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t Vorwort
Jahresbericht der Deutschen Mathematiker-Vereinigung, 110. Bd. 2008, Nr. 1

Vorwort

Dieses Heft umfasst zwei Ubersichtsartikel. Die Arbeit von G. Faltings befasst sich mit
der Theorie der Vektorbiindel auf algebraischen Kurven, die in der Riemann’schen
Thetafunktion ihre klassischen Wurzeln hat. Insbesondere werden die klassifizierenden
Raume (Modulrdume) von Vektorbiindeln behandelt. Dies fithrt auch auf die Verlinde-
formel, die in der Quantenfeldtheorie von Bedeutung ist. Dieser Aufsatz ist eine Aus-
arbeitung des Hauptvortrags des Verfassers bei der DMV Jahrestagung in Bonn 2006.

Der Beitrag von M. Plum steht an der Grenze zwischen angewandter und reiner
Mathematik. Hier werden Randwertprobleme fiir semilineare elliptische Differential-
gleichungen behandelt. Die Frage nach der Existenz von Lésungen ist dabei ein schwie-
riges Problem. Der Autor untersucht in dieser Arbeit die interessante Frage, inwieweit
die Existenz guter numerischer Naherungslosungen fiir Existenzbeweise herangezogen
werden kann. Dies er6ffnet die Moglichkeiten, Situationen zu studieren, in denen die
klassischen analytischen Methoden bisher noch nicht zum Ziel gefiihrt haben.

Wie stets enthilt auch dieses Heft eine Reihe von aktuellen Buchbesprechungen.

K. Hulek

JB 110. Band (2008), Heft 1 1
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~ Ubersichtsartikel Historische Beitrage Berichte aus der Forschung L Buchbesprechungen

Thetafunktionen auf Modulrdumen
von Vektorbiindeln

Gerd Faltings

Abstract

= Mathematics Subject Classification: 14 H 60
s Keywords and Phrases: Bundles on curves, moduli spaces

Thetafunctions are sections of ample line-bundles on moduli spaces. For moduli of
G-bundles on curves (G simply connected of type A, D, E) we compute the dimension
of the space of sections for the minimal ample line-bundle. We derive the existence of
canonical divisor whose geometric interpretation remains open.

Eingegangen: 08.01.2007 DMV
_JAHRESBERICHT

Gerd Faltings, Max-Planck-Institut fiir Mathematik, Vivatsgasse 7, DER DMV

D-53111 Bonn, faltings@mpim-bonn.mpg.de © B. G. Teubner 2008
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t Ubersichtsartikel ; Historische Beitrage Berichte aus der Forschung Buchbesprechungen

1 Einleitung

Die klassische Riemann’sche Thetafunktion beschreibt einen Divisor auf dem Modul-
raum der Geradenbiindel auf einer Kurve (oder einer kompakten Riemann’schen Fla-
che). Sie wird durch eine konvergente Fourierreihe definiert, besitzt aber auch eine al-
gebraische Interpretation als Determinante der Kohomologie. Namlich die Nullstellen
von Theta sind genau die Geradenbiindel (vom geeigneten Grad), welche nicht triviale
Kohomologie besitzen. ,,Nicht triviale Kohomologie* heif3t in diesem Falle die Existenz
globaler Schnitte. Ein klassischer Satz von Riemann besagt sogar, dass die Dimension
des Raumes dieser Schnitte gleich der Verschwindungsordnung von Theta ist.

Verallgemeinerungen davon erhélt man, wenn man die multiplikative Gruppe @),
durch andere algebraische Gruppen G ersetzt und G-Biindel tiber der Kurve betrachtet.
Zum Beispiel liefert G = GL, Vektorbiindel vom Rang r, G = SL, Vektorbiindel mit
trivialer Determinante, G = SO, Vektorbiindel mit trivialer Determinante und sym-
metrischer Bilinearform. Im Folgenden beschranken wir uns auf halbeinfache einfach
zusammenhdngende Gruppen wie zum Beispiel SL,, die symplektische Gruppe Spa,
oder die Spingruppe Spin,. Spin,-Biindel sind Vektorbiindel vom Rang r, mit trivialer
Determinante und symmetrischem Produkt, fiir die ein ,,Spin-Biindel“ existiert. Letzte-
res kann prézise mit Hilfe der Clifford-Algebra definiert werden. Wir zeigen, dass fiir
solche Gruppen G die Picardgruppe des Modulraums unendlich zyklisch (isomorph zu
Z) ist. Verallgemeinerte Thetafunktionen sind dann globale Schnitte dieser Geraden-
biindel. Die Dimension des Vektorraums der Schnitte wird durch die Verlinde-Formel
gegeben. Das Ergebnis ist besonders einfach fiir Gruppen mit nur einer Wurzellinge
(Typ A,D,E) und den positiven Erzeuger der Picardgruppe. Offen bleibt aber die geo-
metrische Interpretation der Schnitte.

2 Modulrdume

Der Modulraum der Vektorbiindel auf einer Kurve ist ein klassisches Untersuchungs-
objekt der Theorie. Sei (je nach Geschmack) C eine kompakte Riemann’sche Fliche
oder eine glatte projektive geometrisch zusammenhangende Kurve iiber einem Korper
k. Ein Vektorbiindel £ vom Rang r auf C ist eine lokal freie Garbe vom Rang r iiber der
Strukturgarbe O¢. Seine Determinante det(£) = /\" € ist ein Geradenbiindel und hat ei-
nen Grad d. Ein Modulraum M, 4 fiir Vektorbiindel mit Invarianten (r, d) ist ein Sche-
ma (oder komplexe Mannigfaltigkeit) M = M, ; zusammen mit einem Vektorbiindel
&y auf dem Produkt C x M, so dass

& hat Rangr
auf jeder Faser C x {m} hat die Einschrankung von £ Grad d

®  fiir jedes k-Schema (oder komplexen Raum) S und jedes Vektorbiindel £g auf C x S
mit Invarianten (d, r) gibt es einen eindeutig bestimmten Morphismus

f:S—-M
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G. Faltings: Thetafunktionen auf Modulraumen von Vektorbindeln

so dass
Es = (idc x [) (Enm).

Aus der universellen Eigenschaft folgt leicht, dass der Tangentialraum von M in einem
Punkt m gleich der ersten Kohomologie H'(C, End(£,,)) ist.

Leider existiert aber kein solcher Raum. Der Grund dafiir ist die Tatsache, dass
Vektorbiindel Automorphismen besitzen: Mindestens die Skalare @,,, und manchmal
auch mehr. Ubersetzt in unser Problem heiBt dies das Folgende:

Wenn wir ein Vektorbiindel £g C x S mit einem Geradenbundel £ auf S tensorie-
ren, so ist das Resultat lokal in S isomorph zu Eg, aber nicht unbedingt global. Das
heif3t, die zugehorigen Abbildungen S — M stimmen lokal {iberein, aber nicht global.

Die ,,Losung™ dieses Problems besteht in der Einfithrung von ,,stacks. Das franzo-
sische Wort ist ,,champs®, allgemein anerkannte deutsche Ubersetzungen kenne ich
nicht. Kandidaten sind ,,Stapel®, ,,Multiplizitdt®, ,,Orbifold“. Ich benutze daher weiter
den Begriff Stack. Wie tritt nun ein solcher hier konkret auf?

Es ist nicht sehr schwierig, ein glattes Schema S zu finden, zusammen mit einem
Vektorbiindel £ mit Invarianten (r, d), so dass

= jedes Biindel auf C mit diesen Invarianten ist isomorph zur Einschrinkung & von
Es aufeine Faser C x {s}.
= die kanonische Abbildung (Kodaira-Spencer Klasse)

Ts, — H'(C,End(E,))

ist surjektiv.

(Die Kodaira-Spencer Klasse bildet den Tangentialraum von S in den erwarteten
Tangentialraum des Modulraums ab.)

Solch ein S heiBt ,,verselle Deformation®: Es parametrisiert alle Isomorphieklassen,
aber eine gegebene Klasse kann mehr als einmal auftauchen. Der Modulraum sollte also
ein Quotientenraum von S sein.

Zur Bildung eines Quotienten betrachtet man das Schema der Isomorphismen von
Biindeln. Seine Punkte bestehen aus Paaren von Punkten (s, 7) von S und einem Isomor-
phismus von Biindeln & = &,. Préziser gibt es einen Homomorphismus von Schemata

Isom(pri&s,priés) — S x S,

welcher Familien solcher Isomorphismen klassifiziert. Zusammen mit der Komposition
von Isomorphismen liefert dies ein Groupoid in der Kategorie der Schemata, das heifB3t
einen darstellbaren Funktor mit Werten in Kategorien, in denen jeder Morphismus in-
vertierbar ist. Auch sind alle Objekte Mannigfaltigkeiten, und die zwei Projektionen
von Isom auf S glatt (oder submersiv). Man nennt dies ein glattes Groupoid. Im Prinzip
sollte M, 4 der Quotient von S unter der Operation von Isom sein.

Eine verniinftige Quotientenbildung ist aber nur maglich, falls Isom frei auf S ope-
riert. Dies heilt genau, dass die Fasern von Isom iiber Diagonalelementen (s,s) von
S x S trivial sind, und tritt aber bei Vektorbiindeln gerade nicht ein. Trotzdem kann
man aber einiges iiber den fiktiven Quotienten sagen, auch wenn er als Schema nicht
existiert:

JB 110. Band (2008), Heft 1 5



Ubersichtsartikel Historische Beitrage ‘ Berichte aus der Forschung Buchbesprechungen

Zum Beispiel ist eine kohdrente Garbe auf dem Quotienten definiert als eine kohi-
rente Garbe auf S zusammen mit einer Operation von Isom, also als eine dquivariante
kohirente Garbe, und Ahnliches gilt fiir relative Schemata, Morphismen, usw. Man
spricht dann von Objekten iiber dem Stack

M, s = S/Isom.

Man muss natiirlich verifizieren, dass das Resultat unabhingig von der Auswahl von S
ist. Kurzum, mit Stacks wird das Problem der Quotientenbildung hinwegdefiniert.

Ein anderer Ansatz benutzt grobe Modulschemata semistabiler Biindel. Diese sind
zum einen richtige projektive Schemata. Zum anderen sind sie quasikompakt, was fiir
den Stack auch so nicht gilt. Ein Vektorbiindel £ heiit semistabil, falls fiir jedes Unter-
biindel F C £ gilt, dass

Grad(F)/Rang(F) < Grad(E)/Rang(E).

Falls immer die strikte Ungleichung gilt, ist £ stabil. Stabile bzw. semistabile Biindel bil-
den offene Unterstacks

Mi,d C Misd G Md.r~

Sie sind quasikompakt und besitzen grobe Modulschemata Das bedeutet, es gibt uni-
verselle Abbildungen M; ; — M, und M;’; — M, in Schemata. Dabei ist M, pro-
jektivund M}, ein offenes Unterschema. D1e Punkte von M, entsprechen den polysta-
bilen Biindeln (semistabile Biindel, welche direkte Summe von stabilen Biindeln sind).
Leider besitzt M}, keine einfache modulare Beschreibung, und es besitzt hochgradig
singulédre Punkte Aus diesem Grund werden wir im Weiteren mit dem Stack M, ; ar-
beiten.

Allerdings ersetzen wir von nun an die Gruppe GL, durch eine halbeinfache, ein-
fache, und einfach zusammenhéngende Gruppe G, und betrachten G-Torsoren iiber C.
Der zugehorige Stack M ist dann zusammenhingend. Es gibt damit keine diskreten
Invarianten wie den Grad d. Auch operiert statt der Gruppe @, nur noch das endliche
Zentrum Z C G natiirlicherweise auf allen G-Torsoren.

Es sei noch erwdhnt, dass Atiyah und Bott ([1]) die (topologische) Kohomologie von
M berechnet haben: Der universelle G-Torsor P auf C x M besitzt charakteristische
Klassen (Chern-Klassen) c;(P) € H*(C x S,@®). Nach der Kiinneth-Formel zerlegen
sich diese in Produkte aus Kohomologie-Klassen auf C und solchen auf M. Die Ko-
homologie von Mg ist dann die von den zweiten Komponenten erzeugte freie gradu-
iert-kommutative Algebra.

3 Der Doppelquotient

Sei weiter C eine glatte projektive Kurve iiber einem algebraisch abgeschlossenen Kor-
per k, und x € C ein Punkt, C° = C — {x}. Dann sind alle G-Biindel (G halbeinfach,
einfach, einfach zusammenhéngend) trivial auf C°:

6 JB 110. Band (2008), Heft 1



G. Faltings: Thetafunktionen auf Modulraumen von Vektorbiindeln

Zum Beispiel sei G = SL,. Ein G-Torsor ist ein Vektorbiindel £ mit trivialer Deter-
minante. Nun ist C° das Spektrum eines Dedekindrings, und die Einschrinkung von £
auf C° liefert einen projektiven Modul mit trivialer Determinante iiber diesem Dede-
kindring. Aber projektive Moduln werden durch ihre Determinante klassifiziert, also ist
dieser Modul trivial, also ist £ als Biindel iiber C° trivial. Die zwei zugehorigen Triviali-
sierungen der Determinante unterscheiden sich um eine meromorphe Funktion auf C,
deren Divisor ein Vielfaches von {x} ist. Da der Grad dieses Divisors verschwindet, ist
die Funktion konstant, und & ist auch als SL,-Buindel trivial auf C°.

Sei ¢ ein lokaler Parameter in x, d.h. die Komplettierung @cﬁx des lokalen Ringes in
x ist isomorph zu k[[7]]. Dann ist ein G-Torsor trivial auf C° und auf k[[#]], entsteht also
durch Verkleben zweier trivialer Biindel mit einem Schnitt von G iiber dem Durch-
schnitt k((7)) (dem Korper der Laurentreihen). Man erhilt isomorphe Biindel durch
Andern der Trivialisierungen auf C° oder k[[f]]. Damit entsprechen die Biindel einem
Doppelquotienten, und

Mq (k) = G(CO\G(K((1)))/ G(K[[]).-

Hierbei ist G(k[[7]]) = L=°G(k) dargestellt durch ein (unendlich dimensionales) Grup-
penschema LG=’, G(C°) durch ein Ind-Schema (welches noch eine Vereinigung endlich
dimensionaler Schemata ist), und G(k((7))) = LG(k) ist ein Ind-Schema (zusammenge-
setzt aus unendlich dimensionalen Teilen). Alles ist also unendlich dimensional!

Zur Untersuchung des Quotienten dividieren wir zundchst nur durch die rechte Un-
tergruppe und erhalten die affine Grassmann’sche

D = LG/L*°G.

Diese ist eine Vereinigung projektiver (konventioneller) Schemata. Zum Beispiel erhalt
man fiir die Gruppe G = SL, den Parameterraum fiir k[[7]]-Gitter L C k((¢))" mit trivia-
ler Determinante:

L ist isomorph zu k[[{]]", es gibt eine ganze Zahl n mit /"k[[f]]” C L C t~"k[[¢]]’, und
N L = k[[1]] C k((1)). Fiir festes n liefert dies ein Unterschema einer Grassmann-Varie-
tat.

In der Kac-Moody-Theorie verhdlt sich LG wie die Gruppe zum affinen Wurzelsys-
tem von G, und L=°G wie eine maximale parabolische Untergruppe. Es gibt zum Bei-
spiel Bruhat-Zerlegungen, und die Picard-Gruppe des Quotienten ist eine unendliche
zyklische Gruppe. Ein Erzeugendes wird gegeben durch die ,,Determinante” von L, ge-
nauer gesagt die Determinante (iiber k) von L/7"k[[¢]]" fiir gentigend groBes n. Dies ist
bis auf Isomorphismus unabhingig von n. Dieser Isomorphismus ist aber nicht kano-
nisch, und deshalb sind die zugehorigen Geradenbiindel zwar stabil unter Transformati-
on mit Elementen von LG, aber nicht LG-dquivariant. Vielmehr muss man dazu zu ei-
ner zentralen Erweiterung LG iibergehen:

LG besitzt eine zentrale Untergruppe @, mit Quotient LG /@,, = LG und operiert
auf einem Erzeuger £ von Pic(IDg), so dass @y, trivial auf IDg und durch Skalarmulti-
plikation auf £ operiert.

JB 110. Band (2008), Heft 1 7



[ Ubersichtsartikel Historische Beitrage ‘ Berichte aus der Forschung Buchbesprechungen ’

Angewandt auf den Stack Mg =IDg/G(C°) besteht dann Pic(Mg) aus
G(C°)-aquivarianten Geradenbiindeln auf IDg. Man zeigt recht einfach, dass G(C°)
keine nicht trivialen Charaktere besitzt, so dass ein Geradenbiindel auf IDg nur auf
hochstens eine Weise dquivariant sein kann. Wir zeigen im ndchsten Abschnitt, dass
dies auch fiir alle solche Biindel gilt. Aquivalent dazu ist die Aussage, dass die @,,-Er-
weiterung L iiber G(C°) spaltet.

Zum Schluss noch ein Beispiel: Wihle C = IP' als projektive Gerade x = 0, 7 als ka-
nonische Koordinate. Dann ist Mg = G(k[t"'])\IDg. Die G(k[¢"!])-Bahn durch den
Ursprung ist eine dichte offene Teilmenge von D¢ (die groB3e Zelle), und das Komple-
ment ist ein Divisor, welcher die Picard-Gruppe erzeugt. Somit enthidlt M als dichten
offenen Unterstack die trivialen G-Biindel.

4 Geradenbiindel auf Mg

Bevor wir eine allgemeine Konstruktion skizzieren, zundchst zwei Beispiele:

a) Sei G = SL,, somit klassifiziert M Vektorbiindel vom Rang r mit trivialer De-
terminante. Fiir ein solches Vektorbiindel definiert die Determinante der Kohomologie
ein Geradenbiindel auf dem Modulraum. Dies heif3t, wir miissen jedes Schema S und je-
des Biindel £ auf C x S, vom Rang r und trivialer Determinante, ein Geradenbiindel Lg
auf S definieren, funktoriell unter Pullback und unter Isomorphismen. Es reicht, dies
fur quasikompakte S (oder auch fiir affine S) zu tun.

Dazu wiéhle man einen (sehr) positiven Divisor D C C, so dass auf jeder Faser
C x {s}

H\(C,E/(D)) = (0.
Dann ist pry . (£(D)) ein Vektorbiindel auf S, und der Komplex
pr2x(E(D)) — pra«(E(D)/E)

reprasentiert das derivierte direkte Bild IRpr; . (€) auf S. Definiere Ly als die Determi-
nante dieses Komplexes (siehe [9] fiir eine saubere Definition), also als

Ls = det(pry.(E(D))) ® det(pra.(E(D) /€))%

Dies ist bis auf kanonischen Isomorphismus unabhédngig von der Wahl von D: Falls
E > D ein anderer solcher Divisor ist, so induziert die Injektion £(D) C £(E) einen
Quasiisomorphismus von Komplexen und damit einen Isomorphismus der Determi-
nanten.

Die Determinante der Kohomologie ist fiir alle Vektorbiindel erklért, d.h. wir haben
die Bedingung ,.triviale Determinante" der SL,-Biindel gar nicht benutzt. Sie geht aber
ein bei der folgenden Bemerkung: Tensorieren mit einem Geradenbiindel &dndert nicht
die Determinante der Kohomologie. Ein Beispiel: Beim Tensorieren mit O(—p), p € C
ein Punkt, dndert sich die Determinante der Kohomologie um die Determinante von £
in p, also gar nicht.
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Man kann dies ausnutzen und £ (jetzt mit trivialer Determinante) mit einem Gera-
denbiindel vom Grad g —1 tensorieren. Dann haben die Biindel pry.(£(D)) und
pr2.(E(D)/€) den selben Rang, und die Determinante der Abbildung zwischen ihnen ist
ein Schnitt im Inversen der Determinante der Kohomologie. Dieser Schnitt (genannt
Kohomologie-Determinante) ist unabhangig von D und eine Verallgemeinerung der
klassischen Riemann’schen Thetafunktion. Seine Nullstellenmenge besteht aus den
Biindeln mit nicht trivialer Kohomologie.

Wenn man mit Vektorbiindeln statt Geradenbiindeln tensoriert, erhélt man globale
Schnitte von Potenzen des Inversen der Kohomologiedeterminante. Man kann mit ih-
nen Einbettungen des groben Modulraums der semistabilen Biindel konstruieren ([4],
[5D.

Bleibt schlieBlich die Beschreibung der Determinante der Kohomologie im Rahmen
des Doppelquotienten:

Falls G=SL,, so induziert die Determinante der Kohomologie auf Mg =
G(C°)\IDg auf IDg das Inverse des kanonischen Erzeugenden der Picardgruppe. (Das
Inverse ist zwar auch ein Erzeugendes, entspricht aber dem Negativen des Divisors, wel-
cher die offene Zelle begrenzt.)

b) Sei G = Spin(r) die Spingruppe zur SO(r) (Die reicht auch, aber wir haben nun
einmal einfach zusammenhidngend vorausgesetzt). G-Torsoren sind Biindel £ zusam-
men mit einer quadratischen Form ¢ (mit Werten in O), so dass die assoziierte Biline-
arform auf & nicht ausgeartet ist. Zusatzlich gibt es noch eine Spinstruktur, die wir aber
nicht benétigen.

Wir wihlen eine Quadratwurzel £ des kanonischen Biindels w¢ und tensorieren &
mit £. Danach hat £ eine quadratische Form mit Werten in we. Wéhle wieder einen sehr
positiven Divisor D, so dass fur alles € S

H’(C,&(-D)) = H'(C,&,(D)) = (0).

Dann besitzt das Vektorbiindel
F =pr.(E(D)/E(-D))

auf S eine nichtausgeartete quadratische Form:
Der Wert auf einem lokalen Schnitt f ist das Residuum in D Respq(f).
AuBerdem erhalten wir zwei maximal isotrope Unterbiindel in F, ndmlich
A =pr1.(€/E(-D))

und
B = prs(£(D)).

Das erste ist isotrop, weil fiir lokale Schnitte / ¢( /) gar keinen Pol in D hat, das zweite,
weil globale Residuen verschwinden (Residuensatz).

Sei nun C(F) die Clifford-Algebra zu F, das heiBt die freie Tensoralgebra dividiert
durch die Relation

f* = Resp(q(/))-

JB 110. Band (2008), Heft 1 9



Ubersichtsamkel I Historische Beitrage ‘ Berichte aus der Forschung ‘ Buchbesprechungen ’

Sie ist lokal isomorph zu einer Matrix-Algebra £nd(G) mit einem (Z/(2)-graduierten)
Vektorbiindel G. G ist eindeutig bestimmt bis auf Tensorieren mit einem Geradenbiindel.
Zum Beispiel kann man nach Wahl eines isotropen Komplements A’ zu A fiir G die du-
Bere Algebra A\ A’ wihlen, auf der A durch innere und A’ durch duBere Multiplikation
operieren. Dieses G ist eindeutig dadurch bestimmt, dass die von A annullierten Elemen-
te (die Konstanten in der 4ueren Algebra) ein triviales Biindel bilden, und damit ist die-
ses G auch global und nicht nur lokal definiert. Im Folgenden kommen wir aber mit lokal
definierten G's aus, d.h. alles ist invariant unter Tensorieren mit Geradenbiindeln.

Die von A annullierten Elemente von G bilden ein Unterbiindel G* vom Rang eins.
Dual erhélt man einen Quotienten G 4 durch Ausdividieren der A-Operation. Diese Ge-
radenbiindel nennen wir A-Invarianten bzw. A-Kovarianten. Falls « € det(A) =
A" A ein Erzeugendes bezeichnet, so liefert die Multiplikation mit « einen Isomor-
phismus

det(A) ® G4 = GA.

Entsprechendes gilt natiirlich auch mit dem isotropen Unterbiindel B. Wir definieren
ein Geradenbiindel M durch

M =GgaaGh.

C(F) besitzt eine Involution (zum Beispiel —idr auf F), und damit wird das Dual
G" auch zu einem C(F)-Modul. Darin sind die von .A-Invarianten dual zu den .A-Kova-
rianten in G, und analog fiir B. Ersetzen wir G durch sein Dual G*, so ergibt sich dasselbe
Geradenbiindel M als

M= (Ga)' ®G°

Wegen der Beziehung zwischen Invarianten und Kovarianten ergibt sich durch Tenso-
rieren, dass

M®? = det(A)®" @ det(B)*™".
Auch ist M unabhingig von der Wahl von D: Falls D < D', ' = pr,.(E(D')/E), so ist
C = pr2.(E(p)/€(p)) ein isotropes Unterbiindel mit
F=cCt/c.
Ferner gilt fiir die neuen Unterbiindel .A’, B’ die Relation
ccA,A=A/C
und
B+Ct=F.,B=BnC.

Man kann dann fiir G die C-Invarianten in G’ wihlen, so dass G* = g’~*", und dann be-
rechnet man, dass Gg = Q}s,. Alles in allem also auch M’ = M.

Somit globalisiert M zu einem Geradenbiindel auf Mg, dem Pfaff-Biindel (,,Pfaf-
fian®).
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Die Projektion des Elements G* auf die B-Koinvarianten liefert einen expliziten
Schnitt von M, genannt Pfaff-Determinante, unabhingig von der Wahl von G. Seine
Nulistellenmenge besteht aus den Punkten s € S, fiir die die Summe A + B nicht F auf-
spannt. Dies sind gerade die Punkte, in denen & nicht triviale Kohomologie besitzt:

Die Kohomologie von & wird durch den Komplex

A®B—F
definiert.

Genauer gesagt ist die Determinante von F trivial, und somit das Inverse der Deter-
minante der Kohomologie von £ isomorph zum Inversen von det(A) ® det(B), also zu
M®2, Bei diesem Isomorphismus entspricht die Kohomologie-Determinante von £ dem
Quadrat der gerade konstruierten Pfaff-Determinante:

G besitzt eine kanonische Z/(2)-Graduierung vertraglich mit der C(F)-Operation,
so dass G* gerade ist. Die assoziierte Superspur (Differenz der Spuren auf geraden und
ungeraden Elementen) auf C(F) verschwindet auf allen Elementen von C(F), welche
Produkte von < Rang(F) Elementen aus F sind. Der Quotient von C(F) nach diesem
Untermodul ist isomorph zu det(F) = det(.A) @ det(B). Einen Isomorphismus erhilt
man, indem man alle Elemente lokaler Basen von A und B miteinander multipliziert.
Wir nennen die entsprechenden Produkte o € det(A) und 3 € det(B).

Wir berechnen die Superspur von af auf G wie folgt: o faktorisiert iiber den Quo-
tienten G4 und hat Bild im Unterbiindel G*, und Multiplikation mit « identifiziert diese
beiden Biindel. Analoges gilt fiir 8 und B. Somit bleibt als einziger nicht trivialer Ma-
trixkoeffizient von a3 das Produkt der Abbildungen G* — Gz und G% — G 4. Beide die-
se Abbildungen sind aber Inkarnationen unseres kanonischen Schnitts.

Ubrigens erhilt man eine andere Definition der Pfaff-Determinante wie folgt: Sei £
ein Biindel vom geraden Rang 2r mit einer nicht ausgearteten Bilinearform mit Werten
in we. Wihle ein maximal isotropes Unterbiindel F C € (vom Rang r) mit I'(C, F) =
(0) (Dies ist lokal in der Basis stets moglich nach [3]). Dann gilt

E/F = Hom(F,wc),
und die Erweiterungsklasse von
0—-F—=E—=E/F—(0)

liegtin H'(C, A>(F) ® w@7H).

Dies ist dual zu I'(C, A*(F¥) ® wg?), so dass der Erweiterungsklasse eine Linear-
form auf diesem Raum entspricht. Daraus erhilt man eine alternierende Form auf
I'(C,F" ® wc). Deren Pfaff’sche Determinante liegt im Dualen der Determinante von
I'(C,F' ®@wc), also (nach Serre-Dualitit) in der Determinante von H'(C, F) oder im
Inversen der Determinante der Kohomologie von F. Diese ist aber eine Quadratwurzel
der Determinante der Kohomologie von &, da in der obigen exakten Sequenz sowohl F
wie £/F dieselbe Kohomologiedeterminante liefern. Auch ist die Pfaff’sche Determi-
nante Null genau dann, wenn £ nicht triviale Kohomologie besitzt. Alles in allem Indi-
zien, dass wir die richtigen Objekte erhalten, was dann aber noch eines Beweises bedarf.
Allerdings reicht dazu schon weitgehend die Bemerkung, dass die Nullstellen-Divisoren
ibereinstimmen.
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Man kann sich aber auch direkt iiberlegen, dass flir geniigend generisches F die De-
terminante der Kohomologie von F unabhéngig von dieser Auswahl ist:

Dazu betrachten wir maximal isotrope F's, fiir die T'(C, A>F(2p)) = (0) fiir alle
Punkte p € C gilt. AuBerdem soll F im generischen Punkt eine vorgegebene parabo-
lische Konjugationsklasse definieren. Dies bewirkt, dass der Durchschnitt zweier sol-
cher F's stets gerade Dimension hat.

Diese F's werden parametrisiert durch ein glattes S-Schema S’ — S. Wir benutzen
im Folgenden Deformationstheorie. Zum Beispiel ist der relative Tangentialraum von
S’ isomorph zu Homc(wc, A>F). Uber dem Faserprodukt S” = S x g S’ gibt es dann in
C x5 S” zwel tautologische maximal isotrope Unterbiindel | und F, in £. Um zu zei-
gen, dass ihre Determinanten der Kohomologie isomorph sind, darf man aus S” abge-
schlossene Teilmengen der (faserweise) Kodimension > 2 entfernen. Damit kann man
erreichen, dass der Kokern der Inklusion F, & F, — £ Triger in einem Divisor
D C C xg S” hat, welcher endlich und flach iiber S” ist. AuBerdem ist der Kokern das
direkte Bild eines Vektorbiindels G vom Rang zwei auf D. SchlieBlich ist das Normalen-
bindel O¢(D)|D isomorph zu Hom(wc, A*G) (Deformationstheorie).

Dies heift, dass G eine nicht degenerierte symplektische Form mit Werten im relati-
ven dualisierenden Biindel we(D)|D besitzt. Das direkte Bild unter der Projektion nach
S ist dann symplektisch und besitzt triviale Determinante. Dies ist aber gerade die De-
terminante der Kohomologie von G. Andererseits ist G der Kokern der Abbildung

.7:1 =2 5/.7'—2 = Hom(]-"z,wc).

Also haben die beiden Biindel dieselbe Kohomologiedeterminante.

Natiirlich ist dies noch nicht alles: Wir brauchen ein ,,descente-Datum®, das heiBt,
diese Isomorphismen miissen (fiir drei verschiedene F’s) transitiv sein. Man erreicht
dies durch eine Modifikation: Sei ¢;» der eben konstruierte Isomorphismus fiir die gene-
rischen Biindel 7 und F». Dann gilt fiir vier Biindel die Gleichung (mit hoffentlich of-
fensichtlicher Notation)

P12P34 = P13¢24,

und der Quotient ¢2/¢;; gibt ein Descente-Datum. AuBerdem sollten wir zeigen, dass
die Pfaff-Determinante invariant unter dem Descent-Datum ist. Dies folgt am Ende aus
der Eindeutigkeit aller betrachteten Objekte, aber ein direkter Beweis wire schoner.

5 Konstruktion eines Geradenbiindels der Invariante Eins

Ich hatte versprochen, ein solches Biindel zu konstruieren. Fir die Gruppen SL, kann
man die Determinante der Kohomologie wihlen, fiir die Spingruppen das eben kon-
struierte Pfaff-Biindel. Fiir ein beliebiges G erhilt man dann fur jede G-Darstellung E
durch Pullback von SL(E) ein Geradenbiindel auf M. Dessen Invariante ergibt sich
durch Einschriankung auf Untergruppen SL, C G zu langen Wurzeln: Man muss die
Spurform der Darstellung auf £ durch die der zweidimensionalen Darstellung von SL,
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dividieren. SchlieBlich kann man noch fiir orthogonale Darstellungen durch zwei divi-
dieren, wegen der Quadratwurzel. Zum Beispiel hat die adjungierte Darstellung Invaria-
nte 24", das Doppelte der dualen Coxeter Zahl. SchlieBlich gilt noch fiir Gruppen G mit
zwei verschiedenen Wurzel-Léngen: Es gibt eine (einfache einfach zusammenhingende)
Gruppe H und einen Automorphismus o von H von endlicher Ordnung, so dass o einen
maximalen Torus und eine Borel-Gruppe stabilisiert, und G besteht aus den Fixpunkten
von . Das Dynkin-Diagramm des dualen Wurzelsystems von G ist dann der Quotient
des entsprechenden Diagramms von H unter dem Automorphismus. Genauer gesagt
entsteht der Typ C; (Duales B;) aus A,;_; mit dem nicht trivialen Automorphismus (ent-
sprechend Spy; C SLy;), B; aus Dy (entsprechend Spiny . C Spinayz), Fy aus Eg und
G, aus Dy4. Wieder liefert das Pullback eines Geradenbiindels von Invariante Eins auf
My ein solches auf M.

Damit reichen geometrische Konstruktionen fiir die klassischen Gruppen und den
Typ G». Fiir die iibrigen exzeptionellen Gruppen bleibt aber eine Liicke, z. B. kann man
so fiir die Gruppe Eg nur Invariante 30 erreichen.Es gibt nun eine allgemeine Konstruk-
tion, die diese Liicke schlieBt. Sie benutzt den Begriff der generischen Borel-Untergrup-
pe. Er enstspricht den im letzen Abschnitt benutzten generischen isotropen Unterbiin-
deln.

Dazu sei B C G eine Borel-Untergruppe. Es ist bekannt, dass jeder G-Torsor auf C
von einem B-Torsor induziert werden kann. Dies entspricht einem Schnitt des assoziier-
ten G/B-Biindles. Unter geeigneten numerischen Bedingungen ist der Raum dieser
Schnitte ein glattes Schema. Zum Beispiel gilt dies fiir normale Vektorbiindel &
(G = GL,), falls die Subquotienten £; = F,;/F;_; der zugehorigen Fahne

foZ(O)C]‘—1 C oo CFp=E
die Bedingung
Grad(L; ® LS7') > 2g -2

erfiillen.

Fiir ein B-Biindel auf C x S erhilt man fiir jedes Gewicht € ein Geradenbiindel £,
auf C x S. Aus zwei solcher Biindel £; und £, konstruiert man (nach A. Weil) ein Gera-
denbiindel < L, £, > auf S, und eine geeignete Kombination von solchen liefert den
Kandidaten fiir das Biindel der Invariante Eins. Zum Beispiel ist fiir zwei teilerfremde
Divisoren D und E auf C x S < O(D),O(E) > das durch die Projektion (auf S) von
D N E definierte Biindel auf S.

Fiir einen G-Torsor auf C x S gibt es dann eine glatte Uberdeckung S'— S und auf
C x S’ die Reduktion auf einen generischen Borel. Wir haben das gewiinschte Geraden-
biindel auf §” konstruiert und miissen noch den Abstieg (,,descente®) nach S schaffen.
Dieser erfordert einen Isomorphismus (mit Kozykelbedingung) der zwei Pullbacks nach
S’ x5 S'. Einen solchen Isomorphimus konstruiert man aus den Schubertzellen der Ko-
dimension zwei auf G/B x G/B.
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6 Die Verlinde-Formel

Diese Formel berechnet (in Charakteristik 0) die Dimension des Raums der globalen
Schnitte I'( Mg, L.) fiir das Geradenbiindel mit Invariante c. Etwas allgemeiner kann
man noch L, tensorieren mit Vektorbiindeln &,. Dabei ist x € C ein Punkt und E eine
irreduzible Darstellung von G. E, ordnet einem G-Torsor P die Faser des zugehdrigen
Vektorbiindels £ = E” in x zu. Man sieht leicht, dass es nur nicht triviale globale
Schnitte geben kann, wenn E integrabel ist. Dies bedeutet, dass das maximale Gewicht
von E auf der Kowurzel 6" zur maximalen Wurzel 0 einen Wert < ¢ annimmt. Falls
c¢=1und G vom Typ A,D,E ist (d.h. nur eine Wurzelliinge besitzt), so bedeutet dies
dass E entweder trivial oder winzig (,,miniskul®) ist. Die Anzahl dieser Darstellungen ist
gleich der Ordnung des Zentrums Z von G.

Der Mechanismus der Verlinde-Formel funktioniert wie folgt: Man degeneriere die
Kurve zu einer rationalen Kurve mit g Doppelpunkten, also zu IP! mit g Paaren von
Punkten {x;,y;} identifiziert. Dann besteht ein G-Torsor auf der degenerierten Kurve
aus einem G-Torsor auf IP' zusammen mit Isomorphismen der Fasern in x; und y;. Letz-
tere werden nicht ganz kanonisch durch ein Exemplar von G parametrisiert, besser
durch ein Biindel mit Faser G und Strukturgruppe G x G. Das heiB3t, der Modulraum
(-stack) M fiir die singuldre Kurve ist ein G¢-Biindel iiber dem entsprechenden Modul-
raum fiir IP'. Da die reguliren Funktionen auf G als G x G-Modul die direkte Summe
aller E ® EY ist (E durchlauft alle irreduziblen Darstellungen von G), wird T'(Mg, L)
die direkte Summe der globalen Schnitte des Modulraums fiir IP', wobei aber in den
Punkten x; und y; noch jeweils duale Paare von Darstellungen E; und E} einzusetzen
sind. Die Summe wird endlich, da man sich auf die endlich vielen integrablen Darstellun-
gen beschrinken kann. Diese Beschreibung ist im Wesentlichen korrekt, aber natiirlich
stark vereinfacht: Der Modulraum fiir die singulire Kurve hat kein gutes Modell, Tor-
soren konnen schlechte Reduktion haben, man muss zur Lie-Algebra iibergehen.

Die Auswertung der Verlinde-Formel wird besonders einfach fiir ¢ = 1 und G vom
Typ ADE: Dann spielen nur miniskule Darstellungen eine Rolle. Zum Beispiel beim
Typ Ejg bleibt nur die triviale Darstellung tibrig, man erhilt fiir beliebige Kurven C die-
selbe Dimension wie fiir den IP', und diese ist Eins. Allgemeiner ist die Dimension |Z|2.
Dies wird ,erkldrt" durch die Operation von Z-Torsoren: Die Gruppe H'(C, Z) ope-
riert auf Mg durch zentrale Twists. Jedes Gruppenelement respektiert individuell das
Biindel £y, aber insgesamt operiert nur eine zentrale @,,-Erweiterung von H'(C, Z) da-
rauf. Der Kommutator in dieser Erweiterung ist eine symplektische Form auf
H'(C, Z), welche sich als nicht degeneriert herausstellt. Damit ist nach bekannten St-
zen (,,Stone*) jede Darstellung mit skalarer @,,,-Operation ein Vielfaches einer irreduzi-
blen Darstellung der Dimension |Z|%. Alles in allem realisiert somit T'(Mg, £,) die irre-
duzible Darstellung der zentralen Erweiterung, ist also ,,so klein wie moglich.

Es bleibt das groBe offene Problem, solche globalen Schnitte geometrisch zu be-
schreiben. Zum Beispiel gibt es fiir G vom Typ Eg einen kanonisch definierten Divisor
in Mg, welcher die Nullstellenmenge des einzigen globalen Schnitts von £; ist. Was ist
dieser Divisor? Eine Variante:
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Betrachte die Gruppen G = Spins,. Deren Fundamentalgruppe ist Z = Z/(2) x
Z/(2), besitzt also drei zyklische Untergruppen Z/(2). Zu jeder dieser Untergruppen
gehort ein maximal isotroper Teilraum H'(C,Z/(2)) in H'(C, Z), und damit eine Fa-
milie von globalen Schnitten in I'(Mg, £,), welche Eigenvektoren (der projektiven Dar-
stellung) unter diesem Teilraum sind. Zum Beispiel gehoren zur diagonalen Untergrup-
pe die Pfaff’schen Determinanten der Kohomologie von £ ® M, wobei £ das tautologi-
sche orthogonale 4n-Biindel auf C ist, und M eine Theta-Charakteristik. Zu den zwei
anderen Z/(2)’s sollten Schnitte gehoren, welche irgendetwas mit den zwei Spin-Dar-
stellungen zu von £ zu tun haben.

Zur Erinnerung: Sping, besitzt zwei irreduzible Spin-Darstellungen S* der Dimensi-
on 22"~! Diese sind orthogonal fiir gerade 7 und symplektisch fiir ungerade ». Dies sind
die zwei irreduziblen Darstellungen der geraden Elemente in der Clifford-Algebra C(E)
zur orthogonalen Standard-Darstellung E der Dimension 4n. Der gesuchte Schnitt zu
S* sollte die folgende Eigenschaft haben: Es gibt eine Operation der 2-Torsion J[2] der
Jacobi’schen von C auf G-Biindeln, welche das assoziierte Spin-Biindel ST festlisst,
aber £ (Biindel zu E) mit einem Torsionsbiindel tensoriert. Unser Schnitt sollte unter
dieser Operation ein Eigenvektor sein.

Falls C eine elliptische Kurve ist (g = 1), so kann man den unbekannten Schnitt
auch direkt analytisch angeben: Jedes polystabile G-Biindel ist induziert von einem
T-Biindel. Man betrachte nun das Gitter A C Q" welches aus allen Linearkombinatio-
nen »_; Ae; besteht, fiir die die Koeffizienten ); der Standardbasis e; in 1/27 liegen, alle
modulo Z gleich sind, und die Summe ), \; gerade ist. Die quadratische Form

gV =D N

ist ganzzahlig auf A (und gerade, wenn n durch vier teilbar ist). Sie liefert dann eine prin-
zipale Polarisation auf C?", und in der Klasse dieser prinzipalen Polarisation vier sym-
metrische Geradenbiindel, welche unter der Weil-Gruppe invariant sind. Die vier zuge-
horigen Theta-Divisoren unterscheiden sich durch Translationen mit einem Element
aus C[2]. (Cist diagonal eingebettet in A @ C). Was fehlt, ist eine geometrische Interpre-
tation dieser Divisoren.

Fiir elliptische Kurven liber den komplexen Zahlen kann man das wie folgt prézisie-
ren: Fiir 7 in der oberen Halbebene betrachte die Theta-Reihe

9(3) = Ze.\‘p(ﬂirq()\))exp(Zﬂi < A 33
A€A

Thre Nullstellenmenge ist ein Divisor in C*', C = €/ < 1,7 > die elliptische Kurve zu 7.
Was ist die geometrische Bedeutung dieses Divisors?
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7 Die Hitchin-Faserung

Die Hitchin-Faserung ist ein wichtiges Werkzeug zur Untersuchung des Modulraums
M. Unter anderem erlaubt sie die Ubertragung der bisherigen Resultate in positive
Charakteristik. Unter Ignorieren kleiner Komplikationen (wie Stacks) kann man sie
wie folgt beschreiben:

Betrachte den Raum M ¢, welcher Paare (P, 6) klassifiziert, mit P ein G-Torsor auf
C,und 0 € T(C, g” ® wc) ein globaler Schnitt des assoziierten Biindels zur adjungierten
Darstellung, tensoriert mit den Differentialen. Dies ist zum Einen ein Vektorbiindel
iiber M und sogar das Kotangential-Biindel. Dies ergibt eine symplektische Struktur.

Zum anderen kann man 6 zuordnen die Werte der G-invarianten Funktionen auf g:
Ist ¢ eine solche vom Grad e, 50 ist ¢(e) ein globaler Schnitt von w. Zum Beispiel ist
fiir G = SL, 0 ein wc-wertiger Endomorphismus eines Geradenbiindels vom Rang zwel,
mit verschwindener Spur. Seine Determinante ist eine 2-Form. Angewandt auf ein Sys-
tem von Erzeugenden der Invarianten Funktionen erhélt man eine zweite Abbildung
von Mg, diesmal mit Werten in einem affinen Raum Char. Dann sind alle Fasern maxi-
male isotrope Unterschemata, und die Abbildung ist flach. Weiter ist die generische Fa-
ser ein homogener Raum unter einer Abel’schen Varietit. Insbesondere sind alle regula-
ren Funktionen auf M ¢ 4 induziert von Char.

Zum Beispiel klassifiziert fiir die Gruppe G = SL, My Vektorbiindel £, vom Rang
r und trivialer Determinante, zusammen mit einem Endomorphismus 6 € T'(C, End(E)
®wc) von verschwindener Spur. Die Koeffizienten des charakteristischen Polynoms
von 6 liefern globale Schnitte in T'(C,w®’) (2 < i < r), und Char ist die direkte Summe
dieser globalen Schnittrdume. Fiir generische Werte definiert das charakteristische Po-
lynom von @ eine Uberlagerung D — C vom Grad r mit glattem D, und die Faser von
M. besteht aus Geradenbiindeln M auf D, deren Norm isomorph zu w?r(H 2 st

Die Hitchin-Faserung ist uns niitzlich aus zwei Griinden: Zum Einen funktioniert sie
auch in positiver Charakteristik p, vorausgesetzt, diese ist gut fiir G. ,,Gut" heif3t dabei,
dass p nicht die Koeffizienten der maximalen Wurzel (geschrieben als Linearkombinati-
on der einfachen Wurzeln) teilt. Im ungiinstigsten Fall (Eg) schlieBt dies nur die Prim-
zahlen 2, 3, 5 aus. Damit erhdlt man auch in positiver Charakteristik eine obere Abschét-
zung fiir die Dimension von I'(Mg, £,) und eine Ausdehnung der bisherigen Resultate.

Zum anderen liefert die Hitchin-Faserung geometrische Divisoren auf Mg: Die Fa-
ser von Mgy Uber 0 € Char hat diesselbe Dimension wie M. Sie klassifiziert G-Torso-
ren P zusammen mit einem nilpotenten 6 € I'(C, g* ® wc). Die Projektion auf Mg ist
invariant unter der @,,-Operation, welche 6 durch skalare Vielfache ersetzt. Damit hat
das Bild aller irreduziblen Komponenten, auf denen 6 nicht identisch verschwindet, Ko-
dimension > 1, und man erwartet Kodimension 1. Dies liefert eine geometrische Kons-
truktion von Divisoren. (Technische Anmerkung: Die Konstruktion geometrisch defi-
nierter Divisoren ist nicht ganz einfach. Bei den meisten geometrisch induzierten Unter-
varietaten wird die erwartete Kodimension durch eine Riemann-Roch-Formel gegeben,
und das Resultat ist {iblicherweise durch g — 1 teilbar.) Zu diesem Divisor gehort dann
ein Geradenbiindel £, und man kann versuchen, ¢ zu berechnen. Ein Beispiel:
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Betrachte G-Torsoren P zusammen mit einem Schnitt 0 # 6 € T'(C, ¢* ® wc), wel-
cher in jedem Punkt entweder verschwindet oder konjugiert zu einem Wurzelvektor ist.
Dann liefert dies eine Invariante ¢ = (24")%.
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1 Introduction

Semilinear elliptic differential equations of the form
—Au(x) +f(x,u(x)) =0 (x€Q) (1)

(with Q C IR" denoting some given domain, and / : 2 x IR — IR some given nonlinear-
ity), together with boundary conditions, e. g. of Dirichlet type

u(x)=0 (x €09Q), (2)
have been (and still are) extensively studied in the differential equations literature. Such
semilinear boundary value problems have a lot of applications e. g. in Mathematical Phy-
sics, and often serve as model problems for more complex mathematical situations, and
last but not least, they form a very exciting and challenging object for purely mathema-
tical investigations. Starting perhaps with Picard’s successive iterations at the end of the
19" century, various analytical methods and techniques have been (and are being) de-
veloped to study existence and multiplicity of solutions to problem (1), (2), such as var-
iational methods (including mountain pass methods), index and degree theory, monoto-
nicity methods, fixed-point methods, and more; see e. g. [2]-[6], [12]-[14], [18]-[21],
[25, 26, 30, 31, 33, 34, 36], [39]-[41], [43, 44, 55, 61], and the references therein.

In this article, we want to report on a supplement to these purely analytical methods
by a computer-assisted approach, which in the recent years has turned out to be success-
ful with various examples where purely analytical methods have failed. In spite of many
numerical calculations involved, the existence and multiplicity proofs given by our
method are completely rigorous and not “worse” than any other proof. One might ask
if (systematic or accidental) hardware errors could spoil the correctness of a computer-
assisted proof, but the probability of the permanent occurrence of such errors can be
made very small by use of different hardware platforms and by repeating the computa-
tions many times. Of course, some uncertainty concerning the correctness of the hard-
ware actions or of the program codes remains, but is this uncertainty really larger than
the uncertainty attached to a complex “theoretical” proof?

Recently, various mathematical problems have been solved by computer-assisted
proofs, among them the Kepler conjecture, the existence of chaos, the existence of the
Lorenz attractor, the famous four-colour problem, and more.

In many cases, computer-assisted proofs have the remarkable advantage (compared
with a “theoretical” proof) of providing accurate quantitative information. Coming
back to our approach concerning problem (1), (2), such quantitative information is gi-
ven in form of tight and explicit bounds for the solution.

We start with an approximate solution w to (1), (2), which can be obtained by any
numerical method which gives approximations in the function space needed (to be spe-
cified later). In this first step, there is no need for any mathematical rigor, and the field
is open for the whole rich variety of modern numerics.

Next, we use a Newton-Cantorovich-type argument to prove the existence of a solu-
tion to (1), (2) in some “close” and “explicit” neighborhood of w. For this purpose, we
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consider the boundary value problem for the error v =u — w and rewrite it as a fixed-
point equation

veX, v=Tv (3)

in a Banach space X, which we treat by some fixed-point theorem. More precisely, we
aim at Schauder’s fixed-point theorem if compactness is available (which essentially re-
quires the domain Q in (1) to be bounded), or at Banach’s fixed-point theorem (if we are
ready to accept an additional contraction condition; see (17) below). The existence of a
solution v* of (3) in some suitable set ¥ C X then follows from the fixed-point theorem,
provided that

TV CV. 4)

Consequently, u* : = w + v* is a solution of (1), (2) (which gives the desired existence re-
sult), and the statement “u* € w + ¥V (implied by v* € V) gives the desired bounds, or
enclosures, for u*.

So the crucial condition to be verified, for some suitable set ¥, is (4). Restricting
ourselves to norm balls V (centered at the origin), we find that (4) results in an inequality
involving the radius of ¥, and various other terms generated by the “data” of our pro-
blem (1), and by the numerical approximation w. All these terms are computable, either
directly or via additional computer-assisted means (like the eigenvalue bounds dis-
cussed briefly in Section 3.3). In these computations (in contrast to the computation of
w mentioned above), all possible numerical errors have to be taken into account, in or-
der to be able to check the aforementioned inequality (implying (4)) with mathematical
rigor. For example, remainder term bounds need to be computed when quadrature for-
mulas are applied, and interval arithmetic [35, 57] is needed to take rounding errors into
account.

Computer-assisted means for obtaining enclosures for solutions to elliptic partial
differential equations have been proposed by Collatz [16, 17] already more than 50 years
ago. He used maximum-principle-type arguments to obtain two-sided bounds for the
error function u — w, with w denoting a numerical C>—approximation. Schréder [58]—
[60], Walter [62] and others generalized these ideas, which resulted in the method of dif-
ferential inequalities. It was successfully applied to many examples with first or second
order ordinary differential equations, or with second order elliptic or parabolic differen-
tial equations. However, there are drawbacks of differential inequalities methods con-
cerning the size of the class of problems (1), (2) to which they can be applied: At least
for obtaining “tight” solution enclosures, all eigenvalues of the linearization L of (1),
(2) at w need to be positive, which excludes many interesting situations. Furthermore,
differential inequalities techniques are essentially restricted to first- and second-order
problems (with the exception of some fourth-order problems which can be handled as
second-order systems). In contrast, the enclosure method proposed in this article re-
quires the eigenvalues of the linearization L to be non-zero only (which is checked by ei-
genvalue enclosures), and at least in principle it can be used for elliptic problems of any
(even) order; see also the remarks at the end of Section 2.
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An existence and enclosure method similar to ours has been developed by Nakao
and his group [46]—[48]. This approach avoids the computation of eigenvalue enclo-
sures for L, which constitutes a significant advantage in some cases. Instead, a finite-di-
mensional projection of L is used, and treated by well-established means of verifying nu-
merical linear algebra. However, also the (infinite-dimensional) projection error needs
to be bounded in a suitable way, which is well possible for “simple” domains €, but pro-
blematic e. g. for unbounded domains.

Another more recent approach is based on the Conley index and the numerical veri-
fication of corresponding topological conditions; it is suited for proving the existence of
stationary solutions for certain classes of problems, as well as for detecting global dy-
namics (see e. g. [22, 29)).

For ordinary differential equation problems (possibly originating from a partial dif-
ferential equation after symmetry reductions), many existence and enclosure methods
can be found in the literature, which we will not address in this article.

2 Abstract formulation

It turns out to be useful to explain the basics of our computer-assisted approach first
for the following abstract problem:

Find u € X satisfying F(u) =0, (5)
with (X, (-,+,) ) and (Y, (-, -) y) denoting two real Hilbert spaces, and F : X — Y some
Fréchet differentiable mapping.

Let w € X denote some approximate solution to (5) (computed e.g. by numerical
means), and

L=F(w):X—>Y (6)
the Fréchet derivative of F atw, i.e. L € B(X, Y) (the Banach space of all bounded line-
ar operators from X to Y), and

1

li — || F h) — F(w)— Lh =)
/16,)1(1{(1{)0} “h”X ” (w+ ) (w) [”IY

Suppose that we know constants § and K, and a non-decreasing function g : [0, 00) —
[0, c0) such that

IF(Wlly <6, )
1.e. 6 bounds the defect (residual) of the approximate solution w to (5),

lully < K ||L[u]||ly forall u € X, (8)
i.e. K bounds the inverse of the linearization L,

| (w+ 1) = F'(@)lser.y) < &(llully) for all u € X, 9)
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i.e. g majorizes the modulus of continuity of F’ at w, and
g(t) - 0ast—0 (10)

(which in particular requires 7' to be continuous at w).

The concrete computation of such 6, K, and g is the main challenge in our approach,
with particular emphasis on K. We will however not address these questions in this sec-
tion, i.e. on the abstract level, but postpone them to the more specific case of the bound-
ary value problem (1), (2), to be treated in the following sections. For now, we assume
that (7)—(10) hold true.

In order to obtain a suitable fixed-point formulation (3) for our problem (5), we will
need that the operator L is onto. (Note that L is one-to-one by (8).) For this purpose, we
propose two alternative ways, both suited for the later treatment of problem (1), (2).

1) “The compact case”. Suppose that F admits a splitting
F=Ly+G (1)

with a bijective linear operator Ly € B(X, Y) and a compact and Fréchet differentiable
operator G : X — Y with compact Fréchet derivative G'(w).

Noting that L;! € B(Y, X) by the Open Mapping Theorem, we find that the linear
operator

Ly'G(w) : X — X is compact.
Moreover, since L = Ly + G'(w) by (11), we have the equivalence
Lu=r<u+ (Lj'G (W)U = Ly'[r] (12)

for every u € X,r € Y. Fredholm’s Alternative Theorem for compact linear operators
tells us that the equation on the right of (12) has a unique solution u € X for every
r € Y, provided that the homogeneous equation (r = 0) admits only the trivial solution
u = 0. By the equivalence (12), the same is true for the equation L[u] = r. Since the
homogeneous equation L[u] =0 indeed admits only the trivial solution by (8), L is
therefore onto.

2) “The dual and symmetric case”. Suppose that ¥ = X', the (topological) dual of X,
i.e. the space of all bounded linear functionals / : X — IR. X’(= B(X,IR)) is a Banach
space endowed with the usual operator sup-norm. Indeed, this norm is generated by an
inner product (which therefore makes X" a Hilbert space) as explained in the following:
Consider the linear mapping ® : X — X’ given by

(R[] == (u,v)y (u,v € X). (13)
Forallu € X,
@l = sup KRB g [dhad o
veX\{0} [Iv]l x veX\{0} Vil

i.e. @ is an isometry (and hence one-to-one).
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Furthermore, ® is onto by Riesz’ representation theorem for bounded linear func-
tionals on a Hilbert space: Given any r € X’, some (unique) u € X exists such that
r[v] = (u,v)y for all v e X, i.e. ®[u] = r by (13). @ is therefore called the canonical iso-
metric isomorphism between X and X”. It immediately gives an inner product on X’ by

(r,s)yr == (@[], @7 [s]) (r,s € X'), (14)

and the norm generated by this inner product is the “old” norm || - || y+, because @ is iso-
metric.

In theoretical functional analysis, the Hilbert spaces X and X’ are often identified
via the isometric isomorphism ®, i.e. they are not distinguished, which however we will
not do because this might lead to confusion when X is a Sobolev function space, as it
will be later.

To ensure that L : X — Y = X’ is onto, we make the additional assumption that
®~'L: X — X is symmetric with respect to (-, -y x» which by (13) amounts to the rela-
tion

(L[u))[v] = (L[v])[u] for all u,v € X. (15)

This implies the denseness of the range (®~!L)(X) C X : Given any u in its orthogonal
complement, we have, forall v € X,

0= (u, (27" L)M)yx = (27" L)[u], v)y,

and hence (®~'L)[u] = 0, which implies L[u] = 0 and thus u = 0 by (8).

Therefore, since ® is isometric, the range L(X) C X’ is dense. For proving that L is
onto, we are therefore left to show that L(X) C X is closed. For this purpose, let
(L[un]))nen denote some sequence in L(X) converging to some r € X’. Then (8) shows
that (u,)nen is a Cauchy sequence in X. With u € X denoting its limit, the boundedness
of L implies L{u,] — L[u](n — o0). Thus, r = L[u] € L(X), which proves closedness of
L(X).

We are now able to formulate and prove our main theorem, which is similar to the
Newton-Cantorovich-Theorem:

Theorem 1: Let 6, K, g satisfy conditions (7)—(10). Suppose that some o > 0 exists
such that

6 <%= Gla), (16)

where G(t) := fot g(s)ds. Moreover, suppose that

1) “the compact case” is at hand,
or
2) “the dual and symmetric case” is at hand, and the additional condition

Kg(a) <1 (17)
holds true.
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Then, there exists a solutionu € X of the equation F (u) = 0 satisfying
u—wly <o (18)

Remark 1: a) Due to (10), G(¢) = f(;g(s)ds is superlinearly small as t — 0. There-
fore, the crucial condition (16) is indeed satisfied for some “small” « if K is “moderate”
(i.e. not too large) and ¢ is sufficiently small, which means according to (7) that the ap-
proximate solution w to problem (5) must be computed with sufficient accuracy, and
(16) tells us how accurate the computation has to be. This meets the general philosophy
of computer-assisted proofs: The “hard work™ of the proofis left to the computer!

b) For proving Theorem 1, we will use the (abstract) Green’s operator L™ to re-for-
mulate problem (5) as a fixed-point equation, and apply some fixed-point theorem. If
the space X were finite-dimensional, Brouwer’s Fixed-Point Theorem would be most
suitable for this purpose. In the application to differential equation problems like (1),
(2), however, X has to be infinite-dimensional, whence Brouwer’s Theorem is not ap-
plicable. We have two choices: 1) Either we can use the generalization of Brouwer’s The-
orem to infinite-dimensional spaces, i. e. Schauder’s Fixed-Point-Theorem, which expli-
citly requires additional compactness properties (holding automatically in the finite-di-
mensional case). In our application to (1), (2) discussed later, this compactness is given
by compact embeddings of Sobolev function spaces, provided that the domain 2 is
bounded (or at least has finite measure). Since we want to include unbounded domains
in our consideration, too, we make also use of the second option: ii) We can use Ba-
nach’s Fixed-Point Theorem. No compactness is needed then, but instead an additional
contraction condition (which is condition (17)) is required. Due to (10), this condition is
however not too critical if o (computed according to (16)) is “small”.

Proof of Theorem 1. We rewrite problem (5) as

Liu - w] = ~F(w) - {F(u) - F(w) - Llu— o]},
which due to the bijectivity of L amounts to the equivalent fixed-point equation

vEX, v=—L[Fw) +{Flw+v) - Flw) - L]} =:T(v) (19)
for the error v = u — w.

Now we are going to show the following properties of the fixed-point operator
T:X— X:

1) T(V) C V for the closed, bounded, non-empty, and convex norm ball

Vi={veX:|vl,<a},

ii) T is continuous and compact (in case 1)) or contractive on V¥ (in case 2)), respec-

tively.

Then, Schauder’s Fixed-Point Theorem (in case 1)) or Banach’s Fixed-Point Theo-
rem (in case 2)), respectively, gives a solution v* € V" of the fixed-point equation (19),
whence by construction v* := w + v* is a solution of F(u) = 0 satisfying (18).

For proving i) and ii), we first note that for every differentiable function f : [0, 1] —

Y, the real-valued function || f||y is differentiable almost everywhere on [0,1], and
d/an)|flly <IIf'lly a.e.on |0, 1]. Hence, for every v, v € X,

JB 110. Band (2008), Heft 1 25



L Ubersichtsartikel ] Historische Beitrage ‘ Berichte aus der Forschung Buchbesprechungen—'

|Flw+v)—Flw+7v) —Lv—7]||y

1

= di||f(w+(1—z)v+zv)—f(ww)—zL[v—v]nydt
o dt
1

5/0 H{F (w+ (1 = 05+ tv) = L}y — 9] dt
1

< /0 I @+ (1= )5 + 1) — Lllgy.y, de - [v =l

1
< [ el =0+ ol e Iy =5l 0)
0

using (6) and (9) in the last step. Choosing v = 0 in (20) we obtain, for each v € X,

1 lIvllx
[Flw+v) = Flw) = LPlly < /0 gtvlly)dr - |vllx = /0 g(s)ds = G(||vlx)-
(21)
Furthermore, (20) and the fact that g is non-decreasing imply, for all v,v € V,

1
(4 9) = o+ 5) = Ly =3llly < [ 6= Ol + dvll)de- Iy = e

<g(@)llv—Vlly- (22)

To provei),letv e V,ie. ||v]y < . Now (19),(8), (7),(21), and (16) imply

ITMxy < KIF (W) +{F(w+v) = Fw) - LP}Hy

< K6+ G(lvlly)) < K(6+ Gla)) < a,

which gives T'(v) € V. Thus, T(V) C V.

For proving ii), suppose first that “the compact case” is at hand. So (11), which in
particular gives L = Ly + G'(w), and (19) imply

T(v) = —L7'[F(w) + {G(w+v) — G(w) — G'(w)[]}] for all v € X,

whence continuity and compactness of 7 follow from continuity and compactness of G
and G (w), and the boundedness of L~ ensured by (8).
If the “dual and symmetric case” is at hand, (19), (8), and (22) imply, for v,v € V7,

ITOG) = TGy = IL7H{FW+v) = Flw+75) = Ly - 3}y
< K|F(w+v) = Flw+V) - Ly = ][ly < Kg(a)[|[v =y,

whence (17) shows that T is contractive on V. This completes the proof of Theorem 1.
O

In the following two sections, we will apply the abstract approach developed in this
section to the elliptic boundary value problem (1), (2). This can be done in (essentially
two) different ways, i.e. by different choices of the Hilbert spaces X and Y, resulting in
different general assumptions (e.g. smoothness conditions) to be made for the “data” of
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the problem and the numerical approximation w, and different conditions (7)—(9), (16),
(17), as well as different “results”, i.e. existence statements and error bounds (18).

At this point, we want to report briefly on some other applications of our abstract
setting which we cannot discuss in more detail in this article.

For parameter-dependent problems (where F in (5), or f in (1), depends on an addi-
tional parameter \), one is often interested in branches (uy),., of solutions. By addi-
tional perturbation techniques, our method can indeed be generalized to computer-as-
sisted proofs for such solution branches, as long as the parameter-interval I defining the
branch is compact [51]. Such branches may however contain turning points (where a
branch “returns” at some value \*) or bifurcation points (where several — usually two —
branches cross each other). Near such points, the operator L defined in (6) is “almost”
singular, i.e. (8) holds only with a very large K, or not all all, which makes our approach
break down. However, there are means to overcome these problems:

In case of (simple) turning points, the well-known method of augmenting the given
equation by a bordering equation can also be used here; the “new” operator F in (5)
contains the “old” one and the bordering functional, and the “new” operator L is regu-
lar near the turning point if the bordering equation has been chosen appropriately [50].

In case of (simple) symmetry-breaking bifurcations, we can, in a first step, include
the symmetry in the spaces X and Y, which excludes the symmetry-breaking branch
and regularizes the problem, whence an existence and enclosure result for the symmetric
branch can be obtained. In a second step, we exclude the symmetric branch by some
transformation (similar to the Lyapunov-Schmidt reduction), and defining a corre-
sponding new operator F we can perform our method to obtain an existence and enclo-
sure result also for the symmetry-breaking branch [52].

Non-selfadjoint eigenvalue problems have been treated in [38], again using bordering
equation techniques normalizing the unknown eigenfunction. So F now acts on pairs
(1, ), and is defined via the eigenvalue equation and the (scalar) normalizing equation.
In this way, we were able to give the first known instability proof of the Orr-Sommer-
feld equation with Blasius profile, which is a fourth-order ODE eigenvalue problem on
[0, 00).

Also (other) higher order problems are covered by our abstract setting. In [11], we
could prove the existence of 36 travelling wave solutions of a fourth-order nonlinear
beam equation on the real line. Biharmonic problems (with AAu as leading term) are
presently investigated by B. Fazekas; see also [23].

3 Strong solutions

Now we study the elliptic boundary value problem (1), (2) under the additional assump-
tions that /" and §f/9dy are continuous on 2 x IR, and that the domain  C IR" (with
n < 3) is bounded with Lipschitz boundary, and H>-regular (i.e., for each r € L(12), the
Poisson problem —Au=r in Q, u=0 on 9Q has a unique solution u € H>(Q)N
HY().
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Here and in the following, L?(£2) denotes the Hilbert space of all (equivalence classes
of) square-integrable Lebesgue-measurable functions on €, endowed with the inner
product

(u,v),2 ::/uv dx,
0

and H*(Q) is the Sobolev space of all functions u € L*(Q) with weak derivatives up to
order k in L?(2). H*(f2) is a Hilbert space with the inner product

(U, V) g == Z (Du, D)2,
aeNg
|| <k

and it can also be characterized as the completion of C>(Q) with respect to (-, -) k- I
we replace here C*(€2) by C5°(2) (with the subscript 0 indicating compact support in
), we obtain, by completion, the Sobolev space H¥((2), which incorporates the vanish-
ing of all derivaties up to order k — 1 on 92 in a weak sense.

We note that piecewise CK-smooth functions u (e.g. form functions of Finite Element
methods) belong to H* () if and only if they are (globally) in C*~!(Q).

Our assumption that Q is H>-regular is satisfied e.g. for C?- (or C"!-)smoothly
bounded domains (see e.g. [27]), and also for convex polygonal domains Q c IR? [28]; it
is not satisfied e.g. for domains with re-entrant corners, like the L-shaped domain
(-1, 1)*\[0,1)%

Under the assumptions made, we can choose the spaces

X := H* Q) NHNQ), Y := L*(Q), (23)
and the operators
F:=Lo+G, Lou] := —Au, G(u) :=f(-,u), (24)

whence indeed our problem (1), (2) amounts to the abstract problem (5). Moreover,
Ly : X — Y is bijective by the assumed unique solvability of the Poisson problem, and
clearly bounded, i.e. in B(X, Y). Finally, G : X — Y is Fréchet differentiable with deri-
vative given by

G Wl = (25)
which follows from the fact that G has this derivative as an operator from C(f2) (en-
dowed with the maximum norm || - || ) into itself, and that the embeddings H*(Q)—
C(Q) and C(Q)—L?*(Q) are bounded. In fact, H(Q)— C(f) is even a compact embedd-
ing by the famous Sobolev-Kondrachev-Rellich Embedding Theorem [1] (and since
n < 3), which shows that G and G'(u) (for any u € X)) are compact. Thus, “the compact
case” (see (11)) is at hand.

For the application of Theorem 1, we are therefore left to comment on the computa-
tion of constants 6 and K, and a function g which satisfy (7)—(10) (in the setting (23),
(24)). But first, some comments on the computation of the approximate solution w
should be made.
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3.1 Computation of w

Since w is required to be in X = H*(2) N H}(Q), it has to satisfy the boundary condi-
tion exactly (in the sense of being in H|}(£2)), and it needs to have weak derivatives in
L*(Q) up to order 2. If Finite Elements shall be used, this implies the need for C!-ele-
ments (i.e. globally C'-smooth Finite Element basis functions), which is a drawback at
least on a technical level. (In the alternative approach proposed in the next section, this
drawback is avoided.) If = (0,a) x (0, b) is a rectangle, there are however many alter-
natives to Finite Elements, for example polynomial or trigonometric polynomial basis
functions. E.g. in the latter case, w is put up in the form

LA | s .| 8 . X2
w(xy,x2) = ; ; Qi sm(nr—a—) s1n(]7r?'), (26)

with coefficients cy; to be determined by some numerical procedure. Such a procedure
usually consists of a Newton iteration, together with e.g. a Ritz-Galerkin or a colloca-
tion method, and some linear algebraic system solver, which possibly incorporates mul-
tigrid methods. To start the Newton iteration, a rough initial approximation is needed,
which can e.g. be obtained by path-following methods, or by use of the numerical
mountain pass algorithm proposed in [15].

An important remark is that, no matter how w is put up or which numerical method
is used, there is no need for any rigorous (i.e. error free) computation at this stage, i.e.
the whole variety of numerical methods is at hand.

3.2 Defect bound &

Computing some ¢ satisfying (7) means, due to (23) and (24), computing an upper
bound for (the square root of)

/Q [—Aw +f(-,w)] dx (27)

(which should be “small” if wis a “good” approximate solution). In some cases this inte-
gral can be calculated in closed form, by hand or by computer algebra routines, for ex-
ample if /' is polynomial and w is piecewise polynomial (as it is if Finite Element meth-
ods have been used to compute it), or if f(x, -) is polynomial and both f(-, y) and w are
trigonometric polynomial (compare (26)). The resulting formulas have to be evaluated
rigorously, to obtain a true upper bound for the integral in (27). For this purpose, inter-
val arithmetic [35, 57] must be used in this evaluation, in order to take rounding errors
into account.

If closed form integration is impossible, a quadrature formula should be applied,
possibly piecewise, to the integral in (27), again with evaluation in interval arithmetic.
To obtain a true upper bound for the integral, we need in addition a remainder term
bound for the quadrature formula, which usually requires rough || - || ..-bounds for some
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higher derivatives of the integrand. Such rough bounds can be obtained e.g. by subdi-
viding 2 into (many) small boxes, and performing interval evaluations of the needed
higher derivatives over each of these boxes (which gives true supersets of the function
value ranges over each of the boxes, and thus, by union, over ).

3.3 Bound K for L!

The next task is the computation of a constant K satisfying (8), which due to (23)—(25)
means

llull ;2 < K||L[u]|| 2 for all u € H*(Q) N Hy(%), (28)
where L : H*(Q) N H}(Q) — L*() is given by

L{u] = —Au + cu, c(x):= g—j;(x, w(x)) (x € Q). (29)

The first (and most crucial) step towards (28) is the computation of a constant K such
that

llull ;2 < Ko||L[u]|| 2 for all u € H*(Q) N Hy (). (30)

Choosing some constant lower bound c¢ for ¢ on , and using the compact embedding
H?()—L*(), we find by standard means that (L — ¢)~" : L2(Q) — L2(£2) is compact,
symmetric, and positive definite, and hence has a (-, -), >-orthonormal and complete sys-
tem (k) Of eigenfunctions ¢ € H2(2) N HY (), with associated sequence (1) ey
of (positive) eigenvalues converging monotonically to 0. Consequently, L{¢k] = A\eox
for k € N, with A\x = p;' + ¢ converging monotonically to +oco. Series expansion
yields, for every u € H*(Q) N H}(Q),

oo oo o0
ILBAIZ: = D (Ll ei)2 = D Llprla = > X (u
k=1 k=1 k=1
2 - 2 . 2 2
> (52%1)\ ) kz:;(m k)2 = (?eliﬂl’\J')H“”Lz’

which shows that (30) holds if (and only if) A; # 0 for allj € IN, and
. -1
Ky > (?;glp‘j[) : (31)

Thus, bounds for the eigenvalue(s) of L neighboring 0 are needed to compute K. Such
eigenvalue bounds can be obtained by computer-assisted means of their own. For exam-
ple, upper bounds to Aj, ..., Ay (with N € IN given) are easily and efficiently computed
by the Rayleigh-Ritz method [56]:

Let ¢1,...,¢n € H*(Q) 0 H}(Q) denote linearly independent trial functions, for ex-
ample approximate eigenfunctions obtained by numerical means, and form the ma-
trices
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Then, with A; < ... < Ay denoting the eigenvalues of the matrix eigenvalue problem
A1x = Aon

(which can be enclosed by means of verifying numerical linear algebra; see [8]), the Ray-
leigh-Ritz method gives

/\jSAifOIiZI,...,N.

However, for computing Kj via (31), also lower eigenvalue bounds are needed, which
constitute a more complicated task than upper bounds. The most accurate method for
this purpose has been proposed by Lehmann [42], and improved by Goerisch concern-
ing its range of applicability [9]. Its numerical core is again (as in the Rayleigh-Ritz
method) a matrix eigenvalue problem, but the accompanying analysis is more involved.
In most cases, the Lehmann-Goerisch method must be combined with a homotopy
method connecting the given eigenvalue problem to a simple “base” problem with
known eigenvalues. A detailed description of these methods would be beyond the scope
of this article. Instead, we refer to [53] for more details.

Once a constant K| satisfying (30) is known, the desired constant K (satisfying (28))
can relatively easily be calculated by explicit a priori estimates: With ¢ denoting a con-
stant lower bound for ¢, we obtain by partial integration, for each u € H*(Q) N H} (),

llull 2 I LLdll 2 = (e, L]u]) 12 = /Q(IWI2 +al)dx > ||Vullz, + cllullz,

which implies, together with (30), that

VK —cKy) if cKp <1
Vull ;2 < Ki||L[u]|| 2, where K; := 10( cKo) 0. 2, (32)
3 otherwise

To complete the H>-bound required in (28), we need to estimate the LZ2-norm of the
(Frobenius matrix norm of the) Hessian matrix uy, of u € H*(2) N H} (). If Q is con-
vex (as we shall assume now), we have

sl 2 < | Aul| 2 for all u € H*(Q) N H{ () (33)

(see e.g. [28, 37]); for the non-convex case, we refer to [28, 49]. Now, with ¢ denoting an
additional upper bound for ¢, we choose 1 := max{O,% (¢ +¢)}, and calculate

Aull 2 <[] = Au+ puutl| 2 < (L[| 2 + Ml = el llull 2

Using that ||u — ¢||, = max{~g,% (¢ — ¢)}. and combining with (30), we obtain
|1Au] 2 < Kol L[] 2, where Ky =1+ Ky max{—g,% -0} (34)

Now, (30), (32), (34) give (28) as follows. For quantitative purposes, we use the modified
inner product
<Ll, V>H2 = ’70<u7 V)Lz +m <vu$ VV>L2 + ’72<AM, Av)[_.? (35)

(with positive weights 79,71, 72) on X, which due to (33) (and to the obvious reverse in-
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equality [|Au|| ;2> < v/n|ux|;2) is equivalent to the canonical one. Then, (28) obviously
holds for

K := \/0K3 + K} +12K2, (36)
with Ky, K1, K> from (30), (32), (34).

3.4 Local Lipschitz bound g for F’
By (23), (24), and (25), condition (9) reads

25 gllull g2) V]l 2 for all u,v € H*(Q) N HY (). (37)

We start with a monotonically non-decreasing function g : [0, 0c0) — [0, oo) satisfying
of
dy
and g(t) — 0 as £ — 0+. In practice, such a function g can usually be calculated by
hand, if a bound for ||w||, is available, which in turn can be computed by interval eva-

luations of w over small boxes (as described at the end of Subsection 3.2).
Using g, the left-hand side of (37) can be bounded by

gllull ) IVl 2, (39)

whence we are left to estimate both the norms || - ||, and || - ||, by || - || 2+ With p* de-
noting the smallest eigenvalue of

—Au = pu, u€ H*(Q) N HL(Q),

L ixwt) ) - Lswto)| <0l foran ey e m, (38)

we obtain by eigenfunction expansion that
2 5 2 2 *\2 2
IVullz2 = (u, —Au) 2 > p*[[ull 2, [Aull;2 = (%) llull72,

and thus, by (35),

1
lell 2 < 1o + 710" +72(6)] 2l 2 for all u € HA(2) N HY (). (40)

Furthermore, in [49, Corollary 1], we calculate constants C,, C;, C,, which depend on Q
in a rather simple way allowing explicit computation, such that

[4lloo < Collull 2 + CillVull 2 + Colluxx]| 2 for all u € H*(Q) N Hy (),
whence by (33) and (35) we obtain

1
lulloe < [967" C5 +97" CF + 93" G]2l|ull 42 for all u € H*(2) N HY (). (41)
Using (40) and (41) in (39), we find that (37) (and (10)) hold for
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N S R G 5 ¥ 1
g(1) == [y +mp" +72(0*)}] 2g(ho I +471C + 45 'C§]21>- (42)

Remark 2: Via (36) and (42), the parameters -, 1,7, enter the crucial inequality
(16). One can choose these parameters in order to minimize the error bound « (under
some normalization condition on (yo,71,72), €.8 70 + 71 + 2 = 1), or to maximize
max{a/K — G(«a) : « > 0} (to allow a larger defect bound ¢ in (16)). Of course, this
optimization need only be carried out approximately.

3.5 A numerical example

Consider the problem
Au+1? = s - sin(mx;) sin(mx,) (x = (x1,x2) € Q := (0,1)?), u =0 on H. (43)

The results reported here have been established in [10] in joint work with P. J. McKenna
and B. Breuer.

It had been conjectured in the PDE community since the 1980’s that problem (43)
has at least 4 solutions for s > 0 sufficiently large.

For s = 800, we were able to compute 4 essentially different approximate solutions
by the numerical mountain pass algorithm developed in [15], where “essentially differ-
ent” means that none of them is an elementary symmetry transform of another one.
Using finite Fourier series of the form (26), and a Newton iteration in combination with
a collocation method, we improved the accuracy of the mountain pass solutions, result-
ing in highly accurate approximations wy, . . . ,ws of the form (26).

We applied our computer-assisted enclosure method to each of these four approxi-
mations, and were successful in verifying the corresponding four inequalities (16), with

four error bounds a, .. ., a4. Therefore, Theorem 1 guarantees the existence of four so-
lutions uy, ..., us € H*(2) N H(£2) of problem (43) such that
Hu,' —U.),'”Hz S [67%] (l = 1,,4)

Using the embedding inequality (41), we obtain in addition

i
for B; := [v; ' C3 + 77 ' C} + 77! C3]2cy;. Finally, it is easy to check on the basis of the nu-
merical data that

[Swi —willo > Bi + 85 (1,j=1,...,4,i #))

for each elementary (rotation or reflection) symmetry transformation S of the square €2,
whence (44) shows that Su; # u; (i,j =1,...,4,i#j) for each of these S, ie. that
uy,...,uy are indeed essentially different.

The following Figure 1 shows plots of wy, ..., ws (We might say as well: of uy, ... u4,
since the error bounds ; are much smaller than the “optical accuracy” of the figure).
The first two solutions are fully symmetric (with respect to reflection at the axes
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X X, = % ,X] = x2,x] = 1 — x3), while the third is symmetric only with respect to

1
=
Xy = %, and the fourth only with respect to x; = x,.

Table 1 shows the defect bounds § (see (7), (27)), the constants K satisfying (8) (or
(28)), and the || - || -error bounds [ (see (44)) for the four solutions.

We wish to remark that, two years after publication of our result, Dancer and Yan
[21] gave a more general analytical proof (which we believe was stimulated by our re-
sult); they even proved that the number of solutions of problem (43) becomes un-
bounded as s — oo.

[EEE]

s H

Figure 1: Four solutions to problem (43), s = 800.

approximate solution defect bound ¢ K (see (28)) error bound 3
wi 0.0023 0.2531 5.8222-1074
wy 0.0041 4.9267 0.0228

w3 0.0059 2.8847 0.0180

wy 0.0151 3.1436 0.0581

Table 1: Enclosure results for problem (43).

4 Weak solutions

We will now investigate problem (1), (2) under weaker assumptions on the domain
Q C IR" and on the numerical approximation method, but stronger assumptions on the
nonlinearity f, compared with the “strong solutions” approach described in the pre-
vious section. 2 is now allowed to be any (bounded or unbounded) domain with
Lipschitz boundary. We choose the spaces

X :=H\(Q),Y = H(Q) (45)
for our abstract setting, where H~'(Q) := (H/}(Q2))’ denotes the topological dual space

of H}(), i.e. the space of all bounded linear functionais on H{(Q2). We endow H} (Q)
with the inner product

(u, v)Hé = (Vu, Vv) 2 + o(u,v) 2 (46)
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(with some parameter o > 0 to be chosen later), and H~!(Q) with the “dual” inner pro-
duct given by (14), with @ from (13).

To interprete our problem (1), (2) in these spaces, we first need to define Au (for
u € H)(£2)), or more general, divp (for p € L?(Q)"), as an element of H~'(£2). This defi-
nition simply imitates partial integration: The functional divp : H}(€2) — IR is given by

(divp)[p] := — / p -V dx for all p € H)(Q), (47)
0

implying in particular that |(divp)[e]| < |lpll2[IVell,2 < llpll2ll@ll,;1» whence divp is
indeed a hounded linear functional, and 0

ldivpll ;-1 < |lpll2- (48)

Using this definition of Au(= div(Vu)), it is easy to check that the canonical isometric
isomorphism @ : H}(Q) — H~'(Q) defined in (13) is now given by (note (46))

®u] = —Au+ ou (u € H}(Q)), (49)

where ou € H}(Q) is interpreted as an element of H~!(Q) as explained in the following.

Next, we give a meaning to a function being an element of H~!(Q), in order to define
f(-,u) in (1) (and ou in (49)) in H~'(£2). For this purpose, let £ denote the linear space
consisting of all (equivalence classes of) Lebesgue-measurable functions w: Q) — IR
such that

- 1 - 1
’ p{usonf,é Q/ 'W'dxweHo(Q)\{O}} . 0

For each w € £, we can define an associated linear functional 4, : H}(Q) — R by

Bl = / wipdse Tor all g € HA(G):
Q

£,, 1s bounded due to (50) and hence in H *'(Q). Identifying w € L with its associated
functional ¢, € H~'(Q), we obtain

Lc H'(Q), (51)

and ||w|| ;1 is less than or equal to the left-hand side of (50), for every w € L.

To get a better impression of the functions contained in £, we recall that Sobolev’s
Embedding Theorem [1, Theorem 5.4] gives H}(2) C L*(12), with bounded embedding
H{(Q)—L7(Q) (i.e. there exists some constant C, > 0 such that |jul|,, < Cpllull ;1 for
allu € H}()), for each 1

2n

pe200)if n=2, pe[z, 2] if n >3 (52)

Here, L7(Q2) denotes the Banach space of all (equivalence classes of) Lebesgue-measur-
able functions « : 2 — IR with finite norm
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=

lullp = [ / |u|”dx} . (53)
Q

With p in the range (52), and p’ denoting its dual number (i.e. p~' + (/)" = 1), we ob-
tain by Holder’s Inequality, combined with the above embedding, that for all
we LF (Q)

/Iwwldx < Wil llellr < Golwlly llel s
Q

implying w € £, and ||w|| ;-1 < Gy||w||,,». Consequently,
Q) cL, (54)

and (note (51)) the embedding L”/(Q)<—>H ~1(Q) is bounded, with the same embedding
constant C, as in the “dual” embedding H} ()~ L?(Q). Note that the range (52) for p
amounts to the range

/ . / 2n .
s >
pe(l,2]if n=2, p e [n 2,2} ifn>3 (55)

for the dual number p'.

By (54), the linear span of the union of all I’ (), taken over p' in the range (55), is a
subspace of £, and this subspace is in fact all of £ which we need (and can access) in
practical applications.

Coming back to our problem (1), (2), we now simply require that

f(,u) € L for all u € H)(Q), (56)

in order to define the term f(-, u) as an element of H~!(().
Our abstract setting requires furthermore that

JH(Q) - H~(Q)
]:'{ Ou —  —Au+f(-u)

is Fréchet-differentiable. Since A : H}(2) — H~'(Q) is linear and bounded by (48), this
amounts to the Fréchet-differentiability of

(H©Q - BQ
g'{ PR

For this purpose, we require (as in the previous section) that df /9y is continuous on
Q x IR. But in contrast to the “strong solutions” setting, this is not sufficient here; the
main reason is that H}(£2) does not embed into C(Q). We need additional growth re-
strictions on f(x,y) or (9f /9y)(x,y) as |y| — oo.

(57)

(58)
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An important (but not the only) admissible class consists of those functions / which
satisfy

f(,0) €L, (59)
% (+,0) is a bounded function on Q, (60)
g ) _a_f < " 5

Lwn -L 0| <ab +abi? xe2yeR), (61)

with non-negative constants ¢y, ¢,, and with

O<n<<n<xifn=2, 0<rn<n<

4 .

> 3. 62

— if n> (62)

(A “small” r; will make condition (61) weak near y = 0, and a “large” r, will make it
weak for |y| — o00.)

Lemma 1: Let f satisfy (59)—(61), besides the continuity of df /0y. Then G given
by (58) is well-defined and Fréchet-differentiable, with derivative G'(u) € B(H} (),
H='(Q)) (foru € H}()) given by

(@ D)le] = / gfyf(-,wwx (v, € H(Q)). (63)
Q

The proof of Lemma 1 is rather technical, and therefore omitted here.
According to (47) and (63), we have

F i = [ [w-vwg—f;c,u)w dx = (F/W))le] (w00 € HI(Q) (64

Q

for the operator F defined in (57), which in particular implies condition (15) (for any
w € H}(Q); note (6)), in the setting (45), (57). Thus, the “dual and symmetric case” (see
Section 2) is at hand.

Remark 3: If the domain (2 is bounded, several simplifications and extensions are
possible:

a) The range o > 0 for the parameter in (46) can be extended to o > 0.

b) Condition (61) can be simplified to

‘%(x,y){ Se+ahl (xeQyeR) o

for some r in the range (62). Condition (60) is satisfied automatically and can therefore
be omitted.

¢) In the case n = 2, the power-growth condition (61) (or (65)) is too restrictive (for
bounded domains). Instead, exponential growth can be allowed, based on the Trudin-
ger-Moser inequality [45, Theorem 1 and the first part of its proof] which states that
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2
measm/ Kcnunm”d“”ﬁ (v € Hy(9)) (66)

for each ¢ > (47r)_§. In [54], we showed that e.g. in the case f(x,y) = —\e”, the Fréchet
differentiability (and other properties) of the mapping G defined in (58) can easily be de-
rived from (66); see also the second example in Subsection 4.5.

Again, we comment now on the computation of an approximate solution w, and of
the terms ¢, K, and g satisfying (7)—(10), needed for the application of Theorem 1, here
in the setting (45), (57).

4.1 Computation of w

By (45), w needs to be in X = H} () only (and no longer in H?(f2), as in the “strong so-
lutions™ approach of the previous Section). In the Finite Element context, this increases
the class of allowed elements significantly; for example, the “usual” linear (or quadratic)
triangular elements can be used. In case of an unbounded domain €2, we are further-
more allowed to use approximations w of the form

_Jwy on
“’_{0 onQ\QO}’ (67)
with Q) C Q denoting some bounded subdomain (the “computational” domain), and
wo € H{ () some approximate solution of the differential equation (1) on £, subject
to Dirichlet boundary conditions on 9€.
We pose the additional condition of w being bounded, which on one hand is satisfied

anyway for all practical numerical schemes, and on the other hand turns out to be very
useful in the following.

4,2 Defect bound w

By (45) and (57), condition (7) for the defect bound § now amounts to
| —Aw+f(w)lg-1 <6, (68)

which is a slightly more complicated task than computing an upper bound for an inte-
gral (as it was needed in Section 3). The best general way seems to be the following. First
we compute an additional approximation p € H(div,Q) to Vw. (Here, H(div,) de-
notes the space of all vector-valued functions 7 € L*(Q)" with weak derivative div 7 in
L?*(). Hence, obviously H(div, Q) D H'(Q)".) p can be computed e.g. by interpolation
(or some more general projection) of Vw in H(div, ), or in H'(2)". It should be noted
that p comes “for free” as a part of the approximation, if mixed Finite Elements are used
to compute w.
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Furthermore, according to the arguments before and after (54), applied with
p=p=2

Wil -1 < Gaf|wll;2 for all w € L*(Q). (69)
For explicit calculation of C,, we refer to the appendix. By (48) and (69),

I =Aw+/(w)llg-1 < [div(=Vw+ p)]l -1 + || = dive + £ (-, w)l| g1

70
< IVw = pll2 + Coll - divp +7(,6)ll 2. (70)

which reduces the computation of a defect bound § (satisfying (68)) to computing
bounds for two integrals, i.e. we are back to the situation discussed in Subsection 3.2 al-
ready.

There is an alternative way to compute § if w is of the form (67), with wy € H?(€) N
H}(Q), and with Q having a Lipschitz boundary. This situation can arise e.g. if Qis
the whole of IR", and the “computational” domain € is chosen as a “large” rectangle,
whence wy can be put up e.g. in the form (26).

Using partial integration on €2, we obtain now

” - Aw +f('v"‘))”11—l <

Owo

1

2 2 2
< G|l = A+ wo)[2200g) + 1/ O) 20000 | *+Cr |52
L2(99)

with C; denoting a constant for the trace embedding H'(Q) — L*(9€), the explicit
computation of which will be addressed in the appendix, and dwy/dv, the normal deri-
vative on 9.

4.3 Bound K for L!

According to (45), condition (8) now reads

||u||H8 < K||L[u]|| -1 for all u € H(R), (72)

with L, defined in (6), now given by (note (57), (58))
L=-A+G(w): H(Q) = H'(Q).

Under the growth conditions (59)—(62), Lemma 1 (or (63)) shows that, more concre-
tely,

@i = | [w-vw%’,c,ww dc (g€ HY(Q): (73)
Q

the same formula holds true also in the exponential case mentioned in Remark 3c). So
we will assume from now on that L is given by (73).
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Making use of the isomorphism @ : H}(Q) — H~!(Q) given by (13) or (49), we ob-
tain

L[]l -1 = II@‘IL[M]IIHé (u € Hy(€2)).

Since moreover ®~'L is (-, -) 1 —symmetric by (73) and (15), and defined on the whole
Hilbert space H} (12), and hence selfadjoint, we find that (72) holds for any

K > [min {|)| : A is in the spectrum of ®~'L}]™", (74)

provided that the min is positive (which is clearly an unavoidable condition for ®~'L
being invertible with bounded inverse). Thus, in order to compute K, we need bounds
for

i) the essential spectrum of ®~!'L (i.e. accumulation points of the spectrum, and ei-
genvalues of infinite multiplicity),

ii) isolated eigenvalues of ®~! L of finite multiplicity, more precisely those neighbor-
ing 0.

ad i) If Q is unbounded, we suppose again that w is given in the form (67), with some
bounded Lipschitz domain ) C Q. If Q is bounded, we may assume the same, simply
choosing ) := Q (and wp := w).

Now define Ly : H}(Q2) — H~'() by (73), but with (8f/dy)(x,w(x)) replaced by
(0f /0y)(x,0). Using the Sobolev/Kondratchev/Rellich Embedding Theorem [1], imply-
ing the compactness of the embedding H'(Q)— L*(€), we find that ®~'L — &~ 'L, :
H}(Q) — H}(9) is compact. Therefore, the perturbation result given in [32, IV, Theo-
rem 5.35] shows that the essential spectra of 'L and ®~' L, coincide. Thus, being left
with the computation of bounds for the essential spectrum of ®~ 'L, we can use e.g.
Fourier transform methods if Q& = IR" and (9//9y)(-,0) is constant, or Floquet theory
if (9 /dy)(-,0) is periodic. Alternatively, if

%(x, 0) > ¢y > —p* (x € Q), (75)

with p* € [0, 00) denoting the minimal point of the spectrum of —A on H}(f2), we ob-
tain by straightforward estimates of the Rayleigh quotient that the (full) spectrum of
@~ 'Ly, and thus in particular the essential spectrum, is bounded from below by
min{1, (co + p*)/ (o + p*)}-

ad ii) For computing bounds to eigenvalues of ®~'L, we choose the parameter o in
the H}-product (46) such that

o> P (xwx) (xeq) (76)

dy
thus, we have to assume that the right-hand side of (76) is bounded above. Furthermore,
we assume that the infimum sy of the essential spectrum of ®~! L is positive, which is true

e. g. if (75) holds. As a particular consequence of (76) (and (49)) we obtain that 5o < 1
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and all eigenvalues of ® 'L are less than 1, and that, via the transformation
k= 1/(1 = X), the eigenvalue problem ®~! L[u] = \u s equivalent to

_Autou= /fb(a—g(-,w)>u, (77)

(to be understood as an equation in H~!(12)), which is furthermore equivalent to the ei-
genvalue problem for the selfadjoint operator R := (I Hl) ~ ®~'L)~!. Thus, defining
0

the essential spectrum of problem (77) to be the one of R, we find that it is bounded
from below by 1/(1 — s9) if 59 < 1, and is empty if so = 1. In particular, its infimum is
larger than 1, since s > 0 by assumption.

Therefore, the computer-assisted eigenvalue enclosure methods mentioned in Sub-
section 3.3 (which are applicable to eigenvalues below the essential spectrum; see [63])
can be used to enclose the eigenvalue(s) of problem (77) neighboring 1 (if they exist),
whence by the transformation x = 1/(1 — \) we obtain enclosures for the eigenvalue(s)
of ®~!L neighboring 0 (if they exist). Taking also sy into account, we can now easily
compute the desired constant K via (74). (Note that K = s; ! can be chosen if no eigen-
values below the essential spectrum exist.)

4.4 Local Lipschitz bound g for 7’

In the setting (45), (57), condition (9) now reads

J 1 )+ ) = Z )| 20x) | < U)ol el 78)

for all u, v, o € H}(2). Here, we have assumed that the Fréchet derivative of G (defined
in (58) is given by (63), which is true e. g. under the growth conditions (59)—(62), but
also in the exponential case (with n = 2 and 2 bounded) mentioned in Remark 3c). We
will now concentrate on the case where (59)—(62) hold true. For the exponential case,
we refer to [54] and to the second example in Subsection 4.5.

As in the strong solutions approach treated in Section 3, we start with a monotoni-
cally non-decreasing function g : [0, c0) — [0, 00) satisfying

,fxwv)—i—y) J;(xw(x)) <g(|y|) forall x € Q, y € R, (79)
and g(7) — 0 as ¢ — 0+, but now we require in addition that g(¢!/") is a concave func-

tion of 7. Here, r := r, is the (larger) exponent in (61).
In practice, g can often be put up in the form

N
2(1) =) i (0<1t<o0),
j=1

whereay,...,ay > 0and py,...,py € (0,r] are arranged in order to satisfy (79).
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Now defining () := g(¢'/7), the left-hand side of (78) can be bounded by (note
(79))

/g<|u(x>|>| ldX—/qu Jv(x)p()| dx. (80)

Q

Without loss of generality we may assume that vp does not vanish identically (almost
everywhere) on Q (otherwise, (78) is trivial because the left-hand side is zero). Since
vp € L'(Q) and hence |v(x)p(x)| dx induces a finite measure, and since 1 is concave,
Jensen’s Inequality [7] shows that

JUuNPEEN s (L )] d
IEEEEE =Y TG

(81)

Furthermore, for A€ (0,1] and 7€ [0,00), ¥(At) =(Ar+ (1 —N)0) > \b(t) +
(1=X)%(0) = M(1), ie. (1) < A719(\1). By Cauchy-Schwarz and the embedding
HY(Q)— L2(Q),
!{|V(X)W(X)fdx
=———¢(0,1],
g Tl <

whence the right-hand side of (81) is bounded by

vl ||<p||H1 ({ lu(x)["[v(x)ep(x)|dx

IEEEET A TR .
According to (62), we can find some

g€ (l,0)if n=2, qe[z,oo)ifn23, (83)

such that gr is in the range (52). Since (83) implies that also p := 2¢/(¢ — 1) is in the
range (52), both the embeddings H{(2)—L () and H}(Q)—L?(Q) are bounded.
Furthermore, ¢g~' + p~! 4+ p~! = 1, whence the generalized Holder Inequality gives

/IM(X)I V) (x)ldx < Jlullzar [Vl o llellr < G C“||“||;,é||V||H(;H99||H(1)-

Q

Using this estimate in (82), and combining it with (81) and (80), we find that the left-
hand side of (78) is bounded by

PR CACYES )
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Since (1) = g(t%), (78) therefore holds for
)= ¢ &( Gy G/ o) 051 <c0) (84)

which also satisfies (10) and is non-decreasing.

45 Examples

In our first example, we consider the problem of finding nontrivial solutions to

—Au+V(x)u—u*=0o0n Q:=R, (85)
where V(x) = A+ Bsin(n(x; + x;)) sin(7(x; — x2)), with real parameters 4 and B.
The results presented here have been obtained in joint work with B. Breuer and P. J.
McKenna.

We are interested only in solutions which are symmetric with respect to reflection
about both coordinate axes. Thus, we include these symmetries into all function spaces
used, and into the numerical approximation spaces.

We treated the particular case 4 = 6, B=2. On a “computational” domain Q :=
(=£,€) x (=£,£), we computed an approximation wy € H>(Qy) N H} () of the differ-
ential equation in (85), with Dirichlet boundary conditions on 9, in a finite Fourier
series form like (26) (with N = M = 80). For finding wy, we started with a nontrivial ap-
proximate solution for Emden’s equation (which is (85) with 4 = B = 0) on €, and
performed a path following Newton method, deforming (4, B) from (0, 0) into (6, 2).

In the single Newton steps, we used a collocation method with equidistant colloca-
tion points. By increasing the sidelength of € in an additional path following, we found
that the approximation wy remains “stable”, with rapidly decreasing normal derivative
0wy /O (on 0Qy), as £ increases; this gives rise to some hope that a “good” approxima-
tion w for problem (85) is obtained in the form (67). For £ = 8, ||0wy /0wy | 12(90,) turned
out to be small enough compared with || — Awg + Vwy — W3] 2@, > and we computed a
defect bound ¢ (satisfying (68)) via (71) as

6§ =0.7102 - 1072 (86)
1 1

1 2,and C, =0 2[{ '+
+VE2 4 20] 2. Moreover, (76) requires o > 4 + B = 8 (since w turns out to be non-

negative). Choosing o := 9, we obtain C, < 0.3334 and C,, < 0.6968 .

Since condition (75) holds for cp = A — B =4 (and p* = 0), the arguments following
(75) give the lower bound sy := 4/9 > 0.4444 for the essential spectrum of ®~!L, and
hence the lower bound 1/(1 — s59) = 1.8 for the essential spectrum of problem (77).

By the eigenvalue enclosure methods mentioned in Subsection 3.3, we were able to
compute the bounds

k1 <0.5293, K, > 1.1769

note that, by the results mentioned in the appendix, C, = o
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for the first two eigenvalues of problem (77), which by (74) leads to the constant
K =6.653 (87)
satisfying (72).

For computing g satisfying (9) or (78), we first note that (79) holds for
g(1) =21,

and (61) for r; = r, = 1, whence the additional concavity condition is satisfied. Choos-
ing g := 2 we obtain gr =2 and p =4 in the arguments following (83), whence (84)
gives
g(t) =2C,Cit = ét
since 2C,C3 = o~! by Lemma 2a) in the appendix.
Using (86)—(88), we find that (16) and (17) hold for oo = 0.04811, whence Theorem
1 implies the existence of a solution u* € H| (IR?) to problem (85) such that

" —wlly < 0.04811. (89)

(88)

It is easy to check on the basis of the numerical data that |jw|| i) > 0.04811, whence (89)
shows in particular that u* is non-trivial.

We wish to remark that it would be of great interest to achieve such results also for
cases where 0 < 4 < B in the potential ¥, because V is then no longer non-negative,
which excludes an important class of purely analytical approaches to prove existence of
a nontrivial solution. So far, we were not sucessful with such cases due to difficulties in
the homotopy method which has to be used for our computer-assisted eigenvalue enclo-
sures (see the brief remarks in Subsection 3.3); note that these difficulties occur on a
rather “technical” level. We were however able to compute an (apparently) “good” ap-
proximation w, e.g. in the case 4 = 6, B = 26.

The following Figure 2 shows plots of w for the successful case 4 = 6, B = 2, and for
the non-successful case 4 = 6, B = 26.

Figure 2: Example (85); A = 6, B = 2 (left) and 4 = 6, B = 26 (right).
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In our second example, we consider the Gelfand equation
—Au=Xe" on Q, u=0 on 99, (90)

depending on a real parameter . We are interested in parameter values A > 0 only; ne-
gative values of A are less important.The results reported on here are joint work with C.
Wieners and published in [54].

It is known that, on “simple” domains (2 like the unit square or the unit ball, pro-
blem (90) has a “nose”-shaped branch (A, u) of solutions, starting in (A =0,u = 0),
going up to some maximal value of A where the branch has a turning point, and then re-
turning to A = 0 but with ||u|| tending to co as A — 0. Moreover, there are no other so-
lutions (on these “simple” domains).

Here (and in [54]) we are concerned with a special non-convex domain Q c IR?
plotted in Figure 3. (For an exact quantitative definition of Q, see [54].) 2 is symmetric
with respect to the x;-axis but not quite symmetric with respect to the x,-axis; it is a bit
shorter on the left-hand side than on the right. Starting at (A = 0,u = 0), and perform-
ing numerical branch following, we obtained the usual “nose”-shaped branch (of ap-
proximate solutions) plotted in Figure 4; the plot consists in fact of an interpolation of
many grid points.

Obviously, the approximations develop substantial unsymmetries along the branch.
In order to find new (approximate) solutions, we reflected such an unsymmetric approx-
imation about the x,-axis, re-arranged the boundary values (which is necessary but ea-
sily possible due to the slight unsymmetry of ), and re-started the Newton iteration.
Fortunately, it “converged” to a new approximation, and by branch following we could
detect a new branch of approximate solutions plotted (together with the “old” one) in
Figure 5; in order to obtain a nicely visible separation of the two branches, we intro-
duced the difference d(u) between the two peak values of each approximation as a third
dimension in the bifurcation diagram.

Figure 3: Domain (2 for example (90).

In oder to prove the existence of a new solution branch, we performed the computer-
assisted method described above for the selected value A = 15/32. Here, our “new” ap-
proximation w was computed with 65536 quadratic triangular finite elements, corre-
sponding to 132225 unknowns.

For calculating a defect bound ¢ (satistfying (68)), we used essentially (up to some
technical refinements) the estimate (70), where the approximation p € H(div, Q) to Vw
was computed by linear Raviart-Thomas elements. The result is

6=0.8979 1072 (91)
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Since (9f/0y)(x,y) = —Ae” < 0 here, condition (76) is satisfied for o = 0; indeed, this
choice is allowed because 2 is bounded (see Remark 3a)). We computed eigenvalue
bounds for problem (77) by the Rayleigh-Ritz and the Lehmann-Goerisch method, ex-
ploiting symmetry properties, with the final result that (72) holds for

K =3.126; (92)
note that problem (77) has no essential spectrum here since 2 is bounded.

f[lloo

3.5

Figure 4: Main branch of (approximate) Figure 5: Main and new branch for
solutions for problem (90). problem (90).

For proving that G defined in (58) is Fréchet differentiable and for computing a
function g satisfying (9) or (78), we make essential use of the Trudinger-Moser inequal-
ity (66) (note that Lemma 1 does not apply here due to the exponential nonlinearity).
Foreachu € H}(Q) \ {0},

2
4lu(x)| :2.2”””116 Ju(x)] < 4”““?10‘ n (lu(x)|> ,

[l

whence (66) (with ¢ := 1) gives, since [47/(4m — 1)]1/ 4 <1.03,
1
llexp(ful)]| .+ < 1.03 mea»S(Q)“eXP(Ilulli,é)- (93)
For all u, u, v, ¢ € H} (), the generalized Hélder Inequality and (93) imply

/IE“"*“ — €0 ] Jpldx < /6“06'“'|u| V] lpldx < [le0 |l calle® || alluel o VIl s ol 6
Q Q

1
< 0] -1.03 meas(@)exp Iy, ) Gl ¥ el 99

By an argument similar to the abstract estimate (20), (21), we obtain the desired Fréchet
differentiability from (94). Furthermore, for 4 := w, (94) shows that (78) holds for

1
g(t) = 'yte’z, where 7 := ||Ae“|| 4 - 1.03 meas(Q)4C;, (95)

and thus G(t) = [ g(s)ds = éfy(exp(ﬂ) -1)< ivtzexp(tz). From the numerical data,
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Lemma 2 (appendix), and the result p* > 1.4399 (obtained by eigenvalue bounds), we
obtain that v < 5.62. Together with (91), (92), (95), we obtain that (16) and (17) hold
for o := 0.05066, whence Theorem 1 gives the existence of a solution u* € H}(Q2) of
problem (90) (with A = 15/32) such that

= w1 < 0.05066. (96)

(It should be remarked that we could do without condition (17) being satisfied, since Q
is bounded and hence we could use compactness properties, and Schauder’s instead of
Banach’s Fixed Point Theorem.)

In the same way, we also obtained existence results with H|-error bounds for two so-
lutions of (90) on the “old” (nose-shaped) branch, again for A = 15/32. From the nu-
merical data, and all three error bounds, we can easily deduce that the three solutions
are pairwise different, whence u* established above lies on a new independent solution
branch; the Implicit Function Theorem (plus some perturbation type argument show-
ing that —A — Xe*” : H}(Q) — H~'(Q) is one-to-one and onto) shows that indeed a so-
lution branch through (A = 15/32, u*) exists.

5 Appendix: Embedding constants
At various points in this paper, an explicit norm bound for the embedding
H}(Q)—L7(Q), i.e. aconstant C, such that
lullr < Cyllull 41 for all u € Hy(S), 97)
0

is needed, for p in the range (52), and with || - || ;1 and || - ||, defined in (46) and (53),

respectively. Here, we are not aiming at the optimal constants, but at “good” constants
which are easy to compute.

Lemma 2: Let p* € [0,00) denote the minimal point of the spectrum of —A on

HI(Q).
a) Let n =2 and p € [2,00). With v denoting the largest integer < p/2, (97) holds
for
AR TYY P 1
s —_ 2 p — —_—— .. e Pi
<= (2) [2(2 1) (2 ,,+2)} I (%8)
(7 +82)

(where the bracket-term is put equal to 1 if v = 1).
b) Letn > 3andp € [2,"27"2]. With s := n(l

1_1
p 2

o (irte) )

(where the second factor is put equal to 1 if s =0).

+%) € [0,1], (97) holds for
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Proof. ad a) Since C*(Q2) is dense in H{ (), it suffices to prove (97) foru € C°(Q2).
By zero extension outside €2, we may regard u as a function in C§° (IR%).
For all (x;,x) € IR?,
X
2 2_
lu(x1,x2)|2 =% / lu(t, x2)]2™ qgn( (, xv))aa (1,x2) dt<p / Ju(t, x2 |

—00

dt

1| Qu
8r1 (l Y7)

and analogously,

i, )2 %/ lu(t, x) 2" ).
Adding these two inequalities gives
i
[u(x1,x72)]2 < / |u(t, x2)| a—;‘(r,n) dt.
1

An analogous inequality is obtained by integration over x; instead of x;. Multiplication

of these two inequalities yields
|u(x <2 d
1,X2 16 |LIIX'> [uxl, AE

Note that, on the rlght-hand side, the first factor depends only on x;, and the second
only on x;. Thus, integrating this inequality over IR? we obtain, using Cauchy-Schwarz,

au

?(xlvl)

2

/]u}pdx 313’—2 /\ulp_zdx /\Vu\zdx . (100)

R? IR2 R?
By iteration of this inequality,

v—1
2 _ )2 _ 2

/lu|pdx§§—2(p322) e 232+4) /|u|”’2”+2dx /[Vu|2dx . (101)
Rr2 2 2

Let ¢ := p — 2v + 2. By the choice of v, we have 2 < ¢ < 4. Thus, Holder’s Inequality
gives the following simple interpolation inequality:

/ |u|%dx = / [T u|*dx < / utdx / wdx| . (102)

R2 Rr2 R2 R2
Using (100) with 4 in place of p, inserting the result into (102), and further inserting into
(101) gives, since (¢/2) — 1 = (p/2) — v,

N
|
—
S
|
1]
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2
2
2(p=27 (p—2w+4) (1\5"
pgye < PP . (p 1\2 2 2
/'“' S = 2 (2) W Vel de
R? R2 R2
(103)
Moreover,
;
/uzd‘c /|Vu|2dv
R2 Rr2
2
< 1_1_’
1 3 p 2 2
< 5 |Vul"dx +% o u-dx |Vu|"dx
pr+s50
R2 R2 R2
< ! 2{2 /!Vu|2dx+l—270/ wdx +<1—2> / |Vu|2dx
(p*+§a)” R2 R2 w®2
1 2
= 7wl (104)
R AY 0
(p +;O’

Using this inequality in (103), and moreover calculating

2 (4 _9)2 _ 2 2_y 21ow-3
A s 1o I S VI R R

we obtain the assertion.

ad b) In [24, proof of Theorem 9.2, (9.10)], it is shown that, again for u € C;°(IR"),

1
Au||m
aX,‘

L2.

n—1v
lull 20 <=—
;-1 n=2 ,1}
Thus, by the arithmetic-geometric mean inequality,

]l 20 < —=

—1
n—2 - \/ﬁ(}’l - 2)
which implies the result (even with o =0 in (46)) if p =2n/(n—2). Now let p €

IVl 2, (105)

[2,2n/(n —2)), whence s = n(l - 1+1> € (0,1]. Again, we use the interpolation in-
p g

Z n

equality (note that ”;—2p(1 —5)+ éps =1)
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"2;2p(1—s> Lps

» p(1-5)| s ) 2]

[uffdx = |u [uf’dx < |u|n=2 dx wdx|
R" R" R”

whence, by (105),

l(l—s) 1
1-s 2 2
lull,r < (an(n_—l_Z)> (/ |Vul*dx (/ uzdx) : (106)
R” R”

Moreover, by arguments similar to (104)

s

R Iz
(/ uzdx) ]R/n|Vu|2dx) s(p—*lT)sllulli,&-

i .
Inserting into (106) gives the assertion. O

Remark 4: The embedding constants given in Lemma 2 depend on the minimum
p* of the spectrum of —A on H} (). If no information on p* is available, one may sim-
ply use the lower bound 0 for p*. If ) contains balls of arbitrarily large radius, p* is 0.
In these cases the parameter o in (46) must of course be chosen positive.

In many cases, however, positive lower bounds for p* can easily be computed, since
p* depends in an antitone way on the domain €. If e.g. 2 is contained in a rectangle
(a1,b1) x -+ X (an,by), where a;=—oco and b; =co are admitted, then p* >
Y (b — @)

If © C IR? has finite measure, another simple lower bound for p* is obtained by
using (100) for p := 2, implying that the Rayleigh quotient for —A, and hence p*, is
> 8/meas(2).

More accurate lower bounds for p* can be computed by the eigenvalue enclosure
methods mentioned in Subsection 3.3.

In Subsection 4.2, a trace embedding constant C,, satisfying
||u|aszliL2(gQ) < Ctr”“”}]l(n) (ue HI(Q)) (107)

is required, with 2 denoting a bounded Lipschitz domain. Here, the norm || - ||, is gi-
ven by (the square root of) the right-hand side of (46). Clearly, o > 0 must be required
now, since otherwise (107) would be violated for constant functions u. Again, we are
not aiming at the optimal constant, but at a “good” and easily computable one.

Lemma 3: Let p: Q — IR" be continuous, with bounded weak first derivatives, such
that

p-v>1ondQ, (108)
where v : 00 — IR" denotes the outer unit normal field (which exists almost everywhere

on 8. Then, with ||p]|, = H,/Z;;l p,ZHOC, (107) holds for
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= 2 (Mt + Epaiv oz + ool )|
G = L (2 [[divpl|. + \/4 lldiv pll5 + alellmﬂ :

Proof: We have to show (107) for u € C'(2). By (108) and Gauf’ Divergence Theo-
rem,

/ udS < /(u p) - vdS = /le u-p)dx /(divp)uzdx-i- Z/u(Vu) - pdx
Q Q

[219] o0
= ||d1vp”oo“u“L2(Q) & ZHp”oc“u“LZ(Q)”vu”LZ(Q)

. 2 1 )
< aivlollZag + ol (M2 + 3 1¥ul22)

2l ul g, + (vl +32) Iz |
for arbitrary A > 0. Choosing X := ||p|2 [——||d1vpl| + \/ l|divpll2, + o||pH ] gives
the assertion. o

If for example Q is a bounded rectangle (—¢;,¢;) X --- X (=4, ¢,), we can choose
p(x) == (x1/41,...,xn/t), satisfying (108). Lemma 3 therefore yields

If  is a ball with radius R, centered at 0, we choose p(x) := R~!x, which satisfies (108),
whence Lemma 3 gives

|1 n n?
= {5 <2R+ 4R2+”>

Note that the shear existence of a vector field p with the required properties is ensured
by the Lipschitz continuity of €2 (see [28, Lemma 1.5.1.9]).

2
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S-Y.A Chang
Non-linear Elliptic
Equations in Gonfor-
mal Geometry
Zlirich Lecture Notes
in Adv. Math.

Ziirich, European Math. Soc., 2004,92S.,
€32,37

Gegenstand des vorliegenden Buches, dem
Mitschriften einer Nachdiplomvorlesung
der Autorin an der ETH Ziirich zu Grunde
liegen, sind — wie der Titel sagt — nicht-linea-
re partielle Differentialgleichungen der kon-
formen Geometrie, genauer solche, die im
Zusammenhang mit Untersuchungen von
Kriimmungsinvarianten stehen und dies vor
allem in den Dimensionen»n = 2und n = 4.

Ausgangspunkt ist die folgende intensiv
untersuchte Frage. Sei M? eine kompakte
Flache ohne Rand versehen mit einer Rie-
mann’schen Metrik g. Wann ist eine Funk-
tion f € C*(M?) die GauB-Kriimmung ei-
ner Riemann’schen Metrik in der konformen
Klasse [g] von g? Ist (M?, g) die zweidimen-
sionale Standardsphire (S?, g;), so ist diese
Frage als Nirenberg-Problem bekannt. Set-
zen wir g, =e’¥g fiir eine Funktion
w € C>(M?) und bezeichnen wir mit X und
K,, die GauB-Kriimmungen zu g bzw. g,,, so
gilt

—Aw+ K = K™ . (1)

Dabeiist A = —4d der Laplace-Operator be-
ziglich g. Demnach sind also diejenigen
Funktionen /" gesucht, fiir die es eine Losung
w der Gleichung (1) mit K,, = f gibt. Erfiillt
f die aus dem Satz von GauB3-Bonnet resul-
tierende notwendige Vorzeichenbedingung,
so existieren nach einem Resultat von Kaz-
dan und Warner (Existence and conformal

deformation of metrics with prescribed Gaus-
sian and scalar curvatures, Ann. Math. (2)
101, 317-331 (1975)) eine Funktion w und
ein Diffeomorphismus ¢ von M? derart,
dass f die GauB-Krimmung der Rie-
mann’schen Metrik ¢*g,, ist. Die urspriing-
liche Frage hingegen konnte vollstindig bis-
her nur fiir Flichen M? mit Euler-Charakte-
ristik x(M?) = 0 (J. L. Kazdan, F. W. War-
ner: Curvature functions for compact 2-mani-
folds. Ann. Math. (2) 99, 14-47 (1974)) und
fiir den reell projektiven Raum IRP> mit der
Standardmetrik (J. Moser: On a nonlinear
problem in differential geometry. Dynamical
Syst., Proc. Sympos. Univ. Bahia, Salvador
1971, 273-280 (1973)) beantwortet werden.
Die entsprechenden Zitate im Buch sind lei-
der falsch bzw. fehlerhaft.

Eine weitere zentrale Frage der konfor-
men Geometrie in der Dimension n = 2 ist
die Charakterisierung von Riemann’schen
Metriken mit konstanter GauB3-Kriimmung.
Im Buch wird auf das folgende Resultat von
Onofriund von Osgood, Phillips und Sarnak
eingegangen. Bezeichne A, den Laplace-
Operator zur Riemann’schen Metrik g,, und
sei det(—A,) die (-regularisierte Determi-
nante von —A,,. Dann nimmt det(—A,,) ithr
Maximum unter der Nebenbedingung
vol(M, g,,) = vol(M, g) in solchen Funktio-
nen w an, fiir die K, konstant ist. Der Beweis
dieser Aussage beruht wesentlich auf der so
genannten Polyakov-Formel (A. M. Polya-
kov: Quantum geometry of bosonic strings.
Phys. Lett. B 103, 207-210 (1981)), welche
besagt, dass

logdet(—A,,) — log det(—A)

1

e e 2

fiir alle w mit vol(M, g,,) = vol(M, g), wobei
dy das Flachenelement zur Referenzmetrik g
ist. Obwohl das Buch {iiber eine umfangrei-
che und zur Einarbeitung in die Thematik
sehr hilfreiche Bibliographie verfiigt, ist ein
Zitat fiir diese Formel nicht angegeben.
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Betrachtet man nun Mannigfaltigkeiten
M" der Dimension n > 3, so ist eine nahe lie-
gende Frage, ob man eine gegebene Rie-
mann’sche Metrik g auf M" so konform ab-
andern kann, dass gewisse skalare Kriim-
mungsgroBen konstant werden. Im Fall der
Skalarkriimmung ist dies das bekannte Ya-
mabe-Problem. Die Frage nach konformen
Riemann’schen Metriken mit konstanter
O-Kriimmung besitzt eine Reihe von Paral-
lelen zum oben erwidhnten Problem der Be-
schreibung aller GauB-Kriimmungen. Sei
n = 4und sei P der durch

Pu = A2u+5<§R ~ 2Ric)du

auf Funktionen u wirkende Paneitz-Opera-
tor beziiglich g. AuBerdem sei QO die
O-Kriimmung, d. h.

0= é (R - 3Ricf* - AR).

Dabeiist R die Skalarkriimmung und Ric der
Ricci-Tensor. Bezeichnet Q,, die Q-Kriim-
mung zur Riemann’schen Metrik g, = g,
so giltin Analogie zur Gleichung (1)

Pw+20 =20, .

Ist M? eine kompakte zweidimensionale
Mannigfaltigkeit ohne Rand, so gilt nach
dem Satz von GauB-Bonnet

2rx(M?) = / Kdu .
M2

In der Dimension n = 4 besagt die Chern-
GauB-Bonnet-Formel, dass

4rx(M*) :/M4 ('WT]+ Q)du.

Dabei ist W der Weyl-Tensor. Dieser misst
gerade, wie weit die Riemann’sche Metrik g
davon entfernt ist, lokal konform flach zu
sein. Da fiir n =2 bekanntlich jede Rie-
mann’sche Mannigfaltigkeit lokal konform
flach ist, ergibt sich eine Analogie zwischen
den Ausdriicken [,» Kdu und [, 4 Odp.
Beide Terme sind konform invariant. Der
zweite Ausdruck stimmt bis auf einen Faktor

mit dem Integral iiber die o,-Skalarkriim-
mung o> (A4) liberein und steht in enger Bezie-
hung zum so genannten o,-Yamabe-Pro-
blem, das im Folgenden beschrieben werden
soll.

Sei (M", g) eine kompakte Riemann’sche
Mannigfaltigkeit ohne Rand der Dimension
n > 3 und sei

. R

A = Ric 2(n—l)g’

also der mit » — 2 multiplizierte Schouten-
Tensor. Desweiteren sei oy (4) € C®(M) fur
k=1,...,n dadurch definiert, dass oy(A4)
an der Stelle p € M die k-te elementar-sym-
metrische Funktion angewandt auf die Ei-
genwerte von A, beziiglich g ist. Wie man
leicht sieht, ist o (A4) ein positives Vielfaches
der Skalarkriimmung R. Die Frage nach der
Existenz einer Riemann’schen Metrik g, in
der konformen Klasse [g] mit

ox(A,) = const. (2)

ist folglich eine natiirliche Verallgemeine-
rung des Yamabe-Problems und wird das
ok-Yamabe-Problem genannt. Das Studium
der voll nicht-linearen Differentialgleichung
(2) wurde von Viaclovsky initiiert. Als eines
der ersten Resultate in dieser Richtung wur-
de von ihm gezeigt, dass unter der Vorausset-
zung, dass (M", g) lokal konform flach ist,
fiir k # n/2 die kritischen Funktionen w von
Sy 0x(A,) Losungen von (2) sind. Entspre-
chend unserer bisherigen Notation ist
ok (A,,) hier die beziiglich der Metrik g, ge-
bildete Funktion.

Den Schwerpunkt des vorliegenden Bu-
ches bilden die Resultate von Chang, Gursky
und Yang zur Lésung des o,-Yamabe-Pro-
blems in der Dimension n = 4, d. h. der Be-
weis der folgenden Aussage. Ist (M*, g) eine
Riemann’sche Mannigfaltigkeit positiver
Skalarkriimmung und ist | ya02(4)dp >0,
so gibt es eine Funktion w € C*°(M) derart,
dass 0,(4,,) eine positive Konstante ist. Der
vorgestellte Beweis beruht auf dem Studium
von Funktionalen, die ihren Ursprung in der
Beschreibung der (-regularisierten Determi-
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nante gewisser konform kovarianter Diffe-
rentialoperatoren unter konformer Ande-
rung, dhnlich der Polyakov-Formel, haben,
und ist technisch sehr anspruchsvoll.

Ich hoffe vermittelt zu haben, dass die In-
halte des Buches iiberaus interessant sind.
Allerdings hitte ich mir mehr Sorgfalt bei
der Gestaltung gewiinscht. Dies betrifft zum
einen die zahlreichen Tippfehler, die zu ei-
nem Teil auch von einem Nichtfachmann be-
merkt werden konnen, so dass sich mir die
Frage stellt, inwieweit der Verlag seiner Ver-
antwortung gerecht geworden ist. Zum an-
deren sind es aber auch inhaltliche Ungenau-
igkeiten. So ist z. B. Theorem 2.11 nicht pra-
zise formuliert. Gilt ndmlich fiir w in der
Gleichung (2.16) die Gleichheit, so trifft das
auch zu, wenn man zu w eine Konstante ad-
diert. Fur die Gleichung (2.17) ist das aber
nicht der Fall.

Nichtsdestotrotz bietet das Buch einen an-
regenden Einblick in ein hoch aktuelles Ge-
biet differentialgeometrischer Forschung.
Wie die Autorin in der Einleitung ihres Bu-
ches bemerkt, hat es seit ihrer Nachdiplom-
vorlesung an der ETH Ziirich wesentliche
Fortschritte beim Studium konformer
Kriimmungsinvarianten gegeben. Fiir Nihe-
res sei auf ihren Artikel Conformal invariants
and partial differential equations. Bull. Am.
Math. Soc. 42, 365-393 (2005) verwiesen.

Hannover L. Habermann
B.Simon
Orthogonal ;
Polynomials on the B. Simon
Unit Circle. Orthogonal Poly-
= P:‘;Il'h nomials on the Unit
assic eory, ’ <
Part2: Circle. Part 1: Glassi-
Spectral Theory cal Theory, Part 2:

Spectral Theory
AMS Coll. Publ. 54

Providence, Am. Math. Soc., 2004, 1044 S.,
$213,35

Orthogonale Polynome, die auf der komple-
xen Einheitslinie 0ID (parametrisiert durch
z = ¢%) definiert sind, wurden 1920 von G.
Szegd eingefithrt. Thr Studium durchlief
Phasen sowohl erhohten Interesses wie auch
Seitwdrtsbewegungen. Beginnend mit den
90ern ist das Interesse an orthogonalen Poly-
nomen stark angestiegen. Die tiefere Ursa-
che dafiir mag in dem Umstand liegen, dass
ihre Rolle in einer Reihe von mathemati-
schen Disziplinen erst kiirzlich wahrgenom-
men wurde bzw. Querverbindungen zu ande-
ren Gegenstdanden gefunden wurden. Dieses
Buch ist der Versuch, die Theorie der ortho-
gonalen Polynome auf dem Einheitskreis
und ihre Relevanz fiir andere Disziplinen
darzulegen.

Ein MaB p auf JID wird nichttrivial ge-
nannt, wenn sein Trédger eine unendliche
Menge ist. Ein solches MaB besitzt offenbar
die Eigenschaft, dass die Funktionen 1,z,
22,...im Hilbertraum H = L?(9ID, 1) linear
unabhdngig sind. Daher kénnen diese Funk-
tionen orthogonalisiert werden:

q>n:Pn[:n]7

wobei P, die orthogonale Projektion auf den
Teilraum ist, derzu 1, z, ..., z"~! orthogonal
ist. Diese Polynome sind nach Konstruktion
monisch. Neben den orthogonalen Poly-
nomen ®, werden die orthonormierten Poly-
nome ¢, = ”?If—:"“ betrachtet. Die im 1. Kapitel

bewiesene Szego-Rekursion
®n+1 =z®0, — E,,<I>;(z) ’
o €D:={zeC:|z| <1}

n ) n :
mit ®,(z) =3 g2/, B;(2) = 2%—,/5] &L~
j=0 j=0

(1)

laubt es nun, den Inhalt des Buches besser zu
umreillen. Die in (1) auftretenden Koeffi-
zienten o; werden Verblunsky-Koeffizienten
genannt. Diese sind auch unter dem Namen
Reflexionskoeffizienten, Schur-Koeffizien-
ten, Szegd-Koeffizienten oder Geronimus-
Koeffizienten bekannt. B. Simon argumen-
tiert, warum diese Koeffizienten Verblun-
sky-Koeffizienten heilen sollten, und ver-
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schafft somit S. Verblunsky, dessen Arbeiten
weitgehend unbeachtet blieben, spite Ge-
nugtuung.

Ein zentrales Thema dieses Buches ist die
Frage, wie die Eigenschaften eines nichttri-
vialen WahrscheinlichkeitsmaBes ;2 und 0ID
sich in den Verblunsky-Koeffizienten nieder-
schlagen und umgekehrt.

Die ersten neun Kapitel ranken sich vor-
nehmlich um sieben zentrale Theoreme, in
denen Zusammenhénge zwischen den nicht-
trivialen MaBen auf 0ID und den zugehori-
gen Verblunsky-Koeffizienten hergestellt
werden.

Diese sieben zentralen Theoreme sind die
Theoreme von Szegd, Verblunsky, Geroni-
mus, Baxter und Rakhmanov, wobei allein
mit Szegd’s Namen drei Theoreme verbun-
den sind. Eines der Szegd’schen Theoreme,
das sogenannte 1. Szegd’sche Grenzwert-
theorem, stellte urspriinglich ein Theorem
iiber das asymptotische Verhalten von Toe-
plitzmatrizen dar. Fiir seine Formulierung
bendtigen wir den bekannten Fakt, dass je-
des (nichttriviale) MaB p auf 9ID nach dem
Radon-Nikodym Theorem in die Summe
zweier Male zerlegt werden kann, wovon ei-
nes absolut stetig und das andere singular be-
ziiglich des auf 1 normierten des Lebes-
que’schen MaBes ist.

Dies kann kompakt durch

dpu(6) = w(6) 22 + dpy(6) )

ausgedriickt werden, wobei die (nichtnegati-
ve) Funktion wzu L' (91D, df) gehort. Jedem
nichttrivialem MaB . auf OID ordnen wir ei-
ne Folge komplexer Zahlen {c, },-,, nimlich
seine Momente

Cn :/e""’“du(@)

zu und erkléren ¢, fiir n < 0 durch ¢, = ¢,.
Fir ein WahrscheinlichkeitsmaB3 erhalten
wir damit gerade die Fourier-Koeffizienten
dieses MaBes. Damit sind fiir alle n > 0 die
Toeplitzmatrizen

T () = (o ) 250

erklért; sei D, (dp) = det(TU*D ().

Das urspriinglich von Szegd bewiesene
Theorem (1915) besagt nun Folgendes: Sei
ein nichttriviales Wahrscheinlichkeitsmaf}
auf 0ID und w durch (2) gegeben. Dann gilt

. Dn+l(ﬂ) T n
P D, (0 ik VOl .

= exp (/ log w(6) Z—i) ,

und zwar unabhéngig davon, ob das auftre-
tende Integral gleich —oo oder endlich ist. In-
teressant ist dabei der Umstand, dass in (2)
die singulare Komponente des MaBes  kei-
ne Rolle spielt. Szegd’s Theorem in diesem
Buch beinhaltet folgende Aussage:

[[0-loP) =exp [lgn®)2. (@
j=0 T

Aus (3) und (4) ist ersichtlich, dass mindes-
tens 4 GroBen einander gleich sind. Im 2.
Kapitel wird diese Liste um weitere sieben
GroBen erginzt, die samtlich nichttrivial
sind und interessante Schlaglichter auf die-
sen Gegenstand werfen.

Obwohl diese Thematik nur einen (klei-
nen) Teil des gesamten Buches einnimmt, ha-
be ich sie exemplarisch angefiihrt, da sie et-
was vom Geist und Stil dieses Buches vermit-
telt: Der Autor néhert sich dem jeweiligen
Themenkreis von verschiedenen Seiten und
entwirft von ihm ein weitestgehend komplet-
tes und detailliertes Bild. Dabei wird mogli-
chen Verallgemeinerungen und Zusammen-
hingen nachgegangen, verschiedene Zugéin-
ge werden diskutiert und dem Leser interes-
sante geschichtliche Fakten nahegebracht.
Bisweilen wird ein Thema spéter erneut auf-
gegriffen und weitergefiihrt. Ein markantes
Beispiel ist das sogenannte starke Szegd’sche
Grenzwerttheorem, das in Kapitel 6 ausgie-
big diskutiert wird.

Damit sind die drei mit dem Namen von
Szegd verkniipften Theoreme bereits ge-
nannt. Verblunsky’s Theorem (auch Far-
vord’s Theorem fiir den Kreis genannt) bein-
haltet die interessante Tatsache, dass die Zu-
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ordnung g — {«;} eine eindeutige Zuord-
nung zwischen der Menge aller auf 0ID defi-
nierten nichttrivialen Wahrscheinlichkeits-
male und der Menge aller Folgen x72,ID
darstellt, deren Glieder Elemente aus ID
sind. Golinsky’s Theorem beleuchtet den
Zusammenhang zwischen nichttrivialen
WahrscheinlichkeitsmaBen auf 90ID und
Schurfunktionen. Dieses besagt, dass die
Schurparameter {~;} der Schurfunktion f,
die einem nichttrivialen Wahrscheinlich-
keitsmal} i zugeordnet ist, gerade die Ver-
blunsky-Koeffizienten des MaBes p sind.
Baxter’s Theorem fiihrt aus, dass die Ver-
blunsky-Koeffizienten {«;} eines nichttrivia-
len WahrscheinlichkeitsmaBes y genau dann
die Bedingung > |¢yj| < oo erfiillt, wenn
j=0

o
" Y lgl < oo, ¢ = (z/,1) = [e"du(6),

j=1
und

m inf{w(e?)} : e’ € 9D} > 0

gilt. Rakhmanov’s Theorem behauptet
schlieBlich, dass aus w(f#) > 0 fast tberall
lim |oy,| = 0 folgt.

Die Aussagen dieser Theoreme werden
ausfihrlich analysiert, ihre Konsequenzen
und Hintergriinde beleuchtet und fiir ihre
Beweise verschiedene Zugidnge vorgeschla-
gen. Allein fiir Verblunsky’s Theorem wer-
den fiinf Beweise angegeben, die sich im Ver-
lauf der Darlegungen natiirlich ergeben. Ne-
ben diesen Dingen werden selbstredend die
Punkte diskutiert, die kanonisch zur Theorie
der orthogonalen Polynome gehdren, vor al-
lem Aussagen iiber die Verteilung der Null-
stellen der Polynome @, und die schwache
Konvergenz der Mafle j@n(ei”)l_z 9 gegen pu.

Das Buch selbst ist in zwei Teile aufgeglie-
dert, stellt aber eine Einheit dar, d. h. diese
Aufspaltung ist dem Umfang dieses Werkes
geschuldet. Der zweite Teil beschéftigt sich
verstirkt mit dem, was der Autor unter
Spektraltheorie versteht. Hier sind mehrere
Aspekte im Spiel. In Analogie zur Klassifi-
zierung der Punkte des Spektrums eines uni-

taren Operators werden anhand der Zerle-
gung dp = w% + dus eines Wahrscheinlich-
keitsmaBes auf JID bez. des Lebesque’schen
MafBes die Begriffe absolut stetiger, singulé-
rer, singular stetiger und reiner Punktteil des
MaBes dp eingefiihrt. Diese Teile des Males
werden intensiv studiert anhand qualitativer
Vorgaben an die Verblunsky-Koeffizienten.
Das Gleiche bezieht sich auf den wesentli-
chen Trager des Mafles. Als Beispiele seien
folgende Aussagen angefiihrt.

Satz. Seien p, i/ zwei nichttriviale Wahr-
scheinlichkeitsmaBe und {o;},{a}} ihre
Verblunsky-Koeffizienten:

l.Wenn lim |o; — ;| =0, dann stimmen
J=oo

die wesentlichen Spektren (= wesentlichen
Tréger) tiberein.

o0
2.Wenn ) |oj —aj| < oo, dann stimmen
j=0
die Mengen {6:w() # 0}, {6 : w'(6) # 0}
bis auf die Mengen vom Lebesque’schen
MabBe 0 tiberein.

Diese Theoreme konnen als Teil einer all-
gemeinen StOrungstheorie angesehen wer-
den, die im Buch entwickelt wird. Als eine
wesentliche Methode fiir das Studium einer
derartigen Spektraltheorie tritt die Uberset-
zung analoger und schon frither bekannter
Aussagen fiir eindimensionale Schrodinger-
operatoren in Erscheinung. Dies beinhaltet
auch, dass die bis 2003/2004 bekannten Re-
sultate zur Spektraltheorie eindimensionaler
Schrodingeroperatoren in  diesem Buch
ebenfalls ihren Niederschlag finden.

Simons Werk ist nicht nur ein Buch {iber
orthogonale Polynome, sondern gleicher-
mafBen iiber WahrscheinlichkeitsmaBe auf
0D, eindimensionale Schrédingeroperato-
ren und Operatortheorie. Es ist auBerordent-
lich komplex, vielschichtig, faszinierend und
anregend, und dabei gut lesbar (selbst fiir
Studenten hoherer Semester). Diese Mono-
graphie wird, darin besteht nicht der gerings-
te Zweifel, das Standardwerk zur Theorie
der orthogonalen Polynome auf dem Ein-
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heitskreis fir einen betrichtlichen Zeit-
abschnitt werden.

B. Silbermann

Chemnitz

A Papadopoulos
Metric Spaces,
Convexity and Non-
positive Curvature
IRMA Lect. in Math.
and Theor. Physics 6

Ziirich, Europ. Math. Soc., 2005, 287 S.,
€48,

Ein zentrales Thema der modernen metri-
schen Geometrie ist die Verallgemeinerung
geometrischer Begriffsbildungen der klassi-
schen Differentialgeometrie auf allgemeine
metrische Rdume. Beispielsweise hat das
geometrische Verstindnis Riemann’scher
Mannigfaltigkeiten nicht positiver Schnitt-
krimmung zur Theorie der sogenannten
CAT(0)-Rédume gefithrt (hierbei steht
,CAT* fur die Namen Cartan, Alexandrov
und Toponogov). In diesen geoditischen
metrischen Rdumen sind geoditische Drei-
ecke diinner als ihre Vergleichsdreiecke in
der Euklid’schen Ebene.

Waihrend sich diverse Lehrbiicher mit me-
trischen Rdumen einer solchen nicht positi-
ven Kriimmung detailliert befassen, konzen-
triert sich Athanase Papadopoulos in seinem
Buch in erster Linie auf die etwas allgemeine-
ren geoditischen metrischen Rdume nicht
positiver Kriimmung im Sinne von Buse-
mann. Solche Réume sind dadurch aus-
gezeichnet, dass Abstandsfunktionen ent-
lang zweier geodédtischer Segmente konvex
sind.

Nach einer kurzen Einleitung, die die his-
torischen Zusammenhénge der Arbeiten von

Hadamard, Menger, Busemann und Alexan-
drov in Bezug auf den Begriff der nicht posi-
tiven Kriimmung geodétischer metrischer
Rédume erldutert, beginnt der Autor in den
ersten beiden Kapiteln systematisch damit,
die Theorie der Langenrdume und der geo-
détischen metrischen Rdume zu entwickeln.
Hierbei legt er einerseits groBen Wert auf
Prézision, veranschaulicht andererseits neue
Begriffe stets mit zahlreichen Beispielen. Fiir
ein eingehenderes Studium vieler dieser Bei-
spiele sind die gegebenen Referenzen ebenso
interessant wie dafiir, einen historischen
Uberblick zu bekommen. Die Beweise simt-
licher Aussagen werden vollstindig aus-
gefiihrt, ohne dass Beweisliicken durch das
Heranziehen anderer Literatur geschlossen
werden miissten. Ein jedes Kapitel schlieBt
mit weiteren historischen Bemerkungen und
diesem Stil, der sowohl fiir das Selbststudi-
um von Studenten, als auch fir Wissen-
schaftler, die das eine oder andere Detail
nachschlagen wollen, geeignet ist, bleibt der
Autor durchgéngig treu.

Im dritten Kapitel widmet er sich den Ab-
bildungen zwischen metrischen Rdumen.
Lipschitz Abbildungen, bi-Lipschitz Ho-
moomorphismen, nicht kontrahierende und
nicht expandierende Abbildungen, Isome-
trien und lokale Isometrien werden nicht nur
eingefithrt und veranschaulicht. Vielmehr
wird sofort damit begonnen, mit ihnen zu ar-
beiten. Neben vielen anderen interessanten
klassischen Resultaten werden u. a. auch der
Banach’sche Fixpunktsatz und der Satz von
Freudenthal-Hurewicz bewiesen. SchlieBlich
folgt eine Einfitlhrung in die Theorie der
Uberlagerungen.

Im vierten Kapitel werden zunichst der
hinldnglich bekannte Hausdorff Abstand
und der etwas weniger geldufige Busemann-
Hausdorff Abstand zwischen Teilmengen
metrischer Raume diskutiert. Im Anschluss
daran fithrt der Autor verwandte Konstruk-
tionen von Metriken auf Isometriegruppen
metrischer Raume ein.

Die folgenden drei Kapitel widmen sich
diversen Aspekten der Konvexitit. Das

JB 110. Band (2008), Heft 1



Ubersichtsartikel Historische Beitrage

Berichte aus der Forschung Buchbesprechungen

finfte Kapitel beinhaltet affin konvexe
Mengen in Vektorrdumen, die konvexe
Kern- und die konvexe Hiillen-Konstruk-
tion, normierte Vektorrdume, Grenzwerte
konvexer Mengen und Hilbert Geometrien.
Konvexe Funktionen werden im sechsten
Kapitel diskutiert. Hier sind die zentralen
Aussagen, die bewiesen werden, die, dass die
Menge der Punkte, an der eine konvexe
Funktion nicht differenzierbar ist, abzahl-
bar ist, und dass die lokale Konvexitét einer
Funktion schon ihre Konvexitit impliziert.
Das siebte Kapitel behandelt normierte
Vektorrdume mit strikt konvexem Einheits-
ball; die Standardbeispiele metrischer Rau-
me also, die (mit Ausnahme des Eu-
klid’schen Raumes) nicht positiv gekriimmt
im Sinne von Busemann, nicht aber im Sin-
ne von Alexandrov sind.

Im achten Kapitel werden Busemann
Raume explizit definiert, viele dquivalente
Charakterisierungen solcher R&ume vor-
gestellt und konvexe Funktionen auf diesen
Réumen betrachtet.

Das neunte Kapitel befasst sich dann mit
lokal konvexen Riumen und sogenannten
Jocal to global® Argumenten. Die zentralen
Aussagen, die hier bewiesen werden, sind ei-
nerseits der Uberlagerungssatz von Alexan-
der und Bishop und andererseits ein Satz
von Gromov, der besagt, dass ein einfach zu-
sammenhdngender Lingenraum, der voll-
standig, lokal kompakt und lokal konvex ist,
ein Busemann Raum ist.

Im zehnten Kapitel wird der visuelle Rand
eines punktierten metrischen Raumes einge-
fithrt. Fir eigentliche Busemann Raume ist
dieser Rand schlieBlich von der Punktierung
selber unabhingig. Auf der Vereinigung ei-
nes solchen eigentlichen Busemann Raumes
und seinem Rand wird eine Topologie defi-
niert.

Das elfte Kapitel behandelt Isometrien
metrischer Raume. Parabolische, elliptische,
hyperbolische und axiale Isometrien werden
eingefithrt und diskutiert; zunachst ganz all-
gemein und dann im Speziellen fiir Buse-
mann Réume. Fir diese wird z. B. gezeigt,

dass eine Isometrie genau dann hyperbolisch
ist, wenn sie axial ist.

Im zwolften und letzten Kapitel werden
Busemann Funktionen, Ko-Strahlen und
Horosphéren eingefiihrt. All diese wichtigen
Begriffe gehen auf Busemann selber zuriick,
und das Kapitel schlieBt mit noch offenen
Fragestellungen, die Ko-Strahlen und Horo-
sphéren im Teichmiiller Raum betreffen.

Mit diesem Buch ist es Athanase Papado-
poulos sicherlich gelungen, eine fiir Studen-
ten sehr gut nachvollziehbare Darstellung
der nicht positiven Kriimmung metrischer
Rédume im Sinne von Busemann zu geben.
Auf dem Weg dorthin lernt der Leser all das
iiber Langenrdume, geoditische Réume,
konvexe Mengen und konvexe Funktionen,
was er zum Verstdndnis der letzten Kapitel
wissen muss, was aber auch ganz unabhin-
gig von dem in den letzten Kapiteln behan-
delten Stoff von Interesse ist. Insbesondere
die vielen Beispiele, die mit vollstindigen Re-
ferenzen zum eingehenderen Studium ange-
geben sind, werden nicht nur fiir Studenten
interessant sein. Dabei ist es dem Autor be-
sonders wichtig, immer wieder auf Sachver-
halte in der Theorie der Teichmiiller Rdume
hinzuweisen, aber auch Hilbert Geometrien,
Kobayashis Pseudoabstand, Carathéodorys
Pseudoabstand und Floyds Rand einer end-
lich erzeugten Gruppe gehdren neben vielen
anderen zu den nicht trivialen Beispielen, die
sich durch den gesamten Text zichen. Das
Buch ist sehr sorgfaltig geschrieben und der
Aufbau keinesfalls zufillig, sondern sehr gut
durchdacht. Alles in allem hat es sehr groen
Spal} gemacht, darin zu lesen.

Bonn T. Foertsch
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D. Huybrechts
Complex Geometry

Berlin u. a., Springer, 2005, 301 S., € 49,95

Komplexe Geometrie ist das Studium von
(oft kompakten) komplexen Mannigfaltig-
keiten mit analytischen (transzendenten),
algebraischen oder topologischen Metho-
den. Es gibt auch viele Beziehungen zur
theoretischen Physik (Stringtheorie, Calabi-
Yau, ...). Dadurch ist das Gebiet sehr attrak-
tiv, aber aufgrund der Vielzahl der Metho-
den auch nicht so leicht zugénglich. Das vor-
liegende Buch gibt eine Einfithrung in die
komplexe Geometrie von einem analyti-
schen Standpunkt aus. An Vorkenntnissen
werden nur die Funktionentheorie einer Va-
riablen, etwas iiber differenzierbare Mannig-
faltigkeiten und ein paar grundlegende Din-
ge liber Garben (aber nichts tiber Kohirenz)
benotigt. Das Buch kann also durchaus als
Vorlage fiir eine Vorlesung fiir Studenten be-
reits des fiinften Semesters dienen, jedenfalls
im bewdhrten Diplomstudiengang Mathe-
matik.

Zum Inhalt: In einem einfiihrenden Kapi-
tel werden grundlegende Dinge iiber holo-
morphe Funktionen mehrerer Variablen,
iiber komplexe und hermitesche Strukturen
(punktale Theorie) sowie liber Differential-
formen bereitgestellt. Das zweite Kapitel
fithrt komplexe Mannigfaltigkeiten ein mit
vielen Beispielen und bespricht grundlegen-
de Konzepte (Divisoren etc). Diese beiden
Kapitel nehmen etwa ein Drittel des Buches
ein. Das erste zentrale Kapitel (3) handelt
von Kdhlermannigfaltigkeiten: K&dhlermetri-

ken, Hodgetheorie und Lefschetzsitze. Die
Endlichkeit der Kohomologie auf kompak-
ten Mannigfaltigkeiten wird dabei voraus-
gesetzt. Kapitel 4 bespricht hermitesche
Metriken auf holomorphen Vektorbiindeln,
deren Kriimmung und Chernklassen — in ei-
nem Anhang werden Hermite-Einstein-Met-
riken und Kaihler-Einstein-Metriken ge-
streift. Im 5. Kapitel wird zunichst der Satz
von Riemann-Roch vorgestellt, natiirlich
ohne Beweis, sodann wird der Kodaira’sche
Verschwindungssatz bewiesen und der Ko-
daira’sche Einbettungssatz abgeleitet. Das
letzte Kapitel gibt schlieBlich eine kurze Ein-
fiihrung in die Theorie der Deformationen
komplexer Strukturen.

Der Inhalt des besprochenen Buches deckt
sich in groBen Teilen mit dem Inhalt der Mo-
nographie ,,Differential analysis on complex
manifolds” von R. O. Wells von ca. 1980, es
ist aber, nach meiner Meinung, leichter les-
bar. Eine andere, elementarere Einfiihrung
ist das neulich renovierte Buch von Fritzsche
und Grauert. Auf dem Markt gibt es dann
noch ein Buch von Kobayashi mit einer et-
was anderen, mehr differential-geometri-
schen StoBrichtung (hin zu Ké4hler-Einstein),
natiirlich den Schinken von Griffiths-Harris
(weit dariiber hinausgehend, aber weniger
prézise) und das nur auf dem web vorhande-
ne exzellente Buch von Demailly. Hier lasse
ich natiirlich Werke aus der algebraischen
Geometrie unberiicksichtigt, und selbst-
redend gibt es noch einiges andere, wie Dou-
day-Verdier, was ich hier nicht erwihne.
Man sieht, dass der Markt durchaus nicht
ippig bestiickt ist, und dass das gut geschrie-
bene Buch von Huybrechts hier zwar keine
Liicke fillt, aber eine wichtige willkommene
neue Quelle bietet. Wertvoll sind iibrigens
auch die vielen schonen Ubungsaufgaben
und die vielen Beispiele.

Huybrechts’ Buch stellt im Wesentlichen
grundlegende Methoden der komplexen
Geometrie vor. Was man natiirlich eigent-
lich mdchte, ist, Mannigfaltigkeiten zu ,,ver-
stehen®, zu klassifizieren, zu beschreiben.
Dazu liefert das Buch — naturgemal3 — nicht
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so viel, es stellt vielmehr wichtige Vorausset-
zungen bereit, zu den eigentlichen Aufgaben
der komplexen Geometrie vorzustofBen.

Bayreuth Th. Peternell

ttay Neoman

The Determinacy of
Long Games

[tay Neeman
The Determinacy
of Long Games

de Gruyter

Berlin, de Gruyter Verlag, 2005, 317 S.,
€128,—

Das Buch ,,The Determinacy of Long Ga-
mes® von Itay Neeman untersucht das Zu-
sammenspiel von groBen Kardinalzahlen
und Determiniertheit von Spielen abzihl-
barer Lange. Bei den Spielen, die untersucht
werden, wihlen zwei Spieler abwechselnd ei-
ne natiirliche Zahl und produzieren auf diese
Weise eine Folge natiirlicher Zahlen einer ge-
wissen Lange o < wy. Ist diese Folge ein Ele-
ment einer vorher festgelegten ko-analyti-
schen Menge C, so gewinnt Spieler 1, an-
sonsten gewinnt Spieler 2. Das Spiel ist de-
terminiert, wenn einer der beiden Spieler eine
Gewinnstrategie besitzt. Unter der Annah-
me der Existenz groBer Kardinalzahlen ent-
wickelt Neeman einen Werkzeugkasten und
zeigt mit dessen Hilfe die Determiniertheit
dieser Spiele.

Das Buch beginnt mit einer Einleitung,
welche die Geschichte der Determiniertheits-
resultate in der Mengenlehre beschreibt:
Ausgehend von dem ersten Beweis von Gale-
Steward im Jahr 1953, dass offene Spiele de-
terminiert sind, wird der Bogen gespannt

iiber Borel-Determiniertheit von Martin und
projektive Determiniertheit von Martin-
Steel bis hin zum Inhalt dieses Buches. Ideen
friherer Beweise, ihre Grenzen und aus dem
Verstdndnis der Grenzen entwickelte neue
Techniken werden prisentiert. Dabei wird
insbesondere auf das steigende Bewusstsein
der Rolle groBer Kardinalzahlen eingegan-
gen. Des Weiteren wird die Motivation, die
Determiniertheit langer Spiele zu unter-
suchen, dargelegt: Die Determiniertheit ei-
nes Spieles der Lange w mit einer projektiven
Menge als Gewinnmenge fiir Spieler 1 ist
nichts anderes als die Determiniertheit eines
transfiniten Spieles einer gewissen Lénge
w - n mit einer ko-analytischen Gewinnmen-
ge. Die Zulassung einer beliebigen abzihl-
baren Spiellinge unter Beibehaltung der
Komplexitit der Gewinnmenge ist eine mog-
liche Richtung der Generalisierung des Re-
sultates iiber die projektive Determiniertheit
von Martin-Steel.

Die Grundidee, die Determiniertheit lan-
ger Spiele zu zeigen, ist, sie auf sogenannte
Iterationsspiele zuriickzufithren, wie sie be-
reits im Beweis der projektiven Determi-
niertheit von Martin-Steel zu finden sind.
Die Technik der Iterationsspiele wird von
Neeman weiterentwickelt, um stdrkere De-
terminiertheitsresultate zu erhalten.

In Kapitel 1 wird der Grundstock fiir den
Rest des Buches gelegt: es werden Basisde-
finitionen und -techniken eingefiihrt.

In den anderen Kapiteln werden drei Ar-
ten von langen Spielen untersucht. Kapitel 2
handelt von Spielen, deren Lénge vorab fi-
xiert ist. Die Determiniertheit dieser Spiele
liefert als Spezialfall die projektive Determi-
niertheit. In Kapitel 3 werden komplexere
Spiele eingefiihrt. Es handelt sich um Spiele
variabler Lange, wobei die Lange stetig ko-
diert ist. Zunédchst wird der Baire-Raum,
d. h. der Raum der Folgen natiirlicher Zah-
len der Ldnge w, in abzdhlbar viele Partitio-
nen unterteilt. Jedesmal nach w-vielen Ziigen
ist eine Folge y¢ = (y¢(i) | i < w) entstan-
den, welche zu einer dieser Partitionen ge-
hort. Sobald eine Partition zweimal getrof-
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fen wird, endet das Spiel. Da die Linge des
Spieles nicht vorab feststeht, erfordert die
Konstruktion einer Gewinnstrategie genii-
gend ,,Luft”, um auf die flexible Lange rea-
gieren zu konnen. Dies wird erreicht durch
die Anwendung von Extendern, welche be-
reits geplante Spielziige hoch genug liften, so
dass ihre Bilder spater durch einen nachsten
Extender wieder geliftet werden konnen.

Die restlichen Kapitel des Buches befassen
sich mit Spielen, deren Linge eine lokale
Kardinalzahl ist, d. h. eine Ordinalzahl, wel-
che in einer vorgegebenen Menge von defi-
nierbaren Funktionen keine Bijektion mit w
besitzt. Die groBe technische Schwierigkeit
hierbei besteht darin, diese Spiele nicht mehr
wie in den vorigen Kapiteln durch lineare
Iterationen in den Griff bekommen zu kén-
nen. Um die Determiniertheit der Spiele zu
zeigen, werden nicht-lineare Iterationen be-
trachtet. In diesem Zusammenhang wird ei-
ne Reihe von Werkzeugen entwickelt, welche
in einem komplexen Zusammenwirken letzt-
endlich das gewiinschte Determiniertheits-
resultat liefern. Dieser Teil des Buches ist der
bei weitem anspruchvollste Teil.

Das Buch ist gut geschrieben, insbesonde-
re die Einleitung ist lesenswert. Durch das
gesamte Buch hinweg werden Ideen klar mo-
tiviert, bevor sie formalisiert werden und ein
technischer Beweis erfolgt. Einige Kapitel
werden mit Ubungen ergénzt.

Das Buch richtet sich an fortgeschrittene
Studierende sowie Spezialisten. Zum Ver-
stindnis des Buches ist es notwendig,
Grundwissen in der Theorie der groBen Kar-
dinalzahlen sowie in Forcing zu besitzen.
Grundlegende Begriffe und Theoreme wer-
den in einem Anhang in Erinnerung gerufen.

Edinburgh S. Quickert
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