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Vorwort

Zunichst mochte ich Herrn A. Krieg und allen Mitgliedern des Herausgebergremiums
des Jahresberichts sehr herzlich fiir die geleistete Arbeit danken. Dem neuen Heraus-
gebergremium, das zu Beginn diesen Jahres seine Tatigkeit aufgenommen hat, gehoren
einige Kolleginnen und Kollegen des alten Teams an; zugleich ist es aber auch gelungen,
neue Mitglieder zu gewinnen, die in den nichsten Monaten ihre Ideen zur Gestaltung
des Jahresberichts einbringen werden.

Der Jahresbericht wird auch weiterhin versuchen, ein moglichst weites Spektrum der
Mathematik abzudecken. Dies schlieBt bewusst Bereiche der Anwendungen ebenso ein
wie Berichte iiber Themen der Grundlagenforschung. Neben die Rubriken ,, Ubersichts-
artikel”, ,,Historisches* und ,,Buchbesprechungen* wird ab sofort noch die Sparte ,,Be-
richte aus der Forschung® treten. Den Anfang dieser Beitriige wird in einem der nich-
sten Hefte ein Aufsatz tiber die Arbeit des Matheon in Berlin bilden.

Vor knapp zwei Jahren fand eine Befragung der Leserinnen und Leser des Jahres-
berichts statt, deren Ergebnisse mir Frau Schmickler-Hirzebruch vom Teubner-Verlag
freundlicherweise zur Verfiigung gestellt hat. Gerne werde ich einige der hier geduBerten
Anregungen aufnehmen. Dariiberhinaus bin ich fiir jeden Wunsch und jede Kritik
dankbar, die mich von interessierten Lesern erreicht. Besonders wiirde ich mich auch
iiber Vorschldge zu den Bereichen ,,Mathematik in der Industrie” und ,,Mathematik in
der Schule” freuen.

In diesem Heft finden Sie einen Aufsatz von V. Strassen iiber . Komplexitit und Geo-
metrie bilinearer Abbildungen® sowie einen Nachruf auf Professor Dieter Gaier von
M. von Renteln. Ergénzt werden beide Beitrige durch eine Reihe von aktuellen Buch-
besprechungen.

K. Hulek
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Ubersichtsartikel Historische Beitrage Berichte aus der Forschung Buchbesprechungen

Komplexitadt und Geometrie
bilinearer Abbildungen

Volker Strassen

Abstract

= Keywords and Phrases: algebraic complexity theory, numerical linear algebra, ma-
trix multiplication, bilinear map, rank, degeneration, asymptotic spectrum, reduc-
tive linear group, geometric representation theory, moment map

= Mathematics Subject Classification: 12Y05, 14124, 15A69, 22E46, 53D 20,
65Y 20,68 Q17,68 W30

Complexity and degeneration of bilinear maps may be described asymptotically by a
single data structure: the asymptotic spectrum. We give an introduction to this theory.
As a red thread we use w, the exponent of matrix multiplication.

Eingegangen: 01.01.2004, in iiberarbeiteter Form am 07.03.2004 DMV
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Volker Strassen, Universitit Konstanz; DER DMV
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Ubersichtsartikel Historische Beitrage Berichte aus der Forschung [ Buchbesprechungen

Dies ist die schriftliche Ausarbeitung eines Vortrags fiir ein allgemeines mathemati-
sches Publikum, den ich zuletzt auf der Jahrestagung der DMV in Dresden gehalten ha-
be. Die Fussnoten richten sich an Leser, die es genauer wissen wollen, der Anhang ist ei-
ne Einladung an anwendungsinteressierte Algebraiker und Geometer, sich in den Ge-
genstand einzuarbeiten. Im Anhang gebe ich kurze neue Beweise fiir einige Resultate
des Haupttextes, stelle Vermutungen auf und Beziehungen zu anderen Themen her.

1 Matrixmultiplikation

Wie schnell lassen sich grosse Matrizen multiplizieren, etwa iiber den komplexen
Zahlen? Die Frage wird auf den Punkt gebracht durch den so genannten Exponenten w
der Matrixmultiplikation:

(1) w:=inf{r: L(C"™™) = O(m")}.

Hier steht €™ fir die Multiplikationsabbildung m-reihiger Matrizen, und L(C"™*"™)
bezeichnet ihre Komplexitit, deren natiirliche Definition die minimale Anzahl arithme-
tischer Operationen ist, die zur Berechnung des Produkts zweier generischer Matrizen
ausreicht.'

Das Natiirliche ist nicht immer das Bequeme. Im Folgenden wollen wir beliebige li-
neare Operationen, also Additionen von Zwischenresultaten und Multiplikationen von
solchen mit Elementen des Grundkorpers, kostenlos zur Verfiigung stellen und L ent-
sprechend interpretieren. Diese von Alexander Ostrowski vorgeschlagene Bewegungs-
freiheit bietet erhebliche technische Vorteile und hat keinen Einfluss auf die Werte
asymptotischer Exponenten wie w.

! Das in dieser Arbeit verwendete algebraische Berechnungsmodell griindet auf der Vorstellung ei-
nes gewohnlichen endlichen Computers, der allerdings mit der Fahigkeit ausgestattet ist, Zahlen
aus einer Klasse zugelassener Grundkorper exakt zu speichern und arithmetische Operationen
oder Verzweigungen der Form ,,/ = 0“ in je einem Schritt exakt auszufithren. Das Ergebnis ist
nach einer beschrankten Anzahl von Schritten ebenfalls exakt abzuliefern. Es konnen deshalb
nur algebraische Aufgabenstellungen behandelt werden. Bei gegebener Gewichtung der Rechen-
operationen (zum Beispiel =1) versteht man unter der Komplexitit einer solchen Aufgabe den
minimalen zu ihrer Losung hinreichenden Rechenaufwand. In der Regel hingt der Aufwand ei-
nes Algorithmus von der Eingabe ab, so dass man zundchst iiber diese zu maximieren hat. Bei
der Auswertung von Polynomen und rationalen Funktionen verwendet man statt dessen meist
Unbestimmte als Eingaben und schliesst Verzweigungen aus. Auf diese Weise erhdlt man die ge-
nerische Komplexitit, das heisst den minimalen Aufwand fiir ,,fast alle” Eingaben.

Wir nehmen den generischen Standpunkt ein. Die Hauptresultate dieser Arbeit sind nicht nur
iiber €, sondern Uber einem beliebigen algebraisch abgeschlossenen Korper giiltig, der numeri-
sche Wert von w mag aber von der Charakteristik abhéngen. Die fiir die Anwendungen wichtige
Klasse aller endlichen Korper ist automatisch mitberiicksichtigt: Sie erweist sich als gleichwertig
mit dem (einzigen) Grundkorper €.

Das algebraische Berechnungsmodell und die zugehorigen Komplexititsbegrifte sind das defi-
nitorische Riistzeug der Algebraischen Komplexitiitstheorie. Eine grundlegende Darstellung fin-
det man in der Monographie ,,Algebraic Complexity Theory® von P. Biirgisser, M. Clausen und
A. Shokrollahi [8]. Den Schwerpunkt dieses Buches bilden die unteren Komplexitédtsschranken.
Algorithmische Aspekte werden auch in der Monographie ,,Modern Computer Algebra“ von
J. von zur Gathen und J. Gerhard [16] vortrefflich behandelt.

4 JB 107. Band (2005), Heft 1



V. Strassen: Komplexitat und Geometrie bilinearer Abbildungen

Die praktische Bedeutung der Matrixmultiplikation resultiert vor allem aus ihrer
zentralen Rolle in der Numerischen Linearen Algebra. So ldsst sich zeigen, dass die Ma-
trixinversion, die Auswertung der Determinante, die Berechnung aller Koeffizienten
des charakteristischen Polynoms, die Konstruktion verschiedener Normalformen von
Matrizen samtlich den gleichen asymptotischen Exponenten besitzen wie die Matrix-
multiplikation [32], [28], [2], [21].

Die Beweise hierfiir beruhen auf der Idee der Reduktion eines Problems auf ein an-
deres. Um etwa zu zeigen, dass die Determinantenberechnung nicht viel aufwéndiger ist
als die Matrixmultiplikation, organisiert man einen Standard-Algorithmus zur Deter-
minantenauswertung als rekursive Prozedur entlang einer Blockzerlegung mit Blocken
ungefdhr der halben Matrizengrosse. Das wird so gemacht, dass auf jeder Ebene der Re-
kursion im Wesentlichen nur eine konstante Anzahl von Matrixmultiplikationen halber
Grosse ausgefiihrt werden muss zusammen mit zwei Aufrufen der Prozedur, also zwei
Determinantenberechnungen fiir Matrizen halber Grosse. Man sieht leicht, dass das zu
der gewiinschten Ungleichung zwischen den Exponenten fiihrt. In &hnlicher, wenn auch
bisweilen komlizierterer Weise kann man jedes der oben genannten Probleme auf die
Matrixmultiplikation reduzieren.

Reduktionen in der umgekehrten Richtung sind nicht immer so naheliegend. Zum
Beispiel ist nicht klar, welchen Nutzen ein schneller Determinantenalgorithmus bei der
Multiplikation von Matrizen haben konnte, schon deshalb, weil das letztere Problem
die Auswertung vieler Funktionen (der Koeffizienten der Produktmatrix) erfordert,
wihrend die Determinantenberechnung nur eine einzige Funktion liefert. Trotzdem ist
eine effiziente Reduktion méoglich, und zwar auf Grund der folgenden Ungleichung fiir
die Komplexitit eines Polynoms /" = f(xi, ..., x,) und seiner Ableitungen (Baur-Stras-
sen [2]):

2) L(f,%...%)su(f).

Die Ungleichung wurde urspriinglich bewiesen, um nicht-triviale untere Komplexitéts-
schranken fiir einzelne Polynome mit Hilfe der Gradschranke [33] zu gewinnen: Diese
schitzt die Komplexitit von Polynomen f1, ..., f, in Unbestimmten xi, ..., x, nach un-
ten ab durch den bindren Logarithmus des algebraisch-geometrischen Grades des Gra-
phen der durch (f1, ..., f;) vermittelten polynomialen Abbildung C'— C’.? Die Grad-
schranke liefert die besten Resultate, wenn n und r gleichzeitig gross sind. So erhélt man
zum Beispiel untere Komplexititsabschitzungen der Grossenordnung n log n fiir die Be-
rechnung der Koeffizienten eines Polynoms vom Grade n aus seinen Nullstellen (ele-
mentarsymmetrische Funktionen), die Auswertung eines Polynoms vom Grade » an n
Stellen und die Berechnung des Interpolationspolynoms vom Grad # aus n Stiitzstellen
und zugehdrigen Werten.

2 Der algebraisch-geometrische Grad ist die Anzahl der Schnittpunkte des Graphen mit einem ge-
nerischen affinen Unterraum von €”*" der Dimension r. Gradschranke und Ungleichung (2)
sind auch fiir rationale Funktionen fi, . . ., f, richtig.

3 Beim hier verwendeten Ostrowki-Modell haben die Abschitzungen die optimale Grossenord-
nung.

JB 107. Band (2005), Heft 1 5



Ubersichtsartikel Historische Beitrage Berichte aus der Forschung Buchbesprechungen

Andererseits ist der Grad des Graphen eines einzigen Polynoms einfach der Grad
des Polynoms, so dass eine triviale Komplexitdtsschranke resultiert. Hier kommt die
Ungleichung (2) ins Spiel, indem die Komplexitdt von /" zunichst durch die Komplexi-
tdt von f zusammen mit seinen ersten Ableitungen nach unten abgeschitzt und erst da-
rauf die Gradschranke angewandt wird. Auf diese Weise erhilt man untere Abschit-
zungen der Grossenordnung nlogn fiir die Komplexitit verschiedener interessanter
Einzelpolynome, wie die Potenzsumme 7, x7, die Diskriminante [];;(x; — x;) und
jede elementarsymmetrische Funktion im mittleren Bereich [2]. Die gleiche Abschit-
zung ergibt sich fiir die Interpolation an einer einzigen Stelle [31].

Die Anwendung der Ungleichung (2) auf die Determinantenfunktion zeigt, dass es
nicht viel schwieriger ist, die Determinante einer Matrix der Ordnung m zusammen mit
allen Minoren der Ordnung m — 1 zu berechnen, als die Determinante allein. Nach der
Cramerschen Regel ist also die Matrixinversion nicht viel schwieriger als die Determi-
nantenauswertung. Ein alter Trick reduziert die Matrixmultiplikation auf die Matrixin-
version:

I 4 U /1 -4 4B
I B - I -B
I I

Hier bedeuten 4, B Matrizen der Ordnung m und 7 die entsprechende Einheitsmatrix.
Also lassen sich Matrizen der Ordnung m mittels der Inversion einer Matrix der Ord-
nung 3m multiplizieren.* Kombiniert man die drei beschriebenen Reduktionen, so sieht
man, dass ein schneller Determinantenalgorithmus eine schnelle Matrixmultiplikation
nach sich zieht, wie behauptet wurde.

Kehren wir zum Exponenten w zuriick. Der Standardalgorithmus zur Matrixmulti-
plikation zeigt, dass 3 in der Konkurrenzmenge des Infimums in (1) liegt, woraus w < 3
folgt. Klar ist andererseits w > 2, da jeder Multiplikationsalgorithmus 72> linear unab-
héngige Funktionen zu berechnen hat, ndmlich die Koeffizienten der Produktmatrix.
Keine untere Schranke > 2 ist bekannt, schlimmer noch: Es kénnte L(C"™*™) = O(m?)
gelten.

Die folgende Tabelle zeigt die bisherigen Fortschritte bei der Abschatzung des Ex-
ponenten von oben zusammen mit Hinweisen auf verallgemeinerungsfahige theoreti-
sche Konzepte, die hierzu entwickelt wurden.

* Tatsichlich ist das Argument nicht zwingend fiir das hier verwendete generische Berechnungs-
modell, da man zulassen muss, dass der Giiltigkeitsbereich eines solchen Algorithmus bei Ver-
wendung von Divisionen kleiner ist als der Definitionsbereich (hier GL(m, €)) der zu berechnen-
den rationalen Abbildung (hier die Matrixinversion). Ein schneller Algorithmus fiir die Matrix-
inversion konnte deshalb auf keiner Matrix definiert sein, die die Form der linken Seite der
obigen Matrixgleichung hat. Diese Schwierigkeit kann durch ein Stérungsargument behoben
werden [34], wenigstens fiir den Vergleich der asymptotischen Exponenten.

6 JB 107. Band (2005), Heft 1



V. Strassen: Komplexitat und Geometrie bilinearer Abbildungen

w <

2,81  (1969) [32] Rang

2,79  (1979) [25]

2,78  (1979) (5], [4] Grenzrang

2,55  (1981) [29] 7 — Theorem

2,53 (1981) 26]

2,52 (1982) 27]

2,50  (1982) [9]

2,48 (1987/8) [36], [37] Asymptotisches Spektrum
2,38 (1990) [10] Randomisierung

2 Bilineare Abbildungen

Wir betrachten nun beliebige bilineare Abbildungen
fUxV—W

zwischen endlich-dimensionalen komplexen Vektorrdumen. Interessante solche Abbil-
dungen gibt es wie Sand in der Wiiste; ich erinnere nur an die Multiplikation in assozia-
tiven Algebren oder in Liealgebren. In diesen Fillen verwenden wir die Bezeichnung der
Algebra auch fiir deren Strukturabbildung, schreiben also zum Beispiel € "™ fiir die
Multiplikation m-reihiger Matrizen, C” fiir die koordinatenweise Multiplikation von
Vektoren in €” und, falls F € € [7T] ein Polynom vom Grade # ist, € [T]/(F) fur die
Multiplikation modulo F von Polynomen vom Grad < n.

f ~ g bedeute, dass f und g isomorph sind. Ein Isomorphismus ist natiirlich durch
drei (mit / und g vertrigliche) lineare Isomorphismen gegeben. Sind aber /' und g Multi-
plikationsabbildungen assoziativer Algebren mit 1, so erweist sich /' ~ g als gleichwertig
mit der Isomorphie dieser Algebren.

Die direkte Summe f & g ist in kanonischer Weise definiert: Man schaltet / und g pa-
rallel. Fiir Multiplikationsabbildungen von Algebren entspricht das dem direkten Pro-
dukt der Algebren. Als einfache Illustration diene ein Spezialfall des Chinesischen Rest-
satzes:

3) CT/(T"-)=C&...6C ~C"

firye €,y #0.

Auch das Tensorprodukt f @ g zweier bilinearer Abbildungen verallgemeinert den
entsprechenden Begriff fiir assoziative Algebren. f @ g besitzt eine ,,Blockzerlegung*
derart, dass jeder Block bis auf eine Skalierung wie g aussieht, wihrend der Uberbau
der Skalierungen durch /" modelliert ist. Man veranschaulicht sich das am besten an ei-
nem Beispiel: Matrixmultiplikation der Ordnung 2m kann als Multiplikation 2-reihiger
Matrizen angesehen werden, deren Koeffizienten keine komplexen Zahlen, sondern
Matrizen der Ordnung m sind. Diese Tatsache kénnen wir in der Sprache der Tensor-
produkte elegant so ausdriicken:

2mx2m 252, mxm
C o (28 ;

woraus durch Induktion
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(4) q:Z"xZ” ~ (q:2><2)‘81/

folgt. Verallgemeinernd und etwas vergrobernd kénnen wir sagen, dass grosse Matrix-
multiplikationen hohe Tensorpotenzen von kleinen Matrixmultiplikationen sind. Das
wird uns spéter niitzlich sein.

3 Restriktion und Rang

Was verstehen wir unter der Komplexitdt einer bilinearen Abbildung
[+ U x V—W? Die naheliegende Definition ist: Man wihle Basen fiir U, V, W; dann
ist die Komplexitdt L(f) von f beziiglich dieser Basen der minimale Rechenaufwand,
der zur Berechnung der Koordinaten von f'(u, v) aus den Koordinaten von # und v aus-
reicht. Wie gut, dass wir Linearkombinationen kostenlos verwenden diirfen: L( f) hingt
nicht von der Basenwahl ab, wir haben es mit einer Invariante der Abbildung f zu tun.

Die explizite Definition von L(f) ist ein wenig langatmig, da sie auf dem Berech-
nungsbegriff fusst. Wir machen den Leser nun mit einem Komplexitdtsmass fiir bilinea-
re Abbildungen vertraut, das eine einfachere Definition besitzt als L(f), bei asymptoti-
schen Betrachtungen mit L(f) aber vollig gleichwertig ist. Eine bilineare Abbildung
[+ Ux V—W heisst Restriktion einer weiteren [’ : U’ x V'— W', wenn es lineare
Abbildungena : U — U, 3: V — V'und~: W' — W gibt mit
(5) f(u,v) =~f"(au, Bv).
Wir schreiben dafiir f/* < f”. Ist f Restriktion von /7, so ldsst sich / durch einen einzigen
Aufruf von f’ zusammen mit (fiir uns kostenlosen) linearen Operationen berechnen.

Dies fiihrt uns auf das oben angekiindigte Komplexitatsmass, die bilineare Komplexitiit
oder der Rang von f:

(6) R(f):=min{r:f <C"}.
Die Abbildung C" steht fiir » Zahlenmultiplikationen. Aus /' < €' kénnen wir deshalb
folgern, dass sich f mit r Multiplikationen (nebst linearen Operationen, aber ohne Divi-

sionen) berechnen ldsst. Insbesondere haben wir damit die erste der folgenden Unglei-
chungen eingesehen:

(7)  L(f) < R(f) <2L(f).

Der Beweis der zweiten reduziert sich im Wesentlichen auf den Nachweis, dass wir bei
der Berechnung bilinearer Abbildungen auf Divisionen verzichten kénnen, ohne den
kostenpflichtigen Rechen-Aufwand zu vergréssern [34]. Aus (7) ergibt sich die asympto-
tische Gleichwertigkeit von Rang und Komplexitit, insbesondere

(8) w=inf{r: R(C"™") = 0O(m")}.
Wir empfehlen unseren Lesern, fiir das Folgende einfach den Rang als Komplexitits-
mass zu akzeptieren und sich nicht weiter um den urspriinglichen Berechnungsbegriff
zu kilmmern.

Die Definitionen (5) und (6) gehen auf Gastinels Untersuchung [15] der Struktur des

Algorithmus zur Matrixmultiplikation in [32] zuriick. Eine dquivalente Definition des
Rangs findet sich in [34].>
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Seine grossere Einfachheit ist nicht der einzige Vorteil des Rangbegriffs gegeniiber
dem der Komplexitét; R hat auch bessere formale Eigenschaften als L, ndmlich

(10) R(f ®g) < R(f)+ R(g),
(11) R(f®g) < R(f)- R(g).

Die Subadditivitdt wird von der Komplexitit geteilt, bei der Submultiplikativitit
hingegen versagt die Komplexitdt vollig. Nun ist es gerade diese Eigenschaft, mit der
sich schnelle Algorithmen zur Matrixmultiplikation gewinnen lassen: Angenommen wir
haben ein gute obere Abschitzung fiir den Rang irgendeiner kleinen Matrixmultiplika-
tion, zum Beispiel € >*%. Induktive Anwendung von (11) liefert dann eine gute Abschit-
zung des Rangs hoher Tensorpotenzen von €2*2, also nach (4) grosser Matrixmultipli-
kationen. Nach (8) sind solche Abschidtzungen aber gerade das, was fiir eine gute obere
Schranke fiir w gebraucht wird. Allgemein zeigt der Gedankengang®

(12) R(@™™) <r=m"<r.

Diese Implikation fiihrte im Verein mit R(@€ >*?) < 7 zur ersten nichttrivialen Abschit-
zung des Matrix-Exponenten: w < 2, 81.

4 Degeneration und Grenzrang

Nachdem wir einen zweckmissigen Komplexititsbegriff fiir bilineare Abbildungen
entwickelt haben, wenden wir uns ihrer Geometrie zu. Der Raum aller bilinearen Abbil-
dungen U x V— W zerfillt in Isomorphieklassen.” Jede Isomorphieklasse ist offen in
ihrem Abschluss. Beim Abschliessen wird also ihr Rand disjunkt hinzugefiigt. Er be-
steht wieder aus vollen Isomorphieklassen. Ein wichtiges geometrisches Thema ist die
Frage, welche Isomorphieklassen im Rand von welchen anderen liegen. Man spricht
dann von Degeneration oder Entartung, wobel wir als entartete Entartung noch die
Gleichheit der Isomorphieklassen einschliessen wollen. Das fithrt unmittelbar auf die
folgende Definition: f ist Degeneration von g (< g), wenn f der Limes isomorpher
Kopien von g ist.

Sind /" und g isomorph, so haben die Raume, auf denen f erklart ist, zwingend die
gleichen Dimensionen wie die entsprechenden Raume von g. (Wir wollen sagen: f und g
haben das gleiche Format.) Diese starre Situation wird aufgelockert durch den Begriff
der Aquivalenz: f und g heissen dquivalent, wenn f @ z; ~ g @ z fiir geeignet dimensio-
nierte Nullabbildungen z; und z,. Wir erlauben uns also auf beiden Seiten einer Aqulva-

3 Identifizieren wir / mit seinem Strukturtensor f € U* @ V* ® W, so ist
9) R(f)=min{r:Ip e U,qi € V' wi€ W f= pi®q@w}
i

© Mit Blick auf spitere Verallgemeinerungen ziehen wir (12) der gleichwertigen und kiirzeren For-
mulierung m* < R(C"*™) vor.

"Das sind einfach die Bahnen der Gruppe GL(U) x GL(V) x GL(W) unter der Wirkung
(e, B, ), v) = 2f (o 'u, 7).
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lenz, zunichst die Rdume ohne Schaden fiir die Abbildung zu vergrossern, um so fiir
gleiches Format zu sorgen.

Auch in der Definition der Degeneration wollen wir zulassen, dass f und g zuvor
durch dquivalente Abbildungen ersetzt werden, so dass sie nicht a priori gleiches For-
mat zu haben brauchen.® Hier ist ein Beispiel fiir die Degeneration (bei dem eine solche
Anpassung nicht notig ist):

(13) €[r]/(T") 2T,
denn fiir jede Nullfolge (v;) nichtverschwindender komplexer Zahlen gilt einerseits
C[T)/(T" =) — C[T]/(T")

fir j — oo (plausibel), andererseits ist € [7]/(T" — ;) ~ €" nach (3). Die hinter dem
n-ten Koeffizienten abgeschnittene Polynom- oder Potenzreihenmultiplikation
C[T]/(T") ist also Degeneration der koordinatenweisen Multiplikation in €”". Fiir
n > 2 sind diese beiden Abbildungen keineswegs isomorph (nicht einmal dquivalent),
denn sonst wiren nach einer fritheren Bemerkung die zugehorigen Algebren isomorph,
wihrend doch nur eine von ihnen nicht-triviale nilpotente Elemente besitzt.

Restriktion ebenso wie Degeneration sind Praordnungen (reflexiv und transitiv),
und die Restriktion impliziert die Degeneration.’ Es liegt deshalb nahe, in Analogie zu
(6) ein Funktional R durch

(14) R(f) :=min{r:/<C"}
zu definieren. R( /) bezeichnet man als Grenzrang von f. Ein Beispiel kennen wir schon:
R(C[T]/(T")) <n,

denn das ist gleichbedeutend mit (13).'°

Rang und Grenzrang sind nahe Verwandte: R ist die grosste unterhalbstetige Funk-
tion < R. Damit folgt aus (10) und (11) leicht, dass auch der Grenzrang subadditiv und
submultiplikativ ist. Uberraschender ist, dass in (8) der Rang ebenfalls durch den
Grenzrang ersetzt werden darf (Bini [4]). Damit ergibt sich wie beim Rang eine Methode
zur Abschdtzung von w:

(15) R(€C™™) <r=m"<r.

Besitzt der Grenzrang Vorteile gegeniiber dem Rang? Ja, denn einmal ist R( /) manchmal
strikt kleiner als R(f), so dass (15) effektiver ist als (12). Zum andern stellt die Definition

® Bei Rdumen gleichen Formats tritt dadurch nichts Neues hinzu.
Dass Restriktion und Degeneration nicht identisch sind, siecht man an (13).

"% In (13) wird die Algebra € [T]/(T") durch isomorphe Kopien der Algebra € " approximiert, die
selbst wieder Algebren und deshalb als Algebren isomorph zu €” sind. Im Allgemeinen muss
man bei der Degeneration von Algebren als bilinearen Abbildungen die Kategorie der Algebren
verlassen.

Zum Beispiel wiirde sonst aus /< €” folgen, dass /' kommutativ ist, denn Kommutativitit ist
eine abgeschlossene Eigenschaft, die unter Algebrenisomorphie erhalten bleibt. Tatsdchlich ist
aber jede bilineare Abbildung, insbesondere jede Algebra, Degeneration von €” fiir geniigend
grosses n. Das gilt fiir die Restriktion, wie man aus der Definition (9) abliest, und die Restriktion
impliziert die Degeneration.
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(14) einen Bezug zur geometrischen Darstellungstheorie her, so dass der etwas enge Pfad
der Komplexitatstheorie der Matrixmultiplikation sich zu einer breiteren Landschaft
mathematischer Kompetenz und Schonheit 6ffnet. (Siehe zum Beispiel Kraft[22].)

Der Begriff des Grenzrangs wurde in analytischer Form von Bini, Capovani, Lotti,
Romani [5] eingefiihrt.!! Diesen Autoren selbst gelang mit Hilfe von (15) nur eine kleine
Verscharfung von w < 2,81, ndmlich w < 2,78, deren Eindriicklichkeit von einer kurz
vorher von Pan [25] erzielten Ungleichung w < 2,79 noch geschmélert wird. Wéhrend
aber Pans Methode ohne nachhaltige Wirkung blieb, wurde der Begriff des Grenzrangs
der Ausgangspunkt aller folgenden Untersuchungen und fiihrte in den Hénden von
Schonhage bald zu einem Quantensprung bei der Abschidtzung von w. Schonhages me-
thodische Innovation, das sogenannten 7-Theorem [29], ist eine Verallgemeinerung von
(15):

(16) R(EPC" ") <r=> mi<r

Das 7-Theorem unterscheidet sich von (15) durch die Einbeziehung direkter Sum-
men. Wire der Grenzrang additiv statt nur subadditiv, so wére das 7-Theorem eine ein-
fache numerische Konsequenz von (15). Wie die Dinge liegen, musste Schonhage eine
neuartige Rekursionstechnik entwickeln, um (16) zu beweisen. Umgekehrt konnte man
die Giiltigkeit des 7-Theorems als eine Art asymptotischer Riickendeckung fiir die Ad-
ditivitit des Grenzrangs ansehen. Uberraschenderweise zeigt Schonhage in der gleichen
Arbeit an einem Beispiel, dass der Grenzrang nicht additiv ist. Der Schwerpunkt dieses
Beispiels ist eine Grenzrangabschiatzung, die die Form der Pridmisse des 7-Theorems
hat; setzt man diese Grenzrangabschidtzung in das 7-Theorem ein, so erhilt man
w< 2,55.12

" Die geometrische Definition (14) findet sich in [36], siche auch [35] und Alder (1.

12 Tatsichlich formulieren und beweisen Bini, Capovani, Lotti, Romani und Schonhage ihre Re-
sultate nicht nur fiir quadratische, sondern fiir beliebige rechteckige Matrixmultiplikationen:
Mit der Schonhage-Notation

(m,p,q) : ©"™P x C"*9 — €™

fiir die Multiplikation von (m x p)- mit (p x g)-Matrizen lautet die allgemeine Fassung von
Schonhages 7-Theorem

(7) RED mispi ) < r=3 (mipia)”” <.

/]

(17) kann durch Bildung von Tensorpotenzen aus (16) mit Hilfe eines Resultats von Hopcroft-
Musinski [18] gefolgert werden. Dieses driickt die Symmetrieeigenschaften des Grenzrangs und
des Matrixtensors aus:

(18)  R(ED (mi.pinai)) = RED (pir gi.m1))-

i

Schonhages Grenzrangabschétzung, die einerseits die Additivitdt des Grenzrangs widerlegt und
andererseits w < 2, 55 liefert, ist

(19) R((4.1,4)&(1,9,1)) < 17.
Dabei sieht man leicht R((4,1,4)) = 16 und R((1,9,1)) = 9 ein.
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Ausser in trivialen Féllen ist das 7-Theorem niemals scharf (d. h. in seiner Konklu-
sion kann man stets < durch < ersetzen), wie Coppersmith-Winograd [9] aufgedeckt ha-
ben. Mit Hilfe einer quantitativen Fassung dieser Aussage gelang ihnen der Beweis der
»Meilenstein-Abschiatzung™ w < 2, 5.

Nun wollen wir erkldren, was wir unter asymptotischer Betrachtungsweise im Zu-
sammenhang mit beliebigen bilinearen Abbildungen verstehen. Bei der Matrixmultipli-
kation gibt es kein Problem, weil diese Abbildungen eine unendliche Folge bilden. Eine
natiirliche Verallgemeinerung wird durch (4) nahegelegt: Wir konnen jede bilineare Ab-
bildung f als das erste Glied der Folge ihrer Tensorpotenzen ansehen. Das fiihrt auf die
folgenden Definitionen des Exponenten

(20) w(f) :=inf{r: R(f®) = O((2")")}
und des asymptotischen Rangs (Gartenberg [14])
(21) R(f):=LmR(f*)"".

Einfache Uberlegungen zeigen

(22) R(f)=2V

und
(23) w=w(C?>?).

Exponent und asymptotischer Rang von f* spiegeln die Berechnungskomplexitit hoher
Tensorpotenzen von f wider: Statt R hiatten wir auf Grund von (7) in beiden Definitio-
nen auch L schreiben kdnnen. Wie beim Matrixexponenten diirfen wir R aber auch
durch R ersetzen, ohne die Definitionen zu verfilschen.'® Um einer Inflation der Begrif-
fe vorzubeugen, wollen wir im Folgenden auf die Komplexitit, den Rang und den
Grenzrang verzichten zugunsten der Degeneration als Inbegriff der Geometrie und dem
Exponenten (bzw. dem dazu dquivalenten asymptotischen Rang) als Inbegriff der
Komplexitdt. Wie konnen wir dann Schonhages 7-Theorem (16) formulieren? Einfach
s0:

24) PCrmidC=> mi<r.

5 Asymptotisches Spektrum

Inspiriert durch die K-Theorie verschieben wir unsere Aufmerksamkeit von indivi-
duellen bilinearen Abbildungen auf deren Aquivalenzklassen. Die Menge'* dieser Klas-
sen bezeichnen wir mit B. Die direkte Summe und das Tensorprodukt bilinearer Abbil-

'3 Hierfiir geben wir im Anhang (Satz 7) einen kurzen Beweis.
!4 Man reprisentiere jede Klasse durch eine Abbildung zwischen numerischen Raumen.
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dungen induzieren Operationen in B, die wir als Addition und Multiplikation deuten.
So wird B zu einem kommutativen Semiring, mit der Klasse von @° (triviale bilineare
Abbildung) als Nullelement und der Klasse von €' (Multiplikation in @) als Einsele-
ment. Die Klasse von €" ~ C & ... 3 € ist nichts anderes als die natiirliche Zahl
n =1+ ...+ 1, interpretiert im Semiring B.

Es bereitet keine Schwierigkeiten, die Degeneration, den Exponenten und den
asymptotischen Rang auf B zu iibertragen. Auf diese Weise erhalten wir eine partielle
Ordnung <, die mit Addition und Multiplikation vertréglich ist, sowie zwei numeri-
sche Funktionen w und R auf B. Um sparsam zu sein, wollen wir in Notation und Spra-
che keinen Unterschied machen zwischen bilinearen Abbildungen und ihren Aquiva-
lenzklassen. Wir werden also wie bisher von Abbildungen sprechen, aber in der Regel
deren Aquivalenzklassen meinen. So kénnen wir auch die Formeln (22) bis (24) einfach
iibernehmen.

Auf Grund seiner Definition (21) erbt der asymptotische Rang die Eigenschaften,
subadditiv und submultiplikativ zu sein, vom Rang. Es zeigt sich, dass R eine zusatzli-
che Tugend besitzt: Nach Einschrinkung auf irgendeinen Unter-Semiring von B, der
von einem einzigen Element f erzeugt wird, ist R additiv und multiplikativ. Fir
f = €2 folgt das aus dem 7-Theorem, fiir beliebige / aus einer Verallgemeinerung sei-
nes Beweises.

Vielleicht kommt dem Leser in den Sinn, dass das Maximum-Funktional, etwa auf
dem Semiring C*(A) der nichtnegativen stetigen Funktionen auf einem kompakten
Raum A, die gleichen Eigenschaften besitzt. (Offenbar ist es subadditiv und submulti-
plikativ. Ist ferner /' € C*(A), so wird das Maximum dieser Funktion an einem Punkt
6 € A angenommen. Der von f erzeugte Unter-Semiring von C*(A) besteht aus allen
nichtnegativ ganzzahligen Polynomen in f, die natiirlich alle in 6 maximal sind. Also
stimmt das Maximum-Funktional auf diesem Unter-Semiring mit der Auswertung an
der Selle ¢ tiberein und ist deshalb additiv und multiplikativ.)

Es besteht somit eine formale Analogie zwischen zwei ganz verschiedenen Situa-
tionen: Auf der einen Seite Klassen bilinearer Abbildungen mit einem Funktional,
das auf deren Komplexitit beruht, auf der andern Seite nichtnegative stetige Funk-
tionen mit dem Maximum-Funktional. Gibt es vielleicht einen tieferen Zusammen-
hang?

In der Tat, und der Schliissel dazu ist eine asymptotische Spielart der Degeneration,
die wir asymptotische Degeneration nennen und mit < bezeichnen:

o(v)
(25) fLg: =< P g™
1

[39)

In Worten: f ist asymptotische Degeneration von g, wenn f®” Degeneration einer direk-
ten Summe von wenigen Kopien von g ist.

Natiirlich impliziert die Degeneration die asymptotische Degeneration. Auch letzte-
re ist eine Partialordnung in B, die mit Addition und Multiplikation vertréglich ist. Der
fundamentale Unterschied zwischen < und < kommt erst zum Vorschein, wenn wir B
zu einem Ring erweitern. Ahnlich wie der Semiring der natiirlichen Zahlen eingebettet
ist in den Ring der ganzen Zahlen, kann der Semiring B kanonisch eingebettet werden
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in einen kommutativen Ring R, so dass R = B — B.!5 Uberraschenderweise lisst sich
die asymptotische Degeneration < eindeutig zu einer mit den Ringoperationen vertrig-
lichen Partialordnung auf R fortsetzen. (Fiir die Degeneration ist das nicht méoglich,
wie Biirgisser [7] gezeigt hat). Diese Fortsetzung bezeichnen wir wieder mit <. Sie erfiillt
eine technische Bedingung, die R in einen so genannten Stone-Ring verwandelt. Die Ar-
beit, die fiir einen Beweis dieser Tatsachen investiert werden muss, bringt einen erhebli-
chen Mehrwert: Wir kdnnen die schone Strukturtheorie fiir Stone-Ringe ins Spiel brin-
gen, die von Stone, Kadison und Dubois [30], [20], [3] entwickelt wurde.

Um nicht immer alle moglichen bilinearen Abbildungen gleichzeitig im Auge behal-

ten zu miissen, formulieren wir unser Hauptergebnis [37] relativ zu einem Untersemiring
Svon B.

Spektralsatz 1. Zu jedem Semiring S von bilinearen Abbildungen gibt es einen kom-
pakten Raum A(S) und einen Homomorphismus

p: S—CT(A(S))

von S in den Semiring der nichtnegativen stetigen Funktionen auf A(S) derart, dass p(S)
Punkte trennt und dass gilt:

(26) Vf,geS fdg= o(f) <pl(g).

A(S) (zusammen mit ¢) ist bis auf kanonische Isomorphie eindeutig bestimmt und
heisst das asymptotische Spektrum von S. Sind fi, ..., f; bilineare Abbildungen, so be-
zeichne A(f1,..., f;) das asymptotische Spektrum des von f, ..., f, erzeugten Semi-
rings. Aus der Spektraltheorie folgt, dass A(f}, ..., f;) eine natiirliche Realisierung als
kompakte Teilmenge des IRY besitzt.'®

Offenbar gibt das asymptotische Spektrum erschopfende Auskunft tiber die asymp-
totische Degeneration bilinearer Abbildungen: Sind f,g € S, so bestimme man ¢(f)
und ¢(g). Gibt es dann einen Punkt 6 € A mit o(f)(6) > ¢(g)(8), so ist / keine Degene-

'3 Hierzu braucht man die additive Kiirzungsregel. Nun gilt sogar: Jede bilineare Abbildung ist im
Wesentlichen eindeutig bestimmte direkte Summe von direkt unzerlegbaren Abbildungen. (Fiir
halbeinfache Algebren ist das die Eindeutigkeitsaussage des Satzes von Wedderburn.) Die addi-
tive Struktur von B ist also die eines freien kommutativen Monoids.

16 Wie berechnet man diese Realisierung? Der von fi, ..., /, erzeugte Semiring besteht aus allen
P(fi,....fy), wo P(xi,...,x,) ein Polynom mit natiirlichen Koeffizienten ist. A(fi,...,
/) € IR? wird nun durch die Menge aller Ungleichungen zwischen Polynomen mit natiirlichen
Koeffizienten

(27) P(.Xl,. .- ,Xq) < Q(xlw . -7-xq)
ausgeschnitten, fiir die gilt

(28) P(f1,--.fq) 2 QN1 o)

Der Homomorphismus ¢ ordnet jeder bilinearen Abbildung P(fi,....f;) € S die Einschrin-
kung von P(xi,...,x,) auf A(f,....f;) zu; auf Grund der obigen Beschreibung von
A(f1, ..., fy) ist o wohldefiniert.

Natiirlich ist es in der Regel einfacher, dussere Abschitzungen von A(fi,....f,) zu gewinnen als
innere, denn im ersten Fall braucht man nur einzelne Degenerationen vom Typ (28) aufzuzeigen,
wihrend man sich im zweiten Fall gegen alle gleichzeitig wehren muss.
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ration von g, nicht einmal eine asymptotische; ist andererseits ¢( /) < ¢(g), so hat man
wenigstens asymptotische Degeneration.

Aber auch der Exponent w(f) ldsst sich vom asymptotischen Spektrum ablesen,
denn die frither beobachtete Analogie zwischen dem asymptotischen Rang und dem
Maximum-Funktional erhértet sich wie folgt:

Korollar 2. Vf € S %) = R(f) = maxp(f).

Der Spektralsatz in Verbindung mit dem Korollar weisen das asymptotische Spek-
trum gleichsam als magnetischen Nordpol aus, an dem sich sowohl die Geometrie der
bilinearen Abbildungen als auch ihre Komplexitét orientieren.

Wir haben frither bemerkt, dass der asymptotische Rang einer Abbildung f ebenso
gut asymptotischer Grenzrang von f heissen konnte. Damit besitzt er auch eine geo-
metrische Deutung, ndmlich als geeignet normierte Minimalzahl von Zahlen-Multipli-
kationen, aus denen sich hohe Tensorpotenzen von f degenerieren lassen (im Limes).
Als Eselsbriicke diirfen wir R () vielleicht als asymptotischen Preis von f (in der Wih-
rung der Zahlen-Multiplikationen) interpretieren. In dieser Sprechweise lautet die zwei-
te Gleichung des Korollars so:

(29) asymptotischer Preis von /' = maxp(f).
Es gilt auch das gespiegelte Resultat:
(30) asymptotischer Wert von / = min ¢(f),

wobei der asymptotische Wert von f die normierte maximale Anzahl von Multiplikatio-
nen beschreibt, die man aus hohen Tensorpotenzen von f durch Degeneration heraus-
pressen kann. Natiirlich liegt der Wert stets unter dem Preis, und das Verhiltnis kann
beliebig klein werden.'”

6 Halbeinfache Algebren

Wenden wir die Spektraltheorie als Erstes auf den Semiring der halbeinfachen asso-
ziativen Algebren an! Wie sieht sein asymptotisches Spektrum aus? Ein Satz von Wed-
derburn lehrt, dass die halbeinfachen Algebren tiber € bis auf Isomorphie gerade die
direkten Summen von Matrixalgebren € " sind. Nach (4) sind grosse Matrixmultipli-
kationen ,,beinahe* Tensorpotenzen von €2*. Der Semiring der halbeinfachen Alge-
bren wird also ,beinahe* von @€?*? erzeugt. Das geniigt zum Nachweis, dass das
asymptotische Spektrum der halbeinfachen Algebren kanonisch isomorph ist zum
Spektrum der zweireihigen Matrixmultiplikation, also als kompakte Teilmenge der reel-
len Zahlengeraden realisiert werden kann. Mit der Abkiirzung A := A(halbeinfache
Algebren) erhalten wir

(31) A=AC*>?) CR,

'7 Zum Beispiel hat die Matrixmultiplikation (1,n,1) (Skalarprodukt) den asymptotischen Preis n
und den asymptotischen Wert 1.
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wobei die getroffene Identifikation zu folgender Beschreibung des Homomorphismus ¢
fihrt:
(32) SD(ajnxn) = xlogzn K
Konnen wir einen Punkt von A aufspiiren? Ja, den grossten, denn aus der obigen Be-
schreibung von A und ¢ folgt mit Korollar 2 und (23)
(33) maxA = max A(€C¥?) = max x = maxp(C>?) =2¢,

A(¢2x2)
inbesondere

(34) 2¢€eA.

Diese Tatsache, die sich fast miihelos aus der Spektraltheorie ergibt, erlaubt einen
3-Zeilen-Beweis des 7-Theorems (24), sogar in der folgenden verallgemeinerten Form:'®
(35) @q’:mixmi < @q:njxnj:}Zmiw < anw

z J i F
Das geht so: Zunichst liefert der Spektralsatz 3, (€ ") < 37 o(C€"*"), also nach
(32)

(36) Z XE " Z x'o82" auf A.
i J

Nun werte man an der Stelle 2 € A aus.

Es ist nicht zu erwarten, dass wir A schon heute vollstindig bestimmen konnen,
denn wir kennen sein Maximum 2“ nicht genau. Der nichste Satz [37] macht das Beste
aus dieser Situation.

Satz 3. A(halbeinfache Algebren) = [4,2%].

Bei Kenntnis des Matrix-Exponenten gibt der Satz vollstindig Auskunft tiber die
asymptotische Degeneration halbeinfacher Algebren. Aber auch ohne diese Annahme
erhalten wir interessante Information, zum Beispiel, dass 4 der asymptotische Wert von
C?2*? ist. (Das kann man mit einer zu (33) gespiegelten Schlusskette einsehen.) Anders
als der Zyniker, der nach Oskar Wilde von jedem Ding den Preis und von keinem den
Wert kennt, wissen wir also iiber den asymptotischen Wert von € ?*? genau Bescheid,
wihrend unser Blick auf den asymptotischen Preis durch unsere mangelhafte Kenntnis
von w getriibt ist.

Uberraschenderweise kénnen wir das linke Ende von A dazu benutzen, um das
rechte Ende schérfer einzugrenzen, namlich durch die Abschédtzung w < 2,48. Das da-
bei verwendete Verfahren [36] heisst Laser-Methode, da es an die Erzeugung von Laser-
Licht aus inkohdrenter Quelle erinnert. Coppersmith-Winograd [10] haben die Laser-
Methode vervollkommnet: Mit einer raffinierten probabilistischen Konstruktion bewie-
sen sie w < 2,38, den derzeitigen Weltrekord. (Siehe auch Biirgisser, Clausen,
Shokrollahi [8].)

'8 Schonhages 7-Theorem (24) erhdlt man, wenn man alle n; = 1 annimmt und in der Primisse <
durch das schirfere <ersetzt.
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Der dornigste Teil des Beweises von Satz 3 besteht in dem Nachweis, dass auch die
Punkte im Innern des Intervalls [4,2¢] zum Spektrum gehoéren. Diesen fiihren wir auf
dem Umweg iiber das asymptotische Spektrum samtlicher (auch nicht-quadratischer)
Matrixmultiplikationen. Wir zeigen, dass dieses Spektrum, das als kompakte Teilmenge
des IR? realisiert werden kann, logarithmisch sternférmig ist. Daraus folgt leicht die
Konvexitdt von A.

Kann man auch diese Information zur Abschidtzung von w benutzen? Ohne Zweifel!
Wenden wir auf Satz 3 den Spektralsatz in Verbindung mit (32) an, so erhalten wir ein
7-Theorem fiir quadratische Matrixmultiplikationen, welches ich vollendet nennen
mdochte, denn es ist eine Aquivalenz von Aussagen und enthilt zudem wirklich ein 7:'°

(37) DT PCPMe=Vre2w] Y om’ <> nf.
i J i Jj

Hier liegt ungenutztes Kapital! Halbeinfache Algebren kommen in vielen Verkleidun-
gen vor, nicht nur als direkte Summen von Matrixalgebren, sondern zum Beispiel auch
als Gruppenalgebren beliebiger endlicher Gruppen oder als 4/rad(A) fir beliebige as-
soziative Algebren 4. Verkleidungen bedeuten Isomorphismen, und wo Isomorphismen
sind, da sind auch Degenerationen.

7 Punkte im Spektrum

Das klingt wie ,,Leben auf dem Mars“. Haben wir denn nicht gerade kontinuierlich
viele Punkte im Spektrum der halbeinfachen Algebren gefunden, namlich ein ganzes In-
tervall [4,2¢]?

Nicht unbedingt: Ist w = 2 (zur Freude der Algorithmiker, zur Enttiuschung der
Mathematiker), so verkiimmert das Intervall zu einem einzigen trivialen Punkt, und
schon ist die Mehrzahl ,,Punkte” fehl am Platz. In diesem Abschnitt wollen wir nach-
weisen, dass asymptotische Spektren im Allgemeinen nicht trivial sind.

Ebenso wie wir eine lineare Abbildung nach Basen-Wahl durch eine Matrix darstel-
len konnen, ldsst sich eine bilineare Abbildung f durch eine raumliche Matrix beschrei-
ben, den so genannten Koordinaten-Tensor (f;#) von f. Wir definieren den Trédger von
Jf als die Menge aller Tripel (7,7, k) mit fz # 0. Die Abbildung f heisse schrdig, wenn es
Basen gibt, fiir die der Trdger von f eine Antikette ist bezliglich der Produktordnung
von N°. Das bedeutet, dass es keine zwei verschiedenen Punkte (i,;, k) und (p,q,r) im
Tréger von f gibt, so dass koordinatenweise gilt (i,/, k) < (p,q,r). Nehmen wir zum
Beispiel fiir die Abbildung f = C€[7]/(T") zweimal die Basis (1,T,...,T"") (fir U
und V) und einmal die Basis (7"°!,..., 1) (fiir W), so ist der Triger eine Antikette,
namlich {(i,j,k) € N*:i+4j+k=n—1}. Also ist ©[T]/(T") schrig. Die schrigen
Abbildungen bilden einen Semiring. Nach dem Chinesischen Restsatz sind deshalb alle

'Y Hat die linke Seite von (37) speziell die Gestalt @, C"*mid €', so liefert (37) die Umkehrung
von Schoénhages 7-Theorem (24) nach Ersetzung der Degeneration durch die asymptotische De-
generation. Im Allgemeinen ist die Quantifizierung auf der rechten Seite von (37) natiirlich nicht
tberflissig.
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C[T]/(F) schrag. Ebenso leicht sicht man, dass alle halbeinfachen Algebren schrig
sind.

Sei nun 6 ein Punkt im Standard-Zwei-Simplex (mit anderen Worten: € R sei ein
Wabhrscheinlichkeitsvektor) und sei f eine schrage Abbildung. Wir wihlen Basen so,
dass der Trédger von f eine Antikette ist, und definieren

(38) (6, f) := max 2 Yo O ()

wobei P iiber alle Wahrscheinlichkeitsmasse auf dem Trager von f (einer Teilmenge
von N3) variiert, die B, die drei Randverteilungen von P sind und H die Entropiefunk-
tion bezeichnet. Es zeigt sich, dass ((f, /) nicht von der (zuldssigen) Basenwahl ab-
hingt, so dass wir ein Funktional {(#, —) auf dem Semiring aller schragen bilinearen
Abbildungen erhalten. Dieses Funktional erweist sich als Homomorphismus von Semi-
ringen und als monoton beziiglich <.%°

Das geniigt, um Folgendes zu zeigen: Sind fi, . .., f; schrige bilineare Abbildungen,
so ist ¢(0) := (¢(6, f1),....¢(0, f3)) € R? ein Punkt des asymptotischen Spektrums
A(fi,. .. ,fq).zl Es ist leicht zu sehen, dass ((6) stetig von 6§ abhéngt; wir erhalten also
ein singuléres 2-Simplex des kompakten Raumes A(f1,. .., f;). das wir das Trager-Sim-
plexvon A(fi,. .., fy) nennen.

Schrigheit ist keine generische Eigenschaft, aber viele prominente Abbildungen sind
schrédg. Das Bild des Trager-Simplexes ist dann ein Hindernis fiir die asymptotische De-
generation, insbesondere fiir die Degeneration. Selbst in einfachen Fillen ist dieses Bild
topologisch nicht trivial. Zum Beispiel sieht fiir die Gesamtheit aller Nullalgebren (die
Radikale haben Codimension 1) und ihrer Rotationen (die Koordinaten-Tensoren wer-
den gedreht) das Bild des Trédger-Simplexes aus wie ein dreieckiges Taschentuch, das
man zu einer Pyramide hochgefaltet hat mit Selbstdurchdringungen entlang der Kan-
ten. Es handelt sich um eine Homotopie-2-Sphére.

Eine bilineare Abbildung /" heisse straff, wenn beziiglich geeigneter Basen Folgendes
gilt: Es gibt injektive ganzzahlige Funktionen «f(i), [3(j), ~y(k) derart, dass
a(i) + B(j) + v(k) = 0 fiir alle Punkte (i,j, k) aus dem Triger von f. Ordnet man die
Basen so an, dass a(i), 5(j) und (k) monoton wachsen, so sieht man auf einen Blick,
dass straffe Abbildungen schréig sind. Am Tréager von C[T]/(T"), den wir oben aus-
gerechnet haben, lesen wir ab, dass € [T]/(T") straff ist. Da auch die straffen Abbildun-
gen einen Semiring bilden, sind alle € [T]/(F) straff. Ahnlich zeigt man, dass alle halb-
einfachen Algebren straff sind. Fiir straffe Abbildungen haben das asymptotische Spek-
trum und das Bild des Tréger-Simplexes die gleichen (beziiglich der Produktordnung in
IRY) minimalen Punkte [38]:

20 Hierfiir geben wir im Anhang einen kurzen Beweis.
2! In der Tat: Gilt (28), so ist

P(6) = ¢(6,P(fi,---.0q) ¢(h,-) Homomorphismus von Semiringen
< €6,0(f,---,14) (28) und ¢(#.,-) monoton
= 0(¢(0)).

Das ist (27) an der Stelle ().
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Satz 4. Seienfi, ..., f, straffe bilineare Abbildungen. Dann gilt
min A(f1,..., fg) Cim¢ C A(f1,..., 1)

Manchmal geniigt dies, um ein Spektrum vollstdndig zu berechnen, wie in dem fol-
genden Fall. Zunéchst definieren wir eine Funktion z von den natiirlichen zu den positi-
ven reellen Zahlen durch

p =1 _am-1)3
z(m) ==—
(m) P
wo p die einzige positive Losung von

)

1 m m—1

p—1 -1 3

ist. z kann mit Newton-Iteration effizient berechnet werden. Hier sind ein paar Werte:

I’)’l— zZ\lm) =
2 1,89
3 2,76
4 3,61
5 4,46
6 5,31
7 6,16
8 7,00
9 7,85
10 8,69
100 84,4

1000 842

Wie Sie sehen, ist z(m) stets kleiner als m. Der folgende Satz [38] zeigt, dass das kein
Zufall ist.

Satz 5. Sei F € C[T) ein Polynom positiven Grades mit der Primfaktorzerlegung
F= ﬁlj(T —a;)™,

wobei die «; paarweise verschieden sind. Dann ist
A [T)/() = 3 2m). 3

Beachten Sie, dass der rechte Endpunkt des Spektral-Intervalls einfach der Grad des
Polynoms ist und dass keiner der Endpunkte eine ,,fuzzy number” enthilt wie das w in
Satz 3. Wollen wir entscheiden, ob eine direkte Summe von Tensor-Potenzen von
€ [T]/(F) in eine andere asymptotisch degeneriert, so miissen wir nur die entsprechen-
den Polynome auf dem in Satz 5 mitgeteilten Intervall vergleichen. Das kann zum Bei-
spiel mit Hilfe des Sturmschen Algorithmus geschehen.
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Wir scheinen unseren roten Faden, die Matrixmultiplikation, verloren zu haben.
Tatséchlich ist das nicht der Fall: Ebenso wie der linke Endpunkt des Spektral-Inter-
valls in Satz 3 der Schliissel ist fir die Abschdtzung w < 2,48, so ist der linke Endpunkt
des Intervalls in Satz 5 im Fall F = T2 der Schliissel fiir die Abschitzung w < 2,39 in
Coppersmith und Winograd [10]. (Dieser Pointe zuliebe habe ich die Chronologie auf
den Kopf gestellt: Zum Beweis der ersten Inklusion in Satz 4 und damit zur Bestimmung
des linken Endpunktes in Satz 5 wurde die Methode von Coppersmith und Winograd
verwendet.)

Vermutungen spornen an! Hier ist eine, deren Richtigkeit w = 2 implizieren wiirde.
(Es handelt sich eigentlich um eine Befiirchtung, und zum Gliick ist sie vermutlich
falsch.)

Vermutung 6. Fiir straffe bilineare Abbildungen besteht das asymptotische Spektrum
aus dem Bild des Trager-Simplexes.

Was unseren Titel ,,Komplexitit und Geometrie bilinearer Abbidungen® betrifft, so
hat die vorangehende Diskussion gezeigt, wie schwierig es wire, geometrische und kom-
plexitdtstheoretische Aspekte tiberhaupt zu trennen. Wéhrend die Komplexititstheorie
vielleicht den grosseren Nutzen aus dieser Symbiose zieht, kann auch die Erforschung
der Bahngeometrie bilinearer Abbildungen davon profitieren: Der asymptotische Ge-
sichtspunkt und der Begriff des asymptotischen Spektrums bieten eine neue Einfachheit
und eine Reihe faszinierender neuer Probleme.

Anhang

Einige der hier gegebenen Beweise sind (im Unterschied zu denen in der Literatur)
nicht ohne weiteres fiir endliche Charakteristik giltig.

Zu Kapitel 5

Wir erhalten eine zu (25) gleichwertige Definition, wenn wir auf der rechten Seite die
Degeneration durch die Restriktion ersetzen (Proposition 5.10 von [36], siehe auch Bini
[4] und Alder [1]).

Fiir dieses Resultat geben wir einen kurzen Beweis. Es ist ratsam, bilineare Abbil-
dungen f : U x V — W durch ihre Strukturtensoren /' € U* ® V* @ W zu représentie-
ren. Ein Bezeichnungswechsel fithrt zu Tensoren v € V := V; @ V> ® V3, deren Rdume
V1, V>, V3 nun symmetrisch auftreten. Auch Restriktion und Degeneration lassen ihren
symmetrischen Charakter erkennen: Fir u € U := U; ® U, ® Uz und v € V bedeutet
u < v, dass es lineare Abbildungen a,, : V,, — U, gibt mit

(39) u= (a1 ®a»®a3)v,
und fiir u, v € V bedeutet u<v, dass u im Zariski-Abschluss der G-Bahn von v liegt,
(40) u € G,
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wobei die Gruppe G := GL(V}) x GL(V,) x GL(V3) auf V wirkt vermoge gv:=
(g1 ® g2 ® g3)v. Neben der in (25) definierten asymptotischen Degeneration erkliren
wir die asymptotische Restriktion durch

20(v)
(41) u<v: <=u® < @ ™.
1

Hier ist das erwidhnte Resultat:
Satz7. u<dv <= u<w.

Beweis Wir wissen schon, dass die Restriktion die Degeneration impliziert. Daraus
folgt ,,<=". Zum Nachweis von ,,—“ genligt es,

(42) udv=u<vw

zu zeigen. Wir diirfen annehmen, dass « und v auf den gleichen Riumen leben, etwa
u,v € V. Dann ist u € Gv. Eine Form F vom Grade v auf dem Vektorraum V, die auf
Guv verschwindet, verschwindet auch auf dem Zariski-Abschluss Gv und damit auf . Ist
[ irgendeine Linearform auf V'®”, so definiert F(x) := /(x*) eine Form F vom Grade v
auf V. Wir haben also

43) (Vg€ G I((gv)™)=0) = I(u™) =0.

Fassen wir 1 in der natiirlichen Weise als G-Modul auf, so ist (g.v)*” = g.(v®"), die
Pramisse von (43) bedeutet also /(G(v*")) = 0, und aus der Beliebigkeit von / folgt

(44) u® € lin(Gv™).
V& ist nicht nur ein G-Modul, sondern auch ein Modul der Symmetrischen Gruppe
S,, die auf V® durch die Permutation der Tensorkomponenten wirkt. Jedes

g™ = (g.v)*" ist symmetrisch, das heisst ein S,-Fixpunkt. Also ist lin(Gv®") im Un-
terraum Sym” (V") der symmetrischen Tensoren enthalten, und deshalb gilt

(45) dim(lin(Go®™)) < dim(Sym(¥)) = (” jl‘ Hdnm;‘: 1) <

fiir grosse v mit ¢ := dimV'. Insbesondere gibt es dann v Gruppenelemente g; € G so,
dass u®” eine Linearkombination der g;v*" ist. Das liefert schliesslich

V[ U(.
(46) u*” < @giv@“’ ~ @ &,
i=1 i=1

Damit ist Satz 7 bewiesen. Aus ihm folgt leicht die frither behauptete Austauschbarkeit
von Rang und Grenzrang in (8), (20) und (21).

Zu Kapitel 6

Ebenso wie Schonhages 7-Theorem kann man auch (37) auf nichtquadratische Ma-
trixmultiplikationen verallgemeinern, wenigstens linkshéindig:
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) D (mopnad S PEV = vrepe] Flmpa) <3 on
i i ]

Dies ist eine Konsequenz von (37) vermoge Tensorpotenzbildung und (18).

Um neue Abschidtzungen von w zu gewinnen, gehe man etwa von einem Wedder-
burn-Isomorphismus € [A] ~ @, € "™ fiir eine endliche Gruppe A aus und benutze ei-
ne Degeneration, die dem natiirlichen Koordinatentensor der Gruppenalgebra ange-
passt ist, um mit Hilfe der Lasermethode zu einer direkten Summe von nicht notwendig
quadratischen Matrixmultiplikationen zu gelangen. Insgesamt erhélt man eine Degene-
ration, die als Prdmisse von (47) dienen kann. In dieser Weise wurde bereits bei einigen
der jiingeren Abschétzungen von w vorgegangen, freilich nur im Fall abelscher Gruppen
A, um die Form der linken Seite von Schonhages 7-Theorem (17) zu erreichen. (47) er-
laubt uns jetzt, statt der diskreten Fouriertransformation fiir endliche abelsche Grup-
pen den Wedderburn-Isomorphismus fiir beliebige endliche Gruppen einzusetzen.

Folgende Vermutung liegt nahe:

Verr;n}utung 8. Di(mi,pi,q1) < DB;(ny, 1y 5) <= V7 € 2,0] 3, (mipigr)"* < D
(rjrysy) ™.

Vermutung 8 folgt aus
Vermutung 9. A(Matrix) C R ist logarithmisch konvex.

Dabei bedeutet A(Matrix) das asymptotische Spektrum aller (nicht nur der quadrati-
schen) Matrixmultiplikationen. Wir erinnern daran, dass A(Matrix) jedenfalls logarith-
misch sternférmig ist [37]. Die Richtigkeit einer der beiden Vermutungen wiirde unseren
Spielraum bei der Abschiatzung des Matrixexponenten erheblich vergrossern. Auch eine
Verallgemeinerung auf andere Semiringe bilinearer Abbildungen wire von grossem In-
teresse.

Zu Kapitel 7

I) Wir geben zunéchst einen kurzen Beweis dafiir, dass (6, —) ein monotoner Ho-
momorphismus von Semiringen ist. Dieser Bewelis ist freilich weniger elementar als der
urspriingliche in [38]. Sei G eine zusammenhéngende reduktive lineare Gruppe. (Siehe
Kraft [23], Humphreys [19], Fulton-Harris [13].) Wir fixieren einen maximalen Torus T
von G sowie eine T enthaltende Boreluntergruppe B von G. Dann steht uns die Charak-
tergruppe X (7T'), die Weylgruppe W, das Wurzelsystem ® C X (7') sowie das System
@, der positiven Wurzeln zur Verfiigung. Die zu ®, gehdorige Partialordnung bezeich-
nen wir mit <, fiir Charaktere «, 3 bedeutet o < 3 also, dass 3 — « eine Summe positi-
ver Wurzeln ist.

Sei V ein rationaler G-Modul. Wir sagen, ein Vektor u € V' sei eine Degeneration
von v € V, und schreiben u <\v, wenn u € G.v. Dabei bezeichnet der Uberstrich den Ab-
schluss beziiglich der Zariski-Topologie (der iiber € hier mit dem Abschluss beziiglich
der klassischen Topologie tbereinstimmt). Fiir 7 haben wir die Gewichtszerlegung
oder Zerlegung in 7T-Eigenrdume
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) V=@,
~el

wo ' C X(T) die Menge der Gewichte von ¥V, also der v € X(T') mit V., # 0 ist. Da die

Weylgruppe W die Gewichtsrdume V., permutiert, ist I' }¥-stabil. Wir definieren den

Triger supp(v) von v € V durch

(49) supp(v) :={y €Tl :v, #0},

wobei v, die Komponente von v in V7, bezeichnet. Wir brauchen noch den von supp(v)
in T erzeugten Ordnungsfilter

(50) supp(v)™ :={B €T : 3y esupp(v) v =< B}

Lemma 10. Seien u,v € V und sei supp(u) eine Antikette beziiglich <. Ist u<v, so
gibt es ein o € W mit

(51) o.supp(u) C supp(v)~.

Beweis: G.B.v ist abgeschlossen (weil B.v abgeschlossen und B-stabil ist) und enthilt
G.v. Deshalb ist

(52) ue Gwc GBuw.
Auf Grund der Bruhat-Zerlegung von G gibt es ein o € W mit
(53) ue Bo"'BB.v= Bo 'Buw.

Das bedeutet Folgendes: Wéhlen wir einen Reprisentanten n € o, also ein n € Ng(T)
mit o = n.Cg(T), so gibtesein b € Bmit

(54) nb.u € Bov.

Die Tréger aller Vektoren aus B.v sind in supp(v)~ enthalten, also auch die aller Vekto-
ren aus B.v. Insbesondere ist supp(nb.u) C supp(v)~. Dies liefert die zweite Inklusion
von (55); die erste folgt aus der Tatasache, dass supp(u) voraussetzungsgemass eine An-
tikette ist:

(55) osupp(u) C osupp(b.u) = supp(n.(b.u)) C supp(v)~.

Damit ist das Lemma bewiesen.

Um es anzuwenden, arbeiten wir wie bei Satz 7 mit Tensoren v e V :i= V®
V> ® V3, wobei wir V,, = €C" annehmen. Wir setzen G := GLy, x GLyy X GLy,,
T:=T,x Ty, x Tz und B := By x B; X By mit den maximalen Tori T, der Diagonal-
matrizen und den Boreluntergruppen B,. der oberen Dreiecksmatrizen von GL,,..

Die Gewichtszerlegung von V ist die Zerlegung in die natiirlichen Koordinatenach-
sen, die Gewichtsmenge I' also isomorph zum diskreten Quader {I1,...,n;} X

{I,....m} x {1,...,n3}. Fernerist W = Suy % Spy X Suy und < ist invers zum Produkt

n3
der natiirlichen Ordnungen. Fiir v € V" haben wir als Aquivalent von (38)

3
(56) C(6, v) = max 2 2nmt #H ),
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wo P iiber die Wahrscheinlichkeitsmasse auf dem (als Antikette vorausgesetzten) Tra-
ger supp(v) variiert.

Seien nun u, v € V schrig mit u <v. Wir diirfen u, v jederzeit durch isomorphe Ko-
pien g.u, h.v ersetzen, ohne u <v zu stéren, und kénnen deshalb annehmen, dass beide
Triger Antiketten sind. Wir vergleichen log, ¢(6,u)=3"0_, 6, H(P(u),) mit
log, C(6,v) = 322 _, 6.H(P(v),), wobei P(u) bzw. P(v) Wahrscheinlichkeitsmasse auf
supp(u) bzw. supp(v) sind, die das Funktional S}, 0.H(P,) auf dem jeweiligen Tré-
ger maximieren. Durch eine Umordung der Basisvektoren fiir v (isomorphe Kopie)
kénnen wir erreichen, dass die Wahrscheinlichkeitsvektoren P(v), schwach monoton
fallen. Dadurch verliert supp(v) moglicherweise die Eigenschaft einer Antikette, aber
der Wert von Zi:l 0,H(P(v),) und seine Maximalitdtseigenschaft dndern sich nicht.
Die Kuhn-Tucker-Bedingungen fiir konvexe Optimierung zeigen nun, dass P(v) das
Funktional Zi:l 0.H(P,) nicht nur fir die P auf supp(v), sondern fiir alle P auf
supp(v)~ maximiert. (Ein kurzer elementarer Beweis findet sich auf Seite 136f von [38].)

Nach Lemma 10 gilt o.supp(u) C supp(v)~ fiir ein geeignetes o € W. Weil sich
durch Anwenden von o auf P(u) der Wert des Funktionals nicht dndert, folgt
log, €(6,u) < log, (6, v), also ((,u) < ((0, v). Da wir unter Vorbehalt der Antiketten-
eigenschaft fiir die Trdger beliebige Basen wihlen durften, ist sowohl gezeigt, dass
¢(6, =) nicht von der (zuldssigen) Basenwahl abhéngt, als auch seine Monotonie beziig-
lich Degeneration. Additivitit und Multiplikativitdt beziiglich & bzw. ® ergeben sich
leicht aus bekannten Eigenschaften der Entropie; der Leser mag sich das selbst iiber-
legen oder in [38] nachschauen (Lemmas 2.6, 2.7, 3.4).

II) Ein interessanter Zusammenhang besteht zwischen dem Trégersimplex und dem
Momentpolytop. Sei wieder G eine zusammenhéngende reduktive Gruppe, 7" ein maxi-
maler Torus und B eine T enthaltende Borelgruppe. Wie oben haben wir X (7T'), W, @
und <. Wir erweitern < zu einer Partialordnung auf E := X (7) ® IR: Fiir m, p € E gilt
7 < p, wenn p — 7 eine nichtnegative Linearkombination positiver Wurzeln ist. Ferner
sei D C E die positive Weylkammer. Diese ist ein Fundamentalbereich fiir die Weyl-
gruppe W in ihrer Wirkung auf E, das heisst, fiir jedes n € E trifft W.n die positive
Weylkammer in genau einem Punkt, den wir mit dom(n) bezeichnen. Die Abbildung
dom ist stetig.

Ist U ein rationaler G-Modul, x € X(7T) N D ein dominanter Charakter, so bezeich-
nen wir die x-isotypische Komponente von U mit U.

Sei nun ¥ ein rationaler G-Modul und Z C ¥ ein nichttrivialer irreduzibler abge-
schlossener G-stabiler Kegel. (Z ist also die affine Beschreibung einer irreduziblen pro-
jektiven G-Varietiit). Das Momentpolytop P(Z) ist definiert als Abschluss in £ von

(57) R(Z):={x/d: (C[Z)s)p) # 0} C D.

Dass P(Z) C D tatsichlich ein Polytop ist, folgt aus der endlichen Erzeugtheit des
U-Invariantenrings € [Z]U, wo U das unipotente Radikal von B bezeichnet. Das Mo-
mentpolytop gibt weitgehende Auskunft iiber die im Koordinatenring @ [Z] auftreten-
den einfachen G-Moduln.

Wir interessieren uns fiir den Fall, dass Z der Bahnabschluss eines Vektors v € ¥\0

ist. Setzen wir voraus, dass G.v ein Kegel ist, so ist das Momentpolytop P(G.v) der Ab-
schluss in E von
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(38) R(G.v):={x/d: (T [m}d)(x*) #0}={x/d: (lin(G-UEd))(X) # 0} C D.

Ein Vektor v € V heisse schlicht, wenn (supp(v) + ®) Nsupp(v) = 0. Jedes schrige v ist
schlicht.

Satz 11. Sei v € V\0 schlicht und G.v ein Kegel. Dann gilt
(59) minP(G.v) C dom conv(supp(v)) C P(G.v),
wobei min die Menge der beziiglich < minimalen Punkte bedeutet.

Beweis: Linke Inklusion: Sei x/d € R(G.v) mit (lin(G. v“")) # 0. Sei M, ein ein-
facher G-Untermodul von lin(G.v®¢) vom Héchstgewicht y, N e1n Modulkomplement
von M, in V4. Da v*¢ den Modul lin(G.v®?) erzeugt, liegt v*? nicht in N. Auf Grund
der Gewichtszerlegung

60) v= €p v,

y€supp(v)

ist v* eine Summe von Tensorpotenzprodukten der v,. Wenigstens ein Summand liegt
nicht in N, etwa vom Gewicht ) := 3~ d,y mit }__ d, = d. Die Projektion V¢ — M,
lings N bildet diesen Summenden auf einen von 0 verschiedenen Gewichtsvektor vom
Gewicht 7 ab. Also ist 7 ein Gewicht von M,.. Da die Weylgruppe W die Gewichte von
M, permutiert, ist auch dom(n) ein Gewicht von M, . Da x das Hochstgewicht von M,
ist, folgt dom(n) < x und damit dom(n/d) < x/d. Aber (n/d)=3_(d,/d)y €
conv(supp(v)). Also ergibt sich '

(61) R(G.v) C (dom conv(supp(v)))~.

Da die rechte Seite abgeschlossen ist, konnen wir R(G.v) durch P(G.v) ersetzen. Das
Ergebnis ist, unter Voraussetzung der noch zu beweisenden rechten Inklusion, dquiva-
lent zur linken Inklusion von (59).

Rechte Inklusion: Hier benutzen wir eine fundamentale Beziehung, die hauptsich-
lich auf Mumford [24] zuriickgeht (siche auch Brion [6]), zwischen dem Momentpolytop
und der aus der symplektischen Geometrie stammenden Momentabbildung: Sei K eine
kompakte Form von G so, dass Tk := T N K ein maximaler Torus von K ist, und sei
(=, —) ein K-invariantes hermitesches Skalarprodukt auf V. Die T-Gewichtsriume von
V' sind dann orthogonal. Wir bezeichnen die Liealgebren von G, T, K, Tk respektive
mit g, t, k, ty = t N k. Die Momentabbildung von V ist so definiert:

% 1\ * o <£u7 u>

(62) p:V\0— (ik)", pu(u)é:= B
(Zur Motivation: Im Grunde geht es um das Differential an 1 der Abbildung
G— R, g — |gul’ also um die Linearform & — 2Re(&u, u) auf g. Da (—, —) K-inva-
riant ist, verschwindet das Differential auf k. Wegen g = k ¢ ik liegt es nahe, Re(€u, u)
auf ik zu beschranken. Dort ist (€, u) reell, also kdnnen wir ,,Re* weglassen. Der Nen-
ner wird hinzugefiigt, um p auch auf dem projektiven Raum PV definieren zu kénnen.)

Die Momentabbildung fiir einen nichttrivialen irreduziblen abgeschlossenen G-sta-
bilen Kegel Z C V ist als Restriktion von p auf Z erklért. Identifizieren wir E mit (ity )"
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durch Identifikation von Charakteren mit ihren Differentialen (eingeschrankt auf ity)
und fassen (ity)" vermdge der Cartan-Zerlegung von k als Teilraum von (ik)" auf, so
wird D zu einer Teilmenge von (ik)". Der Satz von Mumford lautet dann

(63) P(Z)=pu(Z\0)ND.

Der folgende Beweis der rechten Inklusion von (59) verallgemeinert eine Beobach-
tung von Sjamaar und von Franz (siehe [11], Proposition 2.2). Wir werden zeigen, dass
fiir spezielle # € T die Bilder von ¢.v unter der Momentabbildung im relativen Inneren
von conv supp(v) liegen und insgesamt diese Menge ausfiillen. Dann werden wir den
Satz von Mumford anwenden.

Sei zunéchst # € T beliebig und sei ¢ € ity. Dannist z.v € G.v\0 und

_Z h@P e _ T, InlPh@F(h)
NGRS D o8 A RO,

wo (—,—) die oben hergestellte (reelle) Dualitdt zwischen E und ity bezeichnet. Die

zweite Gleichung folgt aus £.v, = 4 (exp(x£).v) o = £ (y(exp(x€))vy) 1o = (7, &) 5.
Ist a € @ eine Wurzel von G und £ € g, so ergibt eine dhnliche Rechnung vermoge
der Schlichtheit von v sofort p(z.v)§ = 0. Damit haben wir

_ Sty
=, lonPh(@)P

Nehmen wir speziell £ := exp(7) fiir 7 € ity, so ist y(¢) = ¢ und wir erhalten

(64) p(tv)§

)

(65)  p(t.v)

2 2yt
Zvesupp(v) [yl at )'7’ = (W\O) .
Z’)Esupp(v) “,07”282(7;) = '

Das gilt fiir alle 7 € ity = E*. Aus einem ,,elementaren® Satz von Fulton ([12], Chapter
4.2, Appendix on convexity, Proposition) folgt nun
(67) (conv supp(v))° C u(G.v\0)NE,

wo ,,0 das relative Innere bedeutet. Allgemein gilt: 4(Z\0) N E ist ¥-stabil (denn jedes
o € W besitzt einen Reprasentanten n € Ng(7') N K) und abgeschlossen (weil p auf PZ
definiert ist). Aus dem Satz von Mumford ergibt sich deshalb

(68) dom conv supp(v) C u(G.v\0) N D = P(G.v).

(66)

Damit ist Satz 11 bewiesen. Wir haben {ibrigens beim Nachweis der linken Inklusion die
Voraussetzung, dass v schlicht sei, nicht benutzt. Zwischen Satz 11 und Satz 4 besteht
eine auffillige Ahnlichkeit, die die Neugier weckt.

Seinunv € V := V] ® V2 ® V3 schriig und eine Koordinatenwahl V,, = € " so vor-
genommen, dass supp(v) eine Antikette beziiglich < ist (gleichwertig: beziiglich des Pro-
dukts der natiirlichen Ordnungen). Die normierten Hochstgewichte x/d der einfachen
Bestandteile von ¥®¢ unter der Wirkung von G := GL(V}) x GL(V3) x GL(V3) wer-
den durch Tripel (P, P>, P3) von Wahrscheinlichkeitsvektoren mit fallenden Koordina-
ten beschrieben. Aus solchen besteht insbesondere das Momentpolytop P(G.v).
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3 —
Korollar 12. (6, v) = max{22-x—1"*"%%) . (P, P, P3) € P(Gw)}.

Das Korollar folgt aus Satz 11, weil Zi:l 0,.H(P,) sein Maximum im Sinne der De-
finition (56) auf min dom conv(supp(v)) und im Sinne der rechten Seite von Korollar 12
auf min P(G.v) annimmt und weil diese Mengen nach Satz 11 iibereinstimmen.

Das Korollar besagt, dass das Trigersimplex asymptotisch verwertbare Information
aus der G-Modulstruktur des Koordinatenrings von G.v zieht. Hier 6ffnet sich ein wei-
tes Feld.

Nach dem Lemma von Schur verkleinert sich das Momentpolytop bei Degenerati-
on. Korollar 12 liefert damit einen weiteren Beweis dafiir, dass ¢(6, —) wohldefiniert
und monoton ist.

II) Die Begriffe ,,schrig™ und ,,straff* lassen sich in natiirlicher Weise verallgemei-
nern. Seien G eine zusammenhéngende reduktive Gruppe und V ein rationaler G-Mo-
dul. Wir fixieren einen maximalen Torus 7" und eine 7 enthaltende Borelgruppe B von
G, haben damit die Weylgruppe W und die Partialordnung < auf der Charaktergruppe
X(T). Wir erinnern daran, dass im Fall bilinearer Abbildungen beziehungsweise ihrer
Strukturtensoren die Wahl von 7 und B einer Koordinatenwahl (bis auf Skalierung) fiir
die beteiligten Vektorraume gleichkommt.

v € V heisse schrig, wenn es ein g € G gibt so, dass der Tréiger supp(g.v) von g.v ei-
ne Antikette beziiglich < ist. Der Begriff ,,schriag” hdngt nur scheinbar von der Wahl
von 7 und B ab.

v € V heisse straff, wenn die Isotropiegruppe G, von v eine in G regulire 1-Parame-
ter-Untergruppe enthélt (gleichwertig: wenn die maximalen Tori von G, in G reguldr
sind).

v € V heisse gut beziiglich T, wenn ein maximaler Torus von G, in T enthalten ist
(gleichwertig: wenn (7' N G,)° maximaler Torus von G, ist). Unter einer (isomorphen)
Kopie eines v € V' verstehen wir ein Element der G-Bahn von v, also ein g.v. Wegen der
Konjugiertheit der maximalen Tori von G besitzt jedes v € V' gute Kopien. Besonders
einfach liegen die Dinge bei straffen v:

Lemma 13. Sei v € V straff. Dann ist die Menge
M := {supp(v') : Vist gute Kopie von v}

genau eine W-Bahn von Teilmengen der Gewichtsmenge T von V und M enthiilt eine Anti-
kette. Insbesondere ist v schrig.

Beweis: Ohne Einschriankung der Allgemeinheit ist v gut. Wir zeigen zunichst, dass
M die W-Bahn von supp(v) ist. Mit S bezeichnen wir einen in 7 enthaltenen maximalen
Torus von G,

Sei o € W. Wir withlen einen Reprisentanten n € Ng(T) fiir o und setzen v/ := n.v.
Dann ist v/ gute Kopie von v, denn der maximale Torus nSn~! von G, = nG,n! ist in
T enthalten. Ausserdem gilt supp(v') = osupp(v). Also ist osupp(v) € M.

Sei umgekehrt supp(v') € M, wobei v/ = g.v eine gute Kopie von v ist. Es geniigt,
ein n € Ng(7T) zu finden mit v/ = n.v, denn dann ist supp(v') = supp(n.v) = asupp(v)
mit dem durch n reprisentierten o € W. Nun: Die Isotropiegruppe G, = gG,g~! ent-
hélt den maximalen Torus gSg~!. Da ¢/ gut ist, enthilt sie auch einen maximalen Torus
§"C T. Da die maximalen Tori in G, konjugiert sind, gibt es ein 4 € G, mit
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h(gSg~")h~! = S’. Wir setzen n := hg. Dann ist v = n.v und nSn~' = §'. Es folgt die
entsprechende Gleichung fiir die Zentralisatoren: nZg(S)n~! = Z5(S’). Wegen der
Straffheit von v und ¢/ stimmen beide Zentralisatoren mit 7" iberein. Wir haben also
nTn~! = T, das heisst n € Ng(T). Zusammen mit v/ = n.v war das zu beweisen.

Schliesslich zeigen wir, dass M eine Antikette enthélt. Da v straff ist, gibt es eine in
G regulire Einparameteruntergruppe A von G,. Wegen der Regularitdt kdnnen wir ein
o € W finden so, dass (o), «) > 0 fiir alle positiven Wurzeln «. ((—, —) bezeichnet die
natiirliche Paarung zwischen Einparametergruppen und Charakteren.) Wir setzen
v/ := n.v, wo n € Ng(T) ein Reprisentant fiir o ist. Dann ist +' eine gute Kopie von v
und oA =n n~! ist eine Einparameteruntergruppe von G,. Aus letzterem folgt
(o), ) = 0 fiir alle v € supp(v/). Andererseits haben wir oben gesehen, dass (oA, ) > 0
fiir alle positiven Wurzeln «. Somit ist supp(v') € M eine Antikette beziiglich <.

IV) Hier befreien wir Vermutung 6 von der Numerik des Tragersimplexes. In der
symmetrischen Formulierung fiir Tensoren lautet Vermutung 6 zunéchst so:

Vermutung 14. Sindu € Uy @ U, @ Usund v € V1 @ Vo @ V3 straff und gilt
(69) VO ((0,u) <((6,v),
so st udv.

(Die Aquivalenz der beiden Formulierungen folgt aus der Beschreibung des asymp-
totischen Spektrums in (27), (28).)

Ein Tensor v € €™ ® €"2 @ €™ heisse perfekt, wenn der Trager von v beziiglich

der natiirlichen Basen straff ist und wenn die Randverteilungen P, der Gleichverteilung
P auf dem Triger von v gleichverteilt auf {1, ..., 7.} sind.

Vermutung 15. Sind u€c €™M @ € @ C™ und ve C" @ € @ €™ perfekt
und gilt

(70)  (m1,ma,m3) < (n1,m2,n3),
so ist u <.

Satz 16. Die Vermutungen 6 und 15 sind dquivalent.

Beweis: Es gentigt zu zeigen, dass die Vermutungen 14 und 15 aqulvalent sind.

Fiir einen perfekten Tensor v € €™ @ €"2 @ €3 ist ((6, v) = n? nz n33 Also folgt
Vermutung 15 aus Vermutung 14.

Nehmen wir jetzt Vermutung 15 als richtig an. Es geniigt, Vermutung 14 in der abge-
schwichten Form zu beweisen, in der die Voraussetzung (69) zu

(71) VO ((0,u) < ¢(6,v)

verschirft ist. In der Tat, ist (69) fiir u, v erfiillt, so ist (71) fiir u®™ und v** @ v*M er-
fiillt, denn ¢(#, —) ist additiv, multiplikativ und > 1. Aus der abgeschwachten Ver-
mutung erhalten wir jetzt u®M<v®M @ v®M | daraus o(u)” < 2¢p(v)", daraus durch
Ziehen der M-ten Wurzel und Grenziibergang ¢(u) < ¢(v), und daraus schliesslich
u<v, wobei wir zweimal den Spektralsatz angewandt haben.

Nun seien » und v straff und es gelte (71). Nach Wahl geeigneter Basen haben wir
ue€C™meC™®C™ und ve €' @ €"2 @ €"3 mit straffen Trédgern supp(«) und
supp(v). Aus (71) folgt fiir ein hinreichend kleines ¢ > 0 aus Kompaktheitsgriinden
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(72) VP mﬁaxmén(gaﬁmpﬁ)—Z:a,{H(Qh.))g—s,

wobei P liber Wahrscheinlichkeitsmasse auf supp(«) und Q iiber solche auf supp(v) va-
riiert. Nach dem Minimax-Theorem ist das gleichbedeutend mit

(73) vP innmgx(z’; 0.H(P,) — EHNH(QN)) £ =g,

also mit
(74) YP3QVk H(P,)<H(Q,) —e.

Nun betrachten wir v*V € (€")*" @ (€72)*) @ (€")*". Die Symmetrische
Gruppe Sy wirkt auf den Raumen (€")*" durch Permutation der Tensorkomponen-
ten. Wir zerlegen die (€*)*" in Bahnmoduln, das heisst in die linearen Hiillen der
Sy-Bahnen der e?ql R...0 e,fc:"”; hier bezeichnet (e, .. .,e,,) die natiirliche Basis von
€+ und die (¢ ..., ¢, ) durchlaufen die nichtnegativ ganzzahligen Vektoren mit Koef-
fizientensumme N. Die Bahnmoduln kénnen also durch Wahrscheinlichkeitsvektoren
O, = (q1/N,...,qn,./N), deren Komponenten rationale Zahlen mit Nenner N sind, bi-
jektiv beschrieben werden. (Diese O, haben zunichst nichts mit ihren in (74) auftreten-
den Namensvettern zu tun; eine Beziehung wird erst weiter unten hergestellt.) Die Di-
mensionen der zu den (@, gehdrenden Bahnmoduln sind N!/gi!-...-gq,!>
N(H(Q,) — ¢/3) fiir grosse N und alle Q,, nach der Stirlingschen Formel.

Aus den Zerlegungen der (03”'*)®N erhalten wir durch Tensorproduktbildung eine
Zerlegung des Sy-Moduls (€)Y @ (€72)*" @ (€")®" als eine direkte Summe von
Sy-Untermoduln, welche durch Tripel (O, 02, 03) von rationalen Wahrscheinlich-
keitsmassen mit Nenner N beschrieben werden. Dadurch wird auch der Tensor v® zer-
legt:

(75) o*N = Z V01.05.03>
01.07,03

wobei die Summe Vektorraum-direkt, aber nicht Tensor-direkt ist. Immerhin kdénnen
wir schliessen:

(76) oV < @ v0,.05,05, Und  VO1, 02,05 vg, 0,0, < v*".
01.02.03

Der Trager von vV beziiglich Tensorproduktbasen ist straff. Da die Zerlegung (75) die-
se Basen respektiert, besitzen auch die vg, ,0,.04 straffe Triger, die zudem disjunkte Ver-
einigungen von Sy-Bahnen sind. Daraus folgt, dass die v9,,0,,0, Perfekt sind. Aus der
Konstruktion des Trégers von v*Y aus dem Triger von v ergibt sich ferner, dass
V0,,0,,0; genau dann von Null verschieden ist, wenn es ein rationales Wahrscheinlich-
keitsmass Q mit Nenner N auf supp(v) gibt, dessen Randverteilungstripel (Q;, 05, 03)
ist. Uber solche Tripel lauft also die obige direkte Summe. Schliesslich folgt aus dem
oben Gesagten, dass vg, 0,0, fiir grosse N ein Format > N-(H(Q;)—¢/3,
H(Qz) = 6/3, H(Q3) — 6/3) besitzt.

Wir kénnen die gleichen Konstruktionen ausgehend von « durchfiihren und erhal-
ten perfekte Tensoren up p,p, vom Format < N-(H(P\)+¢/3,H(P,)+¢/3,
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H(P3) +¢/3) fiir grosse N mit

®N N
(77) u*¥ < €D up,.pyp;, und  VPy, Py, Py up pypy <u,
P,Py,P3

wobei (Py, P, P3) die Randverteilungstripel von rationalen Wahrscheinlichkeitsmassen
mit Nenner N auf supp(u) durchliuft.

Aus (74) folgt nun fiir grosse N durch rationale Approximation von Q mit Nenner
N, dass es zu jedem up, p, py €in vg, 0, 0, gibt, dessen Format in jeder Komponente
grosser ist als das von up, p, p,. Vermutung 15 liefert also zu jedem up, p,p, €in
v0,.0,,0; Mit up, py P, Vg, 0, 05> und dies kdnnen wir mit Hilfe des Spektralsatzes um-

schreiben zu @(up, py.py) < v(vg,.0,.05)- Ubersetzen wir auch die erste Ungleichung
von (77) und die zweite Aussage von (76) mit dem Spektralsatz, so erhalten wir ins-
gesamt

(718) e < Z @(upy py.py) < Z o(v)",

PI’PZ‘P3 Pl‘PZ‘P3

also nach N-tem Wurzelziehen und Grenziibergang (1) < ¢(v), da die Anzahl der
Py, P,, Py polynomial in N ist. Das ist gleichwertig mit #<v, und Satz 16 ist bewiesen.

Wir haben die hochfliegende Vermutung 6 ersetzt durch die bodenstandige 15. Frei-
lich ist dabei auch die Suggestion von Richtigkeit verlorengegangen.

Es liegt nahe, statt der Zerlegung von (€ »)*Y in Bahnmoduln die feinere in ein-
fache Sy-Moduln zu verwenden. Hier ergeben sich allerdings schon Schwierigkeiten
mit der Straffheit der den v, g, o, entsprechenden Tensoren.

V) Hanspeter Kraft hat mir einen wichtigen Literaturhinweis zur Momentabbildung
gegeben, und von Matthias Franz habe ich viel zu diesem Thema gelernt. Beiden Herren
bin ich sehr dankbar.
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| Biographie und wissenschaftlicher Werdegang

Am 15. Dezember 2002 erlag in den frithen Morgenstunden im Goppinger Kranken-
haus Am FEichert Prof. Dr. Dieter Gaier, Ph. D., einer heimtiickischen Krankheit, die
ihn die letzten vier Jahre begleitet hatte.

1 Elternhaus und Schule

Dieter Gaier wurde am 12. Mai 1928 in Stuttgart geboren. Sein Elternhaus stand jedoch
in Goppingen, wo sein Vater Albert Gaier Studienrat fiir die Fécher Englisch und
Deutsch am Hohenstaufen-Gymnasium war. Dieter Gaier besuchte von 193846 dieses
Gymnasium. Fast die gesamte Schulzeit fiel in die Kriegsjahre und er selbst war noch in
den Jahren 1944 und 1945 als Flakhelfer im Einsatz.

2 Studium an der TH Stuttgart

1946 begann er sein Studium der Mathematik und Physik an der TH Stuttgart. An der
damaligen TH Stuttgart gab es nach dem 2. Weltkrieg nur zwei jiingere Mathematiker,
welche die Analysis vertraten: Professor Friedrich Losch und den Dozenten Werner
Meyer-Konig. An diese schloss er sich wissenschaftlich an.

Ab 1946 horte Dieter Gaier bei Losch Vorlesungen tiber Differential- und Integral-
rechnung. Im Sommersemester 1948 wurden erstmals die Weichen fiir seine spéteren In-
teressensgebiete gestellt durch die Vorlesungen Funktionentheorie I und Lebesguesches
Integral, beide bei Losch. Nach der Vorlesung Funktionentheorie IT im Wintersemester
1948/49 nahm Dieter Gaier im Sommersemester 1949 an dem Funktionentheorie-Semi-
nar von Losch teil, in dem der groBe Picardsche Satz und Sdtze im Umkreis davon
(Schottky, Landau, Bloch) behandelt wurden. Hier lernte Gaier mit den Verfahren von
Borel und Euler und den Verallgemeinerungen von Knopp und Lindel6f zum ersten
Mal Summierungsverfahren und Probleme der Limitierungstheorie kennen. Aus diesem
Bereich stammen auch Gaiers erste Forschungsarbeiten.

Dieser Fragenkreis wurde vertieft durch das Oberseminar von Ldsch im Winter-
semester 1949/50. Themen aus dem Buch von Landau [La], u. a. Liickensétze (Hada-
mard, Fabry) und Beispiele von Potenzreihen mit pathologischen Eigenschaften (Har-
dy, Lusin, Sierpinski) wurden behandelt.

3 Rochester und Harvard

Im Jahre 1950 beendete Dieter Gaier sein reguldres Studium an der TH Stuttgart mit
dem Staatsexamen in Mathematik und Physik. Er wollte jedoch nicht in den Schul-
dienst, sondern ging mit einem Stipendium der Firma Kodak an die University of Ro-
chester. Dort lehrte mit Professor Wladimir Seidel ein namhafter Funktionentheoreti-
ker, der besonders bekannt wurde durch seine Seidel’s class U ([No), S. 32 ), eine wichti-
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ge Funktionenklasse deren Elemente man spater nach Beurling (1949) als innere Funk-
tionen bezeichnete.

Mit der ihm eigenen Energie gelang es Gaier innerhalb eines Jahres seinen Ph. D. in
Mathematics zu erreichen (1951). Nach Deutschland zuriickgekehrt erfolgte 1952 seine
Promotion zum Dr. rer. nat. bei Meyer-Konig und Lésch an der TH Stuttgart.

Dieter Gaier fing schon sehr frith an wissenschaftlich zu publizieren. Seine erste ma-
thematische Abhandlung [1] Uber stetiges und asymptotisches Verhalten von Potenz- und
Dirichletreihen am Rande von Summationsgebieten verfasste er mit 21 Jahren.

Die ersten Arbeiten, etwa bis 1955, gehoren sdmtlich in das Gebiet Potenzreihen und
Limitierungstheorie und brachten ihm Erfolge im Wettstreit mit bekannten Mathemati-
kern, wie z. B. Erdés, Herzog und Piranian.

1953 ging er mit einem Stipendium an eines der groen Zentren mathematischer
Forschung, und zwar an die Harvard University zu Joshua Walsh. Dieser war weithin
bekannt durch sein 1935 erschienenes klassisches Buch Interpolation and Approximation
([Wa]). Dieses inhaltsschwere Buch hat Dieter Gaier mit duBerster Akribie durchgear-
beitet. Als Frucht seines Aufenthaltes bei Walsh an der Harvard University entstand
1955 seine Habilitationsschrift Uber die konforme Abbildung verinderlicher Gebiete.

Nach erfolgreicher Habilitation wurde Dieter Gaier Dozent an der TH Stuttgart;
ein junger Dozent, der durch seine anregenden Vorlesungen die Studenten zu begeistern
und mitzureiBen verstand. So war es kein Wunder, dass er bald Zulauf fand. Dieter Gai-
er fithrte wihrend seiner gesamten Dienstzeit ein Heft, in dem er alle Diplom- und
Staatsexamensarbeiten (itber 100) mit Verfasser, Thema, Ausgabedatum, Kurzpro-
tokolle der Besprechungen und erzielten Fortschritte des Kandidaten bis zum Examen
mit Abschlussnote eintrug.

Durch seine Aktivititen und Publikationen wurde man auch bald auBlerhalb Stutt-
garts auf den jungen Dozenten Dieter Gaier aufmerksam. So lud man ihn an die Uni-
versitdt Gottingen ein, an der er im Wintersemester 1957/58 eine Vorlesung tiber Funk-
tionentheorie hielt.

4 Professor in Giessen

1959 erhielt Dieter Gaier im Alter von 31 Jahren den Ruf auf ein Extraordinariat, tibri-
gens fiir Angewandte Mathematik und Biomathematik an die Universitidt Giessen. Als
Biomathematiker war Gaier spiter Zweitgutachter bei einer medizinischen Habilitation
(Rudolf Repges). 1962 wurde das Extraordinariat in ein Ordinariat umgewandelt.

Die Universitdt Giessen sollte nun fiir die nachsten rund 40 Jahre seine Wirkungs-
statte werden. Die Giessener Universitdt ist zwar klein, hat aber eine beachtliche Tradi-
tion. Hier wirkten iber kiirzere oder lidngere Zeit so bekannte Mathematiker wie
Clebsch, Gordan, Pasch, Netto, Engel, Schlesinger, Plessner, Grotzsch, Grunsky, Ull-
rich und Kothe. Als Gaier nach Giessen kam, gab es an der Universitidt nur zwei Profes-
soren fiir Mathematik, K. Maruhn und H. Boerner, beide vor dem Krieg in Leipzig bei
Lichtenstein promoviert. Weiterhin gab es einen Dozenten F. Huckemann und einen
habilitierten Assistenten K. Endl. Drei Jahre spéter kam im Jahre 1962 noch Professor
G. Pickert mit seinen Assistenten von der Universitdt Tlibingen hinzu.
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Aus der Zusammenarbeit von Huck-
emann und Gaier entstand 1962 die
wichtige Arbeit [27], deren Hauptsatz
von den Studenten ehrfiirchtig als ,,Gai-
ers Achtersatz® bezeichnet wurde, nach
der optimalen Konstanten in diesem
Satz.

Das wissenschaftliche Ansehen von
Dieter Gaier stieg in den Giessener Jah-
ren betrdchtlich. Er nahm mehrfach
Gastprofessuren im Ausland wahr, da-
runter dreimal am renommierten Cal-
tech in Pasadena auf Einladung von
John Todd.

Schon 1964 erhielt er den ersten Ruf
nach auswirts, und zwar an die TH
Stuttgart. 1966 folgte der Ruf an die TH Darmstadt, der besonders ehrenvoll war, weil
es sich um die Nachfolge von Alwin Walther handelte. 1968 erfolgte der Ruf an die Uni-
versitit Tiibingen und schlieBlich 1979 der Ruf an die Universitidt Ulm. Obwohl ihn ins-
besondere die beiden letzten Rufe sehr reizten, blieb er der Universitit Giessen treu.

Die Vorlesungen von Dieter Gaier waren bei den Studenten sehr beliebt, weil sie gut
vorbereitet waren, gut vorgetragen wurden und wegen ihrer Klarheit. Das zeigte sich
schon rein duBerlich an einem mustergiltigen Tafelbild. In hoheren Vorlesungen ver-
wies er stindig auf neueste Forschungsergebnisse und schrieb die entsprechenden MR-
Zitate an die Tafel.

Als Priifer galt Dieter Gaier als schwer und war bei manchen eher gefiirchtet als be-
liebt, so dass viele Studenten seiner Vorlesungen zu anderen Professoren auswichen,
was Dieter Gaier gar nicht behagte. Denn er kiimmerte sich intensiv um seine Studen-
ten.

Dieter Gaiers Lieblingskind war die mathematische Institutsbibliothek, tiber die er
sozusagen die Oberaufsicht fithrte und in die er viele Mittel aus seinen Bleibeverhand-
lungen steckte. Im Laufe der Jahre hat er den Zeitschriftenbestand erheblich ausgewei-
tet, so dass die Giessener mathematische Bibliothek wohl zu einer der ersten Instituts-
bibliotheken in Deutschland aufriickte und auch mit ganz seltenen auslédndischen ma-
thematischen Zeitschriften vertreten war. Zu einem Gutteil wurden diese Zeitschriften
im Tausch mit den Mitteilungen aus dem mathematischen Seminar Giessen erworben,
dessen geschiftsfithrender Herausgeber Dieter Gaier wahrend seiner gesamten Dienst-
zelt war.

5 Bergsteigen und Mathematik

Dieter Gaier hatte auBerhalb der Mathematik manche Interessen. Besonders liebte er
seinen Garten, den er selber pflegte und in dem er manch exotische Pflanze aufzog.
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Dieter Gaier war Mitglied des GieBener Rotary Clubs und diesem sehr verbunden.
Er hielt dort viele Vortrage, so tiber Vermutung und Beweis in der Mathematik, Mathe-
matische Aspekte des 10 DM-Scheins (der mit Gaul} auf der Frontseite), Johann Radon
und die Computertomographie oder Primzahlen und ihre Anwendung in der Codierungs-
theorie.

Dieter Gaiers ganz besondere Leidenschaft galt aber den Bergen, den Alpen. Er
pflegte zu sagen: ,,Erst iiber 2000 Metern ist man frei.“ Seine Lieblingsgebiete waren die
Allgduer Alpen (Trettachspitze), die Silvretta, die Studtiroler Berge (Dolomiten und
Brenta) und besonders die Otztaler.

6 Vermachtnis

Wie kiirzlich mitgeteilt ([ Re], S. 49) hat Dieter Gaier der Oberwolfach-Stiftung in sei-
nem Testament von 1996 ein wertvolles Grundstiick in bester Lage in Tiibingen ver-
macht, dessen betrdchtlicher Verkaufserlds inzwischen der Stiftung zugeflossen ist.
Aber auch schon 1999 bedachte er die Oberwolfach-Stiftung mit einer groBziigigen
Schenkung. Er war im Mathematischen Forschungsinstitut Oberwolfach oft selbst Lei-
ter bei Tagungen liber Funktionentheorie und Konstruktive Verfahren in der Komplexen
Analysis, letztere zusammen mit P. Henrici und R. Varga.

Nach seiner Emeritierung im Jahr 1995 war Dieter Gaier weiter in der Forschung té-
tig und aktiver Teilnehmer vieler Tagungen, die letzte im Juni 2001 tiber Computational
Methods and Function Theory in Aveiro (Portugal). In den letzten Monaten war er aller-
dings durch die Krankheit an sein Goppinger Haus gefesselt.

Dieter Gaier wurde auf dem Friedhof seiner Heimatstadt Goppingen beigesetzt.
Sein Grab befindet sich in unmittelbarer Nidhe der Kapelle.

Il Das wissenschaftliche Werk

1 Potenzreihen und Limitierungstheorie

Die Limitierungstheorie entstand gegen Ende des 19. Jahrhunderts aus dem Verlangen,
gewissen divergenten Reihen auf sinnvolle Weise durch verschiedene Verfahren eine
Summe zuzuordnen.

Das ist im Laufe der Jahre auf eindrucksvolle Weise gelungen. Man hat dazu viele
interessante Summierungsverfahren entwickelt, die mit den Namen Abel, Borel, Cesa-
ro, Euler, Hausdorff, Holder, Knopp, Riesz und weiteren verkniipft sind. Den Beginn
der Theorie kann man mit Erscheinen der berithmten Arbeit von Frobenius im Crelle-
schen Journal von 1880 festsetzen, in der bewiesen wird, dass aus der Cesaro-Summier-
barkeit die Abel-Summierbarkeit folgt. Die Umkehrung gilt unter gewissen Vorausset-
zungen an die Koeffizienten und die diesbeziiglichen Umkehrsédtze nennt man Tauber-
sdtze, nach Alfred Tauber, der 1897 einen ersten solchen Satz verdffentlichte. Auf
diesem Gebiet haben spdter Hardy und Littlewood bedeutende Erfolge erzielt. Einen
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groBen Impetus erhielt die Theorie durch das im Jahre 1901 erschienene Buch von
E. Borel Legcons sur les séries divergentes.

Weiter ins Zentrum des aktuellen Interesses einer breiteren mathematischen Offent-
lichkeit riickte die Limitierungstheorie mit Erscheinen des Buches von Knopp Theorie
und Anwendung der unendlichen Reihen. An mathematischen Hilfsmitteln fiir diese
Theorie ging vor allem die Funktionentheorie ein.

Es tat sich ein fruchtbares Feld mathematischer Forschung auf, das in Deutschland
vor allem von Knopp und seinen Schiilern (Losch, Meyer-Konig, Zeller, Peyerimhoff,
Jurkat und weiteren) bearbeitet und gepflegt wurde. Auch Dieter Gaier als Schiiler von
Losch und Meyer-K 6nig war hier beteiligt.

1.1 Gaier Regions

Die erste Veroffentlichung [1] von Dieter Gaier beschéftigt sich mit dem Abelschen Pro-
blem, d. h. aus dem Verhalten der Teilsummen einer gegebenen Potenzreihe f(z) in ei-
nem Randpunkt zy des Konvergenzkreises auf das Verhalten von f(z) fiir z — zo zu
schlieBen. Fiir dieses Problem und seine Verallgemeinerungen erzielte er weitreichende
Resultate, die in Spezialfillen bekannte Ergebnisse anderer Mathematiker, z. B. von
Karamata, enthielt. AnschlieBend dehnte er seine Ergebnisse auf weitere Summations-
verfahren und auf Dirichletreihen aus.

Die Arbeit [2] beschiftigt sich mit Euler- und Borelsummierung und gibt P. Erdos,
F. Herzog und G. Piranian Veranlassung Gaier disc und allgemeiner Gaier regions zu
definieren ([EHP]). Folgendes Lemma von Gaier, auf dem das Hauptergebnis dieser Ar-
beit basiert, ist von allgemeinem Interesse:

Lemma: Ist die Potenzreihe Y a,z" im Gaier disc |z+a| < 1+a (a>0) holo-
n=0
morph und beschrinkt, so gilt fiir die Koeffizienten a, = O(ﬁ) beziiglichn — oc.

Die Arbeit [3] gibt einen Auszug aus seiner Ph. D.-Thesis, University of Rochester,
die Tauber-Sitze zum Gegenstand hat und in der insbesondere Untersuchungen von
Karamata weitergefiihrt werden.

1.2 Schlangengebiete

Die Arbeit [4] ist eine hiibsche Note, in der Gaier durch eine pfiffige Idee einen Satz von
Erdos- Herzog- und Piranian auf verbliiffend einfache Weise beweisen kann.
Ausgangspunkt war das Hardysche Beispiel einer Potenzreihe, die auf dem Rand
des Konvergenzkreises gleichmiBig aber nicht absolut konvergiert (siehe etwa [BS],
S. 68 ff). Im ersten Band des Pacific Journal of Mathematics erschien im Jahre 1951 eine
interessante Arbeit von Erdds, Herzog und Piranian, in der sie das Hardysche Beispiel
erheblich verbesserten. Sie zeigten, dass die Potenzreihe sogar als konforme Abbildung
gewihlt werden kann. Der Beweis beruht auf langwierigen und kunstvollen Rechnun-
gen. Dieter Gaier gibt in [4] einen neuen Beweis dafiir, der ganz kurz ist und fast ohne
Rechnung auskommt, indem er eine schlaue Idee ausniitzt. Bekannt war durch Fejér,
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dass eine Potenzreihe > a,z" (mit Konvergenzradius 0.B.d.A. r = 1) gleichmiBig auf

=0 . . . ; . "
dem Rand |z| = 1 konvergiert, wenn sie eine konforme Abbildung des Einheitskreises
auf ein Jordangebiet lioecfert. Unter diesen vielen Moglichkeiten muss nur esin Fall gefun-
den werden, in dem ) |a,| divergiert. Gaier erkannte nun, dass man Y |a,| an eine

n=0 n=0
geometrische GroBe, namlich die Ldnge einer gewissen Kurve koppeln kann. Diese

Kurve ist das Bild eines Radius des Konvergenzkreises unter der betreffenden konfor-
men Abbildung. Um 3 |a,| = oo zu erreichen, muss man das Bildgebiet so schlangen-

artig (oszillatorisch) \;'/fi%len, dass die Bildkurve, die ja in diesem Schlangengebiet ver-
lauft, unendliche Lange hat. Das geschieht, indem man die Hohen 4, der einzelnen Os-
zillationen, die ja gegen Null gehen miissen, so wihlt, dass Y /4, = oo gilt, also etwa
= l. n=0
Diese Beweisidee ist so schon, dass sie 20 Jahre spiter wieder entdeckt wurde
([Nov)).

1.3 Neue funktionentheoretische Methoden

Mit den Arbeiten [5], (7], [12], [13], [21] fithrt Gaier neue funktionentheoretische Metho-
den zur Losung von Problemen aus der Limitierungstheorie ein und zwar insbesondere
Methoden aus der Theorie der ganzen Funktion. Das Hauptergebnis von [7], eine Ver-
schiarfung von Sdtzen von Karamata und Garten basiert auf einem Lemma iiber holo-
morphe Funktionen von Exponentialtyp in der rechten Halbebene, was die Referenten
in den Mathematical Reviews und im Zentralblatt auch besonders hervorheben.

Ganz massiv kommen die Methoden der Theorie der ganzen Funktionen in den Ar-
beiten [12], [13], [21] zum Tragen. In der Arbeit [12] On modified Borel methods basieren
weite Teile der Analysis auf einem Theorem von Mary Cartwright.

1.4 Das High-Indices-Theorem fiir das Borel-Verfahren

Als Kroénung und Schluss der Gaierschen Arbeiten {iber Limitierungstheorie kann man
den Artikel Der allgemeine Liickenumkehrsatz fiir das Borel-Verfahren [31] ansehen, der
ein abschlielendes Ergebnis einer langjahrigen Entwicklung darstellt.
oo
Theorem (Gaier, 1965) Hat die Reihe Y a, grofSe Liicken (d. h. a, = 0 fiir n # ny
n=0
wobeiny| — ni > C\/ny mit einer Konstanten C > 0) und ist sie Borelsummierbar, so ist
sie konvergent, d. h. gewdéhnlich summierbar.

Mit diesem Satz schlieBt sich eine lange Kette von Untersuchungen verschiedener
Mathematiker, die den Satz bewiesen hatten unter zusitzlichen Voraussetzungen an die
Koeffizienten a, (Pitt, 1938; Meyer-Konig und Zeller, 1956) oder an die Liickenlingen
(Erdds, 1956). Der Beweis durch Gaier, dass keinerlei zusitzliche Bedingungen notwen-
dig sind, glich einer kleinen Sensation. Im Beweis des Theorems zieht Gaier auch allerlei
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tiefliegende Sétze heran, insbesondere das Turansche Lemma. Mit diesem Lemma hat
sich Gaier spéter noch ofter beschéftigt.

Angeregt durch diese Arbeit von Gaier gibt Ingham [In] einen weiteren Beweis dieses
High-Indizes-Theorems.

1.5 Das Turansche Lemma

Das Turansche Lemma ist ein merkwiirdiger Satz iiber Polynome, der ein verbliiffendes
Ergebnis enthilt. Es handelt sich um die Abschidtzung eines Polynoms P auf dem Ein-
heitskreis und lautet folgendermaBen:

Turansches Lemma: Jedes Polynom P kann auf dem gesamten Einheitskreis durch
das Maximum Mj des Betrages dieses Polynoms auf einem kleinen Teilbogen der Linge
6 > 0 abgeschdtzt werden durch

eI < (S) s,

wobei N die Anzahl der Polynomglieder und C eine absolute Konstante ist.

Interessant ist hierbei, dass N nicht etwa der Grad des Polynoms ist (Abschidtzungen
solcher Art sind gédngig), sondern die Anzahl der Summanden.

Mit diesem Lemma hat sich Dieter Gaier immer wieder beschéftigt. In [37] gibt Die-
ter Gaier einen neuen Beweis des Turanschen Lemmas und untersucht Moglichkeiten
der Ubertragung auf allgemeinere Situationen.

2 Konforme Abbildung

Das Hauptarbeitsgebiet von Dieter Gaier war die konforme Abbildung, insbesondere
ihre numerische Seite mit Iterationsverfahren zur Gewinnung von konformen Abbil-
dungen. Die Idee sich mit solchen Verfahren zu befassen geht wohl auf seinen Lehrer
Losch zuriick, der sich wihrend des 2. Weltkrieges in der Luftfahrtforschung mit diesen
Verfahren beschiftigte.

2.1 Der EinfluB von J. L. Walsh

Die erste Veroffentlichung von Gaier zur Theorie der Konformen Abbildung erfolgte
wihrend seines Aufenthaltes an der Harvard University in einer gemeinsamen Arbeit
[10] mit J. L. Walsh. Sie beschéftigt sich mit der Verzerrung konformer Abbildungen
am Rande des Gebietes und verbessert Resultate von Ostrowski (1935) und War-
schawski (1936).

Als Frucht der Studien bei J. L. Walsh entstand Gaiers Habilitationsschrift Uber die
konforme Abbildung variabler Gebiete von 1955 ([14]). Als Ausgangspunkt kann man
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folgendes grundlegende Problem aus dem Buch Interpolation and Approximation in the
Complex Domain ((Wa], Chap. II) von Walsh ansehen.

Problem: Gegeben sei eine Folge von einfach zusammenhéingenden Gebieten
G,(n € IN) die gegen ein beschrinktes einfach zusammenhéingendes Gebiet G (die alle
Null enthalten) ,,konvergiert”. Seien f, und f die (nach Riemann eindeutig existieren-
den) normierten konformen Abbildungen von G, und G auf den Einheitskreis. Konver-
gieren dann auch die Funktionen f, (in irgendeinem Sinne) gegen die Funktion /*?

Wegen der moglichen komplizierten Struktur einfach zusammenhéngender Gebiete
(z. B. das Vorhandensein nicht erreichbarer Randpunkte) und das Problem einer geeig-
neten Konvergenzdefinition von Gebieten und Funktionen ergeben sich komplizierte
topologische Fragen, deren Behandlung den GroBteil der Arbeit ausmachen.

2.2 Das Iterationsverfahren von Komatu

Komatu hat im Jahre 1945 ein wichtiges Iterationsverfahren zur Gewinnung einer kon-
formen Abbildung /" eines durch Jordankurven berandetes Ringgebietes auf ein Kreis-
ringgebiet { M < |w| < 1} verdffentlicht. Wahrend Komatu nur die Konvergenz des Ite-
rationsprozesses f(z) = lim f,(z) bewies, wobei f, die n-te Komatusche Néherungs-
funktion ist, gelang es Gantie?in [18] folgende duBerst feine quantitative Abschatzung fiir
die Konvergenzrate zu gewinnen:

|fu(z) = f(2)] < C(% Arctan M)z" .

Dies gilt fiir alle z aus dem Ringgebiet mit einer (vom Ausgangsgebiet abhingigen)
Konstanten C. Daraus folgt insbesondere die gleichmadBige Konvergenz auf dem ge-
samten Gebiet, und nicht nur auf kompakten Teilen, und damit eine Verbesserung der
bisherigen Ergebnisse.

In einer weiteren umfangreichen Arbeit [25] wendet sich Gaier der konformen Ab-
bildung n-fach zusammenhingender Gebiete auf Normalgebiete zu. Erstmalig erhélt er
in diesem allgemeinen Fall Fehlerabschédtzungen. Im Spezialfall n = 2 gelingt ihm ein
besonderer Effekt. Durch die Idee, bei jedem Iterationsschritt eine Spiegelung ein-
zuschalten erreicht er eine betrichtliche Beschleunigung des Verfahrens.

2.3 Der Achtersatz

Ausgangspunkt fiir den Achtersatz war die optimale Konstante C in der in Abschnitt
2.2. gegebenen Abschidtzung zu finden. Angezogen von diesem schonen rein theoreti-
schen Problem haben sich renommierte Funktionentheoretiker um eine Losung be-
mitht.

Die Losung gelang schlieBlich unabhéngig voneinander drei Forschergruppen, nam-
lich Duren und Schiffer [DuS], Huckemann und Gaier [27], sowie etwas spater Gehring
und af Hallstrom (GeH).
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Achtersatz: Fiir alle konformen Abbildungen f des Kreisringes K, : 0 <r < |z| < 1

in den Einheitskreis mit den Normierungen |f(z)|=1 fir |z|=1,f(1)=1 und
0 & f(K,) gilt die Abschiitzung
|f(2) —z| < 8r

(z € K;). Dabei ist die Konstante 8 bestmaglich.

Trivialerweise ist insbesondere f(z) = z, also die Identitét eine solche Abbildung.
Obige Abschitzung besagt nun, dass alle anderen konformen Abbildungen welche dies
leisten nahe (im obigen Sinn) bei der Identitit liegen.

Wihrend Duren und Schiffer [DuS] den Achtersatz nur fiir hinreichend kleine r er-
hielten und die Vermutung ansprachen, dass er fiir alle r gilt, zeigten Gaier und Huck-
emann, dass diese Vermutung zutrifft und erreichten damit die endgiiltige Form.

Die Abschidtzung im Achtersatz ist nicht nur ein theoretisch schones Ergebnis, son-
dern auch praktisch bedeutsam fiir die Konvergenzgeschwindigkeit gewisser Iterations-
verfahren zur Konformen Abbildung von Ringgebieten.

2.4 Konstruktive Methoden

1964 erschien Gaiers Buch Konstruktive Methoden der konformen Abbildung in der neu
gegriindeten Reihe Springer Tracts in Natural Philosophy (urspriinglich Ergebnisse der
angewandten Mathematik) des Verlages von Julius Springer. Die Aufforderung, ein sol-
ches Buch zu schreiben, kam von Lothar Collatz aus Hamburg. Durch immer leistungs-
fahigere elektronische Rechenanlagen ab 1958 war es moglich geworden mehr kons-
truktive Methoden der Konformen Abbildung fiir die Praxis zum Einsatz zu bringen,
insbesondere in der Aerodynamik (Flugzeugbau) und allgemein in der Strémungslehre
aber auch in der Elektrotechnik und Elastizitétstheorie. Gaiers Buch bringt eine nahezu
vollstandige Ubersicht iiber alle numerischen Verfahren der Konformen Abbildung
von einfach und auch mehrfach zusammenhéngenden Gebieten auf Normalgebiete und
gibt Anleitung zur praktischen Durchfithrung. Dem theoretischen Hintergrund mit
Konvergenzuntersuchungen und Fehlerabschidtzungen wird besondere Aufmerksam-
keit geschenkt.

2.5 Quadrilaterals

In einer Reihe von Arbeiten, vornehmlich mit Hayman [67], [69] und Papamichael [63]
hat sich Gaier mit Abschidtzungen des Konformen Moduls von speziellen topologischen
Vierecken (quadrilaterals, d. h. zwei ,,Seiten” der Vierecke diirfen Jordanbdgen sein)
und gewissen Ringgebieten befalit. Die Giite der Fehlerabschitzungen wird an instruk-
tiven Beispielen numerisch getestet. Dies ist von groBer Bedeutung fiir die praktische
Ausfiihrung von Konformen Abbildungen. Eine schéne Ubersicht befindet sich in der
Arbeit [77].
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3 Funktionentheorie

Dieter Gaier verfalite neben seinen Arbeiten zur konformen Abbildung auch viele Bei-
trage zur allgemeinen Funktionentheorie.

3.1 Ganze Funktionen

Wie im Abschnitt 2.1 gezeigt, entwickelte Gaier eigene Methoden aus der Theorie der
ganzen Funktionen, um Probleme der Limitierungstheorie zu 16sen. Daraus entstanden
auch einige davon unabhéngige Arbeiten iiber holomorphe Funktionen mit Beschrin-
kung an Ordnung und Typ in Winkelrdumen, wie z. B. die Arbeit [15] mit H. Delange
Uber asymptotische Wege analytischer Funktionen. Diese Publikation wurde fortgesetzt
in der Arbeit [57] mit Kjellberg.

3.2 Harmonisches MaB

Das harmonische Mal3 hat Dieter Gaier mehrfach benutzt, um von konformen und
quasikonformen Abbildungen f von beschrinkten einfach zusammenhingenden Gebie-
ten G mit 0 € G und 1 € JG auf den Einheitskreis mit den Normierungen /(1) = 1 und
f(0) = 0 Abschitzungen von f in der Nédhe des Randpunktes 1 in der Form

/() - 1] < Clz -1

mit optimalen Konstanten C und p zu erhalten. Er bewies dazu Sétze iiber Abschitzun-
gen des harmonischen MaBes von gewissen Kurven die von eigenstindigem Interesse
sind.

Es gibt jedoch eine Arbeit liber das harmonische Mal3, welche ganz aus diesem Rah-
men fallt, 4 note on Hall’'s Lemma [42]. Diese Arbeit hat ihren Ursprung darin, dass
Dieter Gaier um 1970 versuchte, einen Beweis des Coronatheorems von Carleson fiir
die Vorlesung Funktionentheorie II aufzubereiten. Das war lange bevor T. Wolff seinen
neuen Beweis gab, der betréichtliche Vereinfachungen brachte. Der alte Beweis (siche et-
wa [Du], S. 202-218) benutzte das Hallsche Lemma {iber das harmonische MaB. Beim
Griibeln liber den Beweis bemerkte Dieter Gaier, dass sich die Abschidtzung von Hall
verbessern 146t, wenn man eine etwas eingeschrianktere geometrische Situation betrach-
tet. Die Arbeit wurde seinerzeit viel beachtet und gab Veranlassung zu Nachfolgearbei-
ten, u. a. von W. K. Hayman und J. A. Jenkins.

3.3 Landaus Buch

Im Jahre 1916 veroffentlichte Edmund Landau ein Buch mit dem Titel Darstellung und
Begriindung einiger neuerer Ergebnisse der Funktionentheorie, ein Juwel funktionentheo-
retischer Literatur.
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Es beeinfluBBte viele Mathematiker und erschien 1929 in 2. Auflage und im Jahre
1946 als Chelsea-Reprint. Bei vielen der in diesem Buch behandelten Themen ist Land-
au durch Originalarbeiten vertreten, fiir Sitze anderer Forscher gibt er meist kurze und
neue Beweise, die oft in ihrer Eleganz nicht mehr iibertroffen werden kdnnen. Hardy
sagt in seiner Rezension iiber dieses Buch sogar Probably Landau’s most beautiful book.

Nachdem das Buch lange vergriffen war, besorgte Dieter Gaier auf Anregung von
R. Remmert im Jahre 1986 eine Neuauflage, die den Umfang des Landauschen Buches
fast verdoppelt, und damit viel mehr als nur eine reine Neuauflage wurde. Diese
3. Auflage [B5] ist durch zwei umfangreiche Anhidnge von Dieter Gaier bereichert. Im
1. Anhang werden alle seit 1929 erzielten Forschungsergebnisse zu den im Landauschen
Buch behandelten Themenkreisen aufgelistet, eine gewaltige Arbeit, die eine umfangrei-
che Kenntnis der Spezialliteratur auf diesem Gebiet verlangt. Im 2. Anhang werden
neuere Themenkreise vorgestellt, etwa Ringe und Algebren holomorpher Funktionen, die
den Stoff des Landauschen Buches harmonisch ergdnzen und abrunden. Dabei wéchst
das Literaturverzeichnis von rund 80 auf tiber 400 Nummern und umfaf3t wohl alle ein-
schlagigen Arbeiten. Die Rezensionen iiber das Buch von Landau/Gaier sind teilweise
enthusiastisch, z. B. in den Mathematical Reviews, die fast eine ganze Seite dafiir auf-
wenden, oder im Mathematical Intelligencer 11 (1989), S. 61-63.

3.4 Raume konformer Abbildungen

Anfang der 1980er Jahre gelangte Dieter Gaier zu einem ganz neuen Forschungsgebiet,
zu dem er durch eine Vermutung von Gauthier aus der komplexen Approximations-
theorie gefithrt wurde. Zugrunde liegt die Gruppe »_(G) aller konformen Abbildungen
eines beschrinkten einfach zusammenhidngenden Gebiets G auf sich selbst (beziiglich
der Komposition). Gaier fithrt mit

d(p1,¢2) = sup{lei(2) — ¢a(2)] : 2 € G}

eine naheliegende und geeignete Metrik auf Y (G) ein, die Y (G) zu einem vollkom-
menen metrischen Raum macht. In einer groBangelegten Arbeit [59] beweist Gaier
grundlegende Tatsachen uber die Struktur von ) (G) die sich auf Vollstindigkeit,
Kompaktheit und Zusammenhang beziehen. Angewandt auf das urspriingliche Pro-
blem aus der komplexen Approximationstheorie kann er die Vermutung von Gauthier
widerlegen. Diese Arbeit von Gaier, insbesondere der Katalog offener Fragen am
SchluB, leitete eine neue Entwicklung funktionentheoretischer Forschung ein, an der in
der Folge mehrere Funktionentheoretiker beteiligt waren, vor allem G. Schmieder. We-
sentliche Fragen sind allerdings bis heute noch unbeantwortet.

3.5 Historische Artikel

Zu ihrem hundertjihrigen Bestehen veroffentlichte die deutsche Mathematikervereini-
gung (DMV) im Jahre 1990 einen Festband unter dem Titel Ein Jahrhundert Mathema-
tik, 1890—1990, in dem 20 anerkannte Fachvertreter tiber die Geschichte ihres Faches
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in Deutschland in den letzten hundert Jahren berichten. Fiir die Funktionentheorie
wurde Dieter Gaier gebeten, diese Aufgabe zu iibernehmen. Er hat sie mit groBer Sach-
kenntnis ausgefithrt. Welche ungeheure Arbeit in diesem griindlichst recherchierten
60-seitigen Artikel steckt, kann man nur erahnen.

Zu den historischen Artikeln zahlt auch Gaiers Publikation [72] iiber Leben und
Werk von A. Plessner, der 1923 in Giessen mit einer bedeutenden Arbeit Uiber Fourier-
analysis bei Schlesinger promovierte, dem man aber als Jude die Habilitation verweiger-
te, indem man biirokratische Hiirden aufrichtete.

4 Approximationstheorie

Ein Gutteil der Gaierschen Publikationen entstammt dem Gebiet der reellen und der
komplexen Approximationstheorie. Fiir das letztere hat er das neuere Standardwerk
[B3] verfalit.

4.1 Approximation im Komplexen

Seit seinen Aufenthalten in Harvard bei J. L. Walsh hat sich Dieter Gaier immer wieder
mit Fragen aus der komplexen Approximationstheorie beschéftigt. Das Standardwerk
iiber dieses Gebiet war das Buch von J. L. Walsh Interpolation and Approximation in the
Complex Domain das bereits 1935 erschien. Hier fehlte auch in den spéteren Auflagen
die ganze moderne Entwicklung nach dem 2. Weltkrieg, die vor allem mit den Namen
Mergeljan, Arakeljan und Nerzesjan verbunden ist. Das veranlaBte Dieter Gaier sein
Buch Approximation im Komplexen ([B3]) zu schreiben, welches neben der klassischen
Approximation durch Reihenentwicklung und Interpolation auch in einem 2. Teil die
moderne Entwicklung berticksichtigt.

Dieser 2. Teil enthdlt u. a. die Approximationssitze von Carleman, Mergeljan und
Arakeljan, den Lokalisationssatz von Bishop und das Fusion-Lemma von Alice Roth.
Gaiers Buch fand bei den Experten einen solchen Anklang, dass es ins Englische [B7],
ins Russische [B6] und ins Chinesische [B4] ibersetzt wurde.

4,2 Das Fusion-Lemma von Alice Roth

Bei der Approximation durch rationale Funktionen auf kompakten Mengen im Kom-
plexen spielt das Fusion Lemma von Alice Roth eine Schliisselrolle. Das ist im wesentli-
chen eine Entdeckung von Dieter Gaier. Er hat die Anwendung immer sehr propagiert
und auch in seinem Buch [B3] und in dem Ubersichtsartikel [60] hervorgehoben. In der
Arbeit [56] beschiftigte er sich mit Fragen der Verbesserungen bzw. Verschirfung dieses
Lemmas.

Alice Roth promovierte 1938 an der ETH Ziirich bei Polya mit einer Arbeit, in der
der berithmte swiss cheese (siche z. B. [Ga], S. 25-26) konstruiert wird, der spiter bei
der Konstruktion von Gegenbeispielen in der komplexen Approximationstheorie im-
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mer wieder herangezogen wurde. Erst nach langen Jahren im Schuldienst in Bern nahm
sie nach der Pensionierung ihre Forschungstétigkeit wieder auf und publizierte ab 1973
weitere wichtige Beitrdge zur komplexen Approximationstheorie. Ein Artikel tiber Le-
ben und Werk dieser gro8en Mathematikerin erscheint in Kiirze [Dae].

4.3 Polynomapproximation

Eine ganze Reihe von Arbeiten ([78], [80], [82]) widmet sich der Approximation von
analytischen Funktionen in reellen Intervallen oder von konformen Abbildungen durch
Polynome, in denen Dieter Gaier oft Resultate anderer Autoren verbesserte.

Hierher gehoren auch die Arbeiten [65], [70], [71], [74] tiber Approximation durch
Bieberbachpolynome. Eine besonders interessante Fragestellung der Polynomappro-
ximation in Touching domains wird in [81] behandelt, wo Dieter Gaier Ergebnisse von
V. V. Andrievskii signifikant erweitert.
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Gedenken an Ananda Rau gewidmet).

[37] Bemerkungen zum Turanschen Lemma. Abh. Math. Semin. Univ. Hamb. 35
(1970) 1-7.
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[38] Saturation bei Spline-Approximation und Quadratur. Numer. Math. 16 (1970)
129-140 (L. Collatz zum 60. Geb. gewidmet).

[39] Estimates of conformal mappings near the boundary. Math. J., Indiana Univ. 21
(1972) 581-595.

[40] Ermittlung des konformen Moduls von Vierecken mit Differenzenmethoden. Nu-
mer. Math. 19 (1972) 179-194.

[41] Entire functions with gap power series. Ann. Univ. Mariae Curie-Sklodowska,
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(1972) 69-172.
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[43] Quasiconformal mappings near the boundary. Indiana Univ. Math. J. 22 (1973)
813-815.
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nal Analysis Appl., internat. Conf., Madras 1973, Lect. Notes Math. 399 (1974)
180—-188.

[46] Integralgleichungen erster Art und konforme Abbildung. Math. Z. 147 (1976)
113-129 (R. Nevanlinna zum 80. Geburtstag gewidmet).

[47] (mit O. Hiibner) Schnelle Auswertung von Ax bei Matrizen A zyklischer Bauart,
Toeplitz- und Hankel-Matrizen. Mitt. Math. Semin. Giessen 121 (1976) 27-38.

[48] Approximation durch Fejér-Mittel in der Klasse A. Mitt. Math. Semin. Giessen
123 (1977) 1-6 (dem Andenken an Karl Maruhn gewidmet).

[49] Uber ein Flicheninhaltsproblem und konforme Selbstabbildungen. Rev. Roum.
Math. Pures Appl. 22 (1977) 1101 -1105.

[50] Holder-Stetigkeit und BMO des logarithmischen Potentials. Arch. Math. 30 (1978)
49-54.

[51] Konforme Abbildung mehrfach zusammenhidngender Gebiete. Jahresber. Dtsch.
Math.-Ver. 81 (1978) 25-44.

[52] Capacitance and the conformal module of quadrilaterals. J. Math. Anal. Appl. 70
(1979) 236-239.

[53] Research problems. Period. Math. Hung 12 (1981) 1.

[54] Gap theorems for logarithmic summability. Analysis 1 (1981) 9-24.

[55] Das logarithmische Potential und die konforme Abbildung mehrfach zusammen-
hidngender Gebiete. E. B. Christoffel, the influence of his work on mathematics
and the physical sciences, int. Symp., Aachen 1979, (1981) 290-303.

[56] Remarks on Alice Roth’s fusion lemma. J. Approximation Theory 37 (1983)
246-250.

[57] (mit B. Kjellberg) Entire functions and their derivative on an asymptotic arc. Stu-
dies in pure mathematics, Mem. of P. Turan, (1983) 231-236.

[58] Numerical methods in conformal mapping. Computational aspects of complex
analysis, Proc. NATO Adv. Study Inst., Braunlage/Ger. 1982, NATO ASI Ser.,
Ser. C 102 (1983) 51-78.

[59] Uber Riume konformer Selbstabbildungen ebener Gebiete. Math. Z. 187 (1984)
227-257 (H. Grunsky zum 80. Geb. gewidmet).
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[60] Approximation im Komplexen. Jahresber. Dtsch. Math.-Ver. 86 (1984) 151159
(Hauptvortrag, DM V-Tagung K&ln 1983).

[61] On an area problem in conformal mapping. Result. Math. 10 (1986) 66—81 (in me-
mory of Hans Wittich).

[62] Uber Schlichtheitsgebiete ganzer Funktionen. Complex Variables, Theory Appl. 8
(1987) 303-306.

[63] (mit N. Papamichael) On the comparison of two numerical methods for conformal
mapping. IMA J. Numer. Anal. 7 (1987) 261-282.

[64] On a polynomial lemma of Andrievskii. Arch. Math. 49 (1987) 119-123
(G. Pickert zum 70. Geburtstag gewidmet).

[65] On the convergence of the Bieberbach polynomials in regions with corners. Con-
structive Approximation 4, No. 3 (1988) 289—-305.

[66] Remarks of the lemma of Nersesyan in complex approximation. Zap. Nauchn. Se-
min. Leningr. Otd. Mat. Inst. Steklova 170 (1989) 90-94; Ubersetzung in
J. Sov. Math. 63, No. 2 (1993) 164-166.

[67] (mit W. Hayman) Moduli of long quadrilaterals and thick ring domains. Rend.
Mat. Appl., VII. Ser. 10, No. 4 (1990) 809 -834 (dedicated to the memory of Maria
Adelaide Sneider).

[68] Uber die Entwicklung der Funktionentheorie in Deutschland von 1890 bis 1950.
Ein Jahrhundert Mathematik 1890-1990. Festschrift zum Jubilium der DMYV.
Braunschweig: Friedr. Vieweg & Sohn. Dok. Gesch. Math. 6 (1990) 361—-420.

[69] (mit W. Hayman) On the computation of modules of long quadrilaterals. Con-
structive Approximation 7, No. 4 (1991) 453 —-467.

[70] On the convergence of the Bieberbach polynomials in regions with corners. Inter-
national symposium on number theory and analysis in memory of Hua Loo Keng,
held at the Tsing Hua University, Beijing, China, August 17, 1988. Volume II:
Analysis. Berlin: Springer-Verlag (1991) 107-110.

[71] On the convergence of the Bieberbach polynomials in regions with piecewise ana-
lytic boundary. Arch. Math. 58, No. 5 (1992) 462—470.

[72] Abraham Ezechiel Plessner (1900—1961): His work and his life. Math. Intell. 14,
No. 3(1992) 31-36.

[73] Conformal mapping of analytic corners in a generalized sense. Analysis 12, No.
1/2(1992) 187-193.

[74] (mit V. V. Andrievskii) Uniform convergence of Bieberbach polynomials in do-
mains with piecewise quasianalytic boundary. Mitt. Math. Semin. Giessen 211
(1992) 49-60.

[75] On the behavior of capacity under conformal mapping. Complex Variables, Theo-
ry Appl. 21, No. 3-4 (1993) 197-205 (dedicated to the memory of Glenn Scho-
ber).

[76] Constructive aspects in complex analysis. Proceedings of the conference on advan-
ces in computational mathematics, held at New Delhi, India, January 5-9, 1993.
Singapore: World Scientific. Ser. Approx. Decompos. 4 (1994) 243—-250.

[77] Conformal modules and their computation. Computational methods and function
theory 1994. Proceedings of the conference, Penang, Malaysia, March 21-25.
1994. Singapore: World Scientific. Ser. Approx. Decompos. 5 (1995) 159—171.
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[85] The Faber operator and its boundedness. J. Approximation Theory 101, No. 2
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[86] Joseph L. Walsh: Selected papers. With brief biographical sketches by W. E. Se-
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[87] On the decrease of Faber polynomials in domains with piecewise analytic bounda-
ry. Analysis 21, No. 2 (2001) 219-229 (dedicated to Professor Wolfgang Luh,
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[88] (mit R. Kiihnau) On the modulus of continuity for starlike mappings. Ann. Lublin
Sec. A. 56 No. 2 (2002) 19-30 (dedicated to Jan Krzyz).
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Chinesische von Xie-Chang Shen. Hunan Educational Publ. House (1985).

[B5] Landau, Edmund; Gaier, Dieter Darstellung und Begriindung einiger neuerer Er-
gebnisse der Funktionentheorie. 3., erw. Aufl. Berlin etc.: Springer-Verlag 1986.

[B6] Lectures on complex approximation. (Lektsii po teorii approksimatsii v kompleks-
noj oblasti). Ubers. aus dem Deutschen ins Russische von L. M. Kartashov. Mosk-
va: Izdatel’stvo Mir (1986).

52 JB 107. Band (2005), Heft 1



| M.von Renteln: Dieter Gaier (1928 -2002)
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2.3 Aligemeine Artikel
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S.Basu, R. Pollack,
M-F. Roy
Algorithms in Real
Algebraic Geometry

Berlin u. a., Springer, 2003, 602 S., € 59,95

Gegenstand des Buches sind zentrale algo-
rithmische Probleme der reellen algebrai-
schen Geometrie. Hierzu zdhlen beispiels-
weise die Frage nach der Existenz reeller Lo-
sungen einer (durch polynomiale Gleichun-
gen und Ungleichungen) bestimmten semial-
gebraischen Menge oder die Frage, ob zwei
Punkte zur gleichen Zusammenhangskom-
ponente einer gegebenen semialgebraischen
Menge gehoren.

Die Entscheidbarkeit der ersten Frage ist
bereits seit Tarski's Ergebnissen zur reellen
Quantorenelimination aus den 40er Jahren
bekannt und steht im Gegensatz zur Nicht-
entscheidbarkeit der Existenz ganzzahliger
Losungen (Hilbert's 10. Problem). Der Re-
chenaufwand bekannter Verfahren fiir die
Quantorenelimination ist jedoch bereits fiir
kleine Dimensionen betrédchtlich. Insbeson-
dere auch, weil zahlreiche Anwendungspro-
bleme (beispielsweise bei Bewegungsplanun-
gen in der Robotik oder im Computer-Aided
Geometric Design) auf algorithmische Pro-
bleme der reellen algebraischen Geometrie
fiihren, erfahrt dieses Teilgebiet derzeit so-
wohl innerhalb der Mathematik als auch in
benachbarten Disziplinen viel Aufmerksam-
keit. Eine der Herausforderungen kommt
daher, dass hierbei eine Reihe von Teilgebie-
ten der Mathematik und Informatik wie To-
pologie, algebraische Geometrie, Computer-
algebra, Komplexititstheorie sowie der Ent-
wurf effizienter Algorithmen eng miteinan-

der verzahnt sind und deshalb die Literatur
sehr verstreut war.

In genau diese Liicke mochte das vorlie-
gende Buch stoBen — und dieses Unterfangen
ist den Autoren in beeindruckender Weise
gelungen!

In den ersten Kapiteln wird liberwiegend
klassisches Material der reellen algebrai-
schen Geometrie zusammengestellt, etwa die
Theorie reell abgeschlossener Korper und se-
mialgebraischer Mengen sowie klassische
Techniken zur Bestimmung der Anzahl reel-
ler Lésungen eines univariaten Polynoms.

Im mittleren Drittel des Buches werden die
beiden Zugpferde fiir die algorithmischen
Techniken diskutiert: die zylindrisch-alge-
braische Dekomposition und die Methode
der kritischen Punkte. Hierzu werden zu-
néchst ein auf die Besonderheiten semialge-
braischer Mengen angepasster Steilkurs zur
Topologie sowie zur Morsetheorie angebo-
ten und quantitative Ergebnisse (etwa die
Oleinik-Petrovsky/Thom/Milnor-Schranke
fiir die Summe der Bettizahlen einer durch
Polynome gleichen Grades gegebenen algeb-
raischen Menge) hergeleitet. Nach einem
weiteren Streifzug durch Grundtechniken
der algorithmischen Algebra (z. B. Subresul-
tanten, Grobnerbasen) werden die zylin-
drisch-algebraische Dekomposition und die
Methode der kritischen Punkte in sehr de-
tailliertem Pseudocode angegeben und unter
komplexitétstheoretischen Gesichtspunkten
ausfihrlich analysiert.

Im letzten Drittel des Buches werden die
neuesten Entwicklungen zur Verbesserung
der algorithmischen Grundtechniken sowie
ihrer Anwendung auf komplexere Probleme
(z. B. der Berechnung von ,,Roadmaps® zur
oben erwdhnten Bestimmung der Zusam-
menhangskomponenten einer semialgebrai-
schen Menge) vorgestellt. Hier haben die
drei Autoren in jingster Zeit auch wesentli-
che, neue Forschungsbeitrage geleistet.

Das Buch bietet eine sehr zeitgemife, ge-
lungene Darstellung klassischen sowie aktu-
ellen Materials zu algorithmischen Fragen
der reellen algebraischen Geometrie, die in
dieser Breite bisher nicht verfiigbar war. Be-
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sonders auffillig ist die erfolgreiche Absicht
der Autoren, eine kohdrente und vor allem
in sich geschlossene Darstellung zu liefern,
die die verschiedenen beteiligten mathemati-
schen Teilgebiete umfassend beriicksichtigt.
Aufgrund dieser Darstellungsweise bietet
das Buch zahlreiche Einstiegs- und Verwen-
dungsmdoglichkeiten, sowohl in Lehre und
Forschung als auch als Nachschlagewerk. Es
wird sich schnell als Standardwerk zu dem
behandelten Themenkreis etablieren.

Miinchen T. Theobald

MODEL THEORY OF
STOCHASTIC PROCESSES

S. Fajardo, H. J. Keisler
Model Theory of

Stochastic Processes
Lect. Notes in Logic 14

Natick, A. K. Peters Ltd, 2002, 152 S., $ 32,-

Das Buch ,,Model Theory of Stochastic Pro-
cesses untersucht stochastische Prozesse
aus modelltheoretischer Sicht. Insbesondere
kommen dabei Methoden aus der Nonstan-
dardanalysis (saturierte Modelle) zum Ein-
satz. Als Zielgruppe von Lesern sehe ich da-
her vorwiegend modelltheoretisch gebildete
Mathematiker mit Interesse an Stochastik,
aber auch Wabhrscheinlichkeitstheoretiker
mit einem starken Interesse an logisch-mo-
delltheoretischen Fragen. Das Buch setzt vo-
raus, dass der Leser mit Nonstandardana-
lysis (saturierte Modelle, Loeb-MaBe) ver-
traut ist.

Es werden stochastische Prozesse x =
(x/),> die adaptiert beziiglich einer Filtration
(F,), sind, modulo verschiedener Aquva-
lenzrelationen untersucht. Die einfachste
dieser Aquivalenzrelationen ist die Gleich-

heit der endlichdimensionalen Randvertei-
lungen. Weitere Aquivalenzrelationen erhalt
man, indem Gleichheit der Erwartungswerte
E[f(x)] = E[f(y)] fur beschrinkte Test-
funktionen f in verschiedenen Klassen ge-
fordert wird. Ein Beispiel ist die Klasse der
stetigen, beschrankten Funktionen von nur
endlich vielen Variablen; sie fithrt wieder auf
die Gleichheit endlichdimensionaler Rand-
verteilungen. Ein anderes Beispiel erhalt
man aus dieser Klasse, indem man sie beziig-
lich der Bildung bedingter Erwartungen und
Komposition abschlief3t.

Hier sind typische Fragestellungen:

Gegeben sei ein adaptierter Raum . Be-
trachten wir einen stochastischen Prozess x
auf irgendeinem weiteren adaptierten Raum.
Gibt es dann einen adaptierten Prozess x’
auf ), der zu x dquivalent ist (Universalitdt)?

Gegeben ein Paar (x,y) adaptierter Pro-
zesse und einen Prozess x' dquivalent zu x
(alle Prozesse auf ), gibt es einen stochasti-
schen Prozess ', so dass (x, y) dquivalent zu
(x,y)ist?

Eine Variante dieser Fragen wird durch
folgendes Spiel motiviert: Zwei Spieler A
und B suchen sich abwechselnd in abzéhlbar
unendlich vielen Runden Zufallsvariablen
oder auch stochastische Prozesse aus. Dabei
wihlt A stets einen Prozess iber einem
Raum €2, und B stets einen Prozess iiber ei-
nem Raum I'. Am Anfang sind zwei dquiva-
lente Prozesse x und y tiber 2 bzw. I' gege-
ben. In der Runde n, wobei n=1,2,3,...
durchlduft, wihlt zuerst A einen Prozess x,
und dann B einen Prozess y,. B gewinnt das
Spiel, wenn (x, x1, X2, X3, ...) dquivalent zu
(y,71,2,¥3, .. .) ist; andernfalls gewinnt A.
Hat B eine Gewinnstrategie? Die Prozesse x
und y heiBen spieliquivalent, wenn es eine
solche Gewinnstrategie fiir B gibt.

Auf ,,gewShnlichen® adaptierten Rdumen
(Vervollstindigungen von Borel-W-malen
auf einem polnischen Raum mit einer Filtra-
tion) ist die Antwort auf obige Fragen typi-
scherweise negativ. Das Bild dndert sich je-
doch, wenn man statt dessen Loeb-Raume
iiber internen *-endlich additiven Wahr-
scheinlichkeitsriumen betrachtet; zum Bei-
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spiel Loeb-Rdume {iber
Wahrscheinlichkeitsraumen.

Weite Teile des Buches analysieren die obi-
gen und viele weitere verwandte Aquivalenz-
relationen und Abhéngigkeiten zwischen
diesen, illustriert mit zahlreichen Beispielen
und Gegenbeispielen. Allerdings haben viele
Teile eher den Charakter eines Literatur-
iiberblicks, da oft keine vollstindigen Bewei-
se, sondern nur Beweisskizzen und Verweise
auf die Originalarbeiten zu finden sind.

Leser, die sich fiir modelltheoretische
Theoreme iiber stochastische Prozesse inte-
ressieren, erhalten mit diesem Buch einen gu-
ten Uberblick iiber das Gebiet. Das Buch er-
setzt allerdings nicht die Lektiire der im
Buch zitierten Originalarbeiten, weil im
Buch die modelltheoretischen Grundlagen,
die zum Verstédndnis notig sind, nicht syste-
matisch eingefiihrt werden, und auch die Be-
weise teilweise nur in groben Ziigen skizziert
werden.

hyperendlichen

Leiden (Niederlande)

F. Merkl

H. Holden, N. H. Risebro
Front Tracking for
Hyperholic Gonser-
vation Laws

Berlin u. a., Springer, 2002, 363 S., € 64,95

Das neue Buch von Holden und Risebro be-
handelt hyperbolische Systeme von Erhal-
tungssdatzen. Prototyp dieser meist nicht-
linearen Systeme partieller Differentialglei-
chungen sind die Eulergleichungen der Gas-
dynamik, d. h. die Erhaltungsprinzipien fiir
Masse, Impuls und Energie. Die Lésungen
sind in der Regel unstetig, sie enthalten Sto3-

wellen und Kontaktunstetigkeiten. Das
macht die Analyse und Numerik besonders
anspruchsvoll.

Hier ein kurzer Uberblick iiber vergleich-
bare neuere Biicher: fiir die Analysis der
Klassiker von J.Smoller (2. Aufl. Springer
1994), Dafermos (Springer 1998), D.Serre
(Cambridge Univ. Press 1999 u. 2000),
Malek/Necas/Rokyta (Springer 2000), Bres-
san (Oxford Univ. Press 2000), LeFloch
(Birkhéduser 2002). Fiir die Numerik LeVe-
que (Birkhduser 1992), Godlewski/Raviart
(Springer 1996), Kroner (Wiley-Teubner
1997), Toro (Springer 1998) und nochmals
LeVeque (Cambridge Univ. Press 2000). Es
gibt also im Gegensatz zum Beginn der neun-
ziger Jahre eine erfreuliche Auswahl an von
fithrenden Experten geschriebenen Lehr-
biichern.

Meiner Meinung nach ist das Buch der
beiden norwegischen Kollegen eine sehr will-
kommene Ergéinzung. Es ist von seiner Aus-
richtung analytisch, die wesentlichen Exis-
tenz- und Eindeutigkeitssidtze werden rigo-
ros bewiesen. Der rote Faden des Buches ist
jedoch eine konstruktive Methode, das soge-
nannte Front-Tracking. Die mit diesem Ver-
fahren konstruierten approximativen Lo-
sungen bieten einerseits die Grundlage fur
Existenz- und Eindeutigkeitsbeweise schwa-
cher Losungen, anderereseits fiithren sie zu
hocheffizienten numerischen Verfahren.

Das Front-Tracking wurde in den 70er
Jahren von Dafermos als analytisches Werk-
zeug vorgeschlagen, und spéter vom 1988
verstorbenen norwegischen Mathematiker
Raphael Hoegh-Krohn, dem das Buch auch
gewidmet ist, sowie seinen damaligen Mit-
arbeitern Holden und Risebro wiederent-
deckt und weiterentwickelt. Es dhnelt einer
von Bressan Anfang der neunziger Jahre
vorgestellten Methode, mit der erstmals die
Eindeutigkeit schwacher Losungen fiir ein-
dimensionale Systeme bewiesen werden
konnte.

Lassen Sie mich kurz auf die einzelnen Ka-
pitel eingehen: Nach einer gehaltvollen Ein-
leitung werden im zweiten Kapitel skalare
Erhaltungssdtze behandelt. Zunédchst wird
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eine Entropiebedingung vorgestellt, welche
die korrekte schwache Losung auszuwéhlen
vermag. Dann wird das Riemannproblem
(Cauchyproblem mit zwei stiickweise kon-
stanten Daten) gelost. Das bildet die Grund-
lage fiir den Front-Tracking Algorithmus.
Hierbei wird die Flussfunktion durch eine
stetige, stiickweise lineare Funktion approxi-
miert. So erhdlt man fiir stiickweise konstan-
te Anfangsdaten ein Hilfsproblem, das sich
analytisch exakt 16sen lasst. Fiir diesen Algo-
rithmus wird dann die stetige Abhédngigkeit
von den Anfangsdaten bewiesen. Schlieflich
wird gezeigt, wie allgemeine Anfangsdaten
und Flussfunktionen approximiert werden
konnen. Das fithrt zu einem recht allgemei-
nen Existenz- und Eindeutigkeitssatz. Aus
dem Beweis lassen sich die wesentlichen Ei-
genschaften der Losung ablesen.

Das dritte Kapitel ist eine kompakte, aber
ausgesprochen gehaltvolle Einfithrung in die
klassischen Finiten Differenzen- bzw Finiten
Volumenverfahren. Die wesentlichen Kon-
vergenzsitze einschlieBlich der a-priori Feh-
lerabschitzungen werden vollstandig bewie-
sen, und sogar die Theorie maBwertiger Lo-
sungen wird vorgestellt. Trotz der Kiirze die-
ses Kapitels werden die Ideen klar und an-
schaulich beschrieben.

In Kapitel 4 wird die Behandlung mehr-
dimensionaler skalarer Probleme vorgestellt.
Systematisch wird auf dem Dimensionssplit-
ting Ansatz aufgebaut. Zunéchst werden die
in Kapitel 2 vorgestellten exakten eindimen-
sionalen Losungsoperatoren alterniert, um
die mehrdimensionale Losung zu approxi-
mieren. Als ndchstes wird das fiir die ein-
dimensionalen Front-Tracking Operatoren
durchgefiihrt, dann fiir Gleichungen mit
Diffusion und schlieBlich fiir Quellterme.
Fiir all diese Félle werden Konvergenzresul-
tate, zum Teil mit Fehlerabschédtzungen, be-
wiesen.

In den Kapiteln 5 bis 7 behandeln Holden
und Risebro das Cauchy Problem fiir ein-
dimensionale Systeme von Erhaltungssit-
zen. Das fiinfte Kapitel ist eine gut lesbare
Darstellung der Losung des Riemann Pro-
blems, gipfelnd im berithmten Existenzsatz

von Lax. Im sechsten Kapitel wird das ein-
dimensionale Front-Tracking Verfahren aus
dem zweiten Kapitel auf Systeme verall-
gemeinert. Wie beim klassischen Glimm-
schen Existenzbeweis ist es fiir die Konver-
genz auch hier entscheidend, die Interaktio-
nen zwischen kollidierenden Wellen abzu-
schitzen. Diese Abschidtzungen wurden in
den letzten Jahren (unter anderem von den
Autoren) erheblich vereinfacht, und davon
profitiert die sehr transparente Darstellung
des Buches. Im siebten Kapitel folgt dann
der entscheidende Schritt zum Beweis der
Wohlgestelltheit des Cauchy Problems: es
wird gezeigt, dass der mit dem Front-Tra-
cking konstruierte Losungsoperator stetig in
der L' Topologie ist. Dieses Kapitel halte ich
aus Sicht der Analysis fiir den Héhepunkt
des Buches. Um den L! Abstand zweier Lo-
sungen zu kontrollieren, wird ein Funktional
dhnlich dem Glimmschen Interaktionsfunk-
tional eingefithrt. Eine Fiille von Interakti-
onsabschitzungen fithrt nun zur Stabilitét
des Front-Tracking Algorithmus und
schlieBlich der Stabilitdt der schwachen Lo-
sung selbst. Daraus folgt dann (nach erhebli-
cher weiterer Arbeit) die Eindeutigkeit. Die
Beweise dieses Kapitels folgen im Wesentli-
chen den bahnbrechenden Arbeiten von
A.Bressan und Mitarbeitern, T.-P. Liu,
T.Yang und P.LeFloch.

Das Buch wird durch zwei Anhénge abge-
rundet: In Appendix A werden Funktionen
beschrinkter Variation sowie grundlegende
Kompaktheitsargumente vorgestellt. In Ap-
pendix B wird ein vollstdndiger Existenz-
beweis fiir mehrdimensionale skalare Erhal-
tungssétze mittels der klassischen Methode
der verschwindenden Viskositdt gegeben.

Jedem Abschnitt sind kurze literarische
Zitate und Bonmots in einer Vielzahl von
Sprachen vorangestellt, deren Eigenwillig-
keit die Aufmerksamkeit des Lesers gerade-
zu provoziert. Zunéchst habe ich mich daran
gewOhnen miissen; im Laufe des Buches ha-
be ich aber groBe Freude daran gefunden
und war immer schon neugierig auf die
nichste Uberraschung.
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Jedes Kapitel wird von sorgféltig aus-
gewahlten historischen Notizen und Litera-
turhinweisen ergdnzt. Danach folgt eine
reichhaltige Auswahl von Ubungsaufgaben,
zu denen in Appendix C sogar Losungshin-
weise gegeben werden. Das Literaturver-
zeichnis hat mit 148 Arbeiten einen verninf-
tigen Umfang.

Das neue Buch von Holden und Risebro
besticht durch seine klare Linie — die Kon-
zentration auf die Front-Tracking Methode.
Es ist analytisch anspruchsvoll, rigoros, und
gut lesbar. Es werden geniigend Querverwei-
se gegeben, damit der Nicht-Experte sich ei-
nen breiteren Uberblick iiber die Analysis
von Erhaltungssidtzen verschaffen kann. Bei
den numerischen Methoden wird nicht ver-
sucht, einen breiten Uberblick zu geben. Es
fehlen vor allem die approximativen Rie-
mann-Loser fiir Systeme und die mehr-
dimensionalen Finiten Volumenverfahren.
Hierzu sei ergidnzend die Lektiire der oben
erwihnten Biicher von Godlewski-Raviart,
Kroner, LeVeque oder Toro empfohlen.

Ich habe das Buch mit groBer Freude gele-
sen und empfehle es sowohl Experten als
auch Studenten zur Lektiire und zum Durch-
arbeiten. Es kann auch als zuverldssige und
sehr anregende Grundlage fiir eine einsemes-
trige Hauptstudiumsvorlesung dienen.

Aachen S. Noelle
Higher Order Partial ili
D;?fe:nt;alzquaatil:ns E Ob()laSChW[“
in Clifford Analysi: :

e s Higher Order Partial

Differential Equations
in Clifford Analysis
Progr. Math. 208

Basel, Birkhéduser, 2002, 208 S., € 83,18

Das erklédrte Ziel dieses Buches besteht da-
rin, den Leser mit komplexen und hyper-
komplexen Methoden zur Behandlung von
Anfangswert- und Randwertaufgaben fiir
partielle Differentialgleichungen vertraut zu
machen. Bei der Benutzung von Methoden
der Clifford-Analysis gelingt es, die Kons-
truktion der Losungen oftmals entscheidend
zu vereinfachen. Dabei werden auch bislang
wenig verwendete Clifford-Algebren der
Form CY, , eingesetzt.

Das Buch besteht aus vier Kapiteln. Im
ersten Kapitel werden zweidimensionale
Randwertaufgaben fiir holomorphe Funk-
tionen behandelt. Darunter befinden sich je-
weils iiber speziellen Grundgebieten das Rie-
mann-Problem, das Riemann-Hilbert-Prob-
lem, Dirichlet- bzw. Neumann-Problem,
aber auch die gemischte Randwertaufgabe
vom Keldish-Sedow-Typ. Auch die Glei-
chungen der ebenen Elastizitdtstheorie von
Kolosow-Muschelischwili konnen in Spezi-
alfillen einer Losung zugefiihrt werden. Fiir
verallgemeinerte holomorphe Funktionen,
die mit der Yukawa-Gleichung (im Buch irr-
tiimlich Helmholtz-Gleichung genannt) ver-
bunden sind, werden Integraldarstellungen
der Losung angegeben. Es ist interessant zu
vermerken, dass auch gemischte Randwert-
aufgaben der Vekua-Theorie abgehandelt
sind. Die Beltrami-Gleichung und deren
Analoga von hoherer Ordnung sowie Rand-
wertaufgaben fir spezielle komplexe Diffe-
rentialgleichungen hoherer Ordung werden
untersucht. Darunter befinden sich Rand-
wertaufgaben pluriholomorpher Funktio-
nen und ein nichtlokales Problem fiir biholo-
morphe Funktionen.

Im Kapitel 2 wird zunéchst die Definition
einer universellen Clifford-Algebra gegeben.
Verschiedene Kernfunktionen (Gauf3-Weier-
stra}, Sommerfeld, Abel-Poisson) werden
eingefithrt und deren Fouriertransformation
berechnet. Diese sind notwendig, um zu ex-
pliziten Losungen fiir entsprechende Rand-
wertaufgaben zu gelangen. Die im Kapitel 1
zweidimensional betrachteten Fille werden
nun héherdimensional durchgespielt.
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Kapitel 3 ist hyperbolischen, poly- und
plurihyperbolischen Gleichungen gewidmet.
Unter denen befindet sich die Poly-Klein-
Gorden-Gleichung sowie verschiedene har-
monische Versionen dieser Gleichungen.
Das letzte Kapitel ist vor allem parabo-
lischen und pluriparabolischen Problemen
gewidmet. Mit Hilfe der Fourier-Transfor-
mation gelingt es unter bestimmten An-
fangs-und Randsituationen in speziellen
Clifford-Algebren Losungen explizit zu er-
halten. Abschlieend werden Dirichlet-Cau-
chy und Cauchy-Neumann-Probleme fiir el-
liptisch-parabolische, und hyperbolisch-pa-
rabolische Probleme geldst.

Das Buch stellt eine interessante Samm-
lung verschiedener Anfangs- und Randwert-
probleme fiir spezielle Klassen von partiellen
Differentialgleichungen dar, die giinstiger-
weise durch Quadraturformeln geldst wer-
den konnen. Einschrankend muss festgestellt
werden, dass die zugehdrigen physikalischen
Modelle nicht oder nur wenig behandelt
sind. Auch wird auf Losungstheorie weitest-
gehend verzichtet. Dennoch kann das Buch
als niitzliche Bereicherung fiir die Ausbil-
dung von Physikern und mathematisch ori-
entierten Ingenieuren angesehen werden.

Freiberg

W. SproBig

Y. A Abramovich,
C.D. Aliprantis

An Invitation

to Operator Theory
Grad. Studies

in Math. 50

Providence, Am. Math. Soc., 2002, 530 S.,
$69,—

Unter den in den letzten Jahren zur Opera-
tortheorie erschienenen Biichern nimmt der
zu besprechende Text einen markanten Platz
ein. Er ist weniger als Forschungsmonogra-
phie, sondern als wohldurchdachtes und
ausgefeiltes Lehrbuch konzipiert, das we-
sentliche Belange der Operatortheorie in Ba-
nachverbdnden beschreibt. Im Vordergrund
stehen dabei die durch die Ordnungsrelation
und Topologie erzeugten Eigenschaften;
Operatortheorie in Hilbertrdumen wird
weitgehend ausgeblendet. Die ersten sieben
Kapitel tragen einfithrenden Charakter, in
denen grundlegende Konzeptionen der all-
gemeinen Operatortheorie und im speziellen
die der Operatortheorie in Banachverbdnden
ausfithrlich dargelegt werden.

Kapitel drei ist dem Studium sogenannter
AL- und AM-Rédume gewidmet, wobei AL-
Raum bzw. AM-Raum fir ,,Abstract Lebes-
gue” space und entsprechend fiir ,,Abstract
Maximum* space steht. Als wichtige Mo-
dellfélle dienen die klassischen L;(yu)- und
C(Q)-Raume.

Die Kapitel vier und fiinf behandeln wich-
tige Klassen linearer Operatoren: endlich-
dimensionale Operatoren, Multiplikations-
operatoren, algebraische und Verbands-
homomorphismen, Fredholmoperatoren,
strikt singuldre Operatoren im Sinne von T.
Kato und Integraloperatoren. Daneben wer-
den im flinften Kapitel positive Projektoren
studiert. Positivitit bedeutet hier und im
Weiteren ausschlieBlich die durch die partiel-
le Ordnung erzeugte (ein Operator heiflt po-
sitiv, wenn er positive Elemente wieder in
solche tiberfiihrt). Das sechste Kapitel bein-
haltet die Grundlagen der allgemeinen Spek-
traltheorie linearer Operatoren. Dieses Ka-
pitel findet seine Fortsetzung im siebenten
Kapitel. Hier werden die Spektren spezieller
Operatoren beschrieben, wie die von kom-
pakten, strikt singuldren Operatoren oder
die von Verbandshomomorphismen. Gleich-
falls wird in diesem Kapitel auf den Begriff
des wesentlichen Spektrums eingegangen.
Das achte Kapitel enthilt die Theorie positi-
ver Matrizen, d. h. solcher mit positiven Ein-
tragen, und stellt die Verbindung der Opera-
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tortheorie in Banachverbdanden zur linearen
Algebra her. Es wurden unter anderem die
Begriffe irreduzible und primitive Matrix
eingefithrt und das Perron-Frobenius-Theo-
rem bewiesen. Das neunte Kapitel dient der
Ubertragung der Resultate fiir irreduzible
Matrizen auf den unendlichdimensionalen
Fall und diskutiert eine Reihe tiefliegender
Fakten. Als Demonstrationsobjekte werden
hier unter anderem Integraloperatoren he-
rangezogen.

Im zehnten Kapitel findet das bis heute
populdre Problem der Existenz invarianter
Teilrdume fiir lineare Operatoren seinen
Niederschlag. Es enthilt eine detaillierte
Diskussion dieses Problems sowohl fiir Ba-
nachrdume wie auch fiir Banachverbinde.
Das letzte und abschlieBende Kapitel behan-
delt die Daugavetgleichung. I. K. Daugavet
entdeckte 1963 folgende Eigenschaft: Jeder
kompakte Operator 7', der im Banachraum
C[0, 1] aller auf dem abgeschlossenen Inter-
vall [0, 1] stetigen Funktionen wirkt, erftllt
die Gleichung

M+ Tl =1+T]|.

Bislang wurden viele weitere Klassen von li-
nearen Operatoren in weiteren Banachriu-
men gefunden, die diese Eigenschaften besit-
zen. Es zeigte sich, dass bei Erfiillung der
Daugavetgleichung bemerkenswerte Kon-
sequenzen eintreten. Beispielsweise erfiillt
ein beschrinkter Operator 7 in einem gleich-
miBig konvexen oder gleichmiBig glatten
Banachraum die Daugavetgleichung genau
dann, wenn [|T|| im Spektrum von T liegt.
Das gesamte elfte Kapitel ist dem ausfithr-
lichen Studium obiger Gleichung vorbehal-
ten, die schlieBlich auch in Banachverbinden
diskutiert wird.

Mehr als 600 Ubungsaufgaben erginzen
den Inhalt eindrucksvoll. Thre Losung dient
nicht nur dem besseren Verstdndnis der dar-
gelegten Theorie, sondern in Teilen auch der
Erweiterung des Inhaltes des Buches. Dieser
Aspekt ist den Autoren so wichtig, dass sie in
einem weiteren Buch ,,Problems in Operator
Theory*, AMS, 2002, die vollstindigen Lo-
sungen aller Aufgaben nachreichen. Obwohl

sich das Buch vorrangig an Studenten rich-
tet, findet jeder an Operatortheorie und
Funktionalanalysis interessierte Leser Per-
len in diesem Werk. Es eignet sich vorziiglich
als Lehrbuch fiir Operatortheorie und bietet
Orientierungshilfe fiir all jene, die sich in die
Operatortheorie in Banachverbinden ein-
arbeiten mochten. Dieses abgeklérte und au-
Berordentlich leserfreundlich geschriebene
Buch hinterldsst einen ausgezeichneten Ein-
druck. Diese Einladung zur Operatortheorie
hilt was sie verspricht — sie liefert in reichem
MaBe Anregungen, Genuss und tiefliegende
Mathematik.

B. Silbermann

Chemnitz

Y. A Abramovich,

C. D. Aliprantis
Problems in Operator
Theory

Grad. Studies

in Math. 51

Providence, Am. Math. Soc., 2002, 386 S.,
$49,00

Dieses Buch enthilt die vollstindigen Lo-
sungen aller Ubungsaufgaben aus Y. A. Ab-
ramovich, C.D. Aliprantis ,,An Invitation
to Operator Theory™ und erginzt letzteres
Buch wesentlich, da dort in einem Teil der
Ubungsaufgaben weitergehende Fragen an-
geschnitten werden und die Beweise einiger
Behauptungen aus dem Text in den Ubungs-
teil verlegt wurden. Beide Biicher bilden eine
Einheit, die dem Leser eine Fiille von Ergeb-
nissen aus der Operatortheorie nahe bringt.
Als wohl durchdachte und hervorragend
aufeinander abgestimmte Lehrbiicher sind
sie fiir einen Einstieg in die Operatortheorie
bestens geeignet.

Chemnitz B. Silbermann
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Jack K. Hale

Luis T. Magalhdies
Waldyr M. Oliva

Appiied | Dynamics in
Infinite
Dimensions

Second Edition

J.K Hale,

L T.Magalhaes,

W. Oliva

Dynamics in Infinite
Dimensions

Berlin u. a., Springer, 2002, 280 S., € 64,95

In the preface the authors restrict the general
title of their book by saying that as in the first
edition their intent is to present some aspects
of a geometric theory of infinite dimensional
spaces with major emphasis on retarded
functional differential equations (FDEs).
What is meant are of course some aspects of
a theory of dynamical systems (semiflows)
on such spaces.

The book is a kind of survey which ad-
dresses general, fundamental questions
about global solution behaviour, in particu-
lar, about attractors, normally hyperbolic in-
variant sets, and generic properties of semi-
flows generated by retarded FDEs. A theme
which appears naturally and frequently is
that solution curves of FDEs which start
from different initial data can merge in finite
time. It is not obvious how to overcome the
difficulties caused by this fact when building
a reasonably general theory which is guided
by the results for flows on finite-dimensional
manifolds. The authors'attempt to present
the state of the art provides interesting and
also impressive insight into a collection of re-
cent ideas and advanced techniques.

New in the second edition are neutral
FDEs and results about Morse-Smale sys-
tems, persistence, nonuniform hyperbolicity,
monotonicity. Teresa Faria contributed a
chapter on local theory, about realization of
vector fields, i.e., embedding of flows in
semiflows of FDEs on center manifolds, and

about normal forms. Krzysztof Rybakowski
wrote an appendix on the Conley index in
noncompact spaces.

The presentation is only partially systema-
tic, and the chapters are rather independent
from each other, with repetitions of basic
facts, which the reader may occasionally ap-
preciate. Most proofs are only sketched,
with references to the literature for some cru-
cial technical parts. There are condensed de-
scriptions of long, involved proofs which are
not easy to digest. The history of the results
presented is carefully noted.

Pleasant to read are the introductory
chapters with illustrative examples, the re-
sults on the Levin-Nohel equation, the self-
contained and detailed chapter on realiza-
tion and normal forms, and the elegant ap-
pendix.

Considering the survey character of the
book it must be added that several develop-
ments which concern the topics chosen by
the authors are neither discussed nor men-
tioned. This concerns results on the structure
of global attractors of fundamental delay
differential equations, Poincare-Bendixson
type results, hyperbolicity and shadowing
for noninvertible maps in infinite dimen-
sions, complicated (chaotic) solution beha-
viour for delay differential equations, and
more. With regard to chaotic solution beha-
viour the reader finds the remark that nu-
merical evidence and some theoretical results
indicate that there can be chaotic dynamics
(p- 225). As amatter of fact, this has been rig-
orously established for equations of the type
addressed on p. 225 in the mid-nineties, and
for similar ones since the early eighties.

With the caveat that the book is not as ex-
haustive as it may be expected from the title
and not everywhere up-to-date it can be re-
commended as a useful, sometimes inspiring
account of a group of general results from
the evolving theory of dynamical systems on
infinite-dimensional spaces.

Giellen H.-O. Walther
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F.Jarre, J. Stoer
Optimierung

Berlin, u. a., Springer, 2004, 476 S., € 29,95

Das Buch von Jarre und Stoer ist aus einer
Reihe von Vorlesungen zum Thema Opti-
mierung entstanden, die teilweise bis auf die
70er Jahre zuriickgehen und die sukzessive
ergdnzt und an moderne Entwicklungen an-
gepalit wurden.

Der erste Teil des Buches beschiftigt sich
mit der linearen Optimierung. Diskutiert
werden das Simplexverfahren, seine geo-
metrische Interpretation sowie duale Pro-
gramme. Es schlieBt sich ein Abschnitt iiber
Innere-Punkte-Verfahren der linearen Pro-
grammierung an mit einer ausfithrlichen
Diskussion des zentralen Pfades, des
Newton-Verfahrens fiir das primale-duale
System sowie zu Konvergenzfragen. Weiter-
hin werden praktische Aspekte, die zur nu-
merischen Realisierung erforderlich sind, be-
handelt. Dieser Teil wird abgeschlossen
durch Anwendungen der linearen Program-
mierung auf Transportprobleme sowie
durch Vorstellung einiger Algorithmen zur
Bestimmung kiirzester Wege auf Netzwer-
ken.

Der zweiten Teil des Buches beschéftigt
sich mit der unrestringierten nichtlinearen
Optimierung. Nach einer Diskussion von
Abstiegsverfahren schlieBen sich Verfahren
mit konjugierten Richtungen sowie Trust-
Region-, Newton-, Quasi-Newton- und
GaulB3-Newton-Verfahren an. Die Algorith-
men werden vorgestellt, diverse Detailfragen
analysiert und die wichtigsten Konvergenz-
resultate bewiesen.

Teil 111 fihrt den Leser zuriick in die
Gundlagen der konvexen Analysis. So wer-
den Trennugssitze untersucht mit dem Ziel,
hieraus notwendige und hinreichende Opti-
malitdtsbedingungen ableiten zu konnen.
Als unmittelbare Folgerung ergeben sich die
KKT-Bedingungen fiir den differenzier-
baren Fall sowie die Sattelpunkteigen-
schaften der Lagrangefunktion. Hieraus las-
sen sich dann Dualitdtsaussagen fiir konisch
konvexe und semidefinite Programme ablei-
ten. In einem weiteren Kapitel werden Opti-
malitdtsbedingungen verallgemeinert unter
Zuhilfenahme von Tangentialkegeln. Es fol-
gen dann noch die notwendigen und hinrei-
chenden Bedingungen zweiter Ordnung so-
wie Sensitivitdtsbetrachtungen.

Der vierte Teil des Buches beschiftigt sich
ausfithrlich mit restringierten Optimierungs-
verfahren. Im ersten Abschnitt werden Pro-
jektionsverfahren zusammen mit den Spezi-
alféllen affiner Nebenbedingungen und qua-
dratischer Programme eingefiihrt, wobei all-
gemeine Konvergenzaussagen hergeleitet
werden. Ein wichtiger Ansatzpunkt zur Be-
handlung nichtlinearer Restriktionen stellen
Penaltyverfahren dar, die im nachfolgenden
Kapitel untersucht werden. Speziell werden
exakte Penaltyfunktionen, erweiterte La-
grangefunktionen und Barrierenfunktionen
analysiert. Die zuletzt genannten Funktio-
nen fithren dann auf primale-duale Innere-
Punkte-Verfahren. Ein weiteres Kapitel be-
handelt die in praktischen Anwendungen
populdr gewordenen SQP-Verfahren, wobei
hier die erforderlichen Quasi-Newton-Up-
dates und StabilisierungsmafBBnahmen zur
Konvergenzerzwingung im Vordergrund
stehen. Dariiberhinaus werden global kon-
vergente Trust-Region-Verfahren sowie de-
ren moderne Variante, das Filterverfahren,
untersucht.

Ein langerer Abschnitt wird den Innere-
Punkte-Verfahren fiir konvexe Probleme
gewidmet. Ausgehend von theoretischen
Grundlagen wie Zentrenmethode und
Selbstkonkordanz wird ein Modellalgorith-
mus entwickelt, um an diesem Beispiel poly-
nomiale Konvergenz zeigen zu konnen. Es
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schlieBen sich weitere Untersuchungen an,
um zu einem numerisch implementierbaren
Verfahren zu gelangen. Hierzu wird ein
primaler Prediktor-Korrektor-Algorithmus
eingefiihrt.

In einem weiteren lingeren Abschnitt wer-
den anschlieBend semidefinite Programme
eingefithrt und analysiert ausgehend von ei-
nem primalen-dualen Verfahren. Eine Reihe
von Anwendungen zeigt die Flexibilitdt die-
ser Betrachtungsweise, speziell Lyapunov-
ungleichung, Eigenwertoptimierung sowie
Lagrangedualitit. Weitere Anwendungen
von Innere-Punkte-Verfahren auf kombina-
torische Probleme schlieBen sich an, z.B.
maximale stabile Mengen, Max-Cut-Proble-
me, Graphenpartitionierung und lineare
0/1-Probleme. Teil IV des Buches wird abge-
schlossen durch ein Kapitel zu direkten
Suchverfehren wie Nelder und Mead und
das Kriging-Verfahren.

Das Buch enthilt 139 Literaturzitate so-
wie zahlreiche Ubungsaufgaben.

Sichtbar ist die eminente, liber mehrere
Jahrzehnte erworbene Erfahrung und Kom-
petenz der Autoren auf dem Gebiet der Opti-
mierung. So werden altbewdhrte Methoden,
die Bestand haben und sowohl fiir die mathe-
matische Analyse von Optimierungsauf-
gaben als auch deren numerische Losung
und Anwendung im Detail beschrieben, bei-
spielsweise das Newton-Verfahren oder be-
kannte Trennungssétze. Darliberhinaus ent-
hilt das Buch eine detaillierte Zusammenfas-
sung relevanter neuer Ansitzen der letzten
Jahre, wobei hier vor allem die Innere-Punk-
te-Verfahren oder die semidefinite Program-
mierung zu nennen ware.

Der Schwerpunkt der Abhandlungen liegt
eindeutig auf dem Bereich der nichtlinearen
Programmierung. Doch auch Nachbar-
gebiete werden behandelt mit dem Ziel, dem
Leser einen moglichst breiten Einblick in die
unterschiedlichsten Facetten der mathemati-
schen Optimierung zu geben. Hierzu zdhlt
die lineare Optimierung, die insgesamt vier
Kapitel umfaBt und neben Simplex- und In-
nere-Punkte-Verfahren auch Transport- und
Netzwerkprobleme umfaB3t. Daneben wer-

den kombinatorische Probleme, Suchverfah-
ren und diverse Anwendungen zum Beispiel
auf Lyapunovgleichungen andiskutiert.

Damit stellt das Buch eine umfassende
Grundlage fiir Studenten und Mitarbeiter
dar, die sich in die mathematische Optimie-
rung einarbeiten wollen. Auch als Begleitlek-
tiire zu einer Optimierungsvorlesung kann
das Buch wiarmstens empfohlen werden.

Bayreuth K. Schittkowski

10

JB 107. Band (2005), Heft 1



Just published

uch

Hans-Otto Georgii

i | Hans Otto Georgii
§Egﬂh33tlk W Stochastik

in die Wabrscheinfichkeitstheorie
urd Statistik

Einfihrung in die Wahrscheinlichkeitstheorie
und Statistik

2" rev. edition 2004. XI, pages. Broschur. € [D] 24.95 / sFr 40.00 /
approx. US$ 32.00.

ISBN 3-11-018282-3

2, bearbeitete Aflage [ Language: German

~ deGruyter Lehrb

=
=
=
&)
m
@)
~
=
-
-
m
=~
O
m

M Infinite Dimensional Groups

and Manifolds

Ed. by Wurzbacher, Tilmann

IRMA Lectures in Mathematics and Theoretical
Physics 5

2004. VIII, 248 pages. Paperback. € [D] 36.95 / sFr 59.00 / for USA,
Canada, Mexico US$ 36.95.

ISBN 3-11-018186-X

Arkhipov, Gennady I. / Chubarikov, Vladimir N. /
! : Karatsuba, Anatoly A.
Trigonometric

e B Trigonometric Sums in Number Theory

Number Theory and Analysis
and Analysis Transl. by Shishkova, Maria

November 2004. 554 pages. Cloth. € [D] 128.00 / sFr 205.00 / for USA,
Canada, Mexico US$ 128.95.

ISBN 3-11-016266-0

de Gruyter

Berlin - New York

Prices are subject to change.




So versteht man
die Stochastik leicht

Stochastik
einmal anders

Vasalled guschrichen mit
SBelepioten und Fakten,
sertiefl di i

Gerd Fischer 7
Stochastik einmal anders

Parallel geschrieben mit
Beispielen und Fakten,
vertieft durch Erlauterungen

2005. VI, 327 S. Br. EUR 24,90
ISBN 3-528-03967-1

Beschreibende Statistik - Wahrscheinlichkeitsrechnung - Schatzen - Testen
von Hypothesen - Anhang: Ergédnzungen und Beweise

Eine Einflhrung in die Fragestellungen und Methoden der Wahrscheinlich-
keitsrechnung und Statistik (kurz Stochastik) sowohl fiir Studierende, die
solche Techniken in ihrem Fach benétigen, als auch fir Lehrer, die sich fir
den Unterricht mit den nétigen fachlichen Grundlagen vertraut machen
wollen.

Der Text hat einen besonderen Aufbau - als Trilogie ist er in Beispiele,
Fakten und Erlauterungen aufgeteilt.

Was tberall in der Mathematik gilt, ist noch ausgeprégter in der Stochas-
tik: Es geht nichts iiber markante Beispiele, die geeignet sind, die Anstren-
gungen in der Theorie zu rechtfertigen. Um dem Leser dabei moglichst
viele Freiheiten zu geben, ist der Text durchgehend parallel gefiihrt: links
die Beispiele, rechts die Fakten.

Abraham-Lincoln-StraBe 46 Anderungen vorbehalten.
Erhaltlich beim Buchhandel oder beim Verlag.
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Neuer Stoff flir neues Lernen.

Aktuelle Lehrbiicher fiir das Sommersemester:

Einfiihrung in die Wahrscheinlich-
keitstheorie und Statistik

H. Dehling, B. Haupt

2. Aufl. 2004. X1V, 306 S. (Statistik und ihre Anwendungen)
Brosch. ISBN 3-540-20380-X » € 24,95 | sFr 42,50

Angewandte Mathematik:
Body and Soul

Band 1: Ableitungen und Geometrie in IR?
K. Eriksson, D. Estep, C. Johnson

2004. XXV, 451 S.192 Abb. Geb.
ISBN 3-540-21401-1 » € 34,95 | sFr 59,50

Band 2: Integrale und Geometrie in IR"
Erster umfassender Anfingerkurs fiir Mathematik fiir
anwendungsorientierte Studiengange deckt die gesamte
Mathematik im Grundstudium ab. Begleitende
Software mit Beispielen ist Giber das Internet erhiltlich.

2005. XXIV, 359 S. 86 Abb. Geb.
ISBN 3-540-22879-9 » € 34,95 | sFr 59,50

Gewohnliche Differentialgleichungen

Theorie und Praxis- vertieft und
visualisiert mit Maple
W. Forst, D. Hoffmann

2005. Etwa 350 S. (Springer-Lehrbuch) Brosch.
ISBN 3-540-22226-X » € 24,95 | sFr 42,50

Bei Fragen oder Bestellung
wenden Sie sich bitte an »

Partielle Differentialgleichungen
und numerische Methoden

S. Larsson, V. Thomée

2005. X1, 266 S. Brosch.
ISBN 3-540-20823-2 » € 39,95 | sFr 68,00

Diskrete Mathematik

L. Lovasz, J. Pelikan, K. Vesztergombi

2005. 1X; 362 S. (Springer-Lehrbuch) Brosch.
ISBN 3-540-20653-1 » € 24,95 | sFr 42,50

Partielle Differentialgleichungen
der Geometrie und der Physik 2

Funktionalanalytische Losungsmethoden
F. Sauvigny

1. Aufl. 2005. XII, 350 pp. Brosch.
ISBN 3-540-23107-2 » € 34,95 | sFr 59,50

Ausserdem lieferbar:

Partielle Differentialgleichungen
der Geometrie und der Physik

Grundlagen und Integraldarstellungen
F. Sauvigny

2004.X11,417 S. Brosch.
ISBN 3-540-20453-9 » € 34,95 | sFr 59,50

Springer Kundenservice, Haberstr. 7, 69126 Heidelberg, Tel.: (0 62 21) 345 - 0,
Fax: (0 62 21) 345 - 4229, e-mail: SDC-bookorder@springer-sbm.com

Die €-Preise fiir Biicher sind giiltig in Deutschland und enthalten 7% MwSt.
Preisanderungen und Irrtiimer vorbehalten. d&p-011591x






