von N ausgeschlossen, also gilt IM 1 < IN 1. Somit ist M wohlorden-
bar, da sich M in eine wohlordenbare Menge einbetten läßt. Dieses Argument liefert al-
so den Wohlordnungssatz aus dem Multiplikationssatz ohne irgendeine Verwendung 
des Auswahlaxioms! 

Tarski stellte dann die sich aufdrängende Frage, ob der Additionssatz ebenfalls zum 
Auswahlaxiom äquivalent ist. Dies ist jedoch nicht der Fall: Der Additionssatz ist echt 
schwächer als das Auswahlaxiom (aber dennoch echt stärker als eine Mengenlehre ganz 
ohne Auswahlaxiom). Beweise dieses Resultats wurden unabhängig voneinander und 
mit verschiedenen Methoden von Gershon Sageev sowie Dan Halpern und Paul Ho-
ward gegeben [Segeev 1975, Halpern / Howard 19761. Es gibt eine Fülle verwandter Re-
sultate, siehe hierzu z. B. [Jech 19731 oder [Halbeisen / Shelah 2001]. 

15 Max Zorn: Ein wohlordnungsfreier Beweis (1944) 

Max Zorn hat 1935 sein heute nach ihm benanntes Lemma veröffentlicht fortan fester 
Bestandteil im Werkzeugkoffer des Algebraikers -‚ und es 1944 für einen Beweis des 
Additions- und Multiplikationssatzes verwendet [Zorn 1944]. 

Der Begriff der Wohlordnung kann so ganz vermieden werden, auf Kosten der An-
schaulichkeit und feinen Struktur des Arguments. Der Beweis selbst beruht auf einer 
doppelten Anwendung des Zornschen Lemmas. Zunächst wird der Additionssatz ge-
zeigt (oder bequemer eine verschärfte Form wie etwa 1 N x MI = 1 Mi für unendliche 
Mengen M, aus der der Additionssatz sofort folgt). Anschließend gewinnt man den 
Multiplikationssatz, unter Verwendung der Zerlegung von (X U Y) 2  in die vier Teile 
X x X, Y x Y, X x Y und Y x X. Beide Schritte benutzen das Zornsche Lemma. Die 
zugrundeliegenden partiellen Ordnungen sind jeweils kanonisch. Sparsamkeit ist hier 
nicht recht am Ort, und so spielt es keine Rolle, daß neben dem Satz von Cantor-Bern-
stein auch noch der Vergleichbarkeitssatz verwendet wird. 

Bemerkenswert ist schließlich, daß die Möglichkeit eines wohlordnungsfreien Beweises in die 
Standardliteratur der Mengenlehre allenfalls marginal eingegangen ist [z. B. in Levy 1979, p. 163]. 
Die relative Unzugänglichkeit der Arbeit [Zorn 1944] mag eine Rolle gespielt haben. Hauptursache 
scheint aber die gut begründbare Ansicht zu sein, daß der Beweis von Zorn zu grob ist, um den 
Feinheiten der Gleichung IM 2  1 = IM 1 gerecht zu werden. 
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Der Lebenslauf 

Am 23. Juli 2002 verstarb Prof. Dr. Elmar Thoma, eme-
ritierter Ordinarius für Mathematik an der Technischen 
Universität München im Alter von 75 Jahren. 

Elmar Thoma wurde am 10. September 1926 in Ba-
den-Baden geboren, wuchs jedoch in Neumarkt in der 
Oberpfalz auf und besuchte das Gymnasium in Nürn-
berg. Nach dem Abitur studierte er von 1946 an Mathe-
matik und Physik an den Universitäten Regensburg und 
Erlangen und legte 1951 in Erlangen die erste Staatsprü-
fung für das Lehramt an Gymnasien ab. Bereits im Jahre 
1952 erfolgte die Promotion bei Otto Haupt in Erlangen. 
Nach einer Industrietätigkeit bei der Firma Siemens in 
Erlangen war er ab 1954 wissenschaftlicher Assistent bei 
Georg Aumann an der Ludwig-Maximilians-Universität 

München, wo er sich 1957 für das Fach Mathematik habilitierte. Daran schloß sich ein 
zweijähriger Aufenthalt als Gastprofessor in den USA an, und zwar an der University 
of Washington in Seattle. 

Nach drei Jahren an der Universität Heidelberg als wissenschaftlicher Rat und au-
ßerplanmäßiger Professor folgte Thoma 1964 einem Ruf auf einen Lehrstuhl für Ma-
thematik an der Westfälischen Wilhelms-Universität Münster. In unruhigen und 
schwierigen Zeiten war er dort mit 42 Jahren Dekan der großen Mathematisch-Natur-
wissenschaftlichen Fakultät und wesentlich beteiligt am beginnenden Ausbau der Ma-
thematik. Obwohl er sich in Münster ausnehmend wohl fühlte, war doch die Verbun-
denheit mit der bayerischen Heimat zu stark, um einen ergangenen Ruf an die Tech-
nische Universität München abzulehnen. 

Dort war Elmar Thoma als Nachfolger von Robert Sauer von 1970 bis zu seiner 
Emeritierung im Jahre 1994 Inhaber des Lehrstuhls für Höhere Mathematik und Ana-
lytische Mechanik. Dazu kamen Amter in der akademischen Selbstverwaltung. Er war 
1973/74 Dekan der damals noch großen Fakultät für Allgemeine Wissenschaften, später 
Geschäftsführender Direktor des Mathematischen Instituts und viele Jahre Vorsitzen-
der des Prüfungsausschusses für Mathematiker. Bis kurz vor seiner Emeritierung war er 
Beauftragter für die Fachbereichsbibliothek. 

Uber zehn Jahre lang bis 1990 fungierte Elmar Thoma als einer der Herausgeber der 
Mathematischen Annalen, seit 1969 war er gemeinsam mit Horst Leptin Organisator 
der im zweijährigen Turnus stattfindenden internationalen Tagung ‚Harmonische Ana-
lyse und Darstellungstheorie topologischer Gruppen' im Mathematischen Forschungs-
institut Oberwolfach. Er war Mitveranstalter der gemeinsamen Arbeitstagung über 
Gruppen und topologische Gruppen der Universitäten Erlangen, Freiburg, Trient, 
Technische Universität München und Würzburg. Aus diesen und anderen Aktivitäten 
entstanden zahlreiche Kontakte zu Wissenschaftlern in vielen verschiedenen Ländern. 

Elmar Thoma hat sich nie als spezialisierter Vertreter seines Faches Mathematik 
verstanden, seine Interessen waren vielseitig, von der Physik und Chemie bis hin zur Ge-
schichte, insbesondere der bayerischen Geschichte. 
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Thoma verstand es, seine Begeisterung für Mathematik auf die Hörer seiner Vor-
lesungen zu übertragen. Seine Studenten schätzten seinen lebendigen Vortragsstil. In 
Münster etwa versammelte sich alsbald eine ansehnliche Zahl von Schülern um ihn. Für 
diese war er jederzeit ansprechbar, und auf Grund seiner ausgeprägten Diskutierfreu-
digkeit und seiner Ideen ein anregender und hilfreicher Gesprächspartner. Seinen Mit-
arbeitern gewährte er bei ihrer Tätigkeit ein Maximum an Freiheit, deren fachliche Ent-
wicklung stand für Thoma im Vordergrund. Der Erfolg des akademischen Lehrers El-
mar Thoma wird insbesondere auch dadurch eindrucksvoll dokumentiert, daß 
immerhin neun seiner Doktoranden im Universitätsbereich verblieben sind. 

Zum wissenschaftlichen Werk 

Das Forschungsgebiet von Elmar Thoma war die Darstellungstheorie und Harmo-
nische Analysis lokalkompakter, insbesondere diskreter, Gruppen. Während dieses Ge-
biet, in das Gruppentheorie, Topologie, Funktionalanalysis, Maß- und Integrations-
theorie u.a. einfließen, Ende der 50er Jahre etwa auf Grund der fundamentalen Arbei-
ten von Mackey in den USA bereits entscheidende Fortschritte gemacht hatte, wartete 
es auf seine Erschließung und Wiederbelebung im Nachkriegsdeutschland. 

Gewiß hat der Aufenthalt in Seattle und das durch Edwin Hewitt geprägte mathe-
matische Umfeld Thoma darin bestätigt, Harmonische Analysis zu betreiben. Er hat je-
doch wiederholt erwähnt, daß während seiner Tätigkeit bei Siemens Fragen theoreti-
scher Physiker zur Darstellungstheorie klassischer Gruppen ihn zur Beschäftigung mit 
Darstellungstheorie lokalkompakter Gruppen angeregt hätten. 

Ein Kernstück, auf das hier näher eingegangen werden soll, des wissenschaftlichen 
Werkes von Thoma war die Charakterisierung der diskreten Gruppen vom Typ 1 [1, 6], 
die in der internationalen Fachwelt allergrößtes Aufsehen erregte. Grob gesprochen 
sind die lokalkompakten Gruppen vom Typ 1 diejenigen, deren irreduzible Darstellun-
gen man (zumindest prinzipiell) bestimmen kann. Thomas Ergebnis, das eine Ver-
mutung von Kaplansky [Ka] bestätigt, besagt, daß eine diskrete Gruppe genau dann 
vom Typ list, wenn sie einen abelschen Normalteiler von endlichem Index besitzt. Ins-
besondere sind also dann nicht nur alle irreduziblen Darstellungen endlich-dimensional, 
sondern die Darstellungsgrade sind sogar beschränkt durch diesen Index. Dieses Resul-
tat stellt eines der tiefsten in der Darstellungstheorie diskreter Gruppen überhaupt dar 
und war in der Folge Anlaß für viele weitere Untersuchungen anderer Mathematiker. 

Ein Beispiel hierfür ist die Mooresche Beschreibung aller derjenigen lokalkompak-
ten Gruppen, deren irreduzible Darstellungen sämtlich endlich dimensional sind [Mo]. 
Es war naheliegend, daß im Anschluß an Thomas Satz die Frage gestellt wurde, ob eine 
diskrete Gruppe bereits dann einen abelschen Normalteiler von endlichem Index besit-
zen muß, falls ihre reguläre Darstellung vom Typ list. Dies wurde in [Ki] bejaht. Später 
schlossen sich weitere Verallgemeinerungen an [K2, Sc, Ti, T2, KS], wie etwa: Explizite 
Beschreibung der maximalen Typ 1-Projektion in der von Neumann-Algebra der regu-
lären Darstellung, Erweiterung der Resultate auf eine größere Klasse als die der diskre-
ten Gruppen und auf Darstellungen, die im Unendlichen verschwinden. 
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Um das Problem der Charakterisierung der diskreten Gruppen vom Typ 1 angehen 
zu können, entwickelte Thoma eine Theorie der sogenannten Charaktere [1,2]. Für eine 
(diskrete) Gruppe G bezeichne K(G) die Menge aller positiv-definiten Funktionen 
auf G mit (e) = 1 und p(y'xy) = (x) für alle x,y e G. Die Menge K(G) ist konvex 
und, versehen mit der Topologie der punktweisen Konvergenz, kompakt. Die Elemente 
der Menge E(G) aller Extremalpunkte von K(G) heißen Charaktere. Im abelschen Fall 
sind dies also gerade die Elemente der dualen Gruppe von G, im Falle einer endlichen 
Gruppe G die normierten Spuren irreduzibler Darstellungen von G. Vermöge der Gel.. 
fand-Naimark-Segal-Konstruktion definiert jedes e E(G) eine sogenannte Faktor-
darstellung 7r 1,von G von endlichem Typ, und eine solche ist nur dann vom Typ 1, wenn 
sie endlich-dimensional ist. Die Essenz des Beweises des Thomaschen Satzes ist also zu 
zeigen, daß die Gruppe G einen abelsche Untergruppe von endlichem Index besitzen 
muß, wenn alle diese r,, cp e E(G), endlich-dimensional sind. 

Es war offenkundig, daß zumindest für diskrete Gruppen G der Raum E(G) ein 
nützliches duales Objekt darstellt. Für klassenfinite Gruppen etwa gibt die Zuordnung 

ir, Anlaß zu einem Homöomorphismus zwischen E(G) und dem Raum der pri-
mitiven Ideale der C*.G ruppena lgebra  von G. Gleiches gilt für endlich-erzeugte nil-
potente Gruppen, wenn man E(G) mit der Seitentopologie versieht. 

Thoma hat, wohl auch seiner Neigung zu konkreten Berechnungen folgend, für die 
Gruppe S. aller endlichen Permutationen der Menge der natürlichen Zahlen E(S) 
bestimmt [3]. Der Beweis war tiefsinnig und benutzte Aussagen über ganze Funktionen. 
Die Arbeit [3] initiierte ein immenses Interesse an der Gruppe S. und anderer diskreter 
Gruppen wie GL(cx, F) für endliche Körper F [Sk]. Unter verschiedenen Gesichtspunk-
ten wurden die Charaktere der S von Kerov und Vershik studiert [KV, VK]. Insbeson-
dere haben diese einen Beweis gefunden, der die Approximation der Charaktere der S. 
durch die Charaktere der endlichen symmetrischen Gruppen benutzt. Einen weiteren 
Beweis hat Okounkov, Ideen von Olshanskii fortentwickelnd, gegeben [Ok]. Große Se-
rien irreduzibler Darstellungen der S. wurden von mehreren Autoren, etwa Hirai [Hi], 
konstruiert. 
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Beschreibende Statistik - Wahrscheinlichkeitsrechnung - Schätzen - Testen 

von Hypothesen - Anhang: Ergänzungen und Beweise 

DAS BUCH 	-- - 

Eine Einführung in die Fragestellungen und Methoden der Wahrscheinlich-

keitsrechnung und Statistik (kurz Stochastik) sowohl für Studierende, die 

solche Techniken in ihrem Fach benötigen, als auch für Lehrer, die sich für 

den Unterricht mit den nötigen fachlichen Grundlagen vertraut machen 

wollen. 

Der Text hat einen besonderen Aufbau - als Trilogie ist er in Beispiele, 

Fakten und Erläuterungen aufgeteilt. 

Was überall in der Mathematik gilt, ist noch ausgeprägter in der Stochas-

tik: Es geht nichts über markante Beispiele, die geeignet sind, die Anstren-

gungen in der Theorie zu rechtfertigen. Um dem Leser dabei möglichst 

viele Freiheiten zu geben, ist der Text durchgehend parallel geführt: links 

die Beispiele, rechts die Fakten. 
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O.Aubert,RKornprobst 	G. ALJIJBti, P. Kornprobst 

Mathematical 
Mathematical 

Problems in Image Problems in 
Image Processing, Processing, Partial 
Partial Differential Differential Equations 

Equations and 
the Caiculus and the Calculus 
ofVariations of Variations 

AppI. Math. 

Sciences 147 

Berlin, u. a., Springer, 2002, 286 5., € 74,95 

Dies ist ein wunderbares Buch. Der Weg zu 
dieser Erkenntnis war allerdings etwas län-
ger. 

Beim Lesen des Titels dieses Buches wur-
den meine Erwartungen sehr hoch ge-
schraubt: 

Endlich, das längst überfällige Buch, das 
die Grundlagen der mathematischen Bildver-
arbeitung knapp und zugleich umfassend 
darstellt und die faszinierende Entwicklung 
der letzten Jahre dieses vergleichsweise neuen 
Wissenschaftsbereichs würdigt. Ein derarti-
ges Buch würde eine seit langem beobachtete 
Lücke füllen, die jeder zu spüren bekommt, 
der sich bei der Vorbereitung auf eine Vor-
lesung zu diesem Thema schon einmal über 
die unzureichende Literaturlage geärgert hat. 

Auch das sehr anregend geschriebene 
Vorwort von Olivier Faugeras erhöht noch 
die Erwartungen an Inhalt und Lesbarkeit 
des Textes: er empfiehlt dieses Buch auch 
der Computer Vision Gemeinde, die eher in 
der Informatik zu Hause ist. Diese Empfeh-
lung ist allerdings mit der Warnung ver-
sehen, dass diese Leserschaft vielleicht nicht 
alle Details der Beweise verstehen aber 
zumindest doch auch schon beim ersten Le-
sen die wesentlichen Ideen erfassen könne. 

Dieser Satz ist wohl dem verständlichen 
aber in diesem Fall irreführenden Bestreben 
des Verlags, eine möglichst breite Leserschaft 
anzusprechen, geschuldet. Bereits der Unter-
titel des Buches ‚partial differential equations 
and the caiculus ofvariations' hätte den auf- 

merksamen Betrachter mit etwas Vorsicht 
auf das Kommende ausstatten können. 

Dieses Buch konzentriert sich aussch ließ-
lich auf den Themeribereich des Untertitels, 
der in den vergangenen Jahren einige der be-
deutendsten neuen Beiträge zur mathemati-
schen Theorie der Bildverarbeitung geleistet 
hat. Ein vollständiges Buch zur Mathemati-
schen Bildverarbeitung ist es allerdings 
nicht, zentrale Themen aus Anwendersicht 
(Image Fusion, Pattern recognition, Klassi-
fikation, etc.) oder einige der wichtigsten 
mathematischen Methoden (Abtasttheorie 
und die Theorie diskreter Filter, Wavelet 
Analysis) fehlen ebenso wie alle elementaren 
Basismethoden (Morphologische Verfahren, 
Histogramm-Methoden, u.v.a.). 

Und noch eine Einschränkung sollte hin-
zugefügt werden: selbst der Untertitel ist 
noch zu weit gefasst. Die Autoren beschrei-
ben im wesentlichen die Ergebnisse der fran-
zösischen Schule. Den Ergebnissen von Wei-
ckert werden ganze 4 Seiten gewidmet, der 
Rudin-Osher-Ansatz und seine weitreichen-
den Weiterentwicklungen werden auf 2 Sei-
ten abgehandelt, die fruchtbaren Verbindun-
gen zu Operatorgleichungen und inversen 
Problemen werden in Kapitel 3.2 zwar ange-
sprochen, die schönen Ergebnisse von Scher-
zer fehlen allerdings völlig ebenso wie die 
sehr gut strukturierten und anschaulichen 
Arbeiten von Keeling. Auch die mathemati-
schen Probleme der numerischen Umset-
zung werden im Anhang kurz und im Sinne 
einer groben Programmieranleitung gut ver-
ständlich beschrieben, die mathematischen 
Aspekte dieser Fragestellungen werden 
kaum berührt. 

Nachdem diese leichte Verärgerung über 
den irreführenden Titel verflogen ist, erkennt 
man allerdings schnell, dass dies ein sehr 
schönes und äußerst sorgfältig geschriebenes 
Buch ist. Es gibt meines Erachtens kein ver-
gleichbares Buch, das die Ergebnisse der 
französischen Schule zu diesem Thema für 
ein mathematisches Publikum derart kom-
petent und umfassend darstellt. 

Die Voraussetzungen, die der Leser oder 
ein Student höheren Semesters, der eine sich 
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an diesem Buch orientierende Vorlesung be-
sucht, mitbringen sollte, sind allerdings nicht 
gering. Grundkenntnisse der nichtlinearen 
Funktionalanalysis und ein solides Grund-
wissen über die Existenzheorie elliptischer 
und parabolischer Probleme sowie solide 
Kenntnisse der Theorie von Funktionenräu-
men werden vorausgesetzt. 

Nun aber endlich zum Inhalt des Buchs: 
Die Autoren sind im Grunde genommen 
strenge Analytiker, dementsprechend be-
ginnt das Buch in Kapitel 2 mit einem knapp 
40-seitigen Kapitel Mathematical Prelimina-
ries. Hier werden u. a. einige Ergebnisse der 
nichtlinearen Funktionalanalysis und Varia-
tionsrechnung inklusive der Gamma-Kon-
vergenz, Eigenschaften des BV-Raumes so-
wie einige Ergebnisse der Lösungstheorie 
von PDE'S (Eikonal-Gleichung, Viskositäts-
lösungen) zusammengefasst. 

Dieses Kapitel wäre ohne die vorangestell-
te 20-seitige, hervorragende Einleitung mit 
einem detaillierten ‚Plan' des Buchs sehr ab-
schreckend. Dieser in Kapitel 1.4 vorgestell-
te Plan hat auf mich wie ein Ruhepol beim 
Lesen des Buchs gewirkt. Man kann immer 
wieder zu diesem Kapitel zurückkehren, um 
z. B. die Einordnung des gerade Gelesenen in 
dem Gesamtzusammenhang zu erkennen 
oder um einen gewagten Sprung über einige 
Kapitel des Buchs vorzubereiten, oder auch 
nur, um die wesentlichen Aspekte dieses Bu-
ches nochmals in komprimierter Form zu 
überfliegen. 

Die nachfolgenden Kapitel heißen Image 
restoration, segmentation problem, und other 
challenging applications. D. h. sie sind nach 
den Anwendungsaspekten geordnet, im 
Kern sind sie aber mathematisch aufgebaut: 
image restoration steht für Energie-Funk-
tionale und nicht- lineare Diffusion, Seg-
mentation für mean curvature flow, Mum-
ford-Shaw-Funktionale und ‚ Level-Set Me-
thoden. 

Der abschließende Anhang zu Finiten Dif-
ferenzen wird einen Numeriker nicht zufrie-
den stellen. Er ist aber gut geeignet, um Stu-
denten einer Vorlesung im Hauptstudium ei-
ne gut verständliche Anleitung für eigene,  

einfache Simulationsrechnungen zu geben, 
ohne vorher eine komplette Veranstaltung 
Numerik partieller Differentialgleichungen 
besuchen zu müssen. 

Es folgen noch drei kurze Bemerkungen 
zum Inhalt des Buches. 

1. Als einen typischen Testfall für die Les-
barkeit des Buche habe ich versucht, auf kür-
zestem Weg den berühmten Beweis von 
Catte, Lions et al. zur Existenz einer Lösung 
des regularisierten Perona-Malik-Modells 
nachzuvollziehen (5. 111 ff). Zwar wäre hier-
für ein Einstieg über das vorhergehende Ka-
pitel (nonlinear diffusion) leichter, aber auch 
so lässt sich dieses zentrale Ergebnis sehr gut 
verstehen. 

2. Diese Buch ist außergewöhnlich sorgfäl-
tig aufgebaut und äußerst gut geschrieben. 
Besonders der Aufbau des Buches ist positiv 
hervorzuheben. Der Leser wird über mehre-
re Stufen (Detailed Plan Kapitel 1.4, mathe-
matical preliminaries Kapitel 2 und die nach-
folgenden ausführlichen Kapitel zu den ein-
zelnen Spezialthemen) angenehm an die The-
matik heranführt. Außerdem muss die sehr 
sorgfältige Gestaltung des Buches gelobt 
werden, es ist eine wirkliche Freude dieses 
Buch in die Hand zu nehmen! 

3. Der Wille der Autoren zur Abstraktion 
ist stark ausgeprägt. Gelegentlich hätte die 
Beschränkung auf konkrete Funktionen-
räume die Lesbarkeit erhöht. Von dem Leser 
wird ein selbstverständlicher Umgang mit 
z. B. der BV w*Topologie  erwartet, den 
z. B. der Referent dieses Buches nicht vor-
zuweisen hat. 

Wer wird dieses Buch lesen? Dieses Buch 
ist meines Erachtens ein Muss für jeden Ma-
thematiker, der sich mit Bildverarbeitung be-
schäftigt. Das Maß an notwendiger abstrak-
ter Analysis ist für diesen Leserkreis sehr gut 
gewählt und notwendig, wenn man in knap-
per Form die zentralen Ergebnisse dieses 
Forschungsgebietes vorstellen will. 

Ebenso hervorragend geeignet ist das 
Buch für einen Analytiker, der sich diesem 
Gebiet von der theoretischen Seite nähern 
möchte. Er wird mit der analytischen Präzi-
sion dieses Buches mehr als zufrieden sein 
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und hoffentlich mit einer inneren Befrie-
digung und einigem Erstaunen erkennen, 
welche Beiträge die angewandte Analysis zu 
der Entwicklung dieses Anwendungsgebiets 
geleistet hat. 

Zu guter Letzt sollte noch betont werden, 
dass die zahlreichen, perfekt illustrierten und 
dabei anspruchsvollen Beispiele dieses Bu-
ches ein optischer Genuss sind und dieses 
Buch für Mathematiker aller Ausrichtungen 
und Spielarten interessant macht. 

Bremen 	 P. Maaß 

J. L. Nzreth 

Differentiable 
J. L. Nazareth Optimizationand 

Equation Solving, Differentiable Optimi- 
A'freatiseonAlgo- zation and Equation rithnuc Science and 

theKarmarkar Solving, A Treatise on 
Revolution Algorithmic Science 

and the Karmarkar 

Revolution 

Berlin u. a., Springer, 2003, 256 5., € 79,95 

Die vorliegende Monographie beschäftigt 
sich mit einigen ausgewählten Verfahren zur 
Lösung von differenzierbaren Optimie-
rungsproblemen und nichtlinearen Glei-
chungssystemen. Das Buch umfasst 15 Kapi-
tel, die sich hauptsächlich mit der unrestrin-
gierten Optimierung und den linearen Pro-
grammen auseinandersetzen. Es enthält so 
gut wie keine Theoreme und auch keine 
Ubungsaufgaben, ist allerdings auch nicht 
als Lehrbuch konzipiert. Vielmehr erwartet 
der Autor bereits entsprechende Grund-
kenntnisse aus dem Bereich der algorith-
mischen Optimierung. 

Die Auswahl des Stoffes in den 15 Kapi-
teln hängt sehr stark von den persönlichen 
Forschungsinteressen des Autors ab. Im We-
sentlichen werden hier die eigenen For-
schungsleistungen des Autors zusammen- 

hängend dargestellt. Aus diesem Grund feh-
len wohl auch eine Reihe von wichtigen Teil-
gebieten der differenzierbaren Optimierung. 
Beispielsweise wird die nichtlineare restrin-
gierte Optimierung sträflich vernachlässigt, 
obwohl auch hier durch die sonst ausführlich 
vertretenen Inneren-Punkte-Methoden we-
sentliche Neuerungen stattgefunden haben. 

Die einzelnen Kapitel beschäftigen sich 
meistens mit einem bestimmten Verfahren 
oder einer Klasse von Verfahren. Dabei han-
delt es sich überwiegend um bekannte Me-
thoden aus dem Bereich der Optimierung. 
Diese Verfahren werden entweder nur ange-
geben oder, in einigen Fällen, auch hergelei-
tet. Danach werden mögliche Varianten be-
sprochen, wie man sie in der Originallitera-
tur noch nicht findet. Somit enthält das Buch 
eine Reihe von Ideen, die allerdings nicht 
weiter ausgeführt werden. 

Ein Beispiel mag die Vorgehensweise bes-
ser illustrieren. Wir betrachten dazu das Ka-
pitel 5, welches sich mit den CG-Verfahren 
beschäftigt. Hier wird zunächst an das linea-
re CG-Verfahren zur Lösung eines linearen 
Gleichungssystems mit positiv definiter Ko-
effizientenmatrix erinnert. Anschließend 
folgt eine Wiederholung der wichtigsten CG-
Verfahren zur Lösung des nichtlinearen Op -
timierungsproblems 

minimiere f(x) 

mit einer glatten Funktionf : JR - JR. Die-
se sind meist von der Gestalt 

Vj :=xk+ckdk, 	k=0,l.... 

für eine Schrittweite 0 k > 0 und eine Such-
richtung dk, die bei den nichtlinearen CG-
Verfahren ebenfalls einer Rekursion der Ge-
stalt 

dk+I := — Vf(xk+!) + ßsdk 

genügt, wobei unterschiedliche Vorschriften 
für 3k  e R verschiedene Verfahren liefern. 
Zwei bekannte Vertreter sind 

(gJ)Tgj  

3k 	(g)Tg 	(Fletcher-Reeves) 
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und 

(gt+i Y [3k 	 (Hestenes-Stiefel) (g )Ty   

mitgk := —Vf(xk) undyk gk+I - g. Der 
Autor schlägt nun vor, die neue Formel 

k(g+tgk+I) + (1 - k)(g[+tyk) 

[L(g[g) + (1 - bLk)(dYk) 

für zwei Parameter Ak 3 /'k EE [0, 1] zu unter-
suchen. Konkrete Vorschläge für eine mög-
lichst gute Wahl dieser Parameter finden sich 
nicht, und die zugehörigen numerischen Re-
sultate sind ebenfalls nicht sehr aufschluss-
reich. 

Diese Vorgehensweise ist typisch für die 
meisten Kapitel. Wer dies mag, dem wird 
das Buch eine Reihe von ähnlichen Ideen ge-
ben. Für alle anderen ist die vorliegende Mo-
nographie eher weniger geeignet. 

Würzburg 	 C. Kanzow 

1. EIhkoff nd Y. Re, 

1. Elshakoff and Y. Ren 
Finite Element 

Finite Element methods for 
Structureswith methods for Struc- 

Large Stochastic tures witil Large 
Variations 

Stochastic Variations 

Oxf o rd Texts in Ap pH ed 
and Engeneering 
Mathemtics 

Oxford University Press, 2003, 260 S., £ 45,- 

This monograph is written by engineers for 
engineers, though applied mathematicians 
may find it an interesting source of informa-
tion on the types ofproblems that arise in en-
gineering and how engineers tackle them. 
There is an extensive list of over 300 refer-
ences and the authors provide many useful 
historical comments about the development 
of the subject, which, loosely speaking, is 

about stochastic finite element methods, 
although, strictly speaking, the finite ele-
ments considered are deterministic and the 
parameters in the problems being treated are 
random or stochastic. The authors thus use 
the expression finite element methods for 
stochastic problems, which they abbreviate 
FEMSP. They concentrate on the mean and 
covariance analysis of displacements in 
structures, restricting attention to linear and 
static problems. Their goal is to introduce 
non-perturbative methods, which allow 
large stochastic variations to be handled. 

There are seven chapters, an epilogue, ele-
yen short appendices as well as an extensive 
bibliography, author index and subject in-
dex. Chapter 1 briefly reviews the finite ele-
ment formulation for beam bending and pla-
nar stress/strain analysis. The finite element 
methods for stochastic structures (FEMSS) 
is reviewed in Chapter 2, where traditional 
perturbation methods involving series ex-
pansions as weil as homogeneous chaos are 
discussed and improvements suggested, 
which are then illustrated and compared in a 
very simple but instructive example. Chapter 
3 treats FEMSS when an exact inverse ofthe 
stiffness matrix is available and Chapter 4 in-
troduces exact solutions of stochastic shear 
and Bernoulli-Euler beams as benchmark 
problems. Variational principle-based FEM 
for stochastic beams, including stochastic 
versions of Bubunov-Galerkin and Ray-
leigh-Ritz methods, are discussed in Chapter 
5 and element-level flexibility-based FEM 
for stochastic structures in Chapter 6. Final-
ly, Chapter 7 provides a briefcomparison of 
stochastic and interval matrix methods for 
the problems under consideration. 

The monograph is very welt written, the 
material is clearly explained and is illumi-
nated through many examples. The numer-
ous quotations from the cited literature 
further enhance its readability. 

Frankfurt 	 P. Kloeden 
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Der Zahlen 
gigantische Schatten 
Mathematik im Zeichen der Zeit 
2., verb. Aufl. 2005. 200 S. Geb. 
EUR 39,90 
ISBN 3-528-13211-6 

INHALT 

Pythagoras: Zahl und Symbol - Bach: Zahl und Musik - Hofmannsthal: Zahl 

und Zeit - Descartes: Zahl und Raum - Leibniz: Zahl und Logik - Laplace: 

Zahl und Politik - Bohr: Zahl und Materie - Pascal: Zahl und Geist 

DAS BUCH 

Wie sehr Zahlen die vielfältigen Aspekte des Daseins durchdringen, ist 
wenig bekannt, und kaum jemand scheint bisher ermessen zu haben, wie 

unfassbar weit der Zahlen lange Schatten reichen. Nicht was die Zahlen 

sind, wird hier erzählt, sondern was sie bedeuten. 

Dass ein halbes Jahr nach Erscheinen der ersten Auflage bereits der Druck 
einer zweiten Auflage erfolgt, belegt die These, dass viele Menschen 
Mathematik vor allem als wesentlichen Bestandteil unserer Kultur empfin-

den und darüber mehr erfahren wollen. In der zweiten Auflage wurden eini-
ge Druckfehler korrigiert. 

Die Anregung, das Buch durch einen Index zu ergänzen, hat der Verlag auf -
gegriffen; dadurch hat das Buch eine wertvolle Abrundung gewonnen. 

IM 




