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Vorwort 

Jahresbericht der Deutschen Mathematiker-Vereinigung, 106. Bd. 2004, Nr. 1 

Vorwort 

Die Konzeption des Jahresberichts sieht insbesondere Übersichtsartikel zu den ver -
schiedenen Bereichen der reinen und angewandten Mathematik vor. In diesem Heft fin-

den sie dazu zwei Beispiele. 
Die angewandte Mathematik wird durch den Artikel der Arbeitsgruppe von Frau Pi-

geot (Bremen) abgedeckt. Ihr Beitrag beschreibt Anwendungen der Statistik in der Me-
dizin und in den Biowissenschaften. 

Der zweite Artikel stammt von Herrn Eschenburg (Augsburg) und ist der Geometrie 
zuzuordnen. Sein Beitrag beschreibt Verallgemeinerungen von Minimalflächen im eu-
klidischen Raum und die zugehörigen Abbildungen, wobei eine Neuinterpretation von 
im Wesentlichen bekannten Fakten einen einheitlichen Blickwinkel auf diese Theorie er-
möglicht. 

A. Krieg 
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Ins Pigeot 	Karin Bammann 	Achim Reineke 	Nina Wawro 	Astrid Zierer 

Statistical methods in genetics: From microarrays 
to genetic epidemiology - an overview 

Aöstract 

• Keywords and Phrases: Association, genetic epidemiology, linkage, microarrays 
• AMS subject ciassification: 92D 30, 92D 10 

With the complete sequencing of the human genome in 2003 an immense step towards 
the biological understanding of human beings has been taken. This paper describes how 
the information at hand now can be used in the field of genetic epidemiology to analyze 
the role of genes in the etiology ofdiseases. We give a short introduction to genetics and 
review preprocessing and analytical techniques for microarray data before we cover tra-
ditional study designs. Finaily we present in detail family and population based meth-
ods that enable to locate and identify candidate genes involved in the development of 
diseases. The outlook provides the reader with selected untackled problems and re-
search areas. 
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1 Introduction 

In recent years, the genetic information on individuals has become of growing interest 
with various consequences as for instance in forensics, medicine, and presumably for 
public health. Although the benefit of genetic research is quite obvious in certain re-
spects, it may also lead to ethical problems, which have to be kept in mmd when discuss-
ing its potential merits. We will focus here on genetic epidemiology which plays a major 
role when trying to identify those genes in humans, being at least partially responsible 
for particular diseases. The idea behind is to identify variants of the human DNA re-
lated to certain diseases with the aim to clarify the pathogenesis of the disease, to devel-
op diagnostic tests, and finally to establish causal therapies. Despite the fact that many 
diseases are known to be at least partially genetically caused, the responsible genes typi-
cally have not yet been located. Furthermore, only a small fraction of the estimated ten 
thousands of human genes has been identified until now, although in course of the Hu-
man Genome Project the human genome has been completely mapped and sequenced 
in 2003. Thus, detecting genetic variants that are more frequently present in affected 
than in unaffected individuals still constitutes a challenging demand in research. lt has, 
however, to be noted that only a few diseases are assumed to be monogenetic, which 
means that they are caused by a single gene as for instance hemophilia. Most diseases 
are suspected to be caused by several genes as for instance insulin-dependent diabetes 
mellitus where about 20 regions are assumed to contain related genes ([69]). Such dis-
eases are called oligo- or polygenic. If the onset of a disease is additionally influenced by 
environmental factors, we speak of a complex disease. In polygenic diseases each single 
responsible gene only has a small effect on the disease and large sample sizes are re-
quired to detect a statistically significant influence. 

Genetic epidemiology now comes into play when searching for candidate genes in 
populations where mainly two different approaches have to be distinguished. The first 
approach is to look for a more frequent occurrence of a specific allele in affected per-
Sons of a population compared to unaffected persons, i.e. for association between this 
allele and the disease phenotype. Another approach is applied within families and is 
based on the concept of linkage, i.e. it is investigated whether the disease is usually co-
segregated with a specific marker allele. 

This paper is intended to outline the complete path from collecting the data, over 
the most common study designs to the statistical methods for analyzing the data which 
typically call for special techniques being appropriate to cope on the one hand with the 
family structure being inherent in most data and on the other hand with the huge 
amount of genetic information and of additionally collected information on environ-
mental factors. The statistical part focuses on methods for identifying candidate genes. 
The aspectS treated in this paper are selected without the claim of completeness. 

For this purpose, the paper organizes as follows. We first roughly repeat the most 
important terms ofgenetics. For obtaining genetic information on individuals, microar-
rays can be used. Different types and approaches for analyzing the data are presented in 
Section 3. Section 4 is devoted to the various study designs in genetic epidemiology. Fa-
mily-based studies as well as population-based studies are dealt with from a statistical 
perspective in Section 5 where statistical methods to test for linkage and/or association 
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are discussed. Further techniques, problems, and research areas are addressed in the fi-
nal section. 

2 Genetic background 

The entire genetic information of any living individual is coded in the DNA (desoxyri-
bonucleic acid). The DNA forms a double strand of long sequences of four different nu-
cleotide bases. Between these strands, the nucleotide bases adenine and thymine, gua-
nine and cytosine, respectively, can build pairs (Watson-Crick base pairing) such that 
one strand of the DNA is a complement to the other and both strands fully determine 
each other. The human genome is organized in 23 pairs of chromosomes of which 22 
are pairs of autosomes and one is a pair of gonosomes determining the sex of the indivi-
dual. One set of chromosomes is inherited from the mother and the other from the 
father. A gene is a sequence of nucleotides of the DNA at a fixed locus which codes for 
a gene product (i.e. a protein), its different variants are called alleles. For each gene, the 
two alleles of the corresponding chromosome pair define the genotype of an individual. 
Every individual possesses either two different or two identical alleles at every locus, the 
individual is said to have a heterozygous or homozygous genotype, respectively. 

The phenotype, in contrast, refers to a certain characteristic expressed in an indivi-
dual. The relation of genotype and phenotype is defined by the so-called penetrance of 
a gene. Let A denote any one gene locus with alleles A 1 , . . . ‚ A, and probabilities Pr(A) 

for allele A, i = 1,. . . ‚ n, to occur. Let further X denote a corresponding phenotype. 
The penetrancef1  of expressing X for the genotype (A, A 1 ) is given by the conditional 
probability 

(1) f = Pr(XA,A j ) 

with i,j = 1,. . . ‚ n. A Mendelian segregation implies that penetrances are complete, that 
is 0 or 1. An allele A 1  is called dominant iff,j = fij = = 1 for i j, it is called recessive 
iff =fj = Oforijandf,, = 1. 

In the following, the phenotype affected vs. unaffected of certain diseases is of spe-
cial interest. Monogenetic diseases are determined by just one gene locus and complete 
penetrances. However, most diseases of interest, e.g. cancer, are complex in that more 
than one gene locus is involved and penetrances are sometimes not symmetric due to ge-
netic imprinting and usually incomplete, je. the probability of getting affected might be 
less than one or greater than zero although the genetic predisposition is given or not, re-
spectively. Moreover, the incidence of a disease can also depend on certain environmen-
tal factors and so-called phenocopies might occur which means that an individual can 
become affected without having the particular disease gene. 

2.1 Mendelian segregation 

According to the Mendelian laws, each ofthe two alleles ofa parent is transmitted inde-
pendently and at random with probability 0.5 to an offspring. If the genotypes of the 
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parents are known, we can caiculate probabilities for the offspring to have a certain 
genotype and with known penetrances - as weil to have a certain phenotype. In the 
situation of Figure 1 the probability for an offspring to be affected or unaffected 
according to the Mendelian laws is 

Pr(affected) = 	for a recessive mode of inheritance, 

Pr(affected) = 	for a dominant mode of inheritance. 

father 	 mother 

mutated 
gene 

1 2 	 1 Q 
Pl l 11 2 I L 

children 

Figure 1: Pattern of inheritence 

Another important fact resulting from the Mendelian laws is that the distribution of 
genotypes in a population is constant from the second generation on. This phenome-
non, known as Hardy-Weinberg equiiibrium, is vaiid only under certain conditions. 
Among others the population has to be iarge enough and mating has to be random. Of 
course, the probability of mating or the capability of reproducing living offspring may 
not depend on the genotype. 

This approach can be extended to more than one gene locus, provided the inheri-
tance ofthe different genes foliows the Mendeiian laws. 

2.2 Linkage of gene Ioci 

Deviations from the Mendelian laws can occur if two genes are not inherited indepen-
dently. This happens, when they are located on the same chromosome such that they 
cannot always be separated during meiosis. Recombination is the exchange of parts of 
the parentai chromosomes due to crossing-over of chromatides (the strands of the chro-
mosomes). This results in the derivation of aileles from different parental chromosomes 
if an odd number of crossing-overs occurs (see Figure 2). The probabiiity of this event is 
cailed recombination fraction 0. 

The cioser two genes are located to each other the more frequent they will be inher-
ited together. In this case they are cailed 'linked'. If they are not linked joint inheritance 
is by chance oniy, i.e. with a probabiiity of 0.5. In this case the recombination fraction 0 
equais 0.5, whereas 0 = 0 means tightest possible linkage as the probabiiity of recombi-
nation is zero. The term linkage therefore refers to the location of two or more genes on 
the same chromosome and is reiated to gene bei and not to specific aliebes. Following 
Donnelly [22], let Sk be 0 or 1 denoting whether in meiosisj at locus k the maternal or 
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paternal gene ofthe parent is transmitted to the offspring. Then between two loci k and 
1, the recombination fraction is defined as 

(2) 6k! = Pr(S1k 	Sf1), 

assuming that the recombination probability does not depend on the meiosisj. 
The basic idea of looking at two gene loci is to see whether the alleles of a marker 

gene co-segregate with the disease gene among related subjects which would imply that 
they are Iinked. This gives an idea of the location of the disease locus since the one of 
the marker locus is known. Thus, the identification of linkage to a marker locus is often 
the first stage in positional cioning of a disease gene. 

In general, one has to distinguish between genetic distance and recombination frac-
tion. The genetic distance d, measured in centi-Morgan (cM), refers to the expected 
number of crossing-over events between two bei. Only over short distances, e.g. less 
than 5 cM, a recombination fraction of 0.01 is about the same as a genetic distance of 
1 cM. In contrast to the genetic distances of a series of loci, the corresponding recombi-
nation fractions are not additive. Mapping functions establish the relationship between 
these two measures ofdistance. 

ehrennt, des 

merker 1 

merker 2 

merker 1 

merker 2 

double recorobinalion: 	sinl recombinanon: 
umdenliliahle 	denriliahle 

Figure 2: Odd and even numbers of crossing-overs 

Assuming a homogenous Poisson process for the number of crossing-overs that occur, 
Haldane [40] relates the genetic distance and the recombination fraction 0 by 

(3) d= —0.51n(1 —26). 

This model reflects the idea of 'no inference' between number and locations of crossing-
over events. Another widely used mapping function was introduced by Kosambi [53]. If 
one assumes that the occurrence of one crossing-over prevents another one from taking 
place closely, 

(4) d — 0.25 1n[(1 +29)1 - 	
(1-20)] 

is the appropriate relation ofrecombination fraction and genetic distance. 
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2.3 Expression of genes 

Sometimes, it is not a gene itseif, but rather the gene product that is of interest. 
Although each cell of an individual carries the same DNA, the cells work quite differ-
ently, e.g. liver cells, brain cells. The diversity arises from the activation ofgenes in a cell 
that means which proteins are actually built. The whole process of building proteins 
from genes is called gene expression and can be summarized basically by two steps. In a 
first step, genetic information of the double-stranded DNA is transcribed into the sin-
gle-stranded messenger RNA (ribonucleic acid) or mRNA. This process is called tran-
scription. In a second step, the information contained in the mRNA is translated into a 
protein. This process is called translation. Because of existing difficulties in measuring 
the amount of proteins built, the expression of a gene is rather evaluated by measuring 
the amount ofmRNA in a cell. 

3 Microarrays: A widespread data-sampling approach 

Microarray technology opens a variety of new possibilities to study the human genome 
complexity ([13]). Microarrays derive their power and universality from a key property 
of DNA molecules, the complementary base-pairing. The number of complementary 
pairs needed to keep the two strands together depends, besides others, on environmen-
tal factors, mainly on the temperature. To get single stranded DNA it has to be dena-
tured, this means to split the strands by rising the temperature. When two long comple-
mentary single strands of DNA meet, they tend to stick together even though the bind-
ing power of every single pair is only weak. The term hybridization refers to this 
annealing of nucleic acid strands from different sources according to the base pairing 
rules. Microarrays can be seen as an enhancement of the Southern or Northern Blots 
([84]). These blots allow to analyze a fragment of the DNA or RNA, respectively. Com-
pared to the blots (which are only able to analyze one sequence at a time) the microar-
ray experiment facilitates the researcher to simultaneously consider tens of thousand of 
sequences or genes, respectively. Due to this huge amount ofdata and the typically only 
small number of repeated measures, the analysis of such arrays calls for a particular sta-
tistical approach. 

Obviously, microarrays offer a broad range of applications. They are, for instance, 
used for genotyping, measuring the transcript abundance, identification of genome-
phenotype relationships, or for determining identity by decent (see Section 5.1.2). They 
can also contribute to understand the networks of gene regulation. In medical practice, 
microarrays can be applied in cancer research to characterize the tumor on a genomic 
scale for a more reliable diagnosis and an improved treatment of cancer. Another appli-
cation is in immunology, where the host genomic response to bacterial infection is stud-
ied. 

Each microarray experiment consists of a number of steps: the determination of the 
queried DNA-sequence, the laboratory tasks, the image processing, the data normaliza-
tion, and the pursuing analysis. Each step has an impact on the outcome of such an ex-
periment. 
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3.1 Types of microarrays 

There are two main types of microarrays, namely cDNA microarrays and high density 
oligonucleotide arrays. Using cDNA microarrays, DNA is spotted onto a solid support 
as for example a glass slide; with the latter, oligonucleotides consisting of up to 25 nu-
cleotide bases are synthesized on to a silica slide by a process known as photolithogra-
phy. 

3.1,1 cDNA microarrays 

cDNA microarrays consist of several DNA sequences spotted in a high density array on 
a glass slide using a robotic arrayer. For queries of mRNA, the samples, called targets, 
are reverse-transcribed into cDNA, labeled using a fluorescent dye or a radioactive 
marker and hybridized with the arrayed DNA sequences denoted as probes. The targets 
align to the corresponding probes, as described above (following the definition ofprobe 
and target given in [1]). After hybridization, the slides are scanned. The resulting image 

ample A ar,k 6 

on nd 
demi,m,hoo 

rnd lb.hng 
/ 

t 

6666 6 	RR 
666 

6 	6 CC 
.. 

.„ ... 

DNA-ry - 

Figure 3: Two color cDNA microarray 

can be used to determine the position and abundance of the aligned targets on the slide. 
Combined with the knowledge about the contents of the spotted array, the incidence of 
a queried sequence can be assessed. The resulting values can only be assessed relatively 
to each other, microarrays are not able to measure the absolute amount of occurrence 
because of hybridization kinetics. Comparing different slides therefore needs further 
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standardization and correction. One possibility to avoid some of the resulting problems 
is the parallel hybridization of two samples labeled with two different dyes on the same 
slide. These two color-settings allow a direct comparison of two samples. The relative 
abundance of the spotted DNA sequences may be assessed by monitoring the differen-
tial hybridization of the two samples. Figure 3 describes the main steps in a two color 
cDNA microarray experiment. 

3.1.2 High density synthetic oligonucleotide arrays 

Another approach to design microarrays is based on the usage of synthetic oligonucleo-
tides. Synthetic imkers modified with photochemically removable protecting groups are 
attached to a glass substrate. Afterwards light is directed through a photolithographic 
mask to produce localized photodeprotection. Chemical building blocks are incubated 
with the surface, and chemical coupling occurs at those sites that have been illuminated 
in the preceding step. In the next step, a new mask is used. The light is directed to differ-
ent regions of the substrate and the chemical cycle is repeated until the desired se-
quences are generated. Following the completed preparation, the array is ready for hy -
bridization. This process is similar to the cDNA-array but solely one color can be used. 
The parallel hybridization oftwo samples is impossible. The design is based on sequence 
information alone, without the need for physical intermediates such as clones, polymer-
ase chain reaction (PCR) products, or cDNAs, just to name some of them (see [59]). 

To improve the abilities for error correctiori and to enhance the reliability the detec-
tor for a queried DNA-sequence is combined of different probes. Each so-called probe 
set consists of multiple oligonucleotides (probe cells) of different sequences designed to 
hybridize on different regions of the same RNA. The use of multiple independent detec-
tors for the same gene improves the reliability of the results. An additional level of re-
dundancy is achieved by the use of mismatch (MM) control probes. The mismatch 
probes are identical to their perfect match (PM) partners except for a single base differ-
ence in a central position. The probes are arranged as probe pairs PM and MM. The 
MM probes act as specificity controls that allow discrimination between 'real' signals 
and those due to non-specific or semi-specific hybridization (see Figure 4). 

probe sei 

2 	3 	4 	5 	cel! 	 n 

PM 

MM kam ,_H.. 11.1................. 

probe pair 

Figure 4: Probe set 
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3.2 Image analysis 

Before any values can be computed and passed to the data analysis pipeline, appropri-
ate image recognition has to be carried out. Currentiy, different methods are discussed 
in the literature. Simple methods use a threshold to locate the spot in the image and dis-
tinguish between background and foreground values. Alternative techniques search for 
connected groups of similarly coiored pixels by defining a circle around the center of 
the located spot used to define an inner (spot) as weil as an outer (background) region 
([2]). More sophisticated algorithms are based on seeded region growing algorithms 
([4]) or adaptive pixel selection (APS) ([76]). 

3.3 Normalization 

Microarrays simultaneously measure transcript abundances for thousands of genes in a 
cell population or tissue sample. Due to variations in sample treatment, labeling, dye ef-

ficiency and detection, the spatial position on the slide and differences between siides, 
the fluorescence intensities can in general not be compared directly ([41]). An appropri-
ate standardization is required to deai with the systematic and random effects occurring 
as a consequence of the preceding process described. This standardization is often re-
ferred to as normalization. Normalization is meant to allow for comparability of the 
values within an array as weil as between different arrays. Normalizing the intensities is 
eiementary for the pursuing analysis. There are different methods available to normal-
ize the data, depending an the experimental conditions, the type of array and further 
factors. In the following, we review same aspects of the preprocessing ofthe data. 

The first decision to be made concerns the selection of genes (intensity values) to be 
used for normalization. Often the vast majority of intensity values is chosen, assuming 
only a few changed values between the arrays, which implies that the distribution of the 
majority of genes for each array is nearly the same ([47]). Another suggestion is to select 
so called housekeeping genes, a set of genes specifically chosen for normalization, exis-
tent in all targets. Housekeeping genes are typically highly expressed and do not ailow 
to assess the dye biases for less expressed genes. To circumvent this disadvantage a spe-
cially designed microarray sampie Pool (MSP) may be selected as set of controls. The 
values of an MSP should span a wide intensity range such that they yield a 'correction 
factor', applicable to all classes ofexpression intensities facilitating the adjustment task 
([106]). As control genes are used to correct for spatial and intensity based trends in the 
data, they shouid be present in a sufficient quantity and uniformly distributed across 
the whole slide. 

An alternative method described for oligonucieotide arrays by Schadt et al. [76] and 
Tseng et al. [95] is based an an approximately invariant set ofgenes. A set of genesis said 
to be invariant if their intensity ranks are approximately the same for all considered ex-
periments. In practice this method works weil for normal settings with a small number of 
slides. Ina complex setting where a large number of slides has to be normalized, the set of 
invariant genes is too small for comprehensive normalization. If there is a sufficiently 
large number of invariant genes, this method is simiiar to the proposais described above. 
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After having fixed the set of genes for normalization, different approaches for calcu-
lating or performing the adaption of the slides can be thought of. These may be roughly 
distinguished as scaling approaches, smoothing approaches, transformation methods 
such that the distribution of intensities is the same across all arrays, and model-based 
approaches. Of course, not all techniques discussed in the literature can be reviewed 
here. To give an idea of the variety of methods used for normalization let us describe a 
few as representatives of these major types. 

For illustrative purposes, let us in the following define in a two color cDNA-setting 
Ygj as the intensity of gene g, g = 1, . . . ‚ G, and color j, j = l(red), 2(green), 
Mg  = 1092 (ygl /yg2 ) the difference in log expression values, and A g  = l092 (ygf yg2) the 
average of the log expression values. The use of a logarithmic scale, implicitly assuming 
multiplicative effects in the data, offers certain advantages. Typically the random varia-
tion of the original data roughly increases linearly with the average signal intensity. The 
use of an additive model, based on the logarithmic scale, simplifies the next steps of the 
analysis in so far as among others the variability tends to be constant. 

A simple scaling approach is based on the calculation of the global median or mean 
of all selected values across the whole array. This constant correction term, briefly de-
noted as c, is then used to uniformly correct all intensity values Mg . The corrected val-
ues Mg  are thus calculated as 

(5) IIfg =Mg c, g=l,...,G. 

This approach neglects differences caused e.g. by the spatial position on the slide, differ -
ent intensity based biases or the specific character of the queried genes. These various 
sources of biases can be accounted for by non-linear methods using local regression to 
fit curves to noisy data by a multivariate smoothing procedure. Here, a linear or qua-
dratic function of the predictor variables is fitted in a moving fashion, analogously to a 
moving average in time series analysis (see Cleveland [16]). Some examples applying ro-
bust locally weighted regression are given in Dudoit et al. [23], Ästrand [7] and Yang et 
al. [106]. The calibration factors are now estimated based on a suitable robust scatter-
plot smoother c(A g ), which leads to 

(6) 111g  = Mg /c(A g ), g = 1,.. ‚ G. 

This smoothing approach can be further generalized by fitting different curves 
cr (A g ), r = 1, . .. R, to different regions of the array. 

The next approach described tries to correct the probe intensity values for each ar-
ray in a set of arrays by adjusting the different distributions. The quantile normalization 
technique introduced by Bolstad et al. [10] extends the underlying idea of a quantile-
quantile plot, that the distributions of two data sets are the same if their quantiles lie on 
a diagonal, to 1 dimensions, 1 representing the number of all arrays to be compared. 
For this purpose, i.e. to achieve an adjustment of the different distributions, consider 
the vector of the s-th quantiles, s = 1,.. . ‚ p, qs = (qsi,. . . ‚ qi) for all 1 arrays and calcu-
late the mean quantiles across all arrays. These values then substitute the values of the 
data items in the original data set. This transformation implies that the quantiles all lie 
along the unit diagonal defined as d= ( - ' ) because of the above described pro-
jection ofq onto d with 
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Besides the more explorative methods presented above, model-based approaches can be 
found in the literature (cf. [15], [46], [48], [56], [65]). In casc oftwo-color cDNA microar-
rays, Chen et al. [15] presumably present the first statistical approach which compares 
the expression levels oftwo different samples based on only one array with a huge film-
ber of genes. The samples are dyed with different colors and the ratio of the two intensi-
ties measured at one spot is inspected. Provided that an appropriate background correc-
tion has already been implemented in the preceding image analysis, the following multi-
plicative model for the intensities is introduced, where we follow the notation by Huber 
et al. [47]: 

(7) Ygk = bkgk(l + Egk), 	Egk 	N(O, v2 ). 

Here, Ygi denotes the intensity for gene g, g = 1,... ‚ G, and sample k, k = 1, 2, pgk is 
the true intensity of the appropriate gene and sample, and bk denotes the normalization 
factor for sample k, such that E( Ygk) = bk/igk. The random variables YgI  and Yg2 are 
supposed to be independent and the variance v2  of the noise is assumed to be con-
stant for all genes and samples. This implies that the coefficient of variation of the Ygk 

is constant and for any g and k the variance of Ygk can be estimated which makes the 
mode! identifiable. The approximate distribution ofthe statistical test based on the ratio 
of the two intensities at a certain gene g can be derived under H0 exploiting (7) to test 
the hypothesis 

H0 : It g l = /tg2 vs. H1 : 11g1 7~ /1g2 

In contrast to the normality assumption of Chen et al. [15], Newton et al. [65] for in-
stance propose a model based on the assumption of independent and gamma-distribu-
ted intensities ofthe red and green samples. 

As in many other fields, analysis of variance (ANOVA) are frequently applied in this 
context. Kerr et al. [48] introduce a model with four factors but without including all in-
teraction terms, namely 

(8) log Yijk g  = +A + D1  + Vk + Gg  + (lG)jg  +(J7G)kg  + €ijkg, 

where M denotes the overall average signal, A, represents the effect of the i-th array, D1  
the effect of thej-th dye, Vk the effect of the k-th variety, Gg  the effect of the g-th gene, 
(AG) jg  represents the interaction effect between array i and gene g, (VG)k g  the interac-
tion between variety k and gene g. The errors are assumed to be independent and 
identically distributed with mean 0. Further effects can easi!y be accounted for by just 
enlarging the above mode!. However, this resu!ts in a loss of degrees of freedom re-
quired to estimate the error variance in the experiment. But note that the solely effects 
of interest are usually the interactions between varieties and genes, where the varieties 
refer to the categories of the factor under investigation such as tissue types. The model 
is fitted via least squares with usual parameter constraints to make it identifiable. 

An interesting generalization ofthe approach of Chen et al. [15] is proposed by Hu-
ber et al. [46]. They model the error of non-differential!y expressed genes according to 
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Rocke and Durbin [74] such that the variance of the measured intensities is quadrati-
cally dependent on the mean. Using the following variance-stabilizing transformation 

hi (ygi) = arsinh(a1  + biygi ) 

with ai  and b, appropriate parameters also accounting for a calibration, the variance of 
the transformed intensities becomes approximately independent of their mean. Both 
steps of data transformation, namely calibration and variance-stabilization, are incor-
porated in an appropriate statistical model as foliows 

(9) hi(Ygi) = g + egi, egi 	N(0, v 2 ), g e 

where Ü denotes the set of probes representing the vast majority of non-differentially 
expressed genes, [Lg  = E (h ( Ygi )). lt allows to account for an arbitrary number of sam-
ples and can also be applied to oligonucleotide arrays. The model parameters are esti-
mated maximizing the corresponding profile log-likelihood. For details we refer to Hu-
ber et al. [46]. 

There are also model-based approaches that account for the specific requirements of 
the oligonucleotide arrays. Since only one sample is hybridized on the array (at a time) 
the mismatch (MM) probes are used to validate the measured intensities at the perfect 
match (PM). Li and Wong [56] consider the following statistical model for one probe 
set, representing one particular gene g: 

(10) Y,1 = PM,1 - MM,, = 9jq + €j.= L, q N(0, 2) 

The difference between the perfect match and the mismatch probe is investigated for 
each individual probe 1, 1 = 1,. L, of the probe set on the i-th array, i = 1,... ‚ 1, 
where 9, represents the so-called model-based expression index, '/, the probe-specific 
rate of increase of corresponding PM response and Ei, the random error, assumed to be 
independent identically normally distributed according to equation (10). The above 
constraint w.r.t. 0 1  is only to ensure the identifiability of the mode!. The parameters are 
estimated by an iterative application of the least-square method. As alternative, Li and 
Wong [57] also introduce a model which only accounts for the PM values. 

Based on a suitable preprocessing of the data statistical analysis can be carried out 
which will be discussed in the next subsections. 

3.4 Statistical analysis 

The statistical analysis of data gained from microarrays is typica!ly based on appropri-
ately normalized data sets. The techniques applied range from statistical tests for possi-
b!y different gene expressions for instance under treatment versus control conditions to 
multivariate techniques primarily to detect structures in the data set which may then be 
used to reduce its dimensionality. 
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3.4.1 Differential expression 

Investigating the expression of genes it is of special interest whether the levels of expres-
sion for two (or more) varieties, say e.g. due to two cell types or treatments, is different. 
First ideas to determine differential expression of genes in microarray analysis can be 
found in DeRisi et al. [20] and Schena et al. [80]. More sophisticated approaches based 
on various distributional assumptions are for example introduced by Chen et al. [15] 
and Newton et al. [65] to state differential expression for single-slide experiments. 

For a comparison of multiple slides, based on the model proposed in Kerr et al. [48] 
the difference in the variety-gene interactions of two varieties VG2 g  - VGi g  can be esti-
mated without any preceding normalization. Because typically neither is the assumption 
of normality fulfilled nor is the number of observations large enough to justify asymp-
totic arguments, the bootstrap percentile is suggested to calculate confidence intervals 
for the differences. 

Another possibility to cope with the non-normality of the data is to perform a loga-
rithmic transformation. Thus, let Xkgm,  m = 1,.. ‚nk,k = 1, 2,g = 1,... ‚ G, denote the 
log intensity ratios. The application of such a transformation beforehand is the ratio-
nale behind the application of the standard t-test statistic Tg  to identify differentially ex-
pressed genes with 

f11 	Y 	XlgX2g 

	

g - /.2 	2 
i Iti. + 

	

V i 	2 

Here, Xkg  denotes the mean expression level of gene g and variety k, S g  the sample var-
iance of the expression level of gene g, and nk the number of replicates of variety k. The 
above t-test or the Welch's t-test in case ofunequal variances are standard techniques to 
test for equal levels of expression for gene g. Nevertheless, the assumption of normality 
may even not hold after having applied a suitable normalization. Thus, Dudoit et al. [23] 
propose to use a permutation test instead, where the number of permutations is limited 
to 1000 if it is no longer feasible to perform all possible permutations. Another non-
parametric alternative is given by the ciassical Wilcoxon rank sum test (see [25]). 

A further undesired behavior of Tg  (see (11)) can be observed when the estimated 
standard deviation is quite small, since then, even if the difference in the nominator is 
very small, Tg  tends to large values leading to false positive resuits. Possible ways out 
are discussed in [27], [60], [96] who propose to add a suitable constant s0 to the estimated 
standard deviation in the denominator of (11). This constant may be chosen such that 
the coefficient of variation is minimized or just as the 90th percentile of the standard er-
rors of all genes. 

In microarray experiments the number of genes G under investigation is usually 
high, up to several thousands, with a relatively bw number of replicates. Since the aim 
of a statistical analysis is here to identify those of thousand candidate genes which have 
their expression levels changed and since this identification process is based on numer-
ous statistical tests simultaneously performed for each single gene g, a multiple testing 
problem occurs. There are various approaches ([23], [24], [25], [26], [27], [60], [96]) to 
deal with this problem. Dudoit et al. [23] mention some methods for adjusting p-values 
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where the simplest is to consider the Bonferroni single step adjusted p-value for gene g 
given as 

(12) g = min(Gpg , 1). 

Here, Pg  denotes the unadjusted p-value, which is usually very conservative. A less con-
servative, stepwise procedure is proposed by Holm [43]. But since this procedure does 
not account for the correlation structure among the variables, it still can be improved. 
Therefore, Dudoit et al. [23] apply the procedure introduced by Westfall and Young 
[101] which exploits the correlations between the genes. 

Besides the adjustment of the significance level a other criteria to account for multi-
plicity may be applied. In microarray settings the false discovery rate (FDR) 

(13) FDR = E(proportion of rejected hypothesis that are actually true) 

proposed by Benjamini and Hochberg [8] is frequently used instead (cf. Tusher 
et al. [96]). 

Efron et al. [27] propose an empirical Bayes approach assuming there are two 
groups, the differentiaily and the non-differentially expressed genes, with prior prob-
abilities p' and Po = 1 - Pi and corresponding prior densities fi (z) and fo  (z) for some 
kind ofexpression score Z. The mixture density is then given asf(z) =p€1/(z) +pifi  (z). 
Application of Bayes' theorem yields the a posteriori probabilities of differential expres-
sionpl (z) andpo (z) as 

(14) pl(z) = Pr{differently expressedZ = z} = 1 —p ofo (z)/f(z) 

(15) po(z) = Pr{non-differently expressedZ = z} =p ofo (z)/f(z). 

For Bayesian analysis, specification of the a priori probabilities and densities is re-
quired. For details, how to estimate the a posteriori probabilities in microarray settings 
see Efron et al. [27]. They also emphasize a dose connection between the FDR and the 
empirical Bayes methodology. 

3.4.2 Cluster analysis and ciassitication 

The high-dimensionality of microarray data calls for multivariate methods to analyze 
their structure and to reduce their dimensionaiity and complexity. Since a detailed pre-
sentation of such multivariate techniques wouid be beyond the scope of this review pa-
per, oniy a brief overview over the methods typicaiiy applied in this field will be given. 
A standard tool to reveal the structure of a multidimensional data set is cluster analysis. 
On the one hand, it can be used to identify groups of genes which act simiiarly among 
the samples w.r.t. gene expression. This may be a sensible approach for instance to find 
groups of genes which are correlated to a specific phenotype. On the other hand, it is of 
interest to group e.g. samples of tumor ceils to assign the type of tumor or to identify 
new subgroups. Besides hierarchical clustering techniques ([29], [42]), non-hierarchical 
methods as the k-means procedure and self-organizing maps ([90]) as weil as model-
based clustering approaches ([107]) are applied to microarray data. 

Analogously to cluster analysis ciassification methods offer a vaivabie approach to 
tackle the problem of how to structure microarray data. There are several techniques, 
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for instance based on regression analysis ([28], [39]) including prediction analysis of mi-
croarray ([94]), discriminant analysis ([58]), and support vector machines ([12]). 

4 Genetic epidemiology 

Genetic epidemiology is 'the study of the role of genetic factors and their interaction 
with environmental factors in the occurrence of disease in human populations' ([55]). In 
contrast to common genetic studies the definition of genetic epidemiology refers explic-
itly to populations, underlining thus the epidemiologie component ofthe field (see [91]). 
Besides ofgeneral population studies, study frameworks can be e.g. population isolates, 
intermarriage between populations, and migration of populations into different envir-
onments. Much more emphasis than in traditional epidemiology, however, is on the in-
clusion of familial data. We would first like to address some study designs before enter-
ing in a more in depth discussion of the statistical methods applied in studies of genetic 
epidemiology. 

Apart from traditional epidemiologic study designs, like case-control, cohort, or 
cross-sectional designs, which are potentially suitable to assess the influence of genetic 
factors on a disease, there are several newly proposed designs that are mainly developed 
directly from the traditional approaches and incorporate familial data. Following a 
short review of the cohort and the case-control design, the main study types in genetic 
epidemiology are presented according to their traditional sampling perspective, 
although studies on genetic factors inherently include a retrospective part, the genome 
ofthe study subjects. 

4.1 Traditional study designs 

Traditional study designs are especially suitable if one or more putative genes for a dis-
ease are known or if a limited number of hypotheses exists concerning the genetic fac-
tors. Genetic factors and even familial information can be included like any other expo-
sure variable in the study, allowing thus the analysis of single factors, and of gene-gene 
and gene-environment interaction with statistical methods used in traditional epide-
miology. The probably most intuitive study design in epidemiology is the cohort study, 
where a defined population under exposure or at risk of exposure is followed prospec-
tively over a long period with regard to the exposure and possible sequels of the expo-
sure. For different exposure groups, frequency measures like morbidity or mortality 
rates can then be calculated in a straightforward fashion and compared between expo-
sure groups. If the disease of interest is rare and if the suspected risk factors are not un-
common in the population, the case-control study can be an economically attractive al-
ternative to the time- and money-consuming cohort study. In case-control studies mci-
dent cases are compared to unaffected population or hospital controls, with regard to 
their exposure in the past. Odds ratios can then be calculated that estimate the relative 
effect of risk factors on the disease via comparisons of the exposure frequencies in the 
case and the control groups. Other approaches used in epidemiology are e.g. nested 
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case-control studies and case-cohort studies, where the cases and controls are sampled 
from an assembled cohort. However, cohort and case-control studies are, like most tra-
ditional approaches, subject to potential confounding because of undetected genetic 
heterogeneity within the study population (population stratification, cf. to Section 5.2). 
This problem is not unknown in traditional epidemiology, however, it can intensify se-
verely when looking at genetic risk factors although the general impact of unaccounted 
genetic heterogeneity on study resuits is not clear since bias arises not necessarily in all 
situations (for a discussion see [92], [99], [14]). Most of the following non-traditional ap-
proaches try to circumvent confounding due to undetected genetic heterogeneity by in-
corporating family members ofstudy subjects in the study design. 

4.2 Retrospective designs: Derivatives of the case-control approach 

Possible variants of the traditional case-control approach for studies in genetic epide-
miology are family-based case-control designs, where (real or hypothetical) controls are 
derived from the family of the cases. In case-sibling studies, each case is matched to a 
sibling, who was unaffected at the age the case became affected (index age). Standard 
methods of matched case-control studies, like conditional logistic regression, can be 
used within the case-sibling design, analyzing both genetic factors and environmental 
data of cases and controls up to their index age, and gene-environment interaction. In 
case-parent studies, pseudo-siblings are constructed of the alleles of the cases' parents as 
hypothetical controls. For each case three pseudo-siblings are obtained by constructing 
the genotypes of those allelic combinations that were not transmitted to the respective 
case. The pseudo-siblings are presumed to be unaffected. For analyzing case-parent 
studies, standard methods of 1:3-matched case-control studies can be applied as well. 
However, because of the hypothetical control, main effects of environmental factors 
cannot be estimated within the case-parent design. While controlling securely for under-
lying population structure, both designs have other potential pitfalls, the case-sibling 
design requires dropping of cases without unaffected siblings, thus possibly introducing 
selection bias; the case-parent design requires the genotyping of both parents, and is 
therefore not suitable for late endpoints. Moreover, the dropping of incomplete family 
trios is here as weil a potential source of selection bias. A special approach for analyzing 
gene-environment interaction, when genotyping of parents or siblings is not feasible, is 
the case-only design, which uses only information from affected subjects. The case-only 
design makes use from the fact, that for dichotomous genetic factors and dichotomous 
environmental factors the odds ratio for the genetic factor in relation to the environ-
mental factor in cases is an estimate for the multiplicative interaction effect of genetic 
and environmental factor in the population, if the genetic and the environmental factor 
are independent in the unaffected part of the population ([68]). The gene-environment 
interaction effect can then be estimated via logistic regression with the gene as the de-
pendent and the environmental factor as the independent variable. lt should be noted 
though that the case-only design can ofcourse be subject to confounding through Popu-
lation stratification and/or to bias from situations where the independence assumption 
does not hold. Moreover, the main effects of the genetic or environmental factors can- 
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not be estimated within the case-only design. An overview ofretrospective study designs 
for assessing disease risks of genetic and environmental factors can be found in Wein-
berg and Umbach [100], comparisons of sample size requirements for the different ret-
rospective approaches can be found in Gauderman [38]. 

4.3 Cross-sectional designs 

From a historical perspective, there are two important cross-sectional study types that 
were used for assessing genetic risk factors: adoption studies and twin studies. In adop-
tion studies, the variances in phenotypes in different familial constellations of families 
with at least one member not biologically related are compared to each other in order to 
separate genetic from environmental influential factors. These constellations comprise 
e.g. biological parents to biological children vs. adopted children, adopted vs. biological 
children, biological children that were raised together vs. biological children that were 
raised separately from each other. Similarly, in twin studies, the variance in phenotypes 
in monozygotic twins is compared to that of dizygotic twins. Both, adoption and twin 
studies can be subject to considerable sampling bias, especially if the study sample is 
constituted of volunteers. While adoption studies belong chiefly to the past not just be-
cause of methodological, but also because of legal and ethical problems; twin studies 
are still of interest. Since monozygotic twins have identical genomes, they are ideally 
suited to study environmental effects. Several countries have established twin registers, 
facilitating population-based twin studies and thus reducing sampling problems. For 
more information and recent developments, see [11]. 

A cross-sectional approach for estimating the age-specific penetrance of gene muta-
tions is the kin-cohort study ([98]). Given the mode of inheritance, the penetrance is esti-
mated using the genotype of a group of index persons and the phenotypes of the kin of 
these index persons. Although the design underlies strong assumptions and is therefore 
subject to several sources of bias (see [37]), the approach can theoretically be incorpo-
rated in other study designs, ifinformation about the phenotypes ofkin is included. 

5 Statistical methods in genetic studies 

5.1 Statistical methods in family-based studies 

Family-based studies are carried out with the aim to determine the influence of a candi-
date gene on the disease status. The main idea is that if the potential gene is linked with 
the marker locus, relatives with similar respectively different disease status are more re-
spectively less similar at the marker locus than expected under independence. We re-
strict ourselves to families with two generations. 
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5.1.1 [od score method 

Linkage may be investigated as already discussed in Section 2 by measuring the distance 
between marker and disease gene bei. Such a distance measure is given by the lod score 
roughly defined as the logarithm of a likelihood ratio. The likelihood in the nominator 
is calculated from the genotypic data of some observed pedigree. The likelihood in the 
denominator is derived assuming no linkage. More formally, following Thompson [93], 
let Y denote phenotypic data at trait and marker bei, where Y 1  contains all data on in-
dividual i, and Y. 1  all data related to the genotype at locusj. Then, regarding the geno-
types of individuals at multiple bei, denoted by G, as latent variables leads to 

(16) Pr(Y) = 	Pr(YG)Pr(G) =fi Pr(Yi.lGi))Pr(G) 
G 	 G(obervesdi 

where 

(17) Pr(G) = [1 Pr(G,.) 	H 	Pr(G'. 

	

founders i 	 nonfounders i 

Formula (16) is based on several assumptions such that the individuals' phenotypes Y 1  
are conditionally independent given their genotypes G 1 .. So-called founders are individ-
uals without parental information in a certain pedigree. These observations are re-
garded as random draws from the population. The probabilities of the founder geno-
types Pr(G1 ,.) are assumed to be determined by the allele frequencies and allelic associa-
tions in the population. For the nonfounders, the transmission probabilities 
Pr( G.. GM, GE), considered as conditionally independent given the genotypic infor-
mation of their parents, can be calculated according to the Mendelian laws and the link-
age relationships. If this assumption is satisfied, this reduces to investigating the recom-
bination fractions 0 which are then the only unknown parameters in the transmission 
probabilities. Thus, (16) gives the likelihood L(0). Since 9 is equal to 0.5 for unlinked 
bei the lod score is given as 

(18) Z(9) = 1og 10 (L(8)/L(0.5)). 

Maximizing equation (18) with respect to 0, i.e. replacing 0 with its maximum likelihood 
estimate, leads to a likelihood ratio test statistic suitable for investigating the null hy-
pothesis ofno linkage. 

Formally, one has to test for the hypothesis ofno linkage, i.e. 

(19) H0 : 9 = 0.5 vs. H 1  : 9 < 0.5. 

Under H0 , the lod score asymptotically follows a mixture of a -distribution and of 0.5 
density at zero, corrected with a factor of = (cf. [87]). lt has become common 
sense to use 3 as bound to deelare binkage and -2 to exelude linkage, derived by Morton 
[64] exploiting the theory of sequential probability ratio tests. This implicitly means that 
H0 is rejected if 

(20) z > 
4.6 x2ffl . 001 

= 13.82 
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lt should, however, be noted that the above statistical test is based on the assump-
tion that the genetic model of segregation is completely specified by the recombination 
parameter. This holds for recessive and dominant traits but hardly for complex diseases 
which then require more complex algorithms for caiculating the !ikelihood and more de-
tailed information on the underlying trait mode! (see [93] for an overview). 

Since the specification of the unknown trait model is accompanied by a high degree 
of uncertainty and because of the complexity of the likelihood computation as weil as 
the enormous mass ofmarker data, alternative approaches have been proposed. These 
approaches, presented in the following subsection, do no longer assume a specific genet-
ic trait model and have in this sense to be thought of as nonparametric. We will focus 
on sib-pair methods for dichotomous traits. For a review of extensjons of the model-
free methods presented be!ow, for instance to quantitative traits, to larger pedigrees as 
well as for the analysis ofcovariates, multiple marker, and disease bei, we refer to Hol- 
mans [45]. 

5.1.2 Affected sib-pair methods 

The general idea underlying the subsequent statistical tests for linkage is that, regardless 
of the trait mode!, related affected individuals will share genes identical by descent 
(IBD) not only at trait bei with higher probability but also at marker bei linked to 
those trait bei. Thus, using a highly po!ymorphic marker, having both unaffected par-
ents and the affected sib-pair typed, it can be investigated whether the shared alleles at 
the marker locus of these two individuals are inherited from the same parent. Please 
note that only heterozygous parents are informative for sib-pair analysis (cf. Figure 5). 
If the marker is not linked to the disease gene, the pro babihities of a sib-pair sharing 0, 
1, or 2 albeles IBD are ‚ or ‚ respectively. If the marker is linked to the particubar dis-
ease locus, the probability of sharing alleles IBD is expected to be increased. However, 
the probabilities of sharing alleles IBD depend on the mode of inheritance. As shown 
by Suarez et al. [88], the probability of 2 alleles IBD increases above 0.25 for a dominant 
trait whereas the probabi!ity of 1 allele IBD rema ins dose to 0.5. Similarly, for a reces-
sive trait it can be shown that again as expected the probabi!ity of 2 alleles IBD in-
creases whereas the probability of 1 allele IBD drops below 0.5. 

Instead of investigating the number of alleles shared IBD, one can look at the num-
bers ofalleles identity by state (IBS). With this concept, it is ofinterest whether two in-
dividuals have a copy ofa particular allele in common, regardless ofwhom it was inher-
ited. Thus, IBS > IBD (cf. Figure 5). Although IBS yields less information it might be a 
way out of problems caused by incomplete polymorphic marker bei and/or untyped 
parents ([54]), but obviously methods based on IBS will be in general less powerful. Let 
us finally illustrate IBD and IBS for a sib-pair in Figure 5. 
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Exploiting the IBD approach leads to various statistical methods for testing for linkage. 
Some of the ciassical procedures in this field will be reviewed in the following without 
the claim of completeness and without dwelling into details. 

The maximum lod score test 
The MLS (maximum Iod score) test by Risch [73] is based on the maximum likelihood 
method and the lod score. Let us briefly review the basic idea of the MLS statistic. Let 
ce i  denote the prior probability that two siblings share i marker alleles IBD, i.e. a i  = 
Pr(IBD = i), and let z 1  be the posterior probability that two siblings share i marker al-
leles IBD given they are both affected, i.e. 

z i  = Pr(IBD = iD1 = 1,D2  = 1), i = 0,1,2, 

where D1 ,j = 1,2, refers to the disease phenotype of the two individuals with 1 being af-
fected and 0 else. The posterior probabilities z i  have to be estimated from the observed 
marker information. For an affected pair, let finaily w 1  be the probability of the ob-
served marker phenotypes, denoted as Ymarker,  of the sib-pair given that they share i 
marker alleles IBD, i.e. 

w, = Pr(YmarkejIBD = i), i = 0,1,2. 

With Wik denoting the corresponding probability for the kth pair, the likelihood of the 
observed data for the kth affected pair hence results in 

(21) Lk = Pr(Ymarker.k) = ZjWjk, 

which gives the joint likelihood for all N pairs as L = 1J Lj. 
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With the above probabilities the hypothesis of no linkage means that the prior and 
the posterior probabilities of sharing i marker alleles IBD should be equal, 
i.e. H0  : z = a with z = (20, 2 1, 22) and a = (a0,ai,c2), where the latter is equal to 
( ' ' ). This is to be tested against H1  : z a. The appropriate test statistic is based on 
the likelihood ratio which reads as 

(22) A = f ( ZiWk)/( 	iwik). 

Thus, we obtain the MLS statistic as TMLS = maxz  log 10  A. Taking into account that un-
der H0 TMLS is asymptotically X 2 -distributed and using again a small level of signifi-
cance of0.00l to prevent from false positive resuits, linkage can be declared if TMLS > 3 
which coincides with the bound proposed by Morton [64]. 

The posterior probabilities z can be estimated by maximum likelihood which yields 
the maximum of the lod score since its denominator is constant with respect to Z. For 
this purpose, the EM-algorithm by Dempster et al. [19] can be applied. This leads to the 
following recursive formula for z, 1 = 0, 1,2: 

(23) Z = 

In addition 

(24) wi = Pr(Ymarker IBD = i) 

- Pr(IBD = iYmarker )Pr(Ymarker ) 

- 	Pr(IBD = i) 

cx Pr(IBD = Ymarker). 

As it is sufficient to estimate the w, ratios instead of estimating the exact values, the test 
statistic (22) can be derived using the proportional relationship (24). Examples of how 
to calculate the lod score and possible extensions ofthis approach can be found in Risch 
[73]. 

The above test statistic does not take into account that not all possible vectors z cor-
respond to a genetic trait model. As shown by Holmans [44] the set of possible sharing 
probabilities for sib-pairs at each disease-susceptibility locus falls within a triangle 
bounded by the three lines z o  = 0, z 1  = 0.5, and z 1  = 2z0. Regardiess ofthe recombina-
tion fraction 9 this also holds for the sharing probabilities at the marker locus. Maxi-
mizing the lod score under this restriction leads to a more powerful test since it can be 
shown that the asymptotic distribution of the TMLS under the above triangle condition 
is a mixture of a and a x distribution (for details we refer to [44]). As demonstrated 
by Holmans [44] rejection ofthe null hypothesis ofno linkage if 

XT:000i 
(25) TMLS 

> 4.6 	
2.3 

gives a statistical test with a significance level very dose to 0.001 in all situations consid-
ered by the author. An alternative to the MLS test is given by the minimax test intro-
duced by Whittemore and Tu [103]. 
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The goodness-of-fit' test 
Blackwelder and Elston [9] consider different types of test statistics that are mainly 
based on the conditional distribution of the number of marker alleles shared IBD by 
sib-pairs conditional on the sibs' disease status. 

For deriving the X 2-statistic of goodness-of-fit we compare the observed numbers of 
sibs with i marker alleles shared IBD andj affected members, i,j = 0, 1, 2, with those ex-
pected under the null hypothesis of no linkage. Regardless of the disease status of the 
sibs, the expected proportions of sib-pairs sharing 0,1, or 2 alleles IBD are, as already 
mentioned above, ‚ ‚ and‚ respectively. Let r1  denote the observed numbers of sib-
pairs with i marker alleles shared IBD and j affected members and ii = rji the 
number of sib-pairs with j affected members. The corresponding expected numbers, in 
the following denoted as eji = njpji , can be calculated using the expected proportions as 

= e10 = n/4 and eß = n1 12. Since one would not usually sample unaffected sib-pairs 
we will restrict ourselves to the case no = 0. The corresponding null hypothesis of no 
linkage then reads as 

1 	 1 
(26) H0 :P22 =P12 =P2o =P10 = P21 =Pii = 

and the according X 2 -statistic can be calculated as 

(27) X2 (r1i'i) 

1=1 i=0 	3' 

which is approximately X 2-distributed with four degrees of freedom under the null hy-
pothesis. 

The genotypic test 
The genotypic test considers those sib-pairs only, where both have status affected. Thus, 
the null hypothesis can be formulated as H0 : P22 = p20 = P21 = 2 and the corre-
sponding test statistic (27) reduces to 

(28) X 	
(r22 - n2 /4) 2  (r21  - n2/2)2 + (r20  - n2 /4) 2  

genotypic 
= 

fl2/4 	
+ 	

n2 /2 	n2 /4 

which is approximately 2-distributed with two degrees of freedom. 

The two-allele test 
The two-allele test, originally proposed by Day and Simons [18] and Suarez et al. [88], 
only accounts for those affected sib-pairs who share two alleles IBD which gives the hy -
pothesis of no linkage as H0 P22 = P12 = 4. Depending on whether we further restrict 
ourselves to those sib-pairs where both are affected (fli = 0) or not (n i  0) this test sta-
tistic results in 

(29) 
x2- (r22 - fl2 14 ) 

1 - 	
n7/4 2 + (n12 - n1 /4)2 for ni 	0 

n i  /4 

2 	= (r22 - n2 /4) 2  
(30) Xa//e/e.2 	

fl2/4 	
for n1 = 0. 
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Under H0, both statistics are asymptotically x-distributed. 
Instead of (29) and (30) we may directly use approximately normally distributed test 

statistics for the one-sided testing problems given by the null hypothesis from above 
and the following alternatives of linkage H1  P22 > P12 if nl 0 and H1 : P22 > for 
n1 = 0, respectively. The test statistics can be calculated as 

(31) z1 

	

	
2212 with S=3(

—n,
1+I/16  for n1 0 
 fl2) 

	

P22 - 4 	2 	3 	for (32) Z2  = 	with 2 = 	 i = 0, 
S2 	 16n2 

where the variances of the nominator, s 2 and s, respectively, are derived under the null 
hypothesis ofno linkage. 

The mean test 

The last statistical test we want to discuss is known as mean test. lt compares the ob-
served mean number of alleles shared IBD given the disease status with their expected 
mean number under the null hypothesis where the latter equals 1. Thus, the null hypoth-
esis ofno linkage can be formulated as H0 p21 + 2P22 = P11 + 2P12 = 1. For caiculating 
the observed mean number given j individuals of one sib-pair are affected (Ii) we 
have to estimate the unknown conditional probabilities pji  = Pr(IBD = iD 1  + D2 = j) 
which yields 11  = r11 /nj  and thus TTiJ  = 0 + + 2 Pj2• 

For n1 0 the alternative hypothesis of linkage given as H1  P21 + 2P22> 

p11 + 2p12 can be tested using the following test statistic 

(33) Z3= P21+ 2P22 	h12P12 with 
53 	 \n1 	fl21 

Restricting again our analysis to sib-pairs with two affected members reduces the alter-
native to H 1  : P21 + 2P22 > 1 and 

(34) Z4=21+222 	with s=- 1--. 

	

54 	 2n2 

Under H0, (33) and (34) are approximately standard normally distributed, where the 
variances are again derived under the assumption of no linkage. 

Various of the above test statistics have been compared by Blackwelder and Elston 
[9] analytically, rather than by simulations, assuming a specific genetic trait model. 
Their resuits show that the mean test and the goodness-of-fit test come up with signifi-
cance levels very dose to the nominal ones, whereas the two-allele test tends to be liberal 
or conservative depending on the underlying sampling scheme. Furthermore, the mean 
test is demonstrated to be more powerful than the other two tests. Regarding the sam-
pling scheme, the authors recommend choosing sib-pairs with both members affected 
which is shown to be the most powerful strategy. Thus, there are mainly two reasons to 
base linkage analysis on affected pairs only, namely the potential misclassification of 
sibs regarding their disease status and the greater power obtained from affected sib-
pairs. But as the authors stress upon, these results heavily depend on the assumption 
concerning the IBD distribution in the absence oflinkage. 

JB 106. Band (2004), Heft 1 	 25 



Übersichtsartikel 	 HistorischerArtikel 	 Buchbesprechungen 

Further discussions of statistical tests for linkage in sib-pairs are found in [79], [49] 
and [35], where among others additional genetic restrictions are assumed to derive more 
powerful tests. 

5.2 Statistical methods in population-based studies 

In contrast to linkage, which concerns the physical distance of alleles at two loci, namely 
the marker and a hypothetical trait locus, it might be looked for association between 
the trait and a specific marker allele in population-based studies as for instance in case-
control studies for dichotomous traits. This statistical concept investigates whether a 
particular allele occurs more often in the affected members of a population than ex-
pected assuming independence between trait and marker locus. Let us for instance con-
sider insulin-dependent diabetes mellitus (IDDM), denoted as D1, and HLA-D3, de-
noted as M1. If the independence assumption holds the probability for their joint occur-
rence is given by the product of the marginal probabilities, i.e. 

Pr(Mi,Di) = Pr(Mi )Pr(Di) 

However, this antigen clearly occurs more frequently in affected persons, indicating a 
positive association. In general, association occurs if 

(35) Pr(M1 , D1 ) = Pr(M)Pr(D1 ) + ö j , 	0, 

where M denotes a marker gene with alleles M,, i = 1, . . . ‚ m, and D a disease gene with 
alleles D1 ,j = 1,... ‚n, respectively. In case that 6, = Pr(M1 ,D1 ) - Pr(M1 )Pr(D1) 0 

we speak of linkage disequilibnum. A positive value of &j  indicates that the marker and 
the disease allele jointly occur more often than expected under independence. Please 
note that this term is not to be mixed up with the physical concept of linkage introduced 
in the previous section. Linkage is not a necessary condition for linkage disequilibrium 
(to be discussed in more detail below) although for tight linkage, linkage disequilibrium 
retains over many generations because of the following dose relation between these two 
concepts of association and linkage. Let us denote with ör  linkage disequilibrium in the 
rth generation and with bo  in the initial population then it holds 

= (1 - 

This relation implies that for tight linkage, i.e. for 9 0 the initial linkage disequilib-
rium % remains nearly constant whereas in case of no linkage, i.e. 0 = 0.5, linkage dise-
quilibrium measured by 'r  decreases rather fast being e.g. only 30% of the initial value 
in the Sth generation. 

Of course, it has to be taken into account that the disease gene is in general not 
known and can therefore not directly be observed. The only information we have is the 
individuals' phenotype that probably indicates a potential disease gene. Thus, at the 
end it has to be searched for disease genes that are associated with the disease pheno-
type. 

Although such population-based studies are advantageous compared to family -
based studies in some respect, especially for diseases with late age of onset, where ob-
taining parental genotypes can be difficult, they also suffer from certain drawbacks. 
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Typically a large number of cases is required since often only a small gene effect can be 
observed. Moreover, the p-value of the corresponding statistical test for association has 
to be small to claim a positive effect due to the problem of multiple testing. Another 
point is, that the observed association between marker locus and disease phenotype can 
have several reasons. lt remains unclear, whether there is indeed linkage between the 
marker locus and the disease gene which helps to locate the position of the disease gene. 
Another possibility might be that the marker allele itself is presumably the disease allele 
and a candidate gene might be identified. Obviously, this is the ideal case since such an 
association cannot be eliminated by recombination. The most crucial expianation for 
an observed association is confounding for instance due to ethnicity resulting from Pop-
ulation stratification. 

The latter problem will be illustrated by the following fictitious example from the lit-
erature. Let us consider two dichotomous loci with alleles A, a and B, b, respectively, 
and two populations where within each population Hardy-Weinberg equilibrium holds. 
Let us further assume that in population 1 the probability for the occurrence ofA equals 
1, whereas Pr(B) = Pr(b) = 0.5. Thus, the probabilities ofthejoint occurrence ofthese 
two alleles are as follows: Pr(A, B) = Pr(A, b) = 0.5, Pr(a, B) = Pr(a, b) = 0. In Popu-
lation 2, it is, in contrast, assumed that Pr(A) = Pr(a) = 0.5 and Pr(B) = 1 which gives 
Pr(A, B) = Pr(a, B) = 0.5, Pr(A, b) = Pr(a, b) = 0. Supposed that in a population-
based study we observe an 50:50 mixture of both populations then Pr(A, B) = 
0.5, Pr(A, b) = Pr(a, B) = 0.25, Pr(a, b) = 0, and Pr(A) = Pr(B) = 0.75 which yields 

ÖA.B = Pr(A,B) - Pr(A)Pr(B) = 0.5 - 0.752 = —0.0625. 

Hence, we observe linkage disequilibrium in the mixed population although association 
of the two genes is absent in each single population. Population structure might thus 
lead to a false positive result, although as for instance Whittaker and Morris [102] point 
out that the question concerning the possible contribution of this phenomenon to the 
type 1 error rate of well designed case-control studies is still open where in their opinion 
'the impact ofpopulation structure is likely to be small in most cases'. 

Currently, two major approaches are discussed in the literature to cope with the 
problem of population stratification. Pritchard et al. [71], [70] propose a two-step proce-
dure. In the first step a model-based cluster analysis is performed on several unlinked 
marker to identify a potential population structure and to assign each individual to an 
unstructured subpopulation. In the second step, a statistical test for independence of a 
candidate gene and the disease phenotype is carried out, where the null hypothesis is ex-
tended to independence within subpopulations. The other approach to adjust for Popu-
lation structure, is known as genomic control ([21]). Based on a set of unlinked markers 
across the genome the effect of population structure is estimated. This estimate is then 
used to adjust the critical value for the test statistic at the candidate locus. 

To circumvent the above problems, especially to assure that the controls are drawn 
from the same genetic population as the cases, it might be advisable to perform family-
based association studies instead of case-control association studies. The related statis-
tical methods are based on comparing the frequencies that a particular allele has been 
inherited or not, respectively. We will focus here on two main methods, namely the hap- 
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lotype relative risk (HRR) and the transmission/disequilibrium test (TDT) as weil as 011 

modifications of the latter. 

The haplotype relative risk 
The haplotype relative risk (HRR) is introduced by Rubinstein et al. [75] and again 
picked up by Falk and Rubinstein [33]. The HRR uses virtual controls constructed of 
the parental alieles or haplotypes not present in the affected child. Hence, the HRR has 
on the one hand the advantage that cases and controis belong to the same genetic Popu-
lation and that the quaiity of controls is assured among others due to simultaneous typ-
ing. On the other hand it is more restrictive with respect to the necessary data as com-
plete parental genotype information is needed. This information may be, as already 
mentioned, difficult or even impossible to obtain for diseases with late age of onset. In 
addition, three persons have to be typed for one case-control pair. 

Provided that our sample consists of N complete famiiy trios with heterozygous par-
ents and one affected child the HRR can be derived as follows. Let us denote with M1 
the marker allele of interest and with M2 any other allele than M1 at this locus. Then, 
HRR is defined as 

(36) HRR= P' / P2 
lPi 1-132 

withp i  being the probability that the child carries M1 which means that at least one par-
ent has transmitted the particular allele to the child and P2  the probability that at least 
one of the non-transmitted parental alleles is M1 . The HRR can be estimated by 

(37) i—RR 
N12N21 

where N 11  to N22 denote the corresponding observed frequencies summarized in a 
2 x 2-tabie as depicted in Table 1. 

	

M1 	M2  1 E 
Affected child 	N1 1 	N12 	2N 

	

Fictitious control N21 	N22 	2N 

Table 1: Observed frequencies of transmitted and non-transmitted parental marker alleles to af-
fected child and fictitious control for N completely typed family trios; M1  marker allele ofinterest. 

Investigating the statistical properties of the HRR the recombination fraction as weil as 
the linkage disequilibrium have to be taken into account. Following Ott [66] and Knapp 
et al. [51] we consider two loci, the disease locus with D1 denoting the allele of interest 
and D2 the normal ailele and the marker locus with alleles M1 and M,. Let us denote 
with p the population frequency of D 1  and with q the population frequency of M1 . 

Then, in case of alleiic independence between M1 and D1 the probability of the haplo-
type M1 D 1  is Pr(Di, M1) = pq. Accounting for potential linkage disequilibrium we get 

Pr(Di ,Mi ) =pq+6, 

Pr(D2 ,M 1 ) = ( 1 — p)q — ö, 

Pr(D1 ,M2 ) =p(l —q) —6, 

Pr(D2 ,M2 ) = ( 1 — p)(l —q)+6. 
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Ott [66] derives the joint distribution of transmitted and non-transmitted marker al-
leles for one parent as summarized in Table 2, where also the recombination fraction 0 
is accounted for. The joint distribution of transmitted and non-transmitted marker 
genotypes in families with one affected child can be found in Knapp et al. [51] where it 
is assumed that no selection and/or mutation occurs in the production of gametes, that 
the Hardy-Weinberg equilibrium holds for the marker-disease genotypes, and that there 
is random mating regarding marker and disease genotypes. 

non—transmitted 
transmitted 	M1 	 M2 

1 	q 2 + 61 	q(1 - q) + 	 q + 
q(1-q)+ 8(0-q) 	(1—q)2— ä(l-q) 	1—q— 10) 

50 q+ 	 1—q--- 	 1 

Table 2: Joint distribution of transmitted and non-transmitted marker alleles for one parent. 

Thus, statistical independence of transmitted and non-transmitted alleles only hold if 
06 = 0, i.e. if 0 = 0 and/or 6 = 0. Based on the above joint distribution Ott [66] demon-
strates that on the one hand HRR = 1 if 6 = 0 or 0 = 0.5. On the other hand HRR 1 
only if 6 74 0 and 9 j4 0.5. Thus, equivalence ofthe relative risk (RR) and the HRR for a 
recessive trait only holds if 9 = 0 ([66]) which seems to be implicitly assumed by Falk 
and Rubinstein [33] in their proof of equivalence of the HRR with the RR. Knapp 
et al. [51] extend this result to arbitrary modes ofinheritance. They show that 

(38) IHRR - 11 < IRR - 11 if 9>0. 

The above inequality (38) means that the strength of association measured by HRR 
never exceeds the one measured by RR. That is in case ofno association (RR=l) the 
HRR also equals 1. In addition, for 9 = 0.5 the HRR always equals 1, irrespective of 6. 
Looking at the estimates ofRR and HRR, Knapp et al. [51] point out that there is even 
in case of a positive recombination fraction no tendency for the HRR to favor a false-
positive association compared to the classical RR. 

The transmission/disequilibrium test 
Spielman et al. [86] propose the so-called transmissionldisequilibrium test (TDT) as test 
for linkage between a marker locus and a potential disease locus which is not affected 
by the problems due to population stratification. lt is based on the idea, as already 
exploited by Ott [66] and discussed above, to look whether the marker allele of interest 
is transmitted or not to the affected child. But in contrast to the HRR, the paired infor -
mation is used, which resuits in a situation as demonstrated in Table 3. 

non—transmitted 
transmitted M1 	M2 	E 

mi 	
r 	 r 	Ni.12 	L 

'\21 	N22 	N2 . 

2N 

Table 3: Observed frequencies of transmitted and non-transmitted parental marker allele pairs to 
affected child for N completely typed family trios; M 1  marker allele of interest. 
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If the parent is homozygous at the marker locus the transmitted and non-trans-
mitted allele coincide and will lead to an entry to the cells denoted as N11 or N22, respec-
tively, depending on the parental allele. If the parent is heterozygous at the marker locus 
we get an entry to the N 1 2 cell if M is transmitted and M2 not and vice versa to the N21 

cell if M2 is transmitted and M1 not. The joint distribution of transmitted and non-
transmitted marker alleles for one parent can be found in Table 2 from which it becomes 
obvious that the TDT might be used as test for linkage with a genetic marker when Pop-
ulation association has been found as introduced by Spielman et al. [86] but also as test 
for association if linkage is present as pointed out by Elston [30]. To be more precise if 
there is no difference in the probabilities of transmitting the M1 or the M2 allele to the 
affected child the corresponding probabilities, denoted as P12  and P21,  should be identi-
cal with 

P12 = q(1 - q) + 

p21==q(l_q)+ 6(0 - q) 

Closer inspection ofp12 andp21 gives that they coincide if 6(1 - 0 - q)/p and 6(0 - q)/p 
equal zero. This is fulfilled in absence ofassociation (6 = 0) and/or of linkage (0 = 0.5). 
Thus, we get H0 P12 = P21 1S equivalent to H0 : 0 = 0.5 and/or J-I  6 = 0. Under H0 

and with r denoting the probability that a heterozygous parent transmits M1, it holds 
that N12 Bin(N 1 2 + N21 ; = 0.5) which leads to an exact binomial test or to the ap-
proximate McNemar-test with test statistic 

(39) TTDT - 
- (N12 - N2 1 ) 2  

tV 12 + 1 V21 
Under 1-10 (39) is approximately X 2 -distributed. The resulting test is known as TDT. Al-
ternatively, it may also be derived as a score test by exploiting the binomial distribution 
of N12 which gives the following log-likelihood lnL(T) 

lnL(r) = N121n() + N21 1n(1 - 

and thus the score-test as 

z 2  
TTDT = 

with 

- D 	an 	
- 

1ogL() 	d 	
- D2 logL(r) 

- DT 	 DT2  

which finaily leads to the above TDT statistic when being evaluated at = 0.5 ([102]). 
Let us briefly discuss its statistical properties as test for linkage in the presence of as-

sociation ([32]). The TDT can be applied without being restricted to certain modes of in-
heritance whenever the data are collected from families with one or more affected off-
spring or from pedigrees, where monozygotic twin pairs have to be excluded. lt keeps 
the level for the type 1 error even in case of population stratification. lt has, however, to 
be noted that it has no power if there is no association between the genes at disease and 
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marker locus since for 6 = 0 the probabilitiesp i2  andp21  always coincide, irrespectively 
of 9. In addition, the more association there is, i.e. the greater 6, the higher the power of 
the TDT. Furthermore, it should be mentioned that the TDT is also appropriate for 
testing whether the HRR differs from one. 

The TDT has been introduced for binary marker data and two parents with one af-
fected child typed. For extensions to families with more than one affected child we refer 
to the original paper by Spielman et al. [86], and for dealing with quantitative traits see 
Allison [5]. Further extensions can be found in the literature, some of them to be re-
viewed below, where Whittaker and Morris [102] point out that their approach for de-
riving the TDT as score-test is advantageous with respect to possible generalizations as 
for instance to multi-allelic marker bei. 

Regarding the latter let us mention Sham and Curtis [81] who provide a log-linear 
test for a multi-allelic marker locus with alleles M 1 ,. . . ‚ M which is based on the com-
parison of the marginal frequencies of the transmitted and non-transmitted alleles, 
i.e. N 1 ...... N,. and N.1, . . . ‚ N.,, and Schaid [77] who proposes the so-called general-
ized TDT (GDTD) and maxTDT. The former considers the differences between N. and 
N. 1  which gives an m - 1 dimensional vector of differences to be weighted with the in-
verse of the estimated covariance matrix to yield the GDTD. For the maxTDT the usual 
TDT is calculated for each allele i lumping all other alleles as 'non-i'. The maximum of 
the resulting m TDT statistics is chosen as the maxTDT test statistic. 

In addition, situations may arise where the parental genotypes are missing such that 
the TDT can no longer be calculated. One way out would be the sib-TDT proposed by 
Spielman and Ewens [85]. Under the null hypothesis of no linkage and no association 
the probability of transmitting a parental marker allele to a child is independent of the 
disease status of the child which means that the distribution of genotypes in the off-
spring should be independent of the disease status within families. This gives the justifi-
cation to derive a statistical test in case that the parents are not typed by comparing the 
numbers of M 1  alleles in affected children and in their unaffected sibs. Taking now the 
number ofM 1  alleles in affected sibs, i.e. conditional on the sibs being affected, leads to 
a test statistic which can be shown to be, appropriately standardized, asymptotically 
normally distributed. Analogously to the TDT, this test is only valid to test for associa-
tion if the minimal family configuration is used which means here one affected and one 
unaffected sib. 

Another possibility to tackle the problem of missing genotype data of the parents is 
to try to infer it from the genotype data of the children. Treating these inferred geno-
types as if they were really observed leads to possible bias as for instance to an inflation 
of the type 1 error rate as shown by Curtis [17]. To cope with this problem Knapp [50] 
derives a statistical test, known as reconstruction combined-TDT (RC-TDT), where the 
parental genotype information is reconstructed and then it is corrected for the bias 
pointed out by Curtis [17]. For this purpose, a multi-allelic marker and affected as well 
as unaffected sibs are needed. In addition, Knapp [50] gives a detailed list of those spe-
cific data situations where such a reconstruction is feasible. 

If only information is available on a biallelic marker for one affected child and one 
parent Sun et al. [89] propose the so-called l-TDT which is based on constructing a 
non-iterative odds ratio estimator derived from internal case-control studies. 
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Of course, the list of possible modifications of the TDT to cope with various situa-
tions such as missing data, quantitative traits, multi-allelic marker bei, or pedigrees 
cannot be exhaustively treated within this paper. More information on a variety of pos-
sible approaches can be found in Whittaker and Morris [102]. 

Finaily, let us again come back to the fact that the TDT can also be regarded as a 
test for association. For this purpose, however, only families with one affected child are 
to be used since deriving the distribution of the TDT statistic under the null hypothesis 
it has to be assumed that the transmissions from the parent to the affected child are in-
dependent which does no longer hold if a heterozygous parent transmits alleles to two 
affected children in the presence of linkage of disease and marker gene. lt has addition-
ally to be noted that in this situation the TDT is the same testing procedure as before 
but it can only test simultaneously for linkage and association and not solely for one or 
the other. That is, as Ewens and Spielman [32] stress upon, the distribution of the TDT 
statistic in the absence of linkage regardless of association is the same as in the absence 
of association regardless of linkage. 

6 Outlook 

Although the techniques presented above have been, at least partly, especially devel-
oped to cope with the particular demands of the study designs and the data structures in 
genetic epidemiology as for instance the affected sib-pair method, the haplotype relative 
risk, or the transmission/disequilibrium test, more sophisticated methods are still re-
quired to handle the further increasing complexity of the data. Due to new technologies 
and developments in genetics, genomewide scans have become feasible to map com-
plex-disease genes which makes it is necessary to derive statistical approaches of high-
resolution haplotype or multiple-marker linkage disequilibrium of complex diseases. In 
a recent paper, Fan and Knapp [34] investigate high-resolution linkage disequilibrium 
mapping methods based on haplotype maps or microsatellite maps. Statistical tests are 
derived to test for association between a disease bocus and two haplotype blocks or two 
markers, where these tests are further discussed regarding their appropriateness and 
their statistical properties. 

Besides these new developments that are only briefly addressed in this paper, other 
important fields could not be covered in full detail. One of the most obvious statistical 
problems in this field is due to possibly false positive associations resulting from the 
enormous number of statistical tests which are applied to check for potential candidate 
genes (cf. Section 3). As a typical example consider, say, five presumed disease genes 
and 20.000 candidate genes. If now for each single test of association statistical signifi-
cance is concluded at a p-value smaller than 0.05 then the probability to detect false po-
sitive associations is about 99.5%. Decreasing the individual level to values of about 
10 8  seems tobe appropriate to adjust formultiplicity. Ofcourse, other multiple adjust-
ment techniques might be thought of being less restrictive as adaptive designs ([52]), but 
nevertheless the required adjustment leads to rather small significance levels for the in-
dividual tests. An alternative way out is for instance provided by the method of sample-
splitting as suggested in [67]. 
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Another research topic relates to pedigrees consisting of more than two generations 
which leads to even more complicated data structures. Just to mention two examples let 
us come back to the lod-score, a likelihood-based method which can be exploited to test 
for linkage, and the TDT. Elston and Stewart [31] propose an algorithm for caiculating 
the likelihood recursively for pedigrees. Regarding the TDT, Martin et al. [62] derive an 
extension to account for pedigrees where, roughly spoken, the information of allelic 
transmissions on a pedigree level is summed up. 

In our presentation of the statistical methods to test for linkage or association, the 
focus was on qualitative traits. Quantitative traits may be treated by formulating ade-
quate regression models where it has to be checked whether linear models are sufficient 
(cf. [5], [72], [6], [36] and [3]) which would be the case if normality of the response vari-
able can be assumed. If, however, other exponential family distributions seem to be 
more adequate as underlying distributions, generalized linear models as introduced by 
McCullagh and Nelder [63] may be adapted. Higher fiexibility in modelling such traits 
can be achieved by exploiting neural networks as introduced in genetic epidemiology by 
Lucek et al. [61]. Regression models feature in any case the possibility to be rather easily 
extended to account for a polygenic component, shared family environment, multi-alle-
lic markers, further covariates such as environmental factors, and interaction terms. 
Especially the latter are of importance when investigating complex diseases since they 
allow for modelling gene-gene and gene-environment interactions. First approaches to 
account for such interactions can be found in [78], [105], [97], [83], [104], and especially 
based on graphical models in [82]. In our view, particularly the problem of adequately 
accounting for gene-gene and gene-environment interactions is of high practical rele-
vance and deserves further research. 
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Pluriharmonic maps, twisted loops 
and twistors 
J.-H. Eschenburg 

Abstract 

• Keywords and Phrases: Associated families, twistors, loop groups 
• Mathematics subjectclassification: 53C35, 53C43, 53C55; 22E67 

A minimal surface in euclidean space has two very special properties: (A) lt allows a 
twisted circle of isometric deformations preserving the tangent plane (Associated fa-
mily), and (B) it is just the real part ofa holomorphic map (Weierstrass representation). 
In fact, these two properties hold more generally for a pluriharmonic mapf of a simply 
connected complex manifold into euclidean space. If instead the target space is a Rie-
mannian symmetric space P, Property (A) essentially remains true, however by lack of 
global parallel displacements a parallel isomorphism between the tangent spaces of the 
associated family is needed. Consequently Property (B) gets more complicated:f arises 
by projecting a "superhorizontal" holomorphic map f into a certain infinite dirnen-
sional flag manifold (adjoint orbit) fibering over P. the "universal twistor space". The 
map f takes values in a finite dimensional sub-twistor space iff the associated family is 
trivial. 
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Introduction 

Among the most beautiful objects in Geometry are the minimal surfaces in 3-space. 
One of their spectacular properties is the existence of a (so called associatea') family of 
deformations preserving the interior distances and the surface normal while rotating the 
principal directions. The best known example is the deformation of the catenoid into 
the helicoid, cf. http: //www. ag j ku. at/verbieg_en.html. lt starts and ends with the 
catenoid which however is turned inside-out during the deformation. This is an example 
of a twisted loop of surfaces: lt comes back to its original shape, but oniy after applying 
a point reflection 011 the ambient space. The same phenomenon occurs when euclidean 
3-space is replaced with a symmetric space P, a Riemannian manifold with isometric 
point reflections at every point. Moreover, the minimal surface can be replaced by a 
harmonic map of a surface into P. In fact, a surface is only the easiest example of a com-
plex manifold, and we may equally weil consider a pluriharmonic map of an arbitrary 
complex manifold. Also these maps can be deformed by twisted loops, described as 
mappings into some space ofloops. These are holomorphic mappings ofa certain kind, 
and therefore pluriharmonic maps can be obtained from holomorphic data; the Weier-
strass representation for minimal surfaces is the best known example. 

Sometimes the situation is rigid and the twisted loop of deformations arises only by 
isometries ofthe ambient space; such pluriharmonic maps are called isotropic. Ofcourse 
they can exist only if the point reflections in P can be deformed to the identity; sym-
metric spaces with this property are called inner. This case is much simpler and has been 
studied for a long time, starting with the work ofCalabi [4]. lt is closely connected with 
the concept of a twistor (cf. [3]) which was first investigated by R. Penrose [13] in con-
nection to Relativity. Roughly speaking, a twistor is a complex structure 011 a tangent 
space of an inner symmetric space P, and the set of all twistors forms a fibre bundle over 
P. The original example studied by Penrose was the "classical" twistor fibration 
cEP3 - S"; any point of complex projective 3-space can be viewed as a complex struc-
ture 011 some tangent space of S 4 . Each isotropic pluriharmonic map into a symmetrie 
space can be lifted to some twistor space over P. The most classical twistor fibration 
was also the most successfull: With its help R. Bryant [1] gave an explicit description of 
all minimal spheres in S. 

In the present survey article we want to explain, following work of K. Uhlenbeck, J. 
Rawnsley and others, how the general (non-isotropic) case can also be understood in 
terms of a generalized twistor theory. This more general twistor space is infinite dirnen-
sional, a space of twisted loops, and since it contains all other twistor spaces, we would 
like to call it "universal". This is mainly a re-interpretation of weil known facts which 
however couid give a unified view point to the theory. Most of the details missing in this 
survey can be found in [71. We thank J. Dorfmeister for many useful hints and discus-
sion. 
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0 Harmonic maps 

A smooth manifold M is called Riemannian if there is an inner product on each of its 
tangent spaces, depending smoothly on the base point. For any smooth curve 
c [a,b} ---> MthelengthL(c) = fc'(t)dtisdefined,givingMthestructureofametric 
space which locally is approximated by euclidean space. All euclidean notions are ap-
plicable but have different properties. The main difference arises for the parallel displa-
cement of tangent vectors and the corresponding differentiation of tangent vector fields, 
the so called Levi-Civita derivative: The parallel displacement becomes path dependent, 
and the Levi-Civita derivatives with respect to two coordinate directions do not com-
mute; in fact their commutator is the basic invariant of Riemannian geometry, the cur-
vature tensor. 

Classical euclidean geometry is investigated by using substructures: lines, planes etc. 
In Riemannian geometry, the röle of lines is taken by geodesic lines which have parallel 
tangent vectors and which locally minimize the length and also the energy 
E(c) = J c'(t)1 2  dt among all curves connecting two given point. If metric complete-
ness is assumed, any two points arejoined by a geodesic line, like in euclidean geometry. 
But what are the substitutes for planes and higher dimensional subspaces? A plane in 
space contains the line passing through any two ofits points. In Riemannian geometry, 
a submanifold with this property is called totally geodesic. However such submanifolds 
are very rare unless we restrict attention to spaces of constant curvature which are lo-
cally just spherical, euclidean or hyperbolic spaces. 

Therefore we consider another generalization of geodesics to higher dimensions, 
using the energy minimizing property. If M and P are Riemannian manifolds and 
f: M - P a smooth map, the derivative of f at a point x e M is a linear map 
df: TM -* TJ()P between the corresponding tangent spaces ofM and P. The vector 
space Hom(TM, TJ()P) inherits an inner product and hence a norm from the inner 
products on TM and T ) P given by the Riemannian metrics; in fact 

(1) df 2  = df.ei 
2 + + 

for an orthonormal basis (ei,..., e,) of TM. For any compact subset M0  c M the en-
ergy or Dirichlet integral offM 0  is 

(2) c (fM0) 
= 1,10 

1 dfdv 

where dv, denotes the volume element of M at x determined by the Riemannian metric. 
A mapf: M -* P is called harmonic if the variation of its energy vanishes, 

(3) 6(fM 0 ) := E(fsMo)Lo = 0 ds 

for any compact subset M0  c M, wherej : M - P is any smooth variation off with 
f =J; outside M0 . As always, this variational principle is equivalent to its Euler differ-
ential equation: 

(4) L.f := trace Ddf = 0 
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involving the Levi-Civita derivative D on Hom( TM, TP) which is induced by the Rie-
mannian metrics on M and P. 

Harmonic maps exist for all dimensions of M. A harmonic map of the real line 
M = JR is just a geodesic. The next case when M is a surface is most interesting since 
then the energy (2) is invariant under conformal changes of the metric g on M. In fact, 
ifg is replaced with g1 2  for some smooth positive scaling function fi on M, then Idf I2 
takes up a factor (x) 2  while the 2-dimensional volume element dv, is divided by i(x) 2 , 
hence the energy remains unchanged. But an oriented surface with a conformal dass of 
metrics is nothing else than a 1-dimensional complex manifold where the complex struc-
ture J on the tangent space is the rotation by the angle 7i-/2. Hence harmonic maps 
f: M - P are already defined when P is Riemannian but Mis only a complex 1-dirnen-
sional manifold (a Riemann surface) without specified metric. We will see that locally all 
harmonic maps of Riemann surfaces into symmetric spaces can be obtained in terms of 
meromorphic functions on M as has been shown in [8]. These maps became interesting 
to physicists under the name a-models (cf. [6]). 

If dim M > 2, harmonic maps in general do not have such nice properties. However 
there is an interesting special case where the methods of complex analysis still apply. 
Let M be a complex manifold ofany dimension. A mapf: M - P is calledpluriharino-
nic iffC is harmonic for any complex 1-dimensional submanifold (complex curve) 
C c M. If we compare harmonic maps of surfaces to geodesics, then pluriharmonic 
maps play the iole of totally geodesic submanifolds, and they do not always exist as we 
shall see. However there are many interesting examples. Under certain conditions, a 
harmonic mapf: M - P of a Kähler manifold M is automatically pluriharmonic, in 
particular this holds if P has nonpositive curvature Operator (cf. [15], [11]). 

1 Associated families and symmetric spaces 

Another peculiarity for dirn M = 2 is the existence of so called associated families of 
harmonic maps. Consider the case P = 1R. Then (4) becomesf22 = —fii (where the in-
dices mean partial derivatives). This is the integrability condition for the differential 
form df o J =jjdxi  — fi dx 2 ; in other words, df o J is a closed ifff is harmonic. Hence 
locally df o J = df for another (so called conjugate) harmonic function f, and taking 
linear combinations, we obtain a circle of such mapsf9 = f cos 9 +f sin 9 with 

(5) df9 =dfoR9  

where R5 denotes the rotation by the angle 9 on the tangent space of M. This is called 
the associatedfamily off. This result can be extended in two ways. We may replace the 
surface by an arbitrary complex manifold M and put R0 = 1 cos 9 + J sin 9 where 1 is 
the identity and J the complex structure on TM. Moreover we replace 1R by any sym-
metric space P. 

A Riemannian manifold P is called symmetric if for every p E P there is an isornetry 
sp  : P - P fixingp with derivative (ds) = —1; this is calledpoint reflection or symme-
try at p. Thus s1 , reverses any geodesic line passing through p. As a consequence, the 
group of isometries 1(P) acts transitively on P since any two points o, q E P can be 
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joined by a geodesic segment c: [0, 1[ - P, and we can map o to q by the point reflec-
tion s1., where p = c() is the midpoint of c. Locally, symmetric spaces are characterized 
by the fact that the curvature tensor 

R(X, Y)Z= [D x ,D y ]Z—D[xy iZ 

(acting on tangent vector fields X, Y, Z on P) is parallel on P, je. it commutes with the 
parallel displacements on P. On any tangent space TP it defines a trilinear map (a so 
called Lie triple product) R" which completely encodes the local structure of the sym-
metric space P. In particular, any isometric linear map b: TP -* TqP preserving R" 

(i.e. R"(X,Y)bZ = R(X, Y)Z) "extends" to an isometry g E 1(P) with g(p) = q 
and dg = 0 . Forp = q any such 0 will be called an automorphism of TP; it extends to 
an isometry ofP fixing the pointp. 

Equation (5) as it stands can hold only for P = IR where all tangent spaces are iden-
tified by global parallel dispiacement. But otherwise df, and d(fo)  take values in differ-
ent tangent spaces, Tf ()P and TJ)P. Thus we replace (5) by 

(6) df8 = o odfoRo  

where (x) is an isomorphism between TJ()P and Tf9 ()P for any x e M which is as 
nice as possible: 

• 	9 (x) is a linear isometry preserving the curvature tensor R", 

• 1 9 (x) is parallel with respect to x. 

A family of smooth mapsf9  : M ~ P satisfying (6) will be called an associatedfamily of 
f = fo. A main result of[10] characterizes pluriharmonic maps by associated families: 

Theorem 1. Let M be a simply connected complex man (fold and P a symmetric space 
ofnonpositive or nonnegative curvature. Then a smooth mapf: M -* P ispluriharmonic 

(fand only (fit has an associatedfamilyf6. This is uniquely determined up 10 isometries 
ofP. 

From the uniqueness we can derive more properties of the associated family. Since 
Ro+. = —R9, we obtain a solution (fo, o-=) of(6) for the rotation angle 8 + 7T from a 
solution (fa, ) for 8, namely 

(7) fo-f= =fs, 	8+7 = 

In the second equation we may replace — 6 (x) by o(X)s/() obtaining 

(8) = 

since 9 (x) can be considered as an isometry ofP sendingf(x) ontofo (x) and Sf() acts 
as —1 on TJ()P. 

A dass of particular interest is formed by the so called isotropic pluriharmonic maps 
whose associated family is constant:fo  =f for all 8 (up to isometries ofP). Then (6) be-
comes 

(9) df= 5 odfoR9 , 

and this time each e o (x) is an isometry preserving R' and mapping Tf( x)P onto itself 
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We can choose 8 	9 (x) to be a one-parameter group, a homomorphism of the unit 
circle: If (f, 	and  (f, ') are solutions of (9) for 9 and 9', then (f, Gg') is a solu- 
tion for 9 + 9' (since R O+or = R 0 R 0,) and hence we can assume 

(10) 	= 0O" 	7r = —I 

2 Twistor lifts 

Twistors (cf. [13], [3]) have been introduced in order to apply complex analysis to non-
complex synimetric spaces. On a complex (so called hermitian) symmetric space there is 
a complex structure on any tangent space T1,P which by definition is a Lie triple auto-
morphism j with j2 = —1. In complex coordinates, j is just the multiplication by 
= vI, and it is invariant under parallel displacements. But ifno such complex struc-

ture is given, the idea is to consider the set of all possible complex structures on T P P. 
Any of these belongs to a one-parameter group of automorphims of TP called twistors 
atp. More precisely, if G = 1(P)°  denotes the identity component of the isometry group 
1(P), a twistor at p is by definition a smooth homomorphism r: S 1  = IR/(2r7Z) - G 
fixing p and passing through the point reflection s,, = r,; the corresponding complex 
structure on TP is given byj = 7, 12 . Of course this is possible only if the point reflec-
tions belong to the identity component of the isometry group; symmetric spaces with 
this property are called inner. E.g. the even dimensional spheres are inner, hut not so the 
odd dimensional ones. 

A twistor space Z over P is the conjugacy dass of some twistor 'r0  within G. If r is a 
twistor at p, then grg '  is a twistor at gp, and since G acts transitively, Z contains twis-
tors at all points of P. Thus Z fibres over P with fibre Z, being the set of all twistors at 
p; let p : Z -+ P be the projection. Further Z is a complex manifold: Every r E Z defines 
a complex structure on TP(T) P which extends canonically to a complex structure 011 

TT Z. In fact Z can be viewed as an adjoint orbit (an orbit of the adjoint representation 
of G on its Lie algebra g) since the one-parameter group is determined by its infinitesi-
mal generator in g, and it is well known that all adjoint orbits are complex manifolds 
(quotients of complex Lie groups by closed complex subgroups). 

The easiest example is the 4-dimensional sphere P = S4  c 1R5  where the twistors 
- E Z,, are one-parameter groups of orthogonal matrices fixing p and acting by oriented 

planar rotations 011 two orthogonal planes inp-. Any suchT is conjugate under SO(5) 
to (7-, ) o  = diag (1, p, po) with p = more precisely, Z is the conjugacy dass 
of in SO(5). The stabilizer of is the subgroup U(2) ci SO(4) ci SO(5) and hence 
Z SO(5)/U(2) is complex projective 3-space EP3  (recall that SO(5)= PSp(2) ci 
PU(4)actstransitive1yonLP 3  = PU(4)1U(3)andPSp(2)fl U(3) = U(2)). 

Also in the general case twistors are composed by planar rotations which however 
may have different velocities: The tangent space p = TP is an orthogonal sum of sub-
spaces Pk 011 which - acts by planar rotations pko•  But since = —1, the weights k must 
be odd integers. Following [3], we cahl a twistor r canonical if the lowest weight space Pi 
generates p as a Lie triple algebra, i.e. p = Pi + R"(p 1 , Pi 'Pi) + ... The space p = TP 
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can be embedded naturaily into TTZ as the horizontal subspace for the fibration 
p : Z - P, and the subspace Pi  c p c TTZ will be called superhorizontal. 

Now letf: M P be an isotropic pluriharmonic map which is full, i.e.f(M) does 
not belong to a proper totally geodesic subspace of P. Then by the resuits of the pre-
vious chapter (x) = (8 o (x)) is a twistor atf(x) for any x E M and thus defines a 
map I M - Z with p o b = f, the so called twistor lft. From the paralielity of 
x F-* (x) we see that dcI takes values in the horizontal bundle of the fibration 
p : Z - P ("horizontal" and "parallel" are just the same notions for the principal bun-
dle G - P and its associated bundles.). More precisely, using (9) we see that d(b takes 
values in the superhorizontal subbundle on which the twistor has weight one and hence 
agrees with the complex structurej (more precisely, with the rotation group generated 
byj); this shows that P is also holomorphic. Vice versa it is easy to see that the projec-
tion of a superhorizontal holomorphic map is an isotropic pluriharmonic map. Thus we 
obtain: 

Theorem 2. Isotropic pluriharmonic mapsf : M - P are precisely the projections of 
holomorphic superhorizontal maps into twistor spaces over P. 

3 Loopspacelifts 

Now let us consider an arbitrary pluriharmonic map f: M -* P. Fixing a base point 
p e P we have a canonical projection 7r : G - P, ir(g) = gp where G is the identity com-
ponent of the isometry group of P. If we also fix a suitable basis B of the vector space 
TP, then g(B) isa basis for TgpP and hence G can be considered as a certain set ofbases 
(frames) of the tangent spaces of P. On a contractible open subset M' c M, the mapf 
can be lifted to G, yielding a smooth map F: M' - G which projects ontofM', i.e. 
f(x) = F(x)p. This is called a localframing off since it provides each tangent space 
TJ()P with a frame F(x). Obviously, two such framings F,F differ by a map into the 
isotropy group K = {g E G; gp =p}, more precisely, F = FFK  for some smooth map 
FK : M' - K. 

We have already seen that pluriharmonic maps come in associated one-parameter 
families f satisfying (6). A framing F: M' - G off defines also a framing F0 = 
forfo. More generally we may put 

(11) Fo=gooF 

for an arbitrary isometry go  e G, replacingfo  with gof.  We will use this freedom as fol-
lows: We fix base points x0  E M andp =f(x0 ) E P. We may assume F(x0 ) = 1, and we 
choose go = o(xo) - ' whence Fo(x,) = 1 for all 8. Recall that F(x) e G mapsp tof(x) 
and hence conjugates the point reflections s1  and Sf(x). From (8) we obtain g. = spgo  
and hence F(x) = go+7 o+ (x)F(x) = sgeo (x)sf(X) F(x) = sF0(x)s, thus 

(12) Fo+ (x) = a(Fo (x)) 

where a E Aut(G) denotes the conjugation by st,. Therefore each map 8 F-4 F9(x) be-
longs to the twisted loop group 

(13) Ü, = A(G) = {7: S' 	G; o+ = a(yo)} 
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where the loops y  are sufficiently regular (e.g. of dass H'). Thus we have obtained a 
map .T: M' - G with .F(x) 8  := F9(x). Ifwe had chosen another framing F = FFK, we 
would have got a corresponding map .T = J'FK. By projecting .F to the coset space 
Z = G/K (where K c G denotes the subgroup of constant loops in the isotropy group 
K c G) we get a map F = .FK which is independent of the choice of F and hence is 
giobaily defined on M. This space Z fibres over P where the projection f: Z -* P is the 
evaluation of the loop at the initial point: ftyK) = yop. Now we have constructed a 
smooth map P: M - Z which is a lift off: M - P, je. o P =f. 

This loop space Z is again a complex manifold, a quotient of two complex loop 
groups: Z = Gc/G+ where  GC  is the set of loops into the complexified group' GC  and 
G is the subgroup of those : S' - GC such that both 'y, -y extend to analytic maps 
on the unit disk in C. If G' is a matrix group, we may write each -y e GC  as a matrix 
Fourier series 7o = >Ik7Z Ake ° , and -y E G+ iff Ak = 0 for k < 0 and the same is true 
for 'y . lt can be shown that F M - Z is holomorphic; in fact one constructs a hob-
morphic lift into GC  using the parallelity of '1o•  Moreover it foliows from (6) that the dif-
ferential of .F takes values in a finite dimensional homogeneous subbundle of the tan-
gent bundle of Z, which at the base point consists of the simplest possible (finite) Four-
ier series Ae' 9  + Ae'° ; this will be called the superhorizontal subbundle. Vice versa, we 
can characterize pluriharmonic maps by this property. Thus we arrive at a theorem 
which looks quite similar to the one in the isotropic case: 

Theorem 3. General pluriharmonic maps f: M - P are precisely the projections of 
holomorphic superhorizontal maps into the loop space Z over P. 

Remarks. 1. In fact, the differential df can be described in terms of a pcvalued  ho-
lomorphic differential form on M, called nor,nalized potential. If M is a surface, this 
may be an arbitrary meromorphic 1-form, but in higher dimensions an integrability 
condition is needed (curvedflat condition). In [8] it was shown how to obtainf back 
from the potential. This formula allows to compute explicit examples. 

2. The boop group GC  acting 011 Z preserves the set of holomorphic superhorizontal 
maps .F: M - Z. Hence it induces an action on the set ofpluriharmonic maps which is 
a special case of the so called dressing action. 

4 The "universal iwistor" 

Can the previous construction also be viewed as a sort of twistor lift? To answer this 
question we first try to understand the twistor construction as a special case of the boop 
space lift. This is not difficult since both times we have used 	In the isotropic case, 

o (x) is a one-parameter group conjugate to a fixed twistor r for each x E M, and from 
F9 = ( s(x 0 )) 	0F we obtain (after a slight modification of our frame F) 

(14) .T=Fr 1  

Recall that 2 = ÜIK and Z = Ad(G) -  = G/H where H is the centralizer of r. Moti-
vated by (14) we consider the group homomorphism 

(15) p:GG, ggr 
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The loop p(g) is constant ifand only ifg commutes with i - , i.e. g e H. Thus p induces 
an equivariant embedding 5- : Z = G/H -+ Z = G/K. This is holomorphic and pre-
serves superhorizontality. In fact, dp maps a (complex) eigenvector X of Ad() corre-
sponding to an eigenvalue ell into the corresponding Fourier monomial: 
(dp(X)) 9  = Ad(To)X = eikOX .  

The link between Z and Z becomes even more apparent if we consider Z like Z as 
an adjoint orbit. In fact, denoting the Lie algebra of G by (consisting of the loops in 

we get an embedding Z - ‚ '-yK -y'y where 'y' = -yo . This can be considered 
as an adjoint orbit if we enlarge the Lie algebra by an element 6 with ad(6) := ' for 
any (sufficiently regular) e . Assuming G to be a matrix group we can represent each 
'y e G as a multiplication Operator and 6 as a differential operator on matrix valued 
loops. Thus 

(16) Ad(7)6 = 	= 6- 

and the mapping yK F- 6 - 'y'-y' is an embedding of Z as the adjoint orbit of 6 in the 
enlarged Lie algebra. 2  Comparing with Z = Ad(G)'r we conclude that the one-para-
meter group generated by 6 should be a "universal twistor" f. This does not belong to G 
itseif but to the automorphism group Aut(); it is the shift of the loop parameter: For 
any E we have 

(17) = 

Lenuna. All twistors 'r acting an g by the adjoint representation are restrictions ofthe 
"universal twistor" on ‚ moreprecisely, 

(18) dpT  o Ad(r) = o dp.. 

Proof. We have g' = kk with Ad(5)X = e1X for any X e Qk On the other 
hand, for any X e gk we have (dp T (X)) = H-* e °X) = e'dp(X) which proves 
the claim. 

We sum up our discussion by the following 

Theorem 4. Any pluriharmonic map f: M - P is the projection of a holomorphic 
superhorizontal map P into the universal twistor space Z. The map f is isotropic iff 
.F(M) is containedin one ofthefinite dimensionaltwistor spaces Z c Z. 

Remark. There is an important difference between the finite dimenisonal twistors 
and the universal one : The "universal twistor" does not act on P but on loop spaces, 
and therefore it is not a twistor in the sense of Section 2. But we may pass to the infinite 
dimensional symmetric space P = G/K which consists of the loops in P, and clearly is 
a twistor on P. This space also fibres over Pvia the evaluation at the initial point, and 
the loop space fibration factorizes over P as Z -+ P - P. 

Notes 

1 We can think of G as being a real matrix group defined by algebraic equations which may be 
complexified. 
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2 This is the corresponding twisted affine Kac-Moody Lie algebra without the central extension 
which is not essential for the adjoint representation, cf. [14]. 
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J. Saranen, G. Vainikko 

Periodic Integral and 

Pseudodifferential 

Equations with Nume-

ric Approximation 

Berlin u. a., Springer, 2002, 452 5., 
EUR 79,95 

Die Analysis von Integralgleichungen in al-
len ihren Variationen und die dazu gehören-
de numerische Analysis ist ein weitgefächer-
tes und seit jeher aktuelles und stimulieren-
des Gebiet. Daher ist es verständlich, dass 
ständig Bücher erscheinen, die sich diesen 
oder jenen Aspekten der Theorie und ihren 
Anwendungen annehmen. 

Die Autoren des zu besprechenden Buches 
erklären in der Einleitung, dass dieses als 
Lehrbuch für graduierte oder postgraduierte 
Studenten, aber auch als wissenschaftliche 
Monographie angesehen werden kann. Der 
Inhalt gruppiert sich um die klassischen Inte-
graloperatoren, wie sie bei der Behandlung 
von ebenen Randwertproblemen in Gebie-
ten mit glattem Rand mittels der Randinte-
gralgleichungsmethode entstehen (Laplace-
und Helmholtzgleichung, biharmonische 
Gleichung, usw.). Das Buch ist in sich ge-
schlossen konzipiert und enthält ausschließ-
lich bewiesene Resultate. Die ersten fünf Ka-
pitel bieten klassisches Material und dienen 
als Einführung in die Randintegralglei-
chungsmethode für die oben genannten 
Randwertprobleme. Hier werden auch die 
Hilfsmittel bereitgestellt (einschließlich der 
Theorie der Fredholmoperatoren), auf die 
immer wieder zurückgegriffen wird. In den 
Kapiteln 6 und 7 werden schließlich entspre-
chend eine Klasse allgemeiner periodischer 
Integraloperatoren behandelt (deren Kerne  

auch periodische Distributionen sein kön-
nen) und periodische Pseudodifferentialope-
ratoren untersucht, wobei diese beiden Kapi-
tel eng miteinander verzahnt sind und den 
Rahmen bilden, in dem die eingangs erwähn-
ten Randintegraloperatoren untersucht wer-
den. Diese Analysis wird fast ausschließlich 
in der Hilbertraumskala der periodischen 
Sobolevräume H'(ji E IR) vorgenommen. 
Ein Grund dafür dürfte sein, dass die nume-
rische Analysis, der fast die gesamte zweite 
Hälfte des Buches gewidmet ist, in der ge-
nannten Skala noch relativ einfach ent-
wickelt werden kann. Eine Ausnahme bildet 
das 4. Kapitel, in dem der wichtige Cau-
chysche singuläre Integraloperator in den 
periodischen Hölderräumen C(0 < a < 1) 
studiert wird. Diese Resultate werden nur 
herangezogen, um diesen Operator in den 
Räumen HP zu erklären. Dieser Umweg 
kann vermieden werden, wenn man eine ele-
gante Idee benutzt, wie sie im 1. Kapitel des 
bekannten Buches von 1. Gohberg und N. 
Krupnik [2] zu finden ist. Uberdies unter-
läuft den Autoren im Beweis des (korrekt 
formulierten) Lemmas 4.1.5 ein Lapsus: Der 
Beweis ist bemerkenswert kurz - und nicht 
schlüssig. Sie benutzen die falsche Behaup-
tung, dass C(F) in C'(F) (0 < cs < 1) dicht 
ist. Ansonsten ist dieser Teil des Buches, der 
der Analysis gewidmet ist, durchaus lesbar. 
Anfänger oder Einsteiger werden schätzen, 
dass dieser in sich geschlossen ist und alle Be-
hauptungen bewiesen werden. Kritisch ver -
bleibt anzumerken, dass jegliche Hinweise 
auf den möglichen Ausbau der gebotenen 
Theorie fehlen. Beispielsweise wird nicht er -
wähnt, dass periodische Pseudodifferential-
operatoren auch in der wichtigen Skala der 
Hölder-Zygmundräume studiert werden 
können. 

Ab dem 8. Kapitel wird auf die numeri-
sche Analysis periodischer Integralgleichun-
gen eingegangen. Zunächst stehen poly -
nomiale Verfahren im Vordergrund (Galer -
kin- und Kollokationsverfahren, volidiskre-
tisierte Versionen). Auch hier wird die gebo-
tene Theorie mit vollständigen Beweisen 
versehen. Breiten Raum nehmen Fragen 

JB 106. Band (2004), Heft 1 



Übersichtsartikel 	1 	HistorischerArtikel 	Buchbesprechungen 

ein, die sich mit schnellen und effizienten 
Algorithmen befassen. In diesem Punkt leis-
tet das vorliegende Buch für die betrachte-
ten Gleichungen mehr als andere einschlägi-
ge Monographien. Das 13. Kapitel ist aus-
schließlich Splineapproximationsverfahren 
gewidmet, wobei sich die Autoren hier auf 
die Untersuchung von Stabilitäts- und Kon-
vergenzuntersuchungen einschränken. Als 
Splineräume fungieren Räume glattester 
Splines auf äquidistanten Gittern, und die 
Untersuchungen stützen sich maßgeblich 
auf gewisse (wohlbekannte) Rekurrenzbe-
ziehungen für die Fourierkoeffizienten die-
ser Splinefunktionen. 

Diesen der numerischen Analysis gewid-
meten Teil sehe ich weitaus kritischer. Es 
werden hier Themen behandelt, die den 
Autoren nahe stehen. Dies ist zweifelsohne 
zu akzeptieren. Nicht zu akzeptieren ist 
aber, dass der Eindruck vermittelt wird, 
dass es neben diesen Themen keine wei-
teren gibt bzw. damit die Thematik im We-
sentlichen abgehandelt ist. In Wirklichkeit 
stellen die Ausführungen der Autoren nur 
ein kleines Segment in der heute bekannten 
numerischen Analysis für die betrachteten 
Operatoren und ihrer Modifikationen dar. 
Selbst für dieses Segment sind die Litera-
turhinweise höchst eigenwillig gestaltet. 
Das Gleiche gilt für die geschichtliche Ein-
ordnung. Damit nehmen die Autoren, ob 
bewusst oder unbewusst, eine Wertung vor. 
Einige exemplarische Beispiele seien dazu 
angeführt: 
• Im 11. Kapitel werden gewisse Integral-

gleichungen auf nichtgeschlossenen Kur-
venstücken betrachtet und über eine Pe-
riodizierungstechnik auf den periodischen 
Fall zurückgeführt. Diese Methode ist 
ziemlich restriktiv und spielt für Integral-
gleichungen auf nichtgeschlossenen Kur-
ven eine Außenseiterrolle. Für solche Glei-
chungen gibt es andere und sehr anpas-
sungsfähige Methoden, die das Randver-
halten der Lösungen (und dies kann ziem-
lich kompliziert sein) in geeigneter Weise 
berücksichtigen. Den Autoren ist dies si-
cher bekannt; warum teilen sie dann dies 

ihren Lesern nicht mit, und warum fehlt je-
der Hinweis auf das Werk von P. Jung-
hanns und seiner Koautoren (siehe 
MathSciNet)? 
Einen knappen geschichtlichen Abriß (der 
bis etwa 1990 reicht) kann man zu der im 
Kapitel 11 behandelten Problematik in 
den „Notes and comments" zu den Kapi-
teln 9 und 12 in [5] finden. 

• Im Punkt 12.8 wird auf Lokalisierungs-
techniken eingegangen und als Quelle auf 
eine 1985 erschienene Arbeit von Arnold 
und Wendland verwiesen. Zu dieser Zeit 
waren lokale Prinzipien in der numeri-
schen Analysis bereits wohlbekannt; die 
Ausarbeitung dieser Technik ist mit ande-
ren Namen verknüpft. Man vergleiche et-
wa die „Notes and comments" zu Chapter 
3 in [1], Chapter 7 in [2] und „Notes and re-
ferences" zu Chapter 4 in [4]. Ferner muß-
te ich mit Befremden feststellen, dass die 
frühen Arbeiten von S. Prößdorf und sei-
nen Mitarbeitern zu Splineapproximati-
onsverfahren in den Literaturangaben 
zum Kapitel 13 völlig ausgeblendet wur-
den. So galt die Arbeit S. Prößdorf, G. 
Schmidt „A finite element collocation me-
thod for singular integral equations", 
Math. Nachr. 100 (1981), 33-60, als 
Durchbruch. 

• Im Kapitel 13 findet sich nirgends ein Hin-
weis, dass es zu dem dort bevorzugten Zu-
gang interessante und weitreichende Alter-
nativen gibt, wie sie etwa in [5], Kapitel 10 
und 13, dargelegt wurden. 

• In Anwendungen treten häufig Systeme 
von Integraigleichungen auf. So können 
die in der Mechanik wichtigen singulären 
Integraigleichungen mit Konjugation auf 
solche Systeme zurückgeführt werden. 
Dieser Umstand wird mit keinem Wort er-
wähnt. Hinzuzufügen ist, dass in diesem 
Fall häufig neue und nichttriviale Uber-
legungen angestellt werden müssen. 

Abschließend möchte ich vermerken, dass 
dieses Buch durchaus als Einführung in die 
im Titel genannten Gegenstände dienen 
kann, aber keineswegs den gegenwärtigen 
Forschungsstand einigermaßen ädequat wie- 

2 	 JB 106. Band (2004), Heft 1 



Übersichtsartikel 	 HistorischerArlikel 	Buchbesprechungen 

dergibt und auch nicht als Orientierungshilfe 
dienen kann. 
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HARMO IC MAPS, 
COr\SERATIOS LAWS 
AND MOVI\(, FRAMES 

F.Hßein 

Harmonic Maps, 
Conservation Laws 
and Moving Frames 
(Cambridge Tracts 
in Math. 150) 

Cambridge University Press, 2002,264 S., 
£47,50 

James Eells beginnt sein Vorwort zu Hleins 
Buch „Harmonic maps, conservation laws 
and moving frames" (fortan HCM) mit den 
folgenden Zeilen: „ Harmonic maps between 

Riemannian manifolds provide a rich display 
of both d(fferential geolnetric and analytical 
phenomena. These aspects are inextricably in-
tertwined - a source ofundiminishedfascina-
tion." 

Eine große Anzahl von Vorträgen, Bü-
chern und Arbeiten über harmonische Abbil-
dungen fangen mit ähnlichen wenn auch 
auf eine etwas nüchternere Art formulierten 
- Außerungen an. In den meisten Fällen wer-
den jedoch sehr schnell die geometrischen 
und analytischen Aspekte entkoppelt, und 
man konzentriert sich dann auf einen der bei-
den Aspekte. Bemerkenswert an HCM ist, 
dass hier beide Aspekte ausführlich betrach-
tet werden. 

Nach einer gründlichen Einführung in das 
Fachgebiet präsentiert der Autor ein Anzahl 
neuer Resultate über harmonische Abbil-
dungen und aus verwandten Fachbereichen, 
deren Beweise teilweise raffinierte Techniken 
aus der Analysis und der Differentialgeo-
metrie verwenden. In allen Fällen werden die 
notwendigen Techniken im Buch ausführlich 
erklärt, motiviert und entwickelt; es werden 
nicht nur im Wesentlichen eigenständige Be-
weise einer Reihe von neuen, tiefgreifenden 
Ergebnissen auf diesem Gebiet präsentiert, 
sondern man gewinnt auch eine Wertschät-
zung für eine Anzahl von Techniken, die 
nicht unbedingt zum Standardrepertoire ge-
hören. Darüber hinaus werden auch weitere 
mögliche Anwendungen dieser Techniken 
vorgestellt. 

Das Buch befasst sich mit harmonischen 
Abbildungen. Betrachtet man zwei Rie-
mann'sche Mannigfaltigkeiten (M, g) und 
(Af,h), so ist eine harmonische Abbildung 
u: M -* .1V ein kritischer Punkt der Dirich-
let-Energie 

f Du au' dvol E(u) := 2 1g (x)h,(u(x)).--- 5 ,. 

Genauer gesagt: Unter relativ milden 
Voraussetzungen an M und ./V lässt sich 
auf natürliche Weise der Sobolevraum 
H' 2 (M,jV) definieren. Eine schwach har-
monische Abbildung ist ein kritischer Punkt 
von E im Raum H' 2  (M,Af). Ist ein solcher 
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kritischer Punkt darüber hinaus zweimal 
stetig differenzierbar, so nennt man ihn eine 
(klassische) harmonische Abbildung. Eine 
derartige Abbildung u löst die zu E assoziier-
te Euler-Gleichung, welche in lokalen Koor-
dinaten um xo  in M und u(xO) in .Af gegeben 
ist durch 

Q/3 	i 	auc9U 
L g U +g (x)FJk(u(x)) ----- =O. 

Hier ist i g  der Laplace-Beltrami Operator 
auf M und die Fjk  sind die Christoffel-Sym-
bole zweiter Art auf der Koordinaten-
umgebung von u(xo). Harmonische Abbil-
dungen können somit als Verallgemeinerun-
gen sowohl von harmonischen Funktionen 
als auch von Geodätischen interpretiert wer -
den. In verschiedenen Teilgebieten der Phy-
sik sind harmonische Abbildungen von Inte-
resse; einige von diesen physikalischen Bezü-
gen werden in der Einleitung von HCM kurz 
besprochen. 

Die Standardtheorie der elliptischen Sys-
teme zeigt, dass stetige schwach harmonische 
Abbildungen glatt und deshalb (klassische) 
harmonische Abbildungen sind. Ein Schwer-
punkt der Forschung über harmonische Ab-
bildungen ist die Frage, ob schwach harmo-
nische Abbildungen ipso facto glatt sind. Im 
Allgemeinen gilt dies nicht: So ist zum Bei-
spiel die radiale Projektion von der n-dimen-
sionalen euklidischen Kugel auf ihren Rand 
für n > 3 eine schwach harmonische Abbil-
dung, die im Nullpunkt unstetig ist. Unter 
geeigneten Einschränkungen sind schwach 
harmonische Abbildungen jedoch glatt, zum 
Beispiel wenn die vorgebene Bildmannigfal-
tigkeit .1v' eine nicht-positive Schnittkrüm-
mung aufweist, oder wenn das Bild der 
schwach harmonischen Abbildung in einer 
geodätisch konvexen Teilmenge von A ent-
halten ist. 

Ein weiterer Forschungsschwerpunkt be-
fasst sich mit der partiellen Regularität von 
schwach harmonischen Abbildungen. Hier 
sind Eigenschaften der singulären Menge, 
d. h. der Menge der Unstetigkeitsstellen ei-
ner schwach harmonischen Abbildung, von 
Interesse. Zu diesen Eigenschaften zählt et- 

wa eine obere Schranke der Hausdorff-Di-
mension der singulären Menge. Wie ein Er-
gebnis von Rivire aus dem Jahr 1995 zeigt, 
sind Einschränkungen notwendig, um über-
haupt eine sinnvolle partielle Regularitäts-
theorie erhalten zu können. Rivire pro-
duzierte nirgends stetige schwach harmo-
nische Abbildungen. Zu den typischen Klas-
sen von Abbildungen, die auf partielle Regu-
larität untersucht werden, gehören energie-
min imierende und stationäre schwach har-
monische Abbildungen. Erstere minimieren 
die Dirichlet-Energie E bezüglich gegebener 
fester Randdaten oder in einer gegebenen 
Homotopieklasse. Zweitere sind kritische 
Punkte von E bezüglich geeigneter Variatio-
nen des Definitionsbereiches. 

Die beiden Schwerpunkte - die volle und 
die partielle Regularität - bilden den Rah-
men für die in HCM dargestellten Ergeb-
nisse. 

Das erste Kapitel enthält eine Einführung 
in die Theorie der harmonischen Abbildun-
gen. Der Autor konzentriert sich dabei auf 
die Definition verschiedener Klassen 
schwach harmonischer Abbildungen; er er-
klärt und motiviert Fragen nach der partiel-
len und vollen Regularität, die in den nach-
folgenden Kapiteln behandelt werden. Des-
weiteren wird das Erhaltungsgesetz als einer 
der zentralen Gedanken des Buches einge-
führt; grob gesagt liefert ein solches Gesetz 
das Verschwinden gewisser Größen auf ganz 
M, z. B. der Divergenz eines bestimmten 
Vektorfeldes. Ermöglicht werden solche Er-
haltungsaussagen durch bestimmte Sym-
metrien im Definitions- oder Zielbereich. 

Das zweite Kapitel befasst sich mit sym-
metrischen Mannigfaltigkeiten, wobei har- 
monischen Abbildungen von Riemann'
schen Flächen in Sphären besondere Auf- 
merksamkeit gewidmet wird. Speziell geht 
der Autor darauf ein, wie gewisse Sym-
metrieeigenschaften der Zielmannigfaltig-
keit es ermöglichen, Kompaktheitsaussagen 
für Folgen schwach harmonischer Abbil-
dungen in der schwachen Topologie auf H 12  
zu gewinnen. Der Höhepunkt des Kapitels 
ist ein bahnbrechender Beweis des Autors 
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aus dem Jahre 1990, welcher die Glattheit 
von schwach harmonischen Abbildungen 
von Riemann'schen Flächen in euklidische 
Sphären liefert. Der Beweis stützt sich in ent-
scheidender Weise auf ein Ergebnis von 
Henry Wente aus dem Jahr 1969. Wente be-
trachtete das Dirichlet-Problem zum System 

DaDb 3a3b -= {a,b} 
Dx0y Dy3x 

auf einem beschränkten 2-dimensionalen 
Definitionsbereich f, mit a,b e H' 2 (f2). 
(Wente war vor allem an Spezialfällen dieses 
Systems interessiert, nämlich an Systemen, 
die von konform parametriesierten Flächen 
konstanter mittlerer Krümmung gelöst wer-
den.) Die Standardtheorie der elliptischen 
Gleichungen ergibt, dass eine schwache Lö-
sung zu L" gehört für jedes q e [1, ) und 
darüber hinaus die Ableitung Dq in Ii' liegt 
für jedesp E [1, 2). Wente zeigte, dass die be-
sondere Struktur der Inhomogenität es er-
möglicht, eine geringe (aber entscheidende) 
Verbesserung zu gewinnen, nämlich 0 e L 
fl H. Hiermit konnte er die Glattheit 
schwacher Lösungen ableiten. 

Im dritten Kapitel mit dem Titel Compen-
sations and exoticfunction spaces befasst sich 
der Autor zunächst mit dem Beweis von 
Wentes Ergebnis. Er fährt dann mit der Be-
schreibung verwandter Kompensationsphä-
nomena nach Müller (1990) und Coifman-
Lions-Myers-Semmes (1993) fort, was zu ei-
ner Einführung in die Theorie der Hardy-
und Lorentz-Räume führt. Das Kapitel en-
det mit der Darstellung eines Ergebnisses 
von Craig Evans aus dem Jahr 1991: Statio-
näre harmonische Abbildungen aus einer 
m-dimensionalen Mannigfaltigkeit in eine 
euklidische Sphäre haben verschwindendes 
m 2-dimensionales Hausdorff-Maß. 

Im Mittelpunkt des vierten Kapitels steht 
die Erweiterung des Regularitätssatzes des 
Autors aus Kapitel 2. Hier betrachtet der 
Autor allgemeine Zielmannigfaltigkeiten. 
Der Grundgedanke (vom Autor bescheiden 
als „naiv" bezeichnet, obwohl die Ausfüh-
rung ziemlich subtil ist) besteht darin, die 
Kompensationsargumente des vorigen Ka- 

pitels durch eine geeignete Art der Lokalisie- 
rung an die Situation eines allgemeinen Ziels 
anzupassen. Die wichtigsten neuen Elemente 

und dritter Bestandteil des Titels von 
HCM - sind movingframes (mitbewegte n-
Beine), insbesondere diejenigen, die der Au-
tor „Coulomb frames" nennt. Der Autor 
fährt fort mit einer Verallgemeinerung des 
Resultates von Evans für den Fall einer all-
gemeinen Zielmannigfaltigkeit. Dieses Er-
gebnis wurde ursprünglich im Jahr 1993 von 
Fabrice Bethuel bewiesen. Der Autor erör-
tert ebenfalls eine Erweiterung der Kom-
paktheitsresultate aus Kapitel 2. 

Das letzte und relativ kurze Kapitel be-
schreibt weitere Anwendungen von Korn-
pensationsphänomenen, um höhere Regula-
rität für Flächen, die gewisse Integralbedin-
gungen erfüllen, zu gewinnen. 

Durch die ausführliche Präsentation ist 
HCM als Lehrbuch für eine Vorlesung im 
Hauptstudium oder für ein Seminar bestens 
geeignet. Da es sich außerdem mit relativ 
neuen Ergebnissen auf diesem Fachgebiet 
auseinandersetzt, ist es auch für Mathemati-
ker interessant, die auf ähnlichen Gebieten 
Forschungsarbeit leisten, zumal der Autor 
sich immer wieder auf offene Probleme be-
zieht. 

Es gibt nur sehr wenige und auch nur ge-
ringfügige Kritikpunkte: Im ersten Kapitel 
gibt es ein paar Ungenauigkeiten in der Dar-
stellung von existierenden Ergebnissen; 
manchmal ist es schwer festzustellen, ob der 
Autor gerade eine Standardnotation oder 
-terminologie verwendet, oder ob sie vom 
Autor selbst geprägt wurde; das Englisch ist 
manchmal etwas exzentrisch (HCM ist die 
zweite Ausgabe eines Buches, das ursprüng-
lich 1996 auf Französisch erschien). Diesen 
letzten Punkt kann man eher als Zeichen des 
Enthusiasmus des Autors für dieses Thema 
bewerten. Er möchte seiner Leserschaft nicht 
nur die Thematik, sondern auch seine Be-
geisterung dafür näher bringen. Mit HCM 
ist ihm dies vollständig gelungen. 

Erlangen 	 J. Grotowski 
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A. Nee,u 

1iangu1ated 
categories 

Arn,a1 ofMathematics 
Studies. 148 	

A Neeman 
Triangulated catego-

ries 

Annals ei' Mathematics 
Studies, 148 

Princeton Univ. Press, Princeton, 2001, 
449 S.,$46,- 

Warum ein Buch über triangulierte Katego-
rien? Sie gehören heute zu den wichtigen 
Hilfsmitteln in Algebra, Geometrie und To-
pologie, so daß man vielleicht den Untertitel 
„Triangulated categories for the working 
mathematician" erwartet. Tatsächlich hat 
Neeman allerdings mehr zu bieten. Neben ei-
ner elementaren Einführung in die Theorie 
der triangulierten Kategorien werden zwei 
Konzepte ausführlich behandelt, nämlich 
Brownsche Darstellbarkeit und Bousfield Lo-
kalisierung. Beide Konzepte haben ihren Ur-
sprung in der algebraischen Topologie der 
60er und 70er Jahre, wurden jedoch in den 
90er Jahren in einer Allgemeinheit weiterent-
wickelt, die unter anderem zu schönen An-
wendungen in der algebraischen Geometrie 
und in der Darstellungstheorie endlicher 
Gruppen führte. 

Um die Thematik des vorliegenden Ban-
des zu verstehen, vergleichen wir triangulier-
te mit abelschen Kategorien. Eine abelsche 
Kategorie kann man sich als additive Kate-
gorie (d. h. die Morphismenmengen bilden 
abelsche Gruppen und die Komposition ist 
bilinear) vorstellen, in der gewisse Sequenzen 
von Morphismen (die sogenannten kurzen 
exakten Sequenzen) ausgezeichnet sind und 
gewisse Axiome erfüllen. Eine triangulierte 
Kategorie ist ebenso eine additive Kategorie, 
in der gewisse Sequenzen von Morphismen 
(die sogenannten exakten Dreiecke) aus-
gezeichnet sind und gewissen Axiome erfül-
len. 

Das klassische Beispiel einer triangulierten 
Kategorie ist die derivierte Kategorie D(.4) 
einer abelschen Kategorie A. In diesem Fall 
erhält man eine Einbettung 

A—+D(A), x—k, 
und jede kurze exakte Sequenz 0 - X -* 
Y - Z —0 in .4 induziert ein exaktes Drei-
eck X - Y - Z - [1] in D(A). Insbeson-
dere liefert ein Element in Ext 4 (Z,X) einen 
Morphismus Z - k[l] in D(A), und all-
gemeiner gilt 

Ext(Z,X) HomD(A)(2k[n]) 

fürjedes n>0. 

Die derivierte Kategorie ermöglicht es also 
derivierte Funktoren zu berechnen. Verdier 
hat diese Idee in seiner Thse erstmals for -
malisiert und in diesem Zusammenhang tri-
angulierte Kategorien eingeführt [5]. Parallel 
dazu hat seinerzeit Puppe in der algebrai-
schen Topologie dieselben Eigenschaften für 
die stabile Homotopiekategorie herausgear-
beitet [4]. 

Betrachtet man abelsche Kategorien, so 
spielen häufig zusätzliche Eigenschaften eine 
wichtige Rolle. Klassisch sind sogenannte 
Grothendieck Kategorien, also abelsche Ka-
tegorien mit exakten induktiven Limites und 
einem Generator. Beispielsweise ist jede Mo-
dulkategorie eine Grothendieck Kategorie. 
In der Welt der triangulierten Kategorien 
sucht man zu Recht nach einem vergleich-
baren Konzept. Bewährt haben sich die kom-
pakt erzeugten triangulierten Kategorien, 
denn Brownsche Darstellbarkeit und Bous-
field Lokalisierung lassen sich auf diese 
Klasse von triangulierten Kategorien über-
tragen. Die derivierte Kategorie einer Mo-
dulkategorie oder die stabile Homotopieka-
tegorie der algebraischen Topologie sind 
klassische Beispiele für kompakt erzeugte 
triangulierte Kategorien. Allerdings treten 
in der Praxis triangulierter Kategorien auf, 
die nicht kompakt erzeugt sind. Hier setzt 
Neeman mit seiner Verallgemeinerung an 
und entwickelt das Konzept der wohlerzeug-
ten (englisch: weil generated) triangulierten 
Kategorie. 
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Die Diskussion der wohlerzeugten Kate-
gorien bildet das Herzstück dieser Monogra-
phie. Die Definition ist zugegebenermaßen 
kompliziert, läßt sich jedoch glücklicherwei-
se erheblich vereinfachen [1]. Die entschei-
dende Idee geht zurück auf Freyd und wird 
in diesem Buch ausführlich behandelt. Es 
handelt sich quasi um eine Umkehrung der 
Konstruktion von Verdier, d. h. eine trian-
gulierte Kategorie wird universell in eine 
abelsche Kategorie eingebettet, so daß exak-
te Dreiecke in exakte Sequenzen überführt 
werden. Diese universelle abelsche Kategorie 
ist im allgemeinen zu groß, aber lässt sich im 
Fall der wohlerzeugten Kategorien geschickt 
verkleinern ohne daß zu viel Information 
verloren geht. 

Wohlerzeugte Kategorien verallgemeinern 
also die kompakt erzeugten Kategorien, und 
das erklärte Ziel dieser Verallgemeinerung 
sind die Ubertragung von Brownscher Dar-
stellbarkeit und Bousfield Lokalisierung auf 
wohlerzeugte triangulierte Kategorien. Der 
Brownsche Darstellbarkeitssatz besagt für ei-
ne triangulierte Kategorie T mit beliebigen 
Koprodukten, daß jeder kontravariante 
Funktor F: T - Ab in die Kategorie der 
abelschen Gruppen genau dann darstellbar 
ist (d. h. von der Form Homy(—, X) für ein 
Objekt X) wenn F exakte Dreiecke in exakte 
Sequenzen und Koprodukte in Produkte 
überführt. Dieser Satz ist äußerst nützlich. 
Beispielsweise erhält man einen eleganten 
Beweis für die Grothendieck Dualität indem 
man beobachtet, daß der Brownsche Dar-
stellbarkeitssatz im Fall der derivierten Ka-
tegorie eines Schemas anwendbar ist [2]. 

Von einer Bousfield Lokalisierung spricht 
man sofern eine triangulierte Unterkategorie 
$ C T vorliegt, und der Quotientenfunktor 
T - T/S im Sinne Verdiers einen Rechts-
adjungierten besitzt. Im Fall der Bousfield 
Lokalisierung ist die triangulierte Unterka-
tegorie $ lokalisierend, d. h. abgeschlossen 
unter Koprodukten. Diese Bedingung an $ 
ist im allgemeinen jedoch nicht hinreichend. 
Beispielsweise wird gezeigt, daß die Bous-
field Lokalisierung existiert falls $ von einer 
Menge von Objekten erzeugt wird. In diesem 

Fall sind übrigens auch S und der Quotient 
T/S wohlerzeugt. 

Insgesamt beruht ein Großteil des Materi-
als in diesem Buch auf dem Wechselspiel zwi-
schen triangulierter und abelscher Struktur. 
Dieses wird ergänzt durch eine Reihe von 
Anhängen, in denen vorwiegend das not-
wendige Material über abelsche Kategorien 
bereitgestellt wird. Damit ist die Darstellung 
im wesentlichen in sich abgeschlossen. Le-
diglich ein paar Grundkenntnisse über Kate-
gorien und Funktoren, oder aus der homolo-
gischen Algebra werden vorausgesetzt. Da-
gegen verzichtet der Autor weitgehend auf 
Beispiele. Ein gewisses Interesse des Lesers 
an allgemeiner Theorie wird also voraus-
gesetzt. Hilfreich sind die historischen Be-
merkungen am Schluß eines jeden Ab-
schnitts. Sie vermitteln den Standpunkt des 
Autors und bieten eine gute Orientierung. 

Kehren wir zur Ausgangsfrage nach dem 
Zweck eines solchen Buches über triangulier-
te Kategorien zurück, so ist die Antwort des 
Rezensenten zwiespältig. Sucht man eine ele-
mentare Einführung in die Theorie der trian-
gulierten Kategorien, so ist man im Vergleich 
mit Verdiers Thse mindestens ebenso gut 
bedient, Französischkenntnisse vorausge-
setzt. Positiv erwähnt sei jedoch Neemans 
elegante Darstellung des sogenannten Okta-
ederaxioms. Moderne Aspekte, beispielswei-
se t-Strukturen, werden leider nicht berück-
sichtigt, wobei allerdings das Versprechen 
„We will see them [the six gluing functors] 
again in the discussion of t-structures." auf 
Seite 319 vom guten Willen des Autors zeugt. 

Das Buch wird zu einer wertvollen Lektü-
re sobald man sich für große triangulierte 
Kategorien interessiert, also Kategorien mit 
beliebigen Koprodukten. Hier leistet Nee-
man echte Pionierarbeit, und diese verdient 
uneingeschränkte Anerkennung. 
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In dem Buch von Scheja und Storch wird die 
Eliminationstheorie in gewichteten projekti-
yen Räumen behandelt, die über beliebigen 
kommutativen, noetherschen Ringen defi-
niert sind. Dabei spielen reguläre Sequenzen 
und vollständige Durchschnitte eine wichti-
ge Rolle. Demgemäß werden im zweiten der 
insgesamt vier Kapitel des Buches reguläre 
Sequenzen und vollständige Durchschnitte 
ausführlich behandelt, und zwar für beliebi-
ge noethersche Ringe in der lokalen als auch 
der globalen Version. Besonderes Augen-
merk wird den graduierten vollständigen 
Durchschnitten gewidmet. Diese sind Rest-
klassenringe von homogenen regulären Fol-
gen in einem Polynomring über einem noet- 

herschen Ring, dessen Variablen positive 
Gewichte besitzen. 

Für die Definition von Resultanten sind 
generische reguläre Sequenzen von Bedeu-
tung. Hierbei ist der Grundring des gewich-
teten Polynomrings selbst ein Polynomring 
über den ganzen Zahlen, und die Polynome 
der Sequenz besitzen als Koeffizienten die 
Unbestimmten des Grundrings. Das schwie-
rige Problem, wann Sequenzen von homoge-
nen generischen Polynomen eine reguläre 
Folge bilden, wird in dem Buch umfassend 
diskutiert. Dies führt zu dem Begriff der 
streng zulässigen Folgen. Insbesondere wer-
den generische Binome charakterisiert, die 
streng zulässig sind. 

Im weiteren Verlauf wird der Hauptsatz 
der Eliminationstheorie für projektive Räu-
me vorgestellt und es wird gezeigt, dass das 
generische Eliminationsideal bezüglich 
streng zulässiger Folgen ein Haupt- und 
Primideal ist. Danach wird das Elimi-
nationsideal bezüglich beliebiger homogener 
regulärer Folgen bestimmt. Insbesondere 
wird ausgeführt, dass das Eliminationsideal 
ein divisorielles Idealist, falls der Grundring 
ein ganz abgeschlossener Integritätsbereich 
ist. 

Das letzte Kapitel des Buches schließlich 
behandelt Resultanten. Diese sind insofern 
von Bedeutung, als sie dieselbe Nullstellen-
menge wie das Eliminationsideal haben, da-
rüberhinaus aber bessere funktorielle Eigen-
schaften besitzen. Die Autoren führen zu-
nächst das Resultantenideal einer regulären 
Folge homogener Polynome eines Polynom-
rings über einem ganz abgeschlossenen noe-
therschen Integritätsbereich ein. Dabei 
stimmt die Länge der Folge mit der Anzahl 
der Variablen des Polynomrings überein. Es 
wird gezeigt, dass dieses Resultantenideal 
wieder divisoriell ist. Mit Hilfe des Koszul-
komplexes, welcher der regulären Folge zu-
geordnet ist, wird ein kanonischer Erzeuger 
des Resultantenideals konstruiert. Dies führt 
zu expliziten Resultantenformeln, und ver-
allgemeinert die von Hurwitz bekannte klas-
sische Resultante, wo alle Variablen das Ge-
wicht 1 haben. 
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Das Buch ist eine außerordentlich sorgfäl-
tig ausgearbeitete moderne Einführung in 
die Theorie der Resultanten. Es erfordert 
vom Leser solide Kenntnisse der kom.mutati-
yen und homologischen Algebra, sowie eini-
ge Grundkenntnisse der algebraischen Geo-
metrie. Die Autoren haben sich bemüht, die 
speziell hier erforderlichen Techniken und 
Sachverhalte, etwa Eigenschaften numeri-
scher Halbgruppen, die sonst in der Litera-
tur gar nicht oder nur schwer auffindbar 
sind, zusammenzustellen und im Detail zu 
erklären. Dadurch ist das Buch weitgehend 
in sich geschlossen und kommt in seinen Be-
weisen ohne weitere Literaturverweise aus. 
Darüberhinaus wurde den Abschnitten 
Ubungsaufgaben, historische Anmerkungen 
und Ergänzungen beigefügt, die aber für das 
Verständnis des Haupttextes nicht unbe-
dingt notwendig sind. Somit ist das Buch als 
Textbuch einer Spezialvorlesung, oder als 
Grundlage für ein Seminar bestens geeignet. 

Essen 	 J. Herzog 

Berlin u. a., Springer, 2002,478 S., 
EUR 74,95 

Das Mori-Programm und die birationale 
Geometrie von projektiven Varietäten der 
Dimension 3 waren zentrale Themen in der 
algebraischen Geometrie der 1980er Jahre. 
Heute ist die Mori-Theorie zu einem unver-
zichtbaren Werkzeug geworden. Vereinfacht 
gesagt, geht es darum 

1. unter allen projektiven Varietäten, die zu 
einer gegebenen Mannigfaltigkeit biratio-
nal sind, besonders einfache Varietäten, 
die „minimalen Modelle", zu finden und 

2. die Eigenschaften der minimalen Modelle 
zu studieren und birationale Abbildungen 
zwischen den minimalen Modellen zu 
klassifizieren. 

Im „Minimalen Modell Programm", oder 
„Mori-Programm", wird Aufgabe (1) gelöst, 
indem zu jeder projektiven Mannigfaltigkeit 
eine Folge von birationalen Abbildungen 
konstruiert wird, an deren Ende entweder 
ein sehr spezieller Faserraum oder ein „mini-
males Modell" steht, also eine Varietät, de-
ren kanonisches Bündel nef ist. Das Pro-
gramm entstand aus den Arbeiten [Mor79] 
und [Mor82], in denen S. Mori die Existenz 
von rationalen Kurven auf nicht-minimalen 
Mannigfaltigkeiten zeigte. Mit Hilfe dieser 
Kurven konstruierte er Abbildungen, die ein 
direktes Analogon zur klassischen Kontrak-
tion von (-1)-Kurven auf Flächen sind. Mo-
tiviert durch diese Ergebnisse entstand in 
dem folgenden Jahrzehnt die moderne Mori-
Theorie durch die Arbeit vieler Mathemati-
ker, unter anderem Y. Kawamata, J. Kollär, 
Y. Miyaoka, S. Mori, M. Reid, V. Sarkisov 
und V. Shokurov. Zumindest für 3-dimen-
sionale Varietäten wurde ein einigermaßen 
befriedigendes Bild der birationalen Geo-
metrie gewonnen. 

Kenji Matsuki, der die Entwicklung von 
Anfang an begleitet hat und einer der Auto-
ren der grundlegenden Arbeit [KMM87] 
war, bietet in dem vorliegenden Buch eine 
engagiert geschriebene und gut lesbare Dar-
stellung der Theorie. Matsuki legt großen 
Wert darauf, alle auftretenden Konzepte 
und Begriffe ausführlich zu motivieren und 
die Nützlichkeit jedes neuen Konzeptes zu-
erst an vertrauten Beispielen zu beleuchten. 
Viele kleine in den Text eingestreute 
Ubungsaufgaben helfen sehr beim Verste-
hen, der Stil ist direkt und angenehm zu le-
sen. Das Einzige, was mich persönlich oft ge-
stört hat, ist die Zerrissenheit des Layouts in 
den technischen Abschnitten. 
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Das Buch gliedert sich grob in drei Teile: 
Geometrie von Flächen In den ersten bei-

den Kapiteln, die zusammen etwa ein Viertel 
des Buches ausmachen, wird die klassische 
birationale Geometrie von Flächen wieder-
holt. Viele Begriffe der höherdimensionalen 
Theorie werden hier bereits eingeführt und 
durch Beispiele erklärt. Mir hat besonders 
gut gefallen, wie klar Matsuki zeigt, dass eine 
logarithmische Variante der Mori-Theorie 
notwendig ist, auch wenn man zunächst nur 
an dem „normalen" Mori-Programm inte-
ressiert ist. 

Moris Programm Nach der aufwändigen 
Einführung werden im dritten Kapitel die 
Hauptresultate der Mori-Theorie zunächst 
ohne Beweis zusammengestellt. Matsuki 
zeigt an Beispielen, warum in der höherdi-
mensionalen Theorie Singularitäten auftre-
ten, und warum die Einführung einer neuen 
Klasse von birationalen Transformationen, 
den „Flips", notwendig ist. 

In den Kapiteln 4-8 werden der Ver-
schwindungssatz von Kawamata-Viehweg, 
der Satz über die Basispunktfreiheit und der 
Kegelsatz bewiesen. Die Beweise orientieren 
sich an im Wesentlichen an den Original-
arbeiten, etwa [KMM87], und bieten dem 
Fachmann nichts Neues. Der Autor be-
schränkt sich bei der Klassifikation der auf-
tretenden Singularitäten auf den Flächenfall. 
Im Kapitel 9 behandelt Matsuki den noch 
verbliebenen Teil des Mori-Programms, die 
Sätze über die Existenz und die Terminie-
rung von Flips. Der äußerst lange und 
schwierige Existenzbeweis wird nicht gege-
ben. 

Abbildungen zwischen minimalen Modellen 
Die verbleibenden Kapitel befassen sich mit 
der Geometrie der rationalen Kurven und 
mit der Geometrie von birationalen Abbil-
dungen zwischen minimalen Modellen und 
zwischen Mori-Faserräumen. Als besonde-
res Bonbon wird im abschließenden Kapitel 
die ganze Theorie noch einmal für torische 
Varietäten dargelegt. 

Fazit: Kenji Matsuki hat meiner Meinung 
nach ein durchweg gelungenes Buch vor- 

gelegt. Das Werk unterscheidet sich von den 
bekannten Darstellungen [CKM88], [MP97] 
und [KM98] und dem Originalartikel 
[KMM87] im Wesentlichen durch die Aus-
führlichkeit und durch die Fülle an konkre-
ten Beispielen. Es werden lediglich Grund-
kenntnisse in algebraischer Geometrie und 
der Geometrie von Flächen vorausgesetzt, 
so dass sich das Buch für ein Oberseminar 
gut eignet. 
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W. Ebeling 
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BraunschweigfWiesbaden, Vieweg, 2001, 
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Das vorliegende Buch gibt eine Einführung 
in Teile der höheren Funktionentheorie 
(Theorie der Riemannschen Flächen, Funk-
tionentheorie mehrerer komplexer Ver-
änderlicher) sowie Grundlagen und einige 
neuere Ergebnisse der Theorie der Singulari-
täten. 

Bei der Breite der angesprochenen Gebiete 
ist von vornherein zu erwarten, dass in kei-
nem von ihnen auch nur entfernt der An-
spruch auf Vollständigkeit erhoben wird. 
Schon die Theorie der Riemannschen Flä-
chen ist für sich genommen so umfangreich, 
dass sie sich kaum in ein einziges Lehrbuch 
komprimieren lässt. Aus diesem Grund ist 
von vornherein eine restriktive Auswahl er-
forderlich. 

Diese orientiert sich im vorliegenden Buch 
vor allem an den Bedürfnissen der Theorie 
der Singularitäten. Dieses Gebiet hat sich in 
der zweiten Hälfte des zwanzigsten Jahrhun-
derts etabliert. Auch wenn es hier Fragen 
gibt, die sich einfach erklären lassen und die 
geometrisch transparent sind, gibt es eine 
Reihe von Hilfsmitteln aus verschiedenen 
Gebieten, die für die Arbeit unerlässlich 
sind: aus der Funktionentheorie, der Diffe-
rentialtopologie und der algebraischen To-
pologie. 

Zu den Begriffen, die aus der algebrai-
schen Topologie benötigt werden, gehören 
abgesehen von den singulären Homologie-
gruppen die Uberlagerungen, die Funda- 

mentalgruppe und die Homotopiegruppen. 
Dementsprechend konzentriert sich das 
Buch im Bereich der Riemannschen Flächen 
auf Themen, die mit der Uberlagerungstheo-
ne zusammenhängen. 

Ahnliches gilt im Bereich der Funktionen-
theorie mehrerer Veränderlicher: Da es sich 
bei der Singularitätentheorie um eine lokale 
Theorie handelt, wird hier primär die lokale 
Theorie analytischer Mengen behandelt. Je-
der, der eine Vorlesung über dieses Thema 
gehalten hat, weiß, dass hierbei die korn-
mutative Algebra wesentlich zu Hilfe ge-
nommen werden muss - der elementar-geo-
metrischen Argumentation sind Grenzen ge-
setzt. Dies gilt zum Beispiel für die saubere 
Einführung des Dimensionsbegriffs. 

Im Rahmen der Differentialtopologie 
wird aus ähnlichen Gründen die Theorie der 
differenzierbaren Faserbündel in den Vor-
dergrund gestellt. 

Vom Standpunkt der Singularitätentheo-
ne erfolgt in diesem Buch eine Kon-
zentration auf den klassischen Fall der iso-
lierten Hyperflächensingularitäten. Die Be-
handlung der Milnorfaserung darf hier na-
türlich nicht fehlen. Für eine detaillierte Un-
tersuchung der entsprechenden Monodro-
mie sind jedoch weitere Hilfsmittel ange-
bracht, die in diesem Buch entwickelt wer-
den, insbesondere die Morsifikation, die ein 
Heranziehen der Picard-Lefschetz-Formeln 
erlaubt. Aber auch weitere Themen wie uni-
verselle Entfaltung und Klassifikation von 
Singularitäten werden darüber hinaus ange-
sprochen. 

Nun zum Aufbau: Das erste Kapitel ist 
der Theorie der Riemannschen Flächen ge-
widmet. Sie wird vom Standpunkt der Uber-
lagerungstheorie aus dargestellt. Bekannt-
lich verwendet man in der Theorie der Rie-
mannschen Flächen im Gegensatz zur algeb-
raischen Topologie einen abgeschwächten 
Uberlagerungsbegriff, deswegen setzt man 
die beteiligten Räume zweckmässig als haus-
dorffsch voraus (auch wenn dies nicht immer 
wiederholt wird). Nicht nur historisch, son-
dern auch systematisch wichtig ist die Ein-
führung der Riemannschen Fläche einer me- 
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romorphen, insbesondere einer algebrai-
schen Funktion - damit ergibt sich der Zu-
sammenhang zwischen algebraischen Kur-
ven und Riemannschen Flächen. 

Im zweiten Kapitel wird die lokale Theorie 
der analytischen Mengen behandelt. Der al-
gebraische Apparat wird dabei so ent-
wickelt, dass eine Begründung der geometri-
schen Sachverhalte ermöglicht wird. Zu den 
behandelten Begriffen zählen Regularität, 
Dimension, Bildmenge. 

Im dritten Kapitel geht es primär um die 
analytische Untersuchung isolierter Singula-
ritäten holomorpher Funktionen, am Ende 
steht dabei die Klassifikation der einfachen 
Singularitäten. Ein nützliches Hilfsmittel ist 
dabei der Begriff der (universellen) Entfal-
tung. Darüber hinaus werden vorab grund-
legende Begriffe aus der Differentialtopolo-
gie wie Vektorfelder, Transversalität und 
Liegruppen angesprochen. 

Im vierten Kapitel wird ein wichtiges Ge-
biet aus der Differentialtopologie behandelt: 
die differenzierbaren Faserungen. Zu den in 
diesem Zusammenhang angesprochenen 
Themen zählen die Holonomiegruppe, 
Schnitt- und Verschlingungszahlen und die 
Zopfgruppe. 

Diese Theorie ist wichtig für die topologi-
sche Untersuchung von Singularitäten im 
letzten Kapitel. Im Zusammenhang mit der 
Milnorfaserung gelangt man zu verschiede-
nen Invarianten wie Monodromie, Variation 
und Seifertform, der Ubergang zu einer 
Morsifikation führt dabei zu einem tieferen 
Verständnis der geometrischen Situation. 
Mit dem „Milnorgitter" wird ein Begriff an-
gesprochen, der zum Forschungsgebiet des 
Autors gehört; am Schluss wird ein Ausblick 
auf neuere Entwicklungen gegeben. 

Das Buch wendet sich nicht nur an Stu-
denten, sondern auch an Hochschullehrer, 
die eine einschlägige Vorlesung oder ein ent-
sprechendes Seminar planen. Hierzu wird im 
Vorwort eine Reihe praktikabler Vorschläge 
gemacht. 

Das Buch ist sorgfältig verfasst, die Vo-
raussetzungen werden deutlich gemacht. Es 
bietet die Möglichkeit zu verschiedenartigem 

Einsatz in der Lehre wie zum Selbststudium 
(etwa zur Spezialisierung für Diplomanden, 
zur Einarbeitung für Doktoranden). Ins-
gesamt ist das Buch daher sehr empfehlens-
wert. 

Münster 	 H. Hamm 

Berlin u. a., Springer, 2002, 156 S., €39,95 

Nonarchimedean Functional Analysis is the 
study of Functional Analysis where the usual 
real or complex scalar field is replaced by a 
nonarchimedean valued complete field K, 
for example the field of the p-adic numbers. 
The Founding Father of this discipline was 
the Dutch mathematician A.F. Monna with 
a series ofpapers, beginning in 1943, and the 
area was further developed in the sixties and 
seventies, culminating in the book of 
A.C.M. van Rooij, Non-archimedean Func-
tional Analysis (Marcel Dekker, 1978) in 
which the then 'state of the art' was estab-
lished. The book mainly treated Banach 
space theory whereas in the thesis of J. van 
Tiel (1965) the foundations oflocally convex 
spaces were introduced. After that, numer -
ous papers in the area appeared, but no sys-
tematic books until 2001, when the present 
work under review was published. lt is the 
first textbook seriously covering locally con-
vex theory over K, so, for that reason alone, 
it is most welcome. 

The main motivation for writing the book, 
according to the author, was the growing in-
terest from other areas, for example number 

P. Schneider 

Nonarchimedean 
Functional Analysis 
Springer Monographs 

in Mathem 
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theory (p-adic modular forms and deforma-
tion of Galois representations) and represen-
tation theory of p-adic reductive groups, in 
methods from Functional Analysis. Yet, the 
book is self-contained, complete with all 
proofs, and therefore attractive also to those 
who are not acquainted with the above 
areas. In fact, the reader is assumed to have 
only a basic knowledge of linear algebra and 
point set topology. However, to enjoy the 
book one should be familiar with the basics 
ofclassical Functional Analysis. 

The book has four chapters. In the first 
two the foundations on Banach and locally 
convex spaces are established. Most of this 
theory can already be found in the work ci-
ted above. The real story starts in Chapter 3 
that treats duality theory. With an eye on the 
possible users from other disciplines the 
author restricts himself to the case where K 
is spherically (= maximaily) complete, the 
reason being that in this case the Hahn Ba-
nach Theorem holds without restriction, and 
the fact that in the envisaged applications K 
is discretely valued, hence spherically com-
plete. On one hand this is certainly a valid 
point of view, on the other hand it is a pity 
that the generaily interested reader does not 
get easy access to the interesting case where 
K is not spherically complete (e.g. the com-
pletion of the algebraic closure of the p-adic 
number field). Be that as it may, by this re-
striction the theory runs more smoothly than 
in the general case. 

In Chapter 3 the basic notions of c-com-
pactness and compactoidity are introduced. 
They can be viewed as a 'convexification' of 
compactness, precompactness respectively, 
needed since K may be not locally compact. 
With the help of these notions the Mackey 
topology is shown to be the finest admissible 
topology. After studying reflexivity atten-
tion is given to compact inductive limits (a 
linear map is called compact if there is a 
neighbourhood of 0 whose image has c-com-
pact closure). In Chapter 4 the usual injective 
and projective tensor product topologies are 
introduced, and they turn out to be equal (!). 
This has as a consequence that the nonarchi- 

medean notions of Schwarz spaces and nu-
clear spaces are the same. Completely contin-
uous, compact, nuclear maps are studied. A 
trace function is introduced on the set of nu-
clear maps, and finally, a theory ofFredholm 
operators (kernel and cokernel are finite-di-
mensional) is developed. 

The theory of Chapters 3 and 4 is rather re-
cent, interesting and deep. 

The book is well-written, with care for de-
tails. Recommended. 

Nijmegen 	 W. H. Schikhof 

ntrod(Ctiofl to 

the h-Principle 

Y. Eliashberg, 

N. Mishachev 

Introduction to the 

h-Principle (Grad Stu-

dies in Matli. 48) 

Providence, Am. Math. Soc., 2002, 206 5., 
$30,- 

The homotopy principle, or h-principle, re-
fers to the "fiexibility" ofcertain differential 
(in)equalities, in the sense that their solution 
can be reduced to a purely homotopy theore-
tic problem. lt was discovered by J. Nash 
and S. Smale in the 1950ies and formalized 
(under the name w.h.e.-principle) by 
Y. Eliashberg and M. Gromov in the early 
1970ies. The development culminated in 
Gromov's 1986 book Partial Differential Re-
lations (where he also introduced the term h-
principle). 

Instances of the h-principle appear in all 
branches of differential geometry, e.g.: the 
Nash-Kuiper theorem on C'-isometric im-
mersions; Smale's theorem on sphere immer-
sions; Oka's principle for Stein manifolds; 
Lagrangian immersions in symplectic mani- 
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folds; and Legendrian immersions in contact 
manifolds. 

Despite its importance, the state of the lit-
erature on the h-principle was quite unsatis-
factory. Gromov's book was renowned for 
its generality and comprehensiveness, less 
for its readibility. The situation improved 
with D. Spring's 1998 monograph Convex 
Integration Theory. The present book takes a 
different, and more direct, approach to the 
h-principle via "holonomic approximation". 
To describe this, we need some notation. 

For a smooth fibration X - V denote by 
X(r) the space of r-jets of (local) sections in 
X. Thejet space fibers naturaily over V. The 
r-jet of any (global) sectionf V X yields 
a section JJ: V -+ X' of this fibration. 
Such a section is called holonomic. A (par-
tial) dfferential relation is simply a subset 7?. 
of X(T).  One says that 7?. satisfies the h-princi-
ple if every section F : V - 7?. c X(r) i S  

homotopic, through sections in 7?., to a hob-
nomic section. 

In Chapters 1-3 of the book, Eliashberg 
and Mishachev set up and prove a general 
Holonomic Approximation Theorem: 1fF is a 
section of X (' )  - V near a submanifold 
A ci V of positive codimension, then there 
exists a C°-small diffeotopy ht V - V and 
a holonomic section F near h'(A) which is 
C°-close to F near h 1  (A). This result immedi-
ately implies the h-principle near submani-
folds of positive codimension for open dif-
ferential relations that are invariant under 
diffeomorphisms of V. 

The proof of the Holonomic Approxima-
tion Theorem, albeit elementary, is by no 
means easy to digest. But the authors spell 
it out in considerable detail, illustrating it 
with heipful figures, so that with enough 
time and energy one can folbow the argu-
ments. 

The reader's efforts are rewarded by nu-
merous applications of the Holonomic Ap-
proximation Theorem in differential topol-
ogy, which occupy the following 5 chapters. 
Ciassical examples include Smale's sphere 
eversion (the two-sphere in 1R3  can be turned 
inside out through immersions), and the 

Smale-Hirsch h-principle for immersions of 
positive codimension. 

Some of the biggest successes, and the most 
spectacular failures, of the h-principle have 
occured in symplectic and contact geometry. 
Given Eliashberg's research in these twa 
areas over the last two decades, it comes as no 
surprise that Chapters 9-16 are devoted to 
applications in symplectic and contact geo-
metry. Chapter 9 provides the necessary 
background material. In the ensuing 7 chap-
ters, the following results are proved (among 
others): existence of symplectic and contact 
structures on open manifolds; C°-approxi-
mation by isosymplectic and isocontact cm-
beddings of codimension at least 4; h-princi-
ple for isosymplectic and isocontact immer-
sions of positive codimension; h-principle for 
Legendrian and Lagrangian immersions. 

Chapter 11 mentions some of the failures 
of the h-principle in symplectic and contact 
geometry. However, this discussion is very 
sketchy, and the interested reader should 
consult some ofthe numerous textbooks and 
survey articles on symplectic topology, e.g. 
McDuffand Salamon's Introduction to Sym-
plectic Topology. 

The remaining chapters are concerned 
with convex integration. From the outset, the 
authors restrict to the case of 1-jets. The main 
theorem is the h-principle for "ample" differ-
ential relations in the 1-jet space (Chapter 
18). Using this, the authors prove in Chapter 
21 one of the most surprising results in differ-
ential geometry: the Nash-Kuiper theorem 
that any "short" embedding of positive codi-
mension of Riemannian manifolds can be 
C° -approximated by a C1  -isometric embed-
ding. For example, the standard two-sphere 
of radius 1 admits a C 1  -isometric embedding 
into an arbitrarily small ball in 1R3 ! 

In my opinion, this is an excellent book 
which makes an important theory accessible 
to graduate students in differential geometry 
- and to senior researchers who never had 
the stamina to work through Gromov's 
book. 

München 	 K. Cieliebak 
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D. E. Edmunds, 

V. Kokilashvih, 

A,Meskhi 

Bounded and 
Compact Integral 
Operators 
Math. and its 

Applications 

f(x) 
= 

f (x - y)f(y) dy, 

(Riemann -Liouville), 

Wf(x) = f( - x) 1 f(y) dy, (Weyl), 

b 

TUhJ(v) 	 dy, 
f_ 

- = 	1  

Dordrecht u. a., Kluver Acad. Pubi. 2002, 
643S.,€ 199,- 

This book deals with mapping properties of 
classical integral operators and their general-
isations preferably in weighted L-spaces 
and corresponding weighted Lorentz-spaces 
Lp.q  defined on intervals, the haif-line JR, 
the line IR, sets in 1' or, more generaily, 
measure spaces (X, t '). Here (X, t) might be 
a homogeneous space where the measure ji 
satisfies the doubling condition or a non-
homogeneous space where i does not neces-
sarily has the doubling property. The main 
aim is to find criteria (this means necessary 
and sufficient conditions) under which the 
operators considered are bounded, or com-
pact. This includes some qualitative asser-
tions about the degree of compactness ex-
pressed in terms of singular numbers. There 
are also a few applications to Fourier multi-
pliers in some function spaces defined on 
1W'. The ciassical integral operators consid-
ered include: 

Hf(x) =ff(y)dy x>0, 

(Hardy type), 

Rj(x) 

= / (
x_t)1 

di, 

(fractional integrals), 

(potential type), 

but also 

Bf(x) 
= f 

(x  

(in 1W') 

This book is mainly based on the authors' 
own resuits obtained within the last years. 
But it covers in many respects the classical 
theory (since the assertions are often criter-
ia). Some chapters have almost encyclopedic 
character and may serve as a source both for 
researchers and consumers of inequalities 
for integral operators. The book has 9 chap-
ters and a list of open problems. The refer-
ences cover the state-of-art. There are 310 
items. The 9 chapters are: 1. Hardy-type op-
erators, 2. Fractional integrals on the real 
line, 3. One-sided maximal functions, 4. Ball 
fractional integrals, 5. Potentials on IRN,  6. 
Fractional integrals on measure spaces, 7. 
Singular numbers, 8. Singular integrals, 9. 
Multipliers of Fourier transforms. 

Jena 	 H. Triebel 
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J. Agler, J. E. Mc Cartfly 

Pick Interpolation 

and Hilbert Function 

Spaces 

Grad Studies 

in Math. 44 

plete Pick property, 8. The universal Pick 
kernel, 9. Interpolating sequences, 10. The 
model theory 1: Isometries, 11. The bidisk, 
12. The extremal three point problem on ID2 , 

13. Collections ofkernels, 14. Model theory 
II: Function spaces, 15. Localization. 

Jena 	 H. Triebel 

Providence, American Math. Soc., 2002, 
308 S.,$49,- 

Let ) i ..... \N be N points in the unit disc ID 
in the complex plane and let w1 ..... WN be 
complex numbers. The classical Pick pro-
blem (Pick, 1916) deals with the question 
of whether there exists a holomorphic func-
tion 0, 

ID 	ID with 	j) = w 
where j=1.....N. 

The space H (ID) of all bounded analytic 
functions in ID can be indentified with the 
space of all multipliers of the Hardy space 
H2 . Then the classical Pick problem can be 
reformulated in terms ofthis multiplier space 
H(ID). The book deals with the following 
generalisation. A Hilbert function space is a 
Hilbert space 71 of functions on some set X 
(preferably, but not necessarily, hob-
morphic functions in subsets ofC) such that 
the evaluation at each point of X is a non-
zero continuous functional on R. Let 
.‚•• ‚.\N be points of X and let w1 ..... WN 

be complex numbers. The Pick problem is 
the question when does there exist a multi-
plier 0 of N of norm at most one such that 

= w1 . The main aim of the book is to 
analyse what spaces have the Pick property. 
This is done in 16 chapters: 0. Prerequisites 
and notation, 1. Introduction, 2. Kernels 
and function spaces, 3. Hardy spaces, 
4. P(u), 5. Pick redux, 6. Qualitative prop-
erties of the solution of the Pick problem in 
H (ID). 7. Characterizing kernels with com- 

16 	 JB 106. Band (2004), Heft 1 



Neue Lehrbücher bei de Gruyter 

Hans-Joachim Kowalsky, Gerhard 0. Michler 

• lineare Algebra 

12. überarb. Aufl. 2003. XVI, 416 Seiten. Broschur. 

€ 24.95 [D] / sFr 40.00 • ISBN 3-11-017963-6 

Aus dem Inhalt: 
Grundbegriffe . Struktur der Vektorräume . Lineare Abbil- 

dungen und Matrizen . Gauß-Algorithmus und Glei- 

chungssysteme . Determinanten . Eigenwerte, Eigenvek-

toren und Jordan-Form . Euklidische und unitäre Vektorräume . Anwendungen in der 

Geometrie . Ringe und Moduln . Multilineare Algebra . Moduln über Hauptideal-

ringen . Rationale kanonische Normalform einer Matrix . Computeralgebrasysteme 

Lüsungen der etwa 150 Aufgaben 

Konrad Jacobs, Dieter Jungnickel 	 . 

1 Einführung in die  
Kombinatorik  

2. völlig neu bearb. und erw. Aufl. 2004. XII, 406Seiten. 

Broschur. € [D] 29,95 / sFr 48,— / approx. US$ 36.00 

ISBN 3-11-016727-1  

Highlights:  
Allgemeine Lösung des Kirkmanschen Schulniädchcnpro- 

biems und mehr über Blockpläne . Projektive Ebenen und Räume, einschließlich des 

Freundschaftstheorems . Anwendungen in der Kryptographie, Authennkation von 

Nachrichten, Zugangskontrolle zu geheimen Informationen . Heiratssatz und eine 	/ 
Fülle verwandter Sätze, etwa über Flüsse auf Netzwerken . Allgemeine Widerlegung 

der Eulerschen Vermutung über Paare orthogonaler Lateinischer Quadrate . Der Satz 

vom Diktator . Verblüffende Eigenschaften der Morse-Thue-Folge . Einige Perlen aus 

der Codierungstheorie, inklusive konkreter Anwendungen etwa bei Prüfziffersyste- 	‚ 

men . Der klassische Satz von Ramsey und verwandte Ergebnisse . Partitionen und 

Abzählen, etwa das klassische Menage-Problem . Endliche Geometrie und Graphen- 

theorie, insbesondere ein kurzer Beweis des Fünffarbensatzes und das Königsberger 	‚ 

Brückcnprohlem 	 ‚ 

w 
DE 

d e G r u yte r G Berlin N ew York 	 Pizis/isdisgn ",,brh,öcn 

www.deGruyter.de  Newsletter: www.deGruyter.de/Newsleuer  

WALTER DE GRUYTER GMBH & CO. KG . Genthiner Straße 13. 10785 Berlin 

Tel.: +49-(0)30-2 60 05-0 . Fax +49-(0)30-2 60 05-25 1 . E-Mail wdg-info@deGruytcr.de  



Ernst-Albrecht Reinsch 
Mathematik für Chemiker 

Methoden, Beispiele, Anwen-
dungen und Aufgaben 
2004. 536 S. Br. EUR 34,90 
ISBN 3-519-00443-7 

Inhalt 

1 Zahlen - Lineare Algebra - Funktionen - 
Differentialrechnung - Integralrechnung 
- Reihenentwicklung - Entwicklung nach 
Funktionensystemen, Fouriertransforma-
tion - Differentialgleichungen - Grup-
pentheorie - Fehler- und Ausgleichsrech-
nung 

gd Das Buch 

1 Wie kann man chemische Probleme 
mathematisch beschreiben und lösen? In 
Theorie, Anwendung und Beispiel zeigt 
dieses Buch dem Studierenden die erfor-
derlichen mathematischen Methoden 
praxisbezogen und verständlich. Viele 
Übungsaufgaben machen fit für Prüfung 
und Praxis. 

Teubee, Le+nixkher 
einfadi deve, 

Abraham-Lincoln-Str. 46 Ea 65189 Wiesbaden 

Fax 0611.7878-420 
www.teubner.de  

Teubner 



Textbooks from Springer 

IMTESERS 

1, 	

' 0 1TE1 ALS 1D 

V. 1. Arnold 

Lectures on Partial 

Differential Equations 

Translated by R. Cooke 

This book coxers the most basic parts ot 

the subject und confines itseif largely 10 

the Cauchy und Neumann problems Bot 

the ciassical linear equations of mathe-

matical physics. 

2004 X, 157 p (Urriserntent) Xnfixover 

€39,95; sFr 73,00; £ 30,50 ISBN 3-540-40448-1 

B.L. van der Waerden 

Algebra 

irr ed 1991. 2rrd prixring 2003 XIV, 205 In 

Softsoser €39,95; tOr 73,05; £30,50 

ISBN 0-307-40624-7 

Volame II 

irr od 1931 irt oxftxooer pnxrog 2003 XII, 

2847 Sohcooer €39,95; sFr 73,00,0 30,50 

ISBN 0-387-40625-5 

From the reviews: „This beuutiful und 

eloquent teut served tu transform the gra-

duate teaching of algebra, not xnly in 05er-

muny, bot elsewbere in Europe and the 

United States,,.lts simple bus austern style 

set the pattern for mathematical tenis 

in other subjects, from Banach spaces tu 

topological group theury...It is, 10 my xmw, 

ihn most Inflljential text in algebra of the 

rwentlerh century." 

Saunders MucLane, NotscesofrheAMS 

.....l,.. 6..._..  

V. A. Zorich 

Mathematical Analysis 1 
2004. XVIII, 574 p (Usiverritest) Hardnuxer 

€49,95, sFr 80,50, £ 30,50 ISBN 3-540-40386-8 

Mathematical Analysis II 
2004 XV, 681 p iUnioersitesll Hardrooer 

€49,95, rFr 88,50; 038,50 ISBN 3-540-40633-6 

This two-oulume work presents a tho-

rough firnt course in analysis, leading 

from real numbers to such advanced 

topics as dlfferentla[ forms 00 manlfolds, 

asymptotic methods, Fourier, Laplace, and 

Legendre transfurms, elliptic functions 

und distributiuns. 

Heat Kernels and 

Dirac Operators 

The first edinion of this book presented 

simple proofs nf the Atiyah-Singer Index 

Theorem for Dirac operaturs 00 compact 

Riemannlan manifo)ds und its genera-

lizations, using an explicit geometric 

construction of the heat kernel of a gene 

ralized Dirac Operator; the new ediulnn 

makes this popular book axailuble to 

studenis und researchers in an atiractixe 

softcover. 

2004 9,363 y (Vrusd]ehrex texr Ediriuss) 

Sxfrnoeer €49,95, sFr 88,50; £38,50 

ISBN 3-540-20062-2 

R. S. Irving 

Integers, Polynomials, 

and Rings 

t'be uuthor's prlmary qual is to have the 

reader learn lx wnrk with mathematics 

through reading, writing, speaking, and 

listeniog. The chuice of cnntent 5 impor-

tant, bot he regards lt usa xehlcle, not as 

an end in itself, 

2004 Approx 300 p 3 dlxi. (undergradsate 

VetO in Marhemaricr) Hurdcoxer 

€69,95; sFr 123,50, 554,00 ISBN 0-307-40397-3 

Also avuilable in sohcover 

€39,95, rFr 73,00; £36,50 

ISBN 0-387-20172-6 

D. Husemöller 

Elliptic Curves 

ThIs book san introduction lx the tbeory 

of elliptic curxes, ranging from its most 

elementary aspects So current researcb. 

This new edition conrains tbree new chap-

ters und the addition of twx appendices. 

204 rd. 2004. XXI, 407 p 42 illus. 

IGraduare Texrs in Marhemarixr, Vol. lilI 

Hard000er €84,95, sFr i 44,00; 565,50 

ISBN 0-307-95490-2 

Volume l 	 N. Berline, E. Getzler, M. Vergne 

YeIIow Sale 2004 

1. März- 31Juli2004 

Großartige Bücher! Großartige Preise! 

sprinqer.de,iyeflowsale 

Springer. Customer Service 

Haberstr. 7•69126 Heidelberg, Germany 

Tel.: +49(0) 6221 -345-0 
Fax: +49(0) 6221 -345-4229
e-mail: orders@tspringer.de  
or through your bookseller 

‚XII S'.ssro und 05011 pneuS um irnt-pricxs cirbleer 10 locul 5.51 - cg ix Germanv 705 \'.rT for hooko 
alte) 16% 5761 £or elecironic prs,dsicrn. l'ricrn ‚rsrd othxr dci,ri)o ‚irr subixcr 10 ch,ixizxo- ithosstnxtrcr'. 
sI&p 010835n 

Springer 




