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Vorwort

Die Konzeption des Jahresberichts sieht insbesondere Ubersichtsartikel zu den ver-
schiedenen Bereichen der reinen und angewandten Mathematik vor. In diesem Heft fin-
den sie dazu zwei Beispiele.

Die angewandte Mathematik wird durch den Artikel der Arbeitsgruppe von Frau Pi-
geot (Bremen) abgedeckt. Ihr Beitrag beschreibt Anwendungen der Statistik in der Me-
dizin und in den Biowissenschaften.

Der zweite Artikel stammt von Herrn Eschenburg (Augsburg) und ist der Geometrie
zuzuordnen. Sein Beitrag beschreibt Verallgemeinerungen von Minimalflachen im eu-
klidischen Raum und die zugehorigen Abbildungen, wobei eine Neuinterpretation von
im Wesentlichen bekannten Fakten einen einheitlichen Blickwinkel auf diese Theorie er-
moglicht.

A. Krieg

JB 106. Band (2004), Heft 1 1



3

L'
=

' .




l Ubersichtsartikel Historischer Artikel Buchbesprechungen

Iris Pigeot Karin Bammann Achim Reineke Nina Wawro Astrid Zierer

Statistical methods in genetics: From microarrays
to genetic epidemiology - an overview

Abstract

= Keywords and Phrases: Association, genetic epidemiology, linkage, microarrays
s AMS subject classification: 92D 30, 92D 10

With the complete sequencing of the human genome in 2003 an immense step towards
the biological understanding of human beings has been taken. This paper describes how
the information at hand now can be used in the field of genetic epidemiology to analyze
the role of genes in the etiology of diseases. We give a short introduction to genetics and
review preprocessing and analytical techniques for microarray data before we cover tra-
ditional study designs. Finally we present in detail family and population based meth-
ods that enable to locate and identify candidate genes involved in the development of
diseases. The outlook provides the reader with selected untackled problems and re-
search areas.
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1 Introduction

In recent years, the genetic information on individuals has become of growing interest
with various consequences as for instance in forensics, medicine, and presumably for
public health. Although the benefit of genetic research is quite obvious in certain re-
spects, it may also lead to ethical problems, which have to be kept in mind when discuss-
ing its potential merits. We will focus here on genetic epidemiology which plays a major
role when trying to identify those genes in humans, being at least partially responsible
for particular diseases. The idea behind is to identify variants of the human DNA re-
lated to certain diseases with the aim to clarify the pathogenesis of the disease, to devel-
op diagnostic tests, and finally to establish causal therapies. Despite the fact that many
diseases are known to be at least partially genetically caused, the responsible genes typi-
cally have not yet been located. Furthermore, only a small fraction of the estimated ten
thousands of human genes has been identified until now, although in course of the Hu-
man Genome Project the human genome has been completely mapped and sequenced
in 2003. Thus, detecting genetic variants that are more frequently present in affected
than in unaffected individuals still constitutes a challenging demand in research. It has,
however, to be noted that only a few diseases are assumed to be monogenetic, which
means that they are caused by a single gene as for instance hemophilia. Most diseases
are suspected to be caused by several genes as for instance insulin-dependent diabetes
mellitus where about 20 regions are assumed to contain related genes ([69]). Such dis-
eases are called oligo- or polygenic. If the onset of a disease is additionally influenced by
environmental factors, we speak of a complex disease. In polygenic diseases each single
responsible gene only has a small effect on the disease and large sample sizes are re-
quired to detect a statistically significant influence.

Genetic epidemiology now comes into play when searching for candidate genes in
populations where mainly two different approaches have to be distinguished. The first
approach is to look for a more frequent occurrence of a specific allele in affected per-
sons of a population compared to unaffected persons, i.e. for association between this
allele and the disease phenotype. Another approach is applied within families and is
based on the concept of linkage, i.e. it is investigated whether the disease is usually co-
segregated with a specific marker allele.

This paper is intended to outline the complete path from collecting the data, over
the most common study designs to the statistical methods for analyzing the data which
typically call for special techniques being appropriate to cope on the one hand with the
family structure being inherent in most data and on the other hand with the huge
amount of genetic information and of additionally collected information on environ-
mental factors. The statistical part focuses on methods for identifying candidate genes.
The aspects treated in this paper are selected without the claim of completeness.

For this purpose, the paper organizes as follows. We first roughly repeat the most
important terms of genetics. For obtaining genetic information on individuals, microar-
rays can be used. Different types and approaches for analyzing the data are presented in
Section 3. Section 4 is devoted to the various study designs in genetic epidemiology. Fa-
mily-based studies as well as population-based studies are dealt with from a statistical
perspective in Section 5 where statistical methods to test for linkage and/or association

4 JB 106. Band (2004), Heft 1
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are discussed. Further techniques, problems, and research areas are addressed in the fi-
nal section.

2 Genetic background

The entire genetic information of any living individual is coded in the DNA (desoxyri-
bonucleic acid). The DNA forms a double strand of long sequences of four different nu-
cleotide bases. Between these strands, the nucleotide bases adenine and thymine, gua-
nine and cytosine, respectively, can build pairs (Watson-Crick base pairing) such that
one strand of the DNA is a complement to the other and both strands fully determine
each other. The human genome is organized in 23 pairs of chromosomes of which 22
are pairs of autosomes and one is a pair of gonosomes determining the sex of the indivi-
dual. One set of chromosomes is inherited from the mother and the other from the
father. A gene is a sequence of nucleotides of the DNA at a fixed locus which codes for
a gene product (i.e. a protein), its different variants are called alleles. For each gene, the
two alleles of the corresponding chromosome pair define the genotype of an individual.
Every individual possesses either two different or two identical alleles at every locus, the
individual is said to have a heterozygous or homozygous genotype, respectively.

The phenotype, in contrast, refers to a certain characteristic expressed in an indivi-
dual. The relation of genotype and phenotype is defined by the so-called penetrance of
a gene. Let 4 denote any one gene locus with alleles 44, ..., 4, and probabilities Pr(4;)
for allele 4;,i =1,...,n, to occur. Let further X denote a corresponding phenotype.
The penetrance f;; of expressing X for the genotype (4;, 4;) is given by the conditional
probability

(1) fiy = Pr(X|4:, 4))

withi,j = 1,...,n. A Mendelian segregation implies that penetrances are complete, that
is 0 or 1. An allele 4; is called dominant if f;j = f; = f; = 1 for i # j, it is called recessive
lfflj Zf}'[ = Oforiaéjandf,-,- =],

In the following, the phenotype affected vs. unaffected of certain diseases is of spe-
cial interest. Monogenetic diseases are determined by just one gene locus and complete
penetrances. However, most diseases of interest, e.g. cancer, are complex in that more
than one gene locus is involved and penetrances are sometimes not symmetric due to ge-
netic imprinting and usually incomplete, i.e. the probability of getting affected might be
less than one or greater than zero although the genetic predisposition is given or not, re-
spectively. Moreover, the incidence of a disease can also depend on certain environmen-
tal factors and so-called phenocopies might occur which means that an individual can
become affected without having the particular disease gene.

2.1 Mendelian segregation

According to the Mendelian laws, each of the two alleles of a parent is transmitted inde-
pendently and at random with probability 0.5 to an offspring. If the genotypes of the

JB 106. Band (2004), Heft 1 5
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parents are known, we can calculate probabilities for the offspring to have a certain
genotype and — with known penetrances — as well to have a certain phenotype. In the
situation of Figure 1 the probability for an offspring to be affected or unaffected
according to the Mendelian laws is

Pr(affected) :% for a recessive mode of inheritance,

Pr(affected) = % for a dominant mode of inheritance.

father mother

mutated
gene e
—
1 2
! | I
1 1

n 10 08 00

i
children
Figure 1: Pattern of inheritence

Another important fact resulting from the Mendelian laws is that the distribution of
genotypes in a population is constant from the second generation on. This phenome-
non, known as Hardy-Weinberg equilibrium, is valid only under certain conditions.
Among others the population has to be large enough and mating has to be random. Of
course, the probability of mating or the capability of reproducing living offspring may
not depend on the genotype.

This approach can be extended to more than one gene locus, provided the inheri-
tance of the different genes follows the Mendelian laws.

2.2 Linkage of gene loci

Deviations from the Mendelian laws can occur if two genes are not inherited indepen-
dently. This happens, when they are located on the same chromosome such that they
cannot always be separated during meiosis. Recombination is the exchange of parts of
the parental chromosomes due to crossing-over of chromatides (the strands of the chro-
mosomes). This results in the derivation of alleles from different parental chromosomes
if an odd number of crossing-overs occurs (see Figure 2). The probability of this event is
called recombination fraction 6.

The closer two genes are located to each other the more frequent they will be inher-
ited together. In this case they are called ‘linked’. If they are not linked joint inheritance
is by chance only, i.e. with a probability of 0.5. In this case the recombination fraction ¢
equals 0.5, whereas 6 = 0 means tightest possible linkage as the probability of recombi-
nation is zero. The term linkage therefore refers to the location of two or more genes on
the same chromosome and is related to gene loci and not to specific alleles. Following
Donnelly [22], let Sjx be 0 or 1 denoting whether in meiosis j at locus k the maternal or

6 JB 106. Band (2004), Heft 1
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paternal gene of the parent is transmitted to the offspring. Then between two loci k and
[, the recombination fraction is defined as

(2) O = Pr(Si # Sp),

assuming that the recombination probability does not depend on the meiosis ;.

The basic idea of looking at two gene loci is to see whether the alleles of a marker
gene co-segregate with the disease gene among related subjects which would imply that
they are linked. This gives an idea of the location of the disease locus since the one of
the marker locus is known. Thus, the identification of linkage to a marker locus is often
the first stage in positional cloning of a disease gene.

In general, one has to distinguish between genetic distance and recombination frac-
tion. The genetic distance d, measured in centi-Morgan (cM), refers to the expected
number of crossing-over events between two loci. Only over short distances, e.g. less
than 5 cM, a recombination fraction of 0.01 is about the same as a genetic distance of
1 cM. In contrast to the genetic distances of a series of loci, the corresponding recombi-
nation fractions are not additive. Mapping functions establish the relationship between
these two measures of distance.

chromatides

marker 1 marker 1

marker 2 . marker 2

double binati single recc
unidentifiable identifiable

Figure 2: Odd and even numbers of crossing-overs

Assuming a homogenous Poisson process for the number of crossing-overs that occur,
Haldane [40] relates the genetic distance and the recombination fraction ¢ by

(3) d=—0.5In(1 —26).

This model reflects the idea of ‘no inference’ between number and locations of crossing-
over events. Another widely used mapping function was introduced by Kosambi [53]. If
one assumes that the occurrence of one crossing-over prevents another one from taking
place closely,

(1+26)

4) d=025In {(1—_2-5}

is the appropriate relation of recombination fraction and genetic distance.
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2.3 Expression of genes

Sometimes, it is not a gene itself, but rather the gene product that is of interest.
Although each cell of an individual carries the same DNA, the cells work quite differ-
ently, e.g. liver cells, brain cells. The diversity arises from the activation of genes in a cell
that means which proteins are actually built. The whole process of building proteins
from genes is called gene expression and can be summarized basically by two steps. In a
first step, genetic information of the double-stranded DNA is transcribed into the sin-
gle-stranded messenger RNA (ribonucleic acid) or mRNA. This process is called tran-
scription. In a second step, the information contained in the mRNA is translated into a
protein. This process is called translation. Because of existing difficulties in measuring
the amount of proteins built, the expression of a gene is rather evaluated by measuring
the amount of mRNA in a cell.

3 Microarrays: A widespread data-sampling approach

Microarray technology opens a variety of new possibilities to study the human genome
complexity ([13]). Microarrays derive their power and universality from a key property
of DNA molecules, the complementary base-pairing. The number of complementary
pairs needed to keep the two strands together depends, besides others, on environmen-
tal factors, mainly on the temperature. To get single stranded DNA it has to be dena-
tured, this means to split the strands by rising the temperature. When two long comple-
mentary single strands of DNA meet, they tend to stick together even though the bind-
ing power of every single pair is only weak. The term hybridization refers to this
annealing of nucleic acid strands from different sources according to the base pairing
rules. Microarrays can be seen as an enhancement of the Southern or Northern Blots
([84]). These blots allow to analyze a fragment of the DNA or RNA, respectively. Com-
pared to the blots (which are only able to analyze one sequence at a time) the microar-
ray experiment facilitates the researcher to simultaneously consider tens of thousand of
sequences or genes, respectively. Due to this huge amount of data and the typically only
small number of repeated measures, the analysis of such arrays calls for a particular sta-
tistical approach.

Obviously, microarrays offer a broad range of applications. They are, for instance,
used for genotyping, measuring the transcript abundance, identification of genome-
phenotype relationships, or for determining identity by decent (see Section 5.1.2). They
can also contribute to understand the networks of gene regulation. In medical practice,
microarrays can be applied in cancer research to characterize the tumor on a genomic
scale for a more reliable diagnosis and an improved treatment of cancer. Another appli-
cation is in immunology, where the host genomic response to bacterial infection is stud-
ied.

Each microarray experiment consists of a number of steps: the determination of the
queried DNA-sequence, the laboratory tasks, the image processing, the data normaliza-
tion, and the pursuing analysis. Each step has an impact on the outcome of such an ex-
periment.

8 JB 106. Band (2004), Heft 1
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3.1 Types of microarrays

There are two main types of microarrays, namely cDNA microarrays and high density
oligonucleotide arrays. Using cDNA microarrays, DNA is spotted onto a solid support
as for example a glass slide; with the latter, oligonucleotides consisting of up to 25 nu-
cleotide bases are synthesized on to a silica slide by a process known as photolithogra-

phy.

3.1.1 cDNA microarrays

c¢DNA microarrays consist of several DNA sequences spotted in a high density array on
a glass slide using a robotic arrayer. For queries of mRNA, the samples, called targets,
are reverse-transcribed into cDNA, labeled using a fluorescent dye or a radioactive
marker and hybridized with the arrayed DNA sequences denoted as probes. The targets
align to the corresponding probes, as described above (following the definition of probe
and target given in [1]). After hybridization, the slides are scanned. The resulting image

sample A sample B

| o= |
S
o
l

Figure 3: Two color cDNA microarray

can be used to determine the position and abundance of the aligned targets on the slide.
Combined with the knowledge about the contents of the spotted array, the incidence of
a queried sequence can be assessed. The resulting values can only be assessed relatively
to each other, microarrays are not able to measure the absolute amount of occurrence
because of hybridization kinetics. Comparing different slides therefore needs further

JB 106. Band (2004), Heft 1 9
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standardization and correction. One possibility to avoid some of the resulting problems
is the parallel hybridization of two samples labeled with two different dyes on the same
slide. These two color-settings allow a direct comparison of two samples. The relative
abundance of the spotted DNA sequences may be assessed by monitoring the differen-
tial hybridization of the two samples. Figure 3 describes the main steps in a two color
c¢DNA microarray experiment.

3.1.2 High density synthetic oligonucleotide arrays

Another approach to design microarrays is based on the usage of synthetic oligonucleo-
tides. Synthetic linkers modified with photochemically removable protecting groups are
attached to a glass substrate. Afterwards light is directed through a photolithographic
mask to produce localized photodeprotection. Chemical building blocks are incubated
with the surface, and chemical coupling occurs at those sites that have been illuminated
in the preceding step. In the next step, a new mask is used. The light is directed to differ-
ent regions of the substrate and the chemical cycle is repeated until the desired se-
quences are generated. Following the completed preparation, the array is ready for hy-
bridization. This process is similar to the cDNA-array but solely one color can be used.
The parallel hybridization of two samples is impossible. The design is based on sequence
information alone, without the need for physical intermediates such as clones, polymer-
ase chain reaction (PCR) products, or cDNAs, just to name some of them (see [59]).

To improve the abilities for error correction and to enhance the reliability the detec-
tor for a queried DNA-sequence is combined of different probes. Each so-called probe
set consists of multiple oligonucleotides (probe cells) of different sequences designed to
hybridize on different regions of the same RNA. The use of multiple independent detec-
tors for the same gene improves the reliability of the results. An additional level of re-
dundancy is achieved by the use of mismatch (MM) control probes. The mismatch
probes are identical to their perfect match (PM) partners except for a single base differ-
ence in a central position. The probes are arranged as probe pairs PM and MM. The
MM probes act as specificity controls that allow discrimination between ‘real’ signals
and those due to non-specific or semi-specific hybridization (see Figure 4).

probe set

probe pair

Figure 4: Probe set

10 JB 106. Band (2004), Heft 1
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3.2 Image analysis

Before any values can be computed and passed to the data analysis pipeline, appropri-
ate image recognition has to be carried out. Currently, different methods are discussed
in the literature. Simple methods use a threshold to locate the spot in the image and dis-
tinguish between background and foreground values. Alternative techniques search for
connected groups of similarly colored pixels by defining a circle around the center of
the located spot used to define an inner (spot) as well as an outer (background) region
([2]). More sophisticated algorithms are based on seeded region growing algorithms
([4]) or adaptive pixel selection (APS) ([76]).

3.3 Normalization

Microarrays simultaneously measure transcript abundances for thousands of genes in a
cell population or tissue sample. Due to variations in sample treatment, labeling, dye ef-
ficiency and detection, the spatial position on the slide and differences between slides,
the fluorescence intensities can in general not be compared directly ([41]). An appropri-
ate standardization is required to deal with the systematic and random effects occurring
as a consequence of the preceding process described. This standardization is often re-
ferred to as normalization. Normalization is meant to allow for comparability of the
values within an array as well as between different arrays. Normalizing the intensities is
elementary for the pursuing analysis. There are different methods available to normal-
ize the data, depending on the experimental conditions, the type of array and further
factors. In the following, we review some aspects of the preprocessing of the data.

The first decision to be made concerns the selection of genes (intensity values) to be
used for normalization. Often the vast majority of intensity values is chosen, assuming
only a few changed values between the arrays, which implies that the distribution of the
majority of genes for each array is nearly the same ([47]). Another suggestion is to select
so called housekeeping genes, a set of genes specifically chosen for normalization, exis-
tent in all targets. Housekeeping genes are typically highly expressed and do not allow
to assess the dye biases for less expressed genes. To circumvent this disadvantage a spe-
cially designed microarray sample pool (MSP) may be selected as set of controls. The
values of an MSP should span a wide intensity range such that they yield a ‘correction
factor’, applicable to all classes of expression intensities facilitating the adjustment task
([106]). As control genes are used to correct for spatial and intensity based trends in the
data, they should be present in a sufficient quantity and uniformly distributed across
the whole slide.

An alternative method described for oligonucleotide arrays by Schadt et al. [76] and
Tseng et al. [95] is based on an approximately invariant set of genes. A set of genes is said
to be invariant if their intensity ranks are approximately the same for all considered ex-
periments. In practice this method works well for normal settings with a small number of
slides. In a complex setting where a large number of slides has to be normalized, the set of
invariant genes is too small for comprehensive normalization. If there is a sufficiently
large number of invariant genes, this method is similar to the proposals described above.
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After having fixed the set of genes for normalization, different approaches for calcu-
lating or performing the adaption of the slides can be thought of. These may be roughly
distinguished as scaling approaches, smoothing approaches, transformation methods
such that the distribution of intensities is the same across all arrays, and model-based
approaches. Of course, not all techniques discussed in the literature can be reviewed
here. To give an idea of the variety of methods used for normalization let us describe a
few as representatives of these major types.

For illustrative purposes, let us in the following define in a two color cDNA-setting
Vg as the intensity of gene g, g=1,...,G, and color j, j=1(red),2(green),
M, =10g,(yg1/y42) the difference in log expression values, and 4, = %logz( VelVg2) the
average of the log expression values. The use of a logarithmic scale, implicitly assuming
multiplicative effects in the data, offers certain advantages. Typically the random varia-
tion of the original data roughly increases linearly with the average signal intensity. The
use of an additive model, based on the logarithmic scale, simplifies the next steps of the
analysis in so far as among others the variability tends to be constant.

A simple scaling approach is based on the calculation of the global median or mean
of all selected values across the whole array. This constant correction term, briefly de-
noted as c, is then used to uniformly correct all intensity values M,. The corrected val-
ues M, are thus calculated as

(5) Mg=M,—c,g=1,...,G.

This approach neglects differences caused e.g. by the spatial position on the slide, differ-
ent intensity based biases or the specific character of the queried genes. These various
sources of biases can be accounted for by non-linear methods using local regression to
fit curves to noisy data by a multivariate smoothing procedure. Here, a linear or qua-
dratic function of the predictor variables is fitted in a moving fashion, analogously to a
moving average in time series analysis (see Cleveland [16]). Some examples applying ro-
bust locally weighted regression are given in Dudoit et al. [23], Astrand [7] and Yang et
al. [106]. The calibration factors are now estimated based on a suitable robust scatter-
plot smoother ¢(A4,), which leads to

(6) My = M,/c(4,), g=1,...,G.

This smoothing approach can be further generalized by fitting different curves
¢(dg),r =1,..., R, to different regions of the array.

The next approach described tries to correct the probe intensity values for each ar-
ray in a set of arrays by adjusting the different distributions. The quantile normalization
technique introduced by Bolstad et al. [10] extends the underlying idea of a quantile-
quantile plot, that the distributions of two data sets are the same if their quantiles lie on
a diagonal, to I dimensions, I representing the number of all arrays to be compared.
For this purpose, i.e. to achieve an adjustment of the different distributions, consider
the vector of the s-th quantiles,s = 1,...,p, ¢, = (¢, - ., gss) for all I arrays and calcu-
late the mean quantiles across all arrays. These values then substitute the values of the
data items in the original data set. This transformation implies that the quantiles all lie
along the unit diagonal defined as d= (ﬁ jiez ,%) because of the above described pro-
jection of q onto d with
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Besides the more explorative methods presented above, model-based approaches can be
found in the literature (cf. [15], [46], [48], [56], [65]). In case of two-color cDNA microar-
rays, Chen et al. [15] presumably present the first statistical approach which compares
the expression levels of two different samples based on only one array with a huge num-
ber of genes. The samples are dyed with different colors and the ratio of the two intensi-
ties measured at one spot is inspected. Provided that an appropriate background correc-
tion has already been implemented in the preceding image analysis, the following multi-
plicative model for the intensities is introduced, where we follow the notation by Huber
et al. [47]:

() Yok = bi pgr (1 + €at), egk ~ N(0, V).

Here, Y, denotes the intensity for gene g, g = 1,..., G, and sample k, k = 1,2, pg is
the true intensity of the appropriate gene and sample, and b, denotes the normalization
factor for sample &, such that E(Yy) = bifgr. The random variables Y,; and Yy are
supposed to be independent and the variance v* of the noise €y is assumed to be con-
stant for all genes and samples. This implies that the coefficient of variation of the Y
is constant and for any g and k the variance of Y can be estimated which makes the
model identifiable. The approximate distribution of the statistical test based on the ratio
of the two intensities at a certain gene g can be derived under Hj exploiting (7) to test
the hypothesis

Ho:pgl = pga Vs, Hy:pgl # pgo.

In contrast to the normality assumption of Chen et al. [15], Newton et al. [65] for in-
stance propose a model based on the assumption of independent and gamma-distribu-
ted intensities of the red and green samples.

As in many other fields, analysis of variance (ANOVA) are frequently applied in this
context. Kerr et al. [48] introduce a model with four factors but without including all in-
teraction terms, namely

(8) IOg Y,_','kg =u-+ A,‘ + Dj —+ Vk + Gg + (AG)zg + (VG)kg —+ Eijkgs

where p denotes the overall average signal, 4; represents the effect of the i-th array, D;
the effect of the j-th dye, V the effect of the k-th variety, G, the effect of the g-th gene,
(AG),, represents the interaction effect between array i and gene g, (V'G),, the interac-
tion between variety k and gene g. The errors ¢, are assumed to be independent and
identically distributed with mean 0. Further effects can easily be accounted for by just
enlarging the above model. However, this results in a loss of degrees of freedom re-
quired to estimate the error variance in the experiment. But note that the solely effects
of interest are usually the interactions between varieties and genes, where the varieties
refer to the categories of the factor under investigation such as tissue types. The model
is fitted via least squares with usual parameter constraints to make it identifiable.

An interesting generalization of the approach of Chen et al. [15] is proposed by Hu-
ber et al. [46]. They model the error of non-differentially expressed genes according to
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Rocke and Durbin [74] such that the variance of the measured intensities is quadrati-
cally dependent on the mean. Using the following variance-stabilizing transformation

hi( yei) = arsinh(a; + b;y,;)

with a; and b; appropriate parameters also accounting for a calibration, the variance of
the transformed intensities becomes approximately independent of their mean. Both
steps of data transformation, namely calibration and variance-stabilization, are incor-
porated in an appropriate statistical model as follows

(9) hi(Ygi) = lg + €gi, Egi NN(07 v2)1 gEé,

where G denotes the set of probes representing the vast majority of non-differentially
expressed genes, p, = E(h(Y,;)). It allows to account for an arbitrary number of sam-
ples and can also be applied to oligonucleotide arrays. The model parameters are esti-
mated maximizing the corresponding profile log-likelihood. For details we refer to Hu-
ber et al. [46].

There are also model-based approaches that account for the specific requirements of
the oligonucleotide arrays. Since only one sample is hybridized on the array (at a time)
the mismatch (MM) probes are used to validate the measured intensities at the perfect
match (PM). Li and Wong [56] consider the following statistical model for one probe
set, representing one particular gene g:

(10) Yiy=PMy— MMy =6i¢+e1, Y & =L, ex ~N(0,07).
1

The difference between the perfect match and the mismatch probe is investigated for
each individual probe /, / =1,..., L, of the probe set on the i-th array, i=1,...,1,
where 6; represents the so-called model-based expression index, ¢; the probe-specific
rate of increase of corresponding PM response and ¢; the random error, assumed to be
independent identically normally distributed according to equation (10). The above
constraint w.r.t. ¢; is only to ensure the identifiability of the model. The parameters are
estimated by an iterative application of the least-square method. As alternative, Li and
Wong [57] also introduce a model which only accounts for the PM values.

Based on a suitable preprocessing of the data statistical analysis can be carried out
which will be discussed in the next subsections.

3.4 Statistical analysis

The statistical analysis of data gained from microarrays is typically based on appropri-
ately normalized data sets. The techniques applied range from statistical tests for possi-
bly different gene expressions for instance under treatment versus control conditions to
multivariate techniques primarily to detect structures in the data set which may then be
used to reduce its dimensionality.
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3.4.1 Differential expression

Investigating the expression of genes it is of special interest whether the levels of expres-
sion for two (or more) varieties, say e.g. due to two cell types or treatments, is different.
First ideas to determine differential expression of genes in microarray analysis can be
found in DeRisi et al. [20] and Schena et al. [80]. More sophisticated approaches based
on various distributional assumptions are for example introduced by Chen et al. [15]
and Newton et al. [65] to state differential expression for single-slide experiments.

For a comparison of multiple slides, based on the model proposed in Kerr et al. [4§]
the difference in the variety-gene interactions of two varieties VG, — VG, can be esti-
mated without any preceding normalization. Because typically neither is the assumption
of normality fulfilled nor is the number of observations large enough to justify asymp-
totic arguments, the bootstrap percentile is suggested to calculate confidence intervals
for the differences.

Another possibility to cope with the non-normality of the data is to perform a loga-
rithmic transformation. Thus, let Xyg,, m =1,... 0.,k =1,2,g=1,..., G, denote the
log intensity ratios. The application of such a transformation beforehand is the ratio-
nale behind the application of the standard z-test statistic T, to identify differentially ex-
pressed genes with

X1g — X2g

2 2
Clg 4 T2
n n

Here, Xy, denotes the mean expression level of gene g and variety k, sﬁ . the sample var-
iance of the expression level of gene g, and n; the number of replicates of variety k. The
above -test or the Welch’s 7-test in case of unequal variances are standard techniques to
test for equal levels of expression for gene g. Nevertheless, the assumption of normality
may even not hold after having applied a suitable normalization. Thus, Dudoit et al. [23]
propose to use a permutation test instead, where the number of permutations is limited
to 1000 if it is no longer feasible to perform all possible permutations. Another non-
parametric alternative is given by the classical Wilcoxon rank sum test (see [25]).

A further undesired behavior of T, (see (11)) can be observed when the estimated
standard deviation is quite small, since then, even if the difference in the nominator is
very small, 7, tends to large values leading to false positive results. Possible ways out
are discussed in [27], [60], [96] who propose to add a suitable constant s to the estimated
standard deviation in the denominator of (11). This constant may be chosen such that
the coefficient of variation is minimized or just as the 90th percentile of the standard er-
rors of all genes.

In microarray experiments the number of genes G under investigation is usually
high, up to several thousands, with a relatively low number of replicates. Since the aim
of a statistical analysis is here to identify those of thousand candidate genes which have
their expression levels changed and since this identification process is based on numer-
ous statistical tests simultaneously performed for each single gene g, a multiple testing
problem occurs. There are various approaches ([23], [24], [25], [26], [27], [60], [96]) to
deal with this problem. Dudoit et al. [23] mention some methods for adjusting p-values

(11) T, =
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where the simplest is to consider the Bonferroni single step adjusted p-value for gene g
given as

(12) pg = min(Gpy, 1).

Here, p, denotes the unadjusted p-value, which is usually very conservative. A less con-
servative, stepwise procedure is proposed by Holm [43]. But since this procedure does
not account for the correlation structure among the variables, it still can be improved.
Therefore, Dudoit et al. [23] apply the procedure introduced by Westfall and Young
[101] which exploits the correlations between the genes.

Besides the adjustment of the significance level « other criteria to account for multi-
plicity may be applied. In microarray settings the false discovery rate (FDR)

(13) FDR = E(proportion of rejected hypothesis that are actually true)

proposed by Benjamini and Hochberg [8] is frequently used instead (cf. Tusher
et al. [96]).

Efron et al. [27] propose an empirical Bayes approach assuming there are two
groups, the differentially and the non-differentially expressed genes, with prior prob-
abilities p; and pp = 1 — p; and corresponding prior densities f(z) and fy(z) for some
kind of expression score Z. The mixture density is then given as f(z) =pofo(z) + pifi(z).
Application of Bayes’ theorem yields the a posteriori probabilities of differential expres-
sion p1(z) and py(z) as

(14)  pi(z) = Pr{differently expressed|Z =z} = 1 — pofo(z)/f (2)
(15) po(z) = Pr{non-differently expressed|Z = z} = po fo(z)/f (2).

For Bayesian analysis, specification of the a priori probabilities and densities is re-
quired. For details, how to estimate the a posteriori probabilities in microarray settings
see Efron et al. [27]. They also emphasize a close connection between the FDR and the
empirical Bayes methodology.

34.2 Cluster analysis and classification

The high-dimensionality of microarray data calls for multivariate methods to analyze
their structure and to reduce their dimensionality and complexity. Since a detailed pre-
sentation of such multivariate techniques would be beyond the scope of this review pa-
per, only a brief overview over the methods typically applied in this field will be given.
A standard tool to reveal the structure of a multidimensional data set is cluster analysis.
On the one hand, it can be used to identify groups of genes which act similarly among
the samples w.r.t. gene expression. This may be a sensible approach for instance to find
groups of genes which are correlated to a specific phenotype. On the other hand, it is of
interest to group e.g. samples of tumor cells to assign the type of tumor or to identify
new subgroups. Besides hierarchical clustering techniques ([29], [42]), non-hierarchical
methods as the k-means procedure and self-organizing maps ([90]) as well as model-
based clustering approaches ([107]) are applied to microarray data.

Analogously to cluster analysis classification methods offer a valuable approach to
tackle the problem of how to structure microarray data. There are several techniques,
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for instance based on regression analysis ([28], [39]) including prediction analysis of mi-
croarray ([94]), discriminant analysis ([58]), and support vector machines ([12]).

4 Genetic epidemiology

Genetic epidemiology is ‘the study of the role of genetic factors and their interaction
with environmental factors in the occurrence of disease in human populations’ ([55]). In
contrast to common genetic studies the definition of genetic epidemiology refers explic-
itly to populations, underlining thus the epidemiologic component of the field (see [91]).
Besides of general population studies, study frameworks can be e.g. population isolates,
intermarriage between populations, and migration of populations into different envir-
onments. Much more emphasis than in traditional epidemiology, however, is on the in-
clusion of familial data. We would first like to address some study designs before enter-
ing in a more in depth discussion of the statistical methods applied in studies of genetic
epidemiology.

Apart from traditional epidemiologic study designs, like case-control, cohort, or
cross-sectional designs, which are potentially suitable to assess the influence of genetic
factors on a disease, there are several newly proposed designs that are mainly developed
directly from the traditional approaches and incorporate familial data. Following a
short review of the cohort and the case-control design, the main study types in genetic
epidemiology are presented according to their traditional sampling perspective,
although studies on genetic factors inherently include a retrospective part, the genome
of the study subjects.

4.1 Traditional study designs

Traditional study designs are especially suitable if one or more putative genes for a dis-
ease are known or if a limited number of hypotheses exists concerning the genetic fac-
tors. Genetic factors and even familial information can be included like any other expo-
sure variable in the study, allowing thus the analysis of single factors, and of gene-gene
and gene-environment interaction with statistical methods used in traditional epide-
miology. The probably most intuitive study design in epidemiology is the cohort study,
where a defined population under exposure or at risk of exposure is followed prospec-
tively over a long period with regard to the exposure and possible sequels of the expo-
sure. For different exposure groups, frequency measures like morbidity or mortality
rates can then be calculated in a straightforward fashion and compared between expo-
sure groups. If the disease of interest is rare and if the suspected risk factors are not un-
common in the population, the case-control study can be an economically attractive al-
ternative to the time- and money-consuming cohort study. In case-control studies inci-
dent cases are compared to unaffected population or hospital controls, with regard to
their exposure in the past. Odds ratios can then be calculated that estimate the relative
effect of risk factors on the disease via comparisons of the exposure frequencies in the
case and the control groups. Other approaches used in epidemiology are e.g. nested
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case-control studies and case-cohort studies, where the cases and controls are sampled
from an assembled cohort. However, cohort and case-control studies are, like most tra-
ditional approaches, subject to potential confounding because of undetected genetic
heterogeneity within the study population (population stratification, cf. to Section 5.2).
This problem is not unknown in traditional epidemiology, however, it can intensify se-
verely when looking at genetic risk factors although the general impact of unaccounted
genetic heterogeneity on study results is not clear since bias arises not necessarily in all
situations (for a discussion see [92], [99], [14]). Most of the following non-traditional ap-
proaches try to circumvent confounding due to undetected genetic heterogeneity by in-
corporating family members of study subjects in the study design.

4.2 Retrospective designs: Derivatives of the case-control approach

Possible variants of the traditional case-control approach for studies in genetic epide-
miology are family-based case-control designs, where (real or hypothetical) controls are
derived from the family of the cases. In case-sibling studies, each case is matched to a
sibling, who was unaffected at the age the case became affected (index age). Standard
methods of matched case-control studies, like conditional logistic regression, can be
used within the case-sibling design, analyzing both genetic factors and environmental
data of cases and controls up to their index age, and gene-environment interaction. In
case-parent studies, pseudo-siblings are constructed of the alleles of the cases’ parents as
hypothetical controls. For each case three pseudo-siblings are obtained by constructing
the genotypes of those allelic combinations that were not transmitted to the respective
case. The pseudo-siblings are presumed to be unaffected. For analyzing case-parent
studies, standard methods of 1:3-matched case-control studies can be applied as well.
However, because of the hypothetical control, main effects of environmental factors
cannot be estimated within the case-parent design. While controlling securely for under-
lying population structure, both designs have other potential pitfalls, the case-sibling
design requires dropping of cases without unaffected siblings, thus possibly introducing
selection bias; the case-parent design requires the genotyping of both parents, and is
therefore not suitable for late endpoints. Moreover, the dropping of incomplete family
trios is here as well a potential source of selection bias. A special approach for analyzing
gene-environment interaction, when genotyping of parents or siblings is not feasible, is
the case-only design, which uses only information from affected subjects. The case-only
design makes use from the fact, that for dichotomous genetic factors and dichotomous
environmental factors the odds ratio for the genetic factor in relation to the environ-
mental factor in cases is an estimate for the multiplicative interaction effect of genetic
and environmental factor in the population, if the genetic and the environmental factor
are independent in the unaffected part of the population ([68]). The gene-environment
interaction effect can then be estimated via logistic regression with the gene as the de-
pendent and the environmental factor as the independent variable. It should be noted
though that the case-only design can of course be subject to confounding through popu-
lation stratification and/or to bias from situations where the independence assumption
does not hold. Moreover, the main effects of the genetic or environmental factors can-
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not be estimated within the case-only design. An overview of retrospective study designs
for assessing disease risks of genetic and environmental factors can be found in Wein-
berg and Umbach [100], comparisons of sample size requirements for the different ret-
rospective approaches can be found in Gauderman [38].

4.3 Cross-sectional designs

From a historical perspective, there are two important cross-sectional study types that
were used for assessing genetic risk factors: adoption studies and twin studies. In adop-
tion studies, the variances in phenotypes in different familial constellations of families
with at least one member not biologically related are compared to each other in order to
separate genetic from environmental influential factors. These constellations comprise
e.g. biological parents to biological children vs. adopted children, adopted vs. biological
children, biological children that were raised together vs. biological children that were
raised separately from each other. Similarly, in twin studies, the variance in phenotypes
in monozygotic twins is compared to that of dizygotic twins. Both, adoption and twin
studies can be subject to considerable sampling bias, especially if the study sample is
constituted of volunteers. While adoption studies belong chiefly to the past not just be-
cause of methodological, but also because of legal and ethical problems; twin studies
are still of interest. Since monozygotic twins have identical genomes, they are ideally
suited to study environmental effects. Several countries have established twin registers,
facilitating population-based twin studies and thus reducing sampling problems. For
more information and recent developments, see [11].

A cross-sectional approach for estimating the age-specific penetrance of gene muta-
tions is the kin-cohort study ([98]). Given the mode of inheritance, the penetrance is esti-
mated using the genotype of a group of index persons and the phenotypes of the kin of
these index persons. Although the design underlies strong assumptions and is therefore
subject to several sources of bias (see [37]), the approach can theoretically be incorpo-
rated in other study designs, if information about the phenotypes of kin is included.

5 Statistical methods in genetic studies
5.1 Statistical methods in family-based studies

Family-based studies are carried out with the aim to determine the influence of a candi-
date gene on the disease status. The main idea is that if the potential gene is linked with
the marker locus, relatives with similar respectively different disease status are more re-
spectively less similar at the marker locus than expected under independence. We re-
strict ourselves to families with two generations.
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51.1 Lod score method

Linkage may be investigated as already discussed in Section 2 by measuring the distance
between marker and disease gene loci. Such a distance measure is given by the lod score
roughly defined as the logarithm of a likelihood ratio. The likelihood in the nominator
is calculated from the genotypic data of some observed pedigree. The likelihood in the
denominator is derived assuming no linkage. More formally, following Thompson [93],
let Y denote phenotypic data at trait and marker loci, where Y;. contains all data on in-
dividual i, and Y. all data related to the genotype at locus j. Then, regarding the geno-
types of individuals at multiple loci, denoted by G, as latent variables leads to

(16) Pr(Y ZPr(Y[G Pr(G) = Z( II Pr(viiG) ) (G),
G

observed i

where

(17) PrG)= [ Pr(G) ][ Pr(Gi|Gu,.,Gr,)
founders i nonfounders

Formula (16) is based on several assumptions such that the individuals’ phenotypes Y.
are conditionally independent given their genotypes G;.. So-called founders are individ-
uals without parental information in a certain pedigree. These observations are re-
garded as random draws from the population. The probabilities of the founder geno-
types Pr(G;.) are assumed to be determined by the allele frequencies and allelic associa-
tions in the population. For the nonfounders, the transmission probabilities
Pr(G,»,AIGMi", G, ), considered as conditionally independent given the genotypic infor-
mation of their parents, can be calculated according to the Mendelian laws and the link-
age relationships. If this assumption is satisfied, this reduces to investigating the recom-
bination fractions § which are then the only unknown parameters in the transmission
probabilities. Thus, (16) gives the likelihood L(). Since 6 is equal to 0.5 for unlinked
loci the lod score is given as

(18)  Z(6) = logo(L(0)/L(0.5)).

Maximizing equation (18) with respect to 6, i.e. replacing 8 with its maximum likelihood
estimate, leads to a likelihood ratio test statistic suitable for investigating the null hy-
pothesis of no linkage.

Formally, one has to test for the hypothesis of no linkage, i.e.

(19) Hy:0=0.5 vs. H;:6<0.5.

Under H), the lod score asymptotically follows a mixture of a xZ-distribution and of 0.5
density at zero, corrected with a factor of 5t TT(0) = = 7z (cf. [87]). It has become common
sense to use 3 as bound to declare linkage and -2 to exclude linkage, derived by Morton
[64] exploiting the theory of sequential probability ratio tests. This implicitly means that
H is rejected if

1 » 13.82

(20) Zz> 2.6X2000 = 4 ¥ 3.
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It should, however, be noted that the above statistical test is based on the assump-
tion that the genetic model of segregation is completely specified by the recombination
parameter. This holds for recessive and dominant traits but hardly for complex diseases
which then require more complex algorithms for calculating the likelihood and more de-
tailed information on the underlying trait model (see [93] for an overview).

Since the specification of the unknown trait model is accompanied by a high degree
of uncertainty and because of the complexity of the likelihood computation as well as
the enormous mass of marker data, alternative approaches have been proposed. These
approaches, presented in the following subsection, do no longer assume a specific genet-
ic trait model and have in this sense to be thought of as nonparametric. We will focus
on sib-pair methods for dichotomous traits. For a review of extensions of the model-
free methods presented below, for instance to quantitative traits, to larger pedigrees as
well as for the analysis of covariates, multiple marker, and disease loci, we refer to Hol-
mans [45].

5.1.2 Affected sib-pair methods

The general idea underlying the subsequent statistical tests for linkage is that, regardless
of the trait model, related affected individuals will share genes identical by descent
(IBD) not only at trait loci with higher probability but also at marker loci linked to
those trait loci. Thus, using a highly polymorphic marker, having both unaffected par-
ents and the affected sib-pair typed, it can be investigated whether the shared alleles at
the marker locus of these two individuals are inherited from the same parent. Please
note that only heterozygous parents are informative for sib-pair analysis (cf. Figure 5).
If the marker is not linked to the disease gene, the probabilities of a sib-pair sharing 0,
1, or 2 alleles IBD are % , %, or %, respectively. If the marker is linked to the particular dis-
ease locus, the probability of sharing alleles IBD is expected to be increased. However,
the probabilities of sharing alleles IBD depend on the mode of inheritance. As shown
by Suarez et al. [88], the probability of 2 alleles IBD increases above 0.25 for a dominant
trait whereas the probability of 1 allele IBD remains close to 0.5. Similarly, for a reces-
sive trait it can be shown that again as expected the probability of 2 alleles IBD in-
creases whereas the probability of 1 allele IBD drops below 0.5.

Instead of investigating the number of alleles shared IBD, one can look at the num-
bers of alleles identity by state (IBS). With this concept, it is of interest whether two in-
dividuals have a copy of a particular allele in common, regardless of whom it was inher-
ited. Thus, IBS > IBD (cf. Figure 5). Although IBS yields less information it might be a
way out of problems caused by incomplete polymorphic marker loci and/or untyped
parents ([54]), but obviously methods based on IBS will be in general less powerful. Let
us finally illustrate IBD and IBS for a sib-pair in Figure 5.
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Figure 5: Identity by descent and identity by state

Exploiting the IBD approach leads to various statistical methods for testing for linkage.
Some of the classical procedures in this field will be reviewed in the following without
the claim of completeness and without dwelling into details.

The maximum lod score test

The MLS (maximum lod score) test by Risch [73] is based on the maximum likelihood
method and the lod score. Let us briefly review the basic idea of the MLS statistic. Let
«; denote the prior probability that two siblings share i marker alleles IBD, i.e. o; =
Pr(IBD = i), and let z; be the posterior probability that two siblings share i marker al-
leles IBD given they are both affected, i.e.

zi=Pr(IBD =i|D; =1,D,=1),i=0,1,2,
where D;,j = 1,2, refers to the disease phenotype of the two individuals with 1 being af-
fected and 0 else. The posterior probabilities z; have to be estimated from the observed
marker information. For an affected pair, let finally w; be the probability of the ob-

served marker phenotypes, denoted as Yarker, Of the sib-pair given that they share i
marker alleles IBD, i.e.

w; = Pr(YmarkerIBD = i), i = 0, 1,2.

With wj denoting the corresponding probability for the kth pair, the likelihood of the
observed data for the kth affected pair hence results in

(21) Ly = Pr marker k) Zzlwlkv

which gives the joint likelihood for all N pairs as L = H,I:':l L.
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With the above probabilities the hypothesis of no linkage means that the prior and
the posterior probabilities of sharing i marker alleless IBD should be equal,
ie. Hy: z=a with z = (z,2,2;) and a = (ap, a1, @), where the latter is equal to
(3,3,1). This is to be tested against H; : z # a. The appropriate test statistic is based on
the likelihood ratio which reads as

N 2 2
(22) A= H (Z Z[Wik) / (Z aiwik) .
k=1 \ i=0 i=0

Thus, we obtain the MLS statistic as T\Ls = max; log;, A. Taking into account that un-
der Hy Twis is asymptotically x3-distributed and using again a small level of signifi-
cance of 0.001 to prevent from false positive results, linkage can be declared if Ty > 3
which coincides with the bound proposed by Morton [64].

The posterior probabilities z can be estimated by maximum likelihood which yields
the maximum of the lod score since its denominator is constant with respect to z. For
this purpose, the EM-algorithm by Dempster et al. [19] can be applied. This leads to the
following recursive formula for z;,/ = 0, 1, 2:

7 = Z ZIWik
=
N Z —0 lelk

In addition

(24)  w;i = Pr(Ymarker|/IBD = i)
PF(IBD = i|Ymarker)Pr(Ymarker)
- Pr(IBD = i)
o Pr(IBD = i| Ymarker)-

As it is sufficient to estimate the w; ratios instead of estimating the exact values, the test
statistic (22) can be derived using the proportional relationship (24). Examples of how
to calculate the lod score and possible extensions of this approach can be found in Risch
[73].

The above test statistic does not take into account that not all possible vectors z cor-
respond to a genetic trait model. As shown by Holmans [44] the set of possible sharing
probabilities for sib-pairs at each disease-susceptibility locus falls within a triangle
bounded by the three lines zy = 0, z; = 0.5, and z; = 2z. Regardless of the recombina-
tion fraction 6 this also holds for the sharing probabilities at the marker locus. Maxi-
mizing the lod score under this restriction leads to a more powerful test since it can be
shown that the asymptotic distribution of the Ts under the above triangle condition
is a mixture of a 7 and a x3 distribution (for details we refer to [44]). As demonstrated
by Holmans [44] rejection of the null hypothesis of no linkage if

X% 0.001
25) Twmis > ———=23
(25) Tws 46
gives a statistical test with a significance level very close to 0.001 in all situations consid-
ered by the author. An alternative to the MLS test is given by the minimax test intro-
duced by Whittemore and Tu [103].
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The ‘goodness-of-fit’ test

Blackwelder and Elston [9] consider different types of test statistics that are mainly
based on the conditional distribution of the number of marker alleles shared IBD by
sib-pairs conditional on the sibs’ disease status.

For deriving the x2-statistic of goodness-of-fit we compare the observed numbers of
sibs with i marker alleles shared IBD and j affected members, i,j = 0, 1, 2, with those ex-
pected under the null hypothesis of no linkage. Regardless of the disease status of the
sibs, the expected proportions of sib-pairs sharing 0,1, or 2 alleles IBD are, as already
mentioned above, %, %, and %, respectively. Let r;; denote the observed numbers of sib-
pairs with i marker alleles shared IBD and j affected members and n; = Y7 r;i the
number of sib-pairs with j affected members. The corresponding expected numbers, in
the following denoted as e¢;; = n;p;;, can be calculated using the expected proportions as
ep = ej = nj/4 and e;; = n;/2. Since one would not usually sample unaffected sib-pairs
we will restrict ourselves to the case ny = 0. The corresponding null hypothesis of no
linkage then reads as

1 1
(26) Hy : p2 =pi2 =pr =pio =z pu=pPu=3,

and the according x2-statistic can be calculated as

which is approximately x?-distributed with four degrees of freedom under the null hy-
pothesis.

The genotypic test

The genotypic test considers those sib-pairs only, where both have status affected. Thus,
the null hypothesis can be formulated as Hy : p» = px = 5; pa1 =3 and the corre-
sponding test statistic (27) reduces to

: L (rn — nz/4)2 n (ra — '12/2)2 + (r0 — ”2/4)2
Xgenotypic ny /4 ny/2 ny /4

which is approximately x?-distributed with two degrees of freedom.

(28)

The two-allele test

The two-allele test, originally proposed by Day and Simons [18] and Suarez et al. [88],
only accounts for those affected sib-pairs who share two alleles IBD which gives the hy-
pothesis of no linkage as Hy : p»» =pin = %, Depending on whether we further restrict
ourselves to those sib-pairs where both are affected (n; = 0) or not (n; # 0) this test sta-
tistic results in

rn—m/4)?  (ra—ni/4)?
(29)  Xanetes = Lot R T

n2/4 7’l1/4

for n #0

(r2 — ma/4)°

4 for n; =0.

(30) X§11e1e.2 =
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Under Ho, both statistics are asymptotically x3-distributed.

Instead of (29) and (30) we may directly use approximately normally distributed test
statistics for the one-sided testing problems given by the null hypothesis from above
and the following alternatives of linkage H, : p» > p12 if ny # 0 and Hj : pp > % for
n; = 0, respectively. The test statistics can be calculated as

(31) z, =E2"Pu i s%=3<l+i)/16 for n #0
S ny ny

2 1
_Pn—; : .
(32) Z,= — with s} = Tom

where the variances of the nominator, s? and s%, respectively, are derived under the null
hypothesis of no linkage.

for n =0,

The mean test
The last statistical test we want to discuss is known as mean test. It compares the ob-
served mean number of alleles shared IBD given the disease status with their expected
mean number under the null hypothesis where the latter equals 1. Thus, the null hypoth-
esis of no linkage can be formulated as Hy : pa; + 2p» = p11 + 2p12 = 1. For calculating
the observed mean number given ; individuals of one sib-pair are affected (IBD;) we
have to estimate the unknown conditional probabilities p; = Pr(IBD = i|D; + D, =)
which yieldsf)j,- = rj,-/nj and thus @j =0 ‘ﬁj[) +1 'i)j] +2 ‘f)jz.

For n; #0 the alternative hypothesis of linkage given as Hj : py + 2pyn >
P11 + 2p12 can be tested using the following test statistic

(33) zy=P2 + 200 —pn —2p e &= (L+l> /2.
53 n m

Restricting again our analysis to sib-pairs with two affected members reduces the alter-
native to Hj : po; +2p» > 1 and

Pu+2pp—1 . _ 1

(34) Z4 S with s} =
Under Hy, (33) and (34) are approximately standard normally distributed, where the
variances are again derived under the assumption of no linkage.

Various of the above test statistics have been compared by Blackwelder and Elston
[9] analytically, rather than by simulations, assuming a specific genetic trait model.
Their results show that the mean test and the goodness-of-fit test come up with signifi-
cance levels very close to the nominal ones, whereas the two-allele test tends to be liberal
or conservative depending on the underlying sampling scheme. Furthermore, the mean
test is demonstrated to be more powerful than the other two tests. Regarding the sam-
pling scheme, the authors recommend choosing sib-pairs with both members affected
which is shown to be the most powerful strategy. Thus, there are mainly two reasons to
base linkage analysis on affected pairs only, namely the potential misclassification of
sibs regarding their disease status and the greater power obtained from affected sib-
pairs. But as the authors stress upon, these results heavily depend on the assumption
concerning the IBD distribution in the absence of linkage.
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Further discussions of statistical tests for linkage in sib-pairs are found in [79], [49]
and [35], where among others additional genetic restrictions are assumed to derive more
powerful tests.

5.2 Statistical methods in population-based studies

In contrast to linkage, which concerns the physical distance of alleles at two loci, namely
the marker and a hypothetical trait locus, it might be looked for association between
the trait and a specific marker allele in population-based studies as for instance in case-
control studies for dichotomous traits. This statistical concept investigates whether a
particular allele occurs more often in the affected members of a population than ex-
pected assuming independence between trait and marker locus. Let us for instance con-
sider insulin-dependent diabetes mellitus (IDDM), denoted as D;, and HLA-D3, de-
noted as M. If the independence assumption holds the probability for their joint occur-
rence is given by the product of the marginal probabilities, i.e.

Pr(Ml,Dl) = Pr(Ml)Pr(Dl).

However, this antigen clearly occurs more frequently in affected persons, indicating a
positive association. In general, association occurs if

(35) Pr(M;,D;j) = Pr(M;)Pr(D;) + &;, 65 # 0,

where M denotes a marker gene with alleles M;,i = 1,...,m, and D a disease gene with
alleles D;,j =1,...,n, respectively. In case that &; = Pr(M;, D;) — Pr(M;)Pr(D;) # 0
we speak of linkage disequilibrium. A positive value of §;; indicates that the marker and
the disease allele jointly occur more often than expected under independence. Please
note that this term is not to be mixed up with the physical concept of linkage introduced
in the previous section. Linkage is not a necessary condition for linkage disequilibrium
(to be discussed in more detail below) although for tight linkage, linkage disequilibrium
retains over many generations because of the following close relation between these two
concepts of association and linkage. Let us denote with 6, linkage disequilibrium in the
rth generation and with &, in the initial population then it holds

8, = (1—8)6.

This relation implies that for tight linkage, i.e. for § ~ 0 the initial linkage disequilib-
rium 6, remains nearly constant whereas in case of no linkage, i.e. # = 0.5, linkage dise-
quilibrium measured by §, decreases rather fast being e.g. only 30% of the initial value
in the 5th generation.

Of course, it has to be taken into account that the disease gene is in general not
known and can therefore not directly be observed. The only information we have is the
individuals’ phenotype that probably indicates a potential disease gene. Thus, at the
end it has to be searched for disease genes that are associated with the disease pheno-
type.

Although such population-based studies are advantageous compared to family-
based studies in some respect, especially for diseases with late age of onset, where ob-
taining parental genotypes can be difficult, they also suffer from certain drawbacks.
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Typically a large number of cases is required since often only a small gene effect can be
observed. Moreover, the p-value of the corresponding statistical test for association has
to be small to claim a positive effect due to the problem of multiple testing. Another
point is, that the observed association between marker locus and disease phenotype can
have several reasons. It remains unclear, whether there is indeed linkage between the
marker locus and the disease gene which helps to locate the position of the disease gene.
Another possibility might be that the marker allele itself is presumably the disease allele
and a candidate gene might be identified. Obviously, this is the ideal case since such an
association cannot be eliminated by recombination. The most crucial explanation for
an observed association is confounding for instance due to ethnicity resulting from pop-
ulation stratification.

The latter problem will be illustrated by the following fictitious example from the lit-
erature. Let us consider two dichotomous loci with alleles 4, a and B, b, respectively,
and two populations where within each population Hardy-Weinberg equilibrium holds.
Let us further assume that in population 1 the probability for the occurrence of 4 equals
1, whereas Pr(B) = Pr(b) = 0.5. Thus, the probabilities of the joint occurrence of these
two alleles are as follows: Pr(4,B) = Pr(4,b) = 0.5, Pr(a, B) = Pr(a,b) = 0. In popu-
lation 2, it is, in contrast, assumed that Pr(4) = Pr(a) = 0.5 and Pr(B) = 1 which gives
Pr(A,B) = Pr(a,B) = 0.5, Pr(A,b) = Pr(a,b) =0. Supposed that in a population-
based study we observe an 50:50 mixture of both populations then Pr(4,B) =
0.5,Pr(A4,b) = Pr(a,B) = 0.25, Pr(a,b) = 0, and Pr(A) = Pr(B) = 0.75 which yields

648 = Pr(4,B) — Pr(A)Pr(B) = 0.5 — 0.75* = —0.0625.

Hence, we observe linkage disequilibrium in the mixed population although association
of the two genes is absent in each single population. Population structure might thus
lead to a false positive result, although as for instance Whittaker and Morris [102] point
out that the question concerning the possible contribution of this phenomenon to the
type I error rate of well designed case-control studies is still open where in their opinion
‘the impact of population structure is likely to be small in most cases’.

Currently, two major approaches are discussed in the literature to cope with the
problem of population stratification. Pritchard et al. [71], [70] propose a two-step proce-
dure. In the first step a model-based cluster analysis is performed on several unlinked
marker to identify a potential population structure and to assign each individual to an
unstructured subpopulation. In the second step, a statistical test for independence of a
candidate gene and the disease phenotype is carried out, where the null hypothesis is ex-
tended to independence within subpopulations. The other approach to adjust for popu-
lation structure, is known as genomic control ([21]). Based on a set of unlinked markers
across the genome the effect of population structure is estimated. This estimate is then
used to adjust the critical value for the test statistic at the candidate locus.

To circumvent the above problems, especially to assure that the controls are drawn
from the same genetic population as the cases, it might be advisable to perform family-
based association studies instead of case-control association studies. The related statis-
tical methods are based on comparing the frequencies that a particular allele has been
inherited or not, respectively. We will focus here on two main methods, namely the hap-
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lotype relative risk (HRR) and the transmission/disequilibrium test (TDT) as well as on
modifications of the latter.

The haplotype relative risk

The haplotype relative risk (HRR) is introduced by Rubinstein et al. [75] and again
picked up by Falk and Rubinstein [33]. The HRR uses virtual controls constructed of
the parental alleles or haplotypes not present in the affected child. Hence, the HRR has
on the one hand the advantage that cases and controls belong to the same genetic popu-
lation and that the quality of controls is assured among others due to simultaneous typ-
ing. On the other hand it is more restrictive with respect to the necessary data as com-
plete parental genotype information is needed. This information may be, as already
mentioned, difficult or even impossible to obtain for diseases with late age of onset. In
addition, three persons have to be typed for one case-control pair.

Provided that our sample consists of N complete family trios with heterozygous par-
ents and one affected child the HRR can be derived as follows. Let us denote with A
the marker allele of interest and with M, any other allele than M at this locus. Then,
HRR is defined as

P2
36) HRR =
(36) 1 —Pl Topn'T-m — P2
with p; being the probability that the child carries M, which means that at least one par-

ent has transmitted the particular allele to the child and p, the probability that at least

one of the non-transmitted parental alleles is ;. The HRR can be estimated by
e - NulN»

37) HRR = ——=,
(37) Ni2Nyy

where Nj; to Ny denote the corresponding observed frequencies summarized in a
2 x 2-table as depicted in Table 1.

M, Mo | by
Affected child N1y Nia 2N
Fictitious control | Nay Noo 2N

Table 1: Observed frequencies of transmitted and non-transmitted parental marker alleles to af-
fected child and fictitious control for N completely typed family trios; M; marker allele of interest.

Investigating the statistical properties of the HRR the recombination fraction as well as
the linkage disequilibrium have to be taken into account. Following Ott [66] and Knapp
et al. [51] we consider two loci, the disease locus with D, denoting the allele of interest
and D, the normal allele and the marker locus with alleles M and M>. Let us denote
with p the population frequency of D; and with g the population frequency of M.
Then, in case of allelic independence between M; and D, the probability of the haplo-
type M, D, is Pr(Dy, M) = pq. Accounting for potential linkage disequilibrium we get

Pr(Dl,Ml)—pq+<5
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Ott [66] derives the joint distribution of transmitted and non-transmitted marker al-
leles for one parent as summarized in Table 2, where also the recombination fraction 6
is accounted for. The joint distribution of transmitted and non-transmitted marker
genotypes in families with one affected child can be found in Knapp et al. [51] where it
is assumed that no selection and/or mutation occurs in the production of gametes, that
the Hardy-Weinberg equilibrium holds for the marker-disease genotypes, and that there
is random mating regarding marker and disease genotypes.

non—transmitted
transmitted M, My by
—0— 3=
M ¢+ g(1—gq) + 22 q+41?¢92
5(6— s(1= 1-6
M; gl-g+252  (1-g2-22 |1, 200
b3 g+ 1—q-— %‘T 1

Table 2: Joint distribution of transmitted and non-transmitted marker alleles for one parent.

Thus, statistical independence of transmitted and non-transmitted alleles only hold if
06 =0, i.e. if § = 0 and/or 6 = 0. Based on the above joint distribution Ott [66] demon-
strates that on the one hand HRR = 1if § = 0 or § = 0.5. On the other hand HRR # 1
only if § # 0 and € # 0.5. Thus, equivalence of the relative risk (RR) and the HRR for a
recessive trait only holds if § = 0 ([66]) which seems to be implicitly assumed by Falk
and Rubinstein [33] in their proof of equivalence of the HRR with the RR. Knapp
et al. [51] extend this result to arbitrary modes of inheritance. They show that

(38) |[HRR—1|<[RR—1| if 8>0.

The above inequality (38) means that the strength of association measured by HRR
never exceeds the one measured by RR. That is in case of no association (RR=1) the
HRR also equals 1. In addition, for # = 0.5 the HRR always equals 1, irrespective of 8.
Looking at the estimates of RR and HRR, Knapp et al. [51] point out that there is even
in case of a positive recombination fraction no tendency for the HRR to favor a false-
positive association compared to the classical RR.

The transmissionldisequilibrium test

Spielman et al. [86] propose the so-called transmission/disequilibrium test (TDT) as test
for linkage between a marker locus and a potential disease locus which is not affected
by the problems due to population stratification. It is based on the idea, as already
exploited by Ott [66] and discussed above, to look whether the marker allele of interest
is transmitted or not to the affected child. But in contrast to the HRR, the paired infor-
mation is used, which results in a situation as demonstrated in Table 3.

non—transmitted
transmitted | M, M, b3
M, Nu Ni2 N1
M, Noi Nao Na.
2N

Table 3: Observed frequencies of transmitted and non-transmitted parental marker allele pairs to
affected child for N completely typed family trios; M, marker allele of interest.
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If the parent is homozygous at the marker locus the transmitted and non-trans-
mitted allele coincide and will lead to an entry to the cells denoted as N;; or Ny, respec-
tively, depending on the parental allele. If the parent is heterozygous at the marker locus
we get an entry to the Ny, cell if M, is transmitted and M, not and vice versa to the Ny
cell if M, is transmitted and M, not. The joint distribution of transmitted and non-
transmitted marker alleles for one parent can be found in Table 2 from which it becomes
obvious that the TDT might be used as test for linkage with a genetic marker when pop-
ulation association has been found as introduced by Spielman et al. [86] but also as test
for association if linkage is present as pointed out by Elston [30]. To be more precise if
there is no difference in the probabilities of transmitting the M, or the M, allele to the
affected child the corresponding probabilities, denoted as pi, and p;, should be identi-
cal with

P12=q(1—‘1)+6_(1_;7—q)
23! 24(1—4)*‘6(0——‘12-

p

Closer inspection of pi, and py; gives that they coincide if §(1 — 0 — ¢)/p and 6(0 — q) /p
equal zero. This is fulfilled in absence of association (§ = 0) and/or of linkage (¢ = 0.5).
Thus, we get Hy : p1o = pa1 is equivalent to Hy : = 0.5 and/or Hy : § = 0. Under Hp
and with 7 denoting the probability that a heterozygous parent transmits M, it holds
that Ny ~ Bin(Nj; + N3 7 = 0.5) which leads to an exact binomial test or to the ap-
proximate McNemar-test with test statistic

(Ni2 — Nay)?
Niz + Ny

Under Hy (39) is approximately x2-distributed. The resulting test is known as TDT. Al-
ternatively, it may also be derived as a score test by exploiting the binomial distribution
of N, which gives the following log-likelihood InL(7)

lnL(T) = leln(‘l‘) + N211n(1 — T)

and thus the score-test as

ZZ
Trpr = a
with
_ OlogL(7) _ d*logL(T)
Z = o and V= 5.2

which finally leads to the above TDT statistic when being evaluated at 7 = 0.5 ([102]).
Let us briefly discuss its statistical properties as test for linkage in the presence of as-
sociation ([32]). The TDT can be applied without being restricted to certain modes of in-
heritance whenever the data are collected from families with one or more affected off-
spring or from pedigrees, where monozygotic twin pairs have to be excluded. It keeps
the level for the type I error even in case of population stratification. It has, however, to
be noted that it has no power if there is no association between the genes at disease and

30 JB 106. Band (2004), Heft 1



( . Pigeot, K. Bammann, A. Reineke, N. Wawro, A. Zierer: Statistical methods in genetics

marker locus since for § = 0 the probabilities p;; and p,; always coincide, irrespectively
of 6. In addition, the more association there is, i.e. the greater 8, the higher the power of
the TDT. Furthermore, it should be mentioned that the TDT is also appropriate for
testing whether the HRR differs from one.

The TDT has been introduced for binary marker data and two parents with one af-
fected child typed. For extensions to families with more than one affected child we refer
to the original paper by Spielman et al. [86], and for dealing with quantitative traits see
Allison [5]. Further extensions can be found in the literature, some of them to be re-
viewed below, where Whittaker and Morris [102] point out that their approach for de-
riving the TDT as score-test is advantageous with respect to possible generalizations as
for instance to multi-allelic marker loci.

Regarding the latter let us mention Sham and Curtis [81] who provide a log-linear
test for a multi-allelic marker locus with alleles My, . .., M,, which is based on the com-
parison of the marginal frequencies of the transmitted and non-transmitted alleles,
ie. Ni.,...,N,. and N.,...,N,,, and Schaid [77] who proposes the so-called general-
ized TDT (GDTD) and maxTDT. The former considers the differences between N;. and
N.; which gives an m — 1 dimensional vector of differences to be weighted with the in-
verse of the estimated covariance matrix to yield the GDTD. For the maxTDT the usual
TDT is calculated for each allele i lumping all other alleles as ‘non-i’. The maximum of
the resulting m TDT statistics is chosen as the maxTDT test statistic.

In addition, situations may arise where the parental genotypes are missing such that
the TDT can no longer be calculated. One way out would be the sib-TDT proposed by
Spielman and Ewens [85]. Under the null hypothesis of no linkage and no association
the probability of transmitting a parental marker allele to a child is independent of the
disease status of the child which means that the distribution of genotypes in the off-
spring should be independent of the disease status within families. This gives the justifi-
cation to derive a statistical test in case that the parents are not typed by comparing the
numbers of M, alleles in affected children and in their unaffected sibs. Taking now the
number of M alleles in affected sibs, i.e. conditional on the sibs being affected, leads to
a test statistic which can be shown to be, appropriately standardized, asymptotically
normally distributed. Analogously to the TDT, this test is only valid to test for associa-
tion if the minimal family configuration is used which means here one affected and one
unaffected sib.

Another possibility to tackle the problem of missing genotype data of the parents is
to try to infer it from the genotype data of the children. Treating these inferred geno-
types as if they were really observed leads to possible bias as for instance to an inflation
of the type I error rate as shown by Curtis [17]. To cope with this problem Knapp [50]
derives a statistical test, known as reconstruction combined-TDT (RC-TDT), where the
parental genotype information is reconstructed and then it is corrected for the bias
pointed out by Curtis [17]. For this purpose, a multi-allelic marker and affected as well
as unaffected sibs are needed. In addition, Knapp [50] gives a detailed list of those spe-
cific data situations where such a reconstruction is feasible.

If only information is available on a biallelic marker for one affected child and one
parent Sun et al. [89] propose the so-called 1-TDT which is based on constructing a
non-iterative odds ratio estimator derived from internal case-control studies.
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Of course, the list of possible modifications of the TDT to cope with various situa-
tions such as missing data, quantitative traits, multi-allelic marker loci, or pedigrees
cannot be exhaustively treated within this paper. More information on a variety of pos-
sible approaches can be found in Whittaker and Morris [102].

Finally, let us again come back to the fact that the TDT can also be regarded as a
test for association. For this purpose, however, only families with one affected child are
to be used since deriving the distribution of the TDT statistic under the null hypothesis
it has to be assumed that the transmissions from the parent to the affected child are in-
dependent which does no longer hold if a heterozygous parent transmits alleles to two
affected children in the presence of linkage of disease and marker gene. It has addition-
ally to be noted that in this situation the TDT is the same testing procedure as before
but it can only test simultaneously for linkage and association and not solely for one or
the other. That is, as Ewens and Spielman [32] stress upon, the distribution of the TDT
statistic in the absence of linkage regardless of association is the same as in the absence
of association regardless of linkage.

6 Outlook

Although the techniques presented above have been, at least partly, especially devel-
oped to cope with the particular demands of the study designs and the data structures in
genetic epidemiology as for instance the affected sib-pair method, the haplotype relative
risk, or the transmission/disequilibrium test, more sophisticated methods are still re-
quired to handle the further increasing complexity of the data. Due to new technologies
and developments in genetics, genomewide scans have become feasible to map com-
plex-disease genes which makes it is necessary to derive statistical approaches of high-
resolution haplotype or multiple-marker linkage disequilibrium of complex diseases. In
a recent paper, Fan and Knapp [34] investigate high-resolution linkage disequilibrium
mapping methods based on haplotype maps or microsatellite maps. Statistical tests are
derived to test for association between a disease locus and two haplotype blocks or two
markers, where these tests are further discussed regarding their appropriateness and
their statistical properties.

Besides these new developments that are only briefly addressed in this paper, other
important fields could not be covered in full detail. One of the most obvious statistical
problems in this field is due to possibly false positive associations resulting from the
enormous number of statistical tests which are applied to check for potential candidate
genes (cf. Section 3). As a typical example consider, say, five presumed disease genes
and 20.000 candidate genes. If now for each single test of association statistical signifi-
cance is concluded at a p-value smaller than 0.05 then the probability to detect false po-
sitive associations is about 99.5%. Decreasing the individual level to values of about
10~# seems to be appropriate to adjust for multiplicity. Of course, other multiple adjust-
ment techniques might be thought of being less restrictive as adaptive designs ([52]), but
nevertheless the required adjustment leads to rather small significance levels for the in-
dividual tests. An alternative way out is for instance provided by the method of sample-
splitting as suggested in [67].
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Another research topic relates to pedigrees consisting of more than two generations
which leads to even more complicated data structures. Just to mention two examples let
us come back to the lod-score, a likelihood-based method which can be exploited to test
for linkage, and the TDT. Elston and Stewart [31] propose an algorithm for calculating
the likelihood recursively for pedigrees. Regarding the TDT, Martin et al. [62] derive an
extension to account for pedigrees where, roughly spoken, the information of allelic
transmissions on a pedigree level is summed up.

In our presentation of the statistical methods to test for linkage or association, the
focus was on qualitative traits. Quantitative traits may be treated by formulating ade-
quate regression models where it has to be checked whether linear models are sufficient
(cf. [5], [72], [6], [36] and [3]) which would be the case if normality of the response vari-
able can be assumed. If, however, other exponential family distributions seem to be
more adequate as underlying distributions, generalized linear models as introduced by
McCullagh and Nelder [63] may be adapted. Higher flexibility in modelling such traits
can be achieved by exploiting neural networks as introduced in genetic epidemiology by
Lucek et al. [61]. Regression models feature in any case the possibility to be rather easily
extended to account for a polygenic component, shared family environment, multi-alle-
lic markers, further covariates such as environmental factors, and interaction terms.
Especially the latter are of importance when investigating complex diseases since they
allow for modelling gene-gene and gene-environment interactions. First approaches to
account for such interactions can be found in [78], [105], [97], [83], [104], and especially
based on graphical models in [82]. In our view, particularly the problem of adequately
accounting for gene-gene and gene-environment interactions is of high practical rele-
vance and deserves further research.
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Pluriharmonic maps, twisted loops
and twistors
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Abstract
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A minimal surface in euclidean space has two very special properties: (A) It allows a
twisted circle of isometric deformations preserving the tangent plane (Associated fa-
mily), and (B) it is just the real part of a holomorphic map (Weierstrass representation).
In fact, these two properties hold more generally for a pluriharmonic map f* of a simply
connected complex manifold into euclidean space. If instead the target space is a Rie-
mannian symmetric space P, Property (A) essentially remains true, however by lack of
global parallel displacements a parallel isomorphism between the tangent spaces of the
associated family is needed. Consequently Property (B) gets more complicated: f arises
by projecting a “superhorizontal” holomorphic map f into a certain infinite dimen-
sional flag manifold (adjoint orbit) fibering over P. the “universal twistor space”. The
map / takes values in a finite dimensional sub-twistor space iff the associated family is
trivial.
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Introduction

Among the most beautiful objects in Geometry are the minimal surfaces in 3-space.
One of their spectacular properties is the existence of a (so called associated) family of
deformations preserving the interior distances and the surface normal while rotating the
principal directions. The best known example is the deformation of the catenoid into
the helicoid, cf. http://www.ag. jku.at/verbieg_en.html. It starts and ends with the
catenoid which however is turned inside-out during the deformation. This is an example
of a twisted loop of surfaces: It comes back to its original shape, but only after applying
a point reflection on the ambient space. The same phenomenon occurs when euclidean
3-space is replaced with a symmetric space P, a Riemannian manifold with isometric
point reflections at every point. Moreover, the minimal surface can be replaced by a
harmonic map of a surface into P. In fact, a surface is only the easiest example of a com-
plex manifold, and we may equally well consider a pluriharmonic map of an arbitrary
complex manifold. Also these maps can be deformed by twisted loops, described as
mappings into some space of loops. These are holomorphic mappings of a certain kind,
and therefore pluriharmonic maps can be obtained from holomorphic data; the Weier-
strass representation for minimal surfaces is the best known example.

Sometimes the situation is rigid and the twisted loop of deformations arises only by
isometries of the ambient space; such pluriharmonic maps are called isotropic. Of course
they can exist only if the point reflections in P can be deformed to the identity; sym-
metric spaces with this property are called inner. This case is much simpler and has been
studied for a long time, starting with the work of Calabi [4]. It is closely connected with
the concept of a twistor (cf. [3]) which was first investigated by R. Penrose [13] in con-
nection to Relativity. Roughly speaking, a twistor is a complex structure on a tangent
space of an inner symmetric space P, and the set of all twistors forms a fibre bundle over
P. The original example studied by Penrose was the “classical” twistor fibration
CP? — S* any point of complex projective 3-space can be viewed as a complex struc-
ture on some tangent space of S*. Each isotropic pluriharmonic map into a symmetric
space can be lifted to some twistor space over P. The most classical twistor fibration
was also the most successfull: With its help R. Bryant [1] gave an explicit description of
all minimal spheres in S*.

In the present survey article we want to explain, following work of K. Uhlenbeck, J.
Rawnsley and others, how the general (non-isotropic) case can also be understood in
terms of a generalized twistor theory. This more general twistor space is infinite dimen-
sional, a space of twisted loops, and since it contains all other twistor spaces, we would
like to call it “universal”. This is mainly a re-interpretation of well known facts which
however could give a unified view point to the theory. Most of the details missing in this
survey can be found in [7]. We thank J. Dorfmeister for many useful hints and discus-
sion.
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0 Harmonic maps

A smooth manifold M is called Riemannian if there is an inner product on each of its
tangent spaces, depending smoothly on the base point. For any smooth curve
¢: [a,b] — M the length L(c) = f: |¢'(¢)| dt is defined, giving M the structure of a metric
space which locally is approximated by euclidean space. All euclidean notions are ap-
plicable but have different properties. The main difference arises for the parallel displa-
cement of tangent vectors and the corresponding differentiation of tangent vector fields,
the so called Levi-Civita derivative: The parallel displacement becomes path dependent,
and the Levi-Civita derivatives with respect to two coordinate directions do not com-
mute; in fact their commutator is the basic invariant of Riemannian geometry, the cur-
vature tensor.

Classical euclidean geometry is investigated by using substructures: lines, planes etc.
In Riemannian geometry, the role of lines is taken by geodesic lines which have parallel
tangent vectors and which locally minimize the length and also the energy
Ele) = f: |c’(t)|2 dt among all curves connecting two given point. If metric complete-
ness is assumed, any two points are joined by a geodesic line, like in euclidean geometry.
But what are the substitutes for planes and higher dimensional subspaces? A plane in
space contains the line passing through any two of its points. In Riemannian geometry,
a submanifold with this property is called totally geodesic. However such submanifolds
are very rare unless we restrict attention to spaces of constant curvature which are lo-
cally just spherical, euclidean or hyperbolic spaces.

Therefore we consider another generalization of geodesics to higher dimensions,
using the energy minimizing property. If M and P are Riemannian manifolds and
f: M — P a smooth map, the derivative of f at a point x € M is a linear map
dfy : TyM — Ty, P between the corresponding tangent spaces of M and P. The vector
space Hom(T M, Ty(,)P) inherits an inner product and hence a norm from the inner
products on 7, M and Ty )P given by the Riemannian metrics; in fact

(1) |dfi? = |dfc-er|* + ... + |dfc.em|*

for an orthonormal basis (ey, ..., e,,) of T M. For any compact subset M, C M the en-
ergy or Dirichlet integral of f| M, is

<asuwa=4kun

where dv, denotes the volume element of M at x determined by the Riemannian metric.
A map f : M — Pis called harmonic if the variation of its energy vanishes,

(3) BE(fIM,) i= L E(fiIM,)],o =0

for any compact subset M, C M, where f; : M — P is any smooth variation of /" with
f = f; outside M,. As always, this variational principle is equivalent to its Euler differ-
ential equation:

(4) Af :=trace Ddf =0
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involving the Levi-Civita derivative D on Hom(TM, TP) which is induced by the Rie-
mannian metrics on M and P.

Harmonic maps exist for all dimensions of M. A harmonic map of the real line
M = R is just a geodesic. The next case when M is a surface is most interesting since
then the energy (2) is invariant under conformal changes of the metric g on M. In fact,
if g is replaced with g/u? for some smooth positive scaling function x on M, then |de|2
takes up a factor u(x)” while the 2-dimensional volume element dv, is divided by pu(x)?,
hence the energy remains unchanged. But an oriented surface with a conformal class of
metrics is nothing else than a 1-dimensional complex manifold where the complex struc-
ture J on the tangent space is the rotation by the angle 7/2. Hence harmonic maps
f : M — P are already defined when P is Riemannian but M is only a complex 1-dimen-
sional manifold (a Riemann surface) without specified metric. We will see that locally all
harmonic maps of Riemann surfaces into symmetric spaces can be obtained in terms of
meromorphic functions on M as has been shown in [8]. These maps became interesting
to physicists under the name o-models (cf. [6]).

If dim M > 2, harmonic maps in general do not have such nice properties. However
there is an interesting special case where the methods of complex analysis still apply.
Let M be a complex manifold of any dimension. A map f : M — P is called pluriharmo-
nic if f|C is harmonic for any complex 1-dimensional submanifold (complex curve)
C C M. If we compare harmonic maps of surfaces to geodesics, then pluriharmonic
maps play the role of totally geodesic submanifolds, and they do not always exist as we
shall see. However there are many interesting examples. Under certain conditions, a
harmonic map f : M — P of a Kéhler manifold M is automatically pluriharmonic, in
particular this holds if P has nonpositive curvature operator (cf. [15], [11]).

1 Associated families and symmetric spaces

Another peculiarity for dim M = 2 is the existence of so called associated families of
harmonic maps. Consider the case P = IR”. Then (4) becomes f>; = —f1; (where the in-
dices mean partial derivatives). This is the integrability condition for the differential
form df o J = fodx; — fidx,; in other words, df o J is a closed iff f is harmonic. Hence
locally df o J = df for another (so called conjugate) harmonic function £, and taking
linear combinations, we obtain a circle of such maps fy = f cos 6 + f sin 6 with

(5) dfo=df oRy

where Ry denotes the rotation by the angle 6 on the tangent space of M. This is called
the associated family of f. This result can be extended in two ways. We may replace the
surface by an arbitrary complex manifold M and put Ry = I cosf + J sin § where I is
the identity and J the complex structure on 7M. Moreover we replace IR” by any sym-
metric space P.

A Riemannian manifold P is called symmetric if for every p € P there is an isometry
sp : P — P fixing p with derivative (ds,) , = —1; this is called point reflection or symme-
try at p. Thus s, reverses any geodesic line passing through p. As a consequence, the
group of isometries (P) acts transitively on P since any two points 0,q € P can be
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joined by a geodesic segment c : [0,1] — P, and we can map o to g by the point reflec-
tion 5, where p = ¢(3) is the midpoint of ¢. Locally, symmetric spaces are characterized
by the fact that the curvature tensor

RP(X7 Y)Z = [DX7DY]Z = D[XY]Z

(acting on tangent vector fields X, Y, Z on P) is parallel on P, i.e. it commutes with the
parallel displacements on P. On any tangent space T, P it defines a trilinear map (a so
called Lie triple product) RY which completely encodes the local structure of the sym-
metric space P. In particular, any isometric linear map ¢ : T,P — T,P preserving R
(i.e. RF(¢X,0Y)pZ = ¢RP(X, Y)Z) “extends" to an isometry g € I(P) with g(p) =¢
and dg, = ¢. For p = ¢ any such ¢ will be called an automorphism of T, P; it extends to
an isometry of P fixing the point p.

Equation (5) as it stands can hold only for P = IR" where all tangent spaces are iden-
tified by global parallel displacement. But otherwise df, and d( f;), take values in differ-
ent tangent spaces, T (,) P and Tj,(,) P. Thus we replace (5) by

(6) dfg = q)g OdfO R@

where ®4(x) is an isomorphism between Ty, P and Ty, (,) P for any x € M which is as
nice as possible:

= &y(x) is a linear isometry preserving the curvature tensor R”,

®m  ®y(x) is parallel with respect to x.

A family of smooth maps fy : M — P satisfying (6) will be called an associated family of
f = fo. A main result of [10] characterizes pluriharmonic maps by associated families:

Theorem 1. Let M be a simply connected complex manifold and P a symmetric space
of nonpositive or nonnegative curvature. Then a smoothmap f : M — P is pluriharmonic
if and only if it has an associated family fy. This is uniquely determined up to isometries
of P.

From the uniqueness we can derive more properties of the associated family. Since
Ry = —Ry, we obtain a solution (fp,, Py ) of (6) for the rotation angle  + « from a
solution ( fy, ®y) for 6, namely

(1) forn=Tto, Posr = —Do.
In the second equation we may replace —®y(x) by ®(x)ss(y) obtaining
(8) <D9+,r(x) = (I)g(x)Sf(x),

since ®y(x) can be considered as an isometry of P sending f(x) onto f3(x) and sy, acts
as —I on Tf(r)P

A class of particular interest is formed by the so called isotropic pluriharmonic maps
whose associated family is constant: f = f for all 6 (up to isometries of P). Then (6) be-
comes

(9) df =®podf oRy,

and this time each ®y(x) is an isometry preserving R” and mapping Ty, P onto itself.
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We can choose 6 — ®y(x) to be a one-parameter group, a homomorphism of the unit
circle: If (f, ®¢) and (f, @) are solutions of (9) for  and ¢, then (f, P4y ) is a solu-
tion for § + ¢’ (since Ry, ¢ = RyRy) and hence we can assume

(10) @y = Bedy, @y =—1

2 Twistor lifts

Twistors (cf. [13], [3]) have been introduced in order to apply complex analysis to non-
complex symmetric spaces. On a complex (so called hermitian) symmetric space there is
a complex structure on any tangent space 7, P which by definition is a Lie triple auto-
morphism j with j2 = —I. In complex coordinates, j is just the multiplication by
i = v/—1, and it is invariant under parallel displacements. But if no such complex struc-
ture is given, the idea is to consider the set of all possible complex structures on 7, P.
Any of these belongs to a one-parameter group of automorphims of 7),P called twistors
at p. More precisely, if G = I(P)” denotes the identity component of the isometry group
I(P), a twistor at p is by definition a smooth homomorphism 7 : S! = R/(27Z) — G
fixing p and passing through the point reflection s, = 7; the corresponding complex
structure on 7, P is given by j = 7, /5. Of course this is possible only if the point reflec-
tions belong to the identity component of the isometry group; symmetric spaces with
this property are called inner. E.g. the even dimensional spheres are inner, but not so the
odd dimensional ones.

A twistor space Z over P is the conjugacy class of some twistor 7, within G. If Tis a
twistor at p, then grg~! is a twistor at gp, and since G acts transitively, Z contains twis-
tors at all points of P. Thus Z fibres over P with fibre Z, being the set of all twistors at
p;letp : Z — P be the projection. Further Z is a complex manifold: Every 7 € Z defines
a complex structure 7,/ on T}, P which extends canonically to a complex structure on
T:Z. In fact Z can be viewed as an adjoint orbit (an orbit of the adjoint representation
of G on its Lie algebra g) since the one-parameter group is determined by its infinitesi-
mal generator in g, and it is well known that all adjoint orbits are complex manifolds
(quotients of complex Lie groups by closed complex subgroups).

The easiest example is the 4-dimensional sphere P = $* C IR® where the twistors
T € Z, are one-parameter groups of orthogonal matrices fixing p and acting by oriented
planar rotations on two orthogonal planes in p*. Any such 7 is conjugate under SO(5)
to (7,), = diag (1, pg, ps) With pg = (5§ ~5nf); more precisely, Z is the conjugacy class
of 7, in SO(5). The stabilizer of 7, is the subgroup U(2) C SO(4) C SO(5) and hence
Z = 8S0(5)/U(2) is complex projective 3-space CP* (recall that SO(5)= PSp(2) C
PU(4) acts transitively on €P*> = PU(4)/U(3) and PSp(2) N U(3) = U(2)).

Also in the general case twistors are composed by planar rotations which however
may have different velocities: The tangent space p = 7, P is an orthogonal sum of sub-
spaces p; on which 7 acts by planar rotations pyg. But since 7, = —I, the weights £ must
be odd integers. Following [3], we call a twistor 7 canonical if the lowest weight space p,
generates p as a Lie triple algebra, i.e. p = p; + R”(p;,p;,p;) + ... The space p = T,P
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can be embedded naturally into 7,Z as the horizontal subspace for the fibration
p: Z — P, and the subspace p; C p C T,Z will be called superhorizontal.

Now let f : M — P be an isotropic pluriharmonic map which is full, i.e. /(M) does
not belong to a proper totally geodesic subspace of P. Then by the results of the pre-
vious chapter ®(x) = (6 — ®y(x)) is a twistor at f(x) for any x € M and thus defines a
map ®: M — Z with po® =f, the so called rwistor lift. From the parallelity of
x — ®(x) we see that d® takes values in the horizontal bundle of the fibration
p: Z — P (“horizontal” and “parallel” are just the same notions for the principal bun-
dle G — P and its associated bundles.). More precisely, using (9) we see that d® takes
values in the superhorizontal subbundle on which the twistor has weight one and hence
agrees with the complex structure j (more precisely, with the rotation group generated
by j); this shows that @ is also holomorphic. Vice versa it is easy to see that the projec-
tion of a superhorizontal holomorphic map is an isotropic pluriharmonic map. Thus we
obtain:

Theorem 2. Isotropic pluriharmonic maps [ : M — P are precisely the projections of
holomorphic superhorizontal maps into twistor spaces over P.

3 Loop space lifts

Now let us consider an arbitrary pluriharmonic map f : M — P. Fixing a base point
p € P we have a canonical projection 7 : G — P, w(g) = gp where G is the identity com-
ponent of the isometry group of P. If we also fix a suitable basis B of the vector space
T,P, then g(B) is a basis for T, P and hence G can be considered as a certain set of bases
( frames) of the tangent spaces of P. On a contractible open subset M’ C M, the map f
can be lifted to G, yielding a smooth map F : M’ — G which projects onto f|M’, i.e.
f(x) = F(x)p. This is called a local framing of f since it provides each tangent space
Ty (. P with a frame F(x). Obviously, two such framings F , F differ by a map into the
isotropy group K = {g € G; gp = p}, more precisely, F = FFx for some smooth map
FK M — K.

We have already seen that pluriharmonic maps come in associated one-parameter
families fy satisfying (6). A framing F : M’ — G of f defines also a framing Fy = ®pF
for fp. More generally we may put

(11) Fg = ggq)gF

for an arbitrary isometry gy € G, replacing fp with gyfy. We will use this freedom as fol-
lows: We fix base points x, € M and p = f(x,) € P. We may assume F(x,) = I, and we
choose gy = ®y(x,)”" whence Fy(x,) = I for all 6. Recall that F(x) € G maps p to f(x)
and hence conjugates the point reflections s, and s(,). From (8) we obtain gg.» = 5,80
and hence Fy.»(X) = go4xPorr(X)F(x) = 5,89P¢(X)Sr(x)F (x) = spFp(x)sp, thus

(12)  Fpin(x) = o(Fo(x))

where o € Aut(G) denotes the conjugation by s,. Therefore each map 6 +— Fy(x) be-
longs to the twisted loop group

(13) G =A\(G)={7: 5" = G; Yorr = ()}
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where the loops 7 are sufficiently regular (e.g. of class H'). Thus we have obtained a
map F : M’ — G with F(x), := Fp(x). If we had chosen another framing F = FFg, we
would have got a corresponding map F = FFk. By projecting F to the coset space
Z=G /K (where K C G denotes the subgroup of constant loops in the isotropy group
K C G) we get a map F = FK which is independent of the choice of F and hence is
globally defined on M. This space Z fibres over P where the projection p : Z — Pis the
evaluation of the loop at the initial point: p(7K) = yop. Now we have constructed a
smoothmap F : M — Z whichisaliftof / : M — P,ie.poF = s

This loop space Zis again a complex manifold, a quotient of two complex loop
groups: Z =G / G* where G is the set of loops into the complexified group' G¢ and
G* is the subgroup of those v : S' — G° such that both v, 7! extend to ‘analytic maps
on the unit disk in €. If G° is a matrix group, we may write each y € G* as a matrix
Fourier series v9 = Y,z Are®® and v € G iff A4x = 0 for k < 0 and the same is true
for 4~1. It can be shown that  : M — Z is holomorphic; in fact one constructs a holo-
morphic lift into G¢ using the parallelity of ®;. Moreover it follows from (6) that the dif-
ferential of F takes values in a finite dimensional homogeneous subbundle of the tan-
gent bundle of Z, which at the base point consists of the simplest possible (finite) Four-
ier series Ae® + Ze‘i‘); this will be called the superhorizontal subbundle. Vice versa, we
can characterize pluriharmonic maps by this property. Thus we arrive at a theorem
which looks quite similar to the one in the isotropic case:

Theorem 3. General pluriharmonic maps f : M — P are precisely the projections of
holomorphic superhorizontal maps into the loop space Z over P.

Remarks. 1. In fact, the differential 4% can be described in terms of a p-valued ho-
lomorphic differential form on M, called normalized potential. If M is a surface, this
may be an arbitrary meromorphic 1-form, but in higher dimensions an integrability
condition is needed (curved flat condition). In [8] it was shown how to obtain f back
from the potential. This formula allows to compute explicit examples.

2. The loop group G* acting on Z preserves the set of holomorphic superhorizontal
maps F : M — Z. Hence it induces an action on the set of pluriharmonic maps which is
a special case of the so called dressing action.

4 The “universal twistor”

Can the previous construction also be viewed as a sort of twistor lift? To answer this
question we first try to understand the twistor construction as a special case of the loop
space lift. This is not difficult since both times we have used ®,. In the isotropic case,
®y(x) is a one-parameter group conjugate to a fixed twistor 7 for each x € M, and from
Fy = (®4(x,)) ' ®F we obtain (after a slight modification of our frame F )

(14) F =7F7r!

Recall that Z = G/K and Z = Ad(G)r = G/H where H is the centralizer of 7. Moti-
vated by (14) we consider the group homomorphism

(15) p,:G— G, g~ rgr!
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The loop p, (g) is constant if and only if g commutes with 7, i.e. g € H. Thus p, induces
an equivariant embedding p, : Z = G/H — Z= G‘/K . This is holomorphic and pre-
serves superhorizontality. In fact, dp, maps a (complex) eigenvector X of Ad(r) corre-
sponding to an eigenvalue e*? into the corresponding Fourier monomial:
(dp,(X))y = Ad(75)X = XX

The link between Z and Z becomes even more apparent if we consider Z like Z as
an adjoint orbit. In fact, denoting the Lie algebra of G by § (consisting of the loops in
g), we get an embedding Z — §, 7K — ~/~v ! where v = %'yg. This can be considered
as an adjoint orbit if we enlarge the Lie algebra § by an element é with ad(6)¢ := ¢ for
any (sufficiently regular) £ € g. Assuming G to be a matrix group we can represent each
v € G as a multiplication operator and § as a differential operator on matrix valued
loops. Thus

(16) Ad(y)6=~6v"'=6—+~",

and the mapping 7K — & — /v~ is an embedding of Z as the adjoint orbit of 6 in the
enlarged Lie algebra.” Comparing with Z = 4d(G)7 we conclude that the one-para-
meter group generated by é should be a “universal twistor" 7. This does not belong to G
itself but to the automorphism group Aut(g); it is the shift of the loop parameter: For
any ¢ € gwe have

(17) #(&)g = &4

Lemma. A/l twistors T acting on g by the adjoint representation are restrictions of the
“universal twistor” T on 3, more precisely,

(18) dp; o0 Ad(T) =Todp,

Proof. We have ¢ = Y, g, with 4d(75)X = ¢*X for any X € g;. On the other
hand, for any X € g, we have 7(dp.(X)) = 7%(0 — e**X) = ¢*?dp,(X) which proves
the claim. O

We sum up our discussion by the following

Theorem 4. Any pluriharmonic map f : M — P is the projection of a holomorphic
superhorizontal map F into the universal twistor space Z. The map f is isotropic iff
F (M) is contained in one of the finite dimensional twistor spaces Z, C Z.

Remark. There is an important difference between the finite dimenisonal twistors 7
and the universal one 7: The “universal twistor” does not act on P but on loop spaces,
and therefore it is not a twistor in the sense of Section 2. But we may pass to the infinite
dimensional symmetric space P = G/K which consists of the loops in P, and clearly 7 is
a twistor on P. This space also fibres over P via the evaluation at the initial point, and
the loop space fibration factorizes over Pas Z — P — P.

Notes

1 We can think of G as being a real matrix group defined by algebraic equations which may be
complexified.
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2 This is the corresponding twisted affine Kac-Moody Lie algebra without the central extension
which is not essential for the adjoint representation, cf. [14].

(13]
[14]
[15]

[16]
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Die Analysis von Integralgleichungen in al-
len ihren Variationen und die dazu gehoren-
de numerische Analysis ist ein weitgefdcher-
tes und seit jeher aktuelles und stimulieren-
des Gebiet. Daher ist es verstdndlich, dass
standig Biicher erscheinen, die sich diesen
oder jenen Aspekten der Theorie und ihren
Anwendungen annehmen.

Die Autoren des zu besprechenden Buches
erkldren in der Einleitung, dass dieses als
Lehrbuch fiir graduierte oder postgraduierte
Studenten, aber auch als wissenschaftliche
Monographie angesehen werden kann. Der
Inhalt gruppiert sich um die klassischen Inte-
graloperatoren, wie sie bei der Behandlung
von ebenen Randwertproblemen in Gebie-
ten mit glattem Rand mittels der Randinte-
gralgleichungsmethode entstehen (Laplace-
und Helmholtzgleichung, biharmonische
Gleichung, usw.). Das Buch ist in sich ge-
schlossen konzipiert und enthélt ausschlieB-
lich bewiesene Resultate. Die ersten fiinf Ka-
pitel bieten klassisches Material und dienen
als Einfilhrung in die Randintegralglei-
chungsmethode fiir die oben genannten
Randwertprobleme. Hier werden auch die
Hilfsmittel bereitgestellt (einschlieBlich der
Theorie der Fredholmoperatoren), auf die
immer wieder zuriickgegriffen wird. In den
Kapiteln 6 und 7 werden schlieBlich entspre-
chend eine Klasse allgemeiner periodischer
Integraloperatoren behandelt (deren Kerne

auch periodische Distributionen sein kon-
nen) und periodische Pseudodifferentialope-
ratoren untersucht, wobei diese beiden Kapi-
tel eng miteinander verzahnt sind und den
Rahmen bilden, in dem die eingangs erwédhn-
ten Randintegraloperatoren untersucht wer-
den. Diese Analysis wird fast ausschlieBlich
in der Hilbertraumskala der periodischen
Sobolevraume H*(u € IR) vorgenommen.
Ein Grund dafiir diirfte sein, dass die nume-
rische Analysis, der fast die gesamte zweite
Halfte des Buches gewidmet ist, in der ge-
nannten Skala noch relativ einfach ent-
wickelt werden kann. Eine Ausnahme bildet
das 4. Kapitel, in dem der wichtige Cau-
chysche singuldre Integraloperator in den
periodischen Holderrdumen C*(0 < a < 1)
studiert wird. Diese Resultate werden nur
herangezogen, um diesen Operator in den
Réumen H* zu erklaren. Dieser Umweg
kann vermieden werden, wenn man eine ele-
gante Idee benutzt, wie sie im 1. Kapitel des
bekannten Buches von I. Gohberg und N.
Krupnik [2] zu finden ist. Uberdies unter-
lauft den Autoren im Beweis des (korrekt
formulierten) Lemmas 4.1.5 ein Lapsus: Der
Beweis ist bemerkenswert kurz — und nicht
schliissig. Sie benutzen die falsche Behaup-
tung, dass C!(T') in C*(T') (0 < a < 1) dicht
ist. Ansonsten ist dieser Teil des Buches, der
der Analysis gewidmet ist, durchaus lesbar.
Anfanger oder Einsteiger werden schitzen,
dass dieser in sich geschlossen ist und alle Be-
hauptungen bewiesen werden. Kritisch ver-
bleibt anzumerken, dass jegliche Hinweise
auf den moglichen Ausbau der gebotenen
Theorie fehlen. Beispielsweise wird nicht er-
wahnt, dass periodische Pseudodifferential-
operatoren auch in der wichtigen Skala der
Holder-Zygmundraume studiert werden
koénnen.

Ab dem 8. Kapitel wird auf die numeri-
sche Analysis periodischer Integralgleichun-
gen eingegangen. Zundchst stehen poly-
nomiale Verfahren im Vordergrund (Galer-
kin- und Kollokationsverfahren, volldiskre-
tisierte Versionen). Auch hier wird die gebo-
tene Theorie mit vollstindigen Beweisen
versehen. Breiten Raum nehmen Fragen
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ein, die sich mit schnellen und effizienten
Algorithmen befassen. In diesem Punkt leis-
tet das vorliegende Buch fiir die betrachte-
ten Gleichungen mehr als andere einschligi-
ge Monographien. Das 13. Kapitel ist aus-
schlieflich Splineapproximationsverfahren
gewidmet, wobei sich die Autoren hier auf
die Untersuchung von Stabilitats- und Kon-
vergenzuntersuchungen einschrinken. Als
Splinerdume fungieren R&ume glattester
Splines auf dquidistanten Gittern, und die
Untersuchungen stiitzen sich maBgeblich
auf gewisse (wohlbekannte) Rekurrenzbe-
ziehungen fiir die Fourierkoeffizienten die-
ser Splinefunktionen.

Diesen der numerischen Analysis gewid-
meten Teil sehe ich weitaus kritischer. Es
werden hier Themen behandelt, die den
Autoren nahe stehen. Dies ist zweifelsohne
zu akzeptieren. Nicht zu akzeptieren ist
aber, dass der Eindruck vermittelt wird,
dass es neben diesen Themen keine wei-
teren gibt bzw. damit die Thematik im We-
sentlichen abgehandelt ist. In Wirklichkeit
stellen die Ausfiihrungen der Autoren nur
ein kleines Segment in der heute bekannten
numerischen Analysis fiir die betrachteten
Operatoren und ihrer Modifikationen dar.
Selbst fiir dieses Segment sind die Litera-
turhinweise hochst eigenwillig gestaltet.
Das Gleiche gilt fiir die geschichtliche Ein-
ordnung. Damit nehmen die Autoren, ob
bewusst oder unbewusst, eine Wertung vor.
Einige exemplarische Beispiele seien dazu
angefiihrt:
= Im 11. Kapitel werden gewisse Integral-

gleichungen auf nichtgeschlossenen Kur-

venstiicken betrachtet und iiber eine Pe-
riodizierungstechnik auf den periodischen

Fall zuriickgefiihrt. Diese Methode ist

ziemlich restriktiv und spielt fiir Integral-

gleichungen auf nichtgeschlossenen Kur-
ven eine AuBenseiterrolle. Fiir solche Glei-
chungen gibt es andere und sehr anpas-
sungsfahige Methoden, die das Randver-
halten der Losungen (und dies kann ziem-
lich kompliziert sein) in geeigneter Weise
beriicksichtigen. Den Autoren ist dies si-
cher bekannt; warum teilen sie dann dies

ihren Lesern nicht mit, und warum fehlt je-
der Hinweis auf das Werk von P. Jung-
hanns und seiner Koautoren (siche
MathSciNet)?

Einen knappen geschichtlichen Abril3 (der
bis etwa 1990 reicht) kann man zu der im
Kapitel 11 behandelten Problematik in
den ,,Notes and comments® zu den Kapi-
teln 9 und 12 in [5] finden.

= Im Punkt 12.8 wird auf Lokalisierungs-
techniken eingegangen und als Quelle auf
eine 1985 erschienene Arbeit von Arnold
und Wendland verwiesen. Zu dieser Zeit
waren lokale Prinzipien in der numeri-
schen Analysis bereits wohlbekannt; die
Ausarbeitung dieser Technik ist mit ande-
ren Namen verkniipft. Man vergleiche et-
wa die ,,Notes and comments* zu Chapter
3in[1], Chapter 7in [2] und ,,Notes and re-
ferences” zu Chapter 4 in [4]. Ferner muB-
te ich mit Befremden feststellen, dass die
frithen Arbeiten von S. ProBdorf und sei-
nen Mitarbeitern zu Splineapproximati-
onsverfahren in den Literaturangaben
zum Kapitel 13 vollig ausgeblendet wur-
den. So galt die Arbeit S. ProBdorf, G.
Schmidt ,,A finite element collocation me-
thod for singular integral equations®,
Math. Nachr. 100 (1981), 33-60, als
Durchbruch.

= Im Kapitel 13 findet sich nirgends ein Hin-
weis, dass es zu dem dort bevorzugten Zu-
gang interessante und weitreichende Alter-
nativen gibt, wie sie etwa in [5], Kapitel 10
und 13, dargelegt wurden.

m In Anwendungen treten hiufig Systeme
von Integralgleichungen auf. So kénnen
die in der Mechanik wichtigen singuldren
Integralgleichungen mit Konjugation auf
solche Systeme zuriickgefithrt werden.
Dieser Umstand wird mit keinem Wort er-
wihnt. Hinzuzufiigen ist, dass in diesem
Fall hiufig neue und nichttriviale Uber-
legungen angestellt werden miissen.

AbschlieBend mochte ich vermerken, dass

dieses Buch durchaus als Einfithrung in die

im Titel genannten Gegenstinde dienen

kann, aber keineswegs den gegenwirtigen

Forschungsstand einigermaBen ddequat wie-

JB 106. Band (2004), Heft 1



| Ubersichtsartikel

Historischer Artikel ‘

Buchbesprechungen ]

dergibt und auch nicht als Orientierungshilfe
dienen kann.
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Chemnitz B. Silbermann
150
HARMONIC MAPS,
CONSERVATION LAWS F Hélein
AND MOVING FRAMES )

Harmonic Maps,
Conservation Laws
and Moving Frames
(Cambridge Tracts
in Math. 150)

Cambridge University Press, 2002, 264 S.,
£47,50

James Eells beginnt sein Vorwort zu Héleins
Buch ,,Harmonic maps, conservation laws
and moving frames® (fortan HCM) mit den
folgenden Zeilen: , Harmonic maps between

Riemannian manifolds provide a rich display
of both differential geometric and analytical
phenomena. These aspects are inextricably in-
tertwined — a source of undiminished fascina-
tion.”

Eine groBe Anzahl von Vortragen, Bii-
chern und Arbeiten iiber harmonische Abbil-
dungen fangen mit dhnlichen — wenn auch
auf eine etwas niichternere Art formulierten
— AuBerungen an. In den meisten Fillen wer-
den jedoch sehr schnell die geometrischen
und analytischen Aspekte entkoppelt, und
man konzentriert sich dann auf einen der bei-
den Aspekte. Bemerkenswert an HCM ist,
dass hier beide Aspekte ausfiihrlich betrach-
tet werden.

Nach einer griindlichen Einfithrung in das
Fachgebiet prasentiert der Autor ein Anzahl
neuer Resultate iiber harmonische Abbil-
dungen und aus verwandten Fachbereichen,
deren Beweise teilweise raffinierte Techniken
aus der Analysis und der Differentialgeo-
metrie verwenden. In allen Féllen werden die
notwendigen Techniken im Buch ausfiihrlich
erklart, motiviert und entwickelt; es werden
nicht nur im Wesentlichen eigenstdndige Be-
weise einer Reihe von neuen, tiefgreifenden
Ergebnissen auf diesem Gebiet prasentiert,
sondern man gewinnt auch eine Wertschét-
zung fir eine Anzahl von Techniken, die
nicht unbedingt zum Standardrepertoire ge-
horen. Dariiber hinaus werden auch weitere
mogliche Anwendungen dieser Techniken
vorgestellt.

Das Buch befasst sich mit harmonischen
Abbildungen. Betrachtet man zwei Rie-
mann’sche Mannigfaltigkeiten (M,g) und
(N, h), so ist eine harmonische Abbildung
u: M — N ein kritischer Punkt der Dirich-
let-Energie

E(u) =1 /Mg“%x)hz-,-( () 2.2 o

Genauer gesagt: Unter relativ milden
Voraussetzungen an M und A ldsst sich
auf natiirliche Weise der Sobolevraum
H'“2(M,N) definieren. Eine schwach har-
monische Abbildung ist ein kritischer Punkt
von E im Raum H'?(M,N). Ist ein solcher
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kritischer Punkt dariiber hinaus zweimal
stetig differenzierbar, so nennt man ihn eine
(klassische) harmonische Abbildung. Eine
derartige Abbildung u 16st die zu E assoziier-
te Euler-Gleichung, welche in lokalen Koor-
dinaten um xy in M und u(xp) in N gegeben
ist durch

o o _
Ox* 9xB

Hier ist Ag der Laplace-Beltrami Operator
auf M und die T}, sind die Christoffel-Sym-
bole zweiter Art auf der Koordinaten-
umgebung von u(xg). Harmonische Abbil-
dungen konnen somit als Verallgemeinerun-
gen sowohl von harmonischen Funktionen
als auch von Geodétischen interpretiert wer-
den. In verschiedenen Teilgebieten der Phy-
sik sind harmonische Abbildungen von Inte-
resse; einige von diesen physikalischen Bezii-
gen werden in der Einleitung von HCM kurz
besprochen.

Die Standardtheorie der elliptischen Sys-
teme zeigt, dass stetige schwach harmonische
Abbildungen glatt und deshalb (klassische)
harmonische Abbildungen sind. Ein Schwer-
punkt der Forschung iiber harmonische Ab-
bildungen ist die Frage, ob schwach harmo-
nische Abbildungen ipso facto glatt sind. Im
Allgemeinen gilt dies nicht: So ist zum Bei-
spiel die radiale Projektion von der #-dimen-
sionalen euklidischen Kugel auf ihren Rand
fir n > 3 eine schwach harmonische Abbil-
dung, die im Nullpunkt unstetig ist. Unter
geeigneten Einschrankungen sind schwach
harmonische Abbildungen jedoch glatt, zum
Beispiel wenn die vorgebene Bildmannigfal-
tigkeit A/ eine nicht-positive Schnittkriim-
mung aufweist, oder wenn das Bild der
schwach harmonischen Abbildung in einer
geodatisch konvexen Teilmenge von A ent-
halten ist.

Ein weiterer Forschungsschwerpunkt be-
fasst sich mit der partiellen Regularitit von
schwach harmonischen Abbildungen. Hier
sind Eigenschaften der singuldren Menge,
d.h. der Menge der Unstetigkeitsstellen ei-
ner schwach harmonischen Abbildung, von
Interesse. Zu diesen Eigenschaften zihlt et-

Agtt' + g (x)T (u(x))

wa eine obere Schranke der Hausdorff-Di-
mension der singuldren Menge. Wie ein Er-
gebnis von Riviére aus dem Jahr 1995 zeigt,
sind Einschrdnkungen notwendig, um iiber-
haupt eine sinnvolle partielle Regularitits-
theorie erhalten zu konnen. Riviére pro-
duzierte nirgends stetige schwach harmo-
nische Abbildungen. Zu den typischen Klas-
sen von Abbildungen, die auf partielle Regu-
laritdt untersucht werden, gehoren energie-
minimierende und stationdre schwach har-
monische Abbildungen. Erstere minimieren
die Dirichlet-Energie E beziiglich gegebener
fester Randdaten oder in einer gegebenen
Homotopieklasse. Zweitere sind kritische
Punkte von E beziiglich geeigneter Variatio-
nen des Definitionsbereiches.

Die beiden Schwerpunkte — die volle und
die partielle Regularitdt — bilden den Rah-
men fiir die in HCM dargestellten Ergeb-
nisse.

Das erste Kapitel enthilt eine Einfiihrung
in die Theorie der harmonischen Abbildun-
gen. Der Autor konzentriert sich dabei auf
die Definition verschiedener Klassen
schwach harmonischer Abbildungen; er er-
klart und motiviert Fragen nach der partiel-
len und vollen Regularitét, die in den nach-
folgenden Kapiteln behandelt werden. Des-
weiteren wird das Erhaltungsgesetz als einer
der zentralen Gedanken des Buches einge-
fithrt; grob gesagt liefert ein solches Gesetz
das Verschwinden gewisser GroBen auf ganz
M, z.B. der Divergenz eines bestimmten
Vektorfeldes. Ermoglicht werden solche Er-
haltungsaussagen durch bestimmte Sym-
metrien im Definitions- oder Zielbereich.

Das zweite Kapitel befasst sich mit sym-
metrischen Mannigfaltigkeiten, wobei har-
monischen Abbildungen von Riemann’-
schen Fldchen in Sphiren besondere Auf-
merksamkeit gewidmet wird. Speziell geht
der Autor darauf ein, wie gewisse Sym-
metrieeigenschaften der Zielmannigfaltig-
keit es ermoglichen, Kompaktheitsaussagen
fir Folgen schwach harmonischer Abbil-
dungen in der schwachen Topologie auf H'?
zu gewinnen. Der Hohepunkt des Kapitels
ist ein bahnbrechender Beweis des Autors
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aus dem Jahre 1990, welcher die Glattheit
von schwach harmonischen Abbildungen
von Riemann’schen Flachen in euklidische
Sphéren liefert. Der Beweis stiitzt sich in ent-
scheidender Weise auf ein Ergebnis von
Henry Wente aus dem Jahr 1969. Wente be-
trachtete das Dirichlet-Problem zum System

Oa Ob  Da Ob
Ox 9y 0Oy 0x

auf einem beschrinkten 2-dimensionalen
Definitionsbereich Q, mit a,b € H'?(Q).
(Wente war vor allem an Spezialfillen dieses
Systems interessiert, namlich an Systemen,
die von konform parametriesierten Flichen
konstanter mittlerer Kriimmung gelost wer-
den.) Die Standardtheorie der elliptischen
Gleichungen ergibt, dass eine schwache Lo-
sung ¢ zu L7 gehort fiir jedes ¢ € [1, 00) und
dariiber hinaus die Ableitung D¢ in L? liegt
fiir jedes p € [1,2). Wente zeigte, dass die be-
sondere Struktur der Inhomogenitit es er-
moglicht, eine geringe (aber entscheidende)
Verbesserung zu gewinnen, namlich ¢ € L™
N H'?. Hiermit konnte er die Glattheit
schwacher Losungen ableiten.

Im dritten Kapitel mit dem Titel Compen-
sations and exotic function spaces befasst sich
der Autor zunichst mit dem Beweis von
Wentes Ergebnis. Er fahrt dann mit der Be-
schreibung verwandter Kompensationsphéa-
nomena nach Miiller (1990) und Coifman-
Lions-Myers-Semmes (1993) fort, was zu ei-
ner Einfiihrung in die Theorie der Hardy-
und Lorentz-Rdume fithrt. Das Kapitel en-
det mit der Darstellung eines Ergebnisses
von Craig Evans aus dem Jahr 1991: Statio-
ndre harmonische Abbildungen aus einer
m-dimensionalen Mannigfaltigkeit in eine
euklidische Sphére haben verschwindendes
m — 2-dimensionales Hausdorff-Ma@3.

Im Mittelpunkt des vierten Kapitels steht
die Erweiterung des Regularittssatzes des
Autors aus Kapitel 2. Hier betrachtet der
Autor allgemeine Zielmannigfaltigkeiten.
Der Grundgedanke (vom Autor bescheiden
als ,,naiv“ bezeichnet, obwohl die Ausfiih-
rung ziemlich subtil ist) besteht darin, die
Kompensationsargumente des vorigen Ka-

pitels durch eine geeignete Art der Lokalisie-
rung an die Situation eines allgemeinen Ziels
anzupassen. Die wichtigsten neuen Elemente
— und dritter Bestandteil des Titels von
HCM - sind moving frames (mitbewegte n-
Beine), insbesondere diejenigen, die der Au-
tor ,,Coulomb frames“ nennt. Der Autor
fahrt fort mit einer Verallgemeinerung des
Resultates von Evans fiir den Fall einer all-
gemeinen Zielmannigfaltigkeit. Dieses Er-
gebnis wurde urspriinglich im Jahr 1993 von
Fabrice Bethuel bewiesen. Der Autor eror-
tert ebenfalls eine Erweiterung der Kom-
paktheitsresultate aus Kapitel 2.

Das letzte — und relativ kurze — Kapitel be-
schreibt weitere Anwendungen von Kom-
pensationsphdnomenen, um héhere Regula-
ritdt fiir Flachen, die gewisse Integralbedin-
gungen erfiillen, zu gewinnen.

Durch die ausfiihrliche Prisentation ist
HCM als Lehrbuch fiir eine Vorlesung im
Hauptstudium oder fiir ein Seminar bestens
geeignet. Da es sich aullerdem mit relativ
neuen Ergebnissen auf diesem Fachgebiet
auseinandersetzt, ist es auch fiir Mathemati-
ker interessant, die auf dhnlichen Gebieten
Forschungsarbeit leisten, zumal der Autor
sich immer wieder auf offene Probleme be-
zieht.

Es gibt nur sehr wenige und auch nur ge-
ringfiigige Kritikpunkte: Im ersten Kapitel
gibt es ein paar Ungenauigkeiten in der Dar-
stellung von existierenden Ergebnissen;
manchmal ist es schwer festzustellen, ob der
Autor gerade eine Standardnotation oder
-terminologie verwendet, oder ob sie vom
Autor selbst gepragt wurde; das Englisch ist
manchmal etwas exzentrisch (HCM ist die
zweite Ausgabe eines Buches, das urspriing-
lich 1996 auf Franzosisch erschien). Diesen
letzten Punkt kann man eher als Zeichen des
Enthusiasmus des Autors fiir dieses Thema
bewerten. Er mochte seiner Leserschaft nicht
nur die Thematik, sondern auch seine Be-
geisterung dafiir ndher bringen. Mit HCM
ist ihm dies vollstdndig gelungen.

Erlangen J. Grotowski
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A.Neeman
Triangulated
categories
Annals of Mathematics

Studies, 148
A Neeman
Triangulated catego-
ries
Annals of Mathematics
Studies, 148

Princeton Univ. Press, Princeton, 2001,
4498S.,$46,—

Warum ein Buch iiber triangulierte Katego-
rien? Sie gehdren heute zu den wichtigen
Hilfsmitteln in Algebra, Geometrie und To-
pologie, so dafl man vielleicht den Untertitel
, Iriangulated categories for the working
mathematician® erwartet. Tatsdchlich hat
Neeman allerdings mehr zu bieten. Neben ei-
ner elementaren Einfithrung in die Theorie
der triangulierten Kategorien werden zwei
Konzepte ausfithrlich behandelt, ndamlich
Brownsche Darstellbarkeit und Bousfield Lo-
kalisierung. Beide Konzepte haben ihren Ur-
sprung in der algebraischen Topologie der
60er und 70er Jahre, wurden jedoch in den
90er Jahren in einer Allgemeinheit weiterent-
wickelt, die unter anderem zu schonen An-
wendungen in der algebraischen Geometrie
und in der Darstellungstheorie endlicher
Gruppen fiihrte.

Um die Thematik des vorliegenden Ban-
des zu verstehen, vergleichen wir triangulier-
te mit abelschen Kategorien. Eine abelsche
Kategorie kann man sich als additive Kate-
gorie (d.h. die Morphismenmengen bilden
abelsche Gruppen und die Komposition ist
bilinear) vorstellen, in der gewisse Sequenzen
von Morphismen (die sogenannten kurzen
exakten Sequenzen) ausgezeichnet sind und
gewisse Axiome erfiillen. Eine triangulierte
Kategorie ist ebenso eine additive Kategorie,
in der gewisse Sequenzen von Morphismen
(die sogenannten exakten Dreiecke) aus-
gezeichnet sind und gewissen Axiome erfiil-
len.

Das klassische Beispiel einer triangulierten
Kategorie ist die derivierte Kategorie D(A)
einer abelschen Kategorie A. In diesem Fall
erhidlt man eine Einbettung

A—D(A), X+—X,

und jede kurze exakte Sequenz 0 — X —
Y — Z — 0in A induziert ein exaktes Drei-
eck X — ¥ — Z — X[1]in D(A). Insbeson-
dere liefert ein Element in EXtL(Z ,X) einen
Morphismus Z — X[1] in D(A), und all-
gemeiner gilt

EXT’;‘(Z, X) = HOIT]D(A)(Z,X/[}'I])
n>0.

Die derivierte Kategorie ermdglicht es also
derivierte Funktoren zu berechnen. Verdier
hat diese Idee in seiner Thése erstmals for-
malisiert und in diesem Zusammenhang tri-
angulierte Kategorien eingefiihrt [5]. Parallel
dazu hat seinerzeit Puppe in der algebrai-
schen Topologie dieselben Eigenschaften fiir
die stabile Homotopiekategorie herausgear-
beitet [4].

Betrachtet man abelsche Kategorien, so
spielen haufig zusétzliche Eigenschaften eine
wichtige Rolle. Klassisch sind sogenannte
Grothendieck Kategorien, also abelsche Ka-
tegorien mit exakten induktiven Limites und
einem Generator. Beispielsweise ist jede Mo-
dulkategorie eine Grothendieck Kategorie.
In der Welt der triangulierten Kategorien
sucht man zu Recht nach einem vergleich-
baren Konzept. Bewdhrt haben sich die kom-
pakt erzeugten triangulierten Kategorien,
denn Brownsche Darstellbarkeit und Bous-
field Lokalisierung lassen sich auf diese
Klasse von triangulierten Kategorien iiber-
tragen. Die derivierte Kategorie einer Mo-
dulkategorie oder die stabile Homotopieka-
tegorie der algebraischen Topologie sind
klassische Beispiele fiir kompakt erzeugte
triangulierte Kategorien. Allerdings treten
in der Praxis triangulierter Kategorien auf,
die nicht kompakt erzeugt sind. Hier setzt
Neeman mit seiner Verallgemeinerung an
und entwickelt das Konzept der wohlerzeug-
ten (englisch: well generated) triangulierten
Kategorie.

fur jedes
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Die Diskussion der wohlerzeugten Kate-
gorien bildet das Herzstiick dieser Monogra-
phie. Die Definition ist zugegebenermafien
kompliziert, 148t sich jedoch gliicklicherwei-
se erheblich vereinfachen [1]. Die entschei-
dende Idee geht zuriick auf Freyd und wird
in diesem Buch ausfiihrlich behandelt. Es
handelt sich quasi um eine Umkehrung der
Konstruktion von Verdier, d. h. eine trian-
gulierte Kategorie wird universell in eine
abelsche Kategorie eingebettet, so dafl exak-
te Dreiecke in exakte Sequenzen iiberfithrt
werden. Diese universelle abelsche Kategorie
ist im allgemeinen zu gro8, aber ldsst sich im
Fall der wohlerzeugten Kategorien geschickt
verkleinern ohne dafi zu viel Information
verloren geht.

Wohlerzeugte Kategorien verallgemeinern
also die kompakt erzeugten Kategorien, und
das erklarte Ziel dieser Verallgemeinerung
sind die Ubertragung von Brownscher Dar-
stellbarkeit und Bousfield Lokalisierung auf
wohlerzeugte triangulierte Kategorien. Der
Brownsche Darstellbarkeitssatz besagt fir ei-
ne triangulierte Kategorie 7" mit beliebigen
Koprodukten, dafl jeder kontravariante
Funktor F:7 — Ab in die Kategorie der
abelschen Gruppen genau dann darstellbar
ist (d. h. von der Form Hom¢(—, X)) fiir ein
Objekt X)) wenn F exakte Dreiecke in exakte
Sequenzen und Koprodukte in Produkte
iiberfiihrt. Dieser Satz ist dufierst niitzlich.
Beispielsweise erhdlt man einen eleganten
Beweis fiir die Grothendieck Dualitit indem
man beobachtet, dafl der Brownsche Dar-
stellbarkeitssatz im Fall der derivierten Ka-
tegorie eines Schemas anwendbar ist [2].

Von einer Bousfield Lokalisierung spricht
man sofern eine triangulierte Unterkategorie
S C 7T vorliegt, und der Quotientenfunktor
7 — T /S im Sinne Verdiers einen Rechts-
adjungierten besitzt. Im Fall der Bousfield
Lokalisierung ist die triangulierte Unterka-
tegorie S lokalisierend, d.h. abgeschlossen
unter Koprodukten. Diese Bedingung an S
ist im allgemeinen jedoch nicht hinreichend.
Beispielsweise wird gezeigt, dafi die Bous-
field Lokalisierung existiert falls S von einer
Menge von Objekten erzeugt wird. In diesem

Fall sind tibrigens auch S und der Quotient
7T /S wohlerzeugt.

Insgesamt beruht ein Grofteil des Materi-
als in diesem Buch auf dem Wechselspiel zwi-
schen triangulierter und abelscher Struktur.
Dieses wird ergidnzt durch eine Reihe von
Anhédngen, in denen vorwiegend das not-
wendige Material iiber abelsche Kategorien
bereitgestellt wird. Damit ist die Darstellung
im wesentlichen in sich abgeschlossen. Le-
diglich ein paar Grundkenntnisse iiber Kate-
gorien und Funktoren, oder aus der homolo-
gischen Algebra werden vorausgesetzt. Da-
gegen verzichtet der Autor weitgehend auf
Beispiele. Ein gewisses Interesse des Lesers
an allgemeiner Theorie wird also voraus-
gesetzt. Hilfreich sind die historischen Be-
merkungen am Schlufl eines jeden Ab-
schnitts. Sie vermitteln den Standpunkt des
Autors und bieten eine gute Orientierung.

Kehren wir zur Ausgangsfrage nach dem
Zweck eines solchen Buches iiber triangulier-
te Kategorien zurtick, so ist die Antwort des
Rezensenten zwiespaltig. Sucht man eine ele-
mentare Einfithrung in die Theorie der trian-
gulierten Kategorien, so ist man im Vergleich
mit Verdiers Thése mindestens ebenso gut
bedient, Franzosischkenntnisse vorausge-
setzt. Positiv erwdahnt sei jedoch Neemans
elegante Darstellung des sogenannten Okta-
ederaxioms. Moderne Aspekte, beispielswei-
se t-Strukturen, werden leider nicht bertick-
sichtigt, wobei allerdings das Versprechen
,»We will see them [the six gluing functors]
again in the discussion of z-structures.” auf
Seite 319 vom guten Willen des Autors zeugt.

Das Buch wird zu einer wertvollen Lektii-
re sobald man sich fiir grofle triangulierte
Kategorien interessiert, also Kategorien mit
beliebigen Koprodukten. Hier leistet Nee-
man echte Pionierarbeit, und diese verdient
uneingeschriankte Anerkennung.
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G. Scheja, U. Storch

Regular Sequences
and Resultants

Research notes
in Math.8

G. Scheja, U. Storch
Regular Sequences
and Resultants
Research notes

in Math. 8

Natick, Mass., AK Peters, 2001, 142 S.,
$30,—-

In dem Buch von Scheja und Storch wird die
Eliminationstheorie in gewichteten projekti-
ven Réumen behandelt, die iiber beliebigen
kommutativen, noetherschen Ringen defi-
niert sind. Dabei spielen reguldre Sequenzen
und vollstindige Durchschnitte eine wichti-
ge Rolle. Demgemif werden im zweiten der
insgesamt vier Kapitel des Buches reguldre
Sequenzen und vollstindige Durchschnitte
ausfiihrlich behandelt, und zwar fiir beliebi-
ge noethersche Ringe in der lokalen als auch
der globalen Version. Besonderes Augen-
merk wird den graduierten vollstindigen
Durchschnitten gewidmet. Diese sind Rest-
klassenringe von homogenen reguliaren Fol-
gen in einem Polynomring {iber einem noet-

herschen Ring, dessen Variablen positive
Gewichte besitzen.

Fiir die Definition von Resultanten sind
generische regulare Sequenzen von Bedeu-
tung. Hierbei ist der Grundring des gewich-
teten Polynomrings selbst ein Polynomring
iber den ganzen Zahlen, und die Polynome
der Sequenz besitzen als Koeffizienten die
Unbestimmten des Grundrings. Das schwie-
rige Problem, wann Sequenzen von homoge-
nen generischen Polynomen eine reguldre
Folge bilden, wird in dem Buch umfassend
diskutiert. Dies fiihrt zu dem Begriff der
streng zuldssigen Folgen. Insbesondere wer-
den generische Binome charakterisiert, die
streng zuldssig sind.

Im weiteren Verlauf wird der Hauptsatz
der Eliminationstheorie fiir projektive Rau-
me vorgestellt und es wird gezeigt, dass das
generische  Eliminationsideal  beziiglich
streng zuldssiger Folgen ein Haupt- und
Primideal ist. Danach wird das Elimi-
nationsideal beziiglich beliebiger homogener
reguldrer Folgen bestimmt. Insbesondere
wird ausgefiihrt, dass das Eliminationsideal
ein divisorielles Ideal ist, falls der Grundring
ein ganz abgeschlossener Integritdtsbereich
1st.

Das letzte Kapitel des Buches schlieflich
behandelt Resultanten. Diese sind insofern
von Bedeutung, als sie dieselbe Nullstellen-
menge wie das Eliminationsideal haben, da-
riberhinaus aber bessere funktorielle Eigen-
schaften besitzen. Die Autoren fithren zu-
nachst das Resultantenideal einer reguldren
Folge homogener Polynome eines Polynom-
rings iber einem ganz abgeschlossenen noe-
therschen Integritdtsbereich ein. Dabei
stimmt die Linge der Folge mit der Anzahl
der Variablen des Polynomrings iiberein. Es
wird gezeigt, dass dieses Resultantenideal
wieder divisoriell ist. Mit Hilfe des Koszul-
komplexes, welcher der reguldren Folge zu-
geordnet ist, wird ein kanonischer Erzeuger
des Resultantenideals konstruiert. Dies fithrt
zu expliziten Resultantenformeln, und ver-
allgemeinert die von Hurwitz bekannte klas-
sische Resultante, wo alle Variablen das Ge-
wicht 1 haben.
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Das Buch ist eine aufierordentlich sorgfal-
tig ausgearbeitete moderne Einfithrung in
die Theorie der Resultanten. Es erfordert
vom Leser solide Kenntnisse der kommutati-
ven und homologischen Algebra, sowie eini-
ge Grundkenntnisse der algebraischen Geo-
metrie. Die Autoren haben sich bemiiht, die
speziell hier erforderlichen Techniken und
Sachverhalte, etwa Eigenschaften numeri-
scher Halbgruppen, die sonst in der Litera-
tur gar nicht oder nur schwer auffindbar
sind, zusammenzustellen und im Detail zu
erkldren. Dadurch ist das Buch weitgehend
in sich geschlossen und kommt in seinen Be-
weisen ohne weitere Literaturverweise aus.
Dariiberhinaus wurde den Abschnitten
Ubungsaufgaben, historische Anmerkungen
und Ergidnzungen beigefiigt, die aber fir das
Verstandnis des Haupttextes nicht unbe-
dingt notwendig sind. Somit ist das Buch als
Textbuch einer Spezialvorlesung, oder als
Grundlage fiir ein Seminar bestens geeignet.

Essen

J. Herzog

K. Matsuki
Introduction to the
Mori Program

Berlin u. a., Springer, 2002,478 S.,
EUR 74,95

Das Mori-Programm und die birationale
Geometrie von projektiven Varietiten der
Dimension 3 waren zentrale Themen in der
algebraischen Geometrie der 1980er Jahre.
Heute ist die Mori-Theorie zu einem unver-
zichtbaren Werkzeug geworden. Vereinfacht
gesagt, geht es darum

1. unter allen projektiven Varietiten, die zu
einer gegebenen Mannigfaltigkeit biratio-
nal sind, besonders einfache Varietiten,
die ,,minimalen Modelle“, zu finden und

2. die Eigenschaften der minimalen Modelle
zu studieren und birationale Abbildungen
zwischen den minimalen Modellen zu
klassifizieren.

Im ,,Minimalen Modell Programm®, oder
»Mori-Programm®, wird Aufgabe (1) gelost,
indem zu jeder projektiven Mannigfaltigkeit
eine Folge von birationalen Abbildungen
konstruiert wird, an deren Ende entweder
ein sehr spezieller Faserraum oder ein ,,mini-
males Modell® steht, also eine Varietéit, de-
ren kanonisches Biindel nef ist. Das Pro-
gramm entstand aus den Arbeiten [Mor79]
und [Mor82], in denen S. Mori die Existenz
von rationalen Kurven auf nicht-minimalen
Mannigfaltigkeiten zeigte. Mit Hilfe dieser
Kurven konstruierte er Abbildungen, die ein
direktes Analogon zur klassischen Kontrak-
tion von (-1)-Kurven auf Flachen sind. Mo-
tiviert durch diese Ergebnisse entstand in
dem folgenden Jahrzehnt die moderne Mori-
Theorie durch die Arbeit vieler Mathemati-
ker, unter anderem Y. Kawamata, J. Kollar,
Y. Miyaoka, S. Mori, M. Reid, V. Sarkisov
und V. Shokurov. Zumindest fiir 3-dimen-
sionale Varietdten wurde ein einigermafBen
befriedigendes Bild der birationalen Geo-
metrie gewonnen.

Kenji Matsuki, der die Entwicklung von
Anfang an begleitet hat und einer der Auto-
ren der grundlegenden Arbeit [KMMS&7]
war, bietet in dem vorliegenden Buch eine
engagiert geschriebene und gut lesbare Dar-
stellung der Theorie. Matsuki legt groBen
Wert darauf, alle auftretenden Konzepte
und Begriffe ausfithrlich zu motivieren und
die Niitzlichkeit jedes neuen Konzeptes zu-
erst an vertrauten Beispielen zu beleuchten.
Viele kleine in den Text -eingestreute
Ubungsaufgaben helfen sehr beim Verste-
hen, der Stil ist direkt und angenehm zu le-
sen. Das Einzige, was mich personlich oft ge-
stort hat, ist die Zerrissenheit des Layouts in
den technischen Abschnitten.
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Das Buch gliedert sich grob in drei Teile:

Geometrie von Fliachen In den ersten bei-
den Kapiteln, die zusammen etwa ein Viertel
des Buches ausmachen, wird die klassische
birationale Geometrie von Flachen wieder-
holt. Viele Begriffe der hoherdimensionalen
Theorie werden hier bereits eingefithrt und
durch Beispiele erklart. Mir hat besonders
gut gefallen, wie klar Matsuki zeigt, dass eine
logarithmische Variante der Mori-Theorie
notwendig ist, auch wenn man zunichst nur
an dem ,normalen“ Mori-Programm inte-
ressiert ist.

Moris Programm Nach der aufwindigen
Einfithrung werden im dritten Kapitel die
Hauptresultate der Mori-Theorie zunéchst
ohne Beweis zusammengestellt. Matsuki
zeigt an Beispielen, warum in der hoherdi-
mensionalen Theorie Singularitdten auftre-
ten, und warum die Einfithrung einer neuen
Klasse von birationalen Transformationen,
den ,,Flips“, notwendig ist.

In den Kapiteln 4-8 werden der Ver-
schwindungssatz von Kawamata-Viehweg,
der Satz tiber die Basispunktfreiheit und der
Kegelsatz bewiesen. Die Beweise orientieren
sich an im Wesentlichen an den Original-
arbeiten, etwa [KMM&7], und bieten dem
Fachmann nichts Neues. Der Autor be-
schriankt sich bei der Klassifikation der auf-
tretenden Singularititen auf den Flachenfall.
Im Kapitel 9 behandelt Matsuki den noch
verbliebenen Teil des Mori-Programms, die
Sétze iiber die Existenz und die Terminie-
rung von Flips. Der &duBerst lange und
schwierige Existenzbeweis wird nicht gege-
ben.

Abbildungen zwischen minimalen Modellen
Die verbleibenden Kapitel befassen sich mit
der Geometrie der rationalen Kurven und
mit der Geometrie von birationalen Abbil-
dungen zwischen minimalen Modellen und
zwischen Mori-Faserrdumen. Als besonde-
res Bonbon wird im abschlieBenden Kapitel
die ganze Theorie noch einmal fiir torische
Varietaten dargelegt.

Fazit: Kenji Matsuki hat meiner Meinung
nach ein durchweg gelungenes Buch vor-

gelegt. Das Werk unterscheidet sich von den
bekannten Darstellungen [CKMS88], [MP97]
und [KM98] und dem Originalartikel
[KMM87] im Wesentlichen durch die Aus-
fithrlichkeit und durch die Fiille an konkre-
ten Beispielen. Es werden lediglich Grund-
kenntnisse in algebraischer Geometrie und
der Geometrie von Flachen vorausgesetzt,
so dass sich das Buch fiir ein Oberseminar
gut eignet.

Literatur

[CKM388] H. Clemens, J. Kollar, and S. Mori.
Higher dimensional complex geometry. Asté-
risque, 16, 1988.

[KM98] J. Kollar and S. Mori. Birational geo-
metry of algebraic varieties, volume 134 of
Cambridge Tracts in Mathematics. Cam-
bridge University Press, Cambridge, 1998.
With the collaboration of C. H. Clemens and
A. Corti, Translated from the 1998 Japanese
original.

[KMM87] Y. Kawamata, K. Matsuda, and
K. Matsuki. Introduction to the minimal mo-
del problem. Algebraic Geometry, Sendai,
1987.

[Mor79] S. Mori. Projective manifolds with
ample tangent bundles. Ann. of Math.,
110:593-606, 1979.

[Mor82] S. Mori. Threefolds whose canonical
bundles are not numerically effective. Ann. of
Math., II. Ser., 116:133-176, 1982.

[MP97] Y. Miyaoka and Th. Peternell. Geo-
metry of higher-dimensional algebraic varie-
ties, volume 26 of DMV Seminar. Birkhduser
Verlag, Basel, 1997.

Bayreuth S. Kebekus

10

JB 106. Band (2004), Heft 1



Ubersichtsartikel

Historischer Artikel

Buchbesprechungen —I

Funktionentheorie,
Differentialtopologie
und Singularititen

W. Ebeling
Funktionentheorie,
Differentialtopologie
und Singularitdten
Eine Einflihrung mit
Ausblicken

Braunschweig/Wiesbaden,
303 S., EUR 29,90

Vieweg, 2001,

Das vorliegende Buch gibt eine Einfithrung
in Teile der hoheren Funktionentheorie
(Theorie der Riemannschen Flachen, Funk-
tionentheorie mehrerer komplexer Ver-
anderlicher) sowie Grundlagen und einige
neuere Ergebnisse der Theorie der Singulari-
taten.

Bei der Breite der angesprochenen Gebiete
ist von vornherein zu erwarten, dass in kei-
nem von ihnen auch nur entfernt der An-
spruch auf Vollstindigkeit erhoben wird.
Schon die Theorie der Riemannschen Fla-
chen ist fiir sich genommen so umfangreich,
dass sie sich kaum in ein einziges Lehrbuch
komprimieren lasst. Aus diesem Grund ist
von vornherein eine restriktive Auswahl er-
forderlich.

Diese orientiert sich im vorliegenden Buch
vor allem an den Bediirfnissen der Theorie
der Singularitdten. Dieses Gebiet hat sich in
der zweiten Hélfte des zwanzigsten Jahrhun-
derts etabliert. Auch wenn es hier Fragen
gibt, die sich einfach erkldren lassen und die
geometrisch transparent sind, gibt es eine
Reihe von Hilfsmitteln aus verschiedenen
Gebieten, die fiir die Arbeit unerlasslich
sind: aus der Funktionentheorie, der Diffe-
rentialtopologie und der algebraischen To-
pologie.

Zu den Begriffen, die aus der algebrai-
schen Topologie bendtigt werden, gehoren
abgesehen von den singuldren Homologie-
gruppen die Uberlagerungen, die Funda-

mentalgruppe und die Homotopiegruppen.
Dementsprechend konzentriert sich das
Buch im Bereich der Riemannschen Flidchen
auf Themen, die mit der Uberlagerungstheo-
rie zusammenhingen.

Ahnliches gilt im Bereich der Funktionen-
theorie mehrerer Verdnderlicher: Da es sich
bei der Singularitétentheorie um eine lokale
Theorie handelt, wird hier primér die lokale
Theorie analytischer Mengen behandelt. Je-
der, der eine Vorlesung iiber dieses Thema
gehalten hat, weil3, dass hierbei die kom-
mutative Algebra wesentlich zu Hilfe ge-
nommen werden muss — der elementar-geo-
metrischen Argumentation sind Grenzen ge-
setzt. Dies gilt zum Beispiel fiir die saubere
Einfithrung des Dimensionsbegriffs.

Im Rahmen der Differentialtopologie
wird aus dhnlichen Griinden die Theorie der
differenzierbaren Faserbiindel in den Vor-
dergrund gestellt.

Vom Standpunkt der Singularititentheo-
rie erfolgt in diesem Buch eine Kon-
zentration auf den klassischen Fall der iso-
lierten Hyperfldchensingularitidten. Die Be-
handlung der Milnorfaserung darf hier na-
tlirlich nicht fehlen. Fiir eine detaillierte Un-
tersuchung der entsprechenden Monodro-
mie sind jedoch weitere Hilfsmittel ange-
bracht, die in diesem Buch entwickelt wer-
den, insbesondere die Morsifikation, die ein
Heranziehen der Picard-Lefschetz-Formeln
erlaubt. Aber auch weitere Themen wie uni-
verselle Entfaltung und Klassifikation von
Singularitdten werden dariiber hinaus ange-
sprochen.

Nun zum Aufbau: Das erste Kapitel ist
der Theorie der Riemannschen Fliachen ge-
widmet. Sie wird vom Standpunkt der Uber-
lagerungstheorie aus dargestellt. Bekannt-
lich verwendet man in der Theorie der Rie-
mannschen Flidchen im Gegensatz zur algeb-
raischen Topologie einen abgeschwichten
Uberlagerungsbegriff, deswegen setzt man
die beteiligten Raume zweckmadssig als haus-
dorffsch voraus (auch wenn dies nicht immer
wiederholt wird). Nicht nur historisch, son-
dern auch systematisch wichtig ist die Ein-
fithrung der Riemannschen Fliche einer me-
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romorphen, insbesondere einer algebrai-
schen Funktion — damit ergibt sich der Zu-
sammenhang zwischen algebraischen Kur-
ven und Riemannschen Flachen.

Im zweiten Kapitel wird die lokale Theorie
der analytischen Mengen behandelt. Der al-
gebraische Apparat wird dabei so ent-
wickelt, dass eine Begriindung der geometri-
schen Sachverhalte ermdglicht wird. Zu den
behandelten Begriffen zdhlen Regularitit,
Dimension, Bildmenge.

Im dritten Kapitel geht es primédr um die
analytische Untersuchung isolierter Singula-
rititen holomorpher Funktionen, am Ende
steht dabei die Klassifikation der einfachen
Singularitdten. Ein niitzliches Hilfsmittel ist
dabei der Begriff der (universellen) Entfal-
tung. Dariiber hinaus werden vorab grund-
legende Begriffe aus der Differentialtopolo-
gie wie Vektorfelder, Transversalitit und
Liegruppen angesprochen.

Im vierten Kapitel wird ein wichtiges Ge-
biet aus der Differentialtopologie behandelt:
die differenzierbaren Faserungen. Zu den in
diesem Zusammenhang angesprochenen
Themen zédhlen die Holonomiegruppe,
Schnitt- und Verschlingungszahlen und die
Zopfgruppe.

Diese Theorie ist wichtig fiir die topologi-
sche Untersuchung von Singularititen im
letzten Kapitel. Im Zusammenhang mit der
Milnorfaserung gelangt man zu verschiede-
nen Invarianten wie Monodromie, Variation
und Seifertform, der Ubergang zu einer
Morsifikation fiihrt dabei zu einem tieferen
Verstindnis der geometrischen Situation.
Mit dem ,,Milnorgitter” wird ein Begriff an-
gesprochen, der zum Forschungsgebiet des
Autors gehort; am Schluss wird ein Ausblick
auf neuere Entwicklungen gegeben.

Das Buch wendet sich nicht nur an Stu-
denten, sondern auch an Hochschullehrer,
die eine einschldgige Vorlesung oder ein ent-
sprechendes Seminar planen. Hierzu wird im
Vorwort eine Reihe praktikabler Vorschldge
gemacht.

Das Buch ist sorgfaltig verfasst, die Vo-
raussetzungen werden deutlich gemacht. Es
bietet die Moglichkeit zu verschiedenartigem

Einsatz in der Lehre wie zum Selbststudium
(etwa zur Spezialisierung fiir Diplomanden,
zur Einarbeitung fiir Doktoranden). Ins-
gesamt ist das Buch daher sehr empfehlens-
wert.

Miinster H. Hamm
Nonarchimedean
Functional
Analysis
P.Schneider

Nonarchimedean
Functional Analysis
Springer Monographs
in Mathem

Berlin u. a., Springer, 2002, 156 S., € 39,95

Nonarchimedean Functional Analysis is the
study of Functional Analysis where the usual
real or complex scalar field is replaced by a
nonarchimedean valued complete field K,
for example the field of the p-adic numbers.
The Founding Father of this discipline was
the Dutch mathematician A.F. Monna with
a series of papers, beginning in 1943, and the
area was further developed in the sixties and
seventies, culminating in the book of
A.C.M. van Rooij, Non-archimedean Func-
tional Analysis (Marcel Dekker, 1978) in
which the then ‘state of the art’ was estab-
lished. The book mainly treated Banach
space theory whereas in the thesis of J. van
Tiel (1965) the foundations of locally convex
spaces were introduced. After that, numer-
ous papers in the area appeared, but no sys-
tematic books until 2001, when the present
work under review was published. It is the
first textbook seriously covering locally con-
vex theory over K, so, for that reason alone,
it is most welcome.

The main motivation for writing the book,
according to the author, was the growing in-
terest from other areas, for example number
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theory (p-adic modular forms and deforma-
tion of Galois representations) and represen-
tation theory of p-adic reductive groups, in
methods from Functional Analysis. Yet, the
book is self-contained, complete with all
proofs, and therefore attractive also to those
who are not acquainted with the above
areas. In fact, the reader is assumed to have
only a basic knowledge of linear algebra and
point set topology. However, to enjoy the
book one should be familiar with the basics
of classical Functional Analysis.

The book has four chapters. In the first
two the foundations on Banach and locally
convex spaces are established. Most of this
theory can already be found in the work ci-
ted above. The real story starts in Chapter 3
that treats duality theory. With an eye on the
possible users from other disciplines the
author restricts himself to the case where K
is spherically (= maximally) complete, the
reason being that in this case the Hahn Ba-
nach Theorem holds without restriction, and
the fact that in the envisaged applications K
is discretely valued, hence spherically com-
plete. On one hand this is certainly a valid
point of view, on the other hand it is a pity
that the generally interested reader does not
get easy access to the interesting case where
K is not spherically complete (e.g. the com-
pletion of the algebraic closure of the p-adic
number field). Be that as it may, by this re-
striction the theory runs more smoothly than
in the general case.

In Chapter 3 the basic notions of c-com-
pactness and compactoidity are introduced.
They can be viewed as a ‘convexification’ of
compactness, precompactness respectively,
needed since K may be not locally compact.
With the help of these notions the Mackey
topology is shown to be the finest admissible
topology. After studying reflexivity atten-
tion is given to compact inductive limits (a
linear map is called compact if there is a
neighbourhood of 0 whose image has c-com-
pact closure). In Chapter 4 the usual injective
and projective tensor product topologies are
introduced, and they turn out to be equal (!).
This has as a consequence that the nonarchi-

medean notions of Schwarz spaces and nu-
clear spaces are the same. Completely contin-
uous, compact, nuclear maps are studied. A
trace function is introduced on the set of nu-
clear maps, and finally, a theory of Fredholm
operators (kernel and cokernel are finite-di-
mensional) is developed.

The theory of Chapters 3 and 4 is rather re-
cent, interesting and deep.

The book is well-written, with care for de-
tails. Recommended.

W. H. Schikhof

Nijmegen

Y. Eliashberg,

N. Mishachev
Introduction to the
h-Principle (Grad Stu-
dies in Math. 48)

Providence, Am. Math. Soc., 2002, 206 S.,
$30,-

The homotopy principle, or A-principle, re-
fers to the “flexibility” of certain differential
(in)equalities, in the sense that their solution
can be reduced to a purely homotopy theore-
tic problem. It was discovered by J. Nash
and S. Smale in the 1950ies and formalized
(under the name w.h.e.-principle) by
Y. Eliashberg and M. Gromov in the early
1970ies. The development culminated in
Gromov’s 1986 book Partial Differential Re-
lations (where he also introduced the term A-
principle).

Instances of the A-principle appear in all
branches of differential geometry, e.g.: the
Nash-Kuiper theorem on C'-isometric im-
mersions; Smale’s theorem on sphere immer-
sions; Oka’s principle for Stein manifolds;
Lagrangian immersions in symplectic mani-
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folds; and Legendrian immersions in contact
manifolds.

Despite its importance, the state of the lit-
erature on the A-principle was quite unsatis-
factory. Gromov’s book was renowned for
its generality and comprehensiveness, less
for its readibility. The situation improved
with D. Spring’s 1998 monograph Convex
Integration Theory. The present book takes a
different, and more direct, approach to the
h-principle via “holonomic approximation”.
To describe this, we need some notation.

For a smooth fibration X — ¥V denote by
X the space of r-jets of (local) sections in
X. The jet space fibers naturally over V. The
r-jet of any (global) section f : V' — X yields
a section J7:V — X of this fibration.
Such a section is called holonomic. A (par-
tial) differential relation is simply a subset R
of X). One says that R satisfies the h-princi-
ple if every section F:V — R C X" is
homotopic, through sections in R, to a holo-
nomic section.

In Chapters 1-3 of the book, Eliashberg
and Mishachev set up and prove a general
Holonomic Approximation Theorem: If F is a
section of X) — ¥V near a submanifold
A C V of positive codimension, then there
exists a C°-small diffeotopy 4’ : V' — V and
a holonomic section F near /'(4) which is
C%-close to F near h'(A). This result immedi-
ately implies the A-principle near submani-
folds of positive codimension for open dif-
ferential relations that are invariant under
diffeomorphisms of V.

The proof of the Holonomic Approxima-
tion Theorem, albeit elementary, is by no
means easy to digest. But the authors spell
it out in considerable detail, illustrating it
with helpful figures, so that with enough
time and energy one can follow the argu-
ments.

The reader’s efforts are rewarded by nu-
merous applications of the Holonomic Ap-
proximation Theorem in differential topol-
ogy, which occupy the following 5 chapters.
Classical examples include Smale’s sphere
eversion (the two-sphere in IR® can be turned
inside out through immersions), and the

Smale-Hirsch A-principle for immersions of
positive codimension.

Some of the biggest successes, and the most
spectacular failures, of the A-principle have
occured in symplectic and contact geometry.
Given Eliashberg’s research in these two
areas over the last two decades, it comes as no
surprise that Chapters 916 are devoted to
applications in symplectic and contact geo-
metry. Chapter 9 provides the necessary
background material. In the ensuing 7 chap-
ters, the following results are proved (among
others): existence of symplectic and contact
structures on open manifolds; C°-approxi-
mation by isosymplectic and isocontact em-
beddings of codimension at least 4; A-princi-
ple for isosymplectic and isocontact immer-
sions of positive codimension; A-principle for
Legendrian and Lagrangian immersions.

Chapter 11 mentions some of the failures
of the A-principle in symplectic and contact
geometry. However, this discussion is very
sketchy, and the interested reader should
consult some of the numerous textbooks and
survey articles on symplectic topology, e.g.
McDuff and Salamon’s Introduction to Sym-
plectic Topology.

The remaining chapters are concerned
with convex integration. From the outset, the
authors restrict to the case of 1-jets. The main
theorem is the 4-principle for “ample” differ-
ential relations in the 1-jet space (Chapter
18). Using this, the authors prove in Chapter
21 one of the most surprising results in differ-
ential geometry: the Nash-Kuiper theorem
that any “short” embedding of positive codi-
mension of Riemannian manifolds can be
C-approximated by a C'-isometric embed-
ding. For example, the standard two-sphere
of radius 1 admits a C'-isometric embedding
into an arbitrarily small ball in IR*!

In my opinion, this is an excellent book
which makes an important theory accessible
to graduate students in differential geometry
— and to senior researchers who never had
the stamina to work through Gromov’s
book.

Miinchen K. Cieliebak
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Kokilashvili
hi

D. E Edmunds,

V. Kokilashvili,

A Meskhi
Bounded and
Compact Integral
Operators

Math. and its
Applications

Dordrecht u. a., Kluver Acad. Publ. 2002,
6438S.,€199,-

This book deals with mapping properties of
classical integral operators and their general-
isations preferably in weighted L,-spaces
and corresponding weighted Lorentz-spaces
L, , defined on intervals, the half-line IR,
the line IR, sets in IR" or, more generally,
measure spaces (X, ). Here (X, 1) might be
a homogeneous space where the measure p
satisfies the doubling condition or a non-
homogeneous space where 1 does not neces-
sarily has the doubling property. The main
aim is to find criteria (this means necessary
and sufficient conditions) under which the
operators considered are bounded, or com-
pact. This includes some qualitative asser-
tions about the degree of compactness ex-
pressed in terms of singular numbers. There
are also a few applications to Fourier multi-
pliers in some function spaces defined on
IR". The classical integral operators consid-
ered include:

Hf(x) = / fB)dy, x>0,
0

Raf(x) = / (x—3)°'F(3) dy,

(Riemann -Liouville),

oo

Waf(x) = / O =) F () dy,  (Weyl),

X

b
Tt ) = [ ﬁ a,

(potential type),

but also

(in IR").

This book is mainly based on the authors’
own results obtained within the last years.
But it covers in many respects the classical
theory (since the assertions are often criter-
ia). Some chapters have almost encyclopedic
character and may serve as a source both for
researchers and consumers of inequalities
for integral operators. The book has 9 chap-
ters and a list of open problems. The refer-
ences cover the state-of-art. There are 310
items. The 9 chapters are: 1. Hardy-type op-
erators, 2. Fractional integrals on the real
line, 3. One-sided maximal functions, 4. Ball
fractional integrals, 5. Potentials on IRY, 6.
Fractional integrals on measure spaces, 7.
Singular numbers, 8. Singular integrals, 9.
Multipliers of Fourier transforms.

Jena H. Triebel
(Hardy type),
Raf(x):/—f(t)li d,
(x—1)°
0
(fractional integrals),
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J.Agler, J. E.Mc Carthy
Pick Interpolation
and Hilbert Function
Spaces

Grad Studies

in Math. 44

Providence, American Math. Soc., 2002,
308S.,$49,-

Let A\j, ..., Ay be N points in the unit disc ID
in the complex plane and let wy,...,wy be
complex numbers. The classical Pick pro-
blem (Pick, 1916) deals with the question
of whether there exists a holomorphic func-
tion ¢,

¢: ID—ID with ¢(\)=w
where j=1,...,N.

The space H>(ID) of all bounded analytic
functions in ID can be indentified with the
space of all multipliers of the Hardy space
H?. Then the classical Pick problem can be
reformulated in terms of this multiplier space
H*>(ID). The book deals with the following
generalisation. A Hilbert function space is a
Hilbert space H of functions on some set X
(preferably, but not necessarily, holo-
morphic functions in subsets of ©") such that
the evaluation at each point of X is a non-
zero continuous functional on H. Let
Al ..., Ay be points of X and let wy, ..., wy
be complex numbers. The Pick problem is
the question when does there exist a multi-
plier ¢ of H of norm at most one such that
&()j) = w;. The main aim of the book is to
analyse what spaces have the Pick property.
This is done in 16 chapters: 0. Prerequisites
and notation, 1. Introduction, 2. Kernels
and function spaces, 3. Hardy spaces,
4. P>(p), 5. Pick redux, 6. Qualitative prop-
erties of the solution of the Pick problem in
H*>(ID). 7. Characterizing kernels with com-

plete Pick property, 8. The universal Pick
kernel, 9. Interpolating sequences, 10. The
model theory I: Isometries, 11. The bidisk,
12. The extremal three point problem on ID?,
13. Collections of kernels, 14. Model theory
II: Function spaces, 15. Localization.

Jena H. Triebel
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Ernst-Albrecht Reinsch
Mathematik fiir
Chemiker

1 Methoden, Beispiele,
~ Anwendungen und Aufgaben

Ernst-Albrecht Reinsch
Mathematik fiir Chemiker
Methoden, Beispiele, Anwen-
dungen und Aufgaben
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ISBN 3-519-00443-7
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1Das Buch

Wie kann man chemische Probleme
mathematisch beschreiben und 16sen? In
Theorie, Anwendung und Beispiel zeigt
dieses Buch dem Studierenden die erfor-
derlichen mathematischen Methoden
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Lectures on Partial
Differential Equations

Translated by R. Cooke

This book covers the most basic parts of
the subject and confines itself largely to
the Cauchy and Neumann problems for
the classical linear equations of mathe-
matical physics.

2004. X, 157 p. (Universitext) Softcover
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From the reviews: ...This beautiful and
eloquent text served to transform the gra-
duate teaching of algebra, not only in Ger-
many, but elsewhere in Europe and the
United States...Its simple but austere style
set the pattern for mathematical texts
in other subjects, from Banach spaces to
topological group theory..It is, in my view,
the most influential text in algebra of the
twentieth century.”

Saunders MacLane, Notices of the AMS
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The first edition of this book presented
simple proofs of the Atiyah-Singer Index
Theorem for Dirac operators on compact
Riemannian manifolds and its genera-
lizations, using an explicit geometric
construction of the heat kernel of a gene-
ralized Dirac operator; the new edition
makes this popular book available to
students and researchers in an attractive
softcover.
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