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Vorwort  
Jahresbedeht der Deutschen MathemaUker-Vereingung, 107. Bd. 2005, Nr. 1 

Vorwort 

Zunächst möchte ich Herrn A. Krieg und allen Mitgliedern des Herausgebergremiums 
des Jahresberichts sehr herzlich für die geleistete Arbeit danken. Dem neuen Heraus-
gebergremium, das zu Beginn diesen Jahres seine Tätigkeit aufgenommen hat, gehören 
einige Kolleginnen und Kollegen des alten Teams an; zugleich ist es aber auch gelungen, 
neue Mitglieder zu gewinnen, die in den nächsten Monaten ihre Ideen zur Gestaltung 
des Jahresberichts einbringen werden. 

Der Jahresbericht wird auch weiterhin versuchen, ein möglichst weites Spektrum der 
Mathematik abzudecken. Dies schließt bewusst Bereiche der Anwendungen ebenso ein 
wie Berichte über Themen der Grundlagenforschung. Neben die Rubriken „Ubersichts-
artikel",,, Historisches" und „Buchbesprechungen" wird ab sofort noch die Sparte „Be-
richte aus der Forschung" treten. Den Anfang dieser Beiträge wird in einem der näch-
sten Hefte ein Aufsatz über die Arbeit des Matheon in Berlin bilden. 

Vor knapp zwei Jahren fand eine Befragung der Leserinnen und Leser des Jahres-
berichts statt, deren Ergebnisse mir Frau Schmickler-Hirzebruch vom Teubner-Verlag 
freundlicherweise zur Verfügung gestellt hat. Gerne werde ich einige der hier geäußerten 
Anregungen aufnehmen. Darüberhinaus bin ich für jeden Wunsch und jede Kritik 
dankbar, die mich von interessierten Lesern erreicht. Besonders würde ich mich auch 
über Vorschläge zu den Bereichen „Mathematik in der Industrie" und „Mathematik in 
der Schule" freuen. 

In diesem Heft finden Sie einen Aufsatz von V. Strassen über „Komplexität und Geo-
metrie bilinearer Abbildungen" sowie einen Nachruf auf Professor Dieter Gaier von 
M. von Renteln. Ergänzt werden beide Beiträge durch eine Reihe von aktuellen Buch-
besprechungen. 

K. Hulek 
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Übersichtsartike] 	Historische Beiträge 	Berichte aus der Forschung 	Buchbesprechungen  

Komplexität und Geometrge 
Ilinearer Abbildungen 

Volker Strassen 

Abstract 

• Keywords and Phrases: algebraic complexity theory, numerical linear algebra, ma-
trix multiplication, bilinear map, rank, degeneration, asymptotic spectrum, reduc-
tive linear group, geometric representation theory, moment map 

• Mathematics Subject Ciassification: 12Y05, 14L24, 15A69, 22E46, 53D20, 
65Y20,68 Q17,68W30 

Complexity and degeneration of bilinear maps may be described asymptotically by a 
single data structure: the asymptotic spectrum. We give an introduction to this theory. 
As a red thread we use w, the exponent ofmatrix multiplication. 

Eingegangen: 01.01.2004, in überarbeiteter Form am 07.03.2004 	 DI1VIV 
JAHRESBERICHT 

Volker Strassen, Universität Konstanz; 	 DER DMV 
Oskar-Pletsch-Straße 12, 01324 Dresden 	 © B. G. Teubner 2005 
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übersichtsarlikel 	Historische Beiträge 	Berichte aus der Forschung 	Buchbesprechungen 

Dies ist die schriftliche Ausarbeitung eines Vortrags für ein allgemeines mathemati-
sches Publikum, den ich zuletzt auf der Jahrestagung der DMV in Dresden gehalten ha-
be. Die Fussnoten richten sich an Leser, die es genauer wissen wollen, der Anhang ist ei-
ne Einladung an anwendungsinteressierte Algebraiker und Geometer, sich in den Ge-
genstand einzuarbeiten. Im Anhang gebe ich kurze neue Beweise für einige Resultate 
des Haupttextes, stelle Vermutungen auf und Beziehungen zu anderen Themen her. 

1 Matrixmultiplikation 

Wie schnell lassen sich grosse Matrizen multiplizieren, etwa über den komplexen 
Zahlen? Die Frage wird auf den Punkt gebracht durch den so genannten Exponenten w 
der Matrixmultiplikation: 

(1) w := inf{T : L(Et<m) = O(mT)}. 

Hier steht tm>' für die Multiplikationsabbildung m-reihiger Matrizen, und L((<') 

bezeichnet ihre Komplexität, deren natürliche Definition die minimale Anzahl arithme-
tischer Operationen ist, die zur Berechnung des Produkts zweier generischer Matrizen 
ausreicht. 

Das Natürliche ist nicht immer das Bequeme. Im Folgenden wollen wir beliebige li-
neare Operationen, also Additionen von Zwischenresultaten und Multiplikationen von 
solchen mit Elementen des Grundkörpers, kostenlos zur Verfügung stellen und L ent-
sprechend interpretieren. Diese von Alexander Ostrowski vorgeschlagene Bewegungs-
freiheit bietet erhebliche technische Vorteile und hat keinen Einfluss auf die Werte 
asymptotischer Exponenten wie ca. 

1  Das in dieser Arbeit verwendete algebraische Berechnungsmodell gründet auf der Vorstellung ei-
nes gewöhnlichen endlichen Computers, der allerdings mit der Fähigkeit ausgestattet ist, Zahlen 
aus einer Klasse zugelassener Grundkörper exakt zu speichern und arithmetische Operationen 
oder Verzweigungen der Form ',f = 0" in je einem Schritt exakt auszuführen. Das Ergebnis ist 
nach einer beschränkten Anzahl von Schritten ebenfalls exakt abzuliefern. Es können deshalb 
nur algebraische Aufgabenstellungen behandelt werden. Bei gegebener Gewichtung der Rechen-
operationen (zum Beispiel = 1) versteht man unter der Komplexität einer solchen Aufgabe den 
minimalen zu ihrer Lösung hinreichenden Rechenaufwand. In der Regel hängt der Aufwand ei-
nes Algorithmus von der Eingabe ab, so dass man zunächst über diese zu maximieren hat. Bei 
der Auswertung von Polynomen und rationalen Funktionen verwendet man statt dessen meist 
Unbestimmte als Eingaben und schliesst Verzweigungen aus. Auf diese Weise erhält man die ge-
nerische Komplexität, das heisst den minimalen Aufwand für „fast alle" Eingaben. 

Wir nehmen den generischen Standpunkt ein. Die Hauptresultate dieser Arbeit sind nicht nur 
über E, sondern über einem beliebigen algebraisch abgeschlossenen Körper gültig, der numeri-
sche Wert von ca mag aber von der Charakteristik abhängen. Die für die Anwendungen wichtige 
Klasse aller endlichen Körper ist automatisch mitberücksichtigt: Sie erweist sich als gleichwertig 
mit dem (einzigen) Grundkörper T. 

Das algebraische Berechnungsmodell und die zugehörigen Komplexitätsbegriffe sind das defi-
nitorische Rüstzeug der Algebraischen Komplexitätstheorie. Eine grundlegende Darstellung fin-
det man in der Monographie „Algebraic Complexity Theory" von P. Bürgisser, M. Clausen und 
A. Shokrollahi [8]. Den Schwerpunkt dieses Buches bilden die unteren Komplexitätsschranken. 
Algorithmische Aspekte werden auch in der Monographie „Modern Computer Algebra" von 
J. von zur Gathen und J. Gerhard [16] vortrefflich behandelt. 
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V. Strassen: Komplexität und Geometrie bilinearer Abbildungen 

Die praktische Bedeutung der Matrixmultiplikation resultiert vor allem aus ihrer 
zentralen Rolle in der Numerischen Linearen Algebra. So lässt sich zeigen, dass die Ma-
trixinversion, die Auswertung der Determinante, die Berechnung aller Koeffizienten 
des charakteristischen Polynoms, die Konstruktion verschiedener Normalformen von 
Matrizen sämtlich den gleichen asymptotischen Exponenten besitzen wie die Matrix-
multiplikation [32], [28], [2], [21]. 

Die Beweise hierfür beruhen auf der Idee der Reduktion eines Problems auf ein an-
deres. Um etwa zu zeigen, dass die Determinantenberechnung nicht viel aufwändiger ist 
als die Matrixmultiplikation, organisiert man einen Standard-Algorithmus zur Deter-
minantenauswertung als rekursive Prozedur entlang einer Blockzerlegung mit Blöcken 
ungefähr der halben Matrizengrösse. Das wird so gemacht, dass aufjeder Ebene der Re-
kursion im Wesentlichen nur eine konstante Anzahl von Matrixmultiplikationen halber 
Grösse ausgeführt werden muss zusammen mit zwei Aufrufen der Prozedur, also zwei 
Determinantenberechnungen für Matrizen halber Grösse. Man sieht leicht, dass das zu 
der gewünschten Ungleichung zwischen den Exponenten führt. In ähnlicher, wenn auch 
bisweilen komlizierterer Weise kann man jedes der oben genannten Probleme auf die 
Matrixmultiplikation reduzieren. 

Reduktionen in der umgekehrten Richtung sind nicht immer so naheliegend. Zum 
Beispiel ist nicht klar, welchen Nutzen ein schneller Determinantenalgorithmus bei der 
Multiplikation von Matrizen haben könnte, schon deshalb, weil das letztere Problem 
die Auswertung vieler Funktionen (der Koeffizienten der Produktmatrix) erfordert, 
während die Determinantenberechnung nur eine einzige Funktion liefert. Trotzdem ist 
eine effiziente Reduktion möglich, und zwar auf Grund der folgenden Ungleichung für 
die Komplexität eines Polynomsf =f(xi .... .x) und seiner Ableitungen (Baur-Stras-
sen [2]): 

(2) 

Die Ungleichung wurde ursprünglich bewiesen, um nicht-triviale untere Komplexitäts-
schranken für einzelne Polynome mit Hilfe der Gradschranke [33] zu gewinnen: Diese 
schätzt die Komplexität von Polynomenf i , .... J. in Unbestimmten x1, ..... nach un-
ten ab durch den binären Logarithmus des algebraisch-geometrischen Grades des Gra-
phen der durch (fi,... J.) vermittelten polynomialen Abbildung C - C . z Die Grad-
schranke liefert die besten Resultate, wenn n und r gleichzeitig gross sind. So erhält man 
zum Beispiel untere Komplexitätsabschätzungen der Grössenordnung n log n für die Be-
rechnung der Koeffizienten eines Polynoms vom Grade n aus seinen Nullstellen (ele-
mentarsymmetrische Funktionen), die Auswertung eines Polynoms vom Grade n an n 
Stellen und die Berechnung des Interpolationspolynoms vom Grad n aus n Stützstellen 
und zugehörigen Werten. 3  

2  Der algebraisch-geometrische Grad ist die Anzahl der Schnittpunkte des Graphen mit einem ge-
nerischen affinen Unterraum von '<' der Dimension r. Gradschranke und Ungleichung (2) 
sind auch für rationale Funktionenf, . .... j;. richtig. 
Beim hier verwendeten Ostrowki-Modell haben die Abschätzungen die optimale Grössenord-
nung. 
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Übersichtsartikel 	Historische Beiträge 	BerichteausderForsch„g:E Buchbesprechungen 

Andererseits ist der Grad des Graphen eines einzigen Polynoms einfach der Grad 
des Polynoms, so dass eine triviale Komplexitätsschranke resultiert. Hier kommt die 
Ungleichung (2) ins Spiel, indem die Komplexität vonf zunächst durch die Komplexi-
tät vonf zusammen mit seinen ersten Ableitungen nach unten abgeschätzt und erst da-
rauf die Gradschranke angewandt wird. Auf diese Weise erhält man untere Abschät-
zungen der Grössenordnung n log n für die Komplexität verschiedener interessanter 
Einzelpolynome, wie die Potenzsumme Enx7, die Diskriminante fJ 1 (x x1) und 
jede elementarsymmetrische Funktion im mittleren Bereich [2]. Die gleiche Abschät-
zung ergibt sich für die Interpolation an einer einzigen Stelle [31]. 

Die Anwendung der Ungleichung (2) auf die Determinantenfunktion zeigt, dass es 
nicht viel schwieriger ist, die Determinante einer Matrix der Ordnung m zusammen mit 
allen Minoren der Ordnung m - 1 zu berechnen, als die Determinante allein. Nach der 
Cramerschen Regel ist also die Matrixinversion nicht viel schwieriger als die Determi-
nantenauswertung. Ein alter Trick reduziert die Matrixmultiplikation auf die Matrixin-
version: 

(1 A (1 —A AB 

1 B 

) - 1  

=1 1 —B 

\\ 1 

Hier bedeuten A, B Matrizen der Ordnung m und 1 die entsprechende Einheitsmatrix. 
Also lassen sich Matrizen der Ordnung m mittels der Inversion einer Matrix der Ord-
nung 3m multiplizieren. 4  Kombiniert man die drei beschriebenen Reduktionen, so sieht 
man, dass ein schneller Determinantenalgorithmus eine schnelle Matrixmultiplikation 
nach sich zieht, wie behauptet wurde. 

Kehren wir zum Exponenten Li zurück. Der Standardalgorithmus zur Matrixmulti-
plikation zeigt, dass 3 in der Konkurrenzmenge des Infimums in (1) liegt, woraus w < 3 
folgt. Klar ist andererseits w > 2, da jeder Multiplikationsalgorithmus m 2  linear unab-
hängige Funktionen zu berechnen hat, nämlich die Koeffizienten der Produktmatrix. 
Keine untere Schranke > 2 ist bekannt, schlimmer noch: Es könnte L(1m) = 0(m 2 ) 

gelten. 
Die folgende Tabelle zeigt die bisherigen Fortschritte bei der Abschätzung des Ex-

ponenten von oben zusammen mit Hinweisen auf verallgemeinerungsfähige theoreti-
sche Konzepte, die hierzu entwickelt wurden. 

Tatsächlich ist das Argument nicht zwingend für das hier verwendete generische Berechnungs-
modell, da man zulassen muss, dass der Gültigkeitsbereich eines solchen Algorithmus bei Ver-
wendung von Divisionen kleiner ist als der Definitionsbereich (hier GL(m, F)) der zu berechnen-
den rationalen Abbildung (hier die Matrixinversion). Ein schneller Algorithmus für die Matrix-
inversion könnte deshalb auf keiner Matrix definiert sein, die die Form der linken Seite der 
obigen Matrixgleichung hat. Diese Schwierigkeit kann durch ein Störungsargument behoben 
werden [ 341, wenigstens für den Vergleich der asymptotischen Exponenten. 
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V. Strassen: Komp'exität und Geometrie bilinearerAbbildungen 

2,81 (1969) [32] 
2,79 (1979) [25]  
278 (1979) [5],[4] 
2.55 (1981) [29] 
2,53 (1981) [26]  
2,52 (1982) [27]  
2,50 (1982) [9]  
2,48 (1987/8) [36[,[37[ 
2,38 (1990) [10]  

Rang 

Gren:rang 
- Theorem 

Asymptotisches Spektrum 
Random isierung 

2 Bilineare Abbildungen 

Wir betrachten nun beliebige bilineare Abbildungen 

f: U x VW 

zwischen endlich-dimensionalen komplexen Vektorräumen. Interessante solche Abbil-
dungen gibt es wie Sand in der Wüste; ich erinnere nur an die Multiplikation in assozia-
tiven Algebren oder in Liealgebren. In diesen Fällen verwenden wir die Bezeichnung der 
Algebra auch für deren Strukturabbildung, schreiben also zum Beispiel {m><mn  für die 
Multiplikation m-reihiger Matrizen, (" für die koordinatenweise Multiplikation von 
Vektoren in 112' und, falls F e (12 [T] ein Polynom vom Grade n ist, U [T]/(F) für die 
Multiplikation modulo F von Polynomen vom Grad < n. 

f g bedeute, dassj und g isomorph sind. Ein Isomorphismus ist natürlich durch 
drei (mitf und g verträgliche) lineare Isomorphismen gegeben. Sind aberf und g Multi-
plikationsabbildungen assoziativer Algebren mit 1, so erweist sichf g als gleichwertig 
mit der Isomorphie dieser Algebren. 

Die direkte Summef D g ist in kanonischer Weise definiert: Man schaltetf und g pa-
rallel. Für Multiplikationsabbildungen von Algebren entspricht das dem direkten Pro-
dukt der Algebren. Als einfache Illustration diene ein Spezialfall des Chinesischen Rest-
satzes: 

(3) T [T]1(T-'y)Ee...12.(12' 

für'y e (‚y 0. 
Auch das Tensorprodukt f ® g zweier bilinearer Abbildungen verallgemeinert den 

entsprechenden Begriff für assoziative Algebren. f 9 g besitzt eine „Blockzer!egung" 
derart, dass jeder Block bis auf eine Skalierung wie g aussieht, während der Uberbau 
der Skalierungen durchj> modelliert ist. Man veranschaulicht sich das am besten an ei-
nem Beispiel: Matrixmultiplikation der Ordnung 2111 kann als Multiplikation 2-reihiger 
Matrizen angesehen werden, deren Koeffizienten keine komplexen Zahlen, sondern 
Matrizen der Ordnung ni sind. Diese Tatsache können wir in der Sprache der Tensor-
produkte elegant so ausdrücken: 

2m/2m 	2x2 	Q/Hxfl1 

woraus durch Induktion 
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(4) 
2x2 	(2X2)V 

folgt. Verallgemeinernd und etwas vergröbernd können wir sagen, dass grosse Matrix-
multiplikationen hohe Tensorpotenzen von kleinen Matrixmultiplikationen sind. Das 
wird uns später nützlich sein. 

3 Restriktion und Rang 

Was verstehen wir unter der Komplexität einer bilinearen Abbildung 
f: U x V— W? Die naheliegende Definition ist: Man wähle Basen für U, V, W; dann 
ist die Komplexität L(f) vonj bezüglich dieser Basen der minimale Rechenaufwand, 
der zur Berechnung der Koordinaten vonf(u, v) aus den Koordinaten von u und v aus-
reicht. Wie gut, dass wir Linearkombinationen kostenlos verwenden dürfen: L(f) hängt 
nicht von der Basenwahl ab, wir haben es mit einer Invariante der Abbildungf zu tun. 

Die explizite Definition von L(f) ist ein wenig langatmig, da sie auf dem Berech-
nungsbegriff fusst. Wir machen den Leser nun mit einem Komplexitätsmass für bilinea-
re Abbildungen vertraut, das eine einfachere Definition besitzt als L(f), bei asymptoti-
schen Betrachtungen mit L(f) aber völlig gleichwertig ist. Eine bilineare Abbildung 
f : U x V— W heisst Restriktion einer weiteren f' : U' x V'—> W', wenn es lineare 
Abbildungenc: U— U',ß: V— V'und'y: W'— Wgibtmit 

(5) f(u. v) = 7f'(Qu, ßv). 

Wir schreiben dafürf <f'. Istf Restriktion vonf, so lässt sichf durch einen einzigen 
Aufruf von zusammen mit (für uns kostenlosen) linearen Operationen berechnen. 
Dies führt uns auf das oben angekündigte Komplexitätsmass, die bilineare Komplexität 
oder der Rang vonf: 

(6) R(f) := min{r :f < 

Die Abbildung 	steht für r Zahlenmultiplikationen. Ausf < ff r können wir deshalb 
folgern, dass sichf mit r Multiplikationen (nebst linearen Operationen, aber ohne Divi-
sionen) berechnen lässt. Insbesondere haben wir damit die erste der folgenden Unglei-
chungen eingesehen: 

(7) L 	<R(f) <2L(f). 

Der Beweis der zweiten reduziert sich im Wesentlichen auf den Nachweis, dass wir bei 
der Berechnung bilinearer Abbildungen auf Divisionen verzichten können, ohne den 
kostenpflichtigen Rechen-Aufwand zu vergrössern [34]. Aus (7) ergibt sich die asympto-
tische Gleichwertigkeit von Rang und Komplexität, insbesondere 

(8) w = inf{T : R(E'"<" 1 ) = O(mT)}. 

Wir empfehlen unseren Lesern, für das Folgende einfach den Rang als Komplexitäts-
mass zu akzeptieren und sich nicht weiter um den ursprünglichen Berechnungsbegriff 
zu kümmern. 

Die Definitionen (5) und (6) gehen auf Gastinels Untersuchung [15] der Struktur des 
Algorithmus zur Matrixmultiplikation in [32] zurück. Eine äquivalente Definition des 
Rangs findet sich in [34]5 
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Seine grössere Einfachheit ist nicht der einzige Vorteil des Rangbegriffs gegenüber 
dem der Komplexität; R hat auch bessere formale Eigenschaften als L, nämlich 

(10) R(f(Dg) <R(f)+R(g), 

(11) R®g)<R(f).R(g). 

Die Subadditivität wird von der Komplexität geteilt, bei der Submultiplikativität 
hingegen versagt die Komplexität völlig. Nun ist es gerade diese Eigenschaft, mit der 
sich schnelle Algorithmen zur Matrixmultiplikation gewinnen lassen: Angenommen wir 
haben ein gute obere Abschätzung für den Rang irgendeiner kleinen Matrixmultiplika-
tion, zum Beispiel [2<2•  Induktive Anwendung von (ll)liefert dann eine gute Abschät-
zung des Rangs hoher Tensorpotenzen von T 2,2, also nach (4) grosser Matrixmultipli-
kationen. Nach (8) sind solche Abschätzungen aber gerade das, was für eine gute obere 
Schranke für w gebraucht wird. Allgemein zeigt der Gedankengang 6  

(12) R(ffIrnxmfl) < r==m < r. 

Diese Implikation führte im Verein mit R(E 2 > 2 ) < 7 zur ersten nichttrivialen Abschät-
zung des Matrix-Exponenten: < 1 81. 

4 Degeneration und Grenzrang 

Nachdem wir einen zweckmässigen Komplexitätsbegriff für bilineare Abbildungen 
entwickelt haben, wenden wir uns ihrer Geometrie zu. Der Raum aller bilinearen Abbil-
dungen U x V— W zerfällt in Isomorphieklassen. 7  Jede Isomorphieklasse ist offen in 
ihrem Abschluss. Beim Abschliessen wird also ihr Rand disjunkt hinzugefügt. Er be-
steht wieder aus vollen Isomorphieklassen. Ein wichtiges geometrisches Thema ist die 
Frage, welche Isomorphieklassen im Rand von welchen anderen liegen. Man spricht 
dann von Degeneration oder Entartung, wobei wir als entartete Entartung noch die 
Gleichheit der Isomorphieklassen einschliessen wollen. Das führt unmittelbar auf die 
folgende Definition: f ist Degeneration von g (f< g), wenn J der Limes isomorpher 
Kopien von g ist. 

Sind f und g isomorph, so haben die Räume, auf denen f erklärt ist, zwingend die 
gleichen Dimensionen wie die entsprechenden Räume von g. (Wir wollen sagen:f und g 
haben das gleiche Format.) Diese starre Situation wird aufgelockert durch den Begriff 
der Äquivalenz: j  und g heissen äquivalent, wennf :i g ü 2 für geeignet dimensio-
nierte Nullabbildungen z1 und z2.  Wir erlauben uns also auf beiden Seiten einer Aquiva- 

Identifizieren wir / mit seinem StrukturtensorJ e 	< W, so ist 

(9) R 	= min{r: 3pi 	V*.w! C W f =pi S qi S ii',} 

6 Mit Blick auf spätere Verallgemeinerungen ziehen wir (12) der gleichwertigen und kürzeren For-
mulierung in -  < R(IT"><) vor. 
Das sind einfach die Bahnen der Gruppe GL( U) x GL( V) x GL( W) unter der Wirkung 
((o. 3. )f) (ii. v) 	¶(-) u 3- iv) 
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lenz, zunächst die Räume ohne Schaden für die Abbildung zu vergrössern, um so für 
gleiches Format zu sorgen. 

Auch in der Definition der Degeneration wollen wir zulassen, dass f und g zuvor 
durch äquivalente Abbildungen ersetzt werden, so dass sie nicht a priori gleiches For-
mat zu haben brauchen. 8  Hier ist ein Beispiel für die Degeneration (bei dem eine solche 
Anpassung nicht nötig ist): 

(13) I [T]/(T) <Ca , 

denn für jede Nullfolge (y) nichtverschwindender komplexer Zahlen gilt einerseits 

[T]1(T'1 	) - 	[T]1(T11) 

fürj , cc (plausibel), andererseits ist .0 [T]/(T - yj) 	nach (3). Die hinter dem 
n-ten Koeffizienten abgeschnittene Polynom- oder Potenzreihenmultiplikation 
11 [T]/(T) ist also Degeneration der koordinatenweisen Multiplikation in «iY. Für 
n > 2 sind diese beiden Abbildungen keineswegs isomorph (nicht einmal äquivalent), 
denn sonst wären nach einer früheren Bemerkung die zugehörigen Algebren isomorph, 
während doch nur eine von ihnen nicht-triviale nilpotente Elemente besitzt. 

Restriktion ebenso wie Degeneration sind Präordnungen (reflexiv und transitiv), 
und die Restriktion impliziert die Degeneration. 9  Es liegt deshalb nahe, in Analogie zu 
(6) ein Funktional R durch 

(14) R(f) 	min{r :f<E' } 

zu definieren. R(f) bezeichnet man als Grenzrang vonf. Ein Beispiel kennen wir schon: 

R(E [T]/(T)) <n, 

denn das ist gleichbedeutend mit (13) . b 0  

Rang und Grenzrang sind nahe Verwandte: R ist die grösste unterhalbstetige Funk-
tion < R. Damit folgt aus (10) und (11) leicht, dass auch der Grenzrang subadditiv und 
submultiplikativ ist. Uberraschender ist, dass in (8) der Rang ebenfalls durch den 
Grenzrang ersetzt werden darf (Bini [41). Damit ergibt sich wie beim Rang eine Methode 
zur Abschätzung von w: 

(15) R(E °<') < r==ä.m < r. 

Besitzt der Grenzrang Vorteile gegenüber dem Rang? Ja, denn einmal ist R(J) manchmal 
strikt kleiner als R(J), sodass (15) effektiver ist als (12). Zum andern stellt die Definition 

8  Bei Räumen gleichen Formats tritt dadurch nichts Neues hinzu. 
Dass Restriktion und Degeneration nicht identisch sind, sieht man an (13). 

‚° In (13) wird die Algebra E [T]/(T') durch isomorphe Kopien der Algebra E" approximiert, die 
selbst wieder Algebren und deshalb als Algebren isomorph zu tL" sind. Im Allgemeinen muss 
man bei der Degeneration von Algebren als bilinearen Abbildungen die Kategorie der Algebren 
verlassen. 

Zum Beispiel würde sonst ausJ E' folgen, dassf kommutativ ist, denn Kommutativität ist 
eine abgeschlossene Eigenschaft, die unter Algebrenisomorphie erhalten bleibt. Tatsächlich ist 
aber jede bilineare Abbildung, insbesondere jede Algebra, Degeneration von T ' für genügend 
grosses n. Das gilt für die Restriktion, wie man aus der Definition (9) abliest, und die Restriktion 
impliziert die Degeneration. 
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(14) einen Bezug zur geometrischen Darstellungstheorie her, so dass der etwas enge Pfad 
der Komplexitätstheorie der Matrixmultiplikation sich zu einer breiteren Landschaft 
mathematischer Kompetenz und Schönheit öffnet. (Siehe zum Beispiel Kraft [22].) 

Der Begriff des Grenzrangs wurde in analytischer Form von Bini, Capovani, Lotti, 
Romani [5] eingeführt." Diesen Autoren selbst gelang mit Hilfe von (15) nur eine kleine 
Verschärfung von w < 2,81, nämlich w < 2.78. deren Eindrücklichkeit von einer kurz 
vorher von Pan [25] erzielten Ungleichung w < 2, 79 noch geschmälert wird. Während 
aber Pans Methode ohne nachhaltige Wirkung blieb, wurde der Begriff des Grenzrangs 
der Ausgangspunkt aller folgenden Untersuchungen und führte in den Händen von 
Schönhage bald zu einem Quantensprung bei der Abschätzung von . Schönhages me-
thodische Innovation, das sogenannten T-Theorem [29], ist eine Verallgemeinerung von 
(15): 

(16) R(EmiX1i) < r=.>m' < r. 

Das y-Theorem unterscheidet sich von (15) durch die Einbeziehung direkter Sum-
men. Wäre der Grenzrang additiv statt nur subadditiv, so wäre das y-Theorem eine ein-
fache numerische Konsequenz von (15). Wie die Dinge liegen, musste Schönhage eine 
neuartige Rekursionstechnik entwickeln, um (16) zu beweisen. Umgekehrt könnte man 
die Gültigkeit des y-Theorems als eine Art asymptotischer Rückendeckung für die Ad-
ditivität des Grenzrangs ansehen. Uberraschenderweise zeigt Schönhage in der gleichen 
Arbeit an einem Beispiel, dass der Grenzrang nicht additiv ist. Der Schwerpunkt dieses 
Beispiels ist eine Grenzrangabschätzung, die die Form der Prämisse des T-Theorems 
hat; setzt man diese Grenzrangabschätzung in das -Theorem ein, so erhält man 

<2 , 55 12  

Die geometrische Definition (14) findet sich in [36], siehe auch [351  und Alder [1]. 
2 Tatsächlich formulieren und beweisen Bini. Capovani, Lotti, Romani und Schönhage ihre Re-

sultate nicht nur für quadratische, sondern für beliebige rechteckige Matrixmultiplikationen: 
Mit der Schönhage-Notation 

(in. p. q) : ai 	< T 'a 	WXq 

für die Multiplikation von (rn x p)- mit (p x q)-Matrizen lautet die allgemeine Fassung von 
Schönhages -Theorem 

(17) 	R( 	(ni, .p. qt)) < i-==>(rn 1p 1 q1 ) 3  <1. . 

(17) kann durch Bildung von Tensorpotenzen aus (16) mit Hilfe eines Resultats von Hoperoft-
Musinski [18] gefolgert werden. Dieses drückt die Symmetrieeigenschaften des Grenzrangs und 
des Matrixtensors aus: 

(18) R( 	(m,.p. (ij)) = R( 	q,. n)). 

Schönhages Grenzrangabschätzung, die einerseits die Additivität des Grenzrangs widerlegt und 
andererseits w < 2, 55 liefert, ist 

(19) R((4. 1.4) 	(1.9.1))< 17. 

Dabei sieht man leichtR((4. 1.4)) = 16 und R((1,9. 1)) = 9 ein. 
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Ausser in trivialen Fällen ist das y-Theorem niemals scharf (d. h. in seiner Konklu-
sion kann man stets <durch <ersetzen), wie Coppersmith-Winograd [9] aufgedeckt ha-
ben. Mit Hilfe einer quantitativen Fassung dieser Aussage gelang ihnen der Beweis der 
„Meilenstein-Abschätzung" w < 2 1 5. 

Nun wollen wir erklären, was wir unter asymptotischer Betrachtungsweise im Zu-
sammenhang mit beliebigen bilinearen Abbildungen verstehen. Bei der Matrixmultipli-
kation gibt es kein Problem, weil diese Abbildungen eine unendliche Folge bilden. Eine 
natürliche Verallgemeinerung wird durch (4) nahegelegt: Wir können jede bilineare Ab-
bildungf als das erste Glied der Folge ihrer Tensorpotenzen ansehen. Das führt auf die 
folgenden Definitionen des Exponenten 

(20) w(f) := inf{T : R(f®u) = 

und des asymptotischen Rangs (Gartenberg [14]) 

(21) R(f) :=lirnR(f ® . 

Einfache Uberlegungen zeigen 

(22) R (f) = 
2w(1) 

und 

(23) W= w(U2X2) 

Exponent und asymptotischer Rang von f spiegeln die Berechnungskomplexität hoher 
Tensorpotenzen vonj wider: Statt R hätten wir auf Grund von (7) in beiden Definitio-
nen auch L schreiben können. Wie beim Matrixexponenten dürfen wir R aber auch 
durch R ersetzen, ohne die Definitionen zu verfälschen.' 3  Um einer Inflation der Begrif-
fe vorzubeugen, wollen wir im Folgenden auf die Komplexität, den Rang und den 
Grenzrang verzichten zugunsten der Degeneration als Inbegriff der Geometrie und dem 
Exponenten (bzw. dem dazu äquivalenten asymptotischen Rang) als Inbegriff der 
Komplexität. Wie können wir dann Schönhages y-Theorem (16) formulieren? Einfach 
so: 

(24) a "i '< (r>mw < r. 

5 Asymptotisches Spektrum 

Inspiriert durch die K-Theorie verschieben wir unsere Aufmerksamkeit von indivi-
duellen bilinearen Abbildungen auf deren Aquivalenzklassen. Die Menge' 4  dieser Klas-
sen bezeichnen wir mit B. Die direkte Summe und das Tensorprodukt bilinearer Abbil- 

13  Hierfür geben wir im Anhang (Satz 7) einen kurzen Beweis. 
Man repräsentiere jede Klasse durch eine Abbildung zwischen numerischen Räumen. 
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dungen induzieren Operationen in 13, die wir als Addition und Multiplikation deuten. 
So wird 13 zu einem kommutativen Semiring, mit der Klasse von (1:0  (triviale bilineare 
Abbildung) als Nullelement und der Klasse von ff '(Multiplikation in (1:) als Einsele-
ment. Die Klasse von L E 9 ... (F ist nichts anderes als die natürliche Zahl 
n = 1 + .. . + 1, interpretiert im Semiring B. 

Es bereitet keine Schwierigkeiten, die Degeneration, den Exponenten und den 
asymptotischen Rang auf 13 zu übertragen. Auf diese Weise erhalten wir eine partielle 
Ordnung < ‚ die mit Addition und Multiplikation verträglich ist, sowie zwei numeri-
sche Funktionen w und ß auf B. Um sparsam zu sein, wollen wir in Notation und Spra-
che keinen Unterschied machen zwischen bilinearen Abbildungen und ihren Aquiva-
lenzklassen. Wir werden also wie bisher von Abbildungen sprechen, aber in der Regel 
deren Aquivalenzklassen meinen. So können wir auch die Formeln (22) bis (24) einfach 
übernehmen. 

Auf Grund seiner Definition (21) erbt der asymptotische Rang die Eigenschaften, 
subadditiv und submultiplikativ zu sein, vom Rang. Es zeigt sich, dass R eine zusätzli-
che Tugend besitzt: Nach Einschränkung auf irgendeinen Unter-Semiring von 13, der 
von einem einzigen Element J erzeugt wird, ist R additiv und multiplikativ. Für 

= 2x2 folgt das aus dem y-Theorem, für beliebigej aus einer Verallgemeinerung sei-
nes Beweises. 

Vielleicht kommt dem Leser in den Sinn, dass das Maximum-Funktional, etwa auf 
dem Semiring C () der nichtnegativen stetigen Funktionen auf einem kompakten 
Raum A, die gleichen Eigenschaften besitzt. (Offenbar ist es subadditiv und submulti-
plikativ. Ist fernerf E C(), so wird das Maximum dieser Funktion an einem Punkt 
6 e L\ angenommen. Der vonf erzeugte Unter-Semiring von C+()  besteht aus allen 
nichtnegativ ganzzahligen Polynomen in f, die natürlich alle in 6 maximal sind. Also 
stimmt das Maximum-Funktional auf diesem Unter-Semiring mit der Auswertung an 
der Selle 6 überein und ist deshalb additiv und multiplikativ.) 

Es besteht somit eine formale Analogie zwischen zwei ganz verschiedenen Situa-
tionen: Auf der einen Seite Klassen bilinearer Abbildungen mit einem Funktional, 
das auf deren Komplexität beruht, auf der andern Seite nichtnegative stetige Funk-
tionen mit dem Maximum-Funktional. Gibt es vielleicht einen tieferen Zusammen-
hang? 

In der Tat, und der Schlüssel dazu ist eine asymptotische Spielart der Degeneration, 
die wir asymptotische Degeneration nennen und mit < bezeichnen: 

2°(') 

(25) f<g: 	J< 	g' 

In Worten:f ist asymptotische Degeneration von g, wennJ Degeneration einer direk-
ten Summe von wenigen Kopien von 	ist. 

Natürlich impliziert die Degeneration die asymptotische Degeneration. Auch letzte-
re ist eine Partialordnung in 13, die mit Addition und Multiplikation verträglich ist. Der 
fundamentale Unterschied zwischen < und < kommt erst zum Vorschein, wenn wir 13 
zu einem Ring erweitern. Ähnlich wie der Semiring der natürlichen Zahlen eingebettet 
ist in den Ring der ganzen Zahlen, kann der Semiring 13 kanonisch eingebettet werden 
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in einen kommutativen Ring R., so dass R. = 8 - B.' Überraschenderweise lässt sich 
die asymptotische Degeneration '1 eindeutig zu einer mit den Ringoperationen verträg-
lichen Partialordnung auf 7?. fortsetzen. (Für die Degeneration ist das nicht möglich, 
wie Bürgisser [7] gezeigt hat). Diese Fortsetzung bezeichnen wir wieder mit <. Sie erfüllt 
eine technische Bedingung, die 7?. in einen so genannten Stone-Ring verwandelt. Die Ar -
beit, die für einen Beweis dieser Tatsachen investiert werden muss, bringt einen erhebli-
chen Mehrwert: Wir können die schöne Strukturtheorie für Stone-Ringe ins Spiel brin-
gen, die von Stone, Kadison und Dubois [30]. [20], [3] entwickelt wurde. 

Um nicht immer alle möglichen bilinearen Abbildungen gleichzeitig im Auge behal-
ten zu müssen, formulieren wir unser Hauptergebnis [37] relativ zu einem Untersemiring 
SvonZ3. 

Spektralsatz 1. Zu jedem Semiring S von bilinearen Abbildungen gibt es einen kom-
pakten Raum A (S) und einen Homomorphismus 

: SC((S)) 

von S in den Semiring der nichinegativen stetigen Funktionen aufs(S) derart, dass so(S) 
Punkte trennt und dass gilt: 

(26) Vf,g eS 	f < g 	(J) 

L(S) (zusammen mit p) ist bis auf kanonische Isomorphie eindeutig bestimmt und 
heisst das asymptotische Spektrum von S. Sindf, .. . ' j, bilineare Abbildungen, so be-
zeichne A (f,,... f) das asymptotische Spektrum des von ft. . . . ‚ j, erzeugten Semi- 
rings. Aus der Spektraltheorie folgt, dass A (Jj.. .. ‚ f) eine natürliche Realisierung als 
kompakte Teilmenge des 1R5  besitzt.' 6  

Offenbar gibt das asymptotische Spektrum erschöpfende Auskunft über die asymp-
totische Degeneration bilinearer Abbildungen: Sind f, g e S, so bestimme man p(f) 
und o(g). Gibt es dann einen Punkt 6 E A mit p(f)(6) > o(g)(6), so istf keine Degene- 

15  Hierzu braucht man die additive Kürzungsregel. Nun gilt sogar: Jede bilineare Abbildung ist im 
Wesentlichen eindeutig bestimmte direkte Summe von direkt unzerlegbaren Abbildungen. (Für 
halbeinfache Algebren ist das die Eindeutigkeitsaussage des Satzes von Wedderburn.) Die addi-
tive Struktur von B ist also die eines freien kommutativen Monoids. 

16  Wie berechnet man diese Realisierung? Der von ft  ...... f erzeugte Semiring besteht aus allen 
P(fi .... ..f),  wo P(x, ‚...‚xq ) ein Polynom mit natürlichen Koeffizienten ist. L(f, ..... 

f) c lR wird nun durch die Menge aller Ungleichungen zwischen Polynomen mit natürlichen 
Koeffizienten 

(27) P(x, ......s) 	Q(xt ......v) 

ausgeschnitten, für die gilt 

(28) P(f1 .....f5) zi  Q(j .....j). 

Der Homomorphismus c ordnet jeder bilinearen Abbildung P(f1  . ... 
.f)  e S die Einschrän-

kung von P(x i  ......) auf 	(ft .....f) zu; auf Grund der obigen Beschreibung von 
j,) ist W wohldef,niert. 

Natürlich ist es in der Regel einfacher, äussere Abschätzungen von (fi .....j) zu gewinnen als 
innere, denn im ersten Fall braucht man nur einzelne Degenerationen vom Typ (28) aufzuzeigen, 
während man sich im zweiten Fall gegen alle gleichzeitig wehren muss. 
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ration von g, nicht einmal eine asymptotische; ist andererseits p(f) 	(g), so hat man 
wenigstens asymptotische Degeneration. 

Aber auch der Exponent w(f) lässt sich vom asymptotischen Spektrum ablesen, 
denn die früher beobachtete Analogie zwischen dem asymptotischen Rang und dem 
Maximum-Funktional erhärtet sich wie folgt: 

Korollar 2. Vf eS 	= R(f) = max(f). 

Der Spektralsatz in Verbindung mit dem Korollar weisen das asymptotische Spek-
trum gleichsam als magnetischen Nordpol aus, an dem sich sowohl die Geometrie der 
bilinearen Abbildungen als auch ihre Komplexität orientieren. 

Wir haben früher bemerkt, dass der asymptotische Rang einer Abbildungf ebenso 
gut asymptotischer Grenzrang von f heissen könnte. Damit besitzt er auch eine geo-
metrische Deutung, nämlich als geeignet normierte Minimalzahl von Zahlen-Multipli-
kationen, aus denen sich hohe Tensorpotenzen von f degenerieren lassen (im Limes). 
Als Eselsbrücke dürfen wir R (f) vielleicht als asymptotischen Preis vonf (in der Wäh-
rung der Zahlen-Multiplikationen) interpretieren. In dieser Sprechweise lautet die zwei-
te Gleichung des Korollars so: 

(29) asymptotischer Preis vonf = niax(). 

Es gilt auch das gespiegelte Resultat: 

(30) asymptotischer Wert von f = min (), 

wobei der asymptotische Wert vonf die normierte maximale Anzahl von Multiplikatio-
nen beschreibt, die man aus hohen Tensorpotenzen vonf durch Degeneration heraus-
pressen kann. Natürlich liegt der Wert stets unter dem Preis, und das Verhältnis kann 
beliebig klein werden. 17  

6 Halbeinfache Algebren 

Wenden wir die Spektraltheorie als Erstes auf den Semiring der halbeinfachen asso-
ziativen Algebren an! Wie sieht sein asymptotisches Spektrum aus? Ein Satz von Wed-
derburn lehrt, dass die halbeinfachen Algebreri über [ bis auf Isomorphie gerade die 
direkten Summen von Matrixalgebren sind. Nach (4) sind grosse Matrixmultipli-
kationen „beinahe" Tensorpotenzen von E 2>2 . Der Semiring der halbeinfachen Alge-
bren wird also „beinahe" von [2<2  erzeugt. Das genügt zum Nachweis, dass das 
asymptotische Spektrum der halbeinfachen Algebren kanonisch isomorph ist zum 
Spektrum der zweireihigen Matrixmultiplikation, also als kompakte Teilmenge der reel-
len Zahlengeraden realisiert werden kann. Mit der Abkürzung A := z(halbeinfache 
Algebren) erhalten wir 

(31) (2x2)Cfl 

17  Zum Beispiel hat die Matrixmultiplikation (l.n. 1) (Skalarprodukt) den asymptotischen Preis n 
und den asymptotischen Wert 1. 
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wobei die getroffene Identifikation zu folgender Beschreibung des Homomorphismus p 
führt: 

(32) 
(flXfl) = x b0g2 .  

Können wir einen Punkt von A aufspüren? Ja, den grössten, denn aus der obigen Be-
schreibung von A und folgt mit Korollar 2 und (23) 

(33) max A = maxzE 2 < 2 ) = max x = maxo(( 2 '< 2 ) = 2, 
(2X2) 

inbesondere 

(34) 2' e A. 

Diese Tatsache, die sich fast mühelos aus der Spektraltheorie ergibt, erlaubt einen 
3-Zeilen-Beweis des y-Theorems (24), sogar in der folgenden verallgemeinerten F orm: tS 

(35) 
jPfljX1flj .l e E"J><'1>mi 

Das geht so: Zunächst liefert der Spektralsatz 	p(U''i >" i) < 	
(JJljxnj) also nach 

(32) 

(36) x102 fl1j < 	tO2 i 	auf L. 

Nun werte man an der Stelle 2 e A aus. 
Es ist nicht zu erwarten, dass wir A schon heute vollständig bestimmen können, 

denn wir kennen sein Maximum 2' nicht genau. Der nächste Satz [37] macht das Beste 
aus dieser Situation. 

Satz 3. z(ha1beinfache Algebren) = [4, 2w]. 

Bei Kenntnis des Matrix-Exponenten gibt der Satz vollständig Auskunft über die 
asymptotische Degeneration halbeinfacher Algebren. Aber auch ohne diese Annahme 
erhalten wir interessante Information, zum Beispiel, dass 4 der asymptotische Wert von 

2x2 ist. (Das kann man mit einer zu (33) gespiegelten Schlusskette einsehen.) Anders 
als der Zyniker, der nach Oskar Wilde von jedem Ding den Preis und von keinem den 
Wert kennt, wissen wir also über den asymptotischen Wert von (2<2  genau Bescheid, 
während unser Blick auf den asymptotischen Preis durch unsere mangelhafte Kenntnis 
von w getrübt ist. 

Uberraschenderweise können wir das linke Ende von A dazu benutzen, um das 
rechte Ende schärfer einzugrenzen, nämlich durch die Abschätzung w < 2,48. Das da-
bei verwendete Verfahren [36] heisst Laser-Methode, da es an die Erzeugung von Laser-
Licht aus inkohärenter Quelle erinnert. Coppersmith-Winograd [10] haben die Laser-
Methode vervollkommnet: Mit einer raffinierten probabilistischen Konstruktion bewie-
sen sie w < 2,38, den derzeitigen Weltrekord. (Siehe auch Bürgisser, Clausen, 
Shokrollahi [8].) 

18  Schönhages y-Theorem (24) erhält man, wenn man alle n 1  = 1 annimmt und in der Prämisse < 
durch das schärfere < l ersetzt. 
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Der dornigste Teil des Beweises von Satz 3 besteht in dem Nachweis, dass auch die 
Punkte im Innern des Intervalls [4, 2[ zum Spektrum gehören. Diesen führen wir auf 
dem Umweg über das asymptotische Spektrum sämtlicher (auch nicht-quadratischer) 
Matrixmultiplikationen. Wir zeigen, dass dieses Spektrum, das als kompakte Teilmenge 
des JR3  realisiert werden kann, logarithmisch sternförmig ist. Daraus folgt leicht die 
Konvexität von A. 

Kann man auch diese Information zur Abschätzung von w benutzen? Ohne Zweifel! 
Wenden wir auf Satz 3 den Spektralsatz in Verbindung mit (32) an, so erhalten wir ein 
T-Theorem für quadratische Matrixmultiplikationen, welches ich vollendet nennen 
möchte, denn es ist eine Äquivalenz von Aussagen und enthält zudem wirklich ein r: 19  

(37) 	Jnhixmi < 	 E [2,w[ r mi T  < 

Hier liegt ungenutztes Kapital! Halbeinfache Algebren kommen in vielen Verkleidun-
gen vor, nicht nur als direkte Summen von Matrixalgebren, sondern zum Beispiel auch 
als Gruppenalgebren beliebiger endlicher Gruppen oder als A/rud(A) für beliebige as-
soziative Algebren A. Verkleidungen bedeuten Isomorphismen, und wo Isomorphismen 
sind, da sind auch Degenerationen. 

7 Punkte im Spektrum 

Das klingt wie „Leben auf dem Mars". Haben wir denn nicht gerade kontinuierlich 
viele Punkte im Spektrum der halbeinfachen Algebren gefunden, nämlich ein ganzes In-
tervall [4, 2]? 

Nicht unbedingt: Ist = 2 (zur Freude der Algorithmiker, zur Enttäuschung der 
Mathematiker), so verkümmert das Intervall zu einem einzigen trivialen Punkt, und 
schon ist die Mehrzahl „Punkte" fehl am Platz. In diesem Abschnitt wollen wir nach-
weisen, dass asymptotische Spektren im Allgemeinen nicht trivial sind. 

Ebenso wie wir eine lineare Abbildung nach Basen-Wahl durch eine Matrix darstel-
len können, lässt sich eine bilineare AbbildungJ durch eine räumliche Matrix beschrei-
ben, den so genannten Koordinaten-Tensor (f,) vonf. Wir definieren den Träger von 
J als die Menge aller Tripel (ii, k) mit Jjk  0. Die Abbildungf heisse schräg, wenn es 
Basen gibt, für die der Träger von f eine Antikette ist bezüglich der Produktordnung 
von N 3 . Das bedeutet, dass es keine zwei verschiedenen Punkte (i,j,k) und (p,q,r) im 
Träger vonj gibt, so dass koordinatenweise gilt (ii, k) < (p7 q. r). Nehmen wir zum 
Beispiel für die Abbildungf = U[T]/(T) zweimal die Basis (1, T, . . . ‚ T') (für U 
und V) und einmal die Basis (T" 1 , . . ‚ 1) (für W), so ist der Träger eine Antikette, 
nämlich {(i.j, k) E N 3  : i +j + k = n - 1 1. Also ist ([T]/(T) schräg. Die schrägen 
Abbildungen bilden einen Semiring. Nach dem Chinesischen Restsatz sind deshalb alle 

19  Hat die linke Seite von (37) speziell die Gestalt 	OI 11 1
i "" i < EL', so liefert (37) die Umkehrung 

von Schönhages -Theorem (24) nach Ersetzung der Degeneration durch die asymptotische De-
generation. Im Allgemeinen ist die Quantifizierung auf der rechten Seite von (37) natürlich nicht 
überflüssig. 
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E [T]/(F) schräg. Ebenso leicht sieht man, dass alle halbeinfachen Algebren schräg 
sind. 

Sei nun 6 ein Punkt im Standard-Zwei-Simplex (mit anderen Worten: 9 e R 3  sei ein 
Wahrscheinlichkeitsvektor) und sei f eine schräge Abbildung. Wir wählen Basen so, 
dass der Träger vonf eine Antikette ist, und definieren 

(38) ((6,f) := max 2=1 OKH(PK) 

P 

wobei P über alle Wahrscheinlichkeitsmasse auf dem Träger von f (einer Teilmenge 
von N 3 ) variiert, die P, die drei Randverteilungen von P sind und H die Entropiefunk-
tion bezeichnet. Es zeigt sich, dass ((9. f) nicht von der (zulässigen) Basenwahl ab-
hängt, so dass wir ein Funktional ((9, —) auf dem Semiring aller schrägen bilinearen 
Abbildungen erhalten. Dieses Funktional erweist sich als Homomorphismus von Semi-
ringen und als monoton bezüglich <.20 

Das genügt, um Folgendes zu zeigen: Sindfi,.. . ‚ J, schräge bilineare Abbildungen, 
so ist ((9) := (((9.f).....((8,J)) E R' ein Punkt des asymptotischen Spektrums 

fq).2' Es ist leicht zu sehen, dass ((6) stetig von 6 abhängt; wir erhalten also 
ein singuläres 2-Simplex des kompakten Raumes L(fi... . ‚ f), das wir das Träger-Sim-
piex von A(f i ,. .. ‚ f) nennen. 

Schrägheit ist keine generische Eigenschaft, aber viele prominente Abbildungen sind 
schräg. Das Bild des Träger-Simplexes ist dann ein Hindernis für die asymptotische De-
generation, insbesondere für die Degeneration. Selbst in einfachen Fällen ist dieses Bild 
topologisch nicht trivial. Zum Beispiel sieht für die Gesamtheit aller Nullalgebren (die 
Radikale haben Codimension 1) und ihrer Rotationen (die Koordinaten-Tensoren wer -
den gedreht) das Bild des Träger-Simplexes aus wie ein dreieckiges Taschentuch, das 
man zu einer Pyramide hochgefaltet hat mit Selbstdurchdringungen entlang der Kan-
ten. Es handelt sich um eine Homotopie-2-Sphäre. 

Eine bilineare Abbildungf heisse straff, wenn bezüglich geeigneter Basen Folgendes 
gilt: Es gibt injektive ganzzahlige Funktionen c(i), ß(j), 7(k) derart, dass 
cs(i) + j3(j) + y(k) = 0 für alle Punkte (i,j, k) aus dem Träger von f. Ordnet man die 
Basen so an, dass c(i), 3(J) und 'y(k) monoton wachsen, so sieht man auf einen Blick, 
dass straffe Abbildungen schräg sind. Am Träger von C [T]/(T"), den wir oben aus-
gerechnet haben, lesen wir ab, dass t [T]/(T) straff ist. Da auch die straffen Abbildun-
gen einen Semiring bilden, sind alle E [T]1(F) straff. Ahnlich zeigt man, dass alle halb-
einfachen Algebren straff sind. Für straffe Abbildungen haben das asymptotische Spek-
trum und das Bild des Träger-Simplexes die gleichen (bezüglich der Produktordnung in 
IR) minimalen Punkte [38]: 

20  Hierfür geben wir im Anhang einen kurzen Beweis. 
21  In der Tat: Gilt (28), so ist 

P(((6)) = ((9 1  P(f1 	fq)) 	 ((6,-) Homomorphismus von Semiringen 
< 	(O, Q(fi.....J)) 	 (28) und ((8,-) monoton 
= 

Das ist (27) an der Stelle ((0). 
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Satz 4. Seienfi ,... 1  J strajje bilineare Abbildungen. Dann gilt 

rnin(f,...,fq)cim(C(fi ..... . ). 

Manchmal genügt dies, um ein Spektrum vollständig zu berechnen, wie in dem fol-
genden Fall. Zunächst definieren wir eine Funktion z von den natürlichen zu den positi-
ven reellen Zahlen durch 

/1 —1 

wo i die einzige positive Lösung von 

1 	01 	/0 - 

i—1 MM — l 	3 

ist. = kann mit Newton-Iteration effizient berechnet werden. Hier sind ein paar Werte: 

oh 	(m) 

2 	1.89 
3 	2,76 
4 	3.61 
5 	4,46 
6 	5,31 
7 	6,16 
8 	7,00 
9 	7,85 
10 	8,69 

100 	84,4 
1000 	842 

Wie Sie sehen, ist .(m) stets kleiner als m. Der folgende Satz [38] zeigt, dass das kein 
Zufall ist. 

Satz 5. Sei F ü I [T] ein Polynom positiven Grades mit der Primfaktorzerlegung 

F = 311(T 	)mi 

wobei die a i  paarweise verschieden sind. Dann ist 

= [z(m).m]. 

Beachten Sie, dass der rechte Endpunkt des Spektral-Intervalls einfach der Grad des 
Polynoms ist und dass keiner der Endpunkte eine „fuzzy number" enthält wie das w in 
Satz 3. Wollen wir entscheiden, ob eine direkte Summe von Tensor-Potenzen von 
([T]/(F) in eine andere asymptotisch degeneriert, so müssen wir nur die entsprechen-
den Polynome auf dem in Satz 5 mitgeteilten Intervall vergleichen. Das kann zum Bei-
spiel mit Hilfe des Sturmschen Algorithmus geschehen. 
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Wir scheinen unseren roten Faden, die Matrixmultiplikation, verloren zu haben. 
Tatsächlich ist das nicht der Fall: Ebenso wie der linke Endpunkt des Spektral-Inter-
valls in Satz 3 der Schlüssel ist für die Abschätzung a < 2,48, so ist der linke Endpunkt 
des Intervalls in Satz 5 im Fall F = T3  der Schlüssel für die Abschätzung ca < 2, 39 in 
Coppersmith und Winograd [10]. (Dieser Pointe zuliebe habe ich die Chronologie auf 
den Kopf gestellt: Zum Beweis der ersten Inklusion in Satz 4 und damit zur Bestimmung 
des linken Endpunktes in Satz 5 wurde die Methode von Coppersmith und Winograd 
verwendet.) 

Vermutungen spornen an! Hier ist eine, deren Richtigkeit ca = 2 implizieren würde. 
(Es handelt sich eigentlich um eine Befürchtung, und zum Glück ist sie vermutlich 
falsch.) 

Vermutung 6. Für straffe bilineare Abbildungen besteht das asymptotische Spektrum 
aus dem Bild des Träger-Simplexes. 

Was unseren Titel „Komplexität und Geometrie bilinearer Abbidungen" betrifft, so 
hat die vorangehende Diskussion gezeigt, wie schwierig es wäre, geometrische und korn-
plexitätstheoretische Aspekte überhaupt zu trennen. Während die Komplexitätstheorie 
vielleicht den grösseren Nutzen aus dieser Symbiose zieht, kann auch die Erforschung 
der Bahngeometrie bilinearer Abbildungen davon profitieren: Der asyrnptotische Ge-
sichtspunkt und der Begriff des asymptotischen Spektrums bieten eine neue Einfachheit 
und eine Reihe faszinierender neuer Probleme. 

Anhang 

Einige der hier gegebenen Beweise sind (im Unterschied zu denen in der Literatur) 
nicht ohne weiteres für endliche Charakteristik gültig. 

Zu Kapitel 5 

Wir erhalten eine zu (25) gleichwertige Definition, wenn wir auf der rechten Seite die 
Degeneration durch die Restriktion ersetzen (Proposition 5.10 von [36], siehe auch Bini 
[4] und Alder [1]). 

Für dieses Resultat geben wir einen kurzen Beweis. Es ist ratsam, bilineare Abbil-
dungenf: U x V — W durch ihre Strukturtensorenf E U ® V 0 W zu repräsentie-
ren. Ein Bezeichnungswechsel führt zu Tensoren v E V V1 0 V2  0  V, deren Räume 
V1, V 2 , V3 nun symmetrisch auftreten. Auch Restriktion und Degeneration lassen ihren 
symmetrischen Charakter erkennen: Für u E U Ui ® U2 ø U3 und v E V bedeutet 
u < v, dass es lineare Abbildungen a: V, —* U, gibt mit 

(39) u=(aI®a2(Da3)v, 

und für u, v E V bedeutet u < v, dass u im Zariski-Abschluss der G-Bahn von v liegt, 

(40) ue, 
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wobei die Gruppe G := GL(Vi ) x GL(V,) x GL(V 3 ) auf V wirkt vermöge gv := 
(gi S g ® g)v. Neben der in (25) definierten asymptotischen Degeneration erklären 
wir die asymptotische Restriktion durch 

2°(') 
(41) u<v 	u9v < 	v. 

Hier ist das erwähnte Resultat: 

Satz7. u<v.=u<v. 

Beweis Wir wissen schon, dass die Restriktion die Degeneration impliziert. Daraus 
folgt „". Zum Nachweis von „" genügt es, 

(42) u<v==u<v 

zu zeigen. Wir dürfen annehmen, dass u und v auf den gleichen Räumen leben, etwa 
u. v e V. Dann ist u e . Eine Form F vom Grade ii auf dem Vektorraum V, die auf 
Gv verschwindet, verschwindet auch auf dem Zariski-Abschluss Gv und damit auf u. Ist 
1 irgendeine Linearform auf V, so definiert F(x) := 1(x) eine Form F vom Grade ii 
auf V. Wir haben also 

(43) (Vg E G 1((g.v)) = 0) 	', 1(u) = 0. 

Fassen wir V®  in der natürlichen Weise als G-Modul auf, so ist (g.v)' = g.(v), die 
Prämisse von (43) bedeutet also l(G(v ")) = 0, und aus der Beliebigkeit von / folgt 

(44) u 	e lin(Gv). 

V® I ist nicht nur ein G-Modul, sondern auch ein Modul der Symmetrischen Gruppe 
S, die auf V® v durch die Permutation der Tensorkomponenten wirkt. Jedes 

= (g.v)' ist symmetrisch, das heisst ein S,-Fixpunkt. Also ist lin(Gv) im Un-
terraum Synlv(  V) der symmetrischen Tensoren enthalten, und deshalb gilt 

(45) diin(lin(Gv)) < dirn(Sym(V)) = 	 dini 	1) < ve 

für grosse ii mit c 	dim V. Insbesondere gibt es dann i/ Gruppenelemente gj e G so, 
dass 	eine Linearkombination der gjv" ist. Das liefert schliesslich 

lJ(. 	 1' 

(46) u' 11  < 	g1 v 

Damit ist Satz 7 bewiesen. Aus ihm folgt leicht die früher behauptete Austauschbarkeit 
von Rang und Grenzrang in (8), (20) und (21). 

Zu Kapitel 6 

Ebenso wie Schönhages -Theorem kann man auch (37) auf nichtquadratische Ma-
trixmultiplikationen verallgemeinern, wenigstens linkshändig: 
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(47) 	(mj,pj,qj) < 	JflJXflj 	 Vr E [2w] 	(m 1pq) 13  

Dies ist eine Konsequenz von (37) vermöge Tensorpotenzbildung und (18). 
Um neue Abschätzungen von w zu gewinnen, gehe man etwa von einem Wedder-

burn-lsomorphismus ( [A] ‚ tE' 1i > J für eine endliche Gruppe A aus und benutze ei-
ne Degeneration, die dem natürlichen Koordinatentensor der Gruppenalgebra ange-
passt ist, um mit Hilfe der Lasermethode zu einer direkten Summe von nicht notwendig 
quadratischen Matrixmultiplikationen zu gelangen. Insgesamt erhält man eine Degene-
ration, die als Prämisse von (47) dienen kann. In dieser Weise wurde bereits bei einigen 
der jüngeren Abschätzungen von w vorgegangen, freilich nur im Fall abelscher Gruppen 
A, um die Form der linken Seite von Schönhages r-Theorem (17) zu erreichen. (47) er-
laubt uns jetzt, statt der diskreten Fouriertransformation für endliche abelsche Grup-
pen den Wedderburn-Isomorphismus für beliebige endliche Gruppen einzusetzen. 

Folgende Vermutung liegt nahe: 

Vermutung 8. 	qj) < 	1 (n1 , r1 , s1 ) 	VT E [2. w] Ei  (m 1pq) 13  
(njr,sj )T1 3 .  

Vermutung 8 folgt aus 

Vermutung 9. (Matrix) ci 1R3  ist logarithmisch konvex. 

Dabei bedeutet L(Matrix) das asymptotische Spektrum aller (nicht nur der quadrati-
schen) Matrixmultiplikationen. Wir erinnern daran, dass Z(Matrix) jedenfalls logarith-
misch sternförmig ist [3 71. Die Richtigkeit einer der beiden Vermutungen würde unseren 
Spielraum bei der Abschätzung des Matrixexponenten erheblich vergrössern. Auch eine 
Verallgemeinerung auf andere Semiringe bilinearer Abbildungen wäre von grossem In-
teresse. 

Zu Kapitel 7 

1) Wir geben zunächst einen kurzen Beweis dafür, dass (8, —) ein monotoner Ho-
momorphismus von Semiringen ist. Dieser Beweis ist freilich weniger elementar als der 
ursprüngliche in [38]. Sei G eine zusammenhängende reduktive lineare Gruppe. (Siehe 
Kraft [23], Humphreys [19], Fulton-Harris [13].) Wir fixieren einen maximalen Torus T 
von G sowie eine T enthaltende Boreluntergruppe B von G. Dann steht uns die Charak-
tergruppe X(T), die Weylgruppe W, das Wurzelsystem 1 ci X(T) sowie das System 

der positiven Wurzeln zur Verfügung. Die zu gehörige Partialordnung bezeich-
nen wir mit -<‚ für Charaktere cs, ß bedeutet os -. ß also, dass ß — c eine Summe positi-
ver Wurzeln ist. 

Sei V ein rationaler G-Modul. Wir sagen, ein Vektor u E V sei eine Degeneration 
von v e V, und schreiben u< v, wenn u e Dabei bezeichnet der Uberstrich den Ab-
schluss bezüglich der Zariski-Topologie (der über E hier mit dem Abschluss bezüglich 
der klassischen Topologie übereinstimmt). Für V haben wir die Gewichtszerlegung 
oder Zerlegung in T-Eigenräume 
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(48) V=V 7 , 

wo F ci X(T) die Menge der Gewichte von V, also der y e X(T) mit V2  0 ist. Da die 
Weylgruppe W die Gewichtsräume V, permutiert, ist F W-stabil. Wir definieren den 
Träger supp(v) von v e V durch 

(49) supp(v) := {y E F: v 	0}, 

wobei v., die Komponente von v in V bezeichnet. Wir brauchen noch den von supp(v) 
in F erzeugten Ordnungsfilter 

(50) supp(v) := { 3 e F : 3y E supp(v) 

Lemma 10. Seien u, v E V und sei supp(u) eine Antikette bezüglich -<. Ist u< v, so 
gibt es einaE Wmit 

(51) a.supp(u) ci supp(v). 

Beweis: 	ist abgeschlossen 	(weil 	abgeschlossen und B-stabil ist) und enthält 
G.v. Deshalb ist 

(52) u E G.v ci G.B.v. 

Auf Grund der Bruhat-Zerlegung von G gibt es ein o-  E W mit 

(53) u E BcrB 	= Ba'5. 

Das bedeutet Folgendes: Wählen wir einen Repräsentanten n e a, also ein n E NG(T) 
mit 0 = n.CG(T), so gibt es ein b e B mit 

(54) nb.0 E B.v. 

Die Träger aller Vektoren aus B.v sind in supp(v) enthalten, also auch die aller Vekto-
ren aus B.v. Insbesondere ist supp(nb.u) ci supp(v) < . Dies liefert die zweite Inklusion 
von (55); die erste folgt aus der Tatasache, dass supp(u) voraussetzungsgemäss eine An-
tikette ist: 

(55) asupp(u) ci usupp(b.u) = supp(n.(b.u)) ci supp(v). 

Damit ist das Lemma bewiesen. 
Um es anzuwenden, arbeiten wir wie bei Satz 7 mit Tensoren v E V := V i o 
® V3, wobei wir V = tE annehmen. Wir setzen G := GL 1  x GL 2  x GL, 

T := T1 x T2  x T3 und B := B 1  x B2 x B 3  mit den maximalen Tori TK  der Diagona)-
matrizen und den Boreluntergruppen BK  der oberen Dreiecksmatrizen von GL. 

Die Gewichtszerlegung von V ist die Zerlegung in die natürlichen Koordinatenach-
sen, die Gewichtsmenge lT also isomorph zum diskreten Quader { 1,. . . ‚ n1 } x 
{ 1... . ‚ n2 1 x {1..... n 3 }. Ferner ist W = S 1  x S,, xS 3  und ist invers zum Produkt 
der natürlichen Ordnungen. Für v e V haben wir als Aquivalent von (38) 

(56) (O. v) := max 2=1 OKH(F) 
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wo P über die Wahrscheinlichkeitsmasse auf dem (als Antikette vorausgesetzten) Trä-
ger supp(v) variiert. 

Seien nun u, v ü V schräg mit u 1 v. Wir dürfen u, v jederzeit durch isomorphe Ko-
pien g.u, h.v ersetzen, ohne u< v zu stören, und können deshalb annehmen, dass beide 
Träger Antiketten sind. Wir vergleichen 1092  ((9, u) =6KH(P(u)K) mit 

1092 ((9, v) = 	6aH(P(v) a ), wobei P(u) bzw. P(v) Wahrscheinlichkeitsmasse auf 
supp(u) bzw. supp(v) sind, die das Funktional 	9H(P) auf dem jeweiligen Trä- 
ger maximieren. Durch eine Umordung der Basisvektoren für v (isomorphe Kopie) 
können wir erreichen, dass die Wahrscheinlichkeitsvektoren P(v) schwach monoton 
fallen. Dadurch verliert supp(v) möglicherweise die Eigenschaft einer Antikette, aber 
der Wert von 9 K H(P(v)) und seine Maximalitätseigenschaft ändern sich nicht. 
Die Kuhn-Tucker-Bedingungen für konvexe Optimierung zeigen nun, dass P(v) das 
Funktional 9H(P) nicht nur für die P auf supp(v), sondern für alle P auf 
supp(v) <  maximiert. (Ein kurzer elementarer Beweis findet sich auf Seite 136f von [38].) 

Nach Lemma 10 gilt o-.supp(u) c stipp(v) <  für ein geeignetes er e W. Weil sich 
durch Anwenden von er auf P(u) der Wert des Funktionals nicht ändert, folgt 

1092 ((0, u) < 1092 ((0, v), also ((0. u) < (( 9. v). Da wir unter Vorbehalt der Antiketten-
eigenschaft für die Träger beliebige Basen wählen durften, ist sowohl gezeigt, dass 
((0, -) nicht von der (zulässigen) Basenwahl abhängt, als auch seine Monotonie bezüg-
lich Degeneration. Additivität und Multiplikativität bezüglich bzw. ® ergeben sich 
leicht aus bekannten Eigenschaften der Entropie; der Leser mag sich das selbst über-
legen oder in [38] nachschauen (Lemmas 2.6, 2.7, 3.4). 

II) Ein interessanter Zusammenhang besteht zwischen dem Trägersimplex und dem 
Momentpolytop. Sei wieder G eine zusammenhängende reduktive Gruppe, T ein maxi-
maler Torus und B eine T enthaltende Boreigruppe. Wie oben haben wir X(T), W, 

und -.k. Wir erweitern -< zu einer Partialordnung auf E := X(T) ® IR: Für ne, p E E gilt 
ne -.< p, wenn p ne eine nichtnegative Linearkombination positiver Wurzeln ist. Ferner 
sei D c E die positive Weylkammer. Diese ist ein Fundamentalbereich für die Weyl-
gruppe W in ihrer Wirkung auf E, das heisst, für jedes sj E E trifft W.'ij die positive 
Weylkammer in genau einem Punkt, den wir mit dorn(ij) bezeichnen. Die Abbildung 
dom ist stetig. 

Ist U ein rationaler G-Modul, X e X(T) n Dein dominanter Charakter, so bezeich-
nen wir die -isotypische Komponente von U mit U( x ). 

Sei nun V ein rationaler G-Modul und Z c V ein nichttrivialer irreduzibler abge-
schlossener G-stabiler Kegel. (Z ist also die affine Beschreibung einer irreduziblen pro-
jektiven G-Varietät). Das Momentpolytop P(Z) ist definiert als Abschluss in E von 

(57) 7(Z) := {/d: (E Z]d)(X*) 7101 c D. 

Dass P(Z) c D tatsächlich ein Polytop ist, folgt aus der endlichen Erzeugtheit des 
U-Invariantenrings E [Z] U  wo U das unipotente Radikal von B bezeichnet. Das Mo-
mentpolytop gibt weitgehende Auskunft über die im Koordinatenring 1E Z] auftreten-
den einfachen G-Moduln. 

Wir interessieren uns für den Fall, dass Z der Bahnabschluss eines Vektors v E V\0 

ist. Setzen wir voraus, dass G.v ein Kegel ist, so ist das Momentpolytop P(G.v) der Ab-
schluss in E von 
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(58) () := {/d: ( []c,)(X* 	01 = {/d: (lin(G.V» (" ) 54 01 c D 

Ein Vektor v E V heisse schlicht, wenn (supp(v) + ) fl supp(v) = @. Jedes schräge v ist 
schlicht. 

Satz 11. Sei v e V\0 schlicht und  U-. -v ein Kegel. Dann gilt 

(59) minP() c dom conv(supp(v)) c 

wobei min die Menge der bezüglich minimalen Punkte bedeutet. 

Beweis: Linke Inklusion: Sei /d E 7(T) mit (lin(G.v')) () 	0. Sei M5  ein ein- 
facher G-Untermodul von lin(G.v®") vom Höchstgewicht x' N ein Modulkomplement 
von M in Vd.  Da VId  den Modul lin(G.v) erzeugt, liegt 7Y 1  nicht in N. Auf Grund 
der Gewichtszerlegung 

(60) v= 	mm-, 
esupp(v) 

ist tj :~ ll eine Summe von Tensorpotenzprodukten der v. Wenigstens ein Summand liegt 
nicht in N, etwa vom Gewicht 7] := dy mit d. = d. Die Projektion V' —* M5  
längs N bildet diesen Summenden auf einen von 0 verschiedenen Gewichtsvektor vom 
Gewicht mj ab. Also ist mj ein Gewicht von M5 . Da die Weylgruppe W die Gewichte von 
MX  permutiert, ist auch dom(mj) ein Gewicht von M. Da X das Höchstgewicht von M5  
ist, folgt dom(mj) - x und damit dom(77/d) - /d. Aber (mj/d) = ‚ (d. /d)7 e 
conv(supp(v)). Also ergibt sich 

(61) (T) C (dom conv(supp(v))). 

Da die rechte Seite abgeschlossen ist, können wir 7?,(T) durch P(T) ersetzen. Das 
Ergebnis ist, unter Voraussetzung der noch zu beweisenden rechten Inklusion, äquiva-
lent zur linken Inklusion von (59). 

Rechte Inklusion: Hier benutzen wir eine fundamentale Beziehung, die hauptsäch-
lich auf Mumford [24] zurückgeht (siehe auch Brion [6]), zwischen dem Momentpolytop 
und der aus der symplektischen Geometrie stammenden Momentabbildung: Sei K eine 
kompakte Form von G so, dass TK := T fl K ein maximaler Torus von K ist, und sei 
(—' -) ein K-invariantes hermitesches Skalarprodukt auf V. Die T-Gewichtsräume von 
V sind dann orthogonal. Wir bezeichnen die Liealgebren von G, T, K, TK respektive 
mit g, t, k, tk = t fl k. Die Momentabbildung von V ist so definiert: 

(62) m: V\0 	(ik)*, 	m(u) := 

(Zur Motivation: Im Grunde geht es um das Differential an 1 der Abbildung 
G JR. g F— (g.u( 2 , also um die Linearform * 2Re(u, u) auf g. Da (—' -) K-inva-
riant ist, verschwindet das Differential auf k. Wegen g = k ik liegt es nahe, Re(u, u) 
auf ik zu beschränken. Dort ist (u, u) reell, also können wir „Re" weglassen. Der Nen-
ner wird hinzugefügt, um i auch auf dem projektiven Raum PF definieren zu können.) 

Die Momentabbildung für einen nichttrivialen irreduziblen abgeschlossenen G-sta-
bilen Kegel Z c V ist als Restriktion von m auf Z erklärt. Identifizieren wir E mit (itk)* 
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durch Identifikation von Charakteren mit ihren Differentialen (eingeschränkt auf itk) 

und fassen (jtk)*  vermöge der Cartan-Zerlegung von k als Teilraum von (ik)*  auf, so 
wird D zu einer Teilmenge von (ik)*.  Der Satz von Mumford lautet dann 

(63) 2(Z) = p(Z\O) fl D. 

Der folgende Beweis der rechten Inklusion von (59) verallgemeinert eine Beobach-
tung von Sjamaar und von Franz (siehe [11], Proposition 2.2). Wir werden zeigen, dass 
für spezielle t E T die Bilder von t.v unter der Momentabbildung im relativen Inneren 
von conv supp(v) liegen und insgesamt diese Menge ausfüllen. Dann werden wir den 
Satz von Mumford anwenden. 

Sei zunächst t E T beliebig und sei Z ü iti. Dann ist t.v e G. \O und 

	

‚ 	(t)(v,, v 	tv 2 H(t)t 2 ( 	) 
(64) ‚r(t.v)e = 	 2 	= 	 2 7 2 

	

‚ 	(t) (v, v) 	 (t)t 

wo (— —) die oben hergestellte (reelle) Dualität zwischen E und itk bezeichnet. Die 
zweite Gleichung folgt aus e.v. = (exp(x).v0 ) 0  = (7(exp(x))v) 0  

Ist es e 'I eine Wurzel von G und e E gQ , so ergibt eine ähnliche Rechnung vermöge 
der Schlichtheit von v sofort [L(t.v) = 0. Damit haben wir 

(65) u(t.v) = 	
t 2 (t)t 2  7 

 E E. 

	

‚ 	7(t)t 

Nehmen wir speziell t := exp(T) für 'r ü itk, so ist 'y(t) = e(0T) und wir erhalten 

v 2e2(0T) 
(66) 

7Espp(V) 	

2 	E i(G.v\0) n E. 

	

OEsupp(v) v 	e2(v) 

Das gilt für alle - E jtk = E*. Aus einem „elementaren" Satz von Fulton ([12], Chapter 
4.2, Appendix on convexity, Proposition) folgt nun 

(67) (conv supp(v)) °  c (T\0) fl E, 

wo „o" das relative Innere bedeutet. Allgemein gilt: ju(Z\0) n E ist W-stabil (denn jedes 
a E W besitzt einen Repräsentanten n e NG(T) n K) und abgeschlossen (weil ji auf PZ 
definiert ist). Aus dem Satz von Mumford ergibt sich deshalb 

(68) dom conv supp(v) c i(\0) n D = 

Damit ist Satz 11 bewiesen. Wir haben übrigens beim Nachweis der linken Inklusion die 
Voraussetzung, dass v schlicht sei, nicht benutzt. Zwischen Satz 11 und Satz 4 besteht 
eine auffällige Ähnlichkeit, die die Neugier weckt. 

Sei nun v ü V : = V i  ® V2 0 V3 schräg und eine Koordinatenwahl v = t IN so vor-
genommen, dass supp(v) eine Antikette bezüglich -< ist (gleichwertig: bezüglich des Pro-
dukts der natürlichen Ordnungen). Die normierten Höchstgewichte /d der einfachen 
Bestandteile von V®d  unter der Wirkung von G := GL( V1 ) x GL( 1/2)  x GL( Vi) wer-
den durch Tripel (P1, P2, P3) von Wahrscheinlichkeitsvektoren mit fallenden Koordina-
ten beschrieben. Aus solchen besteht insbesondere das Momentpolytop P(G.v). 
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Korollar 12. (9. v) = max12=I 	: (P1 , P2 , P3) ü 

Das Korollar folgt aus Satz 11, weil 	OH(P) sein Maximum im Sinne der De- 
finition (56) auf min dom conv(supp(v)) und im Sinne der rechten Seite von Korollar 12 
auf min P(i) annimmt und weil diese Mengen nach Satz 11 übereinstimmen. 

Das Korollar besagt, dass das Trägersimplex asymptotisch verwertbare Information 
aus der G-Modulstruktur des Koordinatenrings von G.v zieht. Hier öffnet sich ein wei-
tes Feld. 

Nach dem Lemma von Schur verkleinert sich das Momentpolytop bei Degenerati-
on. Korollar 12 liefert damit einen weiteren Beweis dafür, dass c(O, —) wohldefiniert 
und monoton ist. 

III) Die Begriffe „schräg" und „straff" lassen sich in natürlicher Weise verallgemei-
nern. Seien G eine zusammenhängende reduktive Gruppe und V ein rationaler G-Mo-
dul. Wir fixieren einen maximalen Torus T und eine T enthaltende Borelgruppe B von 
G, haben damit die Weylgruppe W und die Partialordnung -< auf der Charaktergruppe 
X(T). Wir erinnern daran, dass im Fall bilinearer Abbildungen beziehungsweise ihrer 
Strukturtensoren die Wahl von T und B einer Koordinatenwahl (bis auf Skalierung) für 
die beteiligten Vektorräume gleichkommt. 

v ü V heisse schräg, wenn es ein g e G gibt so, dass der Träger supp(g. v) von g.v ei-
ne Antikette bezüglich - ist. Der Begriff „schräg" hängt nur scheinbar von der Wahl 
von T und B ab. 

v e V heisse straff, wenn die Isotropiegruppe G L, von v eine in G reguläre 1-Parame-
ter-Untergruppe enthält (gleichwertig: wenn die maximalen Ton von G,, in G regulär 
sind). 

v e V heisse gut bezüglich T, wenn ein maximaler Torus von G, in T enthalten ist 
(gleichwertig: wenn (T fl G) °  maximaler Torus von G, ist). Unter einer (isomorphen) 
Kopie eines v ü V verstehen wir ein Element der G-Bahn von v, also ein g.v. Wegen der 
Konjugiertheit der maximalen Tori von G besitzt jedes v E V gute Kopien. Besonders 
einfach liegen die Dinge bei straffen v: 

Lemma 13. Sei v E V straff. Dann ist die Menge 

M := {supp(v') : v'ist gute Kopie von v} 

genau eine W-Bahn von Teilmengen der Gewichtsmenge F von V und M enthält eine Anti-
kette. Insbesondere ist v schräg. 

Beweis: Ohne Einschränkung der Allgemeinheit ist v gut. Wir zeigen zunächst, dass 
M die W-Bahn von supp(v) ist. Mit S bezeichnen wir einen in T enthaltenen maximalen 
Torus von G,. 

Sei or e W. Wir wählen einen Repräsentanten n E NG (T) für cr und setzen v' := n.v. 
Dann ist v' gute Kopie von v, denn der maximale Torus nSir 1  von = nGn' ist in 
T enthalten. Ausserdem gilt supp(v') = asupp(v). Also ist asupp(v) E M. 

Sei umgekehrt supp(v') e M, wobei v' = g.v eine gute Kopie von v ist. Es genügt, 
ein n e NG(T)  zu finden mit v' = ne, denn dann ist supp(v') = supp(n.v) = asupp(v) 
mit dem durch n repräsentierten a E W. Nun: Die Isotropiegruppe G„i = gGg' ent-
hält den maximalen Torus gSg'. Da v' gut ist, enthält sie auch einen maximalen Torus 
5' c T. Da die maximalen Tori in G,1 konjugiert sind, gibt es ein h E G mit 
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h(gSg')h t  = S. Wir setzen n := hg. Dann ist VI = n.v und nSn = S'. Es folgt die 
entsprechende Gleichung für die Zentralisatoren: nZG(S)n 1  = ZG(S'). Wegen der 
Straffheit von v und VI  stimmen beide Zentralisatoren mit T überein. Wir haben also 
nTn t  = T, das heisst n E NG(T). Zusammen mit v'  = n.v war das zu beweisen. 

Schliesslich zeigen wir, dass M eine Antikette enthält. Da v straff ist, gibt es eine in 
G reguläre Einparameteruntergruppe ) von G. Wegen der Regularität können wir ein 
o-  E W finden so, dass (o,  cs) > 0 für alle positiven Wurzeln ce. 

((—' —) 
bezeichnet die 

natürliche Paarung zwischen Einparametergruppen und Charakteren.) Wir setzen 
v' := n.v, wo n E NG(T) ein Repräsentant für o-  ist. Dann ist v'  eine gute Kopie von v 

und a,\ = n.\n' ist eine Einparameteruntergruppe von G 1 1. Aus letzterem folgt 
(a.\, 'y) = 0 für alle 'y e supp(v ' ). Andererseits haben wir oben gesehen, dass (o* ü) > 0 
für alle positiven Wurzeln c. Somit ist supp(v') e M eine Antikette bezüglich -<. 

IV) Hier befreien wir Vermutung 6 von der Numerik des Trägersimplexes. In der 
symmetrischen Formulierung für Tensoren lautet Vermutung 6 zunächst so: 

Vermutung 14. Sindu E UI 0 U2  0 U3 und V E Vi 0 V2 (9 V3 straff und gilt 

(69) V9 (6, u) < (9, v), 

so ist u1v. 
(Die Aquivalenz der beiden Formulierungen folgt aus der Beschreibung des asymp-

totischen Spektrums in (27), (28).) 
Ein Tensor v E «2'I 0 ('2  0 «2' 3  heisse perfekt, wenn der Träger von v bezüglich 

der natürlichen Basen straff ist und wenn die Randverteilungen P, der Gleichverteilung 
P auf dem Träger von V gleichverteilt auf { 1 •.. ‚ n } sind. 

Vermutung 15. Sind u E «21111 0 (['p2 ® «2m3 und v ü (1 0 ffJ 2  ® «2 3  perfekt 
und gilt 

(70) (m1,m2,m3) < (ni,n.n), 

so ist u1v. 

Satz 16. Die Vermutungen 6 und 15 sind äquivalent. 

Beweis: Es genügt zu zeigen, dass die Vermutungen 14 und 15 äquivalent sind. 
Für einen perfekten Tensor v e «2'i (D «2' 2  0 «2' 3  ist ((0, V) = n 01 

n02 n01  Also folgt 
Vermutung 15 aus Vermutung 14. 

Nehmen wir jetzt Vermutung 15 als richtig an. Es genügt, Vermutung 14 in der abge-
schwächten Form zu beweisen, in der die Voraussetzung (69) zu 

(71) V9 ((8,u) < ((0v) 

verschärft ist. In der Tat, ist (69) für u, v erfüllt, so ist (71) für u®M  und vM  (B V>M  er-
füllt, denn ((9, —) ist additiv, multiplikativ und > 1. Aus der abgeschwächten Ver-
mutung erhalten wir jetzt uVM<o<M vc, daraus o(u)M < 2(v)M, daraus durch 
Ziehen der M-ten Wurzel und Grenzübergang o(u) < p(v), und daraus schliesslich 
u <V, wobei wir zweimal den Spektralsatz angewandt haben. 

Nun seien u und v straff und es gelte (71). Nach Wahl geeigneter Basen haben wir 
u E (I ® «21112 0 (fm3 und v e (I  0 (112  0 «23 mit straffen Trägern supp(u) und 
supp(v). Aus (71) folgt für ein hinreichend kleines E > 0 aus Kompaktheitsgründen 
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(72) VP inaxinin(9,H(P) - 	 < —s, 

wobei P über Wahrscheinlichkeitsmasse auf supp(u) und Q über solche auf supp(v) va-
riiert. Nach dem Minimax-Theorem ist das gleichbedeutend mit 

(73) VP Ininmax(OftH(P) - > 9hH(QK)) 

also mit 

(74) VP 3 Q VK H(PK ) <H(QK) - 

Nun betrachten wir v 	ü ([ni )3N ® (n2) 	® (E'3) 
N.  Die Symmetrische 

Gruppe SN wirkt auf den Räumen () durch Permutation der Tensorkomponen-
ten. Wir zerlegen die (ø) 	in Bahnmoduln, das heisst in die linearen Hüllen der 

qn . S-Bahnen der e 1 	® .. . Ø e 	; hier bezeichnet (ei.....e,IK)  die naturliche Basis von 
1  und die (q ... q) durchlaufen die nichtnegativ ganzzahligen Vektoren mit Koef-

fizientensumme N. Die Bahnmoduln können also durch Wahrscheinlichkeitsvektoren 
= (qi /N,... q/N), deren Komponenten rationale Zahlen mit Nenner N sind, bi-

jektiv beschrieben werden. (Diese Q. haben zunächst nichts mit ihren in (74) auftreten-
den Namensvettern zu tun; eine Beziehung wird erst weiter unten hergestellt.) Die Di-
mensionen der zu den QK  gehörenden Bahnmoduln sind N!/q i ! . ... . q,! > 
N(H(Q) /3) für grosseN und alle Q nach der Stirlingschen Formel. 

Aus den Zerlegungen der (') 	erhalten wir durch Tensorproduktbildung eine 
Zerlegung des SN-Moduls (E12i ) 

	® (
j/z) N ® (ni)N als eine direkte Summe von 

Sv-Untermoduln, welche durch Tripel (Qi. Q2. Q) von rationalen Wahrscheinlich-
keitsmassen mit Nenner N beschrieben werden. Dadurch wird auch der Tensor i; zer-
legt: 

(75) V IN = 

	

	VQ 1 QQ3 . 

Ci 02 

wobei die Summe Vektorraum-direkt, aber nicht Tensor-direkt ist. Immerhin können 
wir schliessen: 

(76) v" < 

	

	VQ 1 Q,Q3 . und VQ J ,Q2 ,Q3  VQ 1 Q,Q3  < 

Ci 02 

Der Träger von 	bezüglich Tensorproduktbasen ist straff. Da die Zerlegung (75) die- 
se Basen respektiert, besitzen auch die v0 1 	straffe Träger, die zudem disjunkte Ver- 
einigungen von S\-Bahnen sind. Daraus folgi, dass die v1 22Q3 perfekt sind. Aus der 
Konstruktion des Trägers von 	aus dem Träger von v ergibt sich ferner, dass 
v01 0203  genau dann von Null verschieden ist, wenn es ein rationales Wahrscheinlich-
keitsrnass Q mit Nenner N auf supp(v) gibt, dessen Randverteilungstripel (Qi Q, Q) 
ist. Uber solche Tripel läuft also die obige direkte Summe. Schliesslich folgt aus dem 
oben Gesagten, dass VQ 1 Q 7 Q3  für grosse N ein Format > N (H(Q1) - 

H(Q2) - E/3, H(Q3) - E/3) besitzt. 
Wir können die gleichen Konstruktionen ausgehend von u durchführen und erhal-

ten perfekte Tensoren Up 1 p2 p3  vom Format < N . (H(P) + /3, H(P2 ) + a13, 
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H(P3) + E/3) für grosse N mit 

(77) u®N < 

	

	Up 1 p2 p3 . und VP1,P2,P3 Up1 p2 p3  <u '  
P 1  .P2 ,P3  

wobei (P1, P2, P3) die Randverteilungstripel von rationalen Wahrscheinlichkeitsmassen 
mit Nenner N auf supp(u) durchläuft. 

Aus (74) folgt nun für grosse N durch rationale Approximation von Q mit Nenner 
N, dass es zu jedem Up 1 p2 p3  ein VQ 1 Q

2
Q3  gibt, dessen Format in jeder Komponente 

grösser ist als das von Up 1  p2 ,p3 . Vermutung 15 liefert also zu jedem Up 1  p2 p3  ein 
VQ 1 Q2 Q3  mit up 1  p2p3<vQ1 

Q2Q3' 
 und dies können wir mit Hilfe des Spektralsatzes um-

schreiben zu c)D(Up 1 ,p2 ,p3 ) O(VQ 1 Q2 Q3 ). Übersetzen wir auch die erste Ungleichung 
von (77) und die zweite Aussage von (76) mit dem Spektralsatz, so erhalten wir ins-
gesamt 

(78) o(u) N 	
O(Up1,p2,p3) 	

N 
 

1't 1'2 1'3 

also nach N-tem Wurzelziehen und Grenzübergang o(u) <z(v), da die Anzahl der 
P1, P2, P3 polynomial in N ist. Das ist gleichwertig mit uv, und Satz 16 ist bewiesen. 

Wir haben die hochfliegende Vermutung 6 ersetzt durch die bodenständige 15. Frei-
lich ist dabei auch die Suggestion von Richtigkeit verlorengegangen. 

Es liegt nahe, statt der Zerlegung von 
(T „H )®N 

 in Bahnmoduln die feinere in ein-
fache SN-Moduln zu verwenden. Hier ergeben sich allerdings schon Schwierigkeiten 
mit der Straffheit der den VQ1 Q7Q3 entsprechenden Tensoren. 

V) Hanspeter Kraft hat mir einen wichtigen Literaturhinweis zur Momentabbildung 
gegeben, und von Matthias Franz habe ich viel zu diesem Thema gelernt. Beiden Herren 
bin ich sehr dankbar. 
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1 Biographie und wissenschaftlicher Werdegang 

Am 15. Dezember 2002 erlag in den frühen Morgenstunden im Göppinger Kranken-
haus Am Eichert Prof. Dr. Dieter Gaier, Ph. D., einer heimtückischen Krankheit, die 
ihn die letzten vier Jahre begleitet hatte. 

1 Elternhaus und Schule 

Dieter Gaier wurde am 12. Mai 1928 in Stuttgart geboren. Sein Elternhaus stand jedoch 
in Göppingen, wo sein Vater Albert Gaier Studienrat für die Fächer Englisch und 
Deutsch am Hohenstaufen-Gymnasium war. Dieter Gaier besuchte von 1938-46 dieses 
Gymnasium. Fast die gesamte Schulzeit fiel in die Kriegsjahre und er selbst war noch in 
den Jahren 1944 und 1945 als Flakhelfer im Einsatz. 

2 Studium an der TH Stuttgart 

1946 begann er sein Studium der Mathematik und Physik an der TH Stuttgart. An der 
damaligen TH Stuttgart gab es nach dem 2. Weltkrieg nur zwei jüngere Mathematiker, 
welche die Analysis vertraten: Professor Friedrich Lösch und den Dozenten Werner 
Meyer-König. An diese schloss er sich wissenschaftlich an. 

Ab 1946 hörte Dieter Gaier bei Lösch Vorlesungen über Differential- und Integral-
rechnung. Im Sommersemester 1948 wurden erstmals die Weichen für seine späteren In-
teressensgebiete gestellt durch die Vorlesungen Funktionentheorie 1 und Lebesguesches 
Integral, beide bei Lösch. Nach der Vorlesung Funktionentheorie II im Wintersemester 
1948/49 nahm Dieter Gaier im Sommersemester 1949 an dem Funktionentheorie-Semi-
nar von Lösch teil, in dem der große Picardsche Satz und Sätze im Umkreis davon 
(Schottky, Landau, Bloch) behandelt wurden. Hier lernte Gaier mit den Verfahren von 
Borel und Euler und den Verallgemeinerungen von Knopp und Lindelöf zum ersten 
Mal Summierungsverfahren und Probleme der Limitierungstheorie kennen. Aus diesem 
Bereich stammen auch Gaiers erste Forschungsarbeiten. 

Dieser Fragenkreis wurde vertieft durch das Oberseminar von Lösch im Winter-
semester 1949/50. Themen aus dem Buch von Landau [La], u. a. Lückensätze (Hada-
mard, Fabry) und Beispiele von Potenzreihen mit pathologischen Eigenschaften (Har -
dy, Lusin, Sierpinski) wurden behandelt. 

3 Rochester und Harvard 

Im Jahre 1950 beendete Dieter Gaier sein reguläres Studium an der TH Stuttgart mit 
dem Staatsexamen in Mathematik und Physik. Er wollte jedoch nicht in den Schul-
dienst, sondern ging mit einem Stipendium der Firma Kodak an die University of Ro-
chester. Dort lehrte mit Professor Wladimir Seidel ein namhafter Funktionentheoreti-
ker, der besonders bekannt wurde durch seine Seidel's dass U(]No], S. 32), eine wichti- 
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ge Funktionenklasse deren Elemente man später nach Beurling (1949) als innere Funk-
tionen bezeichnete. 

Mit der ihm eigenen Energie gelang es Gaier innerhalb eines Jahres seinen Ph. D. in 
Mathematics zu erreichen (1951). Nach Deutschland zurückgekehrt erfolgte 1952 seine 
Promotion zum Dr. rer. nat. bei Meyer-König und Lösch an der TH Stuttgart. 

Dieter Gaier fing schon sehr früh an wissenschaftlich zu publizieren. Seine erste ma-
thematische Abhandlung [1] Über stetiges und asgmptotisches Verhalten von Potenz- und 
Dirichletreihen am Rande von Summationsgebieten verfasste er mit 21 Jahren. 

Die ersten Arbeiten, etwa bis 1955, gehören sämtlich in das Gebiet Poten:reihen und 
Limitierungstheorie und brachten ihm Erfolge im Wettstreit mit bekannten Mathemati-
kern, wie z. B. Erdös, Herzog und Piranian. 

1953 ging er mit einem Stipendium an eines der großen Zentren mathematischer 
Forschung, und zwar an die Harvard University zu Joshua Walsh. Dieser war weithin 
bekannt durch sein 1935 erschienenes klassisches Buch Interpolation andApproximation 
([Wa]). Dieses inhaltsschwere Buch hat Dieter Gaier mit äußerster Akribie durchgear-
beitet. Als Frucht seines Aufenthaltes bei Walsh an der Harvard University entstand 
1955 seine Habilitationsschrift Über die konforme Abbildung veränderlicher Gebiete. 

Nach erfolgreicher Habilitation wurde Dieter Gaier Dozent an der TH Stuttgart; 
ein junger Dozent, der durch seine anregenden Vorlesungen die Studenten zu begeistern 
und mitzureißen verstand. So war es kein Wunder, dass er bald Zulauf fand. Dieter Gai-
er führte während seiner gesamten Dienstzeit ein Heft, in dem er alle Diplom- und 
Staatsexamensarbeiten (über 100) mit Verfasser, Thema, Ausgabedatum, Kurzpro-
tokolle der Besprechungen und erzielten Fortschritte des Kandidaten bis zum Examen 
mit Abschlussnote eintrug. 

Durch seine Aktivitäten und Publikationen wurde man auch bald außerhalb Stutt-
garts auf den jungen Dozenten Dieter Gaier aufmerksam. So lud man ihn an die Uni-
versität Göttingen ein, an der er im Wintersemester 1957/58 eine Vorlesung über Funk-
tionentheorie hielt. 

4 Professor in Giessen 

1959 erhielt Dieter Gaier im Alter von 31 Jahren den Ruf auf ein Extraordinariat, übri-
gens für Angewandte Mathematik und Biomathematik an die Universität Giessen. Als 
Biomathematiker war Gaier später Zweitgutachter bei einer medizinischen Habilitation 
(Rudolf Repges). 1962 wurde das Extraordinariat in ein Ordinariat umgewandelt. 

Die Universität Giessen sollte nun für die nächsten rund 40 Jahre seine Wirkungs-
stätte werden. Die Giessener Universität ist zwar klein, hat aber eine beachtliche Tradi-
tion. Hier wirkten über kürzere oder längere Zeit so bekannte Mathematiker wie 
Clebsch, Gordan, Pasch, Netto, Engel, Schlesinger, Plessner, Grötzsch, Grunsky, Ull-
rich und Köthe. Als Gaier nach Giessen kam, gab es an der Universität nur zwei Profes-
soren für Mathematik, K. Maruhn und H. Boerner, beide vor dem Krieg in Leipzig bei 
Lichtenstein promoviert. Weiterhin gab es einen Dozenten F. Huckemann und einen 
habilitierten Assistenten K. Endl. Drei Jahre später kam im Jahre 1962 noch Professor 
G. Pickert mit seinen Assistenten von der Universität Tübingen hinzu. 

JB 107. Band (2005), Heft 1 	 35 



übersichtsartikel 	Historische Bedräge TeriCte aus der Forschung 	Buchbesprechungen 

Aus der Zusammenarbeit von Huck-
mann und Gaier entstand 1962 die 

wichtige Arbeit [27], deren Hauptsatz 
011 den Studenten ehrfürchtig als „Gai-

ei-s Achtersatz" bezeichnet wurde, nach 
der optimalen Konstanten in diesem 
Satz. 

Das wissenschaftliche Ansehen von 
Dieter Gaier stieg in den Giessener Jah-
ren beträchtlich. Er nahm mehrfach 
Gastprofessuren im Ausland wahr, da-
runter dreimal am renommierten Cal-
tech in Pasadena auf Einladung von 
John Todd. 

Schon 1964 erhielt er den ersten Ruf 
nach auswärts, und zwar an die TH 

Stuttgart. 1966 folgte der Ruf an die TH Darmstadt, der besonders ehrenvoll war, weil 
es sich um die Nachfolge von Alwin Walther handelte. 1968 erfolgte der Ruf an die Uni-
versität Tübingen und schließlich 1979 der Ruf an die Universität Ulm. Obwohl ihn ins-
besondere die beiden letzten Rufe sehr reizten, blieb er der Universität Giessen treu. 

Die Vorlesungen von Dieter Gaier waren bei den Studenten sehr beliebt, weil sie gut 
vorbereitet waren, gut vorgetragen wurden und wegen ihrer Klarheit. Das zeigte sich 
schon rein äußerlich an einem mustergültigen Tafelbild. In höheren Vorlesungen ver-
wies er ständig auf neueste Forschungsergebnisse und schrieb die entsprechenden MR-
Zitate an die Tafel. 

Als Prüfer galt Dieter Gaier als schwer und war bei manchen eher gefürchtet als be-
liebt, so dass viele Studenten seiner Vorlesungen zu anderen Professoren auswichen, 
was Dieter Gaier gar nicht behagte. Denn er kümmerte sich intensiv um seine Studen-
ten. 

Dieter Gaiers Lieblingskind war die mathematische Institutsbibliothek, über die er 
sozusagen die Oberaufsicht führte und in die er viele Mittel aus seinen Bleibeverhand-
lungen steckte. Im Laufe der Jahre hat er den Zeitschriftenbestand erheblich ausgewei-
tet, so dass die Giessener mathematische Bibliothek wohl zu einer der ersten Instituts-
bibliotheken in Deutschland aufrückte und auch mit ganz seltenen ausländischen ma-
thematischen Zeitschriften vertreten war. Zu einem Gutteil wurden diese Zeitschriften 
im Tausch mit den Mitteilungen aus dem mathematischen Seminar Giessen erworben, 
dessen geschäftsführender Herausgeber Dieter Gaier während seiner gesamten Dienst-
zeit war. 

5 Bergsteigen und Mathematik 

Dieter Gaier hatte außerhalb der Mathematik manche Interessen. Besonders liebte er 
seinen Garten, den er selber pflegte und in dem er manch exotische Pflanze aufzog. 
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Dieter Gaier war Mitglied des Gießener Rotary Clubs und diesem sehr verbunden. 
Er hielt dort viele Vorträge, so über Vermutung und Beweis in der Mathematik, Mathe-
matische Aspekte des 10 DM-Scheins (der mit Gauß auf der Frontseite), Johann Radon 
und die computertomographie oder Primahlen und ihre Anwendung in der Codierungs-
theorie. 

Dieter Gaiers ganz besondere Leidenschaft galt aber den Bergen, den Alpen. Er 
pflegte zu sagen: „Erst über 2000 Metern ist man frei." Seine Lieblingsgebiete waren die 
Allgäuer Alpen (Trettachspitze), die Silvretta, die Südtiroler Berge (Dolomiten und 
Brenta) und besonders die Otztaler. 

6 Vermächtnis 

Wie kürzlich mitgeteilt ([ Re], S. 49) hat Dieter Gaier der Oberwolfach-Stiftung in sei-
nem Testament von 1996 ein wertvolles Grundstück in bester Lage in Tübingen ver-
macht, dessen beträchtlicher Verkaufserlös inzwischen der Stiftung zugeflossen ist. 
Aber auch schon 1999 bedachte er die Oberwolfach-Stiftung mit einer großzügigen 
Schenkung. Er war im Mathematischen Forschungsinstitut Oberwolfach oft selbst Lei-
ter bei Tagungen über Funktionentheorie und Konstruktive Verfahren in der Komplexen 
Analysis, letztere zusammen mit P. Henrici und R. Varga. 

Nach seiner Emeritierung im Jahr 1995 war Dieter Gaier weiter in der Forschung tä-
tig und aktiver Teilnehmer vieler Tagungen, die letzte im Juni 2001 über Computational 
Methods andFunction Theory in Aveiro (Portugal). In den letzten Monaten war er aller-
dings durch die Krankheit an sein Göppinger Haus gefesselt. 

Dieter Gaier wurde auf dem Friedhof seiner Heimatstadt Göppingen beigesetzt. 
Sein Grab befindet sich in unmittelbarer Nähe der Kapelle. 

II Das wissenschaftliche Werk 

1 Potenzreihen unI Limitierungstheorie 

Die Limitierungstheorie entstand gegen Ende des 19. Jahrhunderts aus dem Verlangen, 
gewissen divergenten Reihen auf sinnvolle Weise durch verschiedene Verfahren eine 
Summe zuzuordnen. 

Das ist im Laufe der Jahre auf eindrucksvolle Weise gelungen. Man hat dazu viele 
interessante Summierungsverfahren entwickelt, die mit den Namen Abel, Bord, Cesit-
ro, Euler, Hausdorff, Hölder, Knopp, Riesz und weiteren verknüpft sind. Den Beginn 
der Theorie kann man mit Erscheinen der berühmten Arbeit von Frobenius im Crelle-
scheu Journal von 1880 festsetzen, in der bewiesen wird, dass aus der Cesiro-Summier-
barkeit die Abel-Summierbarkeit folgt. Die Umkehrung gilt unter gewissen Vorausset-
zungen an die Koeffizienten und die diesbezüglichen Umkehrsätze nennt man Tauber-
sätze, nach Alfred Tauber, der 1897 einen ersten solchen Satz veröffentlichte. Auf 
diesem Gebiet haben später Hardy und Littlewood bedeutende Erfolge erzielt. Einen 
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großen Impetus erhielt die Theorie durch das im Jahre 1901 erschienene Buch von 
E. Borel Lecons sur les s&ies divergentes. 

Weiter ins Zentrum des aktuellen Interesses einer breiteren mathematischen Offent-
lichkeit rückte die Limitierungstheorie mit Erscheinen des Buches von Knopp Theorie 
und Anwendung der unendlichen Reihen. An mathematischen Hilfsmitteln für diese 
Theorie ging vor allem die Funktionentheorie ein. 

Es tat sich ein fruchtbares Feld mathematischer Forschung auf, das in Deutschland 
vor allem von Knopp und seinen Schülern (Lösch, Meyer-König, Zeller, Peyerimhoff, 
Jurkat und weiteren) bearbeitet und gepflegt wurde. Auch Dieter Gaier als Schüler von 
Lösch und Meyer-König war hier beteiligt. 

1.1 Caler Regions 

Die erste Veröffentlichung [ 1 ] von Dieter Gaier beschäftigt sich mit dem Abelschen Pro-
blem, d.h. aus dem Verhalten der Teilsummen einer gegebenen Potenzreihef(z) in ei-
nem Randpunkt zo des Konvergenzkreises auf das Verhalten von f(z) für z - zo zu 
schließen. Für dieses Problem und seine Verallgemeinerungen erzielte er weitreichende 
Resultate, die in Spezialfällen bekannte Ergebnisse anderer Mathematiker, z. B. von 
Karamata, enthielt. Anschließend dehnte er seine Ergebnisse auf weitere Summations-
verfahren und auf Dirichletreihen aus. 

Die Arbeit [2] beschäftigt sich mit Euler- und Borelsummierung und gibt P. Erdös, 
F. Herzog und G. Piranian Veranlassung Gaier disc und allgemeiner Gaier regions zu 
definieren ([EHP]). Folgendes Lemma von Gaier, auf dem das Hauptergebnis dieser Ar-
beit basiert, ist von allgemeinem Interesse: 

Lemma: Ist die Potenzreihe 	az' im Gaier disc Iz + al < 1 + a (a> 0) hob- 

° morph und beschränkt, so gilt Jär deKoeffizienten a = 0 () bezüglich n 

Die Arbeit [3] gibt einen Auszug aus seiner Ph. D.-Thesis, University of Rochester, 
die Tauber-Sätze zum Gegenstand hat und in der insbesondere Untersuchungen von 
Karamata weitergeführt werden. 

1.2 Schlangengebiete 

Die Arbeit [4] ist eine hübsche Note, in der Gaier durch eine pfiffige Idee einen Satz von 
Erdös- Herzog- und Piranian auf verblüffend einfache Weise beweisen kann. 

Ausgangspunkt war das Hardysche Beispiel einer Potenzreihe, die auf dem Rand 
des Konvergenzkreises gleichmäßig aber nicht absolut konvergiert (siehe etwa [B5], 
S. 68 ff). Im ersten Band des Pac(fic Journal of Mathematics erschien im Jahre 1951 eine 
interessante Arbeit von Erdös, Herzog und Piranian, in der sie das Hardysche Beispiel 
erheblich verbesserten. Sie zeigten, dass die Potenzreihe sogar als konforme Abbildung 
gewählt werden kann. Der Beweis beruht auf langwierigen und kunstvollen Rechnun-
gen. Dieter Gaier gibt in [4] einen neuen Beweis dafür, der ganz kurz ist und fast ohne 
Rechnung auskommt, indem er eine schlaue Idee ausnützt. Bekannt war durch Fejr, 
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dass eine Potenzreihe 	az (mit Konvergenzradius o.B.d.A. r = 1) gleichmäßig auf 

dem Rand lil = 1 konrgiert, wenn sie eine konforme Abbildung des Einheitskreises 
auf ein Jordangebiet liefert. Unter diesen vielen Möglichkeiten muss nur ein Fall gefun- 

den werden, in dem 	a divergiert. Gaier erkannte nun, dass man Z  an 1 an eine 
n=O 	 n=O 

geometrische Größe, nämlich die Länge einer gewissen Kurve koppeln kann. Diese 
Kurve ist das Bild eines Radius des Konvergenzkreises unter der betreffenden konfor - 

men Abbildung. Um 	an 1 = :: zu erreichen, muss man das Bildgebiet so schlangen- 

artig (oszillatorisch) 	len, dass die Bildkurve, die ja in diesem Schlangengebiet ver - 
läuft, unendliche Länge hat. Das geschieht, indem man die Höhen hn  der einzelnen Os- 

zillationen, die ja gegen Null gehen müssen, so wählt, dass 	h = ccgilt, also etwa 
n=O 

Diese Beweisidee ist so schön, dass sie 20 Jahre später wieder entdeckt wurde 
([Nov]). 

1.3 Neue funktionentheoretische Methoden 

Mit den Arbeiten [5], [7], [12], [13], [21] führt Gaier neue funktionentheoretische Metho-
den zur Lösung von Problemen aus der Limitierungstheorie ein und zwar insbesondere 
Methoden aus der Theorie der ganzen Funktion. Das Hauptergebnis von [7], eine Ver-
schärfung von Sätzen von Karamata und Garten basiert auf einem Lemma über hob-
morphe Funktionen von Exponentialtyp in der rechten Halbebene, was die Referenten 
in den Mathematical Reviews und im Zentralblatt auch besonders hervorheben. 

Ganz massiv kommen die Methoden der Theorie der ganzen Funktionen in den Ar-
beiten [12], [13], [21] zum Tragen. Inder Arbeit [12] On modified Borel methods basieren 
weite Teile der Analysis auf einem Theorem von Mary Cartwright. 

1.4 Das Fligh-Indices-Theorern für das Borel-Verfahren 

Als Krönung und Schluss der Gaierschen Arbeiten über Limitierungstheorie kann man 
den Artikel Der allgemeine Lückenumkehrsat für das Borel- Verfahren [31] ansehen, der 
ein abschließendes Ergebnis einer langjährigen Entwicklung darstellt. 

Theorem (Gaier, 1965) Hat die Reihe Z an große Lücken (d. h. an  = Ofür n 
nO 

wobei n1 - nk > C/ mit einer Konstanten C > 0) und ist sie Borelsuinmierbar, so ist 
sie konvergent, d. h. gewöhnlich summierbar. 

Mit diesem Satz schließt sich eine lange Kette von Untersuchungen verschiedener 
Mathematiker, die den Satz bewiesen hatten unter zusätzlichen Voraussetzungen an die 
Koeffizienten a (Pitt, 1938; Meyer-König und Zeller, 1956) oder an die Lückenlängen 
(Erdös, 1956). Der Beweis durch Gaier, dass keinerlei zusätzliche Bedingungen notwen-
dig sind, glich einer kleinen Sensation. Im Beweis des Theorems zieht Gaier auch allerlei 
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tiefliegende Sätze heran, insbesondere das Turitnsche Lemma. Mit diesem Lemma hat 
sich Gaier später noch öfter beschäftigt. 

Angeregt durch diese Arbeit von Gaier gibt Ingham [In] einen weiteren Beweis dieses 
High-Indizes-Theorems. 

1.5 Das Turnsche Lemma 

Das Turnsche Lemma ist ein merkwürdiger Satz über Polynome, der ein verblüffendes 
Ergebnis enthält. Es handelt sich um die Abschätzung eines Polynoms P auf dem Ein-
heitskreis und lautet folgendermaßen: 

Turnsches Lemma: Jedes Polynom P kann auf dem gesamten Einheitskreis durch 
das Maximum Mä des Betrages dieses Polynoms auf einem kleinen Teilbogen der Länge 
6 > 0 abgeschätzt werden durch 

P(z) < (C)N Mb 

wobei N die Anzahl der Polynomglieder und C eine absolute Konstante ist. 

Interessant ist hierbei, dass N nicht etwa der Grad des Polynoms ist (Abschätzungen 
solcher Art sind gängig), sondern die Anzahl der Summanden. 

Mit diesem Lemma hat sich Dieter Gaier immer wieder beschäftigt. In [37] gibt Die-
ter Gaier einen neuen Beweis des Turnschen Lemmas und untersucht Möglichkeiten 
der Ubertragung auf allgemeinere Situationen. 

2 Konforme Abbildung 

Das Hauptarbeitsgebiet von Dieter Gaier war die konforme Abbildung, insbesondere 
ihre numerische Seite mit Iterationsverfahren zur Gewinnung von konformen Abbil-
dungen. Die Idee sich mit solchen Verfahren zu befassen geht wohl auf seinen Lehrer 
Lösch zurück, der sich während des 2. Weltkrieges in der Luftfahrtforschung mit diesen 
Verfahren beschäftigte. 

2.1 Der Einfluß von J. L. Walsh 

Die erste Veröffentlichung von Gaier zur Theorie der Konformen Abbildung erfolgte 
während seines Aufenthaltes an der Harvard University in einer gemeinsamen Arbeit 
[10] mit J. L. Walsh. Sie beschäftigt sich mit der Verzerrung konformer Abbildungen 
am Rande des Gebietes und verbessert Resultate von Ostrowski (1935) und War-
schawski (1936). 

Als Frucht der Studien bei J. L. Walsh entstand Gaiers Habilitationsschrift Uber die 
konforme Abbildung variabler Gebiete von 1955 ([14]). Als Ausgangspunkt kann man 
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folgendes grundlegende Problem aus dem Buch Interpolation und Approximation in the 
Complex Domain ([Wa], Chap. II) von Walsh ansehen. 

Problem: Gegeben sei eine Folge von einfach zusammenhängenden Gebieten 
G,(n E N) die gegen ein beschränktes einfach zusammenhängendes Gebiet G0 (die alle 
Null enthalten) „konvergiert". Seien f und  f die (nach Riemann eindeutig existieren-
den) normierten konformen Abbildungen von G und G auf den Einheitskreis. Konver-
gieren dann auch die Funktionenf, (in irgendeinem Sinne) gegen die Funktionj? 

Wegen der möglichen komplizierten Struktur einfach zusammenhängender Gebiete 
(z. B. das Vorhandensein nicht erreichbarer Randpunkte) und das Problem einer geeig-
neten Konvergenzdefinition von Gebieten und Funktionen ergeben sich komplizierte 
topologische Fragen, deren Behandlung den Großteil der Arbeit ausmachen. 

2.2 Das Iterationsverfahren von Komatu 

Komatu hat im Jahre 1945 ein wichtiges Iterationsverfahren zur Gewinnung einer kon-
formen Abbildung J eines durch Jordankurven berandetes Ringgebietes auf ein Kreis-
ringgebiet {M < w < l} veröffentlicht. Während Komatu nur die Konvergenz des Ite-
rationsprozesses f(z) = iimJ(z) bewies, wobei J die n-te Komatusche Näherungs- 

funktion ist, gelang es Gaier in [18] folgende äußerst feine quantitative Abschätzung für 
die Konvergenzrate zu gewinnen: 

(z) —f(z) < C( Arctan M) 2  

Dies gilt für alle z aus dem Ringgebiet mit einer (vom Ausgangsgebiet abhängigen) 
Konstanten C. Daraus folgt insbesondere die gleichmäßige Konvergenz auf dem ge-
samten Gebiet, und nicht nur auf kompakten Teilen, und damit eine Verbesserung der 
bisherigen Ergebnisse. 

In einer weiteren umfangreichen Arbeit [25] wendet sich Gaier der konformen Ab-
bildung n-fach zusammenhängender Gebiete auf Normalgebiete zu. Erstmalig erhält er 
in diesem allgemeinen Fall Fehlerabschätzungen. Im Spezialfall n = 2 gelingt ihm ein 
besonderer Effekt. Durch die Idee, bei jedem Iterationsschritt eine Spiegelung ein-
zuschalten erreicht er eine beträchtliche Beschleunigung des Verfahrens. 

2.3 Der Achtersatz 

Ausgangspunkt für den Achtersatz war die optimale Konstante C in der in Abschnitt 
2.2. gegebenen Abschätzung zu finden. Angezogen von diesem schönen rein theoreti-
schen Problem haben sich renommierte Funktionentheoretiker um eine Lösung be-
müht. 

Die Lösung gelang schließlich unabhängig voneinander drei Forschergruppen, näm-
lich Duren und Schiffer [DuS], Huckemann und Gaier [27], sowie etwas später Gehring 
und afHäliström (GeH). 
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Achtersatz: Für alle konformen Abbildungenf des Kreisringes K : 0 <r < Izl < 1 
in den Einheitskreis mit den Normierungen lf(z) 1 = 1 Jör 1 71 = 1 ,f(1) = 1 und 
0 F/f(Kr) gilt die Abschätzung 

f(z) - <8r 

(z e Kb ). Dabei ist die Konstante 8 bestmöglich. 

Trivialerweise ist insbesondere f(z) = z, also die Identität eine solche Abbildung. 
Obige Abschätzung besagt nun, dass alle anderen konformen Abbildungen welche dies 
leisten nahe (im obigen Sinn) bei der Identität liegen. 

Während Duren und Schiffer [DuS] den Achtersatz nur für hinreichend kleine r er-
hielten und die Vermutung ansprachen, dass er für alle r gilt, zeigten Gaier und Huck-
emann, dass diese Vermutung zutrifft und erreichten damit die endgültige Form. 

Die Abschätzung im Achtersatz ist nicht nur ein theoretisch schönes Ergebnis, son-
dern auch praktisch bedeutsam für die Konvergenzgeschwindigkeit gewisser Iterations-
verfahren zur Konformen Abbildung von Ringgebieten. 

2.4 Konstruktive Methoden 

1964 erschien Gaiers Buch Konstruktive Methoden der konformen Abbildung in der neu 
gegründeten Reihe Springer Tracts in Natural Philosophy (ursprünglich Ergebnisse der 
angewandten Mathematik) des Verlages von Julius Springer. Die Aufforderung, ein sol-
ches Buch zu schreiben, kam von Lothar Collatz aus Hamburg. Durch immer leistungs-
fähigere elektronische Rechenanlagen ab 1958 war es möglich geworden mehr kons-
truktive Methoden der Konformen Abbildung für die Praxis zum Einsatz zu bringen, 
insbesondere in der Aerodynamik (Flugzeugbau) und allgemein in der Strömungslehre 
aber auch in der Elektrotechnik und Elastizitätstheorie. Gaiers Buch bringt eine nahezu 
vollständige Ubersicht über alle numerischen Verfahren der Konformen Abbildung 
von einfach und auch mehrfach zusammenhängenden Gebieten auf Normalgebiete und 
gibt Anleitung zur praktischen Durchführung. Dem theoretischen Hintergrund mit 
Konvergenzuntersuchungen und Fehlerabschätzungen wird besondere Aufmerksam-
keit geschenkt. 

2.5 Quadrilaterals 

In einer Reihe von Arbeiten, vornehmlich mit Hayman [67], [69] und Papamichael [63] 
hat sich Gaier mit Abschätzungen des Konformen Moduls von speziellen topologischen 
Vierecken (quadrilaterals, d. h. zwei „Seiten" der Vierecke dürfen Jordanbögen sein) 
und gewissen Ringgebieten befaßt. Die Güte der Fehlerabschätzungen wird an instruk-
tiven Beispielen numerisch getestet. Dies ist von großer Bedeutung für die praktische 
Ausführung von Konformen Abbildungen. Eine schöne Ubersicht befindet sich in der 
Arbeit [77]. 
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3 Funktionentheorie 

Dieter Gaier verfaßte neben seinen Arbeiten zur konformen Abbildung auch viele Bei-
träge zur allgemeinen Funktionentheorie. 

3.1 Ganze Funktionen 

Wie im Abschnitt 2.1 gezeigt, entwickelte Gaier eigene Methoden aus der Theorie der 
ganzen Funktionen, um Probleme der Limitierungstheorie zu lösen. Daraus entstanden 
auch einige davon unabhängige Arbeiten über holomorphe Funktionen mit Beschrän-
kung an Ordnung und Typ in Winkelräumen, wie z. B. die Arbeit [15] mit H. Delange 
Über asyrnptotische Wege analytischer Funktionen. Diese Publikation wurde fortgesetzt 
in der Arbeit [57] mit Kjellberg. 

3.2 Harmonisches Maß 

Das harmonische Maß hat Dieter Gaier mehrfach benutzt, um von konformen und 
quasikonformen Abbildungenf von beschränkten einfach zusammenhängenden Gebie-
ten G mit 0 e G und 1 e 3G auf den Einheitskreis mit den Normierungenf(l) = 1 und 
f(0) = 0 Abschätzungen vonf in der Nähe des Randpunktes 1 in der Form 

f(z) 	1 1 <C - 111,  

mit optimalen Konstanten C und i zu erhalten. Er bewies dazu Sätze über Abschätzun-
gen des harmonischen Maßes von gewissen Kurven die von eigenständigem Interesse 
sind. 

Es gibt jedoch eine Arbeit über das harmonische Maß, welche ganz aus diesem Rah-
men fällt, A note on Hall's Lemma [42]. Diese Arbeit hat ihren Ursprung darin, dass 
Dieter Gaier um 1970 versuchte, einen Beweis des Coronatheorems von Carleson für 
die Vorlesung Funktionen theorie II aufzubereiten. Das war lange bevor T. Wolff seinen 
neuen Beweis gab, der beträchtliche Vereinfachungen brachte. Der alte Beweis (siehe et-
wa [Du], S. 202-218) benutzte das Hallsche Lemma über das harmonische Maß. Beim 
Grübeln über den Beweis bemerkte Dieter Gaier, dass sich die Abschätzung von Hall 
verbessern läßt, wenn man eine etwas eingeschränktere geometrische Situation betrach-
tet. Die Arbeit wurde seinerzeit viel beachtet und gab Veranlassung zu Nachfolgearbei-
ten, u. a. von W. K. Hayman und J. A. Jenkins. 

3.3 landaus Buch 

Im Jahre 1916 veröffentlichte Edmund Landau ein Buch mit dem Titel Darstellung und 
Begründung einiger neuerer Ergebnisse der Funktionen theorie, ein Juwel funktionentheo-
retischer Literatur. 
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Es beeinflußte viele Mathematiker und erschien 1929 in 2. Auflage und im Jahre 
1946 als Chelsea-Reprint. Bei vielen der in diesem Buch behandelten Themen ist Land-
au durch Originalarbeiten vertreten, für Sätze anderer Forscher gibt er meist kurze und 
neue Beweise, die oft in ihrer Eleganz nicht mehr übertroffen werden können. Hardy 
sagt in seiner Rezension über dieses Buch sogar Probab/y Landau's most beaut(ful book. 

Nachdem das Buch lange vergriffen war, besorgte Dieter Gaier auf Anregung von 
R. Remmert im Jahre 1986 eine Neuauflage, die den Umfang des Landauschen Buches 
fast verdoppelt, und damit viel mehr als nur eine reine Neuauflage wurde. Diese 
3. Auflage [115] ist durch zwei umfangreiche Anhänge von Dieter Gaier bereichert. Im 
1. Anhang werden alle seit 1929 erzielten Forschungsergebnisse zu den im Landauschen 
Buch behandelten Themenkreisen aufgelistet, eine gewaltige Arbeit, die eine umfangrei-
che Kenntnis der Spezialliteratur auf diesem Gebiet verlangt. Im 2. Anhang werden 
neuere Themenkreise vorgestellt, etwa Ringe und Algebren holomorpher Funktionen, die 
den Stoff des Landauschen Buches harmonisch ergänzen und abrunden. Dabei wächst 
das Literaturverzeichnis von rund 80 auf über 400 Nummern und umfaßt wohl alle ein-
schlägigen Arbeiten. Die Rezensionen über das Buch von Landau/Gaier sind teilweise 
enthusiastisch, z. B. in den Mathematical Reviews, die fast eine ganze Seite dafür auf-
wenden, oder im Mathematical Intelligencer 11(1989), S. 61 —63. 

3.4 Räume konformer Abbildungen 

Anfang der 1980er Jahre gelangte Dieter Gaier zu einem ganz neuen Forschungsgebiet, 
zu dem er durch eine Vermutung von Gauthier aus der komplexen Approximations-
theorie geführt wurde. Zugrunde liegt die Gruppe Z (G) aller konformen Abbildungen 
eines beschränkten einfach zusammenhängenden Gebiets G auf sich selbst (bezüglich 
der Komposition). Gaier führt mit 

d(1,2) = sup{1(z) - 	: z E G} 

eine naheliegende und geeignete Metrik auf >(G)  ein, die (G) zu einem vollkom-
menen metrischen Raum macht. In einer großangelegten Arbeit [59] beweist Gaier 
grundlegende Tatsachen über die Struktur von (G) die sich auf Vollständigkeit, 
Kompaktheit und Zusammenhang beziehen. Angewandt auf das ursprüngliche Pro-
blem aus der komplexen Approximationstheorie kann er die Vermutung von Gauthier 
widerlegen. Diese Arbeit von Gaier, insbesondere der Katalog offener Fragen am 
Schluß, leitete eine neue Entwicklung funktionentheoretischer Forschung ein, an der in 
der Folge mehrere Funktionentheoretiker beteiligt waren, vor allem G. Schmieder. We-
sentliche Fragen sind allerdings bis heute noch unbeantwortet. 

3.5 Historische Artikel 

Zu ihrem hundertjährigen Bestehen veröffentlichte die deutsche Mathematikervereini- 
gung (DMV) im Jahre 1990 einen Festband unter dem Titel Ein Jahrhundert Mathema- 
tik, 1890-1990, in dem 20 anerkannte Fachvertreter über die Geschichte ihres Faches 
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in Deutschland in den letzten hundert Jahren berichten. Für die Funktionentheorie 
wurde Dieter Gaier gebeten, diese Aufgabe zu übernehmen. Er hat sie mit großer Sach-
kenntnis ausgeführt. Welche ungeheure Arbeit in diesem gründlichst recherchierten 
60-seitigen Artikel steckt, kann man nur erahnen. 

Zu den historischen Artikeln zählt auch Gaiers Publikation [72] über Leben und 
Werk von A. Plessner, der 1923 in Giessen mit einer bedeutenden Arbeit über Fourier-
analysis bei Schlesinger promovierte, dem man aber als Jude die Habilitation verweiger-
te, indem man bürokratische Hürden aufrichtete. 

4 Approximationstheorie 

Ein Gutteil der Gaierschen Publikationen entstammt dem Gebiet der reellen und der 
komplexen Approximationstheorie. Für das letztere hat er das neuere Standardwerk 
[B3[ verfaßt. 

4.1 Approximation im Komplexen 

Seit seinen Aufenthalten in Harvard bei J. L. Walsh hat sich Dieter Gaier immer wieder 
mit Fragen aus der komplexen Approximationstheorie beschäftigt. Das Standardwerk 
über dieses Gebiet war das Buch von J. L. Walsh Interpolation and Approximation in the 
Complex Domain das bereits 1935 erschien. Hier fehlte auch in den späteren Auflagen 
die ganze moderne Entwicklung nach dem 2. Weltkrieg, die vor allem mit den Namen 
Mergeljan, Arakeljan und Nerzesjan verbunden ist. Das veranlaßte Dieter Gaier sein 
Buch Approximation im Komplexen ([B3]) zu schreiben, welches neben der klassischen 
Approximation durch Reihenentwicklung und Interpolation auch in einem 2. Teil die 
moderne Entwicklung berücksichtigt. 

Dieser 2. Teil enthält u. a. die Approximationssätze von Carleman, Mergeijan und 
Arakeljan, den Lokalisationssatz von Bishop und das Fusion-Lemma von Alice Roth. 
Gaiers Buch fand bei den Experten einen solchen Anklang, dass es ins Englische [B7], 
ins Russische [B6[ und ins Chinesische [B4] übersetzt wurde. 

4.2 Das Fusion-Lemma von Alice Roth 

Bei der Approximation durch rationale Funktionen auf kompakten Mengen im Kom-
plexen spielt das Fusion Lemma von Alice Roth eine Schlüsselrolle. Das ist im wesentli-
chen eine Entdeckung von Dieter Gaier. Er hat die Anwendung immer sehr propagiert 
und auch in seinem Buch [B3] und in dem Ubersichtsartikel [60] hervorgehoben. In der 
Arbeit [56] beschäftigte er sich mit Fragen der Verbesserungen bzw. Verschärfung dieses 
Lemmas. 

Alice Roth promovierte 1938 an der ETH Zürich bei Pülya mit einer Arbeit, in der 
der berühmte swiss cheese (siehe z. B. [Ga], S. 25-26) konstruiert wird, der später bei 
der Konstruktion von Gegenbeispielen in der komplexen Approximationstheorie im- 
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mer wieder herangezogen wurde. Erst nach langen Jahren im Schuldienst in Bern nahm 
sie nach der Pensionierung ihre Forschungstätigkeit wieder auf und publizierte ab 1973 
weitere wichtige Beiträge zur komplexen Approximationstheorie. Ein Artikel über Le-
ben und Werk dieser großen Mathematikerin erscheint in Kürze [Dae]. 

4.3 Polynomapproximation 

Eine ganze Reihe von Arbeiten ([78], [80], [82]) widmet sich der Approximation von 
analytischen Funktionen in reellen Intervallen oder von konformen Abbildungen durch 
Polynome, in denen Dieter Gaier oft Resultate anderer Autoren verbesserte. 

Hierher gehören auch die Arbeiten [65], [70], [71], [74] über Approximation durch 
Bieberbachpolynome. Eine besonders interessante Fragestellung der Polynomappro-
ximation in Touching domains wird in [81] behandelt, wo Dieter Gaier Ergebnisse von 
V. V. Andrievskii signifikant erweitert. 
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[151 (mit H. Delange) Über asymptotische Wege analytischer Funktionen und ihrer 
Ableitungen. Arch. Math. 7(1956) 135— 142. 

[16] Uber die Konvergenz des Adamsschen Extrapolationsverfahrens. Z. Angew. 
Math. Mech. 36 (1956) 230. 

[17] (mit W. Meyer-König) Singuläre Radien bei Potenzreihen. Jahresber. Dtsch. 
Math.-Ver. 59(1956) 36-48 (Hauptvortrag, DMV-Tagung Mainz 1953). 

[18] Uber ein Iterationsverfahren von Komatu zur konformen Abbildung von Ring-
gebieten. Z. Angew. Math. Mech. 36(1956) 252-253. 

[19] Note on some gap theorems. Proc. Am. Math. Soc. 8(1957) 24-28. 
[20] Uber ein Iterationsverfahren von Komatu zur konformen Abbildung von Ring-

gebieten. J. Math. Mech. 6(1957) 865-883. 
[21] Eine Bemerkung zum unstetigen Abel-Verfahren. Arch. Math. 8(1957) 286-289. 
[22] Uber ganze Funktionen vom Exponentialtyp mit Lückenreihen. Math. Z. 68 

(1958) 488-497. 
[23] Über ein Extremalproblem der konformen Abbildung. Math. Z. 71(1959) 83-88. 
[24] Uber die konforme Abbildung mehrfach zusammenhängender Gebiete. Z. Angew. 

Math. Mech. 39 (1959) 369. 
[25] Untersuchungen zur Durchführung der konformen Abbildung mehrfach zusam-

menhängender Gebiete. Arch. Ration. Mech. Anal. 3 (1959) 149-178. 
[26] On conformal mapping of nearly circular regions. Pac. J. Math. 12 (1962) 

149— 162. 
[27] (mit F. Huckemann) Extremal problems for functions schlicht in an annulus. Arch. 

Ration. Mech. Anal. 9(1962)415-421. 
[28] Uber die Symmetrisierbarkeit des Neumannschen Kerns. Z. Angew. Math. Mech. 

42(1962) 569-570. 
[29] Über den Diskretisierungsfehler bei der Integraigleichung von Theordorsen. Z. 

Angew. Math. Mech. 42 Sonderheft (1962) T21 —122. 
[30] Konforme Abbildung mehrfach zusammenhängender Gebiete durch direkte Lö-

sung von Extremalproblemen. Math. Z. 82 (1963) 413-419 (F. Lösch zum 
60. Geb. gewidmet). 

[31] Der allgemeine Lückenumkehrsatz für das Borel-Verfahren. Math. Z. 88 (1965) 
410-417. 

[32] Probleme und Methoden der konstruktiven konformen Abbildung. Jahresber. 
Dtsch. Math.-Ver. 67(1965) 118-132. 

[33] On the coefficients and the growth of gap power series. SIAM J. Numer. Anal. 3 
(1966) 248-265 (dedicated to Prof. J. L. Walsh, 70. Geb.). 

[34] (mit C. Pommerenke) On the boundary behavior ofconformal maps. Mich. Math. 
J. 14 (1967) 79 — 82. 

[35] (mit J. Todd) On the rate ofconvergence of optimal ADI processes. Numer. Math. 
9 (1967) 452-459. 

[36] Limitierung gestreckter Folgen. Publ. Ramanujan Inst. 1(1968/69) 223-234 (dem 
Gedenken an Ananda Rau gewidmet). 

[37] Bemerkungen zum Turänschen Lemma. Abb. Math. Semin. Univ. Hamb. 35 
(1970) 1-7. 
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[38] Saturation bei Spline-Approximation und Quadratur. Numer. Math. 16 (1970) 
129— 140 (L. Collatz zum 60. Geb. gewidmet). 

[39] Estimates of conformal mappings near the boundary. Math. J., Indiana Univ. 21 
(1972)581-595. 

[40] Ermittlung des konformen Moduls von Vierecken mit Differenzenmethoden. Nu-
mer. Math. 19 (1972) 179-194. 

[41] Entire functions with gap power series. Ann. Univ. Mariae Curie-Sklodowska, 
(1968— 1970) Sect. A 22-24, Proc. Sth Conf. analytic Functions, Lublin 1970, 
(1972) 69-72. 

[42] A note on Hall's lemma. Proc. Am. Math. Soc. 37 (1973) 97 — 99. 
[43] Quasiconformal mappings near the boundary. Indiana Univ. Math. J. 22 (1973) 

813-815. 
[44] Ableitungsfreie Abschätzungen bei trigonometrischer Interpolation und Kon-

jugierten-Bestimmung. Computing 12 (1974) 145-148. 
[45] Determination ofconformal modules of ring domains and quadrilaterals. Functio-

nal Analysis AppI., internat. Conf., Madras 1973, Lect. Notes Math. 399 (1974) 
180— 188. 

[46] Integralgleichungen erster Art und konforme Abbildung. Math. Z. 147 (1976) 
113— 129 (R. Nevanlinna zum 80. Geburtstag gewidmet). 

[47] (mit 0. Hübner) Schnelle Auswertung von Ax bei Matrizen A zyklischer Bauart, 
Toeplitz- und Hankel-Matrizen. Mitt. Math. Semin. Giessen 121 (1976) 27-38. 

[48] Approximation durch Fejr-Mittel in der Klasse A. Mitt. Math. Semin. Giessen 
123 (1977) 1-6 (dem Andenken an Karl Maruhn gewidmet). 

[49] Über ein Flächeninhaltsproblem und konforme Selbstabbildungen. Rev. Roum. 
Math. Pures Appl. 22 (1977) 1101-1105. 

[50] Hölder-Stetigkeit und BMO des logarithmischen Potentials. Arch. Math. 30(1978) 
49-54. 

[51] Konforme Abbildung mehrfach zusammenhängender Gebiete. Jahresber. Dtsch. 
Math.-Ver. 81 (1978) 25 — 44. 

[52] Capacitance and the conformal module of quadrilaterals. J. Math. Anal. Appl. 70 
(1979) 236-239. 

[53] Research problems. Period. Math. Hung 12(1981)1. 
[54] Gap theorems for logarithmic summability. Analysis 1(1981)9-24. 
[55] Das logarithmische Potential und die konforme Abbildung mehrfach zusammen-

hängender Gebiete. E. B. Christoffel, the influence of his work on mathematics 
and the physical sciences, int. Symp., Aachen 1979, (1981) 290-303. 

[56] Remarks on Alice Roth's fusion lemma. J. Approximation Theory 37 (1983) 
246 —250. 

[57] (mit B. Kjellberg) Entire functions and their derivative on an asymptotic arc. Stu-
dies in pure mathematics, Mcm. ofP. Turn, (1983) 231 —236. 

[58] Numerical methods in conformal mapping. Computational aspects of complex 
analysis, Proc. NATO Adv. Study Inst., Braunlage/Ger. 1982, NAT0 AST Ser., 
Ser. C 102 (1983) 51-78. 

[59] Über Räume konformer Selbstabbildungen ebener Gebiete. Math. Z. 187 (1984) 
227-257 (H. Grunsky zum 80. Geb. gewidmet). 
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[60] Approximation im Komplexen. Jahresber. Dtsch. Math.-Ver. 86 (1984) 151— 159 
(Hauptvortrag, DMV-Tagung Köln 1983). 

[61] On an area problem in conformal mapping. Result. Math. 10(1986) 66-81 (in mc-
mory of Hans Wittich). 

[62] Über Schlichtheitsgebiete ganzer Funktionen. Complex Variables, Theory Appl. 8 
(1987) 303-306. 

[63] (mit N. Papamichael) On the comparison of two numerical methods for conformal 
mapping. IMA J. Numer. Anal. 7 (1987) 261 —282. 

[64] On a polynomial lemma of Andrievskii. Arch. Math. 49 (1987) 119-123 
(G. Pickert zum 70. Geburtstag gewidmet). 

[65] On the convergence of the Bieberbach polynomials in regions with corners. Con-
structive Approximation 4, No. 3 (1988) 289-305. 

[66] Remarks of the lemma ofNersesyan in complex approximation. Zap. Nauchn. Se-
min. Leningr. Otd. Mat. Inst. Steklova 170 (1989) 90-94; Ubersetzung in 
J. Sov. Math. 63, No. 2 (1993) 164-166. 

[67] (mit W. Hayman) Moduli of long quadrilaterals and thick ring domains. Rend. 
Mat. Appl., VII. Ser. 10, No. 4(1990) 809-834 (dedicated to the memory of Maria 
Adelaide Sneider). 

[68] Über die Entwicklung der Funktionentheorie in Deutschland von 1890 bis 1950. 
Ein Jahrhundert Mathematik 1890— 1990. Festschrift zum Jubiläum der DMV. 
Braunschweig: Friedr. Vieweg & Sohn. Dok. Gesch. Math. 6(1990) 361-420. 

[69] (mit W. Hayman) On the computation of modules of long quadrilaterals. Con-
structive Approximation 7, No. 4(1991)453-467. 

[70] On the convergence of the Bieberbach polynomials in regions with corners. Inter-
national Symposium on number theory and analysis in memory of Hua Loo Keng, 
held at the Tsing Hua University, Beijing, China, August 1-7, 1988. Volume II: 
Analysis. Berlin: Springer-Verlag (1991) 107-110. 

[71] On the convergence ofthe Bieberbach polynomials in regions with piecewise ana-
lytic boundary. Arch. Math. 58, No. 5 (1992) 462-470. 

[72] Abraham Ezechiel Plessner (1900-1961): His work and his life. Math. Intell. 14, 
No. 3 (1992) 31-36. 

[73] Conformal mapping of analytic corners in a generalized sense. Analysis 12, No. 
1/2 (1992) 187-193. 

[74] (mit V. V. Andrievskii) Uniform convergence of Bieberbach polynomials in do-
mains with piecewise quasianalytic boundary. Mitt. Math. Semin. Giessen 211 
(1992) 49-60. 

[75] On the behavior ofcapacity under conformal mapping. Complex Variables, Theo-
ry Appl. 21, No. 3-4 (1993) 197-205 (dedicated to the memory of Glenn Scho-
ber). 

[76] Constructive aspects in complex analysis. Proceedings ofthe conference on advan-
ces in computational mathematics, held at New Delhi, India, January 5-9, 1993. 
Singapore: World Scientific. 5er. Approx. Decompos. 4 (1994) 243 — 250. 

[77] Conformal modules and their computation. Computational methods and function 
theory 1994. Proceedings of the conference, Penang, Malaysia, March 21 —25. 
1994. Singapore: World Scientific. Ser. Approx. Decompos. 5 (1995) 159-171. 
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[78] Polynomial approximation of piecewise analytic functions. J. Anal. 4 (1996) 
67-79. 

[791 On the convergence of the Bieberbach polynomials inside the domain: Research 
problems 97-1. Constructive Approximation 13, No. 1(1997) 153-154. 

[80] Polynomial approximation of functions continuous on [-1, 1] and analytic on 
(-1,1). Ann. Numer. Math. 4, No. 1-4 (1997) 315-328 (dedicated toT. J. Rivlin, 
70. Geb.). 

[81] Compiex approximation on touching domains. Complex Variables, Theory Appl. 
34, No. 4(1997) 325-342. 

[82] Polynomial approximation of conformal maps. Constructive Approximation 14, 
No. 1 (1998) 27-40. 

[83] Caiculus on arcs in the complex plane. Analysis 18, No. 3 (1998) 291-302 (dedica-
ted to Professor Pickert, 80. Geb.). 

[84] On the relation between E,1 (f) and E(f'). Proceedings ofthe 3rd CMFT confe-
rence on computational methods and function theory 1997, Nicosia, Cyprus, Octo-
ber 13-17, 1997. Singapore: World Scientific. Ser. Approx. Decompos. 11(1999) 
225-23 1. 

[85] The Faber Operator and its boundedness. J. Approximation Theory 101, No. 2 
(1999) 265-277 (dedicated to Richard S. Varga, 70. Geb.). 

[86] Joseph L. Walsh: Selected papers. With brief biographical sketches by W. E. Se-
weil, D. V. Widder and Morris Marden and commentaries by Q. 1. Rahman, P. M. 
Gauthier, Dieter Gaier, Walter Schempp and the editors. Edited by Theodore J. 
Rivlin and Edward B. Saff. New York, NY: Springer. xxv, 682 p. 

[87] On the decrease of Faber polynomials in domains with piecewise analytic bounda-
ry. Analysis 21, No. 2 (2001) 219-229 (dedicated to Professor Wolfgang Luh, 
60. Geb.). 

[88] (mit R. Kühnau) On the modulus ofcontinuity for starlike mappings. Ann. Lubhn 
Sec. A. 56 No. 2(2002)19-30 (dedicated to Jan Krzyz). 

2.2 Monographien und Bücher 

[Bi] Konstruktive Methoden der konformen Abbildung. (Ergebnisse der angewandten 
Mathematik. Bd. 3) Berlin-Göttingen-Heidelberg: Springer (1964). 

[B2] Complex variable proofs of Tauberian theorems. Matscience Report, 56. Madras, 
India: The Institute of Mathematical Sciences. (1967)78 p. 

[B3] Vorlesungen über Approximation im Komplexen. Basel, Boston, Stuttgart: Birk-
häuser (1980). 

[B4] Vorlesungen über Approximation im Komplexen. Ubers. aus dem Deutschen ins 
Chinesische von Xie-Chang Shen. Hunan Educational Publ. House (1985). 

[135] Landau, Edmund; Gaier, Dieter Darstellung und Begründung einiger neuerer Er - 
gebnisse der Funktionentheorie. 3., erw. Aufl. Berlin etc.: Springer-Verlag 1986. 

[B6] Lectures on complex approximation. (Lektsii p0 teorii approksimatsii v kompleks-
noj oblasti). Ubers. aus dem Deutschen ins Russische von L. M. Kartashov. Mosk-
va: Izdatel'stvo Mir (1986). 
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[B7] Lectures on complex approximation. Transl. from the German by Renate 
McLaughlin. Boston-Basel-Stuttgart: Birkhäuser 1987. 

2.3 Allgemeine Artikel 

[Cl] Schule und Universität im Wandel der Zeit. Pädagogische Führung, Ausgabe Hes-
sen, Heft 4(1994) 55-58. Luchterhand Verlag. 

JB 107. Band (2005). Heft 1 	 53 



Werner Poguntke 

Keine Angst vor Mathe 
Hochschu/mathematik 
für Einsteiger 
2004. 222 S. Br. EUR 19,90 
ISBN 3-519-00501-8 

Teabner

. 

 Lehrbüdcnc 
einfach clever 

Abraharn-Lincoln-Str. 46 Eä 65189 Wiesbaden 
Fax 0611.7878-420 
www.teubner.de  

Teubner 

Inhalt 

Zahlen - Rechnen - Gleichungen und 

Ungleichungen - Funktionen und ihre 
Ableitungen - Gleichungssysteme - Geo-

metrie - Zählen - Zufall und Wahrschein-
lichkeit - Endlich und Unendlich - Die 

neuen Probleme mit der Endlichkeit 

Das Buch 

Begeisterung für Mathematik gibt es 

nicht? Lassen Sie sich vom Gegenteil 

überzeugen. Diese Einführung in die 
Mathematik wird Sie faszinieren. Span-

nende Themen, viele Beispiele und Auf-
gaben vermitteln die grundlegenden 

Fertigkeiten für den Studienbeginn. Wir 
wünschen Ihnen mit diesem Buch viel 

Erfolg und Spaß. 



L übersichtsaikel 	Hstorische Beiträge 	Berichte aus der Forschung 	Buchbesprechungen 

1 
in 

Riad Aigehraic 
Geoftlotry S. Basu, R. Pollack, 

M.-F. Roy 

Algorithms in Real 

Algelraic Geometry 

Berlin u. a., Springer, 2003, 602 5., € 59,95 

Gegenstand des Buches sind zentrale algo-
rithmische Probleme der reellen algebrai-
schen Geometrie. Hierzu zählen beispiels-
weise die Frage nach der Existenz reeller Lö-
sungen einer (durch polynomiale Gleichun-
gen und Ungleichungen) bestimmten semial-
gebraischen Menge oder die Frage, ob zwei 
Punkte zur gleichen Zusammenhangskom-
ponente einer gegebenen semialgebraischen 
Menge gehören. 

Die Entscheidbarkeit der ersten Frage ist 
bereits seit Tarski's Ergebnissen zur reellen 
Quantorenelimination aus den 40er Jahren 
bekannt und steht im Gegensatz zur Nicht-
entscheidbarkeit der Existenz ganzzahliger 
Lösungen (Hilbert's 10. Problem). Der Re-
chenaufwand bekannter Verfahren für die 
Quantorenelimination ist jedoch bereits für 
kleine Dimensionen beträchtlich. Insbeson-
dere auch, weil zahlreiche Anwendungspro-
bleme (beispielsweise bei Bewegungsplanun-
gen in der Robotik oder im Computer-Aided 
Geometric Design) auf algorithmische Pro-
bleme der reellen algebraischen Geometrie 
führen, erfährt dieses Teilgebiet derzeit so-
wohl innerhalb der Mathematik als auch in 
benachbarten Disziplinen viel Aufmerksam-
keit. Eine der Herausforderungen kommt 
daher, dass hierbei eine Reihe von Teilgebie-
ten der Mathematik und Informatik wie To-
pologie, algebraische Geometrie. Computer-
algebra, Komplexitätstheorie sowie der Ent-
wurf effizienter Algorithmen eng miteinan- 

der verzahnt sind und deshalb die Literatur 
sehr verstreut war. 

In genau diese Lücke möchte das vorlie-
gende Buch stoßen - und dieses Unterfangen 
ist den Autoren in beeindruckender Weise 
gelungen! 

In den ersten Kapiteln wird überwiegend 
klassisches Material der reellen algebrai-
schen Geometrie zusammengestellt, etwa die 
Theorie reell abgeschlossener Körper und se-
mialgebraischer Mengen sowie klassische 
Techniken zur Bestimmung der Anzahl reel-
ler Lösungen eines univariaten Polynoms. 

Im mittleren Drittel des Buches werden die 
beiden Zugpferde für die algorithmischen 
Techniken diskutiert: die zylindrisch-alge-
braische Dekomposition und die Methode 
der kritischen Punkte. Hierzu werden zu-
nächst ein auf die Besonderheiten semialge-
braischer Mengen angepasster Steilkurs zur 
Topologie sowie zur Morsetheorie angebo-
ten und quantitative Ergebnisse (etwa die 
Oleinik-Petrovsky/Thom/Milnor-Schranke 
für die Summe der Bettizahlen einer durch 
Polynome gleichen Grades gegebenen algeb-
raischen Menge) hergeleitet. Nach einem 
weiteren Streifzug durch Grundtechniken 
der algorithmischen Algebra (z. B. Subresul-
tanten, Gröbnerbasen) werden die zylin-
drisch-algebraische Dekomposition und die 
Methode der kritischen Punkte in sehr de-
tailliertem Pseudocode angegeben und unter 
komplexitätstheoretischen Gesichtspunkten 
ausführlich analysiert. 

Im letzten Drittel des Buches werden die 
neuesten Entwicklungen zur Verbesserung 
der algorithmischen Grundtechniken sowie 
ihrer Anwendung auf komplexere Probleme 
(z. B. der Berechnung von „Roadmaps" zur 
oben erwähnten Bestimmung der Zusam-
menhangskomponenten einer semialgebrai-
schen Menge) vorgestellt. Hier haben die 
drei Autoren in jüngster Zeit auch wesentli-
che, neue Forschungsbeiträge geleistet. 

Das Buch bietet eine sehr zeitgemäße, ge-
lungene Darstellung klassischen sowie aktu-
ellen Materials zu algorithmischen Fragen 
der reellen algebraischen Geometrie, die in 
dieser Breite bisher nicht verfügbar war. Be- 
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sonders auffällig ist die erfolgreiche Absicht 
der Autoren, eine kohärente und vor allem 
in sich geschlossene Darstellung zu liefern, 
die die verschiedenen beteiligten mathemati-
schen Teilgebiete umfassend berücksichtigt. 
Aufgrund dieser Darstellungsweise bietet 
das Buch zahlreiche Einstiegs- und Verwen-
dungsmöglichkeiten, sowohl in Lehre und 
Forschung als auch als Nachschlagewerk. Es 
wird sich schnell als Standardwerk zu dem 
behandelten Themenkreis etablieren. 

München 	 T. Theobald 

S. Fa ja rd 0, H. J. Ke isler 

Model Theory of 
Stochastic Processes 
Lect. Notes in Logic 14 

Natick, A. K. Peters Ltd, 2002, 152 S., $ 32,- 

Das Buch „Model Theory of Stochastic Pro-
cesses" untersucht stochastische Prozesse 
aus modelltheoretischer Sicht. Insbesondere 
kommen dabei Methoden aus der Nonstan-
dardanalysis (saturierte Modelle) zum Ein-
satz. Als Zielgruppe von Lesern sehe ich da-
her vorwiegend modelitheoretisch gebildete 
Mathematiker mit Interesse an Stochastik, 
aber auch Wahrscheinlichkeitstheoretiker 
mit einem starken Interesse an logisch-mo-
delltheoretischen Fragen. Das Buch setzt vo-
raus, dass der Leser mit Nonstandardana-
lysis (saturierte Modelle, Loeb-Maße) ver-
traut ist. 

Es werden stochastische Prozesse x = 
(Xt) t , die adaptiert bezüglich einer Filtration 
()‚ sind, modulo verschiedener Aquva-
lenzrelationen untersucht. Die einfachste 
dieser Aquivalenzrelationen ist die Gleich- 

heit der endlichdimensionalen Randvertei-. 
lungen. Weitere Aquivalenzrelationen erhält 
man, indem Gleichheit der Erwartungswerte 
E[f(x)] = Ef(y)] für beschränkte Test-
funktionen f in verschiedenen Klassen ge-
fordert wird. Ein Beispiel ist die Klasse der 
stetigen, beschränkten Funktionen von nur 
endlich vielen Variablen; sie führt wieder auf 
die Gleichheit endlichdimensionaler Rand-
verteilungen. Ein anderes Beispiel erhält 
man aus dieser Klasse, indem man sie bezüg-
lich der Bildung bedingter Erwartungen und 
Komposition abschließt. 

Hier sind typische Fragestellungen: 
Gegeben sei ein adaptierter Raum Q. Be-

trachten wir einen stochastischen Prozess x 
auf irgendeinem weiteren adaptierten Raum. 
Gibt es dann einen adaptierten Prozess x' 
auf 9, der zu x äquivalent ist (Universalität)? 

Gegeben ein Paar (x,y) adaptierter Pro-
zesse und einen Prozess x' äquivalent zu x 
(alle Prozesse auf 12), gibt es einen stochasti-
schen Prozess y', so dass (x, y) äquivalent zu 
(x',y') ist? 

Eine Variante dieser Fragen wird durch 
folgendes Spiel motiviert: Zwei Spieler A 
und B suchen sich abwechselnd in abzählbar 
unendlich vielen Runden Zufallsvariablen 
oder auch stochastische Prozesse aus. Dabei 
wählt A stets einen Prozess über einem 
Raum 12, und B stets einen Prozess über ei-
nem Raum F. Am Anfang sind zwei äquiva-
lente Prozesse x und y über 12 bzw. F gege-
ben. In der Runde n, wobei n = 1,2,3.... 
durchläuft, wählt zuerst A einen Prozess x,, 
und dann B einen Prozess y,,. B gewinnt das 
Spiel, wenn (x,x l ,x2 ,x3  .... ) äquivalent zu 
(y,y1,y2.y3, ... ) ist; andernfalls gewinnt A. 
Hat B eine Gewinnstrategie? Die Prozesse x 
und y heißen spieläquivalent, wenn es eine 
solche Gewinnstrategie für B gibt. 

Auf „gewöhnlichen" adaptierten Räumen 
(Vervollständigungen von Borel-W-maßen 
auf einem polnischen Raum mit einer Filtra-
tion) ist die Antwort auf obige Fragen typi-
scherweise negativ. Das Bild ändert sich je-
doch, wenn man statt dessen Loeb-Räume 
über internen * endlich additiven Wahr-
scheinlichkeitsräumen betrachtet; zum Bei- 
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spiel Loeb-Räume über hyperendlichen 
Wahrscheinlichkeitsräumen. 

Weite Teile des Buches analysieren die obi-
gen und viele weitere verwandte Aquivalenz-
relationen und Abhängigkeiten zwischen 
diesen, illustriert mit zahlreichen Beispielen 
und Gegenbeispielen. Allerdings haben viele 
Teile eher den Charakter eines Literatur-
überblicks, da oft keine vollständigen Bewei-
se, sondern nur Beweisskizzen und Verweise 
auf die Originalarbeiten zu finden sind. 

Leser, die sich für modelltheoretische 
Theoreme über stochastische Prozesse inte-
ressieren, erhalten mit diesem Buch einen gu-
ten Uberblick über das Gebiet. Das Buch er-
setzt allerdings nicht die Lektüre der im 
Buch zitierten Originalarbeiten, weil im 
Buch die modelitheoretischen Grundlagen, 
die zum Verständnis nötig sind, nicht syste-
matisch eingeführt werden, und auch die Be-
weise teilweise nur in groben Zügen skizziert 
werden. 

Leiden (Niederlande) 	 F. Merkl 

IIei 	iokku 

1 	0111 Irai Iin 
lili 11* piuboIi 

H. Holden, N. H. Risebro 
Front Tracking tor 
Hyperbolic Conser- 
vation Laws 

Berlin u. a., Springer, 2002, 363 5., € 64,95 

Das neue Buch von Holden und Risebro be-
handelt hyperbolische Systeme von Erhal-
tungssätzen. Prototyp dieser meist nicht-
linearen Systeme partieller Differentialglei-
chungen sind die Eulergleichungen der Gas-
dynamik, d. h. die Erhaltungsprinzipien für 
Masse. Impuls und Energie. Die Lösungen 
sind in der Regel unstetig, sie enthalten Stoß- 

wellen und Kontaktunstetigkeiten. Das 
macht die Analyse und Numerik besonders 
anspruchsvoll. 

Hier ein kurzer Uberblick über vergleich-
bare neuere Bücher: für die Analysis der 
Klassiker von J.Smoller (2. Aufl. Springer 
1994), Dafermos (Springer 1998), D.Serre 
(Cambridge Univ. Press 1999 u. 2000), 
Malek/Necas/Rokyta (Springer 2000), Bres-
san (Oxford Univ. Press 2000), LeFloch 
(Birkhäuser 2002). Für die Numerik LeVe-
que (Birkhäuser 1992), Godlewski/Raviart 
(Springer 1996), Kröner (Wiley-Teubner 
1997), Toro (Springer 1998) und nochmals 
LeVeque (Cambridge Univ. Press 2000). Es 
gibt also im Gegensatz zum Beginn der neun-
ziger Jahre eine erfreuliche Auswahl an von 
führenden Experten geschriebenen Lehr-
büchern. 

Meiner Meinung nach ist das Buch der 
beiden norwegischen Kollegen eine sehr will-
kommene Ergänzung. Es ist von seiner Aus-
richtung analytisch, die wesentlichen Exis-
tenz- und Eindeutigkeitssätze werden rigo-
ros bewiesen. Der rote Faden des Buches ist 
jedoch eine konstruktive Methode, das soge-
nannte Front-Tracking. Die mit diesem Ver-
fahren konstruierten approximativen Lö-
sungen bieten einerseits die Grundlage für 
Existenz- und Eindeutigkeitsbeweise schwa-
cher Lösungen, anderereseits führen sie zu 
hocheffizienten numerischen Verfahren. 

Das Front-Tracking wurde in den 70er 
Jahren von Dafermos als analytisches Werk-
zeug vorgeschlagen, und später vom 1988 
verstorbenen norwegischen Mathematiker 
Raphael Høegh-Krohn, dem das Buch auch 
gewidmet ist, sowie seinen damaligen Mit-
arbeitern Holden und Risebro wiederent-
deckt und weiterentwickelt. Es ähnelt einer 
von Bressan Anfang der neunziger Jahre 
vorgestellten Methode, mit der erstmals die 
Eindeutigkeit schwacher Lösungen für ein-
dimensionale Systeme bewiesen werden 
konnte. 

Lassen Sie mich kurz auf die einzelnen Ka-
pitel eingehen: Nach einer gehaltvollen Ein-
leitung werden im zweiten Kapitel skalare 
Erhaltungssätze behandelt. Zunächst wird 
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eine Entropiebedingung vorgestellt, welche 
die korrekte schwache Lösung auszuwählen 
vermag. Dann wird das Riemannproblem 
(Cauchyproblem mit zwei stückweise kon-
stanten Daten) gelöst. Das bildet die Grund-
lage für den Front-Tracking Algorithmus. 
Hierbei wird die Flussfunktion durch eine 
stetige, stückweise lineare Funktion approxi-
miert. So erhält man für stückweise konstan-
te Anfangsdaten ein Hilfsproblem, das sich 
analytisch exakt lösen lässt. Für diesen Algo-
rithmus wird dann die stetige Abhängigkeit 
von den Anfangsdaten bewiesen. Schließlich 
wird gezeigt, wie allgemeine Anfangsdaten 
und Flussfunktionen approximiert werden 
können. Das führt zu einem recht allgemei-
nen Existenz- und Eindeutigkeitssatz. Aus 
dem Beweis lassen sich die wesentlichen Ei-
genschaften der Lösung ablesen. 

Das dritte Kapitel ist eine kompakte, aber 
ausgesprochen gehaltvolle Einführung in die 
klassischen Finiten Differenzen- bzw Finiten 
Volumenverfahren. Die wesentlichen Kon-
vergenzsätze einschließlich der a-priori Feh-
lerabschätzungen werden vollständig bewie-
sen, und sogar die Theorie maßwertiger Lö-
sungen wird vorgestellt. Trotz der Kürze die-
ses Kapitels werden die Ideen klar und an-
schaulich beschrieben. 

In Kapitel 4 wird die Behandlung mehr-
dimensionaler skalarer Probleme vorgestellt. 
Systematisch wird auf dem Dimensionssplit-
ting Ansatz aufgebaut. Zunächst werden die 
in Kapitel 2 vorgestellten exakten eindimen-
sionalen Lösungsoperatoren alterniert, um 
die mehrdimensionale Lösung zu approxi-
mieren. Als nächstes wird das für die ein-
dimensionalen Front-Tracking Operatoren 
durchgeführt, dann für Gleichungen mit 
Diffusion und schließlich für Quellterme. 
Für all diese Fälle werden Konvergenzresul-
tate, zum Teil mit Fehlerabschätzungen, be-
wiesen. 

In den Kapiteln 5 bis 7 behandeln Holden 
und Risebro das Cauchy Problem für ein-
dimensionale Systeme von Erhaltungssät-
zen. Das fünfte Kapitel ist eine gut lesbare 
Darstellung der Lösung des Riemann Pro-
blems, gipfelnd im berühmten Existenzsatz  

von Lax. Im sechsten Kapitel wird das ein-
dimensionale Front-Tracking Verfahren aus 
dem zweiten Kapitel auf Systeme verall-
gemeinert. Wie beim klassischen Glimm-
schen Existenzbeweis ist es für die Konver-
genz auch hier entscheidend, die Interaktio-
nen zwischen kollidierenden Wellen abzu-
schätzen. Diese Abschätzungen wurden in 
den letzten Jahren (unter anderem von den 
Autoren) erheblich vereinfacht, und davon 
profitiert die sehr transparente Darstellung 
des Buches. Im siebten Kapitel folgt dann 
der entscheidende Schritt zum Beweis der 
Wohlgestelltheit des Cauchy Problems: es 
wird gezeigt, dass der mit dem Front-Tra-
cking konstruierte Lösungsoperator stetig in 
der L' Topologie ist. Dieses Kapitel halte ich 
aus Sicht der Analysis für den Höhepunkt 
des Buches. Um den L' Abstand zweier Lö-
sungen zu kontrollieren, wird ein Funktional 
ähnlich dem Glimmschen Interaktionsfunk-
tional eingeführt. Eine Fülle von Interakti-
onsabschätzungen führt nun zur Stabilität 
des Front-Tracking Algorithmus und 
schließlich der Stabilität der schwachen Lö-
sung selbst. Daraus folgt dann (nach erhebli-
cher weiterer Arbeit) die Eindeutigkeit. Die 
Beweise dieses Kapitels folgen im Wesentli-
chen den bahnbrechenden Arbeiten von 
A.Bressan und Mitarbeitern, T.-P. Liu, 
T.Yang und P.LeFloch. 

Das Buch wird durch zwei Anhänge abge-
rundet: In Appendix A werden Funktionen 
beschränkter Variation sowie grundlegende 
Kompaktheitsargumente vorgestellt. In Ap-
pendix B wird ein vollständiger Existenz-
beweis für mehrdimensionale skalare Erhal-
tungssätze mittels der klassischen Methode 
der verschwindenden Viskosität gegeben. 

Jedem Abschnitt sind kurze literarische 
Zitate und Bonmots in einer Vielzahl von 
Sprachen vorangestellt, deren Eigenwillig-
keit die Aufmerksamkeit des Lesers gerade-
zu provoziert. Zunächst habe ich mich daran 
gewöhnen müssen; im Laufe des Buches ha-
be ich aber große Freude daran gefunden 
und war immer schon neugierig auf die 
nächste Uberraschung. 
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Jedes Kapitel wird von sorgfältig aus-
gewählten historischen Notizen und Litera-
turhinweisen ergänzt. Danach folgt eine 
reichhaltige Auswahl von Ubungsaufgaben, 
zu denen in Appendix C sogar Lösungshin-
weise gegeben werden. Das Literaturver-
zeichnis hat mit 148 Arbeiten einen vernünf-
tigen Umfang. 

Das neue Buch von Holden und Risebro 
besticht durch seine klare Linie - die Kon-
zentration auf die Front-Tracking Methode. 
Es ist analytisch anspruchsvoll, rigoros, und 
gut lesbar. Es werden genügend Querverwei-
se gegeben, damit der Nicht-Experte sich ei-
nen breiteren Uberblick über die Analysis 
von Erhaltungssätzen verschaffen kann. Bei 
den numerischen Methoden wird nicht ver-
sucht, einen breiten Uberblick zu geben. Es 
fehlen vor allem die approximativen Rie-
mann-Löser für Systeme und die mehr-
dimensionalen Finiten Volumenverfahren. 
Hierzu sei ergänzend die Lektüre der oben 
erwähnten Bücher von Godlewski-Raviart, 
Kröner, LeVeque oder Toro empfohlen. 

Ich habe das Buch mit großer Freude gele-
sen und empfehle es sowohl Experten als 
auch Studenten zur Lektüre und zum Durch-
arbeiten. Es kann auch als zuverlässige und 
sehr anregende Grundlage für eine einsemes-
trige Hauptstudiumsvorlesung dienen. 

Aachen 	 S. Noelle 

E. Obolaschwili 

Higher Order Partial 

Dhlferential Equations 

in Clifford Analysis 

Progr. Math. 208 

Basel, Birkhäuser, 2002, 208 5., € 83,18 

Das erklärte Ziel dieses Buches besteht da-
rin, den Leser mit komplexen und hyper-
komplexen Methoden zur Behandlung von 
Anfangswert- und Randwertaufgaben für 
partielle Differentialgleichungen vertraut zu 
machen. Bei der Benutzung von Methoden 
der Clifford-Analysis gelingt es, die Kons-
truktion der Lösungen oftmals entscheidend 
zu vereinfachen. Dabei werden auch bislang 
wenig verwendete Clifford-Algebren der 
Form C.5  eingesetzt. 

Das Buch besteht aus vier Kapiteln. Im 
ersten Kapitel werden zweidimensionale 
Randwertaufgaben für holomorphe Funk-
tionen behandelt. Darunter befinden sich je-
weils über speziellen Grundgebieten das Rie-
mann-Problem, das Riemann-H ilbert-Prob-
lem, Dirichlet- bzw. Neumann-Problem, 
aber auch die gemischte Randwertaufgabe 
vom Keldish-Sedow-Typ. Auch die Glei-
chungen der ebenen Elastizitätstheorie von 
Kolosow-Muschelischwili können in Spezi-
alfällen einer Lösung zugeführt werden. Für 
verallgemeinerte holomorphe Funktionen, 
die mit der Yukawa-Gleichung (im Buch irr-
tümlich Helmholtz-Gleichung genannt) ver-
bunden sind, werden Integraldarstellungen 
der Lösung angegeben. Es ist interessant zu 
vermerken, dass auch gemischte Randwert-
aufgaben der Vekua-Theorie abgehandelt 
sind. Die Beltrami-Gleichung und deren 
Analoga von höherer Ordnung sowie Rand-
wertaufgaben für spezielle komplexe Diffe-
rentialgleichungen höherer Ordung werden 
untersucht. Darunter befinden sich Rand-
wertaufgaben pluriholomorpher Funktio-
nen und ein nichtlokales Problem für biholo-
rnorphe Funktionen. 

Im Kapitel 2 wird zunächst die Definition 
einer universellen Clifford-Algebra gegeben. 
Verschiedene Kernfunktionen (Gauß-Weier-
straß, Sommerfeld, Abel-Poisson) werden 
eingeführt und deren Fouriertransformation 
berechnet. Diese sind notwendig, um zu ex-
pliziten Lösungen für entsprechende Rand-
wertaufgaben zu gelangen. Die im Kapitel 1 
zweidimensional betrachteten Fälle werden 
nun höherdimensional durchgespielt. 
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Kapitel 3 ist hyperbolischen, poiy- und 
plurihyperbolischen Gleichungen gewidmet. 
Unter denen befindet sich die Poly-Klein-
Gorden-Gleichung sowie verschiedene har-
monische Versionen dieser Gleichungen. 
Das letzte Kapitel ist vor allem parabo-
lischen und pluriparabolischen Problemen 
gewidmet. Mit Hilfe der Fourier-Transfor-
mation gelingt es unter bestimmten An-
fangs-und Randsituationen in speziellen 
Clifford-Algebren Lösungen explizit zu er-
halten. Abschließend werden Dirichlet-Cau-
chy und Cauchy-Neumann-Probleme für eI-
liptisch-parabolische, und hyperbolisch-pa-
rabolische Probleme gelöst. 

Das Buch stellt eine interessante Samm-
lung verschiedener Anfangs- und Randwert-
probleme für spezielle Klassen von partiellen 
Differentialgleichungen dar, die günstiger-
weise durch Quadraturformeln gelöst wer-
den können. Einschränkend muss festgestellt 
werden, dass die zugehörigen physikalischen 
Modelle nicht oder nur wenig behandelt 
sind. Auch wird auf Lösungstheorie weitest-
gehend verzichtet. Dennoch kann das Buch 
als nützliche Bereicherung für die Ausbil-
dung von Physikern und mathematisch ori-
entierten Ingenieuren angesehen werden. 

Freiberg 	 W. Sprößig 

Y. A. Abramovich, 
C. D.Aliprantis 
An Invitation 

to Operator Theory 

Grad.Studies 
in Math. 50 

Providence, Am. Math. Soc., 2002, 530 5., 
$69,- 

Unter den in den letzten Jahren zur Opera-
tortheorie erschienenen Büchern nimmt der 
zu besprechende Text einen markanten Platz 
ein. Er ist weniger als Forschungsmonogra-
phie, sondern als wohldurchdachtes und 
ausgefeiltes Lehrbuch konzipiert, das we-
sentliche Belange der Operatortheorie in Ba-
nachverbänden beschreibt. Im Vordergrund 
stehen dabei die durch die Ordnungsrelation 
und Topologie erzeugten Eigenschaften; 
Operatortheorie in Hilberträumen wird 
weitgehend ausgeblendet. Die ersten sieben 
Kapitel tragen einführenden Charakter, in 
denen grundlegende Konzeptionen der all-
gemeinen Operatortheorie und im speziellen 
die der Operatortheorie in Banachverbänden 
ausführlich dargelegt werden. 

Kapitel drei ist dem Studium sogenannter 
AL- und AM-Räume gewidmet, wobei AL-
Raum bzw. AM-Raum für „Abstract Lebes-
gue" space und entsprechend für „Abstract 
Maximum" space steht. Als wichtige Mo-
deilfälle dienen die klassischen L 1  (jr)-  und 
C(Q)-Räume. 

Die Kapitel vier und fünf behandeln wich-
tige Klassen linearer Operatoren: endlich-
dimensionale Operatoren, Multiplikations-
operatoren, algebraische und Verbands-
homomorphismen, Fredholmoperatoren, 
strikt singuläre Operatoren im Sinne von T. 
Kato und Integraloperatoren. Daneben wer-
den im fünften Kapitel positive Projektoren 
studiert. Positivität bedeutet hier und im 
Weiteren ausschließlich die durch die partiel-
le Ordnung erzeugte (ein Operator heißt po-
sitiv, wenn er positive Elemente wieder in 
solche überführt). Das sechste Kapitel bein-
haltet die Grundlagen der allgemeinen Spek-
traltheorie linearer Operatoren. Dieses Ka-
pitel findet seine Fortsetzung im siebenten 
Kapitel. Hier werden die Spektren spezieller 
Operatoren beschrieben, wie die von kom-
pakten, strikt singulären Operatoren oder 
die von Verbandshomomorphismen. Gleich-
falls wird in diesem Kapitel auf den Begriff 
des wesentlichen Spektrums eingegangen. 
Das achte Kapitel enthält die Theorie positi-
ver Matrizen, d. h. solcher mit positiven Ein-
trägen, und stellt die Verbindung der Opera- 
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tortheorie in Banachverbänden zur linearen 
Algebra her. Es wurden unter anderem die 
Begriffe irreduzible und primitive Matrix 
eingeführt und das Perron-Frobenius-Theo-
rem bewiesen. Das neunte Kapitel dient der 
Ubertragung der Resultate für irreduzible 
Matrizen auf den unendlichdimensionalen 
Fall und diskutiert eine Reihe tiefliegender 
Fakten. Als Demonstrationsobjekte werden 
hier unter anderem Integraloperatoren he-
rangezogen. 

Im zehnten Kapitel findet das bis heute 
populäre Problem der Existenz invarianter 
Teilräume für lineare Operatoren seinen 
Niederschlag. Es enthält eine detaillierte 
Diskussion dieses Problems sowohl für Ba-
nachräume wie auch für Banachverbände. 
Das letzte und abschließende Kapitel behan-
delt die Daugavetgleichung. 1. K. Daugavet 
entdeckte 1963 folgende Eigenschaft: Jeder 
kompakte Operator T, der im Banachraum 
C[0. 1] aller auf dem abgeschlossenen Inter-
vall {0, 11 stetigen Funktionen wirkt, erfüllt 
die Gleichung 

I + T = 1+ 

Bislang wurden viele weitere Klassen von li-
nearen Operatoren in weiteren Banachräu-
men gefunden, die diese Eigenschaften besit-
zen. Es zeigte sich, dass bei Erfüllung der 
Daugavetgleichung bemerkenswerte Kon-
sequenzen eintreten. Beispielsweise erfüllt 
ein beschränkter Operator T in einem gleich-
mäßig konvexen oder gleichmäßig glatten 
Banachraum die Daugavetgleichung genau 
dann, wenn JITII im Spektrum von T liegt. 
Das gesamte elfte Kapitel ist dem ausführ-
lichen Studium obiger Gleichung vorbehal-
ten, die schließlich auch in Banachverbänden 
diskutiert wird. 

Mehr als 600 Ubungsaufgaben ergänzen 
den Inhalt eindrucksvoll. Ihre Lösung dient 
nicht nur dem besseren Verständnis der dar-
gelegten Theorie, sondern in Teilen auch der 
Erweiterung des Inhaltes des Buches. Dieser 
Aspekt ist den Autoren so wichtig, dass sie in 
einem weiteren Buch „Problems in Operator 
Theory", AMS, 2002, die vollständigen Lö-
sungen aller Aufgaben nachreichen. Obwohl  

sich das Buch vorrangig an Studenten rich-
tet, findet jeder an Operatortheorie und 
Funktionalanalysis interessierte Leser Per-
len in diesem Werk. Es eignet sich vorzüglich 
als Lehrbuch für Operatortheorie und bietet 
Orientierungshilfe für all jene, die sich in die 
Operatortheorie in Banachverbänden ein-
arbeiten möchten. Dieses abgeklärte und au-
ßerordentlich leserfreundlich geschriebene 
Buch hinterlässt einen ausgezeichneten Ein-
druck. Diese Einladung zur Operatortheorie 
hält was sie verspricht - sie liefert in reichem 
Maße Anregungen, Genuss und tiefliegende 
Mathematik. 

Chemnitz 	 B. Silbermann 

Y. A Abramovch. 

C. D.Aipranlls 

Problems in Operator 

Theory 

Grad. Studies 

in Math.51 

Providence, Am. Math. Soc., 2002, 386 S., 
$49,00 

Dieses Buch enthält die vollständigen Lö-
sungen aller Ubungsaufgaben aus Y. A. Ab-
ramovich, C. D. Aliprantis „An Invitation 
to Operator Theory" und ergänzt letzteres 
Buch wesentlich, da dort in einem Teil der 
Ubungsaufgaben weitergehende Fragen an-
geschnitten werden und die Beweise einiger 
Behauptungen aus dem Text in den Ubungs-
teil verlegt wurden. Beide Bücher bilden eine 
Einheit, die dem Leser eine Fülle von Ergeb-
nissen aus der Operatortheorie nahe bringt. 
Als wohl durchdachte und hervorragend 
aufeinander abgestimmte Lehrbücher sind 
sie für einen Einstieg in die Operatortheorie 
bestens geeignet. 

Chemnitz 	 B. Silbermann 
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Dynamics in 
Infinite 
Dimensions 

J. K. Haie, 
LT. Magaihaes, 
W. Oliva 
Dynamics in Infinite 

Dimensions 

Berlin u. a., Springer, 2002, 280 S., € 64,95 

In the preface the authors restrict the general 
title of their book by saying that as in the first 
edition their intent is to present some aspects 
of a geometric theory of infinite dimensional 
spaces with major emphasis on retarded 
functional differential equations (FDEs). 
What is meant are ofcourse some aspects of 
a theory of dynamical systems (semiflows) 
on such spaces. 

The book is a kind of survey which ad-
dresses general, fundamental questions 
about global solution behaviour, in particu-
lar, about attractors, normally hyperbolic in-
variant sets, and generic properties of semi-
flows generated by retarded FDEs. A theme 
which appears naturally and frequently is 
that solution curves of FDEs which start 
from different initial data can merge in finite 
time. lt is not obvious how to overcome the 
difficulties caused by this fact when building 
a reasonably general theory which is guided 
by the results for fiows on finite-dimensional 
manifolds. The authors'attempt to present 
the state of the art provides interesting and 
also impressive insight into a collection ofre-
cent ideas and advanced techniques. 

New in the second edition are neutral 
FDEs and results about Morse-Smale sys-
tems, persistence, nonuniform hyperbolicity, 
monotonicity. Teresa Faria contributed a 
chapter on local theory, about realization of 
vector fields, je., embedding of fiows in 
semiflows of FDEs on center manifolds, and  

about normal forms. KrzysztofRybakowski 
wrote an appendix on the Conley index in 
noncompact spaces. 

The presentation is only partially systema-
tic, and the chapters are rather independent 
from each other, with repetitions of basic 
facts, which the reader may occasionally ap-
preciate. Most proofs are only sketched, 
with references to the literature for some cru-
cial technical parts. There are condensed de-
scriptions oflong, involved proofs which are 
not easy to digest. The history of the results 
presented is carefully noted. 

Pleasant to read are the introductory 
chapters with illustrative examples, the re-
sults on the Levin-Nohel equation, the self-
contained and detailed chapter on realiza-
tion and normal forms, and the elegant ap-
pendix. 

Considering the survey character of the 
book it must be added that several develop-
ments which concern the topics chosen by 
the authors are neither discussed nor men-
tioned. This concerns results on the structure 
of global attractors of fundamental delay 
differential equations, Poincar'e-Bendixson 
type results, hyperbolicity and shadowing 
for noninvertible maps in infinite dimen-
sions, complicated (chaotic) solution beha-
viour for delay differential equations, and 
more. With regard to chaotic solution beha-
viour the reader finds the remark that nu-
merical evidence and some theoretical results 
indicate that there can be chaotic dynamics 
(p. 225). As a matter offact, this has been rig-
orously established for equations of the type 
addressed on p. 225 in the mid-nineties, and 
for similar ones since the early eighties. 

With the caveat that the book is not as ex-
haustive as it may be expected from the title 
and not everywhere up-to-date it can be re-
commended as a useful, sometimes inspiring 
account of a group of general results from 
the evolving theory of dynamical systems on 
infinite-dimensional spaces. 

Gießen 	 H.-O. Walther 
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Jarre Stoer 
Optimierung 

F. Jarre, J. Stoer 
Optimierung 

Berlin, u. a., Springer, 2004, 476 5., €29,95 

Das Buch von Jarre und Stoer ist aus einer 
Reihe von Vorlesungen zum Thema Opti-
mierung entstanden, die teilweise bis auf die 
70er Jahre zurückgehen und die sukzessive 
ergänzt und an moderne Entwicklungen an-
gepaßt wurden. 

Der erste Teil des Buches beschäftigt sich 
mit der linearen Optimierung. Diskutiert 
werden das Simplexverfahren, seine geo-
metrische Interpretation sowie duale Pro-
gramme. Es schließt sich ein Abschnitt über 
Innere-Punkte-Verfahren der linearen Pro-
grammierung an mit einer ausführlichen 
Diskussion des zentralen Pfades, des 
Newton-Verfahrens für das primale-duale 
System sowie zu Konvergenzfragen. Weiter-
hin werden praktische Aspekte, die zur nu-
merischen Realisierung erforderlich sind, be-
handelt. Dieser Teil wird abgeschlossen 
durch Anwendungen der linearen Program-
mierung auf Transportprobleme sowie 
durch Vorstellung einiger Algorithmen zur 
Bestimmung kürzester Wege auf Netzwer -
ken. 

Der zweiten Teil des Buches beschäftigt 
sich mit der unrestringierten nichtlinearen 
Optimierung. Nach einer Diskussion von 
Abstiegsverfahren schließen sich Verfahren 
mit konjugierten Richtungen sowie Trust-
Region-, Newton-, Quasi-Newton- und 
Gauß-Newton-Verfahren an. Die Algorith-
men werden vorgestellt, diverse Detailfragen 
analysiert und die wichtigsten Konvergenz-
resultate bewiesen. 

Teil III führt den Leser zurück in die 
Cundlagen der konvexen Analysis. So wer-
den Trennugssätze untersucht mit dem Ziel, 
hieraus notwendige und hinreichende Opti-
malitätsbedingungen ableiten zu können. 
Als unmittelbare Folgerung ergeben sich die 
KKT-Bedingungen für den differenzier-
baren Fall sowie die Sattelpunkteigen-
schaften der Lagrangefunktion. Hieraus las-
sen sich dann Dualitätsaussagen für konisch 
konvexe und semidefinite Programme ablei-
ten. In einem weiteren Kapitel werden Opti-
malitätsbedingungen verallgemeinert unter 
Zuhilfenahme von Tangentialkegeln. Es fol-
gen dann noch die notwendigen und hinrei-
chenden Bedingungen zweiter Ordnung so-
wie Sensitivitätsbetrachtungen. 

Der vierte Teil des Buches beschäftigt sich 
ausführlich mit restringierten Optimierungs-
verfahren. Im ersten Abschnitt werden Pro-
jektionsverfahren zusammen mit den Spezi-
alfällen affiner Nebenbedingungen und qua-
dratischer Programme eingeführt, wobei all-
gemeine Konvergenzaussagen hergeleitet 
werden. Ein wichtiger Ansatzpunkt zur Be-
handlung nichtlinearer Restriktionen stellen 
Penaltyverfahren dar, die im nachfolgenden 
Kapitel untersucht werden. Speziell werden 
exakte Penaltyfunktionen, erweiterte La-
grangefunktionen und Barrierenfunktionen 
analysiert. Die zuletzt genannten Funktio-
nen führen dann auf primale-duale Innere-
Punkte-Verfahren. Ein weiteres Kapitel be-
handelt die in praktischen Anwendungen 
populär gewordenen SQP-Verfahren, wobei 
hier die erforderlichen Quasi-Newton-Up-
dates und Stabilisierungsmaßnahmen zur 
Konvergenzerzwingung im Vordergrund 
stehen. Darüberhinaus werden global kon-
vergente Trust-Region-Verfahren sowie de-
ren moderne Variante, das Filterverfahren, 
untersucht. 

Ein längerer Abschnitt wird den Innere-
Punkte-Verfahren für konvexe Probleme 
gewidmet. Ausgehend von theoretischen 
Grundlagen wie Zentrenmethode und 
Selbstkonkordanz wird ein Modellalgorith-
mus entwickelt, um an diesem Beispiel poly-
norniale Konvergenz zeigen zu können. Es 
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schließen sich weitere Untersuchungen an, 
um zu einem numerisch implementierbaren 
Verfahren zu gelangen. Hierzu wird ein 
primaler Prediktor-Korrektor-Algorithmus 
eingeführt. 

In einem weiteren längeren Abschnitt wer-
den anschließend semidefinite Programme 
eingeführt und analysiert ausgehend von ei-
nem primalen-dualen Verfahren. Eine Reihe 
von Anwendungen zeigt die Flexibilität die-
ser Betrachtungsweise, speziell Lyapunov -
ungleichung, Eigenwertoptimierung sowie 
Lagrangedualität. Weitere Anwendungen 
von Innere-Punkte-Verfahren auf kombina-
torische Probleme schließen sich an, z. B. 
maximale stabile Mengen, Max-Cut-Proble-
me, Graphenpartitionierung und lineare 
0/ 1 -Probleme. Teil IV des Buches wird abge-
schlossen durch ein Kapitel zu direkten 
Suchverfehren wie Nelder und Mead und 
das Kriging-Verfahren. 

Das Buch enthält 139 Literaturzitate so-
wie zahlreiche Ubungsaufgaben. 

Sichtbar ist die eminente, über mehrere 
Jahrzehnte erworbene Erfahrung und Kom-
petenz der Autoren auf dem Gebiet der Opti-
mierung. So werden altbewährte Methoden, 
die Bestand haben und sowohl für die mathe-
matische Analyse von Optimierungsauf-
gaben als auch deren numerische Lösung 
und Anwendung im Detail beschrieben, bei-
spielsweise das Newton-Verfahren oder be-
kannte Trennungssätze. Darüberhinaus ent-
hält das Buch eine detaillierte Zusammenfas-
sung relevanter neuer Ansätzen der letzten 
Jahre, wobei hier vor allem die Innere-Punk-
te-Verfahren oder die semidefinite Program-
mierung zu nennen wäre. 

Der Schwerpunkt der Abhandlungen liegt 
eindeutig auf dem Bereich der nichtlinearen 
Programmierung. Doch auch Nachbar-
gebiete werden behandelt mit dem Ziel, dem 
Leser einen möglichst breiten Einblick in die 
unterschiedlichsten Facetten der mathemati-
schen Optimierung zu geben. Hierzu zählt 
die lineare Optimierung, die insgesamt vier 
Kapitel umfaßt und neben Simplex- und In-
nere-Punkte-Verfahren auch Transport- und 
Netzwerkprobleme umfaßt. Daneben wer- 

den kombinatorische Probleme, Suchverfah-
ren und diverse Anwendungen zum Beispiel 
auf Lyapunovgleichungen andiskutiert. 

Damit stellt das Buch eine umfassende 
Grundlage für Studenten und Mitarbeiter 
dar, die sich in die mathematische Optimie-
rung einarbeiten wollen. Auch als Begleitlek-
türe zu einer Optimierungsvorlesung kann 
das Buch wärmstens empfohlen werden. 

Bayreuth 	 K. Schittkowski 
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