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About 1981 the finite group theory community decided via some sort of
collective decision that the following result had been proved:

Classification Theorem Each finite simple group is isomorphic to one of the
Sfollowing:
(1) A group of prime order.
(2) An alternating group.
(3) A group of Lie type.
(4) One of 26 sporadic groups.

There are many things to be said about this theorem and eventually I'll get
around to saying some of them. But for the moment I'll only pose a few questions
to give you some things to think about:

Question 1. What is a simple group and why are simple groups interesting?

Question 2. What are the families of groups appearing in the conclusion of
the Classification? In particular what is involved in describing these families and
how useful is the description?

In order to answer these questions and to intelligently discuss the Classifica-
tion we need some basic background. Let G be a group. Recall that G is simple if
the only normal subgroups of G are 1 and G, or equivalently that 1 and G are the
only homomorphic images of G. We can consider subnormal series

IZG() < G] AEEEEERN Gn:G

and observe that if G is finite there will exist maximal series of this form with the
property that no further terms can be introduced in the series. Such a maximal ser-
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whose kernel is
ker(c) = Cy(G)

So under our hypotheses, Aut(X) is faithfully embedded in Au#(G) and G is the un-
ique minimal normal subgroup of Aut(X). The image of G under this map is the
group of inner automorphisms of G and is a normal subgroup of Aut(G). We can
use the object X to define G, prove the existence of G, and to study the structure of

Let us now return to the list of groups appearing in the Classification. The
groups of prime order are the abelian simple groups. These groups have little struc-
ture or complexity, so we will ignore them. However they cause the biggest difficul-
ties visa via the Extension Problem.

Let X be a set of order n. The group Aut(X) is the symmetric group S, of
degree n. For n > 4, the unique minimal normal subgroup of S, is the alternating
group A, which consist of all even permutations on X and is simple of index 2 in
S,. The set X is of course highly symmetric, so this representation is an ideal tool
for studying the alternating group A4,,.

The groups of Lie type are the analogues of the simple Lie groups. These
groups have many useful representations, but I will concentrate on one class of re-
presentations. Recall a Lie algebra over a field F is a vector space X over F to-
gether with a bilinear product on X which satisfies a certain identity called the Ja-
cobi identity.

and define the Lie product of x,y € X by [xy] = xy — yx, where xy is the composi-
tion of x and y. Then X is a Lie algebra over F denoted by g/, (F).

When F is of characteristic 0, each nilpotent element in X can be exponen-
tiated to obtain an automorphism of X. In our example the group generated by all
such automorphisms is essentially the projective special linear group PSL,(F).
When X is a simple Lie algebra over C this group is a simple Lie group.

In the late nineteenth century, Killing essentially classified the simple Lie al-
gebras over C and hence also the simple complex Lie groups. In his thesis Cartan
produced a much simpler treatment which is the first rigorous proof of this classifi-
cation. Since then the proof has been simplified even further. It is interesting to
compare the classification of the complex simple Lie algebras to the classification
of the finite simple groups; the latter is far more complicated and much less elegant
than the former. I will return to this comparison later, for the moment content to
pose:

Question 4. The classification of the simple complex Lie algebras is simple
and elegant; why is the proof of the classification of the finite simple groups so long
and difficult?

In 1955 in his Tohoku paper [3], Chevalley showed that each simple com-
plex Lie algebra X has a Chevalley basis B with the property that the product of
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Example (6) When X = gl,(C), X(F) = PSL,(F) is the n-dimensional pro-
jective special linear group over F; ie. essentially the general linear group.

There are also twisted Chevalley groups obtained as fixed points of suitable
automorphisms of the ordinary Chevalley groups. The groups of Lie type are the
ordinary and twisted Chevalley groups. They can be effectively studied from the re-
presentations of the Lie algebra. The finite groups of Lie type are the groups of Lie
type over finite fields.

There are other representations of the groups of Lie type which are superior
for many purposes. For example the classical groups are often better studied from
the point of view of their representations on spaces with bilinear or sesquilinear
forms. The classical groups are the general linear groups, unitary groups, symplec-
tic groups, and orthogonal groups.

Example (7) The representation of GL,(F) on gl,(F) is the adjoint represen-
tation of degree n” but its natural representation is of degree » on its defining vector
space, and this object has much more symmetry.

Still another point of view is to consider the algebraic closure F of F. The
Chevalley groups X (F) are the simple algebraic groups over F; ie. these groups also
have the structure of an affine algebraic variety over F. Then X (F) can be viewed
as a form of its algebraic group over F.

Finally we come to the sporadic groups. Some of the sporadic groups have
nice representations which can be used to define and effectively study the group,
but others do not. Moreover, unlike the alternating groups and the groups of Lie
type, there is no naturally defined class of objects defining the sporadic groups.
Hence the terminology.

I will briefly consider one of the sporadics as an example: the largest spora-
dic, usually known as the Monster. The Monster is the group of automorphisms of
a certain vertex operator algebra. A vertex operator algebra (VOA) is an infinite di-

L . 1.

tisfying a complicated family of identities. VOAs provide an algebraic formaliza-
tion of string theory and are studied by both mathematicians and physicists. The
most interesting VOAs are holomorphic; that is there is a modular function asso-
ciated to the VOA with various properties. The modular function for the Monster
VOA is the elliptic modular function j. The Monster VOA was discovered because
various unexplained connections were observed between the Monster and certain
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structure from their defining representations. Moreover we can study the simple
group effectively using the representation and inherited structure.

The Classification is a tool for passing from the highly complex unstruc-
tured universe of the general finite group to the much less complex but highly struc-
tured universe of the finite simple group. This explains the great utility of the Clas-
sification. If one can reduce a problem to the simple case than at the same time one
has avoided a great deal of complexity and made it possible to take of advantage of
the structure of simple groups in solving the problem. In the absence of the Classifi-
cation, the reduction to the simple case would be of little use, since a priori, one
would not know that the simple group had any nice representations or structure.

This observation also explains why the classification of the finite simple
groups is so much more difficult than the classification of the simple Lie groups.
Lie extensions are not so complex, so Lie algebras are not as complex as finite
groups. In particular the nondegeneracy of the Killing form of a Lie algebra X over
C gives an effective criterion for deciding when X is semisimple and representations
of semisimple algebras are completely reducible, so the Extension Problem for these
objects is trivial.

Whenever a problem is solved by a reduction to the simple case and an ap-
peal to the representation theory of the simple group, there is an implicit use of the
fact that some complex problems have been avoided via an appeal to the Classifica-
tion. One must pay a price for avoiding this complexity and that price is reflected
in the difficulty in proving the Classification Theorem.

This is not to say that the current proof of the Classification cannot and
should not be greatly simplified. It can. But one should expect that there is a lower
bound to the size of a proof. In particular I do not believe there will ever be a proof
whose length is of the order of magnitude of that of the classification of the simple
complex Lie algebras.

Because the proof of the Classification is so long and complicated, various
errors and gaps in the proof have surfaced since 1981, when the proof was thought
to be complete. However in each case it has been possible to correct the error or
close the gap. Usually this process has been relatively easy; the most recent gap in-
volving the so called quasithin groups is the only notable exception. Since the Clas-
sification is so useful, it is important to have greater confidence in its proof. Hence
the effort to simplify and solidify the proof is of high priority.

Some remarks on the proof of the Classification.

The proof of the Classification is based on local group theory. If H is a sub-
group of G the normalizer in G of H is the largest subgroup Ng(H) of G in which
H is normal. The local subgroups of G are the normalizers of the nontrivial p-sub-
groups of G. By Sylow's Theorem, G has many p-subgroups, so G has a rich local

P
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For various reasons the prime 2 and 2-local subgroups play the largest role in the
Classification. An involution in G is an element of order 2. If 7 is an involution in G
then the centralizer Cg(¢) of ¢ is a 2-local subgroup of G. In his 1954 talk at the
Amsterdam International Congress [1], Brauer proposed that the simple groups
should be classified in terms of centralizers of involutions. There were at least two
reasons for Brauer to propose this approach. First, in the early twentieth century
Burnside had conjectured that groups of odd order were solvable and by 1954 there
was much evidence for this conjecture. An immediate consequence of the conjec-
ture is that fact that each nonabelian simple group possesses involutions. Second,
in [2], Brauer and Fowler had proved:

Brauer-Fowler Theorem. If H is a group then there are at most a finite num-
ber of finite simple groups G possessing an involution t such that Cg(t) = H.

Following Brauer, and particularly after the Feit-Thompson proof of Burn-
side's conjecture in [4], the preferred local subgroups from the point of view of the
Classification are the centralizers of involutions. The exception to this principle are
simple groups G whose 2-local structure is like that of a group of Lie type over a
field of even characteristic. In such groups, involutions are unipotent (ie. exponen-
tials of nilpotents), and centralizers of unipotent elements in a group of Lie type
and characteristic p are dominated by a large normal p-subgroup, whose complex-
ity we seek to avoid. Thus in these groups we pass to centralizers of elements of
odd prime order, which are semisimple. (ie. diagonalizable over some extension
field) Again there is an exception to this rule: if the p-rank of the 2-locals of G is
small for all odd primes p, then the odd local structure is not sufficiently rich to
support the analysis. In these “small” groups of even characteristic, unipotent
methods are used.
The sporadic groups appear in this process because of various group theoretic acci-
dents which make possible a local structure with a mixture of characteristics.

Some current work in finite group theory.
Today there are many active subareas in finite group theory, including:

1. The study of linear representations of finite groups.

2. The study of permutation representations of finite groups.

3. The study of specialized problems about finite groups arising in other areas of
mathematics; solutions to such problems are used to solve the original problem, re-
sulting in cross disciplinary programs.

4. Efforts to write down in one place a readable proof of the Classification and
hopefully to simplify the proof.

Typically a problem in (3) will be about linear groups or permutation
groups and is solved by first reducing to a problem about groups that are almost
simple, and second by an appeal to knowledge of irreducible linear representations
or primitive permutation representations of the simple groups. For example pro-
blems from number theory or about coverings of algebraic curves can be translated
via Galois theory into special problems about finite permutation groups, whose so-
lution gives a solution to the original problem.

Since the focus of this article is the Classification, I will concentrate on the
fourth area. Further I will focus on the use of unipotent methods in the small
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groups of even characteristic. Several years ago it was realized that there was a gap
in the proof of the Classification at exactly this point. For the last four years Steve
Smith and I have been working to close that gap. We have a detailed draft of a
treatment of this case and are in the process of writing down a final version of the
proof.
To be precise, given a prime p define a finite group G to be of characteristic
ANt R — ; w___

normal p-subgroup of H. We say G is of even characteristic if Cy(O,(H)) < O2(H)
for each 2-local H containing a Sylow 2-subgroup of G. Finally G is quasithin if the
p-rank of H is at most 2 for each 2-local H and each odd prime p; ie. there is no
Z/(p) x Z/(p) x Z/(p) subgroup of H. The simple quasithin groups of even char-
acteristic are the “small” groups of even characteristic. Smith and I have achieved a
classification of all simple quasithin groups of even characteristic using unipotent
methods.

Recently U. Meierfrankenfeld, B. Stellmacher, and G. Stroth have begun a
program to determine all finite simple groups of characteristic p-type for each
prime p, possibly under suitable connectivity assumptions. Again their work is
based on unipotent methods. This is an exciting program,; if they are successful,
even only when p = 2, the work could supply an alternate proof for at least part of
the Classification.
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1 Einleitung

Weil die Solitonentheorie eine der mathematischen Disziplinen ist, die im-
mer in besonders engem Zusammenhang mit der physikalischen Anwendung stand,
genieft die Frage nach der expliziten Angabe von Losungsklassen weit hoheres In-
teresse als es in vielen anderen Disziplinen der modernen Mathematik der Fall ist.
Es gehort zu den erstaunlichen und verwirrenden Eigenschaften der Solitonentheo-
rie, wie viele verschiedene Bereiche der Mathematik — Spektraltheorie, Algebraische
Geometrie und Differentialgeometrie, um nur einige wenige zu nennen — zu diesem
Zweck erfolgreich herangezogen werden konnten.

In der vorliegenden Arbeit wollen wir einen funktionalanalytischen Zugang
zur Konstruktion von Ldsungen vorstellen, der in den letzten sechs Jahren in unse-
rer Arbeitsgruppe in Jena verfolgt worden ist. Wir werden versuchen, unsere Arbeit
in das Umfeld der aktuellen Forschung einzuordnen, kénnen aber sicherlich keine
Einfithrung in funktionalanalytische Methoden in der Solitonentheorie im all-
gemeinen geben.
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mithin von Matveev ausgesprochene Erwartungen bestitigen zu kénnen. Als zwei-
tes behandeln wir Lésungen, die sich aus Diagonaloperatoren ergeben. Dies fiihrt
zur Verallgemeinerung tiefliegender Ergebnisse von Gesztesy et al. iiber die ,,ab-
zdhlbare nichtlineare Superposition solitirer Wellen*.

Abschnitt 4 beinhaltet zwei erginzende Aspekte. Wir erklidren, wie man
durch den Einsatz von Cy-Halbgruppen unbeschrinkte Operatoren in die Theorie
einbezieht, was von dem ersten Autor und Huang zu einer Verfeinerung der Ergeb-

nigse iiber, Diagonalonerafgren genutzt wurde, Als AbschluB referieren wir die Er-

gebnisse der Dissertation von Blohm, wo der Zusammenhang mit der Inversen
Streutheorie hergestellt wird.
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2 Das zugrundeliegende Modell

2.1 Diskussion

Das grundlegende Modell, nach dem wir bei der Untersuchung von Solito-
nengleichungen vorgehen, 148t sich wie folgt beschreiben:

Man iibersetze eine skalare Gleichung und eine spezielle Losung simultan zu
einer Operatorgleichung und einer entsprechenden operatorwertigen Losung und ver-
suche dann durch Anwendung eines geeigneten Funktionals skalare Losungen, die nun
von einem Operator abhingen, zuriickzuerhalten.

Die Idee zu dieser Vorgehensweise stammt urspriinglich von Marchenko, der sie in
seinem richtungsweisenden Buch [30] im Rahmen der Operatoralgebra

C®(L(H)) = {T:R?> — L(H) | T beliebig oft differenzierbar},

L(H) die beschrinkten linearen Operatoren auf dem Hilbertraum H, verfolgt.

Im Unterschied zu seinem Ansatz verwenden wir das Konzept der Operato-
renideale wie von Pietsch in [45] eingefiihrt. Konkret heiB3t das, daB wir statt Opera-
toren auf Hilbertrdumen auch die Banachraumtheorie einsetzen kénnen und daB
uns bei den Anwendungen starke Faktorisierungsresultate zur Verfiigung stehen,
die dadurch erméglicht werden, dal man es gerade nicht mehr mit Operatoren zu
tun hat, fiir die Ausgangs — und Zielraum iibereinstimmt.
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Erstmals wurde diese Methode in [3] an einer integrierten Form der KdV
durchgefiihrt, hier folgen wir [13] in der Darstellung der Resultate.

(1) Formulierung der operatorwertigen KdV

In unseren bisherigen Arbeiten haben wir als Ausgangspunkt immer eine
vergleichsweise einfache Losung der vorliegenden Gleichung verwendet, und zwar
das 1-Soliton. Seine operatorwertige Interpretation fiir die KAV gibt der folgende
Satz.

Satz 2.2 (vgl. [3] Theorem III B2 (i), [13] Proposition 5.1) Sei E ein Ba-
nachraum, A € L(E). Fir B € A(E), A ein quasi-Banachideal, definiere L(x,t) :=
exp(Ax + A3t)B. Dann ist die Operatorenfamilie

U= ((1 + L) (AL + LA))x € A(E),

vorausgesetzt daf$ (1 + L)_1 existiert, eine Losung der Operator-KdV in A,
(2) U, = U + 3(UU, + U, V).

Bei der Ubersetzung der KdV handelt es sich um einen vergleichsweise na-
heliegenden Ansatz. Bereits bei ihrer Diskretisierung, dem Toda-Gitter, st68t man
auf Schwierigkeiten. Einige Beispiele zu solchen Situationen, in denen keine auto-
matische Ubersetzung mehr vorliegt, sind in Abschnitt 2.8 angegeben.

Bemerkung 2.3 Ein Ansatz ganz anderer Natur, der aber ebenfalls wesentlich
auf funktionalanalytischen Methoden beruht, wurde von Fuchssteiner entwickelt. Der
erste Schritt besteht darin, ein nichtlineares integrables System als eine gewohnliche
Differentialgleichung der Form

u, = Ku

aufzufassen, wobei u ein Punkt in einer unendlich-dimensionalen Mannigfaltigkeit M
ortsabhingiger Funktionen und K ein Vektorfeld auf M ist. Die Lésungen der Evolu-
tionsgleichung entsprechen dann denjenigen zeitabhingigen Kurven u(t) in M, die der
Gleichung geniigen. Auf dieser Ebene erweist es sich als moglich, Methoden der sym-
plektischen Geometrie anzuwenden, um Integrale der Bewegung ( Erhaltungsgrifien),
Rekursionsoperatoren, Hierarchien und integrable Deformationen von integrablen Sy-
stemen zu konstruieren (vgl. etwa fiir die KdV in [18], [20]).

In engerem Zusammenhang mit unseren Ergebnissen scheint eine quantisierte
Fassung der KdV zu stehen, die Fuchssteiner in dem gemeinsamen Artikel [19] mit
Chowdhury angegeben hat. Die Autoren leiten eine Gleichung her, die formal genau
dieselbe Gestalt hat wie unsere Operatorgleichung (2). Fiir diese geben sie in einem
abstrakten Kalkiil eine Bihamilton’sche Form an, die dann dazu dient, fiir eine entlang
der Regeln der Quantisierung abgeleitete Quanten-KdV unendlich viele Erhaltungs-
grofen zu konstruieren, also Integrabilitit im klassischen Sinne zu zeigen.

Schlieflich wird eine kunstvoll eingerichtete Algebra von Distributionen be-
trachtet, welche das oben beschriebene Modell vollstindig realisiert.

Bemerkung 2.4 In der Literatur tauchen nicht-abelsche Verallgemeinerungen
von Solitonengleichungen hdufig auf, meist aber in einem vollig anderem Zusammen-
hang: Man betrachtet Gleichungen fiir Matrizen einer festen Dimension, die als Glei-
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chungssystem aufgefafit werden, und versucht dann die Techniken der Inversen Streu-
theorie auf das betrachtete System zu iibertragen. Zielsetzung dieser Verallgemeine-
rung der Inversen Streutheorie ist es, moglichst breite Klassen von Gleichungen in den
Formalismus einzubeziehen. Erste Ergebnisse dieses Typs gehen auf Wadati und Ka-
mijo [57] zuriick.

(2) Herleitung einer skalaren Losungsformel
Folgende allgemeine Aussage bildet die Grundlage unserer Skalarisierungs-
technik.

Satz 2.5. (/3] Proposition III B 1, [13] Proposition 5.2) Sei A ein quasi-Ba-
nachideal mit einer stetigen Spur t. Ist U=U(x,t) eine Losung der Operator-KdV
(2) in A, die zusdtzlich der Bedingung UP = U, U, P = U, fiir eine Projektion P mit
rank(P) = 1 geniigt, so ist

u=rT1(U)
eine Losung der skalaren KdV (1).

Als néchstes wenden wir Satz 2.5 auf unsere Operatorldsung von Satz 2.2
an. AuBerdem kénnen wir direkt eine Umformulierung der sich so ergebenden L&-

sungsformel angeben, die sich besonders fiir explizite Rechnungen eignet, da sie das
aufwendige Auswerten des inversen Operators (1 4+ L)™' iiberfliissig macht.

Hauptsatz 2.6 (vgl. [3] Theorem III B2 (ii), [13] Theorem 5.4) Sei A ein
quasi-Banachideal mit einer stetigen Determinante § und E ein Banachraum. Definie-
re wieder

L(x,1) := exp(Ax + A*t)B mit A € L(E) und B € A(E),

wobei A und B so gewdhit seien, dafi rank(AB + BA) = 1 ist.
Dann ist eine Losung der KdV (1) gegeben durch

- 02
(3) u= tr(( (14 L) (AL + L4) )x) =2 logs(1+ L),
vorausgesetzt 6(1 + L) # 0.

2.3 Exkurs zu Spuren auf Operatorenidealen

Das wichtigste Hilfsmittel bei der Durchfiihrung der Skalarisierung ist die
Theorie der Spuren und Determinanten auf Operatorenidealen, iiber die man sich et-
wa in Kapitel 4 von Pietsch’s Buch [47] informieren kann. AuBerdem mochten wir
auf die Monographien von Defant/Floret [15], Konig [29], Pietsch [45] und Simon
[55] verweisen, die in diesem Zusammenhang von grundlegender Bedeutung sind.

Ausgehend von der wohlbekannten Tatsache, daB es auf dem kleinsten
Operatorenideal F der finiten Operatoren eine eindeutige Spur tr gibt, die sich auf
zweil unterschiedliche Weisen ausdriicken 148t

a) tr(T) = 3.7, (y:, a;) fir eine beliebige (finite) Darstellung 7= Y7 | a; ® yi,
b) tr(T) = SN, M(T), wobei \(T) die Eigenwerte von T bezeichnet (tr ist eine
spektrale Spur),
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verfolgt man die beiden dadurch motivierten Ansitze zur Erweiterung der Spur auf
(groBere) quasi-Banachideale.

Die in b) angedeutete Erweiterung betrifft Operatoren T € £(E), deren Ei-
genwerte absolut summierbar sind, >, | \i(T) |< oo. Um von einer Eigenwertfolge
(Ai(T)); sprechen zu konnen, setzen wir stets voraus, daB T ein Riesz-Operator ist.

Dieser Ansatz fithrt uns zu Idealen A C S“g vom sogenannten Eigenwert-
typ 1, wobei wir mit St¥ = J erS{Y(E,F) die Klasse bezeichnen, die sich aus den
Mengen

S™M(E,F) = { T € L(E,F)

ST Riesz-Operator mit summierenden
Eigenwerten V.S € L(F, E)

zusammensetzt. Nun ist S| allerdings selbst kein Operatorenideal, es gibt nimlich
einen Banachraum E, fiir den SY(E,E) keinen Vektorraum bildet. Im Gegensatz
dazu sei aber darauf h1ngew1esen daB S{“(H,H), H der unendlich-dimensionale
separable Hilbertraum, zum Operatoremdeal wird, der bekannten Schattenklasse
vom Typ ¢, (vergleiche Pietsch [46] zu diesen Aussagen).

Das folgende, tiefliegende Ergebnis von White klirt die Existenz der spek-
tralen Spur fiir Ideale A vom Eigenwerttyp 1.

Satz 2.7 ([58]) Sei A ein quasi-Banachideal mit A C S”. Fiir beliebige Ba-
nachrdume E und jeden Operator T € A(E) definieren wir

tl‘/\(T) = io:)\,(T)
i=1

Dann ist die Funktion try eine stetige und spektrale Spur auf A.

Im allgemeinen ist die spektrale Spur tr) nicht eindeutig wie eine Beobachtung von
Kalton [28] zeigt, der die Existenz eines quasi-Banachideals A C S mit verschie-
denen stetigen Spuren nachweisen konnte.

SchlieBlich méchten wir noch anmerken, daB es nach Pietsch [47] kein groB-
tes solches auas__ganachldeal A C S% oibt

Die Darstellung in a) motiviert eine Erweiterung der Spur auf die Klasse
N, =UgrN,(E,F) der sogenannten r-nuklearen Operatoren im Sinne von Gro-
thendieck (0 < r < 1). Dabei gilt fiir einen Operator T € L(E, F)

o0
TEN/(EF) < 3Ja€E,ycF:T=)Y aoy

i=1
mit 3 [ a |- |y < oo.
i=1

Ausgestattet mit der »-Norm

oo 1

71N =inf { (D Nailr -y I)} fiie 7 e MU(E, ),

=1 -

wobei das Infimum iiber alle moglichen Darstellungen von 7T lduft, wird A/, zum

r-Banachideal.
N, ist das kleinste r-Banachideal.
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Satz 2.8. Auf dem Banachideal N eingeschrinkt auf die Klasse aller Banach-

rdume mit metrischer Approximationseigenschaft wird durch
o o0

tra(T) = Z(yi, a) furT = Za,- ®yi, (ai€E y €E)

=1 i=1
eine eindeutige stetige Spur definiert.

Die hier entscheidende Frage war die nach der Unabhéngigkeit von try
von der Darstellung. Fiir beliebige Banachrdume ist die Antwort negativ, ein Pro-
blem, das lange offen blieb und schlieBlich von Enflo [16] gelost werden konnte,
der einen Banachraum ohne metrische Approximationseigenschaft konstruierte.

Ebenfalls von Enflo [16] wurde die Existenz eines Operators S € A/ (¢1) mit
tra(S) = 1 und S? = 0 gezeigt, woraus sofort folgt, daB die Spur try, nicht spektral
ist.

Andererseits ergibt sich aus der Tatsache N, C Sfig fir0<r< %, daB auf
diesen kleineren r-Banachidealen N, (0 < r < %) sogar die spektrale Spur tr) exisi-
tiert. AuBBerdem kann man in dieser Situation auch zeigen, daB3 durch

trn, (T) =Y (yna) fir T=>" a;®y € N.(E)

i=1 =1
eine Spur auf A,(E), und zwar iiber der Klasse aller Banachrdume E, definiert
wird. Diese Spur ist eindeutig und stimmt daher mit der Spektralspur iiberein.

Der Zusammenhang zwischen Spuren und Determinanten wird durch den
,,Satz von Spuren und Determinanten* beschrieben (Pietsch [47], Grobler et al. [23]).

Satz 2.9 Es gibt eine eindeutige Beziehung zwischen stetigen Spuren und ste-
tigen Determinanten auf jedem quasi-Banachideal.

Satz 2.10 Sei § eine stetige Determinante auf dem quasi-Banachideal A. Ist
die A(E)-wertige Funktion T(z) differenzierbar im Punkt zo beziiglich der quasi-
Norm || - | A ||, so ist auch 6(1 + T(z)) differenzierbar in zy, und es gilt

0 10

o (s + 7o) = (U + T()) ' 5 T(z0)) 6(1+ T(z0) ),
falls I + T(zo) invertierbar ist. 1
Dabei ist T die Spur, die durch 7(S) = lim— (5(1 +2z8) — 1) fiir S € A(E)
gegeben ist. =0z

Eine detailliertere Einfithrung in das Material, das bei der Skalarisierung ei-
ne Rolle spielt, findet man auch in [13].

2.4 Die Operatorgleichung 4> X + XA,

Wir wollen nun genauer auf die Forderung aus Hauptsatz 2.6 eingehen,
welche wir hier — in allgemeinerer Form, um auch die Aussagen fiir die in Abschnitt
2.8 diskutierten Solitonengleichungen bereitzustellen — formulieren wollen:

Seien A; € L(E;), E; Banachriume, fiir j = 1,2 gegeben. Unter welchen Vor-

aussetzungen an A; existiert ein Operator X, der der Bedingung rank(4,X + XA;) = 1
geniigt, und welche Eigenschaften lassen sich fiir X nachweisen.
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Dazu betrachten wir den Operator ®4, 4, : A(E1, E;)—A(E), E»), A ein quasi-Ba-
nachideal, der durch ’

(4) q)AlyAz(X) = A X + XA,

gegeben ist, und interessieren uns fiir dessen Invertierbarkeit, oder mit anderen
Worten fiir sein Spektrum, spec(® 4, 4,) := {)\ eC ]()\I — ®4, 4,) ist nicht invertier-
bar in L(.A(El s Ez)) }

In grundlegenden Arbeiten haben Eschmeier [17] und Dash/Schechter [14]
das Spektrum von elementaren Operatoren @,

(5) (I’=p(RA1,LA2),

wobei p ein Polynom ist und R4, die Multiplikation mit 4, € £(E;) von rechts,
L4, die mit A, € L(E>) von links bezeichnet, bestimmt. Wir zitieren hier ein Ergeb-
nis von Aden, das ihre Aussage von Banachidealen auf p-Banachideale (0 < p < 1)
verallgemeinert.

Satz 2.11 ([1], [2] Theorem II1.2.7) Sei A ein p-Banachideal (0 <p <1).
Fiir das Spektrum des in (5) definierten Operators @ gilt
(6) spec(®) = p(spec(A1), spec(42))
unabhdingig vom zugrundeliegenden p-Banachideal A.

Folgerung 2.12 Unter der Voraussetzung 0 ¢ spec(A;) + spec(A4,) gibt es zu
Jjedem beliebigen quasi-Banachideal A und jedem Operator C € A(E), E,) stets eine
eindeutige Losung X der Gleichung A, X + XA, = Cin A(E\, E), nimlich

X =0, . (C) € AE1, E).

Einen systematischen Zugang zur Losung der Operatorgleichung A, X+
XA, ohne die Kenntnis von spec(4;) (j = 1, 2) bietet das folgende Lemma.

Lemma 2.13 Sei A ein Banachideal und A; € L(E;), E; Banachriume
(j=1,2). Gilt

o .
/ le5Ce s | Al ds< oo fir Ce A(E,E),
0

so ist der durch das uneigentliche Integral X = / A5 Ce™ 15 ds € A(E), E,) defi-

nierte Operator X Losung der Gleichung A»X + XA, = C.

Bemerkung 2.14 Die Aussage des Lemmas lift sich nicht auf quasi-Banach-
ideale A ausdehnen wie ein Gegenbeispiel von T. Kithn (ausgefiihrt in [2] Abschnitt
1V.2) zeigt.

Das folgende Kriterium ist grundlegend fiir die Erweiterung unserer Me-
thode auch auf unbeschriankte Operatoren in [12], vergleiche Abschnitt 4.1.

Satz 2.15 Seien A; Erzeuger von Co-Halbgruppen (T}(x))
men Ej, j = 1,2, mit 0 ¢ spec(A4;) + spec(A43). Durch
T12(x)X = (Tz(x)XTl (x)>x>0 fir X e K(Ey, Es)

x>0 auf Banachriu-
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wird auf den kompakten Operatoren K(E\, E,) ebenfalls eine Cy-Halbgruppe defi-
niert, deren Erzeuger mit ® 4, bezeichnet wird, und der formal durch ® Apd, X =
A> X + XA, gegeben ist (vergleiche auch Abschnitt 4.1). Unter jeder der folgenden
Bedingungen ist ® 4, 4, invertierbar:

(i) ([44] Theorem 3) sup H/ T12(»)dy|| < oo.
x>0 0

(ii) ([4] Theorem 4.1) A; ist Erzeuger einer ,,schliefflich normstetigen Halbgruppe",
das heifit, es gibt ein xo > 0, so daf lim, ., || Tj(x) — Tj(xo)|| = 0ist (j =1,2).

(iii) ([27]) A; = A fiir j = 1,2 und die Halbgruppe (T}-(x))x>0= (T(x))x>0 lapt sich
zu einer Co-Gruppe (T(x)) g ausdehnen, welche die folgende quasi-analytische
Wachstumsbedingung erfiillt:

/°° log(1+ [ T(x))

dx < oo.
o 1+ x2

Die Einschrinkung auf kompakte Operatoren K(E|, E,) lift sich auch durch
die Einschrinkung auf nukleare Operatoren N (E\, E,) ersetzen.

Fiir eine umfangreiche Diskussion der Operatorgleichung 4,X + XA, sei
auBerdem auf den Ubersichtsartikel von Bhatia und Rosenthal [7] verwiesen.

2.5 Marchenko’s Methode

In diesem Abschnitt méchten wir die Methode vorstellen, die Marchenko
in seiner richtungsweisenden Arbeit [30] verwendet hat, und die Motivation und
Ausgangspunkt unserer Untersuchungen war.

Seine grundlegende Idee bestand grob gesprochen darin, nichtlineare Glei-
chungen zunéchst in einem allgemeineren Rahmen zu behandeln und dann auf die
konkret interessierende Situation zu projizieren. Etwas priziser wird dies von Mar-
chenko in seiner Einleitung anhand der KdV folgendermaBen formuliert:

Allgemeine Strategie

Gegeben sei eine auf einem Gebiet der (x,¢)-Ebene definierte Operator-
funktion I'(x, £), die auf dem ganzen Gebiet invertierbar ist und dort den folgenden
Bedingungen gentugt

(7) Ft - 4Fxxx = 0, Fxx = aZF,

(8) [«(1=P) = TNo(1-P),

wobei a, Ny konstante Operatoren sind und P eine eindimensionale Projektion
(P? = P) bezeichnet. Dann gilt

a) U:=2(I'"'Ty)_ist eine Operatorldsung der Gleichung U, = Uyxx + 3(UUy +
U.U).

b) Die Funktion u, die durch PUP = uP gegeben wird, ist eine skalare Losung der
Kdv (1).

Bemerkung 2.16 Zur Herleitung der Operatorgleichung wird lediglich (7)
verwendet, (8) dient dazu, daf die Losungseigenschaft von U bei der Projektion erhal-
ten bleibt.
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Ausfithrung

Zunichst wihlt man eine beliebige Algebra von operatorwertigen Funktio-
nen und sucht in dieser I' mit (7), (8). Offenbar geniigt I' = e @¥+4’t | g-ax—4a’t pq
stets (7), und dann, fiir Ny = a, auch (8), vorausgesetzt, es ist (aM + Ma)(1 — P)
= 0. Um die letzte Bedingung zu erfiillen, reicht es, Operatoren My, R zu finden, so
daB aMo + Mopa = P und [R,a] = 0 gilt, und M = RM, zu setzen. Prinzipielle tech-
nische Schwierigkeiten bei der Ausfithrung sind demzufolge a) die Losung der Glei-
chung M, mit aMy + Moa = P zu vorgegebenen a, P und b) die Gewihrleistung
der Invertierbarkeit von I'.

Bemerkung 2.17 Unsere Vorgehensweise orientiert sich ebenfalls an dieser
Strategie, ein wesentlicher Unterschied besteht allerdings bereits im Ansatz: Mar-
chenko verwendet den Begriff der logarithmischen Ableitung T-'T, als Ausgangs-
punkt seiner Uberlegungen, und um die Losung zu projizieren, muf3 dann U = UP +
U(1 —P) in einen eindimensionalen Term und einen konstanten (konkret
U(1 — P) = Ny) zerfallen. Im Gegensatz dazu stellen wir eine konkrete Losung, nim-
lich das 1-Soliton, in den Vordergrund, die wir als Operatorfunktion interpretieren. In
der bei der Interpretation notwendigen Symmetrisierung ist die Projektion sozusagen
automatisch eingebaut.

Der Operator Ny, den Marchenko durch seinen etwas allgemeineren Zugang
als zusdtzlichen Parameter einfiihren kann, muf bei jeder konkreten Realisierung pas-
send eingerichtet werden. Man stellt weiter fest, daf} er in der Anwendung in [30]
kaum eine Rolle spielt, da er entweder ( Realisierung a)) keine zusdtzlichen Parame-
ter beitrigt oder aber ( Realisierung b)) mit dem Operator a zusammenfdllt.

Auf der anderen Seite fiihrt unser direkterer Ansatz durch seine iibersichtliche
Struktur zu deutlich transparenteren Losungsformeln wie sich bereits im Fall der
N-Solitonen, vergleiche nachstehend, zeigt.

Seine Methode formuliert Marchenko zunéchst auf rein algebraischer Ebene.

In einem assoziativen Ring K mit Eins 1 betrachtet er die Gleichungen (7),
die nun mittels verallgemeinerter Ableitungen aufgestellt werden (8 € £(K) heiBt
verallgemeinerte Ableitung, falls die Produktregel d(kik») = (9k;)ks + ki (k) fiir
ki, ky € K gilt) und leitet daraus ein Analog der KdV in X her. Jedes idempotente
Element P € K kann dann unter der Annahme (8) als Projektor von K in den Un-
terring Ky = PKP verwendet werden.

Fur die KdV handelt es sich bei dem Ring K, in dem Losungen gesucht
werden, traditionell um K, = C .

Marchenko fiihrt zwei Typen von konkreten Realisierungen durch, deren
wichtigste Ergebnisse hier referiert werden sollen.

a) Realisierung in Matrixringen
Die einfachste Erweiterung von K ist der Matrixring K = Maty(Kp) der
N x N-Matrizen iiber Ky mit der iiblichen Differentiation 0k = (8k,-j)z.:l fiir

k= (Lqi)f,.:u_wobei K in natiirlicher Wejse mit dem Unterring PKP
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1 0 0
P 0 0 0
0 0 0

identifiziert wird.
Die Projektionsbedingung (8) 148t sich stets mit Wronski’schen Matrizen

NN

W =W(@h,...,/n) = (8N*ffi>. ~ 18sen, und zwar in der Form W (1y — P)

= WN(](IN—P) mit b=l

o 1 o0 --- 0
No = o o0 1 -~ 0 ,
1 0 0 --- 0

und es gilt P(W~'0W)P = wP mit w = (det W)~ a(det W).
Um daraus konkrete Ldsungen zu bestimmen, miissen nun zu vorgegebener
Matrix a aus den Gleichungen (7) fiir W noch die an W beteiligten Funktionen f;
(j=1,...,N) bestimmt und die Invertierbarkeit von /¥ untersucht werden.
Ansgehend von der JDiagonalmatrix

a

Tl

1_

ik

L

1

B L
i

ergibt sich als Formel fiir die N-Solitonen

82
u=22log (det W(ax;fl,...,f,v))

mit f; = % (% + (—1)7"'e™%) und ¥(x, 1) = k;x + 4kt + ;.

Die Beschreibung von N-Solitonen durch Wronski’sche Determinanten ergibt sich
auch véllig natiirlich bei der sukzessiven Konstruktion von Losungen mit der soge-
nannten Darboux-Transformation. Eine ausfiihrliche Darstellung dieser Methode
wird von Matveev/Salle in [33] gegeben.

Bemerkung 2.18 In unserem Formalismus finden sich die N-Solitonen wieder,
indem man den Operator A speziell als folgende N x N-Matrix in Diagonalgestalt
einsetzt:
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Bemerkung 2.19 Die zusiitzliche Flexibilitit, die wir bei unserer Vorgehens-
weise dadurch erzielen, daf wir das Konzept der Operatorenideale verwenden, zeigt
sich hier ein erstes Mal konkret darin, daf} wir bei der Ausdehnung der Losungsklasse
der N-Solitonen auf Superpositionen von abzdhlbar vielen Solitonen auf keinerlei
Schwierigkeiten stossen, wihrend im Formalismus von Marchenko Ergebnisse dieser
Art nicht ohne weiteres ablesbar sind.

Wir verweisen auf die Diskussion in Abschnitt 3.2, aus der auch klar die be-
deutende Rolle der Faktorisierungsresultate, die uns im Rahmen der Banachraum-
theorie zu Verfiigung stehen, ersichtlich wird.

b) Realisierung in Operatoralgebren

Marchenko betrachtet als Grundring K, die Algebra C°°(£(H0)) der ab-
zéhlbar oft differenzierbaren Funktionen eines Gebietes der (x, ¢)-Ebene in die be-
schrinkten linearen Operatoren auf Hy, Hj ein separabler Hilbertraum.

Als Erweiterung K verwendet er die Algebra C*°(L(H)), wobei H =
L2(Q,Ho) = {f : Q@ — Ho | [If ()|, € L2(V)}, (2,p) ein meBbarer Raum mit
0<p<oo.

Geeignete Projektionen P mit PH = Hy, also mit PC®(L(H))P = C™>
(L(PH)) = C*(L(Hy)), ergeben sich durch P(f(z)) = [op(z)(f(2))du(z) zu
p € L2(Q,L(Ho)) mit [,p(z)du(z) = 1. Dabei ist das Integral [, fdu von f €
LZ(Q Hy) als das Element hy € Hy definiert, welches das Funktional (-,hg) =
Jo f @)y ,du(z) erzeugt, und unter dem Integral Jo Fdu von F € L7, (2, L(Ho))
versteht man den Operator auf Hy, der durch ( [, Fdu)(ho) := [, (F(z)ho)du(z)
gegeben wird.

Im Fall der KdV ist dimHy =1 zu setzen, das heilt man identifiziert
Hy ~ €, C*(L(Hy)) ~ €, und das Konzept stimmt mit den iiblichen Konventio-
nen in LZ(Q) iiberein. Die Ausfithrung der Grundstrategie erweist sich trotzdem als
duBerst aufwendig, und wir beschrianken uns deshalb darauf, das Ergebnis zu for-
mulieren.

Satz 2.20 ([30] Theorem 3.6.1) Die folgenden Voraussetzungen seien erfiillt:

1) Der Triger S des Mafes p liege in der Vereinigung von reeller und imagi-
nirer Achse, sein asymmetrischer Anteil O = {z|z € Q, —z & Q} sei in endlich vielen
Intervallen Ay = | iay ,ia} | (a; < aff) der imaginiren Achse enthalten, und fiir die
Zerlegung QF = Oy N T, QF = W\Qf gelte dist (QF, w1 (Q7)) > 0 (m(2) = —z).

2) Die nichtnegative Funktion w(z) ist ein Muckenhoupt-Gewicht auf der Ver-
einigung ~y von reeller und imagindrer Achse, das heift

1 1
sup sup —/ w(z)|dz] ~—/ w(z)dz| b < oo
Zey r>0 | ¥ JzeB(/ )N~y T JzeB(z' )Ny

B(Z,r) :={z:|z = Z| < r}, und erfiillt inf.cq\q, (w(z)w(z)) > 0.

3) Das Maf; p stimmt auf Q\Q; mit dem linearen Lebesgue Mafi (du(z) =
(27) ™ |dz|) iiberein und geniigt auf Q0 simultan den Carleson Bedingungen zu w(—z)
und w(—z)~", namlich
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h

u(([=ih, k) < Cmin{ /

—h

w(—x)dx, /j: w(—x)ldx},

i(af+h)
ullitae = h),i(ag +m)) < Cmin{ / w(=2)ldz],

(at=h)

i(af+h)
/ w(—z)""dz| .
i(alf —h)

4) Die Operatorfunktionen py(z), r(z) und r(z)~", m(z) seien beschrinkt und

es gelte m*(Z) = m(z), auflerdem sei nachstehende Ungleichung erfiillt,

sup [P (=2)m(2)r(=2)lly, +3 sup  w(z) M lpe(2)r(2) 13, < 1.
—00<z<00 —oc<z<00

Dann ist der Operator T = 1 +LR(Z)L beschrankt und invertierbar, wobei
R(z) = (ln\(nn¢+)(2) - 1lgner (z))r(z)r*(—z) o~ 2iz(x+42%1)

_ _ P*(-E)P(Z/) ’ /

LU @) = (1o, @) mie)f (=2) + f H22 @tz
mit p(z) = (IQl (z) + 1\, (z)w(z)_il’) po(2), 14(2) die charakteristische Funktion
auf Q.

Weiterhin ist

a2 -1 v = .

Ulx, 1) = 2WP( — T'R(2)p (—z))P € C*(L(Hp))

eine selbstadjungierte Losung der KAV~ U; = Uy + 3(UU, + U, U).

In der interessierenden Situation, Hp ~ €, identifiziert man Operatoren F €
L2(Q, L(H,)) = L (€2, £(T)) mit den entsprechenden Funktionen f € L2(Q), falls
F(z)A = A(F(2)1) = X (z) fir A € €. Dann reduziert sich die Lésung von

(- T7'RE@p () P=g()P <= (- R (-2))P = (Te() ) P

auf eine Integralgleichung fiir die Funktion g(z).

Zwei Fille werden diskutiert:

(1) Besteht 2 NiIR aus endlich vielen verschiedenen Punkten mit positiven Imagi-
nirteil, so fillt die Integralgleichung fiir g(z) mit der Gelfand-Marchenko-Glei-
chung der Inversen Streumethode zusammen.

(2) Gilt QNIR =0 und QNilR besteht aus endlich vielen disjunkten Intervallen,
die symmetrisch zum Ursprung liegen, so kann man iiber die Integralgleichung fiir
g(z) die Baker-Akhiezer-Funktion konstruieren und die algebro-geometrischen Lo-
sungen identifizieren.

Bemerkung 2.21 Der Versuch, andere gut verstandene Losungsklassen wie et-
wa die oben erwihnten auch in unseren Formalismus einzubinden, ist erfolgverspre-
chend, und tatsdchlich liegen bereits erste Ergebnisse in dieser Richtung vor, verglei-
che Abschnitt 4.2.

Dabei ist einerseits zu erwarten, daf3 man natiirliche Ubersetzungen der Be-
dingungen an den Triger S des Mafes i in Eigenschaften des Spektrums des bei uns
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0
LC, := {K LG, —C|Ko(s) == / k(s, 0)p(o)do, k stetig,

K| := M, sup (1 =5)"(1 = 0)"| k(s 0)| < oo},

wobei M, := j{_) (1= 5)"*ds < oo. Auf diesem ist die Fredholm’sche Determinan-
te det(I + AK) fur K € LC, wohldefiniert.

Satz 2.25 ([49] Theorem 2.3) Sei f eine Losung der linearisierten KdV
Jt = 8fxxx, die so gewdhit ist, daf sowohl f als auch alle Ableitungen von f nach x bis
zur 4.0rdnung sowie nach t bis zur 2. Ordnung in C,, liegen. Das impliziert fiir den
Fredholm’schen Integraloperator F(x,t), der durch

0
Flx, 0)6(s) = /_ F(s+ 0+ 2x, 0)d(o)do

gegeben ist, F, F,, Fy, Fyy, Fyxx € LC, fiir alle x und t.
Dann ist fiir jedes A € €

g(x, 5 X) :==det (I + A\F(x,1))
eine Losung der bilinearen KdV.

Bemerkung 2.26 Die N-Solitonen erhilt man durch einen Ansatz, der dem
von Hirota dhnlich ist, nimlich

N .
1) = 5> (G ki o).
j=1

Die Verbindung zu Bécklund Transformationen einerseits und zur Inversen
Streumethode andererseits wird von Poppe detailliert untersucht, man kann sich
dariiber ebenfalls in [49], zu weiterfilhrenden Aspekten auch in [50] informieren.

Bemerkung 2.27 a) Der Zugang von Pdppe beruht auf der sehr speziellen
Wahl von addditiven Integraloperatoren auf einem passend zugeschnittenen Raum.
Durch die Einbettung in den allgemeinen Rahmen der Operatorenideale unterliegt die
Wahl des Operators A in unserem Ansatz keinen derartigen Einschrinkungen.

b) Die Behandlung von Gittergleichungen geht von einer anderen Situation
aus. So lautet etwa fiir das Toda-Gitter in [5] die Forderung an den dort beteiligten
Operator F,(t) € N'(E) (E Banachraum)

an=Fn+l_Fn—l und Foa=V.F,=FV,
mit den sehr speziellen Bedingungen V_V, = 1 und rank(1 — V. V_) = 1 an die Ope-
ratoren V_, V., € L(E). Dieser Ansatz entstand zwar durch Diskretisierung des Ver-
Sfahrens im kontinuierlichen Fall, in [5] wird jedoch darauf hingewiesen, daff dennoch
der kontinuierliche Fall nicht durch einen Grenziibergang aus dem diskreten Fall ge-
wonnen werden kann.

Mit unserer Strategie ist es gelungen, einen einheitlichen Zugang zu finden, in
dem sowohl der kontinuierliche als auch der diskrete Fall im wesentlichen nach dem-
selben Formalismus behandelt werden kiénnen, vergleiche auch Abschnitt 2.8.
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c) Bei Poppe’s Vorgehensweise wird die Losung direkt in Form von Fred-
holm’schen Determinanten angesetzt, operatorwertige Gleichungen werden in diesem
Zusammenhang nicht behandelt.

2.8 Zusammenstellung von Resultaten zu anderen
Solitonengleichungen

In den folgenden Tabellen haben wir einen Uberblick iiber bisher erzielte

Ergebnisse zu anderen Solitoneneleichungen zusammeneestellt. Dabei unterschei-

den wir zwischen zwei Typen von Gleichungen, den iiblichen kontinuierlichen Glei-
chungen, die neben dem Zeitparameter ¢ von kontinuierlichen Ortsparametern x,
» € IR abhingen, und den sogenannten Gittergleichungen, in denen die Orts-
koordinate n € Z diskret ist.

Kontinuierliche Gleichungen: Korteweg-de Vries-Gleichung (KdV), Modifizierte Korte-
weg-de Vries-Gleichung (mKdV), Kadomtsev-Petviashvili-Gleichung (KP), Boussi-
nesq-Gleichung (B), Sinus-Gordon-Gleichung (sG), Nichtlineare Schridinger-Glei-
chung (NLS).

Gittergleichungen: Wadati-Gitter (W), Langmuir-Gitter (L), Toda-Gitter (T).

Die vorliegenden Resultate sind erst teilweise verdffentlicht. Wie bereits erwihnt
wurde die vorgestellte Methode zunéchst fiir die Korteweg-de Vries-Gleichung in
[3] durchgefiihrt. AnschlieBend gelang in [52] die Behandlung der Sinus-Gordon-
Gleichung, aulerdem wurde dort die Situation fiir Korteweg-de Vries/Modifizierte
Korteweg-de Vries-Gleichung und Wadati/Langmuir-Gitter gekldrt, die jeweils
durch die sogenannte (diskrete) Miura Transformation bzw. die Kontinuum Ap-
proximation verbunden sind. Fiir das Toda-Gitter verweisen wir auf [53] und fiir
die Kadomtsev-Petviashvili-Gleichung auf [13].

Die Vorgehensweise bei der Herleitung der Resultate lehnt sich eng an die
in Abschnitt 2.2 ausfithrlich im Zusammenhang mit der Korteweg-de Vries-Glei-
chung geschilderte, und die mathematische Formulierung der Aussagen 148t sich
vollig natiirlich iibertragen. Wir haben uns hier auf eine schematische Darstellung
beschrankt, um Wiederholungen zu vermeiden.

(1) Operator-Versionen von Gleichungen

Zunichst werden im ersten Teil die operatorwertigen Ubersetzungen dar-
gestellt, und zwar nacheinander a) die operatorwertige Gleichung, b) die zugehorige
Loésung und die zugrundeliegenden Basisgleichungen.
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Kontinuierliche Gleichungen
a) Operatorgleichungen

119

KdV U, = Uex + 3(UU, + U, U)
mKdV Ui = Urex + 3(U? Uy + U U?)
KP Uxt=%(Uxxx+6U§)x+%U)’y+%[UY’ U]
B Ui = Usx + Usxxx + 3(Ur Unx + U Uy) — iV3[U,, Uy
G| (1+U) U+ (1= U UL) =
Hu-oya+u) -+ )1 -uy)
NLS iU, + Uy —2UTU =0

iU, - UXX + ZUUU = O

b) Operatorlésung und Basisgleichungen

Kdv U= ((1 +L)"‘(AL+LA))X L,=AL,L, = A’L
mKdV U=—i(1—L>)""(4L + LA) L.=AL L, = A*L
KP U= (1+L)""(BL+ LA) L,=(A+B)L,L, = (42— B})L,
L= (4+B)L
B U=(1+L)"(4,L+LA4) Ly=AL L =QL
mit 4y = A+id47'Q/V3 fiir [4,Q] = 0,02 = 4%(1 4+ 4?)
sG Urs=(1+L)4ALA + L) Ly=AL L = A"'L
NLS U= (1-LL) (AL + LA) Li=AL L= 4L
U=(1-LL)"(AL+TLA) L.=ALL =-i4AdL
Gittergleichungen

a) Operatorgleichungen

T 1 - =
(+U) "),
=(1+U) "' 04 U) -1+ U) ' (1+ UY)
L Un’, = (1 +hUn)Un+1 — Un—l(l +hUn)
w U"J = (1 + U,%)Un+l - Un——l(l + U,%)
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w Miura-Transformation L

Kontinuum- Kontinuum-
Approximation Approximation

mKdV Miura-Transformation KdV

Satz 2.30 Die durch M(U) := U? 4+ iU, definierte Miura-Transformation
fithrt Lésungen U der mKdV in Lisungen M(U) der KdV iiber. Analog gilt fiir die dis-
krete Miura-Transformation M(Uy) := 1 (1 —iU,)(1 +iUny1) — 1), dafs sie Losun-
gen U, des Wadati-Gitters in Losungen M(U,,)) des Langmuir-Gitters iiberfiihrt.

Fiir die speziellen Lisungen, wie sie in den Tabellen angegeben sind, gelten die
durch die Miura-Transformationen gegebenen Beziehungen ebenfalls.

Satz 2.31 Durch die Vorschrift U(x,t) := %U,,(hi3 1), nh=x —;651, geht im
Grenzwert h — 0 ( Kontinuum-Approximation) das Langmuir-Gitter in die KdV und
das Wadati-Gitter in die mKdV iiber.

Auch die in den Tabellen angegebenen speziellen Losungen werden ineinander
iiberfiihrt, vorausgesetzt der Zusammenhang V = exp(hA) gilt.

(2) Explizite Losungsformeln
Im zweiten Teil werden nun die Losungsformeln aufgelistet, die man nach
der Durchfithrung der beschriebenen Skalarisierungstechnik erhilt.

Kontinuierliche Gleichungen Gittergleichungen
KdV | u=2(logs(1 +L)),, T "y = 5((Stl+ L£+;) _
+ Ly
T s(1-1)
mKdV u=i((log—=) 1 8(1 + Loy1)
s(1+L)’~ = (log 2o T ontl)
( ) L Un h(log ) ),
KP u= ((log6(1+L)) -
- W U —i(lo ————6(1—L”))
B u=2((log§(1+ L)), "V L)
__8(1FL)
sG ui——:Fé(liL)ﬂ:l
NLS | uz=—((logé(l — LL))

Bemerkung 2.32 a) Lisungen von der Sinus-Gordon-Gleichung ux, = sin(u)
ergeben sich aus der hier behandelten Version durch die Transformation
u=ilog(l +u_)/(1 —uy) (zur Motivation vergleiche [52]). Als Losungsformel er-
halten wir daher u = 2ilog (6(1 + L)/6(1 — L)).

b) Aus der hier behandelten Form ergeben sich wiederum Lisungen des Toda-
Gitters in seiner urspriinglichen Gestalt Uy y = exp(—(ty — Up—1)) — exp(—(Unp1—
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u,)) mittels der Transformation U, = —log(l + uy,), und man erhilt 4, = —log
(6(1 + Lny1)/8(1 + Ly)).

Bemerkung 2.33 Im Theoretisch-Physikalischen Institut in Jena wurden in
der Arbeitsgruppe ,, Gravitationstheorie* von Neugebauer und Meinel erhebliche Er-
folge zur Ernst-Gleichung

R()AS = (Vf)

fiir das (komplexe) Ernst-Potential f = f(p,(), der Reduktion der axialsymmetri-
schen stationdren Einstein’schen Feldgleichungen im Vakuum, erzielt. Diese ist eine
Solitonengleichung, die physikalisch im Zusammenhang mit der Astrophysik von gro-
fer Bedeutung, aber mathematisch noch erstaunlich wenig erschlossen war.

Es ist deshalb bemerkenswert, daf} es in den Arbeiten [41], [38] und [42] ge-
lungen ist, Analogien zur Theorie der iiblichen Solitonengleichungen ( N-Solitonen, el-
liptische Losungen, Inverse Streumethode) zu finden. In den Arbeiten erweist es sich
als ein besonders subtiler Punkt, unter den gefundenen Lisungen die physikalisch rele-
vanten auszusondern. Da auch unsere Methode die qualitative Untersuchung von Li-
sungen ermoglicht (siehe Abschnitt 3.1), erscheint es uns als ein attraktives Projekt,
die Ernst-Gleichung von unserem Standpunkt aus zu betrachten.

3 Konstruktion und Untersuchung von Losungsklassen

Im folgenden Abschnitt betrachten wir als Anwendung Losungen, die sich
durch bestimmte Setzungen fiir den ,,erzeugenden Operator® A4 in unserer Lésungs-
formel (3) ergeben und besprechen, in welcher Weise sich die funktionalanaly-
tischen bzw. algebraischen Daten von A4 in der Geometrie der Lésungen auswirken.

Motiviert wurden unsere Untersuchungen durch die Beobachtung, daB3 sich
durch Einsetzen von (endlichen) Matrizen in Diagonalform die bekannten Solito-
nenlosungen von Hirota ergeben.

Lemma 3.1 Seien a,c € €~ beliebig sowie k; € € paarweise verschieden mit
ki+ki#0Vi,j=1,...,Nund

kk 0 .- 0
4 0 k --- 0
0 0 - ky

Dann lautet die Losung der KAV, die gemdfy Hauptsatz 2.6 und Folgerung 2.12 gege-
ben ist, u(x,t) = 202 logp(x, t),

N
aic;
x,t) =det| ( 6; + kix + k3t —”—)
p(x.1) (( Y exp( o )ki+kj ij=1
N n n ki,—ki., 2
=14 exp(kix + k3t + 6, (—]——’>
; i1<..z;i,, ]l;l[ ( ’ ! 1’>J-£L ki + ki
44

mit exp(6;) = T
j
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an "N
W = W(gﬂ(k]),,ak—lnlga(kl), ...... ,QD(kN),,WQO(kN))

mit ¢ € {Ypos, Pneg }» WObei insbesondere die Wahl zwischen den beiden Funktionen
neg, die ein Negaton erzeugen, noch geeignet zu treffen ist (vgl. [35] und auch Be-
merkung 3.2).

Bemerkung 3.2 Die N-Solitonen ergeben sich mittels W(pn, ..., on) aus der
Setzung

cosh (kj(x + k2t + 6(k;))/2), j ungerade,
J j ]

i(x, 1) =
w0 ) sinh (kj(x+ k't + 6(kj))/2>, J gerade.

Bemerkung 3.3 a) Das Konzept der Positonen ist nur fiir ungerade Ordnun-
gen interessant, wo sie sich als stabile Objekte erweisen. Im Fall gerader Ordnung er-
geben sich periodische, singulire Losungen wie beispielsweise im Fall nullter Ordnung
u(x,t) = —(k*/2) sin™2 (k(x — k?t + 6)/2) (vergleiche auch die Diskussion in [35]).

b) Das Konzept der Negatonen stellt eine Erweiterung von den bekannten So-
litonen dar: Solitonen sind Negatonen nullter Ordnung.

Matveev und seine Schule haben sich auf die Untersuchung der Positonen
konzentriert und konnten in [36], [37] das asymptotische Verhalten von Losungen,
in denen (beliebig viele) Solitonen und Positonen der Ordnung 1 zusammengefalB3t
sind, kldren. Im Fall der Negatonen erzielten Rasinariu et al. [S1] Ergebnisse in die-
selbe Richtung. Diese beschranken sich aber auf Einzelfille (zum Beispiel Negato-
nen der Ordung # fiir 0 < n < 4 oder die Kollision von zwei Negatonen der Ord-
nung 1). Sowohl fiir Positonen als auch fiir Negatonen sprechen die Autoren in den
oben zitierten Artikeln Erwartungen fiir den offen gebliebenen allgemeinen Fall
aus.

Die Resultate in diesem Abschnitt stellen eine vollstindige Behandlung des
allgemeinen Falles fiir die Negatonen dar, wobei die Erwartungen von Rasinariu et
al. und sinngemiB auch die von Matveev bestitigt werden konnen.

In unserer Losungsformel (3) ergeben sich die Negatonen durch Einsetzen
von (endlichen) Matrizen A, die wir gemil3

Lemma 3.4 ([3], [52] Lemma 4.0.1) Sei A eine beliebige Matrix mit
0 ¢ spec(A) +spec(4) und u(x,t) =202logdet (1 + exp(Ax + Aoyl (a®c)
die gemdf; Hauptsatz 2.6, Folgerung 2.12 zu diesen Daten gegebene Losung der KdV.
Dann gibt es Vektoren a, ¢, so daf gilt:

u(x, 1) = 282 log det (1 +exp(Jax + 3085, (@ ® a)),
J 4 Jordan’sche Normalform von A.
stets in Jordangestalt annehmen konnen. Genauer setzen wir

Voraussetzung 3.5 Die Matrix A bestehe aus N einzelnen Jordanbliocken A;
der Dimension n; zum Eigenwert k;,
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A0 0 ki 1 0
0O 0 --- 4
N 0 k;

die Eigenwerte k;j € € seien paarweise verschieden und es gelte k;+k;j #0
(Vi,j=1,...,N).

Da lediglich reelle Lisungen betrachten werden sollen, fordern wir zusdtzlich,
daf} sowohl die Vektoren a, ¢ als auch die Eigenwerte reell sind, ohne Beschrinkung
der Allgemeinheit

kN>...>k1>0.

voraus. Unser Ziel im folgenden ist es zu erkldren, wie man das asymptotische Ver-
halten von Negatonen in Korrespondenz zu den algebraischen Daten der Matrix A
setzen kann.

Dazu ist es sinnvoll, zunichst die elementaren Bausteine zu betrachten, aus
denen sich Negatonen zusammensetzen, die Negatonen nullter Ordnung. Die Ge-
stalt eines solchen Negatons nullter Ordnung hingt vom Vorzeichen der Parameter
ajy, c; ab. Setzt man (a;c;) / (2k)) = € exp(8;) mit reellem Parameter §; und Vorzei-
chen €, so unterscheidet man zwischen

a) ,reguldren Solitonenu(x, ) =  (k?/2)cosh™ (ki (x + k2t + 61)/2) fiir
€ = 1 und

b) ,singulédren Solitonen u(x, ) = —(k?/2) sinh ™2 (ky (x + k3¢ + 61)/2) fir
€1 = —1 (In der Literatur spricht man auch oft von Solitonen und Antisolitonen).

Soliton Antisoliton

™~

-15 -10 -5 5 10 15 -15 -10

-2

-3

-4

Weil die Losungen u(x, ), die wir hier untersuchen, auch Pole haben kon-
nen, erweist sich die folgende Betrachtungsweise als praktisch bei der Formulierung
eines Konvergenzbegriffes, der das asymptotische Verhalten charakterisiert.

Die Beobachtung, daB u,(-) := u(-, ) fiir jedes feste ¢ die Einschrankung ei-
ner meromorphen Funktion — definiert auf einer geeigneten Umgebung U (eventu-
ell gilt U = U(¢)) der reellen Achse - ist, zeigt, daBl man u,(-) auch als Abbildung in
die Riemann’sche Zahlensphire € = €U {oo} auffassen kann.

Man versieht nun € mit einer Metrik, etwa mit der kordalen Metrik dcrd,
die in der Giblichen Weise gegeben wird durch
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A (w,z) = v~ (w) = 77! (2)],
1@ — 2 C R, 7 die stereographische Projektion,

und verwendet mit diesen Vereinbarungen den Begriff der (global) gleichmiBigen
Konvergenz von Abbildungen u, : R — ( fiir 1 — +oo beziiglich der kordalen Me-
trik.

Definition 3.6 Man sagt, dafi zwei Funktionen u(x,t) und v(x,t) fiir t — oo
(bzw. t — —o0) das gleiche asymptotische Verhalten haben,

(12)  u(x,t) = v(x,1) Sfir t = oo (t = —00),
falls es fiir jedes € > 0 ein t. gibt, so dap fiir t > t. (bzw. t < t.) gilt
drd (u(x, 1), v(x, 1)) < € gleichmdifig in x € IR.

Wir kommen nun zu unserem Hauptergebnis. Die Beweise bauen auf Me-
thoden auf, die die zweite Autorin in ihrer Dissertation [52] entwickelt hat. Die hier
gewihlte Formulierung orientiert sich an der Verbesserung dieser Aussagen, die sie
in [54] im Zusammenhang mit der Sinus-Gordon-Gleichung erzielen konnte.

Hauptsatz 3.7 ([52] Theorem 4.3.1, [54] Theorem B) Zu den Daten in Vor-
aussetzung 3.5 assoziieren wir die Kurven

(13)  Tim(x,0) =kix +kjt+log | 77" +(8 + 65 + 63,

(14) firmj=—m—1),—(m; = 1) +2,...,(n; — 1) —2,(n; — 1),
und, entlang dieser Kurven die Solitonen
-2
Ui (X,0) = 2K30F(1+E5)
(15)

(nj—1)+m;
mit £3(x,0) = (1) 7 exp (r,;,,,j. (x, z))
mit der Vereinbarung, daf$ der Vektor a (und entsprechend auch c) zerlegt sei gemdfs
a=(ay,...,ay)" mita; = (aj(.l), - ,aj"’ ), also der Jordanform von A angepaft, und
wir setzen aj(.l)c](.nj)/(ij)"f = ¢jexp(6;) mit §; € R, ¢; = £1.
Die Grioflen 5].*, @fmj kennzeichnen den Phasenshift, der in der asymptotischen
Form auftritt, und es gilt

(16)  exp(6) ﬁ[kj' wk"]znjlb )= 11 [j, _kj]znj/
X S = —_— ZW. expl(o; ) = 7 1
J ok kj' + k] J =it kjl + kj
((nf—l)im!‘)'
+ 0y 3\ Fm; 2 :
(17) und exp(6j’mj) = (4kj) I ——————( (n-—l);m»)|'
;-’—2 !

Dann ldft sich das asymptotische Verhalten der nach Hauptsatz 2.6 und Folgerung
2.12 gegebenen Losung u(x,t) der KdV beschreiben durch

N
(18) u(x,t) ~ ZZ uji‘mj(x, t)  furt=+oo
j=1 mj

(die Summationsindizes m; sind durch (14) gegeben).
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Qualitativ lassen sich die in Hauptsatz 3.7 beschriebenen Phinomene in der
folgenden Weise zusammenfassen ([52], im AnschluB an Theorem 4.3.1):

Interpretation

Die Lisung wird offenbar durch die endlich vielen Eigenwerte k. .., ky cha-
rakterisiert, die wir von geometrischer Vielfachheit 1 vorausgesetzt haben, um die Dis-
kussion von Weghebungsphinomenen zu vermeiden.

a) Wir besprechen zundichst ein einzelnes Negaton der Ordnung n, das zu ei-
nem reellen Eigenwert k der algebraischen Vielfachheit n gehért, oBdA k > 0. Eine
solche Losung stellt ein Wellenpaket dar, das aus n reguliiren und singuliren Solito-
nen besteht. Deren Form ist identisch und héiingt nur vom Eigenwert k ab.

Als erstes beobachtet man, daf sich das geometrische Zentrum des Wellenpa-
ketes mit konstanter Geschwindigkeit —k? bewegt, wihrend sich die beteiligten Solito-
nen selbst voneinander entfernen. Der Abstand zwischen einem dieser Solitonen und
dem geometrischen Zentrum wiichst dabei hichstens logarithmisch.

Man kann sich nun vorstellen, dafi jedes einzelne Soliton fiir grofie negative
Zeiten t << 0 auf der einen Seite des Zentrums startet und sich dem Zentrum log-
arithmisch anndhert. Irgendwann wechselt es auf die andere Seite iiber und entfernt
sich fiir grofle positive Zeiten t >> 0 wieder logarithmisch vom Zentrum. Nach dieser
Deutung, die auch durch Computerexperimente belegt wird, erscheinen in der asym-
ptotischen Form fiir +o0o die einzelnen Solitonen genau in der umgekehrten Reihenfol-
ge wie in der asymptotischen Form fiir —oo.

Auferdem kann man den Formeln entnehmen, daf sich in der asymptotischen
Form regulire und singulire Solitonen immer abwechseln. Insbesondere gibt es nur zwei
Typen von asymptotischen Formen, und dieser Typ hdngt allein vom Vorzeichen € ab.

Das Wellenpaket als Gesamtheit, genauer gesagt der Verlauf seines Zen-
trums, erfihrt durch die internen Kollisionen der am Wellenpaket beteiligten Solito-
nen, die wir eben beschrieben haben, keinen Phasensprung.

b) Im allgemeinen Fall, wo der Losung N Eigenwerte k,, .. ., k, von algebrai-
scher Vielfachheit ny, . .. ,ny zugrunde liegen, besteht diese aus N Wellenpaketen wie
. 3 1 -

— — 7} y  ww ) .

'—é

-
?—

(
J

Diese treffen sich — wie N-Solitonen — im Laufe der Zeit in elastischen Sté-
Jfen, aus denen sie ungedndert hervorgehen bis auf die Tatsache, daf sie dabei einen
Phasensprung erfahren. Letzterer wird durch (16) gegeben.

Es ist bemerkenswert, daf} es sich bei (16) um eine natiirliche Verallgemeine-
rung der Formel handelt, die fiir die N-Solitonen wohlbekannt ist, und von der sich
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Bemerkung 3.9 a) Eine dhnliche Aussage wurde in der kiirzlich fertiggestell-
ten Arbeit [54] fiir die Sinus-Gordon-Gleichung hergeleitet. Hier hat man es sogar mit
glatten, also physikalisch relevanten Losungen zu tun.

Ein fiir die Sinus-Gordon-Gleichung neu auftretendes Phinomen sind pulsie-
rende Wellen, die in Form von komplex konjugierten Eigenwerten in Erscheinung tre-
ten. Dadurch ist die Struktur der sich ergebenden Liosungsklasse reichhaltiger, was
andererseits aber auch zu zusdtzlichen Schwierigkeiten in der asymptotischen Analyse
fiihrt.

b) Es ist bemerkenswert, dafy sich die Eigenschaften der hier besprochenen
Negatonen deutlich von denen der Positonen unterscheiden: Positonen sind schwach
lokalisiert, fallen wie 1/x und oszillieren fiir x grof; auferdem tritt in Kollisionen zwi-
schen Positonen kein Phasenshift auf (vergleiche [37]).

Im Anhang haben wir zur Illustration einige Computergraphiken zusam-
mengestellt.

3.2 Superposition von abzihlbar vielen Solitonen

DaB sich einzelne Solitonen durch ,nichtlineare Superposition” zu den
N-Solitonen zusammensetzen lassen, ist eine grundlegende Bemerkung in der Soli-
tonentheorie. Es ist daher naheliegend, Losungen zu suchen, die sich aus N-Solito-

nen durch einen geeieneten Grenziibereape fiir N — oq ergeben. also durch Suner-

position abzihlbar vieler Solitonen.

Der Zugang zu solchen Losungen 148t sich bei unserer Vorgehensweise dar-
auf zuriickfithren, daB der in Hauptsatz 2.6 eingehende Banachraum frei gewihlt
werden kann. Als kanonische Verallgemeinerung der Situation aus Lemma 3.1 be-
trachten wir:

Voraussetzung 3.10 Sei E einer der klassischen Folgenriume ¢y oder (ge-
wichteter) I, fiir 1 < p < oo und A ein Diagonaloperator auf E, der von einer be-
schrankten Folge k = (k;); € £ erzeugt wird, also

A: E—E mit A(é-l)z = (kié.i)j'

Zuerst konzentrieren wir uns auf den Fall 0 ¢ spec(A4) + spec(4). Unter
dieser Bedingung an den Operator 4 wird der Operator X, der die Rangbedingung
rank(AX + XA) = | aus Hauptsatz 2.6 erfiillt, durch Folgerung 2.12 gegeben, und
man kommt zu einer Lésungsklasse, die man sogar durch jede beliebige Determi-
nante ausdriicken kann.

Satz 3.11 ([3] Proposition IV C 3 (i)) Die Situation sei wie in Voraussetzung
3.10. Gilt inf;; |k; + kj| > 0, so gehért der Operator
a;ci

L(x,t) = (k» s (k,-x+ki3t)>
.y »

ij=1

fiir beliebige a = (a;); € E', ¢ = (¢;); € E zur Komponente A(E) jedes vorgegebenen
quasi-Banachideals A mit einer stetigen Determinante 6, und

2

3]
u= 2ailog6(1 +17)
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ist eine Losung der KdV, vorausgesetzt das Argument im Logarithmus verschwindet
nicht.

Als nichstes beschiftigen wir uns mit der Frage, inwiefern man auf diese
Bedingung verzichten, das hei3t Diagonaloperatoren 4 mit 0 € spec(4) + spec(A4)
zulassen kann.

Offensichtlich ist dann Folgerung 2.12 nicht mehr anwendbar, und man

steht somit vor dem Problem, daB fiir die formale Losung X = (;’:,’() der Opera-
itki/ i

torgleichung AX + XA =a® ¢ (fiir a € E', ¢ € E) a priori noch nicht einmal die
Beschrénktheit sichergestellt ist. Ein verniinftiger Ansatz besteht darin, geeignete
Bedingungen an a € E' und ¢ € E zu finden, also zusétzliche Annahmen {iber die
Wahl des eindimensionalen Operators a ® ¢ zu machen, um dadurch zu erreichen,
daB X in einem quasi-Banachideal mit einer ,,mdglichst guten“ Determinante liegt.
Der folgende Satz zeigt, daB dies moglich ist, ohne dal3 es zu wesentlichen Ein-
buBen an die Qualitit der Losungsformel kommt.

Der Einfachheit halber betrachten wir Folgen k = (k;), mit positiven Ein-
tragen k; > 0 Vi.

Satz 3.12 ([3] Proposition IV C 3 (ii)) Die Situation sei wie in Vorausset-
zung 3.10. Gilt k; > 0 fiir alle i, so gehdrt der Operator

o0

Lix,1) = (k“j:k exp (kix + k?:))

ij=1

82
=2— I+L
u=2 e logdety (7 + L)

(dety bezeichnet die spektrale Determinante auf Lo, o H o L) ist eine Losung der
KdV, vorausgesetzt das Argument im Logarithmus verschwindet nicht.

Bemerkung  3.13 Das quasi-Banachideal Lo oHo Ly =|JgpLx oHo
L\(E, F) besteht aus Operatoren T € L(E,F) (E, F Banachriume), die iiber einen
Ly-Raum, einen Hilbertraum und schlieflich einen L..-Raum faktorisieren (mit der
iiblichen Produktnorm). Es gilt Lo, o Ho Ly C 8%, ein Sachverhalt, der hauptséich-
lich auf Grothendieck’s Theorem (siehe Pisier [48]) basiert. Die Existenz der spektra-
len Determinante det), folgt dann aus Satz 2.7.

In Artikeln von Gesztesy et al. — siehe [21] fiir die KdV — wird ein vollig an-
derer Zugang zur Konstruktion von , Limit-Solitonen® (Notation von [21] iber-
nommen) gegeben.

Ausgangspunkt ist das N-Soliton in der Gestalt

2
PRV AVIEPA "’a] ,Jd-(l |f"/vf\\
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Bemerkung 3.16 Fordert man zusitzlich zu der Hauptannahme auch noch
(ki); € £y, so kann man sogar zeigen, daf das Limit-Soliton (19) ein reflektionsloses
Potential darstellt, fiir Einzelheiten siehe [21].

Bemerkung 3.17 a) Die Arbeit [21] von Gesztesy et al. beinhaltet weitere be-
deutende Beitrige, auf die wir hier nicht eingegangen sind und die im Rahmen unserer
Methoden auch nicht zugdinglich sind. Beispielsweise fiihrt die detaillierte Beschrei-
bung der spektralen Eigenschaften des zum Steuproblem assoziierten Schridinger-
Operators

Hoo(t) = d?)dx* + us(x,t), Us ein Limit-Soliton gemdif Satz 3.14),
in [21] Theorem 5.9 zur Lisung des folgenden Problems:

Zu vorgegebener, abzihlbarer (und beschrinkter) Menge {k;i/4|j}; C (0,00) kon-
struiere explizit ein (reelles, glattes) Potential u, so daf3 das Punktspektrum von
H=4d? / dx* + u die Menge {k;*/4| J}; enthilt und das absolut stetige Spektrum von
H mit (—o0, 0] dibereinstimmt.

Andererseits ist die aufwendige Analysis in Verbindung mit den Streudaten,
die einen wesentlichen Teil der Argumente in [21] ausmacht, nicht notwendig, wenn es
darum geht, die Losungsformel zu verifizieren. Im Zusammenhang mit unserer Me-
thode ist die Beweisfiihrung daher vergleichsweise einfach.

b) In[22] ist Gesztesy und Renger eine Ubertragung ihrer Methoden auf das
Toda-Gitter gelungen, wesentlich ist hier die Untersuchung der zum Streuproblem ge-
horenden Jacobi-Operators auf 6,(Z). Wie sich die dort konstruierten Limit-Solitonen
bei uns wiederfinden wird in [53)] erklirt.

Zum Schluf} dieses Abschnittes zeigen wir, wie sich die beiden in Satz 3.11
und Satz 3.12 hergeleiteten Losungsklassen auf eine ganz spezielle Situation zu-
ruckfithren lassen. Dabei handelt es sich um
« die Reduktion auf die Idealkomponente A (¢;) und
e die FEinschrinkung auf eindimensionale Operatoren der Form ey ®d mit
eo = (1,1,...) € £ und einer Folge d, an die gewisse Summierbarkeitsforderungen
gestellt werden. Auf diese Weise kann man die Anzahl der beteiligten Parameter
auf die Halfte reduzieren.

Die Determinante auf N (¢)) ist daher in gewissen Sinn universell fiir die Konstruk-
tion von Lésungen mit Diagonaloperatoren.

Hauptsatz 3.18 ([3] Theorem IV C 5) Unter jeder der beiden Voraussetzun-
gen

a)infijlk; + k| > Oundd = (d;); € I

b) ki >0Vi undd = (dj)imit (d,/k,)l S l].

gehort der Operator

— di 3 OO
(20) L(x,t) = (ki s exp (k,x + ,ki t))

ij=1

zur nuklearen Komponente N'(¢y), und u = 202 logdety (I + L) ist eine Losung der
KdV, vorausgesetzt das Argument im Logarithmus verschwindet nicht.




Fin direkter Ansatz zzic Untersuchune von Solitonengleichungen 133

Auperdem lipt sich im Fall a) jede Losung aus Satz 3.11, im Fall b) jede Lo-
sung aus Satz 3.12 explizit in dieser Form ausdriicken.

Bemerkung 3.19 Die in Hauptsatz 3.18 erzielte Reduktion der beiden Lo-
sungsklassen aus Satz 3.11 und Satz 3.12 auf die Idealkomponente N(£1) kann man
in dhnlicher Weise fiir alle anderen von uns behandelten Solitonengleichungen formu-
lieren.

Die Tatsache, daf sich bei der KdV diese Reduktion fiir beide Losungsklassen
mit dem gleichen Operator (20) ausdriicken Iift, beruht allerdings auf der hier zu-
grundeliegenden speziellen Eindimensionalititsforderung, die durch den elementaren
Ausdruck ® 4 4(X) = AX + XA gegeben ist.

Etwa im Falle der Kadomtsev-Petviashvili-Gleichung, wo man den elementa-
ren Ausdruck ® 4, 4,(X) = A2X + XA, verwendet, ist eine solch einheitliche Redukti-
onuirunterder Zusatzvoraussetzyng

(\/k,@/k,(”)i € ly

an die Diagonaloperatoren A,, A,, die von Folgen k') = My, k@ = (k2. (be-
schrankt, mit positiven Eintrigen) erzeugt werden, moglich.
Eine ausfiihrliche Diskussion dieser Zusammenhdnge findet man in [13].

4 Einige andere Aspekte

Im letzten Abschnitt wollen wir auf einige weiterfithrende Fragestellungen
im Zusammenhang mit unserer Operator-Methode eingehen.

Eine erste natiirliche Frage besteht darin, ob und mit welchen mathemati-
schen Methoden sich die Operator-Methode noch weiter ausdehnen 148t, und wel-
che Anwendungen sich dabei ergeben.

Da dem erzeugenden Operator A eine Schliisselrolle in unserer Strategie zu-
kommt (wie die Beispiele, die wir im letzten Abschnitt untersucht haben, belegen),
liegt vor allem der Versuch nahe, diese Klasse von zugelassenen erzeugenden Ope-
ratoren A4 zu erweitern.

Im ersten Unterabschnitt wollen wir aufzeigen, wie man die Theorie der
Cp-Halbgruppen nutzen kann, um auch unbeschriankte Operatoren 4 in die Strate-
gie einzubeziehen. Einige Beispiele sollen den Vergleich zum bisherigen erméoglichen.

Eine andere wichtige Frage ist die nach dem Giiltigkeitsbereich unserer
Operator-Methode, genauer interessieren wir uns dafiir, in wie weit sich klassische
Lésungstechniken der Solitonentheorie mit unserem Ansatz in Verbindung bringen
lassen.

So gibt die Inverse Streumethode ein kraftvolles Werkzeug zur allgemeinen
Losung des Anfangswertproblemes

Uy = Uxxx + Ollly, u(xa 0) = uo(x),

fiir schnell fallende Potentiale uy(x) an die Hand. Im zweiten Unterabschnitt wollen
wir darstellen, wie sich die so gewonnenen Losungen in unserer Strategie wiederfin-
den lassen.
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4.1 Erweiterung auf unbeschriinkte Operatoren

In Satz 2.2 haben wir erklart, wie man fiir beschrinkte Operatoren
A € L(F), F ein Banachraum, Losungen der Operator-KdV (2) beschreiben kann.
Eine abstraktere Formulierung dieser Aussage lautet:

Satz 4.1 Sei A € L(F). Gegeben seien auflerdem zwei Familien L(x,1),
M(x, t) von beschrinkten Operatoren, die einmal stetig differenzierbar nach der Zeit-
variablen t und viermal stetig differenzierbar nach der Ortsvariablen x sind, und die

a) den beiden Basisgleichungen L, = AL, L, = A’L und M,= AM,
M, = A> M sowie

b) der Kopplungsbedingung AL + LA = M geniigen.
Dann ist U := ((1 +L)7'Mm )x Losung der Operator-KdV (2) in L, vorausgesetzt
dap (1 + L) existiert.

Wie in [12] gezeigt wird, erhélt man vollig analog Losungen der Operator-KdV (2)
auch fiir unbeschrankte Operatoren 4 € L(F).

Satz 4.2 ([12] Proposition 2.1) Sei A € L(F) dicht definiert und abgeschlos-
sen. Wieder seien Familien beschrinkter Operatoren L(x,t), M(x,t) gegeben, die so-
wohl einmal stetig differenzierbar nach der Zeitvariablen t und viermal stetig differen-
zierbar nach der Ortsvariablen x sind als auch L(x,t)f, M(x,1)f € D(4")
(1 <n<4) fur alle f € F erfiillen. Ferner sollen sie

a) den beiden Basisgleichungen L, = AL, L, = AL und M, = AM,
M, = A3 M sowie

b) der Kopplungsbedingung, genauer ALf + LAf = Mf Nf € D(A), genii-
gen.

Dann ist erneut durch U := ((1 + Ly'M ), eine Losung der Operator-KdV (2) in L
gegeben, vorausgesetzt daf} (1 + L) invertierbar ist.

Die Skalarisierungstechnik aus Abschnitt 2.2 ist nun ohne Einschrinkung anwend-
bar, das heit man kann unter der Voraussetzung M(x,t) = ¢ ® m(x, t) durch An-
wendung der Spur wieder zu skalaren Lésungen der KAV (1) kommen.

Die konkrete Durchfithrung unserer Strategie stoBt auf zwei grundsétzliche
Probleme.

(1) Um die Basisgleichung T, = AT zu 16sen, konnten wir fiir beschrinkte
Operatoren 4 € L(F) mit der Exponentialfunktion arbeiten,
> X"
T(x) = exp(x4) = Z;EA”, A e L(F).
—
Eine Entsprechung dieses Konzeptes fiir unbeschrinkte Operatoren 4 € L(F) stellt
die Theorie der Cy-Halbgruppen bereit, fiir die man eine umfassende Einfithrung in
[40], [43] findet. Dabei heiBt eine Halbgruppe (T(x))xzo von beschriankten Opera-
toren auf F eine Cp-Halbgruppe, falls sie stark stetig ist, das heiBt 1in(1) Tx)f =f
YVf €F. -
Unter dem infinitesimalen Erzeuger A einer Halbgruppe (T(x))x20 versteht
man den Operator A4, der auf D(4) ={f € F: EIlin(l)(T(x)f —f)/x} durch Af =
X
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lina(T (x)f —f)/x gegeben ist. Im allgemeinen gilt 4 € L(F). Man zeigt leicht, daB
A dicht definiert und abgeschlossen ist.

Eine solche Halbgruppe modelliert die Eigenschaften einer Exponential-
funktion, denn fiir alle f € D(A4) ist T(x)f € D(A), und es gilt

% T(x)f = AT(X)f = T(x)Af

(man verwendet daher auch die symbolische Schreibweise (eXA)xzo)'

Lemma 4.3 ([12] Theorem 2.3) Sei L(x,t) € A, A ein quasi-Banachideal mit
stetiger Determinante 6. Unter der zusdtzlichen Voraussetzung, daf es eine Konstante
X € € gibt, so daf \A der Erzeuger einer Co-Halbgruppe ist, gilt auch fiir die aus
Satz 4.2 hergeleitete Losungsformel die Darstellung u = 202 log 6(1 + L).

(2) Um der Operatorgleichung AX + X4 = C zu vorgegebenem Operator
C € K(F) Sinn zu geben, geht man folgendermaBen vor:

Ist 4 € L(F) Erzeuger einer Cy-Halbgruppe (T(x))x>0, so wird durch
(T(x)) ., mit T(x)X = T(x)XT(x) eine Co-Halbgruppe auf K(F) definiert, deren
Erzeuger @, 4 formal durch

. TX-X d
m-—-—————— =

(I)A'AX - }cl—>0 X ET(X)X x=0
d
- = (T(x)XT(x)) L=O = AX + XA

gegeben ist. Offenbar ist &, 4 nur fiir solche X, deren Bild in D(4) enthalten ist,
uberhaupt erklért. Kriterien fiir die Invertierbarkeit von ®, 4 haben wir in Satz
2.15 zusammengestellt.

Wir fassen zusammen.

Satz 4.4 (analog [12] Proposition 3.6) Sei F ein Banachraum mit metrischer
Approximationseigenschaft. A und A3 seien Erzeuger von Cy-Halbgruppen (ex")x>0,
(e’A3) 150 @Uf F und ® 4 4 invertierbar.

Weiter sei B € N (F) ein Operator, dessen Bild in D(A*) enthalten ist, A* B nu-
klear, und es gelte ABf + BAf = (a®@c)fVf € D(A) mitc € D(AF) (1 <k < 4).

Dann Iést u=202logdety (1 + e¥e'*” B) die KdV (1), vorausgesetzt die
Determinante verschwindet nicht.

Ein natiirliches Verfahren, um die Invertierbarkeit von ® 4 4 zu garantieren,
besteht darin, fiir w(4) = inf{w € R| es gibt ein M >0 so daB ||T(x)|| < Me**
fir alle x > 0}, die sogenannte Wachstumsschranke, w(4) < 0 zu fordern und da-
mit die Voraussetzung (i) in Satz 2.15 zu erfiillen. Genauer gilt dann, wie sich leicht
aus der Eigenschaft der Cp-Halbgruppe (7 (x)) ., auf N'(F),

/OxoT(x)(a ®c)dx € D(P4.4)

x>0

und B, 4 /Oxo T(x)(a®c)dx =T(x0)(a®c) — (a®c),

im Grenziibergang xy — oo verifizieren 148t:
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Lemma 4.5 Sei —A4 € L(F) Erzeuger einer Co-Halbgruppe (T(x))x>0 auf F
mit w(—A) < 0. Dann existiert der durch das Bochner-Integral definierte Operator
B= [ T(x)(a® c)T(x)dx, ist nuklear, und es gilt B € D(®44) und AB+ BA =
a@c.

Zur Tllustration der so vorgenommenen Ausdehnung der Operator-Metho-
de auf unbeschriankte Operatoren greifen wir noch einmal die in Abschnitt 3.2 be-
sprochene Konstruktion von Losungen auf, die die abzahlbare Superposition von
Solitonen beschreiben.

Zunichst erldutern wir, wie man im Sinn von Satz 4.4, Lemma 4.5 zu neuen
Losungen dieser Art gelangen kann.

Sei dazu F einer der klassischen Folgenrdume ¢y oder (gewichteter) £, fiir
1 < p < oo und (k;); eine (nicht notwendig beschrinkte) Folge, zu der der Operator

A:F—F mit A(§), = (k&);

gegeben ist. Solche Multiplikationsoperatoren gehdren zu den Standardbeispielen
in der Theorie der Cy-Halbgruppen (vergleiche etwa [40] Abschnitt A-1.2), und es
ist bekannt:

—A erzeugt eine Co-Halbgruppe (T(x)) ., <= supR(—k;) < oo.

AuBerdem gilt in diesem Fall w(—A4) = sup; R(—4;).
Um die Existenz von B := ®!,(a ® ¢) zu gewihrleisten, reicht daher nach
Lemma 4.5 die Forderung sup; R(—4;) < 0, i.e.

(21)  infR(k) > 0.

Ist schlieBlich noch ¢ € D(4%), 1 < k < 4, so sind alle ndtigen Voraussetzungen er-
fillt, und offensichtlich erhilt man auf diese Weise Losungen u auf ([0, c0)x
[0,00)) N D(u).

Bemerkung 4.6 Die einzige Voraussetzung (21) an die Folge (k;); ldft ohne
weiteres reelle Folgen zu, die nach oben unbeschrankt sind. Man kann also auf die hier
besprochene Weise Losungen konstruieren, die man als Uberlagerung von abzdihlbar

- 7 3 e 7., 1> .
b A e I, P g = -z
2
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Dannista = (d """\ /[2k;] ), €chpc= (@97 ok sign(k;)), € co und

M(x,0) = ((@), ® (e 1)), L(x,t):(kiafikj dil) € Ne)

)

erfiillen die Voraussetzungen von Satz 4.2, Lemma 4.3.
Also ist durch u =20%logdety (1 + L) eine Losung der KdV (1) gegeben,
vorausgesetzt die Determinante verschwindet nicht.

Bemerkung 4.8 Fiir positive Folgen k; > 0 Vi, die von Null wegbleiben,
inf; k; > O (man betrachtet also Uberlagerungen von Solitonen mit gewissen Mindest-
geschwindigkeiten), kann man Voraussetzung (22) ersetzen durch die ,,physikalisch
sinnvolle® Bedingung

(23) limd/% =0,

Anschaulich bedeutet (23 ), daf die einzelnen Solitonen zum Zeitpunkt t = 0 ,,weit ge-
nug" von einander entfernt sind (Das Maximum des Solitons zum Eigenwert k; befin-
det sich zum Zeitpunkt t = 0 bei x; = —(log d;)/k;)). Solche Losungen kann man si-
cher auf IR x (—o0, 0] beschreiben.

In der Arbeit [12] gehen die Autoren nun auf die Schwierigkeit ein, den
Operator 4 so zu wihlen, da3 mit 4 auch 43 wieder Erzeuger einer Cy-Halbgruppe
ist, und tiberwinden diese mittels der Technik gebrochener Potenzen fiir m-akkreti-
ve Operatoren (Operatoren 7, fiir die es ein A > 0 gibt, so daB3 ((—T) — A) eine
(auf dem ganzen Raum definierte) beschrinkte Inverse hat). Nach dem Lumer-
Phillips-Theorem gilt:

T dicht definiert, m-akkretiv
= — T Erzeuger einer Cy-Halbgruppe von Kontraktionen.

Fur m-akkretive Operatoren 7 kann man gebrochene Potenzen T¢, o € (0, 1), defi-
nieren (eine ausfiihrliche Beschreibung der Vorgehensweise findet man etwa in [59])
und erhélt mit 7 wieder m-akkretive Operatoren. Auch deren Wachstumsschran-
ke 1aBt sich ausrechnen, w(—77) = sup{R(\)|A € spec(—T%)} mit spec(T®) =
spec(T)", deren Kontrolle nach Lemma 4.5 die Invertierbarkeit von ®7a 7« garan-
tiert. Eine verniinftige Wahl ist somit 4 = —T"'/3 zu einem vorgegebenen m-akkre-
tiven Operator T mit w(—7) < 0.

Davon ausgehend werden in [12] weitere Losungen konstruiert, deren Ei-
genschaften sich von denen der hier besprochenen deutlich unterscheiden. Bei-
spielsweise fithrt die auf L,(0, 7) (7 > 0 fest) durch

T(t)f(s):{f(s—l-t), s+t<T

0, S+t>T

gegebene nilpotente Co-Halbgruppe von Translationen zu Lésungen u(x,?) in
[0,00) x [0,00), so daB u(-, ¢) fiir festes # > O schneller als exponentiell gegen Null
geht und die Losung u selbst nach vorgegebener Zeit 7 verschwindet.
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4.2 Das Anfangswertproblem

Wie bereits in der Einleitung erwdhnt, kann man mit der Inversen Streu-
methode das Anfangswertproblem

(24) Uy = Upxx + 6uUy, u(x,0) = up(x),

fiir schnell fallende Potentiale up(x) (also g € S(IR), S(IR) der Schwartz-Raum) 16-
sen.
Fir die KdV besteht das (direkte) Streuproblem hauptsichlich in der Un-

tersuchung der spektralen Eigenschaften des Schrédinger-Operators H in L,(IR),
2

(25) H= %+ up(x) mit D(H) = {f € Lz(]R)‘ /}R F ()] (1 + |s])?ds < oo}

(der Sobolev-Raum H?(IR) zweiter Ordnung). Man konstruiert zu H die sogenann-
ten Streudaten L(H) = {ki,...,kn;d1,...,dy; p(-)}, die sich wie folgt zusammen-
setzen:

a) N positive Zahlen xy,...,xy, so daB {x3,...,x%} das diskrete Spek-
trum von H ist,

b) N positive Normierungskonstanten dj, . .., dy und

c) der Reflexionskoeffizient p, eine stetige Funktion, die auf IR\{0} defi-
niert ist und den Bedingungen p(—s) = p(s) und |p(s)| < 1 fiir s # 0 geniigt.

Unter dem inversen Streuproblem versteht man umgekehrt die Rekonstruk-
tion des zu A gehoérenden Potentials zu vorgegebenen Streudaten Z(H). Dazu defi-
niert man mit letzteren den Kern

N
KjX 1 > —isx i
(26) TI'(x)= ]z:l: die* + ﬂ/_m p(s)e ™ ds, fir x € R,

und betrachtet die sogenannte Gelfand-Levitan-Marchenko-Gleichung
27) 0=T(x+y)+k(x,py)+ / k(x,2)T(z+y)dz (y <x)

fiir k(x,y) (¥ < x). Diese ist eindeutig 16sbar, und man kann zeigen, daB sich das
Potential #y aus der Losung der Gelfand-Levitan-Marchenko-Gleichung durch
up(x) = —20,k(x, x) ergibt. Fiir die mathematischen Details zur Formulierung und
Durchfithrung des inversen Streuproblems fiir den Schrodinger-Operator H ver-
weisen wir auf [10], Kapitel 2.1, wo diese sorgfiltig ausgearbeitet wurden.
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Die Inverse Streumethode nutzt diese Information, um das Anfangswert-
problem der KdV (24) gemaB der folgenden Vorgehensweise zu 16sen:

U(I,O) . Kl(O),...,K,N(O),
ktes St bl
= ug(z) | direktes Streuproblem 1 4,(0),...., dw(0); _p(s0)
Implementierung des
Zeitverhaltens*
u(:i, ) inverses Streuproblem P @), (D),

a(t),..., dv(t); p(s;t)

* Die Strategie zur Implementierung des Zeitverhaltens besteht darin, fiir eine be-
reits gegebene Losung u(x,?) des Anfangswertproblems aus der Giiltigkeit der
KdV eine Formel fiir die Zeitabhéngigkeit der Streudaten abzuleiten. Man erhilt:

k(1) = #,(0), di(1) = d(0)¢™ und p(s; 1) = p(s; 0)e™".

Bemerkung 4.9 Die Bedingung, daf3 uy ein schnell fallendes Potential ist, ist be-
sonders bequem bei der Durchfiihrung der Inversen Streumethode. Es gibt jedoch zahl-
reiche Moglichkeiten, diese Wachstumsbedingung an das Potential uy abzuschwdchen.

Beispielsweise ist es Marchenko, aufbauend auf den Konzepten, die wir in Ab-
schnttt 2.5 geschildert haben in [31] gelungen das Anfangswertproblem fur sehr all-
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nun die Wahlen, mit denen sich (exp(x4)c,a) = I'“¢(x) (vgl. Satz 4.10) erreichen
1aBt.

a) Sei 4 € L(¢Y) der durch (ki,...,ky) gegebene Diagonaloperator und fiir die
Vektoren a, ¢ gelte ajc; =d; V¥j. Dann ist (exp(x4)c,a) = I'*(x), und wie im

N

Fall der N-Solitonen ergibt sich B = ( e ) )
Ki T K/ =

b) Sei 4 € L(Ly(IR)) der durch (Af)(s) = —isf(s) definierte Erzeuger der Cop-
Gruppe (T(x)), g auf Ly(R) mit (T(x)f)(s) =e ™f(s) und fir a, ce
L (IR)N(, D(A") gelte 2ma(s)c(s) = p(s). Dann ist {(exp(x4)c,a) = I'‘(x). Mit
B=2rM.F'ILP,F'M,, I,:L;(0,00)—~Ly(R) und P, : L,(IR) — L,(0,0)
Einbettung und Projektion, F die Fouriertransformation auf L,(IR) und M Multi-
plikationsoperatoren, erfiillt man die restlichen Voraussetzungen.

Es bleibt, im allgemeinen Fall fiir I'(x) alles geeignet zusammenzusetzen. Die Ein-
zelheiten finden sich in [10].

Also kann man das Anfangswertproblem der KdV folgendermaBen 16sen:

Zu vorgegebenem Anfangswert u(x,0) = uy(x) ermittelt man zunichst in
konventioneller Weise die Streudaten. Zu diesen Streudaten liefert obige Konstruk-
tion einen Operator 4 € L(F) sowie a € F', ¢ € F (F geeignet), so daBl man die Lo-
sung k(x, y) der Gelfand-Levitan-Marchenko-Gleichung zum durch die Streudaten
gemiB (26) bestimmten Kern I'(x) mit Hilfe von Satz 4.10 explizit erhiilt. Dabei
148t sich uy durch ug(x) = 20,k (x, x) rekonstruieren.

Andererseits ergibt sich aus unserem Formalismus zu den Daten 24 € L(F)
und v2a € F', \/2¢ € F eine Losung der KAV durch

u(x,t) = 26{51‘(((1 + exp(2xA4 + 8tA3')B)_1 exp(2x4 + 8tA3)) (a® c))

N arll ol T, o {2t 1 d
e e —

Losung der KdV zum Anfangswert u(x,0) = up(x) gegeben.
Damit ist gezeigt, daBl prinzipiell alle Losungen aus der Inversen Streu-
methode auch unserem Formalismus zugénglich sind.

Bemerkung 4.11 Den Zusammenhang zwischen der Erzeugung der N-Solito-
nen u aus dem Operator diag{ki,...,kny} und den diskreten Eigenwerten von
H =d?/dx* + u, die dann durch {k%/4,...k%/4} gegeben sind, hatten wir schon bei
den Resultaten von Gesztesy et al. in Abschnitt 3.2 vorgefunden.
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Buchbesprechungen

Arndt, J., Hinel, C., Pi, Algorithmen, Computer, Arithmetik, Berlin u. a.: Springer
1998, 191 S., DM 78,-

Ein Gutteil der Faszination, die von der Zahl 7 ausgeht, beruht wohl auf der (zu-
mindest beim ersten Hinsehen bemerkenswerten) Antinomie, daf3 sie uns einerseits als
Kreiszahl geometrisch besonders ausgezeichnet, andererseits aber arithmetisch eher wenig
auffillig erscheint. Natiirlich gibt es im Internet lingst Fanclubs zu 7, und so erstaunt es
nicht, daBl im zu besprechenden Werk tiber 7 versucht wird, trendgemaB und allgemein-
verstandlich altes und neues Wissen iiber die Kreiszahl zusammenzufassen. Zur Einbezie-
hung des Computers und so als neue Ingredienz gegeniiber dlteren Darstellungen iiber =
enthalt das Buch eine CD zur m-Numerik (Programme zur Berechnung einiger Millionen
Stellen von 7, inklusive einer Langzahlarithmetik) sowie mit detaillierten Ergédnzungen
zum Buchtext.

Der in den Kapiteln 7-10 beschriebene Hauptgegenstand des Werks sind die (mit
der Entdeckung des auf dem GauBschen arithmetisch-geometrischen Mittel basierenden
m-Algorithmus) 1976 einsetzende Entwicklung schneller iterativer Algorithmen zur Dezi-
malstellenberechnung von 7 sowie das (unter Einsatz von Computeralgebra) 1995 ent-
deckte BBP-Verfahren zur gezielten Berechnung einzelner Hexadezimalstellen von 7. Die

— e ] :

Das Buch wendet sich an mathematisch interessierte Laien. Eine Herleitung der
hinter den Algorithmen stehenden Mathematik oder anderer mathematischer Hintergriin-
de ist demzufolge nicht Absicht des Buchs (hier wird der Leser z. B. auf die Monographie
(1987) der beiden Borweins verwiesen); doch finden auch weniger Ziffernverliebte beim
Blattern interessante Informationen, vor allem in den Kapiteln 1-2; 7-10.

Stilistisch salopp, bricht sich die Begeisterung der Autoren fiir ihr Objekt haufig
Bahn; kein Wunder: ,,JJemand hat gesagt, daBl man aus einem normalen Menschen einen
m-Fan machen konne, aber das Umgekehrte nicht moglich wére. Da ist was dran... . Die
Autoren sind dafiir Beispiele“ (p. 10).

Die ersten 6 Kapitel des Buches (Der Stand der Dinge / Wie zufillig ist #? /
Leichte Wege zu 7 / Ndherungen von m und Kettenbriiche / Arcus Tangens / Tropfel-Al-
gorithmen) enthalten, in etwas unsystematischer Darstellung, Skurriles und Wissenswer-
tes in buntem Potpourri. Nach dem Hauptteil des Buchs (Kapitel 7-10: GauB3 und = / Ra-
manujan und 7 / Die Borweins und 7 / Das BBP-Verfahren) folgen Zusitze und Histori-
sches, z. T. das in den Anfangskapiteln Gesagte wieder aufgreifend (Kapitel 11-14:
Arithmetik / Vermischtes / Historie / Die Zukunft: Internet 7-Berechnungen). Die histori-
schen Versuche zur Kreisquadratur und -rektifikation bleiben weitgehend ausgespart. Die
SchluBkapitel 15 und 16 enthalten interessante Formeln zur Darstellung von 7 und Tabel-
len, in denen sich 7 auf viele Stellen (zur Basis 10 und 16) ausgedruckt findet. Nutzer der
CD werden die anschlieBenden Angaben zur verwendeten Langzahlarithmetik zu schit-
zen wissen, an weiteren Details Interessierte das ausfuhrliche Literaturverzeichnis.

Der Zweck des Buchs ist Experimental-Mathematik, nicht Beweis-Mathematik.

Es geht den Autoren wohl auch um das Wecken bzw. Fordern von Interesse an einer spiele-
| — o i s ee—— =% 1.
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Kurzweil, H., Stellmacher, B., Theorie der endlichen Gruppen, Eine Einfiihrung,
Berlin u. a.: Springer 1998, 342 S., DM 44—

Noch ein Buch iiber endliche Gruppen? Ohne hier vollstindig zu sein, so haben
wir doch die Biicher von Huppert [Hu] und Blackburn, Huppert [HuBI], von Suzuki [Su],
Gorenstein [Go] und erst kiirzlich erschienen von Aschbacher [Asch]. Weiter gab es, zu-
mindest im deutschsprachigen Raum, das sehr erfolgreiche Buch von Kurzweil [Ku], das
leider vergriffen ist. Die Antwort kann man hier schon vorwegnehmen, ja, und es ist ein
Buch, auf das in gewisser Weise schon gewartet wurde.

Die Biicher von Huppert, Blackburn und Suzuki sind sicherlich viel zu umfang-
reich, um sie einem Anfianger zum Erlernen des Stoffes zu geben. Das Buch von Aschba-
cher ist fiir den durchschnittlichen Anfanger etwas zu schwierig. Das Buch von Goren-
stein war ein Kult-Buch, mit dem eine ganze Generation von Gruppentheoretikern aufge-
wachsen ist, jedoch nach 30 Jahren fehlt ihm etwas die Aktualitit. Wie ich noch
beschreiben werde, konnte das vorliegende Buch diese Rolle fiir die Zukunft iibernehmen.
Besonders, da der Aufbau dhnlich ist. Beginnen wir mit dem, was das Buch uns laut Kapi-
telitberschriften zu bieten hat. 1. Grundlagen (hier werden die tiblichen Techniken zum
Arbeiten in Gruppen bereitgestellt), 2. Abelsche Gruppen, 3. Operieren und Konjugieren
(u.a. Sylow Satz, der Begriff des Operierens ist ohnehin ein zentraler in der Gruppentheo-
rie und auch dem vorliegenden Buch), 4. Permutationsgruppen (u.a. Frobeniusgruppen,
Kranzprodukte), 5. p-Gruppen und nilpotente Gruppen (Fittinggruppe, Frattinigruppe),
6. Normal- und Subnormalteilerstruktur (auflésbare Gruppen, Schur-Zassenhaus-Satz,
verallgemeinerte Fittinggruppe, Satz von O’Nan-Scott), 7. Verlagerung und p-Faktor-
gruppen, 8. Operationen von Gruppen auf Gruppen (Teilerfremde Operation, Zerlegung
von Operation, minimale Operation, lineare Operation). Diese acht Kapitel stellen den
ersten Teil des Buches dar. Dieser Teil ist als die eigentliche Einfithrung in die Theorie der
endlichen Gruppen gedacht. Man kann es auch daran erkennen, daB die spiteren Kapitel
keine Ubungsaufgaben mehr enthalten. Hier wird auf 200 Seiten eine recht vollstindige
Einfithrung gegeben, die wohl, wenn noch mit einigen Beispielen angereichert, in etwa der
Umfang einer 2-semestrigen Vorlesung zur Gruppentheorie sein konnte. Ausgeriistet mit
diesem Stoff hat man ein gutes Fundament fiir ein erfolgreiches Eindringen in die Tiefen
der Gruppentheorie. Die letzten 4 Kapitel beschiftigen sich dann mit Fragestellungen der
aktuellen Gruppentheorie. Hier werden die zwei wichtigsten Arbeitsmethoden vorgestellt,
das Zusammenspiel von lokaler und globaler Struktur und die Amalgammethode. Gerade
diese hat in den letzten Jahren zu beachtlichen Erfolgen in der Gruppentheorie gefiihrt.
Die Kapiteliiberschriften sind 9. Quadratische Operation (Thompson-Gruppe, Timmes-
feld Replacement, Satz von Glaubermann, p-Komplementsatz von Thompson, der mit
der vom zweiten Autor eingefiihrten charakteristischen Untergruppe W (S) bewiesen
wird, Thompson’s Satz iiber fixpunktfreie Automorphismen), 10. Einbettungen p-lokaler
Untergruppen (stark p-eingebettete Untergruppen, primitive Paare, Satz von Bender,
p“q"-Satz, Amalgam-Methode, wobei ein Spezialfall des Satzes von Goldschmidt bewie-
sen wird), 11. Signalisator-Funktoren (Vollstindigkeitssatz von Glauberman), 12. N-
Gruppen. Dieses letzte Kapitel ist sicherlich der Héhepunkt des Buches. Die N-Gruppen-
arbeit von J. Thompson war die richtungsweisende Arbeit in der Klassifikation der end-
lichen einfachen Gruppen. Sie hat fiir viele Teile des Beweises als Modell gedient. Seit ge-
raumer Zeit werden im Rahmen der Revision der Klassifikation der endlichen einfachen
Gruppen immer mehr Sétze mit der oben erwihnten Amalgammethode bewiesen. Der
zweite Autor hat kiirzlich einen Beweis der N-Gruppenarbeit (in einer allgemeineren Fas-
sung: 2-lokale Untergruppen sind auflosbar) gegeben [St], der auf der Amalgammethode
beruht. Vielleicht kann dies fiir weitere Untersuchungen in der Klassifikation zum Modell
werden. Hier in dem Buch wird der Spezialfall €(Q(Z(S))) < Ng(S), fur S € SyhL(G)
behandelt. In diesem Kapitel kann man dann auch sehen, wie lebendig Gruppentheorie
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Damit kénnen dann in den folgenden fiinf Kapiteln Ausschnitte aus der Theorie
der stabilen Gruppen abgehandelt werden. Es handelt sich um Ausschnitte, die zu einem
betrdchtlichen Teil das Werk des Autors selber sind und seiner Dissertation (Oxford
1990) und seiner Habilitations-Schrift (Freiburg/Brsg. 1993) entnommen sind.

Im ersten Kapitel sind noch die klassischen gruppentheoretischen Begriffe domi-
nierend. Es wird gezeigt, daB stabile Gruppen einige Endlichkeits-Bedingungen (insbeson-
dere Kettenbedingungen) erfiillen. Die Giiltigkeit derartiger Kettenbedingungen bewirkt,
dafl manche der wichtigsten Untergruppen auch in der gruppentheoretischen Sprache der
1. Stufe definierbar sind, oder doch wenigstens A-definierbar sind, d. h. als Durchschnitt
definierbarer Untergruppen geschrieben werden kénnen.

Insbesondere sind stabile Gruppen stets Mtc-Gruppen, d. h. jede absteigende Ket-
te von Zentralisatoren ist endlich. Es wird gezeigt, da3 in einer M-Gruppe die Fitting-
Untergruppe stets nilpotent ist, und daB in einer w-saturierten Mc-Gruppe sogar das
Hirsch-Plotkin-Radikal nilpotent ist.

In Kapitel zwei werden ,generische’ Typen zur Analyse stabiler Gruppen herange-
zogen. In einer superstabilen Gruppe werden die 1-Typen von maximalem Shelah-Rang
als ,generische’ Typen bezeichnet, denn sie sind offenbar die ,allgemeinsten‘ Objekte im
Raum aller 1-Typen. Es wird beispielsweise gezeigt, daB eine stabile Gruppe mit einer ge-
nerischen Involution fast-abelsch ist, d. h. einen abelschen Normalteiler von endlichem
Index besitzt. Eine auflgsbare stabile Gruppe mit einem generischen Element von Prim-
zahl-Ordnung hat einen nilpotenten Normalteiler von endlichem Index.

Das Hauptresultat ist hier jedoch Hruschovskis modelltheoretisches Analogon
des Weilschen Satzes, das die Rekonstruktion der Grynpoe aus generischen Daten erlaubt.

In Kapitel drei geht es um ,,groBe” und ,,kleine” Teilmengen und ihre geeigneten
Definitionen. Der Zugang zu solchen Begriffen ist hier modelltheoretisch und geht von
Hruschovskis ,Fremdheits-Begriff aus. Dem Fremdheits-Begriff werden die Begriffe des
3-internen partiellen Typs und des X-analysierbaren partiellen Typs gegeniiber gestellt,
wenn ¥ irgend eine Klasse partieller Typen ist. Es wird die gruppentheoretische Bedeu-
tung dieser Begriffe an zahlreichen Sétzen vorgefiihrt. Wenn beispielsweise der generische
Typ einer stabilen Gruppe fremd zu allen Mengen {g~'x"!gx;x € G} ist (fiir g € G),
dann ist G fast-abelsch. Das Hauptgewicht dieses Kapitels liegt jedoch auf einer Entwick-
lung einer modelltheoretischen Frattini-Theorie und verschiedener ,Komponenten‘.

Kapitel vier bringt die Geometrie (Pra-Geometrien, Lokale Modularitiat, CM-Tri-
vialitdt, Dimensionalititen etc.) ins Spiel. Ausgangspunkt ist freilich die Abhangigkeits-
Relation, die mit dem Begriff des Gabelns von Typen (forking) verkniipft ist.

Das abschlieBende fiinfte Kapitel behandelt ,Rang-artige Gruppen® (kurz: R-
Gruppen), d. h. Gruppen, die eine Eigenschaft R besitzen, die superstabilen Gruppen und
auch schmalen stabilen Gruppen gemein ist. Es wird gezeigt, da R-Gruppen stets eine
gleichmichtige abelsche Untergruppe besitzen. Das ist ein bemerkenswertes Phidnomen,
das iiber den klassischen Satz von Hall-Kulatilaka-Kargapolov weit hinausgeht.

Der Hauptsatz ist hier ein Struktursatz fir R-Gruppen G. Wenn man als Radikal
R(G) den maximalen lokal-aufldsbaren Normalteiler von G wéhlt, dann ergibt sich, dal
fiir die Frattini-freie Komponente G? die Faktorgruppe G %/ R(G?) als direkte Summe
endlich vieler R-zusammenhingender Normalteiler geschrieben werden kann und diese
sind Frattini-frei.

Das Buch ist insgesamt sehr sorgfiltig geschrieben. Es ist der erweiterte Text von
Vorlesungen, aber kein Lehrbuch. Insofern sind Motivierungen (leider) selten. Der ,,rote
Faden® ist jedoch immer gut sichtbar. Er folgt der Frage, welchen EinfluB die Begriffe
der geometrischen Stabilitats-Theorie auf die Struktur von Gruppen haben. Es ist dann
ganz natiirlich, dal3 andere groBe Bereiche der Theorie stabiler Gruppen voéllig ausge-
klammert sind, beispielsweise die Behandlung der einfachen stabilen Gruppen von endli-
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chem Morley-Rang, wie sie von Borovik und seinen Schiilern und Schiilerinnen in Analo-
gie zur Klassifikation der endlichen einfachen Gruppen entwickelt wird und schon in wei-
ten Teilen durchgefiihrt worden ist.

Tiibingen U. Felgner

Parshin, A. N., Shafarevich, I. R. (Eds.), Algebraic Geometry III, Complex Alge-
braic Varieties. Algebraic curves and their Jacobians, Berlin u. a.: Springer 1998, 2708S.,
DM 158,~

Es handelt sich um eine Ubersetzung des 1989 bei VINITI in Moskau erschienen
Buches, das Band 36 der Reihe ,Enzyklopéddie der mathematischen Wissenschaften” bil-
dete. Diese Reihe hatte das Ziel, eine Gesamtdarstellung der heutigen Mathematik, zu-
mindest in ihren wichtigsten Teilbereichen zu geben. Man kann sicher beweisen, daB so
etwas unmoglich ist. Das Gebiet ist einfach zu umfangreich, um es mit der notwendigen
Prézision in endlicher Zeit ibersichtlich darzustellen. Aber man kann auch versuchen,
Kompromisse bei Themenauswahl und Ausfiihrlichkeit der Darstellung einzugehen, und
so Ubersichtsbinde zu einigen zentralen Gebieten in einer Reihe zusammenzufassen, so
wie es die Mathematiker in der damaligen Sowjetunion begannen.

Ich halte ein solches Unternehmen fiir sehr verdienstvoll. Zumindest soll man
den Autoren fiir ihre Miihe sehr dankbar sein. Einen guten Ubersichtsartikel zu verfassen,
ist mindestens genauso schwierig, wie das Schreiben einer Original-Monographie. Es
macht aber viel weniger Spa3. Dagegen sind Ubersichtsartikel unendlich hilfreich fiir Ma-
thematiker, welche dem Gebiet ferner stehen, oder fiir solche, die sich einarbeiten wollen.
Die Enzyklopidie, welche zu Beginn unseres Jahrhunderts unter der Federfiihrung deut-
scher Mathematiker entstand, hat Generationen unschitzbare Dienste geleistet. Und da-
mit ist dieses Projekt der russischen Mathematiker gleichwertig.

Der Band enthilt zwei Ubersichtsartikel zur Algebraischen Geometrie, welche
inhaltlich wenig gemeinsam haben:

I. ,Complex Algebraic Varieties: Periods of Integrals and Hodge Structures” (ca
210 Seiten) der Autoren Vik. S. Kulikov und P. F. Kurchanov,

II. ,Algebraic Curves and their Jacobians” (ca 40 Seiten) von V.V. Shokurov.

Der erste Artikel ist eine ausgezeichnete Einfiihrung in die Theorie der Periode-
nabbildung. Er enthilt motivierende Vorbemerkungen und beginnt mit den Grundlagen.
Die Theorie wird vollstindig aufgebaut, natiirlich wird bei technischen Details immer
wieder auf Literatur-Artikel verwiesen. Ich kenne kein Buch hierzu mit vergleichbarer
Ausfiihrlichkeit und Geschlossenheit. Der Artikel fiithrt hin zu allen konkreten Anwen-
dungen der Theorie der Periodenabbildung, wie sie zur Zeit seines Entstehens bekannt
waren. Damit ist er in gewisser Hinsicht auch abschlieBend. Denn in den Jahren 1960-80
war diese Theorie ein ganz zentrales Thema der Algebraischen Geometrie, seither haben
sich die Gewichte etwas verschoben.

Ziel der Theorie ist es (etwas vereinfachend formuliert), algebraische Mannigfal-
tigkeiten iiber dem Grundkérper € durch ihre Perioden zu klassifizieren. Das klassische
Vorbild sind algebraische Kurven (= kompakte Riemannsche Flichen). Auf einer Kurve
vom Geschlecht g gibt es g linear unabhingige holomorphe 1-Formen. Die Integrale die-
ser Formen iiber eine Basis der ersten Homologie heilen die ,Perioden” der Kurve. Und
diese Perioden legen die Kurve mit ihrer komplexen Struktur eindeutig fest. Eine Prizisie-
rung dieser Tatsache ist der Satz von Torelli (1914).

Und in diesem Artikel wird die notwendige Theorie aufgebaut, um dhnliche Sitze
(die man heute ,Torelli-Satze” nennt) in mdglichst groBer Allgemeinheit zu beweisen. So
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ist Kapitel 3. dem Beweis des Torelli-Satzes fiir Kurven und in den folgenden anderen
Féllen gewidmet:

— Hyperfldchen vom Grad 3 im P4 (,cubic threefolds®),
— K3-Flachen,

— elliptische Flachen tber IP; (,elliptic pencils®),

— Hyperflachen von hohem Grad.

Wenn man nun einen Torelli-Satz hat, in der Art, dal3 die Perioden bestimmter
Differentialformen die algebraischen Mannigfaltigkeiten einer bestimmten Sorte charak-
terisieren, so ist das Klassifikationsproblem fiir diese Mannigfaltigkeiten auf die Frage
zuriickgefiihrt: Welche Perioden kommen vor? Das ist das sogenannte Problem der ,Sur-
jektivitat der Periodenabbildung‘. Im klassischen Fall der Kurven z.B. miissen die Peri-
oden die Riemannschen Periodenrelationen erfiillen.

Dieser Frage in ihrer Allgemeinheit sind Kapitel 4 und 5 des Artikels gewidmet.
Das wesentliche technische Hilfsmittel ist dabei die Untersuchung von Entartungen alge-
braischer Mannigfaltigkeiten in singulire Varietidten. Da wird die Theorie der Differen-
tialformen und ihrer Perioden wirklich technisch, und kann nur in der Sprache der von
Deligne eingefiihrten ,Mixed Hodge Structures” formuliert werden.

Der Artikel schlieBt mit der Anwendung dieser Theorie auf algebraische X3-Fli-
chen. Es wird die Surjektivitit der Periodenabbildung in diesem Fall bewiesen. Diese Tat-
sache, ein Resultat des erstgenannten Autors dieses Artikels aus den Jahren 1977-80, ist
eines der wichtigsten Ergebnisse der Moskauer Schule der Algebraischen Geometrie um
Shafarevich.

Insgesamt haben die Autoren einen gliicklichen KompromiB zwischen den An-
spriichen an Lesbarkeit und Prézision, sowie Umfang gefunden. Auf seinem Gebiet ist
dies sicher der beste und niitzlichste Ubersichtsartikel bisher. Er sollte in keiner Instituts-
bibliothek fehlen.

Der zweite Artikel dieses Bandes befaB3t sich mit einigen Aspekten der Theorie
algebraischer Kurven. Er setzt den Ubersichtsartikel ,Riemann Surfaces and Algebraic
Curves” aus Band 23 dieser Enzyklopadie fort. Paragraph 1 enthélt die Anwendungen
der Theorie algebraischer Kurven auf gewohnliche Differentialgleichungen (KP-Hierar-
chie, Toda-Gitter). Paragraph 2 skizziert die Theorie der ,speziellen Divisoren” auf einer
algebraischen Kurve, Paragraph 3 beschaftigt sich mit Prym-Varietaten, und Paragraph 4
mit der Charakterisierung von Jacobischen. Der Autor benutzt die algebraische, nicht die
analytische Sprache. Die vier Paragraphen stehen miteinander in Zusammenhang, aller-
dings nicht sehr eng. Die Gebiete sind klassisch, obwohl vollstindige und exakte Resul-
tate meist erst aus der Zeit zwischen 1970 und 80 stammen.

Dieser Ubersichtsartikel ist niitzlich. Der Verfasser ist international anerkannter
Experte. Natiirlich darf ein solcher Artikel in keiner mathematischen Enzyklopédie feh-
len. Aber allein schon vom Umfang her hat er nicht das Gewicht des ersten Artikels in
diesem Band.

Erlangen W. Barth

Ranicki, A., High-dimensional knot theory, Algebraic surgery in codimension 2,
Appendix by E. Winkelnkemper (Springer Monographs in Mathematics), Berlin u. a.:
Springer 1998, XXVI, 646 S., DM 189,

Die Artenvielfalt in der Natur nimmt durch unkontrollierten menschlichen Ein-
griff bedrohlich ab, die Artenvielfalt der K- und L-Gruppen nimmt ebenso bedrohlich zu.
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Die Knotentheorie (Titel des Buches) ist Geometrie und Topologie, also das
Wirkliche Leben — und daher schmutzig. Das mégen wir aber gar nicht, schnell die Decke
driber. Die Liuterung des Korpers zu Geist und Seele geschieht durch die Verwandlung
in Reine Algebra (Untertitel des Buches, verschimt im Kleindruck).

Das vorliegende Werk ist eine im lakonischen Berichtsstil verfaite Spezialmono-
graphie, die zum groBten Teil aus Definitionen und Propositionen (die sich manchmal
iber drei Seiten erstrecken) besteht. Selten Beweise, und wenn, dann skizzenhaft, aber na-
tiirlich viele Verweise auf die Literatur. 200 Seiten K-Theorie, 400 Seiten L-Theorie. Vor-
ausgesetzt wird eine griindliche Kenntnis der allgemeinen Methoden der K- und L-Theo-
rie, sowie der algebraischen Chirurgie-Theorie, insbesondere tausende von Seiten fritherer
Schriften des Autors. Die Knotentheorle an sich und 1hre topologischen Ergebnisse wer-
i —maiedcd 2 Sirwel s diaed e e
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von Knoten, hier die letzte Formel auf der letzten Seite 612, ein abzihlbar unendliches
Produkt zyklischer Gruppen der Ordnungen oo, 2,4 — das liest und versteht man durch
die Originalarbeiten von Kervaire, Milnor, Levine und Stoltzfus.

Was findet man also in dem Buch? Was sucht_ man? Findet man. wenrn wan
sucht? Zunichst einmal wird man mit einer schier uniiberschaubaren Fiille von Algebra,
K- und L-Theorie, die im weiteren Sinne durch die Knotentheorie motivierbar ist (wie et-
wa unendliche zyklische Uberlagerung, Seifert-Form, gefaserte Knoten, offene
Biicher,. ..), konfrontiert. Das fiihrt zu Polynomringen A[z], Laurent-Ringen A4[z,z"!],
Potenzreihen A[[z]], diversen (auch nicht-kommutativen) Lokalisierungen, deren K- und
L-Theorie (beziiglich verschiedener Involutionen), also auch die entsprechenden Theorien
fiir Objekte mit Endomorphismen oder Automorphismen. (Der Buchstabe L wird durch
obere und untere Indizes, durch Zusitze und weitere geklammerte Zusitze, die ihrerseits
mehrere obere und untere Indizes tragen konnen, dekoriert.) Die Artenverwandschaft
wird in hunderten von exakten Sequenzen, Zopf-Diagrammen, Isomorphismen, Interpre-
tationen etc. notiert. Zwischendurch gibt es kurze Berichte iiber den topologischen Ur-
sprung. Man kann das Werk als ein umfassendes Kompendium iiber derlei Algebra anse-
hen und als vollstindige Zusammenfassung und Aufarbeitung der relevanten Literatur.
Das eigentliche Anliegen des Autors ist wohl die Umarbeitung, Einordnung, Ubersetzung
und dabei Systematisierung des knotenmotivierten Materials im Hinblick auf die u. a.
vom Autor entwickelte und vertretene algebraische Chirurgie-Theorie.

Das Buch wird man kaum als fortlaufenden Text lesen. Es ist lexikalischer Natur.
Man schldgt nach. Ein Beispiel: Die 20-seitige historische Einleitung wird man sicherlich
lesen. Dort steht: The main technique used in the book is algebraic transversality. Im In-
dex unter A und T findet sich nichts. Kapitel 7 trigt den Titel Algebraic Transversality.
Dort wird dieser Terminus aber im Wortsinne nicht erklirt. Wenn man sowieso schon
alles weil, was der Autor unterstellt, mag man raten. Es wird auf ein friitheres Buch des
Autors verwiesen.

Wiinschenswert wire eine strukturierte Ubersicht iiber Inhalt und Zweck des Bu-
ches. In der amorphen Aneinanderreihung des Textes findet man schwer strukturierte An-
haltspunkte. Es gibt seitenlange Wiederholungen grundlegender Definitionen aus friihe-
ren Wiederholungen desselben Materials. Aber, wo hért der Bericht auf, wo beginnt die
Erkenntnis? Das mochte man doch gesagt bekommen.

Da das Buch nun einmal den Titel trigt, wire es schon gewesen, wenn wenigstens
ein einziges geometrisches Resultat iiber Knoten wirklich hergeleitet worden wire.

Gibt es eine Laus im Pelz? Nein, einen Gliickskéfer: Der sehr lesenswerte Anhang
(10 Seiten) von Winkelnkemper iber die Darstellung von Mannigfaltigkeiten als soge-
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Banyaga, A., The Structure of Classical Diffeomorphism Groups (Mathematics
and its Applications, 400), Dordrecht: Kluwer Academic Publishers Group 1997,
XII+197 pages, $ 112

Over the last decades infinite dimensional groups have been intensively studied.
Beside gauge groups and certain Banach Lie groups arising from C*-algebra theory and/
or quantum physics, the most natural class of them are the groups of diffeomorphisms of
finite dimensional manifolds, possibly preserving some extra structure as a symplectic or
a volume form, or a contact structure. Though these “classical” diffeomorphism groups
are obviously closely linked to the geometry of the manifold, their study is difficult from
a “Lie theoretic” point of view at least for the following three reasons:

o the smooth Banach manifold of C"-diffeomorphisms is (for 1 < r < oo) only a topolo-
gical group,

e the exponential map of the Fréchet manifold of C*-diffeomorphisms is not a local dif-
feomorphism, and

e this latter smooth Fréchet Lie group has no real-analytic structure.

In the research monograph under review the author concentrates on two related
— algebraic — aspects of the theory which seem to be reaching a certain maturity. Namely,
he considers purely group theoretic properties, such as simplicity and perfectness of the
concerned groups, and the question if one can recover the manifold (plus possibly one of
the above mentioned extra structures) from the group of diffeomorphisms. Obviously
these questions can be considered as an extension of Kleins Erlangen program to the case
of diffeomorphism groups.

Before describing very briefly the content of this monograph, we would like to
point out that both the Zentralblatt and the Mathematical Reviews articles on it are al-
ready available (Zbl. 874.58005 and MR 98h:22024).

The first chapter introduces the fundamental concepts and facts of the theory of
diffeomorphism groups as Diff °(M), the group of smooth diffeomorphisms of a mani-
fold M, which are equal to the identity of M outside a compact set.

In the second chapter the rather ingenious proof of the simplicity of Diff >°(M),,
the connected component of Diff °(M) containing the identity of M, is derived. Here,
the “geometric parts”, i.e. Hermans proof in the case that M is a n-dimensional torus and
Thurstons extension to arbitrary manifolds are completely presented, and only the proof
of an appropriate implicit function theorem in Fréchet spaces is put aside.

Chapter 3 covers the “flux homomorphism” from the identity component of
Diff *(M), = {¢ € DIff *(M) | ¢*w = w} (for a closed p-form w on M) to a quotient of

H?~'(M), the (p—1)-th de Rham cohomology group of compactly supported forms,
from several points of view.

In the following two chapters (4 and 5) the results on the full diffeomorphism
group obtained in Chapter 2 are extended to the symplectic and the volume-preserving
cases with the main difference that simplicity is now only proved for the kernels of the
respective flux homomorphisms.

Similar statements are proved in the contact case in Chapter 6, where the ap-
proach a la Herman and Thurston hitherto used is replaced by “Epsteins theory” which
supplies a criterion for simplicity of subgroups of diffeomorphism groups.

The concluding Chapter 7 applies the preceding results in order to show that an
abstract group isomorphism between the groups of diffeomorphisms of two manifolds is
always induced by a smooth diffeomorphism of the manifolds. The analogous results for
the symplectic, unimodular and contact cases are derived as well, together with their “in-
finitesimal” counterparts for the corresponding Lie algebras of vector fields.




Buchbesprechungen 43

This monograph is a very complete and detailed account of the algebraic theory
of classical diffeomorphism groups written by one of its principal contributors. Inevita-
bly, the thorough presentation of the involved proofs forces the author to include some
rather technical parts. Nevertheless this book is a genuine addition to the literature and
far from being merely a compilation of the existing research articles on the subject.

Some words of criticism might be nevertheless in place: a symbol index would be
helpful for the reader and, unfortunately, the proof-reading appears to be not on the same
level of accuracy as the text. In fact, the numerous misprints range from misspellings to
mistakes and gaps in formulas.

As a last remark, the reviewer would like to point out that $ 112 for a book with
less than 200 pages seems to be a bit overprized in a world where TEX is freely available
(and was used for typing this book) and mathematical library budgets are shrinking.

Strasbourg T. Wurzbacher

Berndt, R., Einfiihrung in die Symplektische Geometrie (Advanced Lecture in
Math.), Braunschweig/Wiesbaden: Vieweg 1998, 185 S., Kart. DM 48,

Durch Abstraktion von der hamiltonschen Formulierun% der Mechanik ist die
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