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Vorwort 

Dieses Heft umfasst zwei Übersichtsartikel. Die Arbeit von G. Faltings befasst sich mit 
der Theorie der Vektorbündel auf algebraischen Kurven, die in der Riemann'schen 
Thetafunktion ihre klassischen Wurzeln hat. Insbesondere werden die klassifizierenden 
Räume (Modulräume) von Vektorbündeln behandelt. Dies führt auch auf die Verlinde-
formel, die in der Quantenfeldtheorie von Bedeutung ist. Dieser Aufsatz ist eine Aus-
arbeitung des Hauptvortrags des Verfassers bei der DMV Jahrestagung in Bonn 2006. 

Der Beitrag von M. Plum steht an der Grenze zwischen angewandter und reiner 
Mathematik. Hier werden Randwertprobleme für semilineare elliptische Differential-
gleichungen behandelt. Die Frage nach der Existenz von Lösungen ist dabei ein schwie-
riges Problem. Der Autor untersucht in dieser Arbeit die interessante Frage, inwieweit 
die Existenz guter numerischer Näherungslösungen für Existenzbeweise herangezogen 
werden kann. Dies eröffnet die Möglichkeiten, Situationen zu studieren, in denen die 
klassischen analytischen Methoden bisher noch nicht zum Ziel geführt haben. 

Wie stets enthält auch dieses Heft eine Reihe von aktuellen Buchbesprechungen. 

K. Hulek 
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Thetafunktionen auf Modulräumen 
von Vektorbündeln 
Gerd Faltings 

Abstract 

• Mathematics Subject Ciassification: 14H60 
• Keywords and Phrases: Bundles on curves, moduli spaces 

Thetafunctions are sections of ample line-bundles on moduli spaces. For moduli of 
G-bundles On curves (G simply connected of type A, D, E) we compute the dimension 
of the space of sections for the minimal ample line-bundle. We derive the existence of 
canonical divisor whose geometric interpretation remains open. 

Eingegangen: 08.01.2007 

Gerd Faltings, Max-Planck-Institut für Mathematik, Vivatsgasse 7, 
D-53111 Bonn, fa1tingsmpim-bonn.mpg.de  

DMV 
JAHRESBERICHT_ 

DER DMV 
© B. G. Tee bner 2008 
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1 Einleitung 

Die klassische Riemann'sche Thetafunktion beschreibt einen Divisor auf dem Modul-
raum der Geradenbündel auf einer Kurve (oder einer kompakten Riemann'schen Flä-
che). Sie wird durch eine konvergente Fourierreihe definiert, besitzt aber auch eine al-
gebraische Interpretation als Determinante der Kohomologie. Nämlich die Nullstellen 
von Theta sind genau die Geradenbündel (vom geeigneten Grad), welche nicht triviale 
Kohomologie besitzen. „Nicht triviale Kohomologie" heißt in diesem Falle die Existenz 
globaler Schnitte. Ein klassischer Satz von Riemann besagt sogar, dass die Dimension 
des Raumes dieser Schnitte gleich der Verschwindungsordnung von Theta ist. 

Verallgemeinerungen davon erhält man, wenn man die multiplikative Gruppe EI,,, 
durch andere algebraische Gruppen G ersetzt und G-Bündel über der Kurve betrachtet. 
Zum Beispiel liefert G = GL, Vektorbündel vom Rang r, G = SL r  Vektorbündel mit 
trivialer Determinante, G = SO. Vektorbündel mit trivialer Determinante und sym-
metrischer Bilinearform. Im Folgenden beschränken wir uns auf halbeinfache einfach 
zusammenhängende Gruppen wie zum Beispiel SL r , die symplektische Gruppe SP2r , 

oder die Spingruppe Spjfl r . Spin r-Bündel sind Vektorbündel vom Rang r, mit trivialer 
Determinante und symmetrischem Produkt, für die ein „Spin-Bündel" existiert. Letzte-
res kann präzise mit Hilfe der Clifford-Algebra definiert werden. Wir zeigen, dass für 
solche Gruppen G die Picardgruppe des Modulraums unendlich zyklisch (isomorph zu 
71) ist. Verallgemeinerte Thetafunktionen sind dann globale Schnitte dieser Geraden-
bündel. Die Dimension des Vektorraums der Schnitte wird durch die Verlinde-Formel 
gegeben. Das Ergebnis ist besonders einfach für Gruppen mit nur einer Wurzellänge 
(Typ A,D,E) und den positiven Erzeuger der Picardgruppe. Offen bleibt aber die geo-
metrische Interpretation der Schnitte. 

2 Modulräume 

Der Modulraum der Vektorbündel auf einer Kurve ist ein klassisches Untersuchungs-
objekt der Theorie. Sei (je nach Geschmack) C eine kompakte Riemann'sche Fläche 
oder eine glatte projektive geometrisch zusammenhängende Kurve über einem Körper 
k. Ein Vektorbündel e vom Rang r auf C ist eine lokal freie Garbe vom Rang r über der 
Strukturgarbe 0c•  Seine Determinante det(E) = ist ein Geradenbündel und hat ei-
nen Grad d. Ein Modulraum Mr d für Vektorbündel mit Invarianten (r, d) ist ein Sche-
ma (oder komplexe Mannigfaltigkeit) M = Mr d zusammen mit einem Vektorbündel 

M auf dem Produkt C x M, so dass 

• S hat Rang r 
• aufjeder Faser C x {m} hat die Einschränkung von E Grad d 
• für jedes k-Schema (oder komplexen Raum) 5 und jedes Vektorbündel g5  auf C < S 

mit Invarianten (d, r) gibt es einen eindeutig bestimmten Morphismus 

f: S — M 
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so dass 

Is  = (idc xf)*(). 

Aus der universellen Eigenschaft folgt leicht, dass der Tangentialraum von M in einem 
Punkt in gleich der ersten Kohomologie H' (C, end(e,)) ist. 

Leider existiert aber kein solcher Raum. Der Grund dafür ist die Tatsache, dass 
Vektorbündel Automorphismen besitzen: Mindestens die Skalare und manchmal 
auch mehr. Ubersetzt in unser Problem heißt dies das Folgende: 

Wenn wir ein Vektorbündel Ss C x S mit einem Geradenbündel L auf S tensorie-
ren, so ist das Resultat lokal in S isomorph zu Cs, aber nicht unbedingt global. Das 
heißt, die zugehörigen Abbildungen S - M stimmen lokal überein, aber nicht global. 

Die „Lösung" dieses Problems besteht in der Einführung yon „stacks". Das franzö-
sische Wort ist „champs", allgemein anerkannte deutsche Ubersetzungen kenne ich 
nicht. Kandidaten sind „Stapel",,, Multiplizität", „Orbifold". Ich benutze daher weiter 
den Begriff Stack. Wie tritt nun ein solcher hier konkret auf? 

Es ist nicht sehr schwierig, ein glattes Schema S zu finden, zusammen mit einem 
Vektorbündel es mit Invarianten (r, cl), so dass 

• jedes Bündel auf C mit diesen Invarianten ist isomorph zur Einschränkung von 
Cs auf eine Faser C x {s}. 

• die kanonische Abbildung (Kodaira-Spencer Klasse) 

Ts -* H1(C,Cnd(C)) 

ist surjektiv. 
(Die Kodaira-Spencer Klasse bildet den Tangentialraum von S in den erwarteten 

Tangentialraum des Modulraums ab.) 
Solch ein S heißt „versehe Deformation": Es parametrisiert alle Isomorphieklassen, 

aber eine gegebene Klasse kann mehr als einmal auftauchen. Der Moduiraum sollte also 
ein Quotientenraum von S sein. 

Zur Bildung eines Quotienten betrachtet man das Schema der Isomorphismen von 
Bündeln. Seine Punkte bestehen aus Paaren von Punkten (s, t) von S und einem Isomor-
phismus von Bündeln e e. Präziser gibt es einen Homomorphismus von Schemata 

Isom(pre s ,pre s ) - s >< s, 
welcher Familien solcher Isomorphismen klassifiziert. Zusammen mit der Komposition 
von Isomorphismen liefert dies ein Groupoid in der Kategorie der Schemata, das heißt 
einen darstellbaren Funktor mit Werten in Kategorien, in denen jeder Morphismus in-
vertierbar ist. Auch sind alle Objekte Mannigfaltigkeiten, und die zwei Projektionen 
von Isom auf S glatt (oder submersiv). Man nennt dies ein glattes Groupoid. Im Prinzip 
sollte Mr.d der Quotient von S unter der Operation von Isom sein. 

Eine vernünftige Quotientenbildung ist aber nur möglich, falls Isom frei auf S ope-
riert. Dies heißt genau, dass die Fasern von Isom über Diagonalelementen (s, s) von 
S x S trivial sind, und tritt aber bei Vektorbündeln gerade nicht ein. Trotzdem kann 
man aber einiges über den fiktiven Quotienten sagen, auch wenn er als Schema nicht 
existiert: 
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Zum Beispiel ist eine kohärente Garbe auf dem Quotienten definiert als eine kohä-
rente Garbe auf S zusammen mit einer Operation von Isom, also als eine äquivariante 
kohärente Garbe, und Ahnliches gilt für relative Schemata, Morphismen, usw. Man 
spricht dann von Objekten über dem Stack 

Mrd = S/Isom 

Man muss natürlich verifizieren, dass das Resultat unabhängig von der Auswahl von S 
ist. Kurzum, mit Stacks wird das Problem der Quotientenbildung hinwegdefiniert. 

Ein anderer Ansatz benutzt grobe Modulschemata semistabiler Bündel. Diese sind 
zum einen richtige projektive Schemata. Zum anderen sind sie quasikompakt, was für 
den Stack auch so nicht gilt. Ein Vektorbündel E heißt semistabil, falls für jedes Unter -
bündel)° c e gilt, dass 

Grad(F) /Rang(.F) < Grad(C)/Rang(E). 

Falls immer die strikte Ungleichung gilt, ist S stabil. Stabile bzw. semistabile Bündel bil-
den offene Unterstacks 

M r d c MSS  c Mdr 

Sie sind quasikompakt und besitzen grobe Modulschemata. Das bedeutet, es gibt uni- 
verselle Abbildungen Md -* M r  und - M in Schemata. Dabei ist M, pro-
jektiv und Md  ein offenes Unterschema. Die Punkte von M entsprechen den polysta-
bilen Bündeln (semistabile Bündel, welche direkte Summe von stabilen Bündeln sind). 
Leider besitzt Mjr  keine einfache modulare Beschreibung, und es besitzt hochgradig 
singuläre Punkte. Aus diesem Grund werden wir im Weiteren mit dem Stack Mrd ar-
beiten. 

Allerdings ersetzen wir von nun an die Gruppe GL r  durch eine halbeinfache, ein-
fache, und einfach zusammenhängende Gruppe G, und betrachten G-Torsoren über C. 
Der zugehörige Stack MG ist dann zusammenhängend. Es gibt damit keine diskreten 
Invarianten wie den Grad d. Auch operiert statt der Gruppe G m  nur noch das endliche 
Zentrum Z c G natürlicherweise auf allen G-Torsoren. 

Es sei noch erwähnt, dass Atiyah und Bott ([1]) die (topologische) Kohomologie von 
MG berechnet haben: Der universelle G-Torsor P auf C >< MG besitzt charakteristische 
Klassen (Chern-Klassen) c 1 (P) E H21(C x S, Q). Nach der Künneth-Forniel zerlegen 
sich diese in Produkte aus Kohomologie-Klassen auf C und solchen auf MG.  Die Ko-
homologie von MG ist dann die von den zweiten Komponenten erzeugte freie gradu-
iert-kommutative Algebra. 

3 Der Doppelquotient 

Sei weiter C eine glatte projektive Kurve über einem algebraisch abgeschlossenen Kör-
per k, und x E C ein Punkt, C° = C - {x}. Dann sind alle G-Bündel (G halbeinfach, 
einfach, einfach zusammenhängend) trivial auf G°: 

JB 110. Band (2008), Heft 1 



G. Faltings: Thetafunktionen auf Moduiräumen von Vektorbündeln 

Zum Beispiel sei G = SL r . Ein G-Torsor ist ein Vektorbündel 9 mit trivialer Deter-
minante. Nun ist C° das Spektrum eines Dedekindrings, und die Einschränkung von 
auf C° liefert einen projektiven Modul mit trivialer Determinante über diesem Dede-
kindring. Aber projektive Moduln werden durch ihre Determinante klassifiziert, also ist 
dieser Modul trivial, also ist e als Bündel über C° trivial. Die zwei zugehörigen Triviali-
sierungen der Determinante unterscheiden sich um eine meromorphe Funktion auf C, 
deren Divisor ein Vielfaches von {x} ist. Da der Grad dieses Divisors verschwindet, ist 
die Funktion konstant, und S ist auch als SL r-Bündel trivial auf C. 

Sei t ein lokaler Parameter in x, d.h. die Komplettierung 0Cx  des lokalen Ringes in 
x ist isomorph zu k[[tJ]. Dann ist ein G-Torsor trivial auf C° und auf k[[t]], entsteht also 
durch Verkleben zweier trivialer Bündel mit einem Schnitt von G über dem Durch-
schnitt k((t)) (dem Körper der Laurentreihen). Man erhält isomorphe Bündel durch 
Andern der Trivialisierungen auf C° oder k[[t]]. Damit entsprechen die Bündel einem 
Doppelquotienten, und 

MG(k) = G(C°)\G(k((t)))/G(k[[t]]). 

Flierbei ist G(k{[t]) = L°G(k) dargestellt durch ein (unendlich dimensionales) Grup-
penschema LG 2: 0 , G(C) durch ein Ind-Schema (welches noch eine Vereinigung endlich 
dimensionaler Schemata ist), und G(k((t))) = LG(k) ist ein Ind-Schema (zusammenge-
setzt aus unendlich dimensionalen Teilen). Alles ist also unendlich dimensional! 

Zur Untersuchung des Quotienten dividieren wir zunächst nur durch die rechte Un-
tergruppe und erhalten die affine Grassmann'sche 

= LG/L ° G. 

Diese ist eine Vereinigung projektiver (konventioneller) Schemata. Zum Beispiel erhält 
man für die Gruppe G = SL den Parameterraum für k[[t]]-Gitter L ci k«)y mit trivia-
ler Determinante: 

L ist isomorph zu k[[tJ]r,  es gibt eine ganze Zahl n mit tnk[[t]]r ci L ci t _nk[[t]]r,  und 
L = k[[t]] c k((t)). Für festes n liefert dies ein Unterschema einer Grassmarin-Varie-

tät. 
In der Kac-Moody-Theorie verhält sich LG wie die Gruppe zum affinen Wurzelsys-

tem von G, und L~:OG wie eine maximale parabolische Untergruppe. Es gibt zum Bei-
spiel Bruhat-Zerlegungen, und die Picard-Gruppe des Quotienten ist eine unendliche 
zyklische Gruppe. Ein Erzeugendes wird gegeben durch die „Determinante" von L, ge-
nauer gesagt die Determinante (über k) von L/t°k[[t]]' für genügend großes n. Dies ist 
bis auf Isomorphismus unabhängig von n. Dieser Isomorphismus ist aber nicht kano-
nisch, und deshalb sind die zugehörigen Geradenbündel zwar stabil unter Transformati-
on mit Elementen von LG, aber nicht LG-äquivariant. Vielmehr muss man dazu zu ei-
ner zentralen Erweiterung LG übergehen: 

LG besitzt eine zentrale Untergruppe G. ,  mit Quotient LG/d11 0  = LG und operiert 
auf einem Erzeuger f von Pic(IDG) ‚ so dass trivial auf ID G  und durch Skalarmulti-
plikation auf L operiert. 
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Angewandt auf den Stack MG = ID/G(C°) besteht dann PiC(MG) aus 
G(C°)-äquivarianten Geradenbündeln auf ID G . Man zeigt recht einfach, dass G(C°) 
keine nicht trivialen Charaktere besitzt, so dass ein Geradenbündel auf ID G  nur auf 
höchstens eine Weise äquivariant sein kann. Wir zeigen im nächsten Abschnitt, dass 
dies auch für alle solche Bündel gilt. Aquivalent dazu ist die Aussage, dass die ff m -Er-
weiterung LG über G(C°) spaltet. 

Zum Schluss noch ein Beispiel: Wähle C = IP' als projektive Gerade x = 0, t als ka-
nonische Koordinate. Dann ist MG = G(kr 1 ])\JDG. Die G(k[r 1 ])-Bahn durch den 
Ursprung ist eine dichte offene Teilmenge von ID G  (die große Zelle), und das Komple-
ment ist ein Divisor, welcher die Picard-Gruppe erzeugt. Somit enthält MG als dichten 
offenen Unterstack die trivialen G-Bündel. 

4 Geradenbündel auf MG 

Bevor wir eine allgemeine Konstruktion skizzieren, zunächst zwei Beispiele: 
a) Sei G = SL r , somit klassifiziert MG Vektorbündel vom Rang r mit trivialer De-

terminante. Für ein solches Vektorbündel definiert die Determinante der Kohomologie 
ein Geradenbündel auf dem Modulraum. Dies heißt, wir müssen jedes Schema S und je-
des Bündel S auf C x S, vom Rang r und trivialer Determinante, ein Geradenbündel Lls 
auf S definieren, funktoriell unter Pullback und unter Isomorphismen. Es reicht, dies 
für quasikompakte S (oder auch für affine S) zu tun. 

Dazu wähle man einen (sehr) positiven Divisor D c C, so dass auf jeder Faser 
C x {s} 

H 1 (C,E(D)) = (0). 

Dann ist prs((D)) ein Vektorbündel auf S, und der Komplex 

pr2(e(D)) —a  pr2.((D)/e) 

repräsentiert das derivierte direkte Bild 1Rpr 2 , (S) auf S. Definiere Cs als die Determi-
nante dieses Komplexes (siehe [9] für eine saubere Definition), also als 

= detr7(E(D))) ® detr2(S(D)/e))®1  

Dies ist bis auf kanonischen Isomorphismus unabhängig von der Wahl von D: Falls 
E > D ein anderer solcher Divisor ist, so induziert die Injektion S(D) c (E) einen 
Quasiisomorphismus von Komplexen und damit einen Isomorphismus der Determi-
nanten. 

Die Determinante der Kohomologie ist für alle Vektorbündel erklärt, d.h. wir haben 
die Bedingung „triviale Determinante' der SL r Bündel gar nicht benutzt. Sie geht aber 
ein bei der folgenden Bemerkung: Tensorieren mit einem Geradenbündel ändert nicht 
die Determinante der Kohomologie. Ein Beispiel: Beim Tensorieren mit O( —p), p E C 
ein Punkt, ändert sich die Determinante der Kohomologie um die Determinante von e 
inp, also gar nicht. 
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Man kann dies ausnutzen und 5 (jetzt mit trivialer Determinante) mit einem Gera-
denbündel vom Grad g - 1 tensorieren. Dann haben die Bündel pr2(S(D)) und 
pr2,(S(D)/S) den selben Rang, und die Determinante der Abbildung zwischen ihnen ist 
ein Schnitt im Inversen der Determinante der Kohomologie. Dieser Schnitt (genannt 
Kohomologie-Determinante) ist unabhängig von D und eine Verallgemeinerung der 
klassischen Riemann'schen Thetafunktion. Seine Nullstellenmenge besteht aus den 
Bündeln mit nicht trivialer Kohomologie. 

Wenn man mit Vektorbündeln statt Geradenbündeln tensoriert, erhält man globale 
Schnitte von Potenzen des Inversen der Kohomologiedeterminante. Man kann mit ih-
nen Einbettungen des groben Modulraums der semistabilen Bündel konstruieren ([4], 
[5]). 

Bleibt schließlich die Beschreibung der Determinante der Kohomologie im Rahmen 
des Doppelquotienten: 

Falls G = SL r , so induziert die Determinante der Kohomologie auf MG = 
G(C°)\ID G  auf IDG das Inverse des kanonischen Erzeugenden der Picardgruppe. (Das 
Inverse ist zwar auch ein Erzeugendes, entspricht aber dem Negativen des Divisors, wel-
cher die offene Zelle begrenzt.) 

b) Sei G = Spin(r) die Spingruppe zur SO(r) (Die reicht auch, aber wir haben nun 
einmal einfach zusammenhängend vorausgesetzt). G-Torsoren sind Bündel 5 zusam-
men mit einer quadratischen Form q (mit Werten in Oc),  so dass die assoziierte Biline-
arform auf 5 nicht ausgeartet ist. Zusätzlich gibt es noch eine Spinstruktur, die wir aber 
nicht benötigen. 

Wir wählen eine Quadratwurzel E des kanonischen Bündels 	und tensorieren 5 
mit L. Danach hat Seine quadratische Form mit Werten in w c . Wähle wieder einen sehr 
positiven Divisor D, so dass für alle s ü S 

H° (C,E(—D)) = H 1 (C.E(D)) = (0). 

Dann besitzt das Vektorbündel 

=pr(S(D)/S(—D)) 

auf S eine nichtausgeartete quadratische Form: 
Der Wert auf einem lokalen Schnittf ist das Residuum in D Res D q(f). 
Außerdem erhalten wir zwei maximal isotrope Unterbündel in F, nämlich 

ii = pr2 (S/S(—D)) 

und 

8 =pr2(S(D)). 

Das erste ist isotrop, weil für lokale Schnittef q(f)  gar keinen Pol in D hat, das zweite, 
weil globale Residuen verschwinden (Residuensatz). 

Sei nun C(F) die Clifford-Algebra zu F, das heißt die freie Tensoralgebra dividiert 
durch die Relation 

= ResD (q(f)). 
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Sie ist lokal isomorph zu einer Matrix-Algebra End(g) mit einem (7L/(2)-graduierten) 
Vektorbündel G. g ist eindeutig bestimmt bis auf Tensorieren mit einem Geradenbündel. 
Zum Beispiel kann man nach Wahl eines isotropen Komplements A' zu 4 für g die äu-
ßere Algebra A A' wählen, auf der A durch innere und ..4' durch äußere Multiplikation 
operieren. Dieses g ist eindeutig dadurch bestimmt, dass die von A annullierten Elemen-
te (die Konstanten in der äußeren Algebra) ein triviales Bündel bilden, und damit ist die-
ses g auch global und nicht nur lokal definiert. Im Folgenden kommen wir aber mit lokal 
definierten 's aus, d.h. alles ist invariant unter Tensorieren mit Geradenbündeln. 

Die von .4 annullierten Elemente von g bilden ein Unterbündel 0 vom Rang eins. 
Dual erhält man einen Quotienten durch Ausdividieren der .4-Operation. Diese Ge-
radenbündel nennen wir .4-Invarianten bzw. .4-Kovarianten. Falls cs e det(..4) = 
AmQx-4 ein Erzeugendes bezeichnet, so liefert die Multiplikation mit es einen Isomor-
phismus 

det(A) ® g 	0A 

Entsprechendes gilt natürlich auch mit dem isotropen Unterbündel 13. Wir definieren 
ein Geradenbündel M durch 

M = g8  ® gAV 

C(-F) besitzt eine Involution (zum Beispiel —idT  auf J),  und damit wird das Dual 
gV  auch zu einem C(F)-Modul. Darin sind die von .4-Invarianten dual zu den ..4-Kova-
rianten in G, und analog für B. Ersetzen wir 9 durch sein Dual „ so ergibt sich dasselbe 
Geradenbündel M als 

M ()V®gB 

Wegen der Beziehung zwischen Invarianten und Kovarianten ergibt sich durch Tenso-
rieren, dass 

M ®2  det(A) ®1  ® det(B) ® . 

Auch ist M unabhängig von der Wahl von D: Falls D < D', 7 = pr2(f(D')1E), so ist 
C = pr2,(e(D)/e( 'D)) ein isotropes Unterbündel mit 

= C1- /C. 

Ferner gilt für die neuen Unterbündel .4' , 13' die Relation 

C C .4',4 = AIC 
und 

B'+C' =7,B=B'nC'. 

Man kann dann für 9 die C-Invarianten in g' wählen, so dass gJ = grA' und dann be-
rechnet man, dass 98  g,. Alles in allem also auch M' M. 

Somit globalisiert M zu einem Geradenbündel auf MG, dem Pfaff-Bündel (,‚Pfaf-
fian"). 
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Die Projektion des Elements GA  auf die 13-Koinvarianten liefert einen expliziten 
Schnitt von M, genannt Pfaff-Determinante, unabhängig von der Wahl von g. Seine 
Nullstellenmenge besteht aus den Punkten s e S, für die die Summe A + 13 nicht F auf-
spannt. Dies sind gerade die Punkte, in denen S nicht triviale Kohomologie besitzt: 

Die Kohomologie von E wird durch den Komplex 

definiert. 
Genauer gesagt ist die Determinante von T trivial, und somit das Inverse der Deter -

minante der Kohomologie von S isomorph zum Inversen von det(A) ® det(B), also zu 
M 12 . Bei diesem Isomorphismus entspricht die Kohomologie-Determinante von S dem 
Quadrat der gerade konstruierten Pfaff-Determinante: 

g besitzt eine kanonische /(2)-Graduierung verträglich mit der C(.F)-Operation, 
so dass gA  gerade ist. Die assoziierte Superspur (Differenz der Spuren auf geraden und 
ungeraden Elementen) auf C(.F) verschwindet auf allen Elementen von C(F), welche 
Produkte von < Rang(F) Elementen aus F sind. Der Quotient von C(F) nach diesem 
Untermodul ist isomorph zu det(.F) det(A) 0 det(8). Einen Isomorphismus erhält 
man, indem man alle Elemente lokaler Basen von A und 13 miteinander multipliziert. 
Wir nennen die entsprechenden Produkte et E det(A) und /3 e det(B). 

Wir berechnen die Superspur von c3 auf g wie folgt: x faktorisiert über den Quo-
tienten GA  und hat Bild im Unterbündel ‚ und Multiplikation mit c identifiziert diese 
beiden Bündel. Analoges gilt für /3 und B. Somit bleibt als einziger nicht trivialer Ma-
trixkoeffizient von x3 das Produkt der Abbildungen 9-4 - GB  und g13  -* Q. Beide die-
se Abbildungen sind aber Inkarnationen unseres kanonischen Schnitts. 

Ubrigens erhält man eine andere Definition der Pfaff-Determinante wie folgt: Sei E 
ein Bündel vom geraden Rang 2r mit einer nicht ausgearteten Bilinearform mit Werten 
in wc.  Wähle ein maximal isotropes Unterbündel J7  c S (vom Rang r) mit F(C, F) = 
(0) (Dies ist lokal in der Basis stets möglich nach [3]). Dann gilt 

und die Erweiterungsklasse von 
0 	T 	' 	'(0) 

liegt inH 1  (C, A2(.F) (D w®-') 
Dies ist dual zu F(C. A 2 (F1 ) ® 2) so dass der Erweiterungsklasse eine Linear-

form auf diesem Raum entspricht. Daraus erhält man eine alternierende Form auf 
F(C, V  (9 c)  Deren Pfaff'sche Determinante liegt im Dualen der Determinante von 
F(C, V  (9 c)  also (nach Serre-Dualität) in der Determinante von H' (C, T) oder im 
Inversen der Determinante der Kohomologie von F. Diese ist aber eine Quadratwurzel 
der Determinante der Kohomologie von E, da in der obigen exakten Sequenz sowohl F 
wie S1J7  dieselbe Kohomologiedeterminante liefern. Auch ist die Pfaff'sche Determi-
nante Null genau dann, wenn E nicht triviale Kohomologie besitzt. Alles in allem Indi-
zien, dass wir die richtigen Objekte erhalten, was dann aber noch eines Beweises bedarf. 
Allerdings reicht dazu schon weitgehend die Bemerkung, dass die Nullstellen-Divisoren 
übereinstimmen. 
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Man kann sich aber auch direkt überlegen, dass für genügend generisches 10 die De-
terminante der Kohomologie von 10 unabhängig von dieser Auswahl ist: 

Dazu betrachten wir maximal isotrope Fs, für die F(C, A2 10(2p)) = (0) für alle 
Punkte p e C gilt. Außerdem soll 10 im generischen Punkt eine vorgegebene parabo-
lische Konjugationsklasse definieren. Dies bewirkt, dass der Durchschnitt zweier sol-
cher 10's stets gerade Dimension hat. 

Diese .F's werden parametrisiert durch ein glattes S-Schema S' - S. Wir benutzen 
im Folgenden Deformationstheorie. Zum Beispiel ist der relative Tangentialraum von 
S' isomorph zu Homc(wc, 1\ 210). Uber dem Faserprodukt S" = S' X s S' gibt es dann in 
C xs S" zwei tautologische maximal isotrope Unterbündel Fi und 102 in E. Um zu zei-
gen, dass ihre Determinanten der Kohomologie isomorph sind, darf man aus S" abge-
schlossene Teilmengen der (faserweise) Kodimension > 2 entfernen. Damit kann man 
erreichen, dass der Kokern der Inklusion F W -* E Träger in einem Divisor 
D c C XS S" hat, welcher endlich und flach über S" ist. Außerdem ist der Kokern das 
direkte Bild eines Vektorbündels g vom Rang zwei auf D. Schließlich ist das Normalen-
bündel Oc(D)  D isomorph zu 7-tom(wc, 1\ 2 g) (Deformationstheorie). 

Dies heißt, dass g eine nicht degenerierte symplektische Form mit Werten im relati-
ven dualisierenden Bündel u.rc(D) ID besitzt. Das direkte Bild unter der Projektion nach 
S" ist dann symplektisch und besitzt triviale Determinante. Dies ist aber gerade die De-
terminante der Kohomologie von g. Andererseits ist G der Kokern der Abbildung 

- E/102 = Nom(102,wc). 

Also haben die beiden Bündel dieselbe Kohomologiedeterminante. 
Natürlich ist dies noch nicht alles: Wir brauchen ein „descente-Datum", das heißt, 

diese Isomorphismen müssen (für drei verschiedene F's) transitiv sein. Man erreicht 
dies durch eine Modifikation: Sei 12  der eben konstruierte Isomorphismus für die gene-
rischen Bündel F und 107. Dann gilt für vier Bündel die Gleichung (mit hoffentlich of-
fensichtlicher Notation) 

1234 = 013024, 

und der Quotient 12/I 1 gibt ein Descente-Datum. Außerdem sollten wir zeigen, dass 
die Pfaff-Determinante invariant unter dem Descent-Datum ist. Dies folgt am Ende aus 
der Eindeutigkeit aller betrachteten Objekte, aber ein direkter Beweis wäre schöner. 

5 Konstruktion eines Geradenbündels der Invariante Eins 

Ich hatte versprochen, ein solches Bündel zu konstruieren. Für die Gruppen SL r  kann 
man die Determinante der Kohomologie wählen, für die Spingruppen das eben kon-
struierte Pfaff-Bündel. Für ein beliebiges G erhält man dann für jede G-Darstellung E 
durch Pullback von SL(E) ein Geradenbündel auf MG.  Dessen Invariante ergibt sich 
durch Einschränkung auf Untergruppen SL2 c G zu langen Wurzeln: Man muss die 
Spurform der Darstellung auf E durch die der zweidimensionalen Darstellung von SL2 
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dividieren. Schließlich kann man noch für orthogonale Darstellungen durch zwei divi-
dieren, wegen der Quadratwurzel. Zum Beispiel hat die adjungierte Darstellung Invaria-
nte 2hv, das Doppelte der dualen Coxeter Zahl. Schließlich gilt noch für Gruppen G mit 
zwei verschiedenen Wurzel-Längen: Es gibt eine (einfache einfach zusammenhängende) 
Gruppe H und einen Automorphismus a von H von endlicher Ordnung, so dass a einen 
maximalen Torus und eine Bord-Gruppe stabilisiert, und G besteht aus den Fixpunkten 
von cr. Das Dynkin-Diagramm des dualen Wurzelsystems von G ist dann der Quotient 
des entsprechenden Diagramms von H unter dem Automorphismus. Genauer gesagt 
entsteht der Typ C1 (Duales B1) aus A21_1 mit dem nicht trivialen Automorphismus (ent-
sprechend Sp21 c SL 2 1), B1 aus D,+i (entsprechend Spin 21+1  c Spin21 +2), F4 aus E6  und 
G2 aus D4 . Wieder liefert das Pullback eines Geradenbündels von Invariante Eins auf 
MH ein solches aufMG. 

Damit reichen geometrische Konstruktionen für die klassischen Gruppen und den 
Typ G2. Für die übrigen exzeptionellen Gruppen bleibt aber eine Lücke, z. B. kann man 
so für die Gruppe E8 nur Invariante 30 erreichen.Es gibt nun eine allgemeine Konstruk-
tion, die diese Lücke schließt. Sie benutzt den Begriff der generischen Borel-Untergrup-
pe. Er enstspricht den im letzen Abschnitt benutzten generischen isotropen Unterbün-
deln. 

Dazu sei B c G eine Borel-Untergruppe. Es ist bekannt, dass jeder G-Torsor auf C 
von einem B-Torsor induziert werden kann. Dies entspricht einem Schnitt des assoziier-
ten G/B-Bündles. Unter geeigneten numerischen Bedingungen ist der Raum dieser 
Schnitte ein glattes Schema. Zum Beispiel gilt dies für normale Vektorbündel E 
(G = GL,), falls die Subquotienten f, = F/F_i der zugehörigen Fahne 

die Bedingung 

Grcid(r1 	 ') > 2g 2 

erfüllen. 
Für ein B-Bündel auf C>< S erhält man für jedes Gewicht € ein Geradenbündel L, 

auf C x S. Aus zwei solcher Bündel L und f, konstruiert man (nach A. Weil) ein Gera-
denbündel <L, L, > auf S, und eine geeignete Kombination von solchen liefert den 
Kandidaten für das Bündel der Invariante Eins. Zum Beispiel ist für zwei teilerfremde 
Divisoren D und E auf C x S < 6(D), 6(E)> das durch die Projektion (auf S) von 
D fl E definierte Bündel auf S. 

Für einen G-Torsor auf C x S gibt es dann eine glatte Uberdeckung S'—» S und auf 
C>< S' die Reduktion auf einen generischen Borel. Wir haben das gewünschte Geraden-
bündel auf S' konstruiert und müssen noch den Abstieg („descente") nach S schaffen. 
Dieser erfordert einen Isomorphismus (mit Kozykelbedingung) der zwei Pullbacks nach 
S' X s S'. Einen solchen Isomorphimus konstruiert man aus den Schubertzellen der Ko-
dimension zwei auf G/B x G/B. 
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6 Die Verlinde-Formel 

Diese Formel berechnet (in Charakteristik 0) die Dimension des Raums der globalen 
Schnitte F(MG, ) für das Geradenbündel mit Invariante c. Etwas allgemeiner kann 
man noch J tensorieren mit Vektorbündeln l,. Dabei ist x E C ein Punkt und E eine 
irreduzible Darstellung von G. E ordnet einem G-Torsor P die Faser des zugehörigen 
Vektorbündels e = E" in x zu. Man sieht leicht, dass es nur nicht triviale globale 
Schnitte geben kann, wenn E integrabel ist. Dies bedeutet, dass das maximale Gewicht 
von E auf der Kowurzel 0' zur maximalen Wurzel 0 einen Wert <c annimmt. Falls 
c = 1 und G vom Typ A,D,E ist (d.h. nur eine Wurzellänge besitzt), so bedeutet dies 
dass E entweder trivial oder winzig („miniskul") ist. Die Anzahl dieser Darstellungen ist 
gleich der Ordnung des Zentrums Z von G. 

Der Mechanismus der Verlinde-Formel funktioniert wie folgt: Man degeneriere die 
Kurve zu einer rationalen Kurve mit g Doppelpunkten, also zu IP' mit g Paaren von 
Punkten {x j ,y j } identifiziert. Dann besteht ein G-Torsor auf der degenerierten Kurve 
aus einem G-Torsor auf IP' zusammen mit Isomorphismen der Fasern in x, undy 1 . Letz-
tere werden nicht ganz kanonisch durch ein Exemplar von G parametrisiert, besser 
durch ein Bündel mit Faser G und Strukturgruppe G x G. Das heißt, der Modulraum 
(-stack) MG  für die singuläre Kurve ist ein G-Bündel über dem entsprechenden Modul-
raum für IP'. Da die regulären Funktionen auf G als G x G-Modul die direkte Summe 
aller E ® Ev ist (E durchläuft alle irreduziblen Darstellungen von G), wird F(MG, £) 
die direkte Summe der globalen Schnitte des Modulraums für IP', wobei aber in den 
Punkten x, und y i  noch jeweils duale Paare von Darstellungen E, und E' einzusetzen 
sind. Die Summe wird endlich, da man sich auf die endlich vielen integrablen Darstellun-
gen beschränken kann. Diese Beschreibung ist im Wesentlichen korrekt, aber natürlich 
stark vereinfacht: Der Modulraum für die singuläre Kurve hat kein gutes Modell, Tor-
soren können schlechte Reduktion haben, man muss zur Lie-Algebra übergehen. 

Die Auswertung der Verlinde-Formel wird besonders einfach für c = 1 und G vom 
Typ ADE: Dann spielen nur miniskule Darstellungen eine Rolle. Zum Beispiel beim 
Typ E8 bleibt nur die triviale Darstellung übrig, man erhält für beliebige Kurven C die-
selbe Dimension wie für den IP', und diese ist Eins. Allgemeiner ist die Dimension I Z Ig . 
Dies wird „erklärt" durch die Operation von Z-Torsoren: Die Gruppe H' (C, Z) ope-
riert auf MG  durch zentrale Twists. Jedes Gruppenelement respektiert individuell das 
Bündel f,, aber insgesamt operiert nur eine zentrale G-Erweiterung von H' (C, Z) da-
rauf. Der Kommutator in dieser Erweiterung ist eine symplektische Form auf 
H' (C, Z), welche sich als nicht degeneriert herausstellt. Damit ist nach bekannten Sät-
zen („Stone") jede Darstellung mit skalarer C,-Operation ein Vielfaches einer irreduzi-
blen Darstellung der Dimension 1 Z 1 9 . Alles in allem realisiert somit F(M, f,) die irre-
duzible Darstellung der zentralen Erweiterung, ist also „so klein wie möglich". 

Es bleibt das große offene Problem, solche globalen Schnitte geometrisch zu be-
schreiben. Zum Beispiel gibt es für G vom Typ E8  einen kanonisch definierten Divisor 
in MG,  welcher die Nullstellenmenge des einzigen globalen Schnitts von L, ist. Was ist 
dieser Divisor? Eine Variante: 
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Betrachte die Gruppen G = Spin 41 . Deren Fundamentaigruppe ist Z = 7Z/(2) x 
/(2), besitzt also drei zyklische Untergruppen 7L/(2). Zu jeder dieser Untergruppen 

gehört ein maximal isotroper Teilraum H 1  (C, 71/(2)) in H 1  (C, Z), und damit eine Fa-
milie von globalen Schnitten in F(MG, Li), welche Eigenvektoren (der projektiven Dar-
stellung) unter diesem Teilraum sind. Zum Beispiel gehören zur diagonalen Untergrup-
pe die Pfaff'schen Determinanten der Kohomologie von E 0 M, wobei S das tautologi-
sche orthogonale 4n-Bündel auf C ist, und M eine Theta-Charakteristik. Zu den zwei 
anderen 7/(2)'s sollten Schnitte gehören, welche irgendetwas mit den zwei Spin-Dar-
stellungen zu von S zu tun haben. 

Zur Erinnerung: Spin4, besitzt zwei irreduzible Spin-Darstellungen S+  der Dimensi-
on 22k? 1 Diese sind orthogonal für gerade n und symplektisch für ungerade n. Dies sind 
die zwei irreduziblen Darstellungen der geraden Elemente in der Clifford-Algebra C(E) 
zur orthogonalen Standard-Darstellung E der Dimension 4n. Der gesuchte Schnitt zu 
S sollte die folgende Eigenschaft haben: Es gibt eine Operation der 2-Torsion J[2] der 
Jacobi'schen von C auf G-Bündeln, welche das assoziierte Spin-Bündel S+  festlässt, 
aber E (Bündel zu E) mit einem Torsionsbündel tensoriert. Unser Schnitt sollte unter 
dieser Operation ein Eigenvektor sein. 

Falls C eine elliptische Kurve ist (g - 1), so kann man den unbekannten Schnitt 
auch direkt analytisch angeben: Jedes polystabile G-Bündel ist induziert von einem 
T-Bündel. Man betrachte nun das Gitter A c Q2', welches aus allen Linearkombinatio-
nen E i  .\ e1  besteht, für die die Koeffizienten )‚ der Standardbasis e1  in 1/27Z liegen, alle 
modulo ZZ gleich sind, und die Summe E i  )‚ gerade ist. Die quadratische Form 

ist ganzzahlig auf A (und gerade, wenn n durch vier teilbar ist). Sie liefert dann eine prin-
zipale Polarisation auf C2', und in der Klasse dieser prinzipalen Polarisation vier sym-
metrische Geradenbündel, welche unter der Weil-Gruppe invariant sind. Die vier zuge-
hörigen Theta-Divisoren unterscheiden sich durch Translationen mit einem Element 
aus C[2]. (C ist diagonal eingebettet in A (D C). Was fehlt, ist eine geometrische Interpre-
tation dieser Divisoren. 

Für elliptische Kurven über den komplexen Zahlen kann man das wie folgt präzisie-
ren: Für y in der oberen Halbebene betrachte die Theta-Reihe 

= 	 < Ä,>). 

Ihre Nullstellenmenge ist ein Divisor in C', C = ff7 < 1. > die elliptische Kurve zu r. 
Was ist die geometrische Bedeutung dieses Divisors? 
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7 Die Hitchin-Faserung 

Die Hitchin-Faserung ist ein wichtiges Werkzeug zur Untersuchung des Modulraums 
MG. Unter anderem erlaubt sie die Ubertragung der bisherigen Resultate in positive 
Charakteristik. Unter Ignorieren kleiner Komplikationen (wie Stacks) kann man sie 
wie folgt beschreiben: 

Betrachte den Raum MGS,  welcher Paare (P, 9) klassifiziert, mit Pein G-Torsor auf 
C, und 8 E F(C, g" (D wc)  ein globaler Schnitt des assoziierten Bündels zur adjungierten 
Darstellung, tensoriert mit den Differentialen. Dies ist zum Einen ein Vektorbündel 
über MG und sogar das Kotangential-Bündel. Dies ergibt eine symplektische Struktur. 

Zum anderen kann man 9 zuordnen die Werte der G-invarianten Funktionen auf : 
Ist 0 eine solche vom Grad e, so ist (e) ein globaler Schnitt von w. Zum Beispiel ist 
für G = SL2 8 ein wc-wertiger Endomorphismus eines Geradenbündels vom Rang zwei, 
mit verschwindener Spur. Seine Determinante ist eine 2-Form. Angewandt auf ein Sys-
tem von Erzeugenden der Invarianten Funktionen erhält man eine zweite Abbildung 
von MG,  diesmal mit Werten in einem affinen Raum Char. Dann sind alle Fasern maxi-
male isotrope Unterschemata, und die Abbildung ist flach. Weiter ist die generische Fa-
ser ein homogener Raum unter einer Abel'schen Varietät. Insbesondere sind alle regulä-
ren Funktionen aufMGO induziert von Char. 

Zum Beispiel klassifiziert für die Gruppe G = SL r  MG.O Vektorbündel E, vom Rang 
r und trivialer Determinante, zusammen mit einem Endomorphismus 8 E F(C, Snd(e) 

O wc) von verschwindener Spur. Die Koeffizienten des charakteristischen Polynoms 
von 8 liefern globale Schnitte in F(C, w') (2 < i < r), und Char ist die direkte Summe 
dieser globalen Schnitträume. Für generische Werte definiert das charakteristische Po-
lynom von 9 eine Uberlagerung D - C vom Grad r mit glattem D, und die Faser von 
MG.ä besteht aus Geradenbündeln M auf D, deren Norm isomorph zu W 

r(r_1)/2  ist. 
Die Hitchin-Faserung ist uns nützlich aus zwei Gründen: Zum Einen funktioniert sie 

auch in positiver Charakteristik p, vorausgesetzt, diese ist gut für G. „Gut" heißt dabei, 
dass p nicht die Koeffizienten der maximalen Wurzel (geschrieben als Linearkombinati-
on der einfachen Wurzeln) teilt. Im ungünstigsten Fall (E8 ) schließt dies nur die Prim-
zahlen 2, 3, 5 aus. Damit erhält man auch in positiver Charakteristik eine obere Abschät-
zung für die Dimension von F(MG, f) und eine Ausdehnung der bisherigen Resultate. 

Zum anderen liefert die Hitchin-Faserung geometrische Divisoren auf MG:  Die Fa-
ser von MGB über 0 E Char hat diesselbe Dimension wie MG.  Sie klassifiziert G-Torso-
ren P zusammen mit einem nilpotenten 9 e F(C, g" (3 wC). Die Projektion auf MG ist 
invariant unter der C,-Operation, welche 9 durch skalare Vielfache ersetzt. Damit hat 
das Bild aller irreduziblen Komponenten, auf denen 0 nicht identisch verschwindet, Ko-
dimension > 1, und man erwartet Kodimension 1. Dies liefert eine geometrische Kons-
truktion von Divisoren. (Technische Anmerkung: Die Konstruktion geometrisch defi-
nierter Divisoren ist nicht ganz einfach. Bei den meisten geometrisch induzierten Unter-
varietäten wird die erwartete Kodimension durch eine Riemann-Roch-Formel gegeben, 
und das Resultat ist üblicherweise durch g 1 teilbar.) Zu diesem Divisor gehört dann 
ein Geradenbündel £‚‚ und man kann versuchen, c zu berechnen. Ein Beispiel: 
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Betrachte G-Torsoren P zusammen mit einem Schnitt 0 9 E F(C, g °  ® WC), wel-
cher in jedem Punkt entweder verschwindet oder konjugiert zu einem Wurzelvektor ist. 
Dann liefert dies eine Invariante c = (2/s1) .  
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achieved by a fixed-point argument which takes all numerical errors into account, and 
thus gives a mathematical proof which is not "worse" than any purely analytical one. 
The method is used to prove existence and multiplicity statements for some specific ex-
amples, including cases where purely analytical methods bad not been succcessful. 

Eingegangen: 12.06.2007 	 DMV 
Michael Plum, Institut für Analysis, Universität Karlsruhe (TH), 	 JAHR ESBERICHT 
Englerstraße 2, D-76 128 Karlsruhe, michae1.p1ummath.uni-kar1sruhe.de 

	DER DMV 
http://www.math ,-matik.uni-karlsruhe.de/milplum/ —plum/de 	 © B. G. Teubner 2008 

JB 110. Band (2008), Heft 1, 19 54 	 19 



Übersichtsaikel 	Historische Beiträge 	Berichte aus der Forschung 	Buchbesprechungen 

1 Introcluction 

Semilinear elliptic differential equations of the form 

—zu(x) +f(x,u(x)) = 0 	(x 	 (1) 

(with f c JR denoting some given domain, andf: f x IR - JR some given nonhinear-
ity), together with boundary conditions, e. g. ofDirichlet type 

u(x) = 0 	(x E (9f), 	 (2) 
have been (and still are) extensively studied in the differential equations literature. Such 
semilinear boundary valueproblems have a lot of apphications e. g. in Mathematical Phy-
sics, and often serve as model problems for more complex mathematical situations, and 
last but not least, they form a very exciting and chalhenging object for purely mathema-
tical investigations. Starting perhaps with Picard's successive iterations at the end ofthe 
1901 century, various analytical methods and techniques have been (and are being) dc-
veloped to study existence and multiplicity of solutions to problem (1), (2), such as var-
iational methods (including mountain pass methods), index and degree theory, monoto-
nicity methods, fixed-point methods, and more; see e. g. [2]—[6], [12]--[14], [18]—[21], 
[25, 26, 30, 31, 33, 34, 361, [39]—[41], [43, 44, 55, 61], and the references therein. 

In this article, we want to report on a suppiement to these purely analytical methods 
by a cornputer-assisted approach, which in the recent years has turned out to be success-
ful with various examples where purely analytical methods have failed. In spite of many 
numerical calculations involved, the existence and multiphicity proofs given by our 
method are completely rigorous and not "worse" than any other proof. One might ask 
if (systematic or accidental) hardware errors could spoil the correctness of a computer-
assisted proof, but the probabihity of the permanent occurrence of such errors can be 
made very small by use of different hardware platforms and by repeating the computa-
tions many times. Of course, some uncertainty concerning the correctness of the hard-
ware actions or of the program codes remains, but is this uncertainty really larger than 
the uncertainty attached to a complex "theoretical" proof? 

Recently, various mathematical problems have been solved by computer-assisted 
proofs, among them the Kepler conjecture, the existence of chaos, the existence of the 
Lorenz attractor, the famous four-colour problem, and more. 

In many cases, computer-assisted proofs have the remarkable advantage (compared 
with a "theoretical" proof) of providing accurate quantitative information. Coming 
back to our approach concerning problem (1), (2), such quantitative information is gi-
yen in form of tight and exphicit bounds for the solution. 

We start with an approximate solution w to (1), (2), which can be obtained by any 
numerical method which gives approximations in the function space needed (to be spe-
cified later). In this first step, there is no need for any mathematical rigor, and the field 
is open for the whole rich variety of modern numerics. 

Next, we use a Newton-Cantorovich-type argument to prove the existence ofa solu-
tion to (1), (2) in some "dose" and "explicit" neighborhood ofw. For this purpose, we 
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consider the boundary value problem for the error v = u - w and rewrite it as a fixed-
point equation 

vEX, v=Tv 	 (3) 

in a Banach space X, which we treat by some fixed-point theorem. More precisely, we 
aim at Schauder's fixed-point theorem if compactness is available (which essentially re-
quires the domain Q in (1) to be bounded), or at Banach's fixed-point theorem (ifwe are 
ready to accept an additional contraction condition; see (17) below). The existence of a 
solution v of (3) in some suitable set V ci X then foliows from the fixed-point theorem, 
provided that 

TVCV. 	 (4) 

Consequently, u  : = w + v isa solution of(1), (2) (which gives the desired existence re-
sult), and the statement E w + V" (implied by v E V) gives the desired bounds, or 
enciosures, for u. 

So the crucial condition to be verified, for some suitable set V, is (4). Restricting 
ourselves to norm balls V (centered at the origin), we find that (4) resuits in an inequality 
involving the radius of V, and various other terms generated by the "data" of our pro-
blem (1), and by the numerical approximation Li. All these terms are computahle, either 
directly or via additional computer-assisted means (like the eigenvalue bounds dis-
cussed briefly in Section 3.3). In these computations (in contrast to the computation of 
w mentioned above), all possible numerical errors have to be taken into account, in or-
der to be able to check the aforementioned inequality (implying (4)) with mathematical 
rigor. For example, remainder term bounds need to be computed when quadrature for-
mulas are applied, and interval arithmetic [35, 57] is needed to take rounding errors into 
account. 

Computer-assisted means for obtaining enclosures for solutions to elliptic partial 
differential equations have been proposed by Collatz [16, 171 already more than 50 years 
ago. He used maximum-principle-type arguments to obtain two-sided bounds for the 
error function u w, with w denoting a numerical C 2 —approximation. Schröder [58]-
[60], Walter [62] and others generalized these ideas, which resulted in the method ofdij-
ferential inequalities. lt was successfully applied to many examples with first or second 
order ordinary differential equations, or with second order elliptic or parabolic differen-
tial equations. However, there are drawbacks of differential inequalities methods con-
cerning the size of the dass of problems (1), (2) to which they can be applied: At least 
for obtaining "tight" solution enciosures, all eigenvalues of the linearization L of (1), 
(2) at w need to be positive, which excludes many interesting situations. Furthermore, 
differential inequalities techniques are essentially restricted to first- and second-order 
problems (with the exception of some fourth-order problems which can be handled as 
second-order systems). In contrast, the enclosure method proposed in this article re-
quires the eigenvalues of the linearization L to be non-zero only (which is checked by ei-
gen value enciosures), and at least in principle it can be used for elliptic problems of any 
(even) order; see also the remarks at the end of Section 2. 
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An existence and enciosure method similar to ours has been developed by Nakao 
and his group [46]—[48]. This approach avoids the computation of eigenvalue enclo-
sures for L, which constitutes a significant advantage in some cases. Instead, a finite-di-
mensionalprojection ofL is used, and treated by well-established means ofverifying nu-
merical linear algebra. However, also the (infinite-dimensional) projection error needs 
to be bounded in a suitable way, which is weil possible for "simple" domains 2, but pro-
blematic e. g. for unbounded domains. 

Another more recent approach is based on the Conley index and the numerical yen-
fication ofcorresponding topological conditions; it is suited for proving the existence of 
stationary solutions for certain ciasses of problems, as well as for detecting global dy-
namics (see e. g. [22, 29]). 

For ordinary differential equation problems (possibly originating from a partial dif-
ferential equation after symmetry reductions), many existence and enciosure methods 
can be found in the literature, which we will not address in this article. 

2 Abstract formulation 

lt turns out to be useful to explain the basics of our computer-assisted approach first 
for the following abstract problem: 

Find u e X satisfving .F(u) = 0, 	 (5) 

with (X, (.' ' ).) and (Y, (' .) ) denoting two real Hilbert spaces, and)::  X - Y some 
Frchet differentiable mapping. 

Let w e X denote some approximate solution to (5) (computed e.g. by numerical 
means), and 

L := 7(w) X Y 

the Frchet derivative ofJ at w, i.e. L e 13(X, Y) (the Banach space of all bounded line-
ar operators from X to Y), and 

um 	F(w + Ii) - Y'(w) - L[hj 11 y = 0. 
hEX\{O} llhll x  

/7=0 

Suppose that we know constants 6 and K, and a non-decreasing function g: [0, oo) 
[0, ) such that 

6, 	 (7) 

i.e. 6 bounds the defect (residual) ofthe approximate solution w to (5), 

julI x  <K L[u] 11 y  for all u e X, 	 (8) 

i.e. K bounds the inverse ofthe linearization L, 

7(w + u) - '()Mn(xY) g(u) for all u E X, 	 (9) 
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i.e. g majorizes the modulus ofcontinuity of.F' at ü, and 

g(t)-0ast—*0 	 (10) 

(which in particular requires F' to be continuous at ). 
The concrete computation of such 6, K, and g is the main challenge in our approach, 

with particular emphasis on K. We will however not address these questions in this sec-
tion, i.e. on the abstract level, but postpone them to the more specific case ofthe bound-
ary value problem (1), (2), to be treated in the following sections. For now, we assume 
that (7)—(10) hold true. 

In order to obtain a suitable fixed-point formulation (3) for our problem (5), we will 
need that the Operator L is onto. (Note that L is one-to-one by (8).) For this purpose, we 
propose two alternative ways, both suited for the later treatment ofproblem (1), (2). 

1) "The compact case". Suppose that T admits a splitting 

(11) 

with a bijective linear Operator L0 E 13(X, Y) and a compact and Fr&het differentiable 
Operator 	X - Y with compact Frchet derivative g'(w). 

Noting that L' e 8( Y, X) by the Open Mapping Theorem, we find that the linear 
Operator 

L 1 g'() : X - X is compact. 

Moreover, since L = L0 + g'(w) by (11), we have the equivalence 

L[u] =u+ (Lg'())[u] =L 1 r] 
	

(12) 

for every u E X, r E Y. Fredholm's Alternative Theorem for compact linear operators 
tells us that the equation on the right of (12) has a unique solution u E X for every 
r e Y, provided that the homogeneous equation (r = 0) admits only the trivial solution 
u = 0. By the equivalence (12), the same is true for the equation L[u] = r. Since the 
homogeneous equation L[u] = 0 indeed admits only the trivial solution by (8), L is 
therefore onto. 

2) "The dual andsymmetric case". Suppose that Y = X', the (topological) dual of X, 
i.e. the space of all bounded linear functionals 1: X - JR. X'(= 13(X, IR)) is a Banach 
space endowed with the usual Operator sup-norm. Indeed, this norm is generated by an 
inner product (which therefore makes X' a Hilbert space) as explained in the following: 
Consider the linear mapping : X X' given by 

([u])[v] := (u, v) X  (u, v e X). 	 (13) 

For all u E X, 

= sup 	= sup 	= 
 T~ VvEX\{O} 	1V11x 	EX\{O} 

i.e. 1 is an isometry (and hence one-to-one). 
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Furthermore, is onto by Riesz' representation theorem for bounded linear func-
tionals 011 a Hilbert space: Given any r e X', some (unique) u e X exists such that 
r[v] = (u, v)x  for all v E X, i.e. T[uJ = r by (13). is therefore called the canonical iso-
metric isomorphism between X and X'. lt immediately gives an inner product on X' by 

(r, s) ,  := 	— 1 [r], 	'[s]) 	(r, s E X'), 	 (14) 

and the norm generated by this inner product is the "old" norm 	, because 1 is iso- 
metric. 

In theoretical functional analysis, the Hilbert spaces X and X' are often identified 
via the isometric isomorphism 1', i.e. they are not distinguished, which however we will 
not do because this might lead to confusion when X is a Sobolev function space, as it 
will be later. 

To ensure that L : X -* Y = X' is onto, we make the additional assumption that 
_tL :  X - X is symmetric with respect to (.' 	which by (13) amounts to the rela- 

tion 

(L[u])[v] = (L[v])[u] for all u,v EX. 	 (15) 

This implies the denseness of the range (_tL)(X) c X : Given any u in its orthogonal 
complement, we have, for all v E X, 

0 = (u, (1L)[v])  X = «ID 	v), 

and hence (_tL)[u] = 0, which implies L[u] = 0 and thus u = 0 by (8). 
Therefore, since '1 is isometric, the range L(X) c X' is dense. For proving that L is 

onto, we are therefore left to show that L(X) ci X' is closed. For this purpose, let 
(L[Un ])ne N denote some sequence in L(X) converging to some r E X'. Then (8) shows 
that (u,)„N is a Cauchy sequence in X. With u E X denoting its limit, the boundedness 
ofL implies L[u,,] L[u](n -* oo). Thus, r = L[u] E L(X), which proves closedness of 
L(X). 

We are now able to formulate and prove our main theorem, which is similar to the 
Newton-Cantorovich-Theorem: 

Theorem 1: Let 6, K, g satisfy conditions (7)—(10). Suppose that sorne es > 0 exists 
such that 

	

G(cs), 	 (16) 

where G(t) := f g(s)ds. Moreover, suppose that 

1) "the compact case" is at hand, 
or 

2) "the dual andsymmetric case" is at hand, and the additionaicondition 

	

Kg(cs) < 1 
	

(17) 

holds true. 
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Then, there exists a solution u E X ofthe equation .F(u) = 0 satisfying 

(18) 

Remark 1: a) Due to (10), G(t) = fg(s)ds is superlinearly small as t - 0. There-
fore, the cruciai condition (16) is indeed satisfied for some "smaii" a ifKis "moderate" 
(i.e. not too large) and h is sufficientiy small, which means according to (7) that the ap-
proximate solution w to problem (5) must be computed with sufficient  accuracy, and 
(16) teils ushow accurate the computation has tobe. This meets the generalphiiosophy 
ofcomputer-assisted proofs: The "hard work" ofthe proofis ieft to the Computer! 

b) For proving Theorem 1, we will use the (abstract) Green's operator L to re-for-
mulate problem (5) as a fixed-point equation, and appiy some fixed-point theorem. If 
the space X were finite-dimensional, Brouwer's Fixed-Point Theorem would be most 
suitable for this purpose. In the application to differential equation problems hke (1), 
(2), however, X has to be infinite-dimensional, whence Brouwer's Theorem is not ap-
phcable. We have two choices: i) Either we can use the generalization ofBrouwer's The-
orem to infinite-dimensional spaces, i. e. Schauder's Fixed-Point-Theorem, which expli-
citly requires additionai compactness properties (holding automatically in the finite-di-
mensional case). In our application to (1), (2) discussed later, this compactness is given 
by compact embeddings of Sobolev function spaces, provided that the domain Q is 
bounded (or at least has finite measure). Since we want to mciude unbounded domains 
in our consideration, too, we make also use of the second Option: ii) We can use Ba-
nach's Fixed-Point Theorem. No compactness is needed then, but instead an additional 
contraction condition (which is condition (17)) is required. Due to (10), this condition is 
however not too criticai ifc (computed according to (16)) is "smaii". 

Proof of Theorem 1. We rewrite problem (5) as 
L[u - w] = -) {(u) 	(w) - L[u - 

which due to the bijectivity of L amounts to the equivalent fixed-point equation 
v e X. v = —L1 [() + {(w + v) - F() - L[v] }] =: T(v) 	 (19) 

for the error v = u -  w. 
Now we are going to show the following properties of the fixed-point Operator 

T: X 
i) T( V) c V for the closed, bounded, non-empty, and convex norm bali 
V := {v E X: (v 

ii) T is continuous and compact (in case 1)) or contractive on V (in case 2)), respec-
tively. 

Then, Schauder's Fixed-Point Theorem (in case 1)) or Banach's Fixed-Point Theo-
rem (in case 2)), respectively, gives a solution v e V of the fixed-point equation (19), 
whence by construction u* := w + v isa solution ofJ(u) = 0 satisfying (18). 

For proving i) and ii), we first note that for every differentiable functionf : [0, 1] -~ 

Y, the real-valued function (f( y is differentiable almost everywhere on [0, 1], and 
(d/dt) (fM y < Ilf1 1 y a.e. on [0, 1]. Hence, for every v, i e X, 
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(w + v) - F(w + ) - L[v 
- y 

=  f (w + (1 - t) + tv) - F(w + ) - tL[v 
- 	

dt dt  

<f{'(w+(l—t)+tv)_L}[v—]M v dt 

f F'(w+(l —t)+tv) —L(ß(xy)  dt 

	

f g((1 
- t) + tv(r) dt 	x' 	 (20) 

using (6) and (9) in the last step. Choosing i = 0 in (20) we obtain, for each v e 
1 r]vx 

F(w + v) - (w) - L[v]) < 	g(t(v 
- 	 0 
)dt. 	= 	g(s)ds  

0  

(21)  

Furthermore, (20) and the fact that g is non-decreasing imply, for all v, 1' e 
1 

F( + v) 	+ ) - L[v 
- 

	
f

g«1 
< 

	- t)I 	+ tMv)dt . llv 
- 

(22)  

To prove i), let v e V, i.e. ll vll x  < ca. Now (19), (8), (7), (21), and (16) imply 

T(v) 	<K(F() + {T(w + v) 
- 	 ) - L[v]}{ 

< K(+ G(IvM)) :~ K(ö+ G(ca)) <ca, 

which gives T(v) E V. Thus, T( V) c V. 
For proving ii), suppose first that "the compact case" is at hand. So (11), which in 

particular gives L = L0 + g'(w), and (19) imply 

T(v) = —L [F(w) + {(w + v) 
- G() - '(w)[v]}] for all v E X, 

whence continuity and compactness of T follow from continuity and compactness of g 
and g'(w), and the boundedness ofL ensured by (8). 

Ifthe "dual and symmetrie case" is at hand, (19), (8), and (22) imply, for v, i E V, 

T(v) - T()M = IL {(w + v) - F(w + ) - L[v 
- 

< KF(w+v) —(w+) —L[v— ]' <Kg(ca)v- 

whence (17) shows that T is contractive on V. This completes the proof of Theorem 1. 
E 

In the following two sections, we will apply the abstract approach developed in this 
section to the elliptic boundary value problem (1), (2). This can be done in (essentially 
two) different ways, i.e. by different choices of the Hilbert spaces X and Y, resulting in 
different general assumptions (e.g. smoothness conditions) to be made for the "data" of 
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the problem and the numerical approximation w, and different conditions (7)—(9), (16), 
(17), as weil as different "results", i.e. existence statements and error bounds (18). 

At this point, we want to report briefly on some other applications of our abstract 
setting which we carinot discuss in more detail in this article. 

For parameter-dependent problems (where T in (5), orf in (1), depends on an addi-
tional parameter .\)‚ one is often interested in branches (u)EJ  of solutions. By addi-
tional perturbation techniques, our method can indeed be generalized to computer-as-
sisted proofs for such solution branches, as long as the parameter-interval 1 defining the 
branch is compact [51]. Such branches may however contain turning points (where a 
branch "returns" at some value .X*)  or bfurcation points (where several - usually two 
branches cross each other). Near such points, the operator L defined in (6) is "almost" 
singular, i.e. (8) holds only with a very large K, or not all all, which makes our approach 
break down. However, there are means to overcome these problems: 

In case of (simple) turning points, the well-known method of augmenting the given 
equation by a bordering equation can also be used here; the "new" Operator }' in (5) 
contains the "old" one and the bordering functional, and the "new" operator L is regu-
lar near the turning point ifthe bordering equation has been chosen appropriately [50]. 

In case of (simple) symmetry-breaking bifurcations, we can, in a first step, include 
the symmetry in the spaces X and Y, which excludes the symmetry-breaking branch 
and regularizes the problem, whence an existence and enclosure result for the symmetric 
branch can be obtained. In a second step, we exclude the symmetric branch by some 
transformation (similar to the Lyapunov-Schmidt reduction), and defining a corre-
sponding new operator JF we can perform our method to obtain an existence and enclo-
sure result also for the symmetry-breaking branch [52]. 

Non-selfadjoint eigenvalueproblems have been treated in [38], again using bordering 
equation techniques normalizing the unknown eigenfunction. So F now acts on pairs 
(u, .X), and is defined via the eigenvalue equation and the (scalar) normalizing equation. 
In this way, we were able to give the first known instability proof of the Orr-Sommer-
feld equation with Blasius profile, which is a fourth-order ODE eigenvalue problem on 
[0,00). 

Also (other) higher order problems are covered by our abstract setting. In [11], we 
could prove the existence of 36 travelling wave solutions of a fourth-order nonlinear 
beam equation on the real line. Biharmonic problems (with AA u as leading term) are 
presently investigated by B. Fazekas; see also [23]. 

3 Strong solutions 

Now we study the elliptic boundary value problem (1), (2) under the additional assump-
tions thatj> and af/ay are continuous on x IR, and that the domain Q c lR' (with 
n <3) is bounded with Lipschitz boundary, and H2 -regular (i.e., for each r e L 2 (), the 
Poisson problem —u = r in 9 , u = 0 on 09 has a unique solution u e H2 (Q)n 
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Here and in the following, L 2 (9) denotes the Hilbert space of all (equivalence ciasses 
of) square-integrable Lebesgue-measurable functions on 9, endowed with the inner 
product 

(u, v)L2 := le uv dx, 

and Hk(l)  is the Sobolev space of all functions u e L 2 () with weak derivatives up to 
order k in L 2 (f). Hk()  is a Hilbert space with the inner product 

(u, v)Hk 	(Du,D'v) L2, 
(iEN 
kF<k 

and it can also be characterized as the completion of C() with respect to (•' )Hk. If 
we replace here COc(f) by C() (with the subscript 0 indicating compact support in 

we obtain, by completion, the Sobolev space H?(f), which incorporates the vanish-
ing of all derivaties up to order k 1 on 99 in a weak sense. 

We note thatpiecewise Ck smooth functions u (e.g. form functions of Finite Element 
methods) belong to Hk()  ifand only if they are (globally) in Ck_I() .  

Our assumption that Q is H2 -regular is satisfied e.g. for C2 - (or C''-)smoothly 
bounded domains (see e.g. [27]), and also for convex polygonal domains Q c JR2  [28]; it 
is not satisfied e.g. for domains with re-entrant corners, like the L-shaped domain 
(_1,1)2 \ [0,1). 

Under the assumptions made, we can choose the spaces 

X := H2 (9) flH), Y := L2 (9), 	 (23) 

and the operators 

:= L0 + g, Lo[u] := -‚ g(u) :=f(., u), 	 (24) 

whence indeed our problem (1), (2) amounts to the abstract problem (5). Moreover, 
L 0  X - Y is bijective by the assumed unique solvability of the Poisson problem, and 
clearly bounded, i.e. in 13(X, Y). Finally, g: X -> Y is Frchet differentiable with den-
vative given by 

g'(u)[v] =(.‚u)v, 	 (25) 

which follows from the fact that g has this derivative as an operator from C() (en-
dowed with the maximum norm[) into itseif, and that the embeddings H2 (f)'— 
C() and C(f)c_L 2 (9) are bounded. In fact, H2 (Q)c—C(Q) is even a compact embedd-
ing by the famous Sobolev-Kondrachev-Rellich Embedding Theorem [1] (and since 
n < 3), which shows that 9 and G(u) (for any u e X) are compact. Thus, "the compact 
case" (see (11)) is at hand. 

For the application ofTheorem 1, we are therefore left to comment on the computa-
tion of constants 6 and K, and a function g which satisfy (7)—(10) (in the setting (23), 
(24)). But first, some comments on the computation of the approximate solution w 
should be made. 
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3.1 Computation of 

Since w is required to be in X = H2 () n H ()' it has to satisfy the boundary condi-
tion exactly (in the sense of being in H ())' and it needs to have weak derivatives in 
L 2 () up to order 2. If Finite Elements shall be used, this implies the need for C'-ele-
ments (i.e. giobaily Cl -smooth Finite Element basis functions), which is a drawback at 
least on a technical level. (In the alternative approach proposed in the next section, this 
drawback is avoided.) If 9 = (0, a) x (0, b) is a rectangle, there are however many alter-
natives to Finite Elements, for example polynomial or trigonometric polynomial basis 
functions. E.g. in the latter case, w is put up in the form 

N M 

= 	a i sin(ir 2-i-) sin(jir), 	 (26) 
•/ 1=1 	=1 

with coefficients ce ij  to be determined by some numerical procedure. Such a procedure 
usually consists of a Newton iteration, together with e.g. a Ritz-Galerkin or a colloca-
tion method, and some linear algebraic system solver, which possibly incorporates mul-
tigrid methods. To start the Newton iteration, a rough initial approximation is needed, 
which can e.g. be obtained by path-following methods, or by use of the numerical 
mountain pass algorithm proposed in [15]. 

An important remark is that, no matter how w is put up or which numerical method 
is used, there is no need for any rigorous (i.e. error free) computation at this stage, i.e. 
the whole variety ofnumerical methods is at hand. 

3.2 Defect bound 

Computing some b satisfying (7) means, due to (23) and (24), computing an upper 
bound for (the square root of) 

f [_w+f(,w)]2dx 	 ( 27) 

(which should be "small" ifw is a "good" approximate solution). In some cases this inte-
gral can be calculated in closed form, by hand or by computer algebra routines, for ex-
ample iff is polynomial and w is piecewise polynomial (as it is if Finite Element meth-
ods have been used to compute it), or iff(x,.) is polynomial and bothf(.,y) and w are 
trigonometric polynomial (compare (26)). The resulting formulas have to be evaluated 
rigorously, to obtain a true upper bound for the integral in (27). For this purpose, inter-
val arithmetic [35, 57] must be used in this evaluation, in order to take rounding errors 
into account. 

If closed form integration is impossible, a quadrature formula should be applied, 
possibly piecewise, to the integral in (27), again with evaluation in interval arithmetic. 
To obtain a true upper bound for the integral, we need in addition a remainder term 
boundfor the quadrature formula, which usually requires rough -bounds for some 
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higher derivatives of the integrand. Such rough bounds can be obtained e.g. by subdi-
viding Q into (many) small boxes, and performing interval evaluations of the needed 
higher derivatives over each of these boxes (which gives true supersets of the function 
value ranges over each of the boxes, and thus, by union, over 

3.3 Bound K tor L' 

The next task is the computation ofa constant K satisfying (8), which due to (23)—(25) 
means 

(U(H2 K Lu]ML2 for all u E H2 () flH), 	 (28) 

whereL : H2(9) Hol 
	- L2 (Q)isgivenby 

L[u = — u+cu, c(x) :=(x,w(x)) (x e ). 	 (29) 
ay 

The first (and most crucial) step towards (28) is the computation of a constant K0 such 
that 

UlIL2 <KoJL[u]L2 for all u E H2 (Q) Hol 	 (30) 

Choosing some constant lower bound c for c on 9 , and using the compact embedding 
H2 ()'—*L 2 (), we find by standard means that (L - c) 	L 2 () - L 2 () is compact, 
symmetric, and positive definite, and hence has a (.' .)  L2 -orthonormal and complete Sys-
tem ( ~Ok)keN  ofeigenfunctions ~ok  e H2 () fl HJ(), with associated sequence (.sk)kEN 

of (positive) eigenvalues converging monotonically to 0. Consequently, L[pk] = 
for k e N, with .Xk = iii' + c converging monotonically to +. Series expansion 
yields, for every u E H2 () fl H ()' 

oc 	 00 	 Dc 

L[u]2 = 	(L[u],k)2 = 	(U,L[yk])2 = 
k=l 	 k=l 	 k=I 

2 > 
( jc~ N
min) 	( 	 2 uMu,nk)2 = min 
 ( j(--N 

k=1 
	i) 	

L2,  

which shows that (30) holds if(and only if) )' 	0 for allj e N, and 

K0> (i1D 1 . 	 (31) 
jcN 

Thus, bounds for the eigenvalue(s) of L neighboring 0 are needed to compute K0  Such 
eigen value bounds can be obtained by computer-assisted means of their own. For exam-
ple, upper bounds to .i,. .. ‚ )'N (with N E N given) are easily and efficiently computed 
by the Rayleigh -Ritz method [56]: 

Let ‚.. ‚ 	e H2 (1) n H (l) denote linearly independent trial functions, for ex- 
ample approximate eigenfunctions obtained by numerical means, and form the ma-
trices 

A l 	((L[], j)L2),I=1 .....N' 	A0 := ((' °i) L2),J=1 ..... N 
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Then, with A 1  < ... <AN denoting the eigenvalues ofthe matrix eigenvalue problem 

A1x = AA 0x 

(which can be enclosed by means ofverifying numerical linear algebra; see [8]), the Ray-
leigh-Ritz method gives 

A i  <A 1 fori=l,...,N. 

However, for computing K0 via (31), also lower eigenvalue bounds are needed, which 
constitute a more complicated task than upper bounds. The most accurate method for 
this purpose has been proposed by Lehmann [42], and improved by Goerisch concern-
ing its range of applicability [9]. Its numerical core is again (as in the Rayleigh-Ritz 
method) a matrix eigenvalue problem, but the accompanying analysis is more involved. 
In most cases, the Lehmann-Goerisch method must be combined with a homotopy 
method connecting the given eigenvalue problem to a simple "base" problem with 
known eigenvalues. A detailed description ofthese methods would be beyond the scope 
ofthis article. Instead, we refer to [53] for more details. 

Once a constant K3 satisfying (30) is known, the desired constant K (satisfying (28)) 
can relatively easily be calculated by explicit a priori estimates: With c denoting a con-
stant lower bound for c, we obtain by partial integration, for each u E H2 (9) fl H ()' 

uL 7 )L[u] ML? > (u,L[u]) = f(vu2 + cu2 )dx> (VU(7 +CMU)2, 

which implies, together with (30), that 

{ jKo (1 - cKo) if cK0 
( 7U42  <KIML[u]ML2, whereK 1  := 	1 	 . 	( 32) 

otherwise 

To complete the H2 -bound required in (28), we need to estimate the L 2 -norm of the 
(Frobenius matrix norm of the) Hessian matrix u \  of u e H2  (f) n H (). If Q is con-
vex (as we shall assume now), we have 

UxxL 7  <)Au)L2 for all u 0 H2() Hol 	 (33) 

(see e.g. [28, 37]); for the non-convex case, we refer to [28, 49]. Now, with c denoting an 
additional upper bound for c, we choose i := max{0, 1  (c + )}' and calculate 

- Au + IU4L2 < ( L [U]ML2 + II P - 
Using that 111, - c( = max{ —c, ( - c) }' and combining with (30), we obtain 

(Au11 L 2  <K2ML[uL2, whereK2 =1 +Komax{—c,—c)}. (34) 

Now, (30), (32), (34) give (28) as follows. For quantitative purposes, we use the modified 
inner product 

(u, v)H2 := 'yQ(u, v)L7 + 7' (Vu,  Vv) L 2 + 72(Au, Av) L2 	 (35) 

(with positive weights 70,71,72)  on X, which due to (33) (and to the obvious reverse in- 
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equality II AUI1L2 < \/iuxL2) is equivalent to the canonical one. Then, (28) obviously 
holds for 

K := J'yoK + y1K +'y2K, 	 (36) 

with K0, K1, K2 from (30), (32), (34). 

3.4 Local Lipschitz bound g tor .T' 

By (23), (24), and (25), condition (9) reads 

+ u) 
-

V< g(u2)v2 for all u, v E H2 () fl  Hol 	(37) 

We start with a mono tonically non-decreasing function -: [0, 
) 
-* [0, 

) 
satisfying 

+y) —(x,(x)) <y) for all x e 9 ,y e IR , 	 (38) 

and (t) - 0 as t -* 0+. In practice, such a function can usually be calculated by 
hand, if a bound for w} is available, which in turn can be computed by interval eva-
luations ofw over small boxes (as described at the end of Subsection 3.2). 

Using k , the left-hand side of (37) can be bounded by 

( (u) 11 V 11 ,2 , 	 (39) 

whence we are left to estimate both the norms 	and 
( 

by 	
• 
With p de- 

noting the smallest eigenvalue of 

—Lu=pu, 	 Hol  

we obtain by eigenfunction expansion that 

JV 2 	 * 	2 	 2 	.2 	2 UML2 = (u, — u)L2 ~ p U(L2, 	U)L 7  ~ () 4L' 

and thus, by (35), 

UIL2 <[o +71p* +72(p*) 2J_uMH2  for all u E H2 (Q) flH). 	 (40) 

Furthermore, in [49, Corollary 1 1, we calculate constants Co, Cl, C2, which depend on 
in a rather simple way allowing explicit computation, such that 

<Cou 	+ CIMVuML2  + C2(uxx42  for all u E H2 (f) flH(f), 

whence by (33) and (35) we obtain 

< [' C + 
	C  + 	C]uH2 for all u e H2 () fl H 

(). 	
(41) 

Using (40) and (41) in (39), we find that (37) (and (10)) hold for 

32 	 JB 110. Band (2008), Heft 1 



M. Plum: Existence and Multiplicity Proofs by Computer Assistance 

(42) 

Remark 2: Via (36) and (42), the parameters 'yo, 'yi ‚72 enter the crucial inequality 
(16). One can choose these parameters in order to minimize the error bound c (under 
some normalization condition on (Yo, 'Yi ' 72), e.g. 'y + + 'y2 = 1), or to maximize 
max{n/K - G(c) : a > 0} (to allow a larger defect bound t5 in (16)). Of course, this 
optimization need only be carried out approximately. 

3.5 A numerical example 

Consider the problem 

Au + u2  = s - sin(xi)sin(x2) (x = ( x1,x2) e Q := (0,1)2), u = 0 on d. 	(43) 

The resuits reported here have been established in [10] in joint work with P. J. McKenna 
and B. Breuer. 

lt had been conjectured in the PDE community since the 1980's that problem (43) 
has at least 4 solutions for s > 0 sufficiently large. 

For s = 800, we were able to compute 4 essentially different approximate solutions 
by the numerical mountain pass algorithm developed in [15], where "essentially differ-
ent" means that none of them is an elementary symmetry transform of another one. 
Using finite Fourier series of the form (26), and a Newton iteration in combination with 
a collocation method, we improved the accuracy of the mountain pass solutions, result-
ing in highly accurate approximations .. . ‚ w 4  of the form (26). 

We applied our computer-assisted enciosure method to each of these four approxi-
mations, and were successful in verifying the corresponding four inequalities (16), with 
four error bounds ai,. .. ‚ n. Therefore, Theorem 1 guarantees the existence offour so-
lutions u 1 , ... ‚ U4 E H2 () fl H(Q) ofproblem (43) such that 

1lu1 - Ji)H2 	(i (i = 1,... ‚4). 

Using the embedding inequality (41), we obtain in addition 

<ß (i= l,...,4) 
	

(44) 

for ß := [«' C + 	C + 7 'c1L 1 . Finally, it is easy to check on the basis ofthe nu- 
merical data that 

Sw—w 1 	>ß+j (i,j= 1,...,4,ij) 

for each elementary (rotation or reflection) symmetry transformation S of the square 9, 
whence (44) shows that Su 1 	u (i,j = 1.....4. 1 14  /) for each of these S, i.e. that 
u1, 	‚ u4  are indeed essentially d(fferent. 

The following Figure 1 shows plots ofc 1  ..... . (we might say as well: ofu 1  .... .u4 , 

since the error bounds Oi  are much smaller than the "optical accuracy" of the figure). 
The first two solutions are fully symmetric (with respect to reflection at the axes 
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X1 = 1 ,X2 = 1 ,xi = x2,xl = 1 - x2), while the third is symmetrie only with respect to 

x2  = ‚ and the fourth only with respect to x1 = x2. 

Table 1 shows the defect bounds b (see (7), (27)), the constants K satisfying (8) (or 
(28)), and the 	-error bounds 3 (see (44)) for the four solutions. 

We wish to remark that, two years after publication of our result, Dancer and Yan 
[21] gave a more general analytical proof (which we believe was stimulated by our re-
sult); they even proved that the number of solutions of problem (43) becomes un-
bounded as s -* oo. 

Figure 1: Four solutions to problem (43), s = 800. 

approximate solution defect bound b K (see (28)) error bound ß 

WI 0.0023 0.2531 5.8222. 10- 

0.0041 4.9267 0.0228 

0.0059 2.8847 0.0180 

0.0151 3.1436 0.0581 

Table 1: Enciosure results for problem (43). 

4 Weak solutions 

We will now investigate problem (1), (2) under weaker assumptions on the domain 
ci JR'1  and on the numerical approximation method, but stronger assumptions on the 

nonlinearityf, compared with the "strong solutions" approach described in the pre-
vious section. 9 is now allowed to be any (bounded or unbounded) domain with 
Lipschitz boundary. We choose the spaces 

X := H(l), Y := H() 	 (45) 

for our abstract setting, where H_t(l) := (H())' denotes the topological dual space 
ofH(), je. the space of all bounded linear functionals on H0'(9). We endow Hol  
with the inner pro duct 

(u, v)Hi := (Vu, Vv)L2 + a(u, v)L 2 	 (46) 
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(with some parameter a> 0 to be chosen later), and H' () with the "dual" inner pro-
duct given by (14), with from (13). 

To interprete our problem (1), (2) in these spaces, we first need to define /u (for 
u E H()), or more general, divp (for p e L 2 ()), as an element ofH'(). This defi-
nition simply imitates partial integration: The functional divp: H (cl) - JR is given by 

(divp)[] := 

- / 

p - v dx for all E 	 (47) 

implying in particular thatl (divp)[ ~o] 	p11 L 2 P7sO I1 L 2 	(pML2)HI1 whence divp is 
indeed a bounded linear functional, and 	 0 

)divpI < P(L2. 	 (48) 

Using this definition of Lu(= div(Vu)), it is easy to check that the canonical isometric 
isomorphism 1 : H (f) - H1 () defined in (13) iS 110W given by (note (46)) 

[u] = —L\u+au (u E Hol 	 (49) 

where au E H(l) is interpreted as an element ofH (Q) as explained in the following. 
Next, we give a meaning to afunction being an element ofH 1  (Q), in order to define 

f(., u) in (1) (and au in (49)) in H' (Q). For this purpose, let L denote the linear space 
consisting of all (equivalence classes oD Lebesgue-measurable functions w : 9 - JR 
such that 

SUP 	 w dx:EH)\{0}} <. 1 (  

00 

For each w E L, we can define an associated linear functional £ : H (2) - JR by 

f wcix for all E Hol  

£?, is bounded due to (50) and hence in H' (). Identfying w e L with its associated 
functional £ e H1 ()' we obtain 

(51) 

and u'(H_1  is less than or equal to the left-hand side of(50), for every w E C. 
To get a better impression of the functions contained in ‚ we recall that Sobolev's 

Embedding Theorem [1, Theorem 5.4] gives H(f) c LP(l), with bounded embedding 
H(9)—LP(2) (i.e. there exists some constant C1 , > 0 such that (u(,p < CPUHI for 
allu e H((2)),foreach 0 

p[2,oc)ifn=2, 	pE[2.]ifn>3. 	 (52) 

Here, LP() denotes the Banach space of all (equivalence classes of) Lebesgue-measur-
ahle functions u : Q - JR with finite norm 

(50) 
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IUIILP 	[fudx]. 	 (53) 

With p in the range (52), and p' denoting its dual number (i.e. p + (p')' = 1), we ob- 
tain by Hölder's Inequality, combined with the above embedding, that for all 
w E LP'(2) 

fwdx < 	 < CIlwll Lp , M H'  
0 

implying w e £‚ and WMH_I < Cp llwll Lp , . Consequently, 

L ' (Q) c t, 	 (54) 

and (note (51)) the embedding LP'()_*H ( S) is bounded, with the same embedding 
constant C as in the "dual" embedding H(t)'—LP(Q). Note that the range (52) forp 
amounts to the range 

2n 
p E (1,2] if n = 2, 	p E —‚2 if n > 3 	 (55) 

for the dual numberp'. 
By (54), the linear span ofthe Union of all LP'(), taken overp' in the range (55), is a 

subspace of r, and this subspace is in fact all of L1 which we need (and can access) in 
practical applications. 

Coming back to our problem (1), (2), we now simply require that 

f(,u) E £ for all u E Hol 	 (56) 

in order to define the termf(., u) as an element ofH' (). 
Our abstract setting requires furthermore that 

H-'() 	 (57 • 	
u 	—u+f(,u) 

is Frchet-differentiab1e. Since A : H () -* H1 () is linear and bounded by (48), this 
amounts to the Frchet-differentiabiIity of 

Hol 	_* H'() 	
(58) 

j U 	H-* 

For this purpose, we require (as in the previous section) that Of/3y is continuous on 
x JR. But in contrast to the "strong solutions" setting, this is not sufficient here; the 

main reason is that H () does not embed into C(). We need additional growth re-
strictions onf (x, y) or (df/Dy)(x,y) asy 00. 

36 	 JB 110. Band (2008), Heft 1 



M. Plum: Existence and Multiplicity Proofs by ComputerAssistance 	J 

An important (but not the only) admissible dass consists of those functionsf which 
satisfy 

f(.,0) e L, 	 (59) 

ay 
	isa boundedJinction on 

	
(60) 

(x,y) r i (x, O) <1 	+ c,y2 (x e fty e 	)' 	 (61) 

with non-negative constants Cl,  c2, and with 

0<r1 <r2 <ifn=2, 	0<r1 <r7<ifn>3. 	 (62) 

(A "small" r 1  will make condition (61) weak near y = 0, and a "large" r2  will make it 
weak for lyl - oo.) 

Lemma 1: Letf satisjy (59)—(61), besides the continuity of3f/5y. Then G given 
by (58) is weIl-defined and Frchet-differentiable,  with derivative '(u) E B(H ()' 
H()) (foru e H))givenby 

(g'(u)[v])[] 

= / 	

(' u)vdx 	(v, e H (rn). 	 (63) 

The proofofLemma 1 is rather technical, and therefore omitted here. 
According to (47) and (63), we have 

(F(u)[])[] 	 (u,EH)) (64)
ay  

for the operator .F defined in (57), which in particular implies condition (15) (for any 
w E H (); note (6)), in the setting (45), (57). Thus, the "dual and symmetric case" (see 
Section 2) is at hand. 

Remark 3: If the domain 9 is bounded, several simplifications and extensions are 
possible: 

a) The range u> 0 for the parameter in (46) can be extended to (T > 0. 
b) Condition (61) can be simplified to 

Of 
	

+ 	(x E 9,y E ) 	 ( 65) 

for some r in the range (62). Condition (60) is satisfied automatically and can therefore 
be omitted. 

c) In the case n = 2, the power-growth condition (61) (or (65)) is too restrictive (for 
bounded domains). Instead, exponential growth can be allowed, based on the Trudin-
ger-Moser inequality [45, Theorem 1 and the first part ofits proofj which states that 
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1 	 _____________ 	 ________________ 
me()fexP [(

u(x) )
' l dx<  1+ 	1 

 
CUi 
	

- 	47rc2 - 1 	
(u e H(Q)) 	 (66) 

for each c> (4). In [54], we showed that e.g. in the casef(x,y) = 	the Frchet 
differentiability (and other properties) ofthe mapping g defined in (58) can easily be de-
rived from (66); see also the second example in Subsection 4.5. 

Again, we comment 110W on the computation of an approximate solution i, and of 
the terms b, K, and g satisfying (7)—(10), needed for the application ofTheorem 1, here 
in the setting (45), (57). 

4.1 Computation of 

By (45), w needs tobe in X = Hol 	only (and 110 longer in H2 (2), as in the "strong so- 
lutions" approach of the previous Section). In the Finite Element context, this increases 
the dass ofallowed elements significantly; for example, the "usual" linear (or quadratic) 
triangular elements can be used. In case of an unbounded domain 9, we are further-
more allowed to use approximations w of the form 

fwo on 0
7  W_0 on\o 	 (6) 

with Qo  c 9 denoting some bounded subdomain (the "computational" domain), and 
wo E H (2o ) some approximate solution of the differential equation (1) 011 90 , subject 
to Dirichlet boundary conditions on 

We pose the additional condition ofw being bounded, which on one hand is satisfied 
anyway for all practical numerical schemes, and on the other hand turns out to be very 
useful in the following. 

4.2 Defectboundw 

By (45) and (57), condition (7) for the defect bound önow amounts to 

(68) 

which is a slightly more complicated task than computing an upper bound for an inte-
grat (as it was needed in Section 3). The best general way seems to be the following. First 
we compute an additional approximation p e H(div, 2) to Vw. (Here, H(div, ) de-
notes the space of all vector-valued functions E L 2 ()" with weak derivative divy in 
L 2 (2). Hence, obviously H(div, l) D Ht p can be computed e.g. by interpolation 
(or some more general projection) ofVw in H(div, )' or inH t  (2)". lt should be noted 
that p comes "for free" as a part of the approximation, if mixed Finite Elements are used 
to compute w. 
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Furthermore, according to the arguments before and after (54), applied with 
p = p'  = 2, 

' (H! <C2(WIL2 for all it ,  E L 2 (). 	 (69) 

For explicit caiculation of C2, we refer to the appendix. By (48) and (69), 

div( -Vw+p)11 H_1 +M -divp+f(.,w)MH1 	 70 
(Vw-p 	+C2M - divp+f( . ,w)ML2, 

which reduces the computation of a defect bound 5 (satisfying (68)) to computing 
bounds for two integrals, i.e. we are back to the situation discussed in Subsection 3.2 al-
ready. 

There is an alternative way to compute 5 ifw is ofthe form (67), with wj E H2 (Q0 ) fl 
H ()' and with Q o  having a Lipschitz boundary. This situation can arise e.g. if Q is 
the whole of 1R, and the "computational" domain Q o  is chosen as a "large" rectangle, 
whence wo  can be put up e.g. in the form (26). 

Using partial integration on 9 0 , we obtain now 

c2 [ - & +f(., CDQ)2(Q0 ) + 11 f(, 0) ) 	 (71) 2 (O\i  O]8+C,r 
3 O L2(O11 0 ) 

with Ctr  denoting a constant for the trace embedding H 1  (go) 	L 2 (39o), the explicit 
computation of which will be addressed in the appendix, and 0wo/3v0 the normal den-
vative on9. 

4.3 Bound KforL -1  

According to (45), condition (8) now reads 

	

UMH1 <KL[u]IHl for all u e Hol 	 ( 72) 

with L, defined in (6), 110w given by (note (57), (58)) 

L = -L +G'(w) : Hol 	-* H(). 

Under the growth conditions (59)-(62), Lemma 1 (or (63)) shows that, more concre-
tely, 

af dx 	( 	e H)); 	 (73) 

the same formula holds true also in the exponential case mentioned in Remark 3c). So 
we will assume from 110W 0fl that L is given by (73). 
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Making use of the isomorphism 'I : H (2) -* H_t (2) given by (13) or (49), we ob-
tain 

L[u]
1H' = 	t Lu] 	(u e H (Q)). 
 H 

Since moreover 	1 L is (•' •)H' 
—symmetric by (73) and (15), and defined 011 the whole 

0 
Hilbert space H0t  (Q), and hence se/fadjoint, we find that (72) holds for any 

K> ['nin{I ) is in the spectrum of _ t L}r ! , 	 (74) 

provided that the min is positive (which is clearly an unavoidable condition for 	'L 
being invertible with bounded inverse). Thus, in order to compute K, we need bounds 
for 

i) the essential spectrum of J'L (i.e. accumulation points of the spectrum, and ei-
genvalues of infinite multiplicity), 

ii) isolated eigenvalues of J 'L of finite multiplicity, more precisely those neighbor-
ingO. 

ad i) If 9 is unbounded, we suppose again that w is given in the form (67), with some 
bounded Lipschitz domain Qo  c ft If f is bounded, we may assume the same, simply 
choosing Qo  := 2 (and wo w). 

Now define L 1  : Hl) - H_t() by (73), but with (0f/dy)(x.w(x)) replaced by 
(0f/3y)(x, 0). Using the Sobolev/Kondratchev/Rellich Embedding Theorem [1], imply-
ing the compactness ofthe embedding H 1 (90)—L 2 ( 0 ), we find that _tL - _tL0  
H () - H (Q) is compact. Therefore, the perturbation result given in [32, IV, Theo-
rem 5.35] shows that the essential spectra of'L and L 0  coincide. Thus, being left 
with the computation of bounds for the essential spectrum of _tL0,  we can use e.g. 
Fourier transform methods if 9 = JR" and (df10y)(., 0) is constant, or Floquet theory 
if (Of/3y) (' 0) is periodic. Alternatively, if 

af (x,0) >co > _p 	(x E )' 	 (75) 

with p E [0, oc) denoting the minimal point of the spectrum of -A on H (2), we ob-
tain by straightforward estimates of the Rayleigh quotient that the (full) spectrum of 
I_tL0, and thus in particular the essential spectrum, is bounded from below by 
min{1,(co  + p*)/( a + p*)} .  

ad ii) For computing bounds to eigenvalues of _tL,  we choose the parameter or in 
the H -product (46) such that 

a>(x,w(x)) 	(xE); 	 (76) 
OY 

thus, we have to assume that the right-hand side of(76) is bounded above. Furthermore, 
we assume that the infimum Sg of the essential spectrum of 'L is positive, which is true 
e. g. if (75) holds. As a particular consequence of (76) (and (49)) we obtain that s o  < 1 
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and all eigenvalues of 	'L are less than 1, and that, via the transformation 
= 1/(1 - ))‚ the eigenvalue problem 	L[u] = )u is equivalent to 

-Au+ ow = K (0,- 
19y 

 (., w) 
) U, 
	 (77) 

(to be understood as an equation in H 1  ())' which is furthermore equivalent to the ei- 
genvalue problem for the selfadjoint Operator R := ('H' 	- 'L). Thus, defining 

( 

the essential spectrum of problem (77) to be the one of R, we find that lt iS bounded 
from below by 1/(1 so ) if s0  < 1, and is empty ifs0  = 1. In particular, its infimum is 
larger than 1, since s o  > 0 by assumption. 

Therefore, the computer-assisted eigenvalue enclosure methods mentioned in Sub-
section 3.3 (which are applicable to eigenvalues below the essential spectrum; see [63]) 
can be used to enciose the eigenvalue(s) of problem (77) neighboring 1 (if they exist), 
whence by the transformation r, = 1/(1 .\) we obtain enclosures for the eigenvalue(s) 
of '1 1 L neighboring 0 (if they exist). Taking also s o  into account, we can now easily 
compute the desired constant K via (74). (Note that K = s 1  can be chosen if no eigen-
values below the essential spectrum exist.) 

4.4 Local Lipschitz bound g tor 7 

In the setting (45), (57), condition (9) now reads 

Of 	I (‚() +u(x)) (x,w(x))]v(x)(x)dx <g(u 1 )v ll 	(78) 
[öy 	 3)2 

0 

for all u, v, e H (). Here, we have assumed that the Frchet derivative of g (defined 
in (58) is given by (63), which is true e. g. under the growth conditions (59)-(62), but 
also in the exponential case (with ii = 2 and 9 bounded) mentioned in Remark 3c). We 
will now concentrate on the case where (59)-(62) hold true. For the exponential case, 
we refer to [54] and to the second example in Subsection 4.5. 

As in the strong solutions approach treated in Section 3, we start with a monotoni-
cally non-decreasing function g : [0, oc) - [0, oc) satisfying 

-(x,w(x) +y) - -(x,w(x)) <g(y) for all x E Q, y e IR, 	 (79) 

and (t) - 0 as t - 0+, but now we require in addition that (t' /r)  is a concave func-
tion oft. Here, r := r2  is the (larger) exponent in (61). 

In practice, g can often be put up in the form 

(t)=ajti 	(0<t<oc), 

where ai,.. . ‚ a > 0 and pl,. •. ‚ I'N E (0, r] are arranged in order to satisfy (79). 
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Now defining (t) := (tu/r), the left-hand side of (78) can be bounded by (note 
(79)) 

fu(x)v(x)(x) dx 

= / 	u(x) )Jv(x)(x) A. 	 (80) 

Without loss of generality we may assume that vo does not vanish identically (almost 
everywhere) 011 Q (otherwise, (78) is trivial because the left-hand side is zero). Since 
vp e Lt  (9) and hence I v(x) ~o(x)1 dx induces a finite measure, and since is concave, 
Jensen's Inequality [7] shows that 

fu(x))v(x)'o(x) dx 	(1 u(x) rV(X)(X)  dx 

(81) 
fv(x)(x)dx 	 fv(x)(x)dx 	

). 

0 	 / 
Furthermore, for .X E (0, 1] and t e [0, )' t1)\t) = t/Xt + (1 	))0) > XtIr(t) + 
(1 - .X)(0) = .Xt(t), i.e. «t) <)«'tJr()t). By Cauchy-Schwarz and the embedding 
Hl)— L2 (9), 

J v(x)o(x)dx 

:= E (0, 11, 
C}vM H i kPMH 

whence the right-hand side of(81) is bounded by 

CV)HI PlHi 	

(f 

u(x)Iv(x)ip(x)dx\ 

fv(x)(x)dx CVMHiMHi 	). 	(82) 

0 

According to (62), we can find some 

qE(1,00)ifn=2,qE[,)ifn>3, 	 (83) 

such that qr is in the range (52). Since (83) implies that also p := 2q/(q - 1) is in the 
range (52), both the embeddings and H(Q)_LP(fl) are bounded. 
Furthermore, q' +p +p' = 1, whence the generalized Hölder Inequality gives 

f u(x) vx)(x)Idx Ujqr llvllLp < C rC)u)j VMHi 	MH([ Ho  
0 

Using this estimate in (82), and combining it with (81) and (80), we find that the left-
hand side of (78) is bounded by 

C(VHI I H 1  
IIU Ilr  
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Since (t) = (t), (78) therefore holds for 

g(t) := C2. k (Cqr (Cp /C2)t) (0 t < )' 	 (84) 

which also satisfies (10) and is non-decreasing. 

45 Examples 

In our first example, we consider the problem of finding nontrivial solutions to 

_u+V(x)u_u2=0onQ:=2, 	 (85) 

where V(x) = A + Bsin(7r(x l  + x)) sin(7r(xl - x2 )), with real parameters A and B. 
The resuits presented here have been obtained in joint work with B. Breuer and P. J. 
McKenna. 

We are interested only in solutions which are symmetric with respect to reflection 
about both coordinate axes. Thus, we include these symmetries into all function spaces 
used, and into the numerical approximation spaces. 

We treated the particular case A = 6, B = 2. On a "computational" domain 9 0  := 

(—' £) x (—' £)‚ we computed an approximation w o  e H2 (o) fl H (Q0 ) of the differ-
ential equation in (85), with Dirichlet boundary conditions on 09 0 , in a finite Fourier 
series form like (26) (with N = M = 80). For finding o., we started with a nontrivial ap-
proximate solution for Emden's equation (which is (85) with A = B = 0) on 90 , and 
performed a path following Newton method, deforming (A, B) from (0,0) into (6,2). 

In the single Newton steps, we used a collocation method with equidistant colloca-
tion points. By increasing the sidelength ofl 0  in an additional path following, we found 
that the approximation wo remains "stable", with rapidly decreasing normal derivative 
awo /auo  (on 99), as £ increases; this gives rise to some hope that a "good" approxima-
tion w for problem (85) is obtained in the form (67). For £ = 8, )Lo/dlJOML2 ()() ) turned 
out to be small enough compared with 11 — 

AWO + V0 — WOJL2(20), and we computed a 
defect bound 6 (satisfying (68)) via (71) as 

8 = 0.7102. 10_2; 	 (86) 

note that, by the resuits mentioned in the appendix, C2 = a, and Cir  = 
+,lf + 2a] 2 .  Moreover, (76) requires a> A + B = 8 (since w turns out to be non- 
negative). Choosing a := 9, we obtain C2 < 0.3334 and Ctr  < 0.6968. 

Since condition (75) holds for co = A — B = 4 (and = 0), the arguments following 
(75) give the lower bound SO := 4/9 > 0.4444 for the essential spectrum of 1 L, and 
hence the lower bound 1/(1 — SO) = 1.8 for the essential spectrum of problem (77). 

By the eigenvalue enciosure methods mentioned in Subsection 3.3, we were able to 
compute the bounds 

ril <0.5293,t-, > 1.1769 
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for the first two eigenvalues ofproblem (77), which by (74) leads to the constant 

K = 6.653 	 (87) 

satisfying (72). 

For computing g satisfying (9) or (78), we first note that (79) holds for 

(t) := 2t, 

and (61) for r 1  = r, = 1, whence the additional concavity condition is satisfied. Choos-
ing q 2 we obtain qr = 2 and p = 4 in the arguments following (83), whence (84) 
gives 

g(t) = 2C2 Ct =t 	 (88) 

since 2C2 C = o by Lemma 2a) in the appendix. 
Using (86)—(88), we find that (16) and (17) hold for a = 0.04811, whence Theorem 

1 implies the existence ofa solution u E H (fl2)  to problem (85) such that 

— wM H l < 0.04811. 	 (89) 
0 

lt is easy to check on the basis ofthe numerical data that w(Hl > 0.048 11, whence (89) 
shows in particular that u is non-trivial. 

We wish to remark that it would be of great interest to achieve such resuits also for 
cases where 0 <A <B in the potential V, because V is then no longer non-negative, 
which excludes an important dass of purely analytical approaches to prove existence of 
a nontrivial solution. So far, we were not sucessful with such cases due to difficulties in 
the homotopy method which has to be used for our computer-assisted eigenvalue enclo-
sures (see the brief remarks in Subsection 3.3); note that these difficulties occur on a 
rather "technical" level. We were however able to compute an (apparently) "good" ap-
proximation w, e.g. in the case A = 6, B = 26. 

The following Figure 2 shows plots ofw for the successful case A = 6, B = 2, and for 
the non-successful case A = 6, B = 26. 

Figure 2: Example (85); A = 6, B = 2 (left) and A = 6, B = 26 (right). 
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In our second example, we consider the Gelftrnd equation 
L u= .\eu on  Q , u=0on02, 	 (90) 

depending on a real parameter A. We are interested in parameter values.\ > 0 only; ne-
gative values of,\ are less important.The resuits reported on here are joint work with C. 
Wieners and published in [54]. 

lt is known that, on "simple" domains Q like the unit square or the unit ball, pro-
blem (90) has a "nose"-shaped branch ‚ u) of solutions, starting in = 0, u 0), 
going up to some maximal value of,\ where the branch has a turning point, and then re-
turning to.\ = 0 but with jull,. tending to ne as,\ - 0. Moreover, there are no other so-
lutions (on these "simple" domains). 

Here (and in [54]) we are concerned with a special non-convex domain Q c JR2  
plotted in Figure 3. (For an exact quantitative definition of Q, see [54].) Q 1S Symmetrie 
with respect to the x 1  -axis but not quite Symmetrie with respect to the x 2 -axis; it is a bit 
shorter on the left-hand side than 011 the right. Starting at (.X = 0, u 0), and perform-
ing numerical branch following, we obtained the usual "nose"-shaped branch (of ap-
proximate solutions) plotted in Figure 4; the plot consists in fact of an interpolation of 
many grid points. 

Obviously, the approximationS develop substantial unsymmetries along the branch. 
In order to find new (approximate) solutions, we rejlected such an unsymmetric approx-
imation about the x,-axis, re-arranged the boundary values (which is necessary but ea-
sily possible due to the slight unsymmetry of ))‚ and re-started the Newton iteration. 
Fortunately, it "converged" to a new approximation, and by branch following we could 
detect a new branch of approximate solutions plotted (together with the "old" one) in 
Figure 5; in order to obtain a nicely visible separation of the two branches, we intro-
duced the difference d(u) between the two peak values ofeach approximation as a third 
dimension in the bifurcation diagram. 

CZ:3 
Figure 3: Domain 9 for example (90). 

In oder to prove the existence of a new solution branch, we performed the computer-
assisted method described above for the selected value ) = 15/32. Here, our "new" ap-
proximation w was computed with 65536 quadratic triangular finite elements, corre-
sponding to 132225 unknowns. 

For calculating a defect bound 6 (satisfying (68)), we used essentially (up to some 
technical refinements) the estimate (70), where the approximation p e H(div, ) to Vc 

was computed by linear Raviart-Thomas elements. The result is 

6 = 0.8979. 10-2. 	 (91) 
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Since (Df/0y)(x,y) = —)e' <0 here, condition (76) is satisfied for a = 0; indeed, this 
choice is allowed because 9 is bounded (see Remark 3a)). We computed eigenvalue 
bounds for problem (77) by the Rayleigh-Ritz and the Lehmann-Goerisch method, ex-
ploiting symmetry properties, with the final result that (72) holds for 

K=3.126; 	 (92) 

note that problem (77) has no essential spectrum here since 9 is bounded. 

E 

0 	 0.1 	0.2 	 (01 

Figure 4: Main branch of (approximate) 
	

Figure 5: Main and new branch für 
solutions for problem (90). 	 problem (90). 

For proving that g defined in (58) is Frchet differentiable and for computing a 
function g satisfying (9) or (78), we make essential use of the Trudinger-Moser inequal-
ity (66) (note that Lemma 1 does not apply here due to the exponential nonlinearity). 
Foreachu E H(f) \ {0}, 

2 

4u(x)} = 2.2Mui . 	<4Mui + H  
UHi 	 11 u 11 

whence (66) (with c := 1) gives, since [47r/(47r - 1)]1/4 < 1.03, 

exp(u)ML4 < 1.03 me(exp(u( 1 ). 	 (93) 

For all uO,  u, v, E H ()' the generalized Hölder Inequality and (93) imply 

f eu0U - euO 11 vi idx < f ?° e ui vi 	dx <hut' 	1L 1UL6 1I V ML6 
t_t 

<iieoiiL4 1.03 meas(exP(MuIi) CuM H i ii V»  I<MHI 	(94) 

By an argument similar to the abstract estimate (20), (21), we obtain the desired Frchet 
differentiability from (94). Furthermore, for u o  := w, (94) shows that (78) holds for 

g(t) = 7te 2 , where 7 := XeL4 . 1.03 meas()C, 	 (95) 

and thus G(t) = 'g(s)ds = 17(exp(t2) - 1) <Lyt2exp(t2)  From the numerical data, 
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Lemma 2 (appendix), and the result p > 1.4399 (obtained by eigenvalue bounds), we 
obtain that < 5.62. Together with (91), (92), (95), we obtain that (16) and (17) hold 
for c := 0.05066, whence Theorem 1 gives the existence of a solution u E H() of 
problem (90) (with\ = 15/32) such that 

- 	<0.05066. 	 (96) 
0 

(lt should be remarked that we could do without condition (17) being satisfied, since f 
is bounded and hence we could use compactness properties, and Schauder's instead of 
Banach's Fixed Point Theorem.) 

In the same way, we also obtained existence results with H -error bounds for two so-
lutions of (90) 011 the "old" (nose-shaped) branch, again for ) = 15/32. From the nu-
merical data, and all three error bounds, we can easily deduce that the three solutions 
are pairwise different, whence u established above lies 011 a new independent solution 
branch; the Implicit Function Theorem (plus some perturbation type argument show -
ing that —z - H(l) -* H -1 (l) is one-to-one and onto) shows that indeed a so-
lution branch through (/) = 15/32, u*)  exists. 

5 Appendix: Embedcling constants 

At various points in this paper, an explicit norm bound for the embedding 
H (l)_-*LP(), i.e. a constant C such that 

	

U)p <CPUH1 for all u E Hol 	 ( 97) 

is needed, forp in the range (52), and with 	and 1 . p defined in (46) and (53), 
respectively. Here, we are not aiming at the optinal constants, but at "good" constants 
which are easy 10 comp Ute. 

Lemma 2: Let p e [0, ) denote the minimal point of the spectrUm of —Lx on 

Hol  
a) Let n = 2 andp E [2, ). With v denoting the largest integer < p12, (97) holds 

for 

( - 

1 	
2 

c = (98) 

(where the bracket-term ispUt eqUal 10 1 ifu = 1). 

b) Let n > 3 andp e F2, i1 With s := n (1_ 1+ E [0, 1], (97) holdsfor [ n-2] 	 \P 	2 	1) 

	

(7n=(n--- 
n—  

l 2)) 

\1_S
s

CP (sp*+a) 	 (99) 

(where the secondfactor ispUt equal to 1 (fs = 0). 
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Proof. ada) Since C() is dense in Hol 	it suffices to prove (97) for u E C(l). 
By zero extension outside 9, we may regard u as a function in C(IR 2 ). 

For all (x j  ‚ X2) e JR2  

u(xt,x7) =f 
u(t,x2)_1sgn(u(t,x2))(t,x2)dtf u(t,x7)'(t,x2)dt

oxi 

and analogously, 

u(xi,x2) 	f u(t, x) 2 
_iI Du 

(t, X2) dt. 

Adding these two inequalities gives 
DC 

"—iIDu 
2 l—(t,xn)ldt. U(X1,X2) < f 

An analogous inequality is obtained by integration over x2 instead of xt. Multiplication 
ofthese two inequalities yields 

oc  

	

pl 	 ~u  u(xI,x2) 
< 	/ U(t,X2) 	(tx2)dt) 

( / u(xi, t) 	(xi, t) dt) 	P2  ( 

Note that, on the right-hand side, the first factor depends only on x 2 , and the second 
only on x. Thus, integrating this inequality over JR 2  we obtain, using Cauchy-Schwarz, 

f udx < 

( 

fu2ix vu2dx). 	 (100) 
32  

/IR 2 

By iteration ofthis inequality, 

udx 	2)(p_4)2 (i uP22dx)  (i vu2dX) 
. (101) 

Let q := p - 2v + 2. By the choice of v, we have 2 < q <4. Thus, Hölder's Inequality 
gives the following simple interpolation inequality: 

	

uI qdx
= 	

u-usx 
< (f u4dx) 

2 

(i u2dx) 

2 	

(102) 

Using (100) with 4 in place ofp, inserting the result into (102), and further inserting into 
(101) gives, since (q12) - 1 = (p12) - v, 
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"2 
udx <p2(p - 2)2 	(p - 2v+4)2  1 	u2d 

- 	
x 

( 	

vU2dx f 	32 32 	 32 	()
) 

\
f 

jR2 	J\R2 	/ 
(103)  

Moreover, 
2 

\p

(IR2 

\ p 

	

(f u2dx) 	1 vU2dX)

2 	/ 	/ 
2 	 2 - 	 1-- 1\p/ 	 p 

< (_ 
	

[ [ Vu2dx+a f u2dv) ( 1 vu2dx)
+a 

J   	1! \2 	/ 

	

1 	

{ [

f Vu2dx+(T f u2 dx  + (1 _) 1 vu2dx1 

	

( +a) 	 2 	j 	 2 	J 

	

1 	2 
= 	 2 UMHl. 

1' 
( +) 

Using this inequality in (103), and moreover caiculating 

	

_2)2(p_2v+4)2(i) 	
rpp 

	

32 	32 	 32 	
- 	= 	i) 	(_+2)]2.()2+, 

we obtain the assertion. 

adb) In [24, proof of Theorem 9.2, (9.10)], it is shown that, again for u E C(IR"), 

23xiL2 

Thus, by the arithmetic-geometric mean inequality, 

<(2)]VU]L2 	 (105) 

which implies the result (even with u = 0 in (46)) if p = 2n/(n - 2). Now let p 

[2, 2n/(n - 2)), whence s = + 	e (0 1  1]. Again, we use the interpolation in- 

	

(Pi  — 	 ",1 

equa1ity(notethat-2p(1 s) + 1ps = 1) 

	

2n 	2 

(104)  
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/ 	 \ ttp(l_s) / 	\ J2S 

f udx=  f u'udx<  (\f uHldx) 	(\f u2dx) 

1R 	 1R' 	 1R' 	 1R 

whence, by (105), 

(1—s) 

(1 vu2dx) 	(1 u2dx) . 	 (106) 
— (7n~(n --2) 

) 

Moreover, by arguments similar to (104) 

(i u2dx)  (1 vu 2 dx) 	_l)s kHI 

Inserting into (106) gives the assertion. 	 E 

Remark 4: The embedding constants given in Lemma 2 depend on the minimum 
ofthe spectrum of —Lx on H (cl). Ifno information on p*  is available, one may sim-

ply use the lower bound 0 for p. If 9 contains balls of arbitrarily large radius, p is 0. 
In these cases the parameter a in (46) must of course be chosen positive. 

In many cases, however, positive lower bounds for p can easily be computed, since 
depends in an antitone way on the domain 9 . If e.g. f is contained in a rectangle 

(a i ,b i ) x 	x (a,b), where a 1  = —co and b, = oo are admitted, then p > 
- aj ) 2 .  

If Q c fl 2  has finite measure, another simple lower bound for p*  is obtained by 
using (100) for p 2, implying that the Rayleigh quotient for -‚ and hence p,  is 
> 8/meas(9). 

More accurate lower bounds for p can be computed by the eigenvalue enciosure 
methods mentioned in Subsection 3.3. 

In Subsection 4.2, a trace einbedding constant Cir satisfying 

U 	L2(0Q) 	Ir U 	(tt) 	E 

is required, with Q denoting a bounded Lipschitz domain. Here, the norm 	(1,1 is gi- 
Yen by (the square root of) the right-hand side of (46). Clearly, a> 0 must be required 
now, since otherwise (107) would be violated for constant functions u. Again, we are 
not aiming at the optimal constant, but at a "good" and easily computable one. 

Lemma 3: Let p: 	IR)? be continuous, with bounded weakfirst derivatives, such 
that 

(108) 
where v : OQ - 1R denotes the outer unit normal field (which exists almost everywhere 

on(9Q). Then, with p) := 	 p, (107) holdsfor 
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12 
Ctr [ ( divp + 	divp + 

Proof We have to show (107) for u e C' (). By (108) and Gauß' Divergence Theo-
rem, 

fu2dS < f(u2p) . udS 
= 

f div(u2p)dx 
= 

f (divp)u2dx+2fu(Vu) . pA 

au 	00 	 0 	 0 	 0 

<divpJ 	+ 2 pl 	UL2 (0) 	L2(0) 

<divp 	U2(u) + 	(U2 (Q)  + 	VUS(0)) 

2 
+ 

( 	divp 	± 2) 11 U 112 ' 
	 _ 

for arbitrary >0. Choosing := Pi 
-1 

 [— IdivP 	+ 1 }divp 	+ap] gives 
the assertion. 

Iffor example 9 isa bounded rectangle 	x 	x (-J), we can choose 

p(x) := (x1 /i ..... 	satisfying (108). Lemma 3 therefore yields 

2 

Ctr = [ (‚ 	

+ 	( 	

) +na) j 

[ 

If 9 is a ball with radius R, centered at 0, we choose p(x) := R'x, which satisfies (108), 
whence Lemma 3 gives 

C1r  = [1(+2± \12 

Note that the shear existence of a vector field p with the required properties is ensured 
by the Lipschitz continuity of0Q (see [28, Lemma 1.5.1.9]). 

Acknowledgement: The author is grateful to Hans-Christoph Grunau for his excel-
lent suggestions to improve this article. 
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S-YA.Chang 

Non-linear Euiptic 
Equations in Confor-
mal Geometry 
Zürich Lecture Notes 

in Adv. Math, 

Zürich, European Math. Soc., 2004,92 S., 
C 32,37 

Gegenstand des vorliegenden Buches, dem 
Mitschriften einer Nachdiplomvorlesung 
der Autorin an der ETH Zürich zu Grunde 
liegen, sind wie der Titel sagt - nicht-linea-
re partielle Differentialgleichungen der kon-
formen Geometrie, genauer solche, die im 
Zusammenhang mit Untersuchungen von 
Krümmungsinvarianten stehen und dies vor 
allem in den Dimensionen n = 2 und n = 4. 

Ausgangspunkt ist die folgende intensiv 
untersuchte Frage. Sei M 2  eine kompakte 
Fläche ohne Rand versehen mit einer Rie-
mann'schen Metrik g. Wann ist eine Funk-
tionf E C(M 2 ) die Gauß-Krümmung ei-
ner Riemann'schen Metrik in der konformen 
Klasse [g] von g? Ist (M 2 ,g) die zweidimen-
sionale Standardsphäre (S 2 ,g), so ist diese 
Frage als Nirenberg-Problem bekannt. Set-
zen wir 91  = e2 g für eine Funktion 
w E C(M 2 ) und bezeichnen wir mit K und 
K,, die Gauß-Krümmungen zu g bzw. g, so 
gilt 

—w + K = Ke21 . 	 (1) 

Dabei ist A = — bd der Laplace-Operator be-
züglich g. Demnach sind also diejenigen 
Funktionenf gesucht, für die es eine Lösung 
ii' der Gleichung (1) mit =f gibt. Erfüllt 
f die aus dem Satz von Gauß-Bonnet resul-
tierende notwendige Vorzeichenbedingung, 
so existieren nach einem Resultat von Kaz-
dan und Warner (Existence und conformal 

deformation of metrics with prescribed Gaus-
sian und scalar curvatures, Ann. Math. (2) 
101, 317-331 (1975)) eine Funktion w und 
ein Diffeomorphismus von M2  derart, 
dass f die Gauß-Krümmung der Rie-
mann'schen Metrik *g  ist. Die ursprüng-
liche Frage hingegen konnte vollständig bis-
her nur für Flächen M2  mit Euler-Charakte-
ristik (M 2 ) = 0 (J. L. Kazdan, F. W. War-
ner: Curvaturefunctionsfor compact 2-man i-
folds. Ann. Math. (2) 99, 14-47 (1974)) und 
für den reell projektiven Raum I11P2  mit der 
Standardmetrik (J. Moser: On a nonlinear 
problem in d(fferential  geometry. Dynamical 
Syst., Proc. Sympos. Univ. Bahia, Salvador 
1971, 273-280 (1973)) beantwortet werden. 
Die entsprechenden Zitate im Buch sind lei-
der falsch bzw. fehlerhaft. 

Eine weitere zentrale Frage der konfor-
men Geometrie in der Dimension n = 2 ist 
die Charakterisierung von Riemann'schen 
Metriken mit konstanter Gauß-Krümmung. 
Im Buch wird auf das folgende Resultat von 
Onofri und von Osgood, Phillips und Sarnak 
eingegangen. Bezeichne Lx,. den Laplace-
Operator zur Riemann'schen Metrik g und 
sei det(—) die (-regularisierte Determi-
nante von —L. Dann nimmt det(—&) ihr 
Maximum unter der Nebenbedingung 
vol(M,g) = vol(M,g) in solchen Funktio-
nen w an, für die konstant ist. Der Beweis 
dieser Aussage beruht wesentlich auf der so 
genannten Polyakov-Formel (A. M. Polya-
kov: Quantum geometry of bosonic strings. 
Phys. Lett. B 103, 207-210 (1981)), welche 
besagt, dass 

logdet(—&) - logdet(—) 

= 12xfM2 
(v12 + 2Kw) di 

für alle ii' mit vol(M, g) = vol(M, g), wobei 
d1j das Flächenelement zur Referenzmetrik g 
ist. Obwohl das Buch über eine umfangrei-
che und zur Einarbeitung in die Thematik 
sehr hilfreiche Bibliographie verfügt, ist ein 
Zitat für diese Formel nicht angegeben. 
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Betrachtet man nun Mannigfaltigkeiten 
M der Dimension ii > 3, so ist eine nahe lie-
gende Frage, ob man eine gegebene Rie-
mann'sche Metrik g auf M so konform ab-
ändern kann, dass gewisse skalare Krüm-
mungsgrößen konstant werden. Im Fall der 
Skalarkrümmung ist dies das bekannte Ya-
mabe-Problem. Die Frage nach konformen 
Riemann'schen Metriken mit konstanter 
Q-Krümmung besitzt eine Reihe von Paral-
lelen zum oben erwähnten Problem der Be-
schreibung aller Gauß-Krümmungen. Sei 
n = 4 und sei P der durch 

= 	+ 	- 2Ric)du 

auf Funktionen u wirkende Paneitz-Opera-
tor bezüglich g. Außerdem sei Q die 
Q-Krümmung, d. h. 

Q = (R2 - 311ic 2  - R). 

Dabei ist R die Skalarkrümmung und Ric der 
Ricci-Tensor. Bezeichnet Q die Q-Krüm-
mung zur Riemann'schen Metrik g, = e 2 wg ,  
so gilt in Analogie zur Gleichung (1) 

Pw + 2Q = 2Qe4  

Ist M2  eine kompakte zweidimensionale 
Mannigfaltigkeit ohne Rand, so gilt nach 
dem Satz von Gauß-Bonnet 

2x(M 2)=IM2  dIL 

In der Dimension n = 4 besagt die Chern-
Gauß-Bonnet-Formel, dass 

42(M4) 
= IM4

+ Q)dii. 

Dabei ist W der Weyl-Tensor. Dieser misst 
gerade, wie weit die Riemann'sche Metrik g 
davon entfernt ist, lokal konform flach zu 
sein. Da für n = 2 bekanntlich jede Rie-
mann'sche Mannigfaltigkeit lokal konform 
flach ist, ergibt sich eine Analogie zwischen 
den Ausdrücken fM2 K dp und 1M4  Qd1i. 
Beide Terme sind konform invariant. Der 
zweite Ausdruck stimmt bis auf einen Faktor 

mit dem Integral über die a 2 -Skalarkrüm-
mung o(A) überein und steht in enger Bezie-
hung zum so genannten a 2 -Yamabe-Pro-
blem, das im Folgenden beschrieben werden 
soll. 

Sei (M, g) eine kompakte Riemann'sche 
Mannigfaltigkeit ohne Rand der Dimension 
n> 3und sei 

A = Ric - R 
 2(n - 

also der mit n - 2 multiplizierte Schouten-
Tensor. Desweiteren sei ak(A) e C°°(M) für 
k = 1..... n dadurch definiert, dass ak(A) 
an der Stelle p E M die k-te elementar-sym-
metrische Funktion angewandt auf die Ei-
genwerte von A bezüglich g ist. Wie man 
leicht sieht, ist a (A) ein positives Vielfaches 
der Skalarkrümmung R. Die Frage nach der 
Existenz einer Riemann'schen Metrik g1. in 
der konformen Klasse g] mit 

ak(A) = const. 	 (2) 

ist folglich eine natürliche Verallgemeine-
rung des Yamabe-Problems und wird das 
a5-Yamabe-Problem genannt. Das Studium 
der voll nicht-linearen Differentialgleichung 
(2) wurde von Viaclovsky initiiert. Als eines 
der ersten Resultate in dieser Richtung wur-
de von ihm gezeigt, dass unter der Vorausset-
zung, dass (M',g) lokal konform flach ist, 
für k n12 die kritischen Funktionen w von 
.[M11 ak(A) Lösungen von (2) sind. Entspre-
chend unserer bisherigen Notation ist 
uk(A) hier die bezüglich der Metrik g,. ge-
bildete Funktion. 

Den Schwerpunkt des vorliegenden Bu-
ches bilden die Resultate von Chang, Gursky 
und Yang zur Lösung des a2-Yamabe-Pro-
blems in der Dimension n = 4, d. h. der Be-
weis der folgenden Aussage. Ist (M 4 ,g) eine 
Riemann'sche Mannigfaltigkeit positiver 
Skalarkrümmung und ist J4 a7(A) dj.t > 0, 
so gibt es eine Funktion w e C(M) derart, 
dass a(A) eine positive Konstante ist. Der 
vorgestellte Beweis beruht auf dem Studium 
von Funktionalen, die ihren Ursprung in der 
Beschreibung der -regularisierten Determi- 
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Ubersichtsakel 	Historische Beitrage 	Berichte aus der Forschung 	Buchbesprechungen 

Orthogonale Polynome, die auf der komple-
xen Einheitslinie ßlD (parametrisiert durch 

= e° ) definiert sind, wurden 1920 von G. 
Szegö eingeführt. Ihr Studium durchlief 
Phasen sowohl erhöhten Interesses wie auch 
Seitwärtsbewegungen. Beginnend mit den 
90ern ist das Interesse an orthogonalen Poly-
nomen stark angestiegen. Die tiefere Ursa-
che dafür mag in dem Umstand liegen, dass 
ihre Rolle in einer Reihe von mathemati-
schen Disziplinen erst kürzlich wahrgenom-
men wurde bzw. Querverbindungen zu ande-
ren Gegenständen gefunden wurden. Dieses 
Buch ist der Versuch, die Theorie der ortho-
gonalen Polynome auf dem Einheitskreis 
und ihre Relevanz für andere Disziplinen 
darzulegen. 

Ein Maß a auf 3ID wird nichttrivial ge-
nannt, wenn sein Träger eine unendliche 
Menge ist. Ein solches Maß besitzt offenbar 
die Eigenschaft, dass die Funktionen l,z, 

im Hilbertraum 7-1 = L 2 (3ID, a) linear 
unabhängig sind. Daher können diese Funk-
tionen orthogonalisiert werden: 

= 

wobei P die orthogonale Projektion auf den 
Teilraum ist, der zu 1, z, . . . orthogonal 
ist. Diese Polynome sind nach Konstruktion 
monisch. Neben den orthogonalen Poly-
nomen „ werden die orthonormierten Poly-
nome „ = betrachtet. Die im 1. Kapitel 
bewiesene Szegö-Rekursion 

= c4 - 	' 	 1 

mit 	' (z) = 	qzJ, 	(z) = 	„: / er- 
1=0 	 1=0 

laubt es nun, den Inhalt des Buches besser zu 
umreißen. Die in (1) auftretenden Koeffi-
zienten cej  werden Verblunsky-Koeffizienten 
genannt. Diese sind auch unter dem Namen 
Reflexionskoeffizienten, Schur-Koeffizien-
ten, Szegö-Koeffizienten oder Geronimus-
Koeffizienten bekannt. B. Simon argumen-
tiert, warum diese Koeffizienten Verblun-
sky-Koeffizienten heißen sollten, und ver- 

nante gewisser konform kovarianter Diffe-
rentialoperatoren unter konformer Ande-
rung, ähnlich der Polyakov-Formel, haben, 
und ist technisch sehr anspruchsvoll. 

Ich hoffe vermittelt zu haben, dass die In-
halte des Buches überaus interessant sind. 
Allerdings hätte ich mir mehr Sorgfalt bei 
der Gestaltung gewünscht. Dies betrifft zum 
einen die zahlreichen Tippfehler, die zu ei-
nem Teil auch von einem Nichtfachmann be-
merkt werden können, so dass sich mir die 
Frage stellt, inwieweit der Verlag seiner Ver-
antwortung gerecht geworden ist. Zum an-
deren sind es aber auch inhaltliche Ungenau-
igkeiten. So ist z. B. Theorem 2.11 nicht prä-
zise formuliert. Gilt nämlich für w in der 
Gleichung (2.16) die Gleichheit, so trifft das 
auch zu, wenn man zu w eine Konstante ad-
diert. Für die Gleichung (2.17) ist das aber 
nicht der Fall. 

Nichtsdestotrotz bietet das Buch einen an-
regenden Einblick in ein hoch aktuelles Ge-
biet differentialgeometrischer Forschung. 
Wie die Autorin in der Einleitung ihres Bu-
ches bemerkt, hat es seit ihrer Nachdiplom-
vorlesung an der ETH Zürich wesentliche 
Fortschritte beim Studium konformer 
Krümmungsinvarianten gegeben. Für Nähe-
res sei auf ihren Artikel Conformal invariants 
and partial dfferential equations. Bull. Am. 
Math. Soc. 42, 365-393 (2005) verwiesen. 

Hannover 	 L. Habermann 
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schafft somit S. Verblunsky, dessen Arbeiten 
weitgehend unbeachtet blieben, späte Ge-
nugtuung. 

Ein zentrales Thema dieses Buches ist die 
Frage, wie die Eigenschaften eines nichttri-
vialen Wahrscheinlichkeitsmaßes i und aID 
sich in den Verblunsky-Koeffizienten nieder-
schlagen und umgekehrt. 

Die ersten neun Kapitel ranken sich vor-
nehmlich um sieben zentrale Theoreme, in 
denen Zusammenhänge zwischen den nicht-
trivialen Maßen auf DID und den zugehöri-
gen Verblunsky-Koeffizienten hergestellt 
werden. 

Diese sieben zentralen Theoreme sind die 
Theoreme von Szegö, Verblunsky, Geroni-
mus, Baxter und Rakhmanov, wobei allein 
mit Szegö's Namen drei Theoreme verbun-
den sind. Eines der Szegö'schen Theoreme, 
das sogenannte 1. Szegö'sche Grenzwert-
theorem, stellte ursprünglich ein Theorem 
über das asymptotische Verhalten von Toe-
plitzmatrizen dar. Für seine Formulierung 
benötigen wir den bekannten Fakt, dass je-
des (nichttriviale) Maß i  auf DID nach dem 
Radon-Nikodym Theorem in die Summe 
zweier Maße zerlegt werden kann, wovon ei-
nes absolut stetig und das andere singular be-
züglich des auf 1 normierten des Lebes-
que'schen Maßes ist. 

Dies kann kompakt durch 

= iv 	
d9

(9) 	+ ds(9) 	 (2) 

ausgedrückt werden, wobei die (nichtnegati-
ve) Funktion w zu Lt  (alD, dG) gehört. Jedem 
nichttrivialem Maß i  auf 31D ordnen wir ei-
ne Folge komplexer Zahlen {c fl } ) , nämlich 
seine Momente 

= fedbt(9) 

zu und erklären c für n < 0 durch c, = 
Für ein Wahrscheinlichkeitsmaß erhalten 
wir damit gerade die Fourier-Koeffizienten 
dieses Maßes. Damit sind für alle n > 0 die 
Toeplitzmatrizen 

T) := (cij)7±o  

erklärt; sei D,r(dt) = det(T(1U(t)). 
Das ursprünglich von Szegö bewiesene 

Theorem (1915) besagt nun Folgendes: Sei i 
ein nichttriviales Wahrscheinlichkeitsmaß 
auf 31D und w durch (2) gegeben. Dann gilt 

hrn 
D+1() 

= hrn 	 (3) 
n—oc D(s) 	n—c 

f ( = expj logn'(8) dG 5-- 

und zwar unabhängig davon, ob das auftre-
tende Integral gleich - oc  oder endlich ist. In-
teressant ist dabei der Umstand, dass in (2) 
die singuläre Komponente des Maßes pr kei-
ne Rolle spielt. Szegö's Theorem in diesem 
Buch beinhaltet folgende Aussage: 

fl(l 	csj2) = exPfloän»(9). 	(4) 

Aus (3) und (4) ist ersichtlich, dass mindes-
tens 4 Größen einander gleich sind. Im 2. 
Kapitel wird diese Liste um weitere sieben 
Größen ergänzt, die sämtlich nichttrivial 
sind und interessante Schlaghichter auf die-
sen Gegenstand werfen. 

Obwohl diese Thematik nur einen (klei-
nen) Teil des gesamten Buches einnimmt, ha-
be ich sie exemplarisch angeführt, da sie et-
was vom Geist und Stil dieses Buches vermit-
telt: Der Autor nähert sich dem jeweiligen 
Themenkreis von verschiedenen Seiten und 
entwirft von ihm ein weitestgehend komplet-
tes und detailliertes Bild. Dabei wird mögli-
chen Verallgemeinerungen und Zusammen-
hängen nachgegangen, verschiedene Zugän-
ge werden diskutiert und dem Leser interes-
sante geschichtliche Fakten nahegebracht. 
Bisweilen wird ein Thema später erneut auf-
gegriffen und weitergeführt. Ein markantes 
Beispiel ist das sogenannte starke Szegö'sche 
Grenzwerttheorem, das in Kapitel 6 ausgie-
big diskutiert wird. 

Damit sind die drei mit dem Namen von 
Szegö verknüpften Theoreme bereits ge-
nannt. Verblunsky's Theorem (auch Far-
vord's Theorem für den Kreis genannt) bein-
haltet die interessante Tatsache, dass die Zu- 

JB 110. Band (2008), Heft 1 



0 bersichtsart! kel 	HstotscheBeitrage 	BetchtesusderForschung 	Buchbesprechungen 

ordnung i 	{o,} eine eindeutige Zuord- 
nung zwischen der Menge aller auf dID defi-
nierten nichttrivialen Wahrscheinlichkeits-
maße und der Menge aller Folgen x 0 1D 
darstellt, deren Glieder Elemente aus ID 
sind. Golinsky's Theorem beleuchtet den 
Zusammenhang zwischen nichttrivialen 
Wahrscheinlichkeitsmaßen auf OID und 
Schurfunktionen. Dieses besagt, dass die 
Schurparameter {-y}  der Schurfunktion f, 
die einem nichttrivialen Wahrscheinlich-
keitsmaß t zugeordnet ist, gerade die Ver-
blunsky-Koeffizienten des Maßes fi sind. 
Baxter's Theorem führt aus, dass die Ver-
blunsky-Koeffizienten {j} eines nichttrivia-
len Wahrscheinlichkeitsmaßes i genau dann 
die Bedingung 	aj  1 <00 erfüllt, wenn 

j=0 

• 	cj  <00, c1 	z'. l = 
1=! 

und 

• inf{w(e ° )} : 	e /311)} > 0 

gilt. Rakhmanov's Theorem behauptet 
schließlich, dass aus w(9) > 0 fast überall 
hrn ja, 1 = 0 folgt. 

Die Aussagen dieser Theoreme werden 
ausführlich analysiert, ihre Konsequenzen 
und Hintergründe beleuchtet und für ihre 
Beweise verschiedene Zugänge vorgeschla-
gen. Allein für Verblunsky's Theorem wer-
den fünf Beweise angegeben, die sich im Ver-
lauf der Darlegungen natürlich ergeben. Ne-
ben diesen Dingen werden selbstredend die 
Punkte diskutiert, die kanonisch zur Theorie 
der orthogonalen Polynome gehören, vor al-
lem Aussagen über die Verteilung der Null-
stellen der Polynome und die schwache 
Konvergenz der Maße p,, (e'°) 2  gegen i. 

Das Buch selbst ist in zwei Teile aufgeglie-
dert, stellt aber eine Einheit dar, d. h. diese 
Aufspaltung ist dem Umfang dieses Werkes 
geschuldet. Der zweite Teil beschäftigt sich 
verstärkt mit dem, was der Autor unter 
Spektraltheorie versteht. Hier sind mehrere 
Aspekte im Spiel. In Analogie zur Klassifi-
zierung der Punkte des Spektrums eines uni- 

tären Operators werden anhand der Zerle-
gung dt = + djis eines Wahrscheinlich-
keitsmaßes auf OID bez. des Lebesque'schen 
Maßes die Begriffe absolut stetiger, singulä-
rer, singular stetiger und reiner Punktteil des 
Maßes di eingeführt. Diese Teile des Maßes 
werden intensiv studiert anhand qualitativer 
Vorgaben an die Verblunsky-Koeffizienten. 
Das Gleiche bezieht sich auf den wesentli-
chen Träger des Maßes. Als Beispiele seien 
folgende Aussagen angeführt. 

Satz. Seien i, i '  zwei nichttriviale Wahr-
scheinlichkeitsmaße und {cb},  {cs} ihre 
Verblunsky-Koeffizienten: 

l.Wenn hrn 1 c j  - 	= 0, dann stimmen 

die wesentlichen Spektren (= wesentlichen 
Träger) überein. 

2. Wenn 	iai  - 	< 00, dann stimmen 

die Mengen {6 : 	01, 19 : 	01 
bis auf die Mengen vom Lebesque'schen 
Maße 0 überein. 

Diese Theoreme können als Teil einer all-
gemeinen Störungstheorie angesehen wer -
den, die im Buch entwickelt wird. Als eine 
wesentliche Methode für das Studium einer 
derartigen Spektraltheorie tritt die Uberset-
zung analoger und schon früher bekannter 
Aussagen für eindimensionale Schrödinger-
operatoren in Erscheinung. Dies beinhaltet 
auch, dass die bis 2003/2004 bekannten Re-
sultate zur Spektraltheorie eindimensionaler 
Schrödingeroperatoren in diesem Buch 
ebenfalls ihren Niederschlag finden. 

Simons Werk ist nicht nur ein Buch über 
orthogonale Polynome, sondern gleicher-
maßen über Wahrscheinlichkeitsmaße auf 
DID, eindimensionale Schrödingeroperato-
ren und Operatortheorie. Es ist außerordent-
lich komplex, vielschichtig, faszinierend und 
anregend, und dabei gut lesbar (selbst für 
Studenten höherer Semester). Diese Mono-
graphie wird, darin besteht nicht der gerings-
te Zweifel, das Standardwerk zur Theorie 
der orthogonalen Polynome auf dem Ein- 
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heitskreis für einen beträchtlichen Zeit-
abschnitt werden. 

Chemnitz 	 B. Silbermann 

A Papadopoulos 

Metric Spaces, 
Convexityand Non-
positive Curvature 
IRMA Lect. in Math. 

and Theor. Physics 6 

Zürich, Europ. Math. Soc., 2005, 287 S., 
€48,- 

Ein zentrales Thema der modernen metri-
schen Geometrie ist die Verallgemeinerung 
geometrischer Begriffsbildungen der klassi-
schen Differentialgeometrie auf allgemeine 
metrische Räume. Beispielsweise hat das 
geometrische Verständnis Riemann'scher 
Mannigfaltigkeiten nicht positiver Schnitt-
krümmung zur Theorie der sogenannten 
CA T(0)-Räume geführt (hierbei steht 
‚CAT' für die Namen Cartan, Alexandrov 
und Toponogov). In diesen geodätischen 
metrischen Räumen sind geodätische Drei-
ecke dünner als ihre Vergleichsdreiecke in 
der Euklid'schen Ebene. 

Während sich diverse Lehrbücher mit me-
trischen Räumen einer solchen nicht positi-
ven Krümmung detailliert befassen, konzen-
triert sich Athanase Papadopoulos in seinem 
Buch in erster Linie auf die etwas allgemeine-
ren geodätischen metrischen Räume nicht 
positiver Krümmung im Sinne von Buse-
mann. Solche Räume sind dadurch aus-
gezeichnet, dass Abstandsfunktionen ent-
lang zweier geodätischer Segmente konvex 
sind. 

Nach einer kurzen Einleitung, die die his-
torischen Zusammenhänge der Arbeiten von 

Hadamard, Menger, Busemann und Alexan-
drov in Bezug auf den Begriff der nicht posi-
tiven Krümmung geodätischer metrischer 
Räume erläutert, beginnt der Autor in den 
ersten beiden Kapiteln systematisch damit, 
die Theorie der Längenräume und der geo-
dätischen metrischen Räume zu entwickeln. 
Hierbei legt er einerseits großen Wert auf 
Präzision, veranschaulicht andererseits neue 
Begriffe stets mit zahlreichen Beispielen. Für 
ein eingehenderes Studium vieler dieser Bei-
spiele sind die gegebenen Referenzen ebenso 
interessant wie dafür, einen historischen 
Uberblick zu bekommen. Die Beweise sämt-
licher Aussagen werden vollständig aus-
geführt, ohne dass Beweislücken durch das 
Heranziehen anderer Literatur geschlossen 
werden müssten. Ein jedes Kapitel schließt 
mit weiteren historischen Bemerkungen und 
diesem Stil, der sowohl für das Selbststudi-
um von Studenten, als auch für Wissen-
schaftler, die das eine oder andere Detail 
nachschlagen wollen, geeignet ist, bleibt der 
Autor durchgängig treu. 

Im dritten Kapitel widmet er sich den Ab-
bildungen zwischen metrischen Räumen. 
Lipschitz Abbildungen, bi-Lipschitz Ho-
möomorphismen, nicht kontrahierende und 
nicht expandierende Abbildungen, Isome-
trien und lokale Isometrien werden nicht nur 
eingeführt und veranschaulicht. Vielmehr 
wird sofort damit begonnen, mit ihnen zu ar-
beiten. Neben vielen anderen interessanten 
klassischen Resultaten werden u. a. auch der 
Banach'sche Fixpunktsatz und der Satz von 
Freudenthal-Hurewicz bewiesen. Schließlich 
folgt eine Einführung in die Theorie der 
Uberlagerungen. 

Im vierten Kapitel werden zunächst der 
hinlänglich bekannte Hausdorff Abstand 
und der etwas weniger geläufige Busemann-
Hausdorff Abstand zwischen Teilmengen 
metrischer Räume diskutiert. Im Anschluss 
daran führt der Autor verwandte Konstruk-
tionen von Metriken auf Isometriegruppen 
metrischer Räume ein. 

Die folgenden drei Kapitel widmen sich 
diversen Aspekten der Konvexität. Das 
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fünfte Kapitel beinhaltet affin konvexe 
Mengen in Vektorräumen, die konvexe 
Kern- und die konvexe Hüllen-Konstruk-
tion, normierte Vektorräume, Grenzwerte 
konvexer Mengen und Hilbert Geometrien. 
Konvexe Funktionen werden im sechsten 
Kapitel diskutiert. Hier sind die zentralen 
Aussagen, die bewiesen werden, die, dass die 
Menge der Punkte, an der eine konvexe 
Funktion nicht differenzierbar ist, abzähl-
bar ist, und dass die lokale Konvexität einer 
Funktion schon ihre Konvexität impliziert. 
Das siebte Kapitel behandelt normierte 
Vektorräume mit strikt konvexem Einheits-
ball; die Standardbeispiele metrischer Räu-
me also, die (mit Ausnahme des Eu-
klid'schen Raumes) nicht positiv gekrümmt 
im Sinne von Busemann, nicht aber im Sin-
ne von Alexandrov sind. 

Im achten Kapitel werden Busemann 
Räume explizit definiert, viele äquivalente 
Charakterisierungen solcher Räume vor-
gestellt und konvexe Funktionen auf diesen 
Räumen betrachtet. 

Das neunte Kapitel befasst sich dann mit 
lokal konvexen Räumen und sogenannten 
‚local to global' Argumenten. Die zentralen 
Aussagen, die hier bewiesen werden, sind ei-
nerseits der Uberlagerungssatz von Alexan-
der und Bishop und andererseits ein Satz 
von Gromov, der besagt, dass ein einfach zu-
sammenhängender Längenraum, der voll-
ständig, lokal kompakt und lokal konvex ist, 
ein Busemann Raum ist. 

Im zehnten Kapitel wird der visuelle Rand 
eines punktierten metrischen Raumes einge-
führt. Für eigentliche Busemann Räume ist 
dieser Rand schließlich von der Punktierung 
selber unabhängig. Auf der Vereinigung ei-
nes solchen eigentlichen Busemann Raumes 
und seinem Rand wird eine Topologie defi-
niert. 

Das elfte Kapitel behandelt Isometrien 
metrischer Räume. Parabolische, elliptische, 
hyperbolische und axiale Isometrien werden 
eingeführt und diskutiert; zunächst ganz all-
gemein und dann im Speziellen für Buse-
mann Räume. Für diese wird z. B. gezeigt,  

dass eine Isometrie genau dann hyperbolisch 
ist, wenn sie axial ist. 

Im zwölften und letzten Kapitel werden 
Busemann Funktionen, Ko-Strahlen und 
Horosphären eingeführt. All diese wichtigen 
Begriffe gehen auf Busemann selber zurück, 
und das Kapitel schließt mit noch offenen 
Fragestellungen, die Ko-Strahlen und Horo-
sphären im Teichmüller Raum betreffen. 

Mit diesem Buch ist es Athanase Papado-
poulos sicherlich gelungen, eine für Studen-
ten sehr gut nachvollziehbare Darstellung 
der nicht positiven Krümmung metrischer 
Räume im Sinne von Busemann zu geben. 
Auf dem Weg dorthin lernt der Leser all das 
über Längenräume, geodätische Räume, 
konvexe Mengen und konvexe Funktionen, 
was er zum Verständnis der letzten Kapitel 
wissen muss, was aber auch ganz unabhän-
gig von dem in den letzten Kapiteln behan-
delten Stoff von Interesse ist. Insbesondere 
die vielen Beispiele, die mit vollständigen Re-
ferenzen zum eingehenderen Studium ange-
geben sind, werden nicht nur für Studenten 
interessant sein. Dabei ist es dem Autor be-
sonders wichtig, immer wieder auf Sachver -
halte in der Theorie der Teichmüller Räume 
hinzuweisen, aber auch Hilbert Geometrien, 
Kobayashis Pseudoabstand, Carathodorys 
Pseudoabstand und Floyds Rand einer end-
lich erzeugten Gruppe gehören neben vielen 
anderen zu den nicht trivialen Beispielen, die 
sich durch den gesamten Text ziehen. Das 
Buch ist sehr sorgfältig geschrieben und der 
Aufbau keinesfalls zufbllig, sondern sehr gut 
durchdacht. Alles in allem hat es sehr großen 
Spaß gemacht, darin zu lesen. 

Bonn 	 T. Foertsch 
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D. Huybrechts 
Complex Geometry 

Berlin u. a., Springer, 2005, 301 S., €49,95 

Komplexe Geometrie ist das Studium von 
(oft kompakten) komplexen Mannigfaltig-
keiten mit analytischen (transzendenten), 
algebraischen oder topologischen Metho-
den. Es gibt auch viele Beziehungen zur 
theoretischen Physik (Stringtheorie, Calabi-
Yau, ...). Dadurch ist das Gebiet sehr attrak-
tiv, aber aufgrund der Vielzahl der Metho-
den auch nicht so leicht zugänglich. Das vor-
liegende Buch gibt eine Einführung in die 
komplexe Geometrie von einem analyti-
schen Standpunkt aus. An Vorkenntnissen 
werden nur die Funktionentheorie einer Va-
riablen, etwas über differenzierbare Mannig-
faltigkeiten und ein paar grundlegende Din-
ge über Garben (aber nichts über Kohärenz) 
benötigt. Das Buch kann also durchaus als 
Vorlage für eine Vorlesung für Studenten be-
reits des fünften Semesters dienen, jedenfalls 
im bewährten Diplomstudiengang Mathe-
matik. 

Zum Inhalt: In einem einführenden Kapi-
tel werden grundlegende Dinge über hob-
morphe Funktionen mehrerer Variablen, 
über komplexe und hermitesche Strukturen 
(punktale Theorie) sowie über Differential-
formen bereitgestellt. Das zweite Kapitel 
führt komplexe Mannigfaltigkeiten ein mit 
vielen Beispielen und bespricht grundlegen-
de Konzepte (Divisoren etc). Diese beiden 
Kapitel nehmen etwa ein Drittel des Buches 
ein. Das erste zentrale Kapitel (3) handelt 
von Kählermannigfaltigkeiten: Kählermetri- 

ken, Hodgetheorie und Lefschetzsätze. Die 
Endlichkeit der Kohomobogie auf kompak-
ten Mannigfaltigkeiten wird dabei voraus-
gesetzt. Kapitel 4 bespricht hermitesche 
Metriken auf holomorphen Vektorbündeln, 
deren Krümmung und Chernklassen - in ei-
nem Anhang werden Hermite-Einstein-Met-
riken und Kähler-Einstein-Metriken ge-
streift. Im 5. Kapitel wird zunächst der Satz 
von Riemann-Roch vorgestellt, natürlich 
ohne Beweis, sodann wird der Kodaira'sche 
Verschwindungssatz bewiesen und der Ko-
daira'sche Einbettungssatz abgeleitet. Das 
letzte Kapitel gibt schließlich eine kurze Ein-
führung in die Theorie der Deformationen 
komplexer Strukturen. 

Der Inhalt des besprochenen Buches deckt 
sich in großen Teilen mit dem Inhalt der Mo-
nographie „Differential analysis on complex 
manifolds" von R. 0. Wells von ca. 1980, es 
ist aber, nach meiner Meinung, leichter les-
bar. Eine andere, elementarere Einführung 
ist das neulich renovierte Buch von Fritzsche 
und Grauert. Auf dem Markt gibt es dann 
noch ein Buch von Kobayashi mit einer et-
was anderen, mehr differential-geometri-
schen Stoßrichtung (hin zu Kähler-Einstein), 
natürlich den Schinken von Griffiths-Harris 
(weit darüber hinausgehend, aber weniger 
präzise) und das nur auf dem web vorhande-
ne exzellente Buch von Demailly. Hier lasse 
ich natürlich Werke aus der algebraischen 
Geometrie unberücksichtigt, und selbst-
redend gibt es noch einiges andere, wie Dou-
day-Verdier, was ich hier nicht erwähne. 
Man sieht, dass der Markt durchaus nicht 
üppig bestückt ist, und dass das gut geschrie-
bene Buch von Huybrechts hier zwar keine 
Lücke füllt, aber eine wichtige willkommene 
neue Quelle bietet. Wertvoll sind übrigens 
auch die vielen schönen Ubungsaufgaben 
und die vielen Beispiele. 

Huybrechts' Buch stellt im Wesentlichen 
grundlegende Methoden der komplexen 
Geometrie vor. Was man natürlich eigent-
lich möchte, ist, Mannigfaltigkeiten zu „ver-
stehen", zu klassifizieren, zu beschreiben. 
Dazu liefert das Buch - naturgemäß - nicht 
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so viel, es stellt vielmehr wichtige Vorausset-
zungen bereit, zu den eigentlichen Aufgaben 
der komplexen Geometrie vorzustoßen. 

Bayreuth 	 Th. Peternell 

Itay Neeman 
The Determinacy 
of hong Garnes 

Berlin, dc Gruyter Verlag, 2005, 317 S., 
€ 128,- 

Das Buch „The Determinacy of Long Ga-
rnes" von Itay Neeman untersucht das Zu-
sammenspiel von großen Kardinalzahlen 
und Determiniertheit von Spielen abzähl-
barer Länge. Bei den Spielen, die untersucht 
werden, wählen zwei Spieler abwechselnd ei-
ne natürliche Zahl und produzieren auf diese 
Weise eine Folge natürlicher Zahlen einer ge-
wissen Länge es < . Ist diese Folge ein Ele-
ment einer vorher festgelegten ko-analyti-
sehen Menge C, so gewinnt Spieler 1, an-
sonsten gewinnt Spieler 2. Das Spiel ist de-
terminiert, wenn einer der beiden Spieler eine 
Gewinnstrategie besitzt. Unter der Annah-
me der Existenz großer Kardinalzahlen ent-
wickelt Neeman einen Werkzeugkasten und 
zeigt mit dessen Hilfe die Determiniertheit 
dieser Spiele. 

Das Buch beginnt mit einer Einleitung, 
welche die Geschichte der Determiniertheits-
resultate in der Mengenlehre beschreibt: 
Ausgehend von dem ersten Beweis von Gale-
Steward im Jahr 1953, dass offene Spiele de-
terminiert sind, wird der Bogen gespannt  

über Borel-Determiniertheit von Martin und 
projektive Determiniertheit von Martin-
Steel bis hin zum Inhalt dieses Buches. Ideen 
früherer Beweise, ihre Grenzen und aus dem 
Verständnis der Grenzen entwickelte neue 
Techniken werden präsentiert. Dabei wird 
insbesondere auf das steigende Bewusstsein 
der Rolle großer Kardinalzahlen eingegan-
gen. Des Weiteren wird die Motivation, die 
Determiniertheit langer Spiele zu unter-
suchen, dargelegt: Die Determiniertheit ei-
nes Spieles der Länge e mit einer projektiven 
Menge als Gewinnmenge für Spieler 1 ist 
nichts anderes als die Determiniertheit eines 
transfiniten Spieles einer gewissen Länge 

n mit einer ko-analytischen Gewinnmen-
ge. Die Zulassung einer beliebigen abzähl-
baren Spiellänge unter Beibehaltung der 
Komplexität der Gewinnmenge ist eine mög-
liche Richtung der Generalisierung des Re-
sultates über die projektive Determiniertheit 
von Martin-Steel. 

Die Grundidee, die Determiniertheit lan-
ger Spiele zu zeigen, ist, sie auf sogenannte 
lterationsspiele zurückzuführen, wie sie be-
reits im Beweis der projektiven Determi-
niertheit von Martin-Steel zu finden sind. 
Die Technik der Iterationsspiele wird von 
Neeman weiterentwickelt, um stärkere Dc-
terminiertheitsresultate zu erhalten. 

In Kapitel 1 wird der Grundstock für den 
Rest des Buches gelegt: es werden Basisde-
finitionen und -techniken eingeführt. 

In den anderen Kapiteln werden drei Ar -
ten von langen Spielen untersucht. Kapitel 2 
handelt von Spielen, deren Länge vorab fi-
xiert ist. Die Determiniertheit dieser Spiele 
liefert als Spezialfall die projektive Determi-
niertheit. In Kapitel 3 werden komplexere 
Spiele eingeführt. Es handelt sich um Spiele 
variabler Länge, wobei die Länge stetig ko-
diert ist. Zunächst wird der Baire-Raum, 
d. h. der Raum der Folgen natürlicher Zah-
len der Länge w, in abzählbar viele Partitio-
nen unterteilt. Jedesmal nach w-vielen Zügen 
ist eine Folge Yt = (YF(i) i < w) entstan-
den, welche zu einer dieser Partitionen ge-
hört. Sobald eine Partition zweimal getrof- 
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fen wird, endet das Spiel. Da die Länge des 
Spieles nicht vorab feststeht, erfordert die 
Konstruktion einer Gewinnstrategie genü-
gend „Luft", um auf die flexible Länge rea-
gieren zu können. Dies wird erreicht durch 
die Anwendung von Extendern, welche be-
reits geplante Spielzüge hoch genug liften, so 
dass ihre Bilder später durch einen nächsten 
Extender wieder geliftet werden können. 

Die restlichen Kapitel des Buches befassen 
sich mit Spielen, deren Länge eine lokale 
Kardinalzahl ist, d. h. eine Ordinalzahl, wel-
che in einer vorgegebenen Menge von defi-
nierbaren Funktionen keine Bijektion mit w 
besitzt. Die große technische Schwierigkeit 
hierbei besteht darin, diese Spiele nicht mehr 
wie in den vorigen Kapiteln durch lineare 
Iterationen in den Griff bekommen zu kön-
nen. Um die Determiniertheit der Spiele zu 
zeigen, werden nicht-lineare Iterationen be-
trachtet. In diesem Zusammenhang wird ei-
ne Reihe von Werkzeugen entwickelt, welche 
in einem komplexen Zusammenwirken letzt-
endlich das gewünschte Determiniertheits-
resultat liefern. Dieser Teil des Buches ist der 
bei weitem anspruchvollste Teil. 

Das Buch ist gut geschrieben, insbesonde-
re die Einleitung ist lesenswert. Durch das 
gesamte Buch hinweg werden Ideen klar mo-
tiviert, bevor sie formalisiert werden und ein 
technischer Beweis erfolgt. Einige Kapitel 
werden mit Ubungen ergänzt. 

Das Buch richtet sich an fortgeschrittene 
Studierende sowie Spezialisten. Zum Ver-
ständnis des Buches ist es notwendig, 
Grundwissen in der Theorie der großen Kar-
dinalzahlen sowie in Forcing zu besitzen. 
Grundlegende Begriffe und Theoreme wer-
den in einem Anhang in Erinnerung gerufen. 

Edinburgh 	 S. Quickert 
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