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Introduction

In 1939, the presumably best known work of Hans Petersson (1902-1984) ona
metrization of the entire modular forms appeared in the Jahresbericht der Deutschen
Mathematiker-Vereinigung [113]. In this work Petersson gives “a condensed survey on
some applications of a new principle from the theory of automorphic functions”. The
new principle refers to the scalar product which is nowadays named after Petersson
himself. The applications now belong to the highlights of the classical theory and have
since proved their power also in other contexts such as the theory of Siegel modular
forms, the theory of Jacobi forms and the theory of real analytic automorphic forms.
In order to “let the leading idea come to the fore as clearly as possible” Petersson [113]
restricts to the simplest and most important special case, “the case of entire modular
forms of even dimension [= — weight] with multiplier 1”. Being relieved from techni-
calities Petersson’s ideas indeed gain convincing clarity and hence it cannot come as a
surprise that [113] probably is the best known and most frequently quoted among his
numerous works (see [158]).

The echo in the mathematical literature is unequivocal: To-day one will find a
section on the Petersson scalar product and its applications in virtually every intro-
ductory book on modular or automorphic forms. There are also comments in appre-
ciation of the progress tied up with the introduction of the scalar product. Thus J.
Lehner notes in the historical introduction to his book [84] of 1964: “The most im-
portant contributor to the theory of automorphic functions in recent times is
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H. Petersson, whose investigations begin about 1930. He was a student of Hecke and
much of his work consists in extending to more general discontinuous groups what
Hecke developed for congruence subgroups of the modular group .. In 1939 Peters-
son introduced the very important scalar product of automorphic forms ... Thus the ...
[space] of all cusp forms becomes a Hilbert space ... under the scalar product ...
Petersson’s investigations of the new Hilbert spaces revolutionized the theory of auto-
morphic forms of negative dimension. Formerly difficult theorems could now be
proved by methods of linear algebra.” R.A. Rankin concurs with this view (see
[124], p. 191): “The foundations of the theory of general Poincaré series were laid
by Petersson ... It is to Petersson also ... that the idea of metrizing the space of cusp
forms by introducing an inner product is due and this has transformed the whole
theory.”

In what follows we first give a very brief sketch of the development before
Petersson’s discovery. Then we describe the contents of [113] and report on some
progress which was advanced by Petersson’s work. Since the relevant literature is
immense only a somewhat subjective selection of material can be made here.

1 Beginning of the theory of automorphic forms

Roughly speaking the theory of automorphic forms was established since
about 1880 by F. Klein (1849-1925) and H. Poincaré (1854-1912). A kind of scientific
competition came up among these two researchers similar to the contest between
N.H. Abel (1802-1829) and C.G.J. Jacobi (1804-1851) in the course of the foundation
of the theory of elliptic functions during the years 1827-1829. In a brief period of time
Klein and Poincaré conjured up a vast and many-faceted theory in which ideas from
geometry, group theory, complex analysis, theory of Riemann surfaces, theory of
differential equations and number theory are forged into a new whole. The collected
works of Klein [56] and Poincaré [121] give a vivid impression of the enormous crea-
tivity of these mathematicians, and the correspondence between Klein and Poincaré
(see [56]) offers a fascinating glimpse into the mathematical workshop of the corre-
spondents. Large parts of Klein’s ideas were elaborated and completed by R. Fricke
(1861-1930) in four long monographs [35], [57]; these are supplemented by Fricke’s
books on algebra (3 vols.), elliptic functions (2 vols.) and his articles in the Encyklo-
pddie der mathematischen Wissenschaften (11.B.3, I1.B.4).

The rapid progress in knowledge soon ran far ahead of the available methods
of exact proof. Klein’s way of thinking was based on admirable geometric intuition.
But his methods were not sufficient for a rigorous proof say of the uniformization
theorem. A period of consolidation was necessary during which the relevant founda-
tional work had to be done. This led around 1910 to the great works of Poincaré and
P. Koebe (1882-1945) giving the first satisfactory proofs of the uniformization the-
orem. A rigorous foundation of the theory of Riemann surfaces was laid in 1913 by
the juvenile H. Weyl (1885-1955) in his masterpiece [157].
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2 Petersson’s early work on automorphic forms

Since there is deplorable confusion with respect to the terminology in the recent
literature we think it fits torecall the classical definitionsand some basicfacts. A discrete
subgroup I' < SL,(IR) (or ' < PSL,(IR)) is called a Fuchsian group in Poincaré’s ter-
minology and a Hauptkreisgruppe in Klein’s naming. I' is called a Fuchsian group of the
first kindifits set of limit pointsis equal to the principal circle R U {oc0}. Equivalently, I’
is a Fuchsian group of the first kind if T" acts discontinuously on the upper half-plane

H:={zeC:Imz >0}

and not discontinuously at any point of IR U {oc}. Such a group was named a Grenz-
kreisgruppe by Klein and a horocyclic group by Rankin [123]. A Fuchsian group is said
to be of the second kind if it acts discontinuously at some point of R U {oo}. A Fuch-
sian group is finitely generated and of the first kind if and only if it has a fundamental
domain D of finite hyperbolic area

o [[55.
D

Such a group was named a Grenzkreisgruppe erster Art by Klein and is frequently
called a cofinite group by recent authors. A well-known theorem says that I is cofinite
if and only if the Riemann surface T' \ H becomes compact on inclusion of the para-
bolic cusps. A Grenzkreisgruppe is called von zweiter Art by Klein if it has a funda-
mental domain of infinite hyperbolic area. The confusing disagreement in the mean-
ing of the predicaments “of the first/second kind” (for Fuchsian groups) and “von
erster/zweiter Art” (for Grenzkreisgruppen) has caused considerable disorder in the
literature where the name “Fuchsian group of the first kind” is now often used with
the tacit understanding that the group be finitely generated. — For a modern account
of the theory of Fuchsian groups see Beardon [5].

Petersson’s first papers of note are devoted to the theory of representations of
natural numbers by quadratic forms and the investigation of the number of lattice-
points in higher-dimensional ellipsoids ([102], [103]). In these researches he naturally
came across the theta functions and Eisenstein series of half-integral weight as intro-
duced by Hardy [41] and Mordell [99], [100]. Klein and his disciples had avoided a
careful discussion of the special technical problems connected with the introduction
of automorphic forms of non-integral weight. The state of the theory as left behind by
Poincaré, Klein and Fricke obviously did not satisfy the standards of rigour of the
mid-twenties. Indeed, the weighty monograph [57] was some 25 years later character-
ized to the point by a sharp Gallic tongue as «l’ouvrage classique monumental et
illisible». Hence Petersson felt it necessary to reconsider the subject from scratch
and he found a wide and fertile area for his lifelong research.

_ In his first contribution [104] to the general theory of automorphic forms
Petersson starts off with the proper definition: Let I' < SL»(IR) be a Fuchsian group
of the first kind, k a real or complex number and va multiplier system onT of weight' k.

! Petersson usually calls the number —k the dimension of the multiplier system or the
automorphic form, respectively.
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A meromorphic function f on IH is called an automorphic form on T of weight k for the
multiplier v if f satisfies the transformation rule

(2.1) f(‘" + b) = o(M)(cr + d)*f(7)

ct+d
forall M= (¢ 5)eT,r € H,and f satisfies'the natural condition of meromorphicity2
in the cusps (parabolic fixed points) of T'. Here, the multiplier v is defined so as to fulfil
the consistency conditions following from (2.1) if this rule holds for some f # 0. These
consistency relations come up if one writes down (2.1) for M = —I and for the product
MN with M, N €T (see [96]). Moreover, Petersson fixes the power w* for 0 # w € €
once and for all by the prescription —7 < argw < 7. Introducing his stroke operator

(2.2) f|M(7):= (cr+d)Ff(M7)
he may write (2.1) in the concise form
(23) fIM=vM)f (Mel).

The problem of existence of non-trivial automorphic forms is settled in [104]
for groups with parabolic elements and for real weight £ > 2, |v| = 1 by means of a
new kind of Poincaré series “which are intermediate between the Eisenstein series and
the Poincaré series”. The main result of [104] asserts that any automorphic form of
weight k& > 2 for the multiplier v (with |v| = 1) on a finitely generated Fuchsian group
of the first kind may be represented as the Poincaré series of some rational function.
This result extends a classical theorem of Poincaré. Much of Petersson’s later work
aims at simplifying the construction of automorphic forms by various Poincaré series
and proving a corresponding completeness theorem. In addition, he worked out gen-
eral formulae (involving Kloosterman sums and Bessel functions) for the Fourier
coefficients of Poincaré series [105] and used them to prove growth estimates for
the Fourier coefficients of modular forms. The same results were reported on by
the juvenile A. Selberg in 1938 ([135], p. 35-37).

Inareport published in the Jahresbericht [106] Petersson summarizes his great
work [108]-[112] on the foundation of the theory of automorphic forms. The main
object of these papers is a close investigation of the relations between the theory of
automorphic forms on I' and the theory of meromorphic functions and differentials
on the Riemann surface ' \ IH. A highlight of these papers is the Riemann-Roch
theorem for automorphic forms of arbitrary weight and its consequences and rami-
fications. (For more details see [158].)

3 The Petersson scalar product and its applications
to Poincaré series

Two major problems in the theory of automorphic forms were left open around 1938:

(A) Which systems of Poincaré series constitute a basis of the space of cusp forms?
(B) Does there exist a basis of the space of cusp forms of even integral weight k > 12 on

2 This will be explained in sect. 3.
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the modular group SLo(Z) consisting of simultaneous eigenforms of the Hecke operators
T,?

Both problems were most elegantly solved by means of Petersson’s natural scalar
product on the space of cusp forms. From the point of view of 1998 the introduc-
tion of a scalar product in a finite-dimensional vector space is quite an elementary
matter since a course on abstract linear algebra now belongs to the basic training of
every mathematician and concepts of linear algebra are virtually omnipresent.
Hence it may come as a surprise to many that the abstract notion of a vector space
appeared in print only in 1922 in papers by S. Banach and H. Hahn. The emerging
functional analysis clearly demanded this abstract notion, and the new quantum
mechanics as embodied e.g. in J. v. Neumann’s classic [101] proved the enormous
practical superiority of the abstract notion over the classical approach limited to
coordinate spaces say IR” or C".

To set the stage for the following developments we fix some notation: Let
I' < SLy(IR) (-1 €T) be a cofinite group, k € IR and v a multiplier system on I'
of weight k with |v| = 1. Assume that { = A 'co (4 € SLy(IR)) is a cusp of I and
choose A > Osuchthat —and P := 47! ( }) 4 generate the stabilizer I'c of {inT'. Put
v(P) = exp(2mix) with 0 < k < 1. Any holomorphic function /" on IH satsfying (2.1)
forall M € T hasthe property thatf|4~!| (} 1) = v(P)f | 4! and hence has a Fourier
development of the form

(31) fl47(2) =) ae® " (ze H).

nel

The meromorphicity of f in the cusp ¢ alluded to in sect. 2 means that a, = 0 for all
n < no with some suitable ng € Z. Now f is called an entire automorphic form if in
(3.1) all coefficients a, with n + k < 0 vanish, and f is named a cusp formif a, = 0 for
all n with n + k < 0. (This is required to hold for all cusps of I'.) We denote the finite-
dimensional vector spaces of entire automorphic forms or cusp forms for I', k, v by
G(T, k,v) and C(T', k, v), respectively. L

For f,g € G(T, k, v) the function z — f(z)g(z)y* (z€ H,y =1Im z) is I'-
invariant. Integrating this function over a (measurable) fundamental domain D of
T with respect to the SL(IR)-invariant hyperbolic area measure y 2 dx dy on H we
obtain the Petersson scalar product

32) (f,8):= //f?y"‘zdxdy-
D

If this integral exists as a Lebesgue integral for one choice of a fundamental domain
then it exists for any other choice and its value remains the same. The scalar product
(3.2) exists for the entire forms f, g whenever fg vanishes at all cusps of T', that is,
whenever at any cusp of T at least one of the functions f, g behaves like a cusp form.
The Petersson scalar product really is a scalar product in the usual sense on the space
C(T, k, v) of cusp forms. But as noticed above the symbol (f,g) makes sense and is
useful to consider under more general assumptions, e.g. if one of the forms
f,g<€.G(T, k,v) is a cusp form. The entire forms f, g are called orthogonal whenever
(f,g) exists and is equal to zero.
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When Petersson introduced his scalar product in 1938 the idea of invariant
integration was somehow in the air. A breakthrough in this area were the proofs of the
existence of a left invariant locally finite measure on any locally compact topological
group by A. Haar in 1932, the subsequent proofs of uniqueness by J. v. Neumann and
the more general proof of existence and uniqueness of such a measure by A. Weil
around 1936. In fact, the Petersson scalar product is very closely related with the Haar
measure on G := SL,(IR): For f as above define f : G — € by

J(M):=f|M(@i) (MeG)

and similarly g for g. Then the function /% is left T-invariant and for a suitable
choice of the Haar measure p on the (unimodular) group G we have for the Peters-
son product

(f,g)=/r\af§du

(see Borel [7], p. 63 f.).

Petersson published his pioneering discoveries in several influential papers.
The results of the famous report [113] in the Jahresbericht gave rise to a first series of
papers [114]-[116] on the simultaneous diagonalization of Hecke operators. Another
series of works on applications to the theory of Poincaré series was started with [117]
and [118] and was continued in various directions over a period of approximately 20
years (see [158]).

We first give some applications of the Petersson scalar product to the theory
of Poincaré series. Let the data ', k, v, { = A7'oo, A\, T¢ = (=1, P), v(P) = ¢*™* be as
above and k > 2,n € Z. Consider Petersson’s Poincaré series of parabolic type

eZ1ri(n+r:)Mz//\

3.3 G,(z) := — (zeH).
(33)  Gi2) Mzz(;a)v(M)(CHd)k (z € H)

The sum over M = AL is carried out in such a way that L runs through a representa-
tive system of I'; \ I, and v(M) is defined suitably ([117], p. 469). The series converges
normally on H since & > 2, and G, is an automorphic form on I" of weight k for the
multiplier v. In fact, G, is entire if n + x > 0 and a cusp form if n + x > 0. In the
special case v(P) = 1,n = 0 the series Gy reduces to the familiar Eisenstein series
for the cusp ¢ = 4~ 1o0:

(B4 Es)=) ! (ze H).

A —
(A -

I'-equivalent cusps give rise to essentially the same Poincaré series. The obvious be-
haviour of these series in the cusps of I" implies the following reduction theorem: For
any f € G(T, k, v) there exists a linear combination E of the Eisenstein series such that
f — E is a cusp form. In other words,

(3.5) G(T,k,v) = &I, k,v) ®C(T, k, v)

where £(T, k, v) denotes the space generated by the Eisenstein series. Maintaining the
previous notations and assumptions we have
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Theorem 3.1 (Petersson’s coefficient formulae) Assume that f € C(T', k, v) has
the Fourier expansion (3.1) at ¢ and let k > 2. Then

()T (k-1) .
(3.6)  (f,Gn) =< (n(nin)f—1%n if n+k>0,
0 Zf n+rk=0

where €(A) is a known constant of modulus 1.

This theorem is a key result for the theory of Poincaré series. It was proved by
Peterssonin[117]and [118]; the result was almost simultaneously proved in a different
way by Selberg ([135], p. 42-53) for principal congruence subgroups of the modular
group.

Theorem 3.1 immediately implies a remarkable criterion on the non-vanish-
ing of Poincaré series: Let n + « > 0 and

B7) Gl AT @)= Y Aa(m)ermime:

m+k>0

be the Fourier expansion of G, at { = A~'co. Then we have G,(-) # 0 if and only if
(Gn, Gn) # 0, that is, if and only if y,(n) # 0. Unfortunately, there is no simple crite-
rion for the non-vanishing of ~,(n). The complicated sum formulae for the Fourier
coefficients of Poincaré series developed in [117], Satz 7, p. 474 yield growth estimates
for the Fourier coefficients but are unsuited for the solution of the problem of non-
vanishing. — The Fourier coefficients in (3.7) exhibit a symmetry in m and » which
drops out on choosing /' = G, in (3.6). One may even choose the G,, for another cusp
of T'. Petersson uses the coefficient formula (3.6) for the proof of a somewhat subtle
vanishing criterion for an arbitrary linear combination of Poincaré series (belonging
to the same cusp). This gives an answer to problem (A).

A famous example is the space C, of cusp forms on T := SL,(Z) of weight 12
for the multiplier v = 1. The space C, is one-dimensional and spanned by the dis-
criminant function

(38) AQ =q[[(1 -V =3 rg (g="z W)
n=1 n=1

where the coefficients 7(n) € Z are known as the Ramanujan numbers ([122], p. 151 ff.).
By the above remarks we have for alln > 1 that 7(n) # 0if and only if G, # 0, where
e27rian
Gn(z) = ——— (zeH)
METoo\T (cz+ d)12

is the n-th Poincaré series of weight 12 on the modular group. It is known that in fact
7(n) # 0for 1 < n < 113740230287 998. The famous Lehmer conjecture asserts that
7(n) # 0 for all » > 1. This conjecture is still open despite considerable efforts to
prove it. The analogous conjecture is also open for all one-dimensional spaces of cusp
forms on the modular group, that is for C(SLy(Z), k, 1) with k = 12, 16, 18, 20, 22,26.
The first line of (3.6) has a suggestive geometric meaning: Fix n such that
n+ x> Oandlet NV, denote the set of cusp forms such that in (3.1) @, equals zero. Then
N, either is equal to C(T', k, v) or is a hyperplane in C (T, k, v) with normal vector G,.
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The second line in (3.6) says that C(T", k, v) is orthogonal to £(T', k, v), and it is
easy to see that any entire form which is orthogonal to C(T', k, v) belongs to £(T', k, v).
Hence (3.5) is an orthogonal decomposition (in a somewhat wider sense since (3.2) is not
a scalar product on G(T', k, v) in the usual sense). By (3.5) the completeness problem
for the space of entire forms (and k > 2) is reduced to the completeness problem for
the space of cusp forms. This is solved by Petersson’s Completeness Theorem.

Theorem3.2 (Completeness Theorem) Fork > 2, every cuspformf € C(T', k, v)
is a linear combination of the Poincaré series G, (n+ x > 0).

Proof. The cusp forms G, with n + « > 0 generate a (finite-dimensional) subspace U
of the (finite-dimensional) unitary space C(T',k,v). Assume that f € C(T',k, v) is
orthogonal to U. Then all Fourier coefficients of f vanish by (3.6), hence f = 0. O

Besides the Poincaré series of parabolic type (3.3) Petersson introduced analo-
gous series of elliptic and hyperbolic types which correspond to the expansions of an
automorphic form in a point of the upper half-plane or in a pair of hyperbolic fixed
points, respectively. The theory is expounded in a unified way by Petersson in his work
[118]. Leaving aside here the hyperboliccase weconcentrate on theellipticcaseand start
off with a holomorphic function f on IH satisfying (2.1) forall M = (‘c’ 3) € I'where
is no longer assumed to contain parabolic elements. For any z € IH we have an ex-
pansion of the form

(39) f(r)=(@-2)* f: by (T -
n=0

7)" (re H).

T

Applying the stroke operator (2.2) to the typical term (7 — E)_k (T—jg)" of (3.9) and

=
summing over M € I' we obtain Petersson’s Poincaré series of elliptic type

T (32"
3.10) H,(7) :=
(3.10) Hi(r) bt v(M)(cr + d)f (Mr —2)

(n > 0,n € Z; k > 2). These functions are cusp forms for I', k, vand Theorems 3.1, 3.2
hold analogously for the expansion (3.9) and the series (3.10). The coefficient formula
here reads as follows: For any f € C(T, k, v)(k > 2) with expansion (3.9) we have

8 nll(k-1)

G (o H) = o S

b, foralln>0.

The coefficient bg in (3.9) equals f(z) up to a trivial factor. Defining

1
(:12) Q2= Hor) = 3 o —af

we hence obtain from (3.11):

Theorem 3.3 (Reproducing Formula) For all f € C(T', k, v)(k > 2) we have

(B13) (£.909) =gyt /) eH).
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This result is contained in [118], p. 56. A different approach to (3.13) was
suggested by Elstrodt [29], Sect. 10: The function Q may be regarded as a limit of
the resolvent kernel for the automorphic Laplacian of weight k on IH. Evaluating the
limit of the resolvent equation one obtains (3.13), and differentiating (3.13) suitably
with respect to z one obtains (3.11) (even under more general hypotheses than those
given above). Many variants and generalizations of (3.13) have been proved; see [29],
p. 121 for some pertinent references.

For exampleletT' = SL,(Z) and k > 4 be an even integer, v = 1. By Theorem
3.1, the function

o0
U(r,z) = Z nk-1 Gy(7)e2mim=
n=1
also satisfies the reproducing formula (3.13) though with a different constant factor

on the right-hand side. Hence ¥ and 2 agree up to a constant factor and on equating
constants one finds
(k— 1)

Nk 2
n —lG (T)e_ TinZ —
; " 2(2mi)k

This beautiful result is contained in [113], p. 60.

Q(r,z) .

4 Simultaneous diagonalization of the Hecke operators

Probably the most spectacular breakthrough that became possible by
means of the Petersson scalar product is the proof of the simultaneous diagonaliza-
tion of the Hecke operators. For the rest of this section let I' = SL,(Z) denote the
modular group, k > 4 an even integer and v = 1. For any entire modular form fof
weight k Hecke ([45), p. 583, 635, 655) defined around 1935 the linear operator T},
by

41) T.f(r):=n*" 3" d‘kf(——m;b)

ad=n
d>0
b mod d

(n > 1). This operator maps the space G of entire modular forms of weight k into
itself leaving the space C; of cusp forms invariant. Hecke immediately recognized
the following fundamental properties:

a) The operators T,,(n > 1) commute.
b) Forallm,n > 1,

— k—1 .
42) TuT,= Y d To ;
d|(m,n)

in particular:
(43) TuT,=Tu if(mn)=1.
OQIff =3 oamg™ € Gk (g = €*™) then
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m=0 \ d|(m,n)

@4 T Z(zw* %w
d) The operator-valued Dirichlet series

o
NI
n=1
has an Euler product expansion
(s) = [[( - oo~ + 012D
14

if Res > 0. The function ® admits a meromorphic continuation to the entire complex
plane with only one (simple) pole at s = k and satisfies the functional equation

2m) T (s)®(s) = (—l)§(27r)s_kI‘(k —5)®(k —s) .

Hecke well realized that the simultaneous eigenfunctions of the Hecke operators cor-
respond (up to constant factors) to Dirichlet series with an Euler product of the form

H(l _ )‘pp—s +pk—1—2s)—l ,
P

and he raised the problem of simultaneous diagonalization of the T, ([45], p. 586 f.,
637, 667). Looking for examples he found out that the Eisenstein series of weight k£ on
the modular group

(4.5) Ei(r) = +Zak1

(By = k-th Bernoulli number, ox—1 (m) = 3, dim d*~1)is a simultaneous eigenfunction
of the T, with associated Dirichlet series ((s){(s — k + 1). He also checked that the
spaces Cx of low dimension in fact possess bases of simultaneous eigenfunctions, but

o Frdofietmey -~ pralvoektup oty evictgree Mtﬂ-ﬂfjﬂ%

i
1
x
.
:

4
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(48) TuGp= Y d"'Gum.
d|(m,n) d

Combining (4.8) with (3.6) one finds that (4.6) is true whenever f, g are Poincaré series
of the form (4.7), and Theorem 3.2 implies that (4.6) holds in general. — Petersson’s
second proof of (4.6) is based on a skillful shift of the application of T}, in (4.6) from f to
g (see [114], p. 408 {f.). — An easy modern proof is contained in Lang’s book [81].

Corollary 4.2 For every even integer k > 4 there exists an orthonormal basis of
Cy consisting of simultaneous eigenfunctions of the Hecke operators T,(n > 1).

Combining this corollary with Hecke’s results Petersson ([113], [114]) can
summarize the

Theorem 4.3 (Main Theorem on Hecke Operators) Let k > 4 be an even in-
teger and d = dim Ci.t Then there exists an orthogonal basis fy, . . . , i of G,

49) f=> amg",
m=0

normalized by the condition
(4.10) a1 =1 (j=0,...,d)

and mmiWangouv_eizenfungzia@wt the Heckeonerators

f
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and collecting terms we obtain the crucial formula

_1\k/2
trT, = ——( D)
T

263 (k — 1)nk! / Q(r,7)y* 2 dxdy .

D
The latter integral was ingeniously evaluated by Selbergin 1956 (see [135], p. 461); the
result reads as follows.

Theorem 4.4 (Eichler—Selberg Trace Formula) Let k > 4 be an even integer
andn > 1 a natural number. Then the trace of T, on the space Cy of cusp forms of weight
k on SLy(Z) is given by

trT, = _% Z Py(m,n)H (4n — m’) — % (min(d, g))k_l
imi<2yA a

where the following notations apply:

k=1 _ —k—1
Pi(m,n) := p_p__;___

where p is defined by

ptp=m,pp=n.

Moreover, H(d) = 0 ford < 0, H(0) := — {5 andford > 0, H(d) equals the number of
SL,(Z)-equivalence classes of positive definite binary integral quadratic forms
ax? + bxy + cy? with discriminant b*> — 4ac = —d. Here, forms equivalent to a multiple
of X2 + y? are counted with weight 1, forms equivalent to a multiple of x* + xy + y*
with weight §.

This theorem was proved by Zagier [159]-[161]; in fact, Zagier’s proof seems
to be the most elementary proof that is available in the literature. A more general
result, very much in the vein of Theorem 4.4 and its proof, was proved by Zagier [162].
The trace formula is also contained in Eichler’s papers. However, his work is designed
on a much broader scale than necessary just for the proof of Theorem 4.4; see [23]-
[27]. Eichler [27] even computed the trace of the Hecke operators acting on
C(To(N),k, x) where k > 1, N is a square-free integer,

To(N) = {(z Z) € SLy(Z) : ¢ = 0 mod N} ,

and Y is a Dirichlet character mod N (defining the multiplier). The latter work was
extended to arbitrary level N by Hijikata [47]; see also Hijikata, Pizer and Shemanske
[48] and Cohen [12]. Traces of Hecke operators for quaternion groups were likewise
already computed by Eichler (loc. cit.); see also Miyake [98] and Hijikata, Saito,
Yamauchi [49]. The last mentioned paper also contains some examples of character-
istic polynomials of Hecke operators. Traces of more general Hecke operators were
determined by Shimizu [137], Saito [128] and Shimura [141]. It seems hardly possible
to strive for a reasonably complete list of references on this topic here. Moreover, we
don’t repeat here the list of references for the Selberg trace formula (see Elstrodt [30]).
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5 Hecke operators on I'y(N)

Hecke ([45], p. 672 ff.) already initiated the theory of Hecke operators on
congruence subgroups of SLy(Z) and his work was promptly pushed forward by
Petersson ([115], [116], [119]) by means of his scalar product. These researches did
however not lead to a fully satisfactory generalization of Theorem 4.3 since important
assertions such as the uniqueness of the simultaneous eigenfunctions and the decom-
position of the associated Dirichlet series into complete Euler products don’t hold
unrestrictedly. The latter problems were resolved only much later by Atkin-Lehner
[3], Miyake [97], Pizer [120], Li [85], [86] and Shimura [139]. Needless to say: Peters-
son’s scalar product is a crucial tool in these works. Since the details of the theory are
somewhat involved we can give here only a rough sketch of some basic facts.

The theory of Hecke operators on congruence subgroups of SLy(Z) essen-
tially boils down to the theory of Hecke operators on

To(N) := {(i 3) € SLy(Z) : ¢ = 0 mod N}

where N is a natural number. For any Dirichlet character y mod N we denote by
Gi(N, x) the space of entire modular forms on I'y(N) satisfying the transformation
law

7(Z5) = x@(er+ 7o)

for all (‘c' 3) € I'o(N) and 7 € IH. The weight k here is an integer satisfying the con-
sistency relation x(—1) = (-1 )k. Let Cx (N, x) be the space of cusp forms contained in
Gi(N, x). It turns out that the orthogonal complement of Cx (N, x) in Gx (N, ) can be
described in terms of Eisenstein series (if k is sufficiently large) and that the associated
Dirichlet series reduce to products of L-functions (see Miyake [98]). This means that
the main difficulties are embodied in Cx(N, x) and we shall largely restrict to the
discussion of the latter space.

The general theory of Hecke operators is most satisfactorily formulated in
terms of abstract Hecke algebras (see e.g. Shimura [139], Krieg [75], Miyake [98],
Diamond and Im [17]). For the sake of brevity we restrict to the consideration of
the Hecke operators T, for primes p. A special new ingredient of the theory for
To(N) is that one has to distinguish between the primes pt N and the primes g | N.
For primes p{ N and f € Gy (N, x) we define

p-l -
Tof (r) o= p-! (Zf( *”) +x(p)f(pf)>
b=0

p

(r € H). This operator maps Gi (N, x) into itself leaving Cx (N, x) invariant. There is
also a natural analogue of (4.4) for T,,f (p{N). For distinct primes p, p' not dividing
N the operators T}, T,» commute. The following key results are due to Petersson
([115], p. 50 £.).




The Petersson Scalar Product 267

Theorem 5.1 (Petersson) For f,g € Ck(N,x) andp { N we have

(Tﬂf)g) = X(p)(f7 Tpg) .
Hence the operator T, : Ck(N, x) — Ck(N, x) is normal.

Corollary 5.2 (Petersson) There exists an orthonormal basis of Cx(N, x) con-
sisting of common eigenfunctions of the operators T, for all primes pt N.

For primes ¢ | N the associated Hecke operator on Gi(N,x) is often de-
noted by U,. Its action on a modular form f(7) = "7 ame®™™ € G(N,x) is
defined by

oo
U,f(7) = Z amqez”i"'T .
m=0

The operator U, also maps Gi(N, x) into itself leaving C (N, x) invariant. Moreover,
T,(ptN)and U, (q | N) commute.

Two major problems come up with regard to Corollary 5.2: (i) The ortho-
normal basis of common eigenfunctions of the 7,(p t N) cannot necessarily be cho-
sen also as a simultaneous eigenbasis of the U, (¢ | N). (i) The simultaneous eigen-
spaces in Corollary 5.2 need not be one-dimensional for the following trivial reason:
Let m | N and suppose that x is a Dirichlet character mod m. Regarding x alsoasa
Dirichlet character mod N we have Gi(m, x) C Gk(N, x) and similarly for the cusp
forms. Now if d is a natural number such that md | N and f € Ci(m,x) then
f(dr) € Ck(N, x). The forms on I'((N) coming up in this way from forms of lower
level m (m | N,m # N) such that x is a character mod m span a certain subspace
CP4(N, x) which was called the space of oldforms by Atkin and Lehner [3]. For any
p1N the operator T, preserves CPM(N,x). Hence CPM(N,x) decomposes as an
orthogonal sum of common eigenspaces of all 7, with p{ N. Maintaining the pre-
vious notation, if f € Cx(m, x) is a common eigenfunction of all T,(p{ N) then so is
f(d7) whenever md | N, and the corresponding eigenvalues are the same. Hence
every common eigenspace of the T,(p{ N) in C,?ld(N ,x) has dimension greater than
one.

The orthogonal complement of CJ4(N, x) in Ck(N, x) with respect to the
Petersson scalar product is called C*¥ (N, x). Obviously,

Ck(N,x) = CRU(N,x) ® CF™ (N, x) -

The space C°" (N, x) may be regarded as the really interesting part of Cx(N, x). By
Theorem 5.1,C;*" (N, x) is also invariant under all T, (p{ N) and hence has an ortho-
normal basis consisting of simultaneous eigenfunctions of all 7,,(p { N). The common
eigenforms of the T,(p 1 N) contained in C{** (N, x) are called newforms. Basically it
now turns out that the main assertions of Theorem 4.3 hold analogously for the Hecke
operators acting on Cp¥ (N, x). If f(7) = Y52, ane®™ € C{*V(N, x) is a newform
then a; # 0;if a; = 1, f is called normalized.

Theorem 5.3 Suppose that f (1) =Y oo | ane*™ " € C{¥(N, x) is a normalized
newform (ay = 1). Then the following hold:

a) T,f = apf forallpt N, that is, a, is the eigenvalue of f for T),.
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b) Let q be a prime dividing N. Then
U f =a.f
and there are two possibilities:
(i) lag| = ¢*=V72 if x is not a character mod N/q.
(i) If x is a character mod N/q thena; = 0if ¢* | N and a2 = x(q)g* if * { N.
¢) The Dirichlet series

00
D(s,f) == Z awn™*
n=1
associated with f splits into a complete Euler product:

D(s,f) = H(l _apP—S+X k - Zs) H(l —aqq -

PiN qIN

Moreover,

Ru(s.f) = (j—’}v) “Ls)D(s. )

is holomorphic on the whole s-plane and satisfies the functional equation

Ry(s.f) = Mi*Ru(k — 5,f7)

or some constant Ay where
f

f*(T) — Za-nebrim- e Cknew(N,Y)

n=1
is a normalized newform.

d) Let g(1) = Y02 bue®™ € CR°V(M, X) also be a normalized newform of weight k
and some level M for the same character x and assume that a, = by, for all primes p with
at most finitely many exceptions. Then f = g and M = N (strong multiplicity one
theorem). Hence the simultaneous eigenspaces of the T,(p{N) on C{**(N,x) are
one-dimensional, and the newforms constitute the unique orthogonal basis of
Cy™ (N, x) consisting of normalized simultaneous eigenfunctions of the T,(p{ N).

Detailed proofs of these and many more statements may be drawn from
Atkin—Lehner [3], Diamond-Im [17], Lang [81], Li [85]-[87], Miyake [97], [98], Pizer
[120], Rankin [124], Rohrlich [127], Shimura [139]. We also refrain from a discussion
of Weil’s converse theorem (see Weil [156], Li [87], Miyake [98]).

Of course, more detailed information on the eigenvalues of the Hecke opera-
tors would be highly desirable. For example, in the special case k = 12 the modular
form A (see (3.8)) constitutes the unique basis of C1, as described in the Main Theorem
4.3, and we have T,A = 7(n)A. It was already conjectured by Ramanujan [122], p.
153 in 1916 that the polynomial X2 — 7(p)X + p'! (p a prime number) never has two
distinct real roots, that is

Ir(p)| < 2% forallp
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(Ramanujan conjecture). Petersson [115], p. 45 noted that the Ramanujan conjecture
can be immediately extended to the polynomial X2 — \;( p)X + p*~! (compare (4.11),
(4.13)). This led him to the Ramanujan—Petersson conjecture

(5.1) N(p) < 2p&2_l forj=1,...,d

which he formulated in the even more general context of modular forms of level N (see
[115], p. 62). Petersson also noted the “remarkable analogy” between (5.1) and the
“Riemann conjecture for the congruence zeta-functions of elliptic function fields”.
The latter functions were introduced in pioneering work of E. Artin [2] and F.K.
Schmidt [134], and the Riemann conjecture for them was proved in 1933 by H. Hasse
([44], Sect. VII). A. Weil [152], [153] considerably extended these investigations and
proved the Riemann—Roch theorem and the analogue of the Riemann conjecture for
curves, and this led him in 1949 to his famous conjectures [155] on the zeta-functions of
algebraic varieties over finite fields. For an excellent account on the state of the art as
of 1956 with respect to the Weil conjectures see Deuring [16]. Grothendieck’s funda-
meptal reshaping of algebraic geometry finally opened the way for Deligne’s sensa-
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Medal in 1978. As already shown in previous work of Deligne [13] the Weil conjecture
(now Dehgne s theorem) 1mphes the Ramanujan—Petersson conjecture (now also De-
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object to which the Weil conjectures can be applied. These then imply the Ramanu-
Jan—Petersson conjecture In certain cases the aforementioned geometric object can be
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919-940). The breakthrough came with a great paper by Shimura [140]. In this work,
Shimura constructs an adequate theory of Hecke operators for modular forms of half-
integral weight and he demonstrates the existence of a surprising lifting property for
modular forms of half-integral weight. Starting from the Euler product associated
with a common eigenfunction of the Hecke operators Shimura constructs a map
taking cusp forms of half-integral weight to holomorphic modular forms of even
integral weight such that common eigenfunctions of the Hecke operators are lifted
to common eigenfunctions. This lifting has been studied in great detail. It can be
obtained by taking the Petersson inner product of the original cusp form against a
suitable theta kernel in two variables (see e.g. Cipra [10] and the references given
there). A representation theoretic approach to the Shimura correspondence was elab-
orated on by Waldspurger [149], [151].

A striking difference between modular forms of half-integral weight and those
of integral weight is the amazing fact that — roughly speaking — the Fourier coefficients
of modular forms of half-integral weight are expressible in terms of L-functions. In
fact, Waldspurger [150] has shown thatif /(z) = 3.°° | a(n)e?™ is a normalized new-
form of even weight k for a congruence subgroup of SLy(Z) and if
g(z) = 37,2, c(n)e*™™ is the cusp form of weight (k + 1)/2 associated with f under
the Shimura correspondence, then (under certain technical conditions)

(52) e(ID|)* = w|D['T'L(f,D,%).
Here, D denotes a fundamental discriminant, w is a suitable constant and

L(f,D,5) = (g) a(n)n=

n=1

is the Dirichlet series associated with f twisted by the character (2) (Kronecker sym-
bol). For f € Cy the form g is a cusp form of weight (k + 1)/2 on I'y(4), and Kohnen
and Zagier [73] gave the following refined version of (5.2) involving the Petersson
scalar products (f,f) and (g, g):

(D)’ =1 k1L(f,D%)
G oo = e P17 (7 7

if (— l)k/ 2D > 0. Kohnen ([67], [68]) even generalized (5.3) to the case of forms f of
arbitrary odd level and gave a similar formula for c¢(m)c(n) involving a cycle integral
instead of the value of the L-series at the center of the critical strip. For more informa-
tion and interesting applications we refer the reader to [39], [40], [65]-{69], [73], [74],
[145].

6 Applications to the theory of real analytic
automorphic functions

Let ' < SL,(IR) be a cofinite discrete group and L?(T" \ IH) the Hilbert space
of measurable I'-invariant functions on IH which are square integrable with respect to
the hyperbolic area measure dw = y ~2dx dy. L*(T' \ IH) is equipped with the Peters-
son scalar product
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=/ff§dw (f,g € LT\ H))

where F is a measurable fundamental domain of T'. The Laplace-Beltrami operator

? 0
22 Y
A=y (3x2+3y2)

for the hyperbolic metric on IH is known to be essentially self-adjoint on the space
Co°(I'\ H) of T'-invariant C*-functions on IH such that the projection of the support
of f to '\ H is compact. The closure —A of —A is self-adjoint and positive. The
problem of determining the spectral decomposition of —A and related topics are
known as the eigenvalue problem of automorphic functions. This problem arose 50
years ago from pioneering work of H. Maal} (1911-1992) (see [90}], [91], [94]) and
was subsequently developed into a fascinating theory in landmark papers by W.
Roelcke ([125], [126]) and A. Selberg ([135]). Some pertinent references include
Fischer [32], Hejhal [46], Iwaniec [54], Kubota [77], Terras [144], Venkov [146]-{148].

Whereas the continuous part of the spectral decomposition of —A can be fully
described in terms of the analytically continued real analytic Eisenstein series the
eigenfunctions of —A are still highly mysterious. Only very few eigenfunctions are
explicitly known, and for cocompact groups and for groups of arithmetic type such as
the modular group and its congruence subgroups it is known that infinitely many
linearly independent eigenfunctions of —A (often called Maaf forms) exist; the eigen-
values even satisfy Weyl’s asymptotic law in the aforementioned cases. (Recall that a
subgroup I' < SL,(Z) is named a congruence subgroup whenever I contains a princi-
pal congruence subgroup of level N

(W) ;:{(Z Z) € SLy(Z) : <" f;): (é ?) mod N}

for some N.) In view of arithmetical applications the following conjecture of A. Sel-
berg ([135], p. 518-519) is of fundamental importance.

Selberg’s ; -Con]ecture For any congruence subgroup I" of SL,(Z) the smallest
positive ezgenvalue A of —A satisfies
A > 1
127
This conjecture is still open though Selberg (loc. cit.) already took an impor-
tant step and proved

Theorem 6.1 (Selberg) For any congruence subgroup T <L§L» (Z) the smgllest

positive eigenvalue \) of — A satisfies
3
A > =
'=16 "
The proof of this theorem is based on an ingenious application of the methods
provided by the scalar product. We briefly indicate some of the leading ideas: Selberg
introduces the real analytic Poincaré series

(61) Um(Z,S) — Z (Im Mz)s 2mim Re‘;vlz —27r|m|IquZ
Meloo\I
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where z € H,m € Z and (} {) (and possibly —7) generate I' . The series (6.1) con-
verges for Res > 1 and we have U, (-,s) € L*(I" \ IH) for m # 0 (whereas Uj is a real
analytic Eisenstein series). The series U, play a role similar to that of the Poincaré
series (3.3) in the holomorphic theory. Let f € L?(T \ IH) N C*(T"\ H) satisfy the
differential equation —Af = Af. Then f has a Fourier expansion at the cusp oo of
the form

(62) f(x-+) = aoy” + boy' "+ S anyh i, () 5
n#0

where A = s(1 — 5) = 1 + r? and where K, denotes the usual Bessel function (vanish-
ing exponentially at infinity). Then the following version of Petersson’s coefficient
formulae holds good: For any m # 0 there exists a (known) constant C,,(s) # 0 de-
pending only on m, s, T" such that

(63) (fv Um(-,E)) = Cm(s)am .

The key idea in proving Theorem 6.1 is to compute the inner product
(Un(-,5), Up(-,7)) for Ret > Res > 1 and m # 0 # n. One obtains a multiple of the
Kloosterman—Selberg zeta function

(64) Z(mms) =3 Sm1)

2
c#0 le|”

and some more terms which don’t disturb the rest of the argument. Now Weil’s
estimate [154] of the Kloosterman sum S(m, n; ¢) proves that (6.4) converges abso-
lutely even for Re s > 3. Assume now that there exists an eigenvalue \; of — Ain)0,2 15l
and write A\; = s1(1 — s1) with 5 3 < 51 < 1. The known spectral theory of the operator
—A and (6.2), (6.3) imply that one may choose m such that (U, (-, s), Un,(-,7)) has a
pole at s = s;. This contradicts the holomorphicity of (6.4) for Res > %.

The details of the preceding arguments are elaborated in Goldfeld-Sarnak
[38], Kuznetsov [78] and Sarnak [129], [130]. It is even possible to generalize Sel-
berg’s result on A; to congruence subgroups of the group Spin (n,1) acting on a
hyperbolic space of arbitrary dimension. This was shown by Elstrodt, Grunewald
and Mennicke [31]. The same bound for A; was obtained independently for con-
gruence subgroups of SO(n, 1) by Cogdell et al. [11]. The first mentioned paper uses
a classical approach in the vein of Selberg whereas the second uses the adelic point of
VIEW.

The theory of Hecke operators on I'g(N) holds in the case of MaaB forms in
very much the same way as in the holomorphic case (see Iwaniec [54]). There is also an
analogue of the Ramanujan—Petersson conjecture which came up first in representa-
tion theory. A representation theoretic generalization of the Ramanujan-Petersson
conjecture due to Pyatetskii-Shapiro [= Piatetski-Shapiro] is stated in Gel’fand,
Graev and Pyatetskii-Shapiro [37], p. 356 ff. and its relation with the classical version
is established. The same interpretation was suggested by Satake [133]. Briefly, the
interpretation is that the local constituents of the automorphic representation asso-
ciated to a classical cusp form should be tempered (see also Langlands [4], Vol. I, p.
208). Since holomorphic cusp forms and Maal} wave forms come up on equal terms in
representation theory Satake points out that “one can also make the analogous con-
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jecture for the Fourier coefficients of these [MaaB3] forms”. The Ramanujan-Peters-
son conjecture for non-holomorphic cusp forms on the modular group

1) = Y @y K 2nlnly)e?™™ (2 = x+ iy € H)
n#0

which are normalized eigenfunctions of the Hecke operators (i.e., a; = 1) says
la,| <2 for all primes p

(and similarly for MaaBl forms on congruence subgroups). This conjecture is still
open. As mentioned above, the Selberg %-Conjecture is still open as well. Only quite
recently could Selberg’s %-bound be improved to A; > % by Luo, Rudnick and
Sarnak [89]; for a nice survey see Sarnak [132]. As we understand it today, the Selberg
% -Conjecture is also part of the general Ramanujan type conjectures of representation
theory. A striking approach to these general conjectures was suggested by Langlands
[82]. This approach is based on the study of L-functions (see e.g. the contributions by
Casselman, Langlands, Howe, Piatetski-Shapiro in [4] and see Gelbart, Shahidi [36]).
For some recent developments on the Ramanujan conjectures see Burger, Li and
Sarnak [8], [9]. For a timely report on various versions of the Ramanujan—Petersson
conjecture in the setting of representations of Galois groups associated to modular
forms see Taylor [143].

The Ramanujan—Petersson conjecture for cuspidal automorphic representa-
tions of GL,(A) over a global field of characteristic p was proved by Drinfeld [19].
This work was recently extended to GL,(A) by Lafforgue [79], [80].

7 The Petersson scalar product in the theory of modular forms
of several variables

In recent years the notion of automorphic form has been vastly generalized.
This development was started by Hilbert, Siegel and Maall and pushed ahead by
Borel, Gelfand, Godement, Harish-Chandra, Jacquet, Langlands, Piatetski-Shapiro,
Selberg, Weil and many others. An automorphic form nowadays is a function from the
symmetric space of a real semisimple linear Lie group G to a G-space V which satisfies
a certain transformation law for all elements of a discrete cofinite subgroup I' < G
(see e.g. Borel [6], the contribution by Borel and Jacquet in [4] and Harish-Chandra
[42]). In each case the Haar measure on G induces a Petersson scalar product on the
space of cusp forms for G and I'. This is heavily used in the analysis of general Eisen-
stein and Poincaré series (see e.g. [42]). In the following section we discuss mainly the
case of Siegel modular forms where the theory is, thanks to the work of Siegel, MaaB,
Klingen and many others, developed in more detail than in the general case. For
simplicity we restrict to the case of the full Siegel modular group.

Letn > 1 be a natural number. Siegel’s half-space IH, of degree n is defined to
be the set of all n X n complex symmetric matrices Z = X + i Y such that the imagin-
ary part Y of Z is positive definite. Considering the independent entries
zik (1 <j < k < n) of Z as coordinates we may regard IH, as a domain in €*"+1/2
In what follows we tacitly decompose any 2n-rowed square matrix M into n-rowed
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square blocks accordingto M = (é S) ,andweputJ = ( _0," {] ) where I, is the n-rowed
identity matrix. The symplectic group of degree n

Sp,(IR) := {M € GL,(R) : M'JM = J}
acts as a group of biholomorphic automorphisms on IH, via
Z — M(Z):=(AZ+ B)(CZ+D)™".

In fact, Siegel has shown that Sp,(IR)/{% I»,} is equal to the full group of biholo-
morphic automorphisms of IH,,. The discrete subgroup

Ty = Spn(Z) < Spn(]R)

is known as Siegel’s modular group. A holomorphic function f : IH, — € is called a
Siegel modular form of weight k (k € ZL) whenever f satisfies the transformation law

(1.1)  f(M(Z)) = det(CZ + D)*f(Z)

forall M z(/é ﬁ) € I'y and Z € H,, and is bounded on Siegel’s fundamental domain

of T',,. (The last condition is relevant only for » = 1 since it is automatically satisfied

for n > 2 by Koecher’s principle [63].) We denote the linear space of Siegel modular

forms of weight k and degree n by My .. Clearly, My , is different from zero only if kn

is even. Historically it is a remarkable coincidence that Siegel introduced his modular

forms of degree » in the very same year as Petersson introduced his scalar product.
Every f € My, admits a Fourier expansion of the form

(72) f(Z) = Z a(T)eZWitr(TZ)

T>0

where the summation with respect to T extends over all symmetric positive semi-
definite half-integral n-rowed matrices. (Recall that a symmetric matrix 7' = () is
called half-integral whenever . € Z and 2ty € Z for all j, k with j # k.) The form
f € My, is called a cusp form if a(T) = 0 for all T with det T = 0. We denote the
space of cusp forms contained in My , by Cy .

Petersson’s method of forming Poincaré series of parabolic type (3.3) was
extended to the case of Siegel modular forms by MaaB ([92], [95]). For T as above
and k = 0 mod 2 define

(13) Gr(Z):= Y ™M@ det(CZ + D)~ .
M

The sum extends over a maximal system of matrices M € T', such that the terms of
(7.3) are different. By way of example, for T = 0 the series (7.3) is the Siegel Eisenstein
series

(74) E(Z)= det(CZ+ D)™
M

where the sum extends over all M € ', \ T'y; [ is the set of all elements of T',, of the

block form (8 :) It was shown by MaaB that (7.3) converges normally on IH, and
represents a Siegel modular form of weight k£ if k=0mod 2 and k>n+1
+rank 7. The laborious convergence proof for (7.3) was notably simplified by Klin-
gen [59].
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Now one may extend the notion of Petersson scalar product to Siegel modular
forms and prove an analogue of Theorem 3.1. This was done by MaaB ([92], [95]) and
in greater generality by Godement ([136]). The space IH, has a natural Sp,(IR)-in-
variant measure given by

dw(Z) = (det Y) ™' dX dY

where dX = ngjskgn dxji,dY = ngskg dyj. For f,g € Mg, the function
fg(detY )k is T'p-invariant, and if besides fg € Cy, the function fg(det Y)k is
bounded on IH,, and hence integrable over a measurable fundamental domain F,
of T, since w(F,) is finite. Hence we may define the Petersson scalar product of f
and g by

(15) (f.g) = /f F(2)T@)(det Y) dw(Z)

In particular, (7.5) makes sense if at least one of the functions f, g € My, is a cusp
form.

Theorem 7.1 (MaaBl) Suppose that f € Cy, has the Fourier expansion (7.2), let
T be a symmetric positive semi-definite half-integral n-rowed matrix, and assume that
k =0 mod 2,k > n+ 1+ rankT. Then there exists an explicitly known positive con-
stant Cy,(T) such that

(7.6) (f,Gr) = Cin(T)a(T) if detT >0
whereas (f,Gr) =0ifdet T = 0.

MaaB ([96], p. 180) even showed that (7.6) holds analogously in the case
rank T =r if f belongs to the space generated by all Poincaré series Gs with
rank S = r. And he ([92]) proved the following result.

Theorem 7.2 (MaaBl) Suppose thatk > 2n,k = 0 mod 2. Then every cusp form
f € Ckp is a linear combination of the Poincaré series Gt with rank T = n. The ortho-
gonal complement Ny, of Ci  in My, with respect to the Petersson scalar product is
generated by the Poincaré series Gt withrank T < n.

The finer structure of Ny, was already investigated by MaaB ([93], [95]) and
beautifully worked out by Klingen ([58]-[62]). A crucial tool here is Siegel’s operator
@ : Mypn — My, defined by

[~

Defining My := Cro := € for k > 0 and My := Cxp := {0} for k < 0 we here in-
clude also the case n = 1. It is well known that /' € My, is a cusp form if and only if
®f = 0. The operator & : My, — My ,_ is surjective for k > 2n, k = 0 mod 2. This
was shown first by MaaB ([92], [95]), and the proof was considerably simplified by
Klingen ([58], [62]); see also Freitag [33]. Klingen’s method of proof is based on the

theory of Klingen Eisenstein series: Consider the blocks of M =( ’C' g) erl,, fix
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Z € H, let Z, denote the upper left r x r block: Z =(f :), and let f € Cy,. Then
Klingen ([58], [62]) defines the Klingen Eisenstein series of weight k by

El(Z)= Y f(M(2Z)),)det(CZ+D)™.
MeAp\In

These series converge normally on IH, whenever f € C¢,,n>1,0<r <n and
k > n+r+ 1is even. Besides, under the aforementioned assumptions we have

®"'El, =f.
This is a crucial step in Klingen’s proof of

Theorem 7.3 (MaaB) For k > 2n,k =0 mod 2 the operator ® : My, —
My n_1 is surjective.

Following MaaB ([93], [95]) we introduce the spaces

My = My,

o {feNi.:dfe M7 D for0

Mz,n = Ck,n )
and we have the direct decomposition
(1.7) Min=EP M, .
r=0
Now Klingen ([58], [62]) proved:
Theorem 7.4 (Klingen) Letn > 1,0 <r<nandk >n+r+ 1 beeven. Then
Z,n = {E{;,r :f € Ck,r} .

The proof of the inclusion relation E ﬁ, € Nk, requires the computation of
the pertinent Petersson scalar product. Summarizing the main results, Klingen (loc.
cit.) obtained the following representation theorem.

Theorem 7.5 (Klingen) Let n > 0 and k > 2n,k = 0 mod 2. Then we have the
following direct decomposition into metrically characterized subspaces:

Mo = Mo & M, 0.9 Mle M,
Mipn-t = Mg,n—l 2 Mllc,n—l D...0 Z—nl—l
l l
M1 = Mg,l ® Mllc,l
i)
Mpo = ngo.

Each subspace M, , consists of Klingen Eisenstein series E 1. (f €Cxy). The vertical
arrows indicate that the operator ® maps bijectively here. The inverse ij , of
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D" Mg — M. is eivey by

Vinf) =EL, (feM,, =Cr).

Petersson’s ideas apply equally well to other types of modular forms in several
variables such as the theory of Jacobi forms as can be seen from the standard reference
[28]. By way of example, Theorem 7.5 has been proved analogously for Jacobi forms
by Dulinski ([20], [21]). Moreover, an analogue of the Eichler-Selberg trace formula
for Jacobi forms was proved by Skoruppa and Zagier [142]. — A beautiful application
of the Petersson scalar product was given by Kohnen and Skoruppa ([72]; see also [76],
[70], [71]): Let F, G € Cy 2, denote by @y, ¥(m > 1) the Fourier-Jacobi coefficients
of F and G, respectively, and define

o0
(7.8) Drg(s) := (25 — 2k +4) > (0m, Ym)m™
m=1
where (¢m,¥,) denotes the pertinent Petersson scalar product. The series (7.8) con-
verges absolutely for Re s > k + 1.

Theorem 7.6 (Kohnen and Skoruppa) The function D (s) has a meromorphic
continuation to € which is holomorphic except possibly for a simple pole at s = k of
residue

4k7rk+2

——(F .

Besides, the function

Rr(s) := 21) " *T(s)T'(s — k + 2)Dr 6(s)
satisfies the functional equation

RRG(Zk -2 S) = RF,G(S) .

For reasons of space we must refrain from a detailed exposition of the theory
of Hecke operators for Siegel modular forms. This theory was initiated by MaaB [93]
and Koecher [64] and subsequently extended considerably by Andrianov et al. (see[1],
[33]). Suffice it to say that again the self-adjointness of the Hecke operators with
respect to the Petersson scalar product is a key tool, and that e.g. (7.7) is a decom-
position into subspaces invariant under the Hecke operators.

The Dirichlet series (7.8) is closely related with spinor zeta functions of Hecke
eigenforms of weight k and degree two (see [72]). Its generalization to higher degree
plays animportant role in the proof of the so far best estimates for Fourier coefficients
of Siegel cusp forms (see Bocherer and Kohnen [5'] and Breulmann [7']).
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Wolfgang Franz zum Gedichtnis!

G. Burde und W. Schwarz, Frankfurt

Wolfgang Franz starb am 26. April 1996 in Frankfurt. Die Trauerfeier fand
am 7. Mai 1996 im Frankfurter Hauptfriedhof im kleinen Kreise statt; einer seiner
Schiiler, Wolfgang Metzler, spielte dabei die Orgel.

Am 30. November 1996 veranstaltete der Fachbereich Mathematik ein Ge-
denk-Kolloquium fiir Wolfgang Franz, bei dem B. Eckmann (Ziirich) iiber Vierdi-
mensionale Mannigfaltigkeiten und Gruppen-Invarianten und W. Liick (Miinster) {iber
Ein analytischer Zugang zur Reidemeister-Franz-de-Rham-Torsion sprachen. Die Ge-
denkfeier wurde durch einen biographischen Bericht aus persénlicher Sicht und Er-
fahrung von Wolfgang Metzler eingeleitet und mit Mozarts Kegelstatt-Trio um-

! Herrn Metzler sind wir fiir Uberlassung von Photographien und personliche Bemer-
kungen sehr zu Dank verpflichtet. Ebenso danken wir dem Universitéitsarchiv Frankfurt und dem
Universitdtsarchiv GieBen.
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rahmt, bei dem Herr Metzler den Klavierpart, der Prodekan Kersting die Viola und
Herr Bussmann die Klarinette spielte.

Wolfgang Franz wurde am 4. Oktober 1905 in Magdeburg als Sohn des Ober-
studiendirektors Prof. Dr. phil. Erich Franz und seiner Frau Marie, geb. Grahl, ge-
boren. Nach dem Abitur (in Kiel, 3. Mirz 1924) studierte er dort Mathematik, Physik
und Philosophie (mit Auswirtssemestern in Wien, SS 1925, Berlin, SS 1926 und Halle,
WS 1928/29). Die bei Ernst Steinitz? begonnene Dissertation ,, Erweiterungen zweiter
Art algebraischer Korper” wurde durch dessen plotzlichen Tod hinféllig. Von der
Personlichkeit des damaligen Privatdozenten Helmut Hasse® beeindruckt, erbat
Wolfgang Franz bei diesem ein neues Thema und promovierte Anfang 1930 in Halle
mit der Arbeit ,, Untersuchungen zum H zlbertschen Irreduzzbzlztatssatz verbffentlicht
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Wolfgang Franz glaubte, sich den Zwangen der Zeit nicht entziehen zu kén-
nen;’ um die Chance zu haben, eine Stelle an einer Universitiit in Deutschland anneh-
men oder sich habilitieren zu kénnen, sah er fiir sich keine andere Alternative, als sich
einer NS-Organisation anzuschlieBen. Wie Theodor Schneider glaubte auch Franz,
die SA sei das geringste Ubel, und er trat am 26. 5. 1934 dem Nachrichtensturm der
SA in Marburg bei.

Die Habilitationsschrift wurde im November 1935 in Marburg eingereicht, im
Mirz 1936 erfolgte die Ernennung zum Doktor habil. Nach der ffentlichen Pro-
bevorlesung im November 1936 wurde Franz am 23. 12. 1936 eine Dozentur fiir Reine
und Angewandte Mathematik zuerkannt.

Trotz seiner Mitgliedschaft in der SA hatte Franz in der NS-Zeit keine guten
Karten. Sein Vater war im Vorstand der demokratischen Partei in Kiel und wurde
1933 vom Studiendirektor zum Studienrat degradiert und strafversetzt. Die Kon-
takte von Franz zu Kurt Hensel, mit dem er regelmiBig musizierte,® waren ihm
kaum forderllch ebenso die Kontakte zu Reidemeister, der schon gemaBregelt wor-
den war.”

Von WS 35/36 bis WS 36/37 vertrat Franz Herrn Professor Krafft.® Seine
Vorlesungen in Marburg und GieBen behandelten Analytische Geometrie (und Vek-
torrechnung), Wahrscheinlichkeitsrechnung, Nichteuklidische Geometrie, Differen-
tial- und Integralrechnung fiir Mathematiker und Naturwissenschaftler, Hohere
Mathematik fiir Mathematiker und Naturwissenschaftler, Projektive Geometrie,
Algebraische Funktionenkdrper, Darstellende Geometrie, Ballistik. Seine finanziel-
len Verhéltnisse besserten sich; Franz wurde ab 1. 8. 1937 planmiBiger Assistent in
GieBen, und ab 1.4. 1938 Oberassistent, ab 18.9. 1937 Dozent neuer Ordnung in
GieBen.

AnlaBlich der Ubertragung dieser Stelle schrieb der Dozentenschaftsleiter der
Universitét GieBen am 8. 12. 1937:

. Von seiten des Dozentenbundes in Marburg wurde uns Franz zu Anfang
dieses Jahres als ein stiller, zuriickhaltender . .. Charakter geschildert; er .. . hat sich . ..
im SA-Dienst nicht besonders hervorgetan, ich habe den Eindruck, dap diese Zuriick-
haltung von Franz wesentlich auf seinen véllig vorwiegenden wissenschaftlichen Inter-
essen beruht. Ich halte dies gerade fiir einen Mathematiker nicht fiir nachteilig ...

Diese Stellungnahme konnte darauf hindeuten, daB auch der Dozenten-
schaftsleiter wissenschaftliche Interessen vor parteipolitische Interessen setzte und
damit seiner ihm vom NS-Regime zugedachten Aufgabe dankenswerterweise nicht
gerecht wurde.

5 Man vgl. insbesondere [4] und [5].

¢ Wolfgang Franz war ein sehr guter Pianist. Mit K. Hensel hat er alle Sonaten fiir Vio-
line und Klavier von W. A. Mozart gespielt ([8]). Beim Festkolloquium aus AnlaB seines 85.
Geburtstages am 9. November 1990 spielte er mit Wolfgang Metzler in der Aula der Universitit
Mozarts Sonate D-Dur zu vier Handen.

" Der Spruchkammerbescheld reihte nach dem Kriege Wolfgang Franz in die Gruppe 5
der Entlasteten ein.

% 1889-1972. Ab 1927 nb. ao. Prof. in Marburg.
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Am 19. 7. 1939 beantragten Georg Aumann’® und William Threlfall, '

»- .. vom WS 39/40 an als Ersatz fiir den Dozenten Magnus Herrn Dr. Wolfgang
Franz, Oberassistent in Gieflen, nach Frankfurt zu ziehen. Lebenslauf und dienstliche

Ko timtoggdas Havrn Frops lispermeed. Digcniancabotislyr o o |
ED p—
:

j

i
seit lingerer Zeit unterrichtet und scheint unsere Absicht zu billigen.

Die Genehmigung des Reichsunterrichtsministers zum Wechsel nach Frank-
furt wurde am 12.9. 1940 gegeben; der Ubertritt an die Naturwissenschaftliche Fa-
kultét der Universitat Frankfurt erfolgte mit Wirkung vom 1. Oktober 1940. Aller-
dings hatte sich durch den Ausbruch des Zweiten Weltkrieges die Lage vollig gedn-
dert. Am 6.4.1940 forderte das Oberkommando der Wehrmacht (Dechif-
frierabteilung), daB Franz eine Tatigkeit beim OKW fiir die Dauer des Krieges
aufnehme. Mit Brief vom 11. Mai 1940 widersprach die Universitit, indem sie auf
den groBen Bedarf an Lehrpersonal sowohl in GieBen wie auch in Frankfurt hinwies —
erfolglos. Wolfgang Franz wohnte ab 13. 3. 1941 in Berlin-Zehlendorf und war in
Frankfurt von Vorlesungspflichten beurlaubt. Trotzdem beantragte die Naturwis-
senschaftliche Fakultit am 24.2.1943 die Ernennung von Franz zum auBerplan-
maBigen Professor.

... Bedeutsam sind seine Arbeiten auf dem Gebiete der Topologie, wo er ein
neuartiges Grenzgebiet zwischen Topologie und Zahlentheorie erschlossen und in ihm
tiefliegende Ergebnisse von weitgehendem Interesse aufgedeckt hat. ...

Mit Brief des Reichsministers vom 2. 10. 1943 wurde Franz auBerplanmiBi-
ger Professor in Frankfurt.

Nachdem Wolfgang Franz das Kriegsende schwer erkrankt in Helmstedt
erlebt hatte, konnte er sich am 4. August 1945 beim Kuratorium zur Wiederaufnahme
seines Dienstes zuriickmelden. Die wissenschaftliche Arbeit fing weitgehend wieder
von vorne an, denn der groBte Teil seiner Manuskripte war bei Luftangriffen ver-
brannt.

Das Mathematische Seminar war nach dem Weggang von Threlfall nach
Heidelberg personell véllig ungeniigend besetzt, zumal auch der Lehrstuhl von G.
Aumann vakant war. Die Naturwissenschaftliche Fakultit unter dem Dekanat von
Willy Hartner handelte rasch und legte am 4. 11. 1946 eine Dreier-Liste (Max Deu-
ring/Wolfgang Franz/Kurt Reidemeister) vor. Am 22. 11. 1946 forderte das Ministe-
rium weitere Unterlagen an (u. a. einen politischen Meldebogen). Da Deuring einen
Rufnach Hamburg angenommen hatte und Reidemeister erklirte, daB er einem Rufe
nach Frankfurt voraussichtlich nicht folgen wiirde, legte die Fakultiit eine neue Liste
vor (7. Juli 1943).

1) Wilhelm Magnus
2) Wolfgang Franz und Eberhard Hopf
3) Theodor Schneider

9 *11.11. 1906, 14. 8. 1980.
10%25.6.1888, +4.4. 1949,
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In der Laudatio fir Franz heiBt es:

.... die Arbeiten aus der Topologie beschiftigen sich mit den sogenannten
Uberdeckungen von Komplexen. Franz hat die Uberdeckungen, welche im Kleinen iso-
morph zu hyperkomplexen Systemen und zu algebraischen Zahlkérpern sind, unter-
sucht und durch invariante Eigenschaften vollstindig charakterisiert. Die Untersuchung
dieser Uberdeckung setzte die gleichzeitige Beherrschung so weit auseinanderliegender
Gebiete der Mathematik wie Algebra und Zahlentheorie einerseits und Topologie an-
dererseits voraus, und diese Kenntnisse finden sich selten in einem Mathematiker ver-
einigt. Die Leistungen von Herrn Franz setzten aber nicht nur Breite des Wissens,
sondern auch Erfindungskraft voraus, wie sich an dem eigenartigen Begriff der Torsion
zeigt, der sich als so wichtig herausstellte. Mittels der Torsion gelang es ihm nimlich
unter Verwendung von Sdtzen iiber Kreiseinheiten und das Verhalten der sogenannten
L-Reihen, also tiefliegenden Eigenschaften der algebraischen Zahlentheorie, die n-di-
mensionalen Linsenrdume (n > 3) zu klassifizieren. Dieses Ergebnis beweist die Trag-
weite der von Franz entwickelten Theorie und zeigt, daf die Uberdeckungen tatsichlich
eine feinere Charakterisierung von Mannigfaltigkeiten liefern als ihre klassischen In-
varianten. Wihrend des Krieges hat Franz die Fixpunktklassen von Abbildungen der
Linsenrdume bestimmt und damit erstmalig ein Problem dieser Art bei Riumen, die von
der Sphire verschieden sind, geldst. Zahlreiche ausgezeichnete Referate zeigen den
weiten Umfang seiner Kenntnisse und die Sicherheit seines Urteils. So fillt denn Herr
Franz in Fachkreisen durch eine besonders durchgefeilte Bildung auf, die ihn befihigt,
Vorlesungen auf den verschiedensten Gebieten zu halten. Er ist unter anderem auch ein
guter Kenner der Grundlagenforschung und Logistik. Sein Lehrtalent und seine Liebe
zum Unterricht sind stark und urspriinglich und lassen ihn im Verein mit seiner vor-
nehmen Gesinnung und seiner hohen geistigen Kultur zum Lehrer tiberaus geeignet
erscheinen. Wihrend seiner Frankfurter Titigkeit hat Herr Franz sich hervorragend
bewdhrt und sich die vorbehaltlose Anerkennung der Kollegen ebenso wie auch der
Studenten errungen.

Im Jahre 1949 wurde Franz auf den nun schon seit 1946 vakanten Lehrstuhl
berufen, als Nachfolger von Schoenflies, Siegel und Threlfall. Nun endlich, im Alter
von 44 Jahren, konnte Franz als Ordinarius eine ,,normale® Tatigkeit als Hochschul-
lehrer ausiiben, auch wenn die Lehrbelastung sehr hoch war.

1950, jetzt in gesicherten Verhéltnissen, erfolgte die EheschlieBung mit
Ruth-Ingeborg von Vangerow — seine 2. Ehe. Die Tochter Christine wurde 1963
geboren.

Trotz des Engagements von Franz in Forschung und Lehre hat er auch Selbst-
verwaltungsaufgaben mit Entschlossenheit angepackt. Er war Dekan der Naturwis-
senschaftlichen Fakultit 1950/1951 und wiederum 1963/1964. Im Akademischen Jah-
re 1964/1965 war er Rektor der Universitidt Frankfurt. Seine Rektoratsrede ist als [15]
(Schriftenverzeichnis) veroffentlicht. In dieser behandelte Franz die axiomatische
Methode und betonte zum SchluB, , daf die in dem Werke Euklids niedergelegten
Gedanken die Keimzelle einer bis heute reichenden Entwicklung sind, welche die gesamte
Mathematik mit allen ihren weitreichenden Ausstrahlungen auf die Nachbarwissen-
schaften umfapit.
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turierung der Universititen in Hessen durch das Hessische Hochschul- und Univer-
sitdtsgesetz wurde Franz Griindungsdekan des neugeschaffenen Fachbereichs Ma-

» thematik, fiir zwei Jahre. 1971-1973, Trotz seiner 66 Jahre entwickelte er eine enorme
e ———————————————————————————————— R —
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Franz engagiert ein. DMV-Mitglied seit 1931, holte er z. B. die Jahrestagung der
DMV mit etwa 200 Teilnehmern fiir September 1963 nach Frankfurt. U. a. gab Bor-
suk aus Warschau einen Bericht iiber neuere Ergebnisse und Probleme aus dem Ge-
biet der anschaulichen Topologie.
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Das wissenschaftliche Interesse von Wolfgang Franz richtete sich nach dem
Kriege auf Fixpunkteigenschaften. Er selbst trat dabei zugunsten einer Reihe von
Schiilern,!! die er zu Arbeiten auf diesem Gebiete anregte, zuriick.

Die Franzsche Topologie [12], [16], ein Lehrbuch der Topologie in zwei Bén-
den in der Sammlung Goschen, das auch in englischer und spanischer Ubersetzung
vorliegt, ist ein Klassiker geworden. Insbesondere der erste Band, der zwischen 1960
und 1974 vier Auflagen erlebte, war in der Hand fast jedes Mathematikstudenten —
anfangs zum Preise von 3,60 DM.

1956 gelang es Franz, Reinhold Baer, der 1933 Deutschland hatte verlassen
miissen, nach Frankfurt zu berufen, wo er 23 Semester wirkte. Damit begann der
erfolgreiche Aufbau des Mathematischen Seminars zu der Bedeutung, die es schon
einmal in den Zwanziger und DreiBiger Jahren gehabt hatte. Als Griindungsdekan
des 1971 durch ministerielles Dekret neugegriindeten Fachbereichs Mathematik
stand Franz diesem die ersten schwierigen beiden Jahre vor und sorgte mit seiner
reichen akademischen Erfahrung und mit Weltklugheit fiir einen verniinftigen
Ubergang von der alten Naturwissenschaftlichen Fakultit zu den neuen Struktur-
formen.

Wolfgang Franz gehort zu den Gelehrten, die den Fachbereich Mathematik
und die Universitdt Frankfurt beim Wiederaufbau nach dem Zweiten Weltkrieg ent-
scheidend mitpragten. Kraftvoll und mit Hingabe verhalf er seiner Wissenschaft und
seiner Universitit, insbesondere dem Mathematischen Seminar, zu Gedeihen und
Erfolg.

Wolfgang Franz gehort als tragende Figur zur Geschichte des Fachbereichs
Mathematik und des Mathematischen Seminars.

Schriftenverzeichnis von Wolfgang Franz
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Mattila, P., Geometry of Sets and Measures in Euclidean Spaces (Cambridge stu-
dies in advanced mathematics 44), Cambridge University Press 1995, 343 S., DM 112,

Das Buch behandelt ein zentrales Teilgebiet der geometrischen MaBtheorie, ndm-
lich die geometrische Struktur von Borelmengen und -maBen auf dem IR”. Einerseits wer-
den direkte Verallgemeinerungen glatter Mannigfaltigkeiten, die rektifizierbaren Mengen
und Ma@e, studiert. Andererseits werden ,,irregulire Mengen untersucht, die sich von

3 o= Y e e

!

“etwas vagen BegrilT ,,Fraktale" belegt werden. Fraktale Mengen und MaBe kommen in
der Mathematik in zahlreichen Gebieten vor, z. B. in der Zahlentheorie bei der Diophan-
tischen Approximation, in der Wahrscheinlichkeitstheorie bei der Brownschen Bewegung
und anderen stochastischen Prozessen, bei dynamischen Systemen als seltsame Attrakto-
ren und in der Funktionentheorie als Limesmengen von Kleinschen Gruppen.

Die von Mattila in seinem Buch entwickelten Konzepte basieren auf grundlegen-
den Ideen von Besicovitch, Federer, Marstrand und Preiss. Besicovitch hat als Pionier die
Struktur ebener Mengen mit endlichem 1-dimensionalen Hausdorffmal sehr weitgehend
bestimmt. Federer erweiterte Besicovitch’s Uberlegungen auf m-dimensionale (m € N)
Teilmengen des IR”, und Marstrand analysierte allgemeine Fraktale nicht notwendig
ganzzahliger Dimension. Preiss schlieBlich fithrte TangentialmaBe fiir BorelmaBe auf dem
IR” ein und nutzte diese, um rektifizierbare MaBe mittels ihrer Dichteeigenschaft zu cha-
rakterisieren. Damit gelang ihm die Losung eines lange offenen fundamentalen Problems
der geometrischen MaBtheorie.

Im folgenden soll der Inhalt der einzelnen Kapitel kurz geschildert werden. Wir
werden uns dabei eng an Mattilas Einleitung anlehnen.

Kapitel 1 stellt die spater benutzten grundlegenden Begriffe und Aussagen der
MaB- und Integrationstheorie zusammen und fixiert gleichzeitig die Notation fiir den
Rest des Buches.

In Kapitel 2 werden die Uberdeckungssitze von Vitali und Besicovitch bewiesen
und dann dazu verwendet, um einen fundamentalen Differentiationssatz fiir MaBe auf
dem IR” zu beweisen. AuBerdem werden einige wichtige Eigenschaften der Hardy-Little-
woodschen Maximalfunktion hergeleitet.

Kapitel 3 beschiftigt sich mit invarianten MaBen auf der orthogonalen und iso-
metrischen Gruppe des IR” sowie auf den Grassmannschen Mannigfaltigkeiten der Unter-
vektorrdume des IR". Die Eindeutigkeitsaussagen fiir diese MaBe werden dabei in elegan-
ter Weise mit Hilfe des Konzepts von uniform verteilten MaBen auf metrischen Riumen
bewiesen.

In Kapitel 4 werden mittels einer Konstruktion vom Caratheodoryschen Typ Bo-
relmaBe auf metrischen Raumen eingefiihrt. Als Anwendung werden HausdorffmaBe und
-dimension definiert. Fiir eine Klasse von Cantormengen wird die Hausdorffdimension
bestimmt. Das Kapitel schlieBt mit Bemerkungen iiber selbstihnliche Mengen, Limes-
mengen von Mobiusgruppen und harmonische MaBe.

In Kapitel 5 werden sphérische MaBe, NetzmaBe, Packungsmale, integralgeome-
trische MaBe und Minkowskiinhalte erlautert. Als verwandte Dimensionsbegriffe werden
die Packungsdimensionen und die Minkowskidimensionen definiert und die allgemeinen
Zusammenhénge zwischen diesen Begriffen geklirt.

Kapitel 6 enthélt wichtige Abschitzungen fiir die Dichten der Hausdorff-, Pak-
kungs- und sphérischen Masse. AuBerdem wird die s-Dichte fiir beliebige RadonmaBe
studiert. Das Kapitel endet mit Hinweisen auf verallgemeinerte Konzepte von Dichten.
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In Kapitel 7 wird ein einfacher Satz vom Sardschen Typ und der Satz von Rade-
macher bewiesen, der besagt, daB Lipschitzfunktionen auf dem IR” fast iiberall differen-
zierbar sind. AnschlieBend werden weitere elementare Eigenschaften von Lipschitzabbil-
dungen untersucht.

Kapitel 8 beschiftigt sich mit (s—) Energien und Rieszschen (s—) Kapazititen.
Die kapazitire Dimension von Teilmengen des IR” wird definiert. Mit Hilfe des Frost-
manschen Lemmas wird gezeigt, daB fiir Borelmengen die kapazitire Dimension mit der
Hausdorff-Dimension iibereinstimmt. Als weitere Anwendungen des Frostmanschen
Lemmas werden Aussagen iiber die Dimension von Produktmengen und die Existenz von
Teilmengen mit endlichem Hausdorffmall bewiesen.

Das Verhalten der Hausdorffdimension unter orthogonalen Projektionen steht in
Kapitel 9 im Vordergrund. Die Hauptresultate, die im wesentlichen von Marstrand stam-
men, besagen, daB fiir eine Borelteilmenge des IR” mit Hausdorffdimension s <m € N die
Bilder unter fast allen Orthogonalprojektionen auf Unterrdume der Dimension m die
Hausdorffdimension s haben. Fiir s >m haben diese Projektionen fast sicher positives
m-dimensionales HausdorffmaB. Als Beweishilfsmittel werden Abschitzungen fiir die
m-Energien und Rieszschen m-Kapazititen bewiesen. Als Anwendungen werden Dimen-
sionsaussagen fiir selbstdhnliche Mengen und fiir Bilder unter der Brownschen Bewegung
bewiesen.

In Kapitel 10 wird gezeigt, daB eine s-dimensionale Teilmenge des IR” fast alle
(n — m)-dimensionalen affinen Teilrdume des IR” in einer Menge der Hausdorffdimension
max(0, s — m) schneidet. Zum Beweis werden dhnliche Aussagen iiber Rieszsche s-Kapazi-
taten und MaBe mit endlicher s-Energie herangezogen.

Kapitel 11 enthdlt Aussagen iiber die lokale Struktur von s-dimensionalen Men-
gen und MaBen. Es werden konische Dichten eingefithrt und Aussagen iiber die Vertei-
lung von MaBen mit endlicher Energie in kleinen Kugeln gemacht. SchlieBlich wird das
Konzept der Porositdt definiert und sein Zusammenhang mit der Hausdorffdimension
untersucht.

In Kapitel 12 wird die Fourier-Transformation und ihr Zusammenhang mit
Energie, Kapazitit und Hausdorffdimension studiert. Die erzielten Ergebnisse werden da-
zu verwendet, um die Hausdorffdimension von Distanzmengen und Borelschen Unterrin-
gen von IR abzuschitzen. AuBerdem werden die Fourierdimension und Salem-Mengen,
d. h. Mengen bei denen Fourier- und Hausdorffdimensionen tibereinstimmen, diskutiert.

Kapitel 13 befaBt sich mit der Frage, wie fiir zwei Borelmengen 4 und B in IR”
die Hausdorffdimension des Durchschnitts 4 N f(B) aussieht, wenn f die Gruppe der Iso-
metrien des IR” durchlauft.

In Kapitel 14 werden TangentialmaBe im Sinn von Preiss eingefiihrt und einige
ihrer grundlegenden Eigenschaften erortert. Als erste Anwendung wird dann ein Resultat
von Marstrand bewiesen, das besagt, daB es fiir nicht-ganzzahliges s kein RadonmaB x
auf IR” gibt, fiir das die Dichte lim “(B 1) fiir y-fast alle x € IR” existiert.

In Kanitel 15 xerden m- rek ﬁ7le;bare Teilmengen des IR” als natiirliche Verall—
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Das Hauptresultat von Kapitel 18 ist der Projektionssatz von Besicovitch und
Federer, der die Rektifizierbarkeit von Mengen mit Hilfe von Eigenschaften der Haus-
dorffmaBe ihrer Projektionen charakterisiert.

Kapitel 19 untersucht Zusammenhinge zwischen analytischer Kapazitit, heb-
baren Mengen fiir analytische Funktionen und 1-Rektifizierbarkeit in der komplexen
Ebene.

Kapitel 20 schlieBlich studiert natiirliche singulédre Integrale und ihre Verbindung
zu Rektifizierbarkeitsaussagen.

Mit der Darstellung der modernen Theorie fraktaler und rektifizierbarer Men-
gen in Buchform fiillt der Autor eine Liicke auf dem Buchmarkt. Zwar hat Falconer in
zwei Biichern (K. Falconer, The Geometry of Fractal Sets, Cambridge University Press,
Cambridge 1985 und Fractal Geometry — Mathematical Foundations and Applications,
John Wiley & Sons, Chicester u. a. 1990) die fraktale Geometrie und ihre Anwendungen
(ohne Rektifizierbarkeit) behandelt, jedoch geht Mattilas Buch, was die allgemeine ma-
thematische Theorie angeht, iiber Falconers Ausfithrungen hinaus. Bei Mattila fehlen al-
lerdings die Anwendungen der fraktalen Theorie weitgehend. Uberschneidungen gibt es
auch zwischen dem vorliegenden Buch und Kapitel 2 und 3 der Monographie von Fede-
rer (H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin u. a. 1969) insbe-
sondere auf dem Gebiet der Rektifizierbarkeit. Mattila beriicksichtigt hier aber die neu-
eren Entwicklungen wie etwa die oben erwidhnte Charakterisierung rektifizierbarer Ma-
Be durch Preiss.

Das vorliegende Buch zeichnet sich durch gute Lesbarkeit und klare Gliederung
aus. Auch bei technischen Beweisen behilt der Leser so die Ubersicht. Im Detail sind die
Beweise allerdings manchmal recht knapp gehalten, und manche Einzelschritte erfordern
vom Leser angestrengtes Mitdenken. Die Hauptresultate werden durch zahlreiche Kom-
mentare und Hinweise auf die Originalliteratur erginzt. Das Literaturverzeichnis mit {iber
500 Titeln deckt dabei einen sehr groBen Bereich ab und beriicksichtigt auch die neuesten
Publikationen. Die meisten der zitierten Artikel werden im Buch wenigstens stichpunkt-
artig eingeordnet. Auch wenn die Lektiire formal nur Grundkenntnisse in der MaB- und
Integrationstheorie voraussetzt, ist das Buch doch in erster Linie fiir fortgeschrittene Stu-
denten und interessierte Mathematikkollegen geeignet. Diesem Leserkreis ist das Buch
wegen seiner Eleganz und seiner Aktualitit allerdings nachdriicklich zu empfehlen.

Passau S. Graf

Majid, Shahn, Foundations of Quantum Group Theory, Cambridge University
Press 1995, 607 S., £ 65.00

Quantengruppen sind etwas iiber 10 Jahre alt. Sie sind (nach vielen Autoren) ein
Synonym fiir Hopf-Algebren. Diese sind jedoch ca. 50 Jahre alt. Es war natiirlich nicht
diese Umbenennung, sondern es waren die Zusammenhénge zwischen allgemeinen Hopf-
Algebren und verschiedenen Gebieten der theoretischen Physik, die das seit 1985 stark
wachsende Interesse an Quantengruppen ausgelost haben. Inzwischen ist eine Vielzahl
von Monographien und Lehrbiichern zu diesem Gebiet der Quantengruppen erschienen.
Die Anzahl der Vero6ffentlichungen dazu tibersteigt inzwischen die Zahl 1000 erheblich.
Man sollte an dieser Stelle wenigstens einige der wegweisenden Forscher nennen, Drin-
feld, Jimbo, Woronowicz, Lusztig, Fadeev, Takhtajan, Reshetikhin, und viele weitere.

Zunachst kurz zur Definition einer Hopf-Algebra. Sie besteht aus einem Vektor-
raum, der eine Algebrenstruktur und eine Koalgebrenstruktur tragt. Diese beiden Struk-
turen sind miteinander vertrdglich. Hinzu kommt ein Endomorphismus, Antipode ge-
nannt, der eine mit der Inversenbildung von Gruppen verwandte Eigenschaft erfiillt.
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der theoretischen Physik kennen, bevor er sich der Lektiire dieses Buches hingibt. Dann be-
kommt er allerdings einen guten Eindruck tiber die Vielféltigkeit dieses modernen Gebiets.

Miinchen B. Pareigis

Holschneider, M., Wavelets: An Analysis Tool, Oxford Science Publications, Ox-
ford: Clarendon Press 1995, 423 S., DM 145,

Wavelettransformationen sind neue High-Tech-Tools im Werkzeugkasten der Si-
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tion ist dann der Operator der Operator W,, bis auf eine Konstante L*(R)-normerhaltend
und kann als Isometrie von L*(IR) in LZ(H,%’%—") aufgefaBBt werden. Die Inversions-

formel (ii) ist im schwachen Sinne zu verstehen. Der Operator M,, ist Hilbertraumadjun-
gierter zu W,,. Dariiberhinaus ist Range (W) in LZ(H,%@) mit dessen Skalarprodukt
ein reproduzierender Kernhilbertraum und die Wavelettransformierte der Tochterfunk-
tionen K(a, b, d, b') := const - W (¢4 y)(a, b) sein reproduzierender Kern.

Kapitel 2 beschiftigt sich mit Diskretisierungen der Zeit-Frequenz-Ebene H. Hier
werden zunichst Interpolation und partielle Rekonstruktion untersucht — insbesondere
L”(IR)- und punktweise Konvergenz der letzteren, sowie ein kontinuierliches Wavelet-
Gibbs-Phenomen. Als Anwendung ergibt sich eine Klasse von Calderon-Zygmund-Ope-
ratoren. Poissonsche Summationsformel und Shannonscher Abtastsatz werden behan-
delt. Als Anwendung wird die Wavelettransformation auf dem Torus IT etabliert. SchlieB-
lich wird der zentralen Frage nachgegangen, unter welchen Bedingungen reguldre Diskre-
tisierungen der Wavelettransformation zu stabilen Rekonstruktionen fithren. Genauer,
welche Bedingungen an die Mutterfunktion 1 gestellt werden miissen, damit fiir Diskreti-
sierungen (a;, b; ) € H der Form g; := ay’ und b; s := kb ay’ die Funktionenfamilie
Py k() == a{)/ 2 zpaj,,,j . (1) einen Rahmen nach Duffin-Schaeffer [5] bildet. In diesem Fall
gilt fir beliebiges s € LX(IR) mit den Waveletkoeffizienten ¢; x := (W s)(a;, bj x):

(i)  s()=>_ Y Grwk(t) + Rs(t)

JEL kel

— ein diskretes Analogon zur Inversionsformel (ii), wobei der Rekonstruktionsfehler Rs
von den Rahmenparametern abhéingt. Fiir den Fall einer orthonormalen Basis verschwin-
det das Fehlerglied. In der Praxis und im folgenden wird der Fall gy=2 und by=1 be-
trachtet. Als Antwort auf die Frage der stabilen Rekonstruktion werden die bekannten
Kriterien von Daubechies [4] und Heil-Walnut [10] vorgestellt. Auch auf irreguldre Dis-
kretisierungen wird kurz eingegangen. AbschluB des Kapitels bildet ein Wavelet-Funktio-
nalkalkiil fiir Operatoren.

In Kapitel 3 wird das fiir Anwendungen duBerst wichtige Konzept der Multiresolu-
tionsanalyse (MRA) behandelt, welches auf Mallat [14] und Meyer [16] zuriickgeht. Dar-
unter versteht man eine Folge (V)< z von abgeschlossenen Unterrdumen von L?(IR) mit

Vi c Vi UV =LR); () ¥;={0k

(iv) JjEZL jeZ
Y feviiefQ)eV, feVof-—k €V
Jdpe Vo:{p(-—k):k € Z} Rieszbasis vonV.

Die Rieszbasis kann durch eine Orthonormalbasis ersetzt werden, was im folgenden im-
mer der Fall sein soll. Hauptanwendung ist die Konstruktion von Orthonormalbasen
(¥, 1) von ganz LX(IR). Auf folgende Aspekte wird eingegangen: Shiftinvariante Funktio-
nensysteme, Sampling, Quadraturspiegelfilter (QMF), Regularitdt und Wavelets mit
kompaktem Tréger, sowie als Verallgemeinerung Waveletbiorthogonalsysteme. Grund-
idee: V, C V), liefert die Skalierungsgleichung ¢ (¢) = >y c z ixp (2t — k). Durch ,,Umklap-
pen“ g, :=(—1)¥h,_, der Skalierungskoeffizienten gewinnt man die Mutterfunktion
¥ () = ke z&kp (2t — k) einer Orthonormalbasis (1; ). Ein klassisches Beispiel ist das
bereits erwihnte Haarsystem, welches aus Rdume V; stiickweise konstanter Funktionen
entsteht und hier im Rahmen der Box-Splines behandelt wird. Die geschilderte Vorge-
hensweise ist Grundlage moderner Datenkompressionsalgorithmen, welche auf den Fil-
terfolgen (hy), (gx) und 2er-Dilationen entsprechenden Up- und Downsampling-Operato-
ren beruhen. Zusitzliches Thresholding der Waveletkoeffizienten und Quellenkodierung
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fihren zu hervorragenden Ergebnissen bei Bildkompression ([18], [19], [20]). Fiir die Pra-
xis ist entscheidend, mit diskreten Signalen endlicher Linge zu arbeiten, welche sich durch
oben angedeuteten Faltungs- und Samplingoperationen nicht vergréBern darf. Im vorlie-
genden Abschnitt ist diesem sonst oft vernachlissigten Aspekt durch Ubertragung des
MRA-Konzepts auf L(Z), L*(IT) und L*(Z/2MZ) Rechnung getragen. Zum Entwurf von
() und (g;) verwendet man Quadraturspiegelfilter (Quadrature Mirror Filters, QMF).
Ein derartiger Filter H ist eine periodische L*0, 2)-Funktion mit /;-Fourier-K oeffizien-
ten, welche der Rekonstruktionsbedingung |H(w)[?>+|H(w + 7)|> = 1 geniigt und die Nor-
mierung H(0) =1 hat. Diese Filter — von Croisier, Esteban und Galland [3] eingefiihrt —
wurden in der Elektrotechnik lange vor Etablierung der MRA benutzt, entwickelten ihre
volle Durchschlagskraft aber erst in Verbindung mit den Wavelets. Gezeigt wird, da8 un-
ter geeigneten Voraussetzungen (Cohen-Kriterium) die Konzepte MRA und QMF #qui-
valent sind. Einerseits namlich ist das Symbol H= 3" . zie* einer Skalierungsgleichung
zu einer MRA ein QMF. Andererseits liefert Fouriertransformation und Iteration der
Gleichung den Bona-Fide-Ansatz ¢ (w) = []>°, H(27"w), welcher unter den richtigen An-
nahmen zu einer MRA fiihrt. Als Beispiel dienen die bekannten Daubechies-Filter.
SchlieBlich leuchtet der Autor den gruppentheoretischen Hintergrund der QMF aus
(Loop Gruppen Unitérer Operatoren). Den AbschluB3 dieses Kapitels bildet ein Abschnitt
iiber Filternbdnke.

Kapitel 4 beinhaltet Anwendungen der Wavelettransformation in der fraktalen
Analysis. Es wird gezeigt, daB man das Lokalverhalten einer Funktion aus dem seiner
Wavelettransformierten ablesen kann und umgekehrt. Beispielsweise gilt (¢, + 4) — 5(zo)

1 1
= O(h") sofern nur W,s(a, to + b) = 0(a’*3) + a2 O (&) fiir a,b— 0 und W,,s (a,b) =

O(a”%) gleichmiBig. Ahnliche Resultate werden fiir Differenzierbarkeit und lokale
Wachstumskriterien gezeigt. Globale Zugehdrigkeit einer Funktion zu bestimmten Klas-
sen, wie Zygmund-, Sobolev- und Holderklassen wird iiber asymptotisches Verhalten der
Wavelettransformierten charakterisiert. Die Theorie wird zunichst verwendet, um be-
kannte Ergebnisse tiber klassische fraktale Funktionen wie die Weierstrassfunktion und
die Brownschen Pfade herzuleiten. Ein schlagendes Beispiel fiir die Leistungsfihigkeit der
Wavelettransformation bei der lokalen Analyse ist die Riemann-Funktion R(7) := 372,
nlz sin (n?mt), mit der sich ein GroBteil des Kapitels beschiftigt. Nach einer auf Riemann
zuriickgehenden Vermutung [21] sollte diese Funktion stetig, aber nirgends differenzier-
bar sein. Im Jahre 1916 gelang Hardy [9] ein Beweis der Nicht-Differenzierbarkeit in irra-
tionalen Punkten. Uberraschend bewies 1970 Gerver [6] die Differenzierbarkeit in Punk-
ten der Form ¢ = %:—II,P, Q € Z. Weiterentwicklungen dieses Beweises erfolgten durch
Quefelec [17] und Itatsu [12]. Holschneider und Tschamitschian [11] gelang mit Hilfe der
Theorie der Wavelets eine genaue lokale Beschreibung von R, deren Grundlage folgende
Verbindung von R zu Jacobi’s Thetafunktion 6(z) := 3", zexp (inn’z) ist: WyR(a,b) =
2a*2((b + ia) — 1) mit 9 (¢) := (1 — iz) ~ 2. Weiter benutzten sie fiir ihre Analyse eine Un-
tergruppe der modularen Gruppe auf der oberen komplexen Halbebene. Der Rest des

R e = e

anderem wird mit Hilfe der Wavelettransformation ein verallgemeinerter Dimensionsbe-
griff geschaffen, welcher im Spezialfall selbstidhnlicher MaBe auf deren bekannten Multi-
fraktalen Formalismus fiihrt.

Kapitel 5 etabliert die Wavelettransformation auf lokal kompakten Gruppen G
mit quadratisch integrablen Darstellungen U: G — H in einen Hilbertraum A und liefert
so die entsprechende Integraltransformation W,:H — LX(G,dp), p rechtsinvariantes
HaarmaB auf G:

v)  (Wyes)(g) = {(U) (D), 5) .
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Fiir die Gruppe der affinen Abbildungen g, ,(x) := ax 4 b mit Darstellung Uga' »P = Pab
ergibt sich (i). Es sei ferner bemerkt, daB auch die gefensterte Fouriertransformation iiber
die Weyl-Heisenberg-Gruppe enthalten ist. Folgende Ergebnisse aus Kapitel 1 werden in
diesem Kontext verallgemeinert: L2-Normerhaltung (Schursches Lemma), Inversionsfor-
mel und reproduzierender Kern. Weitere Themen sind Verallgemeinerung der Poissonfor-
mel, Diskretisierungen fiir abelsche Gruppen und QMF. SchlieBlich wird auf die Wave-
lettransformation fiir IR?-Signale und ihren Zusammenhang mit der Radontransforma-
tion eingegangen.

Das letzte Kapitel beschiftigt sich noch einmal mit Anwendungen der Wavelet-
transformation auf Funktionenrdume. Gegenstand ist die Paley-Littewood-Theorie, Be-
sovrdume, Singulidre Integrale und regulire Calderon-Zygmund-Operatoren.

Das Buch bietet eine sehr gute und saubere Einfiithrung in die Wavelettheorie fiir
Nicht-Spezialisten, hat aber wegen der Aufnahme vieler neuerer Entwicklungen und sei-
ner groBen Vielfalt ebenfalls dem ,,Waveleter” eine Menge zu bieten. Viele klassische Re-
sultate werden in neuer Sicht présentiert. Leider erschwert das Fehlen jeglicher Quellen-
angaben zum Text der Kapitel das Nachlesen in Originalarbeiten. Die Monographie be-
sticht aber konzeptionell wie auch durch ihre intuitive Darstellung und ist daher duBerst
empfehlenswert.
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Bremen P. Singer

Groemer, H., Geometric Applications of Fourier Series and Spherical Harmonics,
Cambridge University Press 1996, 329 S., £40.—

Die Anwendung von Fourier-Reihen und Entwicklungen nach Kugelfunktionen
auf geometrische Probleme beginnt 1901 mit Hurwitz. Durch Blaschkes ,,Kreis und Ku-
gel“ (1916) wurde diese Methode weiter bekannt. Als einfaches Beispiel betrachten wir
einen Beweis der isoperimetrischen Ungleichung in der Ebene, welcher die Stiitzfunktion
verwendet. Die Stiitzfunktion / eines ebenen konvexen Bereiches gibt den Abstand der
Tangenten bzw. Stiitzgeraden vom Ursprung als Funktlon des Tangentenwinkels « an.
Fir den Flacheninhalt gilt F =3 fo — K (a)*)do und fiir die Linge der Randkurve
L= fo (a)da. Sind ay, by die Founerkoefﬁ21enten von A, so ergibt sich hieraus mit den
Parsevalschen Gleichungen

o
L =2may, F =ra —g; — 1)(a? + bi?).
Daraus folgt sofort die isoperimetrische Ungleichung

L? — 4nF =272 Z ) (ak +bk ) >0,

in der Gleichheit genau dann eintritt, wenn alle a;, b, fiir k£ > 2 verschwinden, woraus sich

¥

1 kil | -Vl el ﬁ@'ee_,a_.x,: WO Tl e T e n

4

schirft worden, z. B. von Bonnesen in der Form
— 47 F>m2(R - 1),

wobei R, r die Radien zweier konzentrischer Kreise sind, zwischen denen die Randkurve
liegt. Auch in dieser Form ist die Gleichheitsbedingung offensichtlich, aber dariiber hin-
aus liefert diese Ungleichung Stabilitdt: je kleiner die linke Seite ist, desto kreisformiger
ist der Bereich.

Im ersten Kapitel werden die Grundlagen der Analysis auf Spharen zusammenge-
stellt: Gradient, Laplace-Beltrami-Operator, Integration.

Die meisten Anwendungen der Fourier-Reihen und Kugelfunktionen in der Geo-
metrie beziehen sich auf konvexe Korper. Gelegentlich kommen auch sternformige Kor-
per vor. Das zweite Kapitel gibt daher die Grundziige der mit Brunn und Minkowski be-
ginnenden Theorie der konvexen Korper: Stiitzfunktion, gemischte Volumina und Quer-
maBintegrale, die Ungleichungen von Alexandrov und Fenchel und einiges mehr. All dies
wird {iibersichtlich dargestellt, meist ohne Beweis. Denn diese findet man bei Bonnesen-
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Fenchel oder R. Schneider. Ausfiihrlicher ist der Abschnitt iiber Metriken in der Menge
der konvexen Korper. Die Aquivalenz von Hausdorff- und L2-Metrik wird vollstindig
bewiesen.

Im dritten Kapitel werden zunichst die benétigten Tatsachen tiber Fourier-Rei-
hen zusammengestellt. Dazu gehdren nicht die vielfdltigen Aussagen iiber Konvergenz,
die ohnehin keine bekannten Analoga bei den Entwicklungen nach Kugelfunktionen ha-
ben. Die Eigenschaften von Kugelfunktionen auf S¢~! und von Reihenentwicklungen
nach diesen werden mit vollstindigen Beweisen dargelegt, so daB dieses Kapitel auch eine
gute Einfithrung in diese Theorie ist, die sich von anderen Darstellungen, wie z. B. der
von C. Miiller (Springer Lecture Notes 17), wesentlich unterscheidet. Die Dimension ist
allerdings durchweg beliebig. Der klassische Fall der Kugelflachenfunktionen (d = 3) wird
erst am Ende kurz beschrieben.

Das vierte Kapitel bringt Anwendungen der Fourier-Reihen auf Probleme der
ebenen Geometrie, wie dies an einem Beispiel eingangs geschildert wurde. Dieses Kapitel
ist leicht lesbar und gewissermaBen eine Einfiihrung in das fiinfte Kapitel, das Anwendun-
gen der Kugelfunktionen auf die Geometrie des d-dimensionalen euklidischen Raumes
enthilt. Hier wird es nun ernst. Es werden tiefliegende Resultate zugénglich gemacht. Un-
gleichungen werden oft in der Form gebracht, die eine Stabilitdtsaussage erlaubt. Dies
hat allerdings manchmal zur Folge, daB die Ungleichungen kompliziert werden und der
Aufwand betrichtlich ist. Diese Stabilititsaussagen sind meist Ergebnisse der letzten Jah-
re. Der Autor hat auf diesem Gebiet selbst viel gearbeitet. Ein anderes Gebiet, auf dem
Kugelfunktionen das geeignete Hilfsmittel bilden, ist die Untersuchung von Rotoren. Ein
konvexer Koérper K in einem Polytop P heiit Rotor, wenn er sich innerhalb P beliebig
drehen 148t und dabei stets alle (d — 1)-dimensionalen Seitenflichen von P beriihrt. Kor-
per konstanter Breite in einem Wiirfel sind Beispiele, und zwar sind sie dadurch gekenn-
zeichnet, daB die Entwicklungen ihrer Stiitzfunktionen nur Kugelfunktionen ungerader
Ordnung enthalten. Rotoren in einem (reguliren) Oktaeder des E3 haben eine Stiitzfunk-
tion der Form

h:r+Ql+Q55

wo r der Inkugelradius des Oktaeders und Q; Kugelfunktion der Ordnung i ist. Jedes Ok-
taeder 14Bt sich so in ein Tetraeder legen, daf3 4 seiner Seiten Teile der Tetraederseiten
sind. Rotoren des Oktaeders sind daher auch Rotoren des Tetraeders. Dal} es aber noch
andere gibt, folgt daraus, daB deren Stiitzfunktionen die Form

h=r+ Qi1+ Q+0s

haben. Auf diesem Wege lassen sich, wenn auch mit Miihe, alle Paare Rotor-Polytop im
E4angeben.

Es werden viele weitere Ergebnisse zusammengetragen und ausfiihrlich darge-
stellt. Ergdnzt werden diese durch Bemerkungen zur Geschichte, zur Literatur und zu wei-
terfithrenden Untersuchungen. Diese Bemerkungen finden sich am Ende eines jeden der
etwa 30 Abschnitte, und zusammen mit dem ausgezeichneten Index machen sie das Buch
zu einem wertvollen Nachschlagewerk. Viele Hinweise auf noch nicht erschienene Arbei-
ten zeigen, an welchen Problemen gegenwirtig gearbeitet wird.

Die Beweise sind sorgfiltig, und in der Regel erhilt der Leser auch bei routine-
mafBigen Schliissen Hilfestellung. Es heiBt nicht wie so oft ,,der allgemeine Fall ergibt sich
durch Approximation mit glatten Koérpern®“. Standardkenntnisse iiber Maf3 und Integra-
tion werden vorausgesetzt. Manche &lteren Beweise wurden modifiziert, um unndtige
oder unausgesprochene Glattheitsvoraussetzungen zu vermeiden.

Darmstadt E. Heil
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Knapp, A. W., Lie Groups Beyond an Introduction (Progress in Math. 140), Basel
u. a.: Birkhduser Verlag 1996, 604 + xvi pages, DM 94,

Die Theorie der Lie-Gruppen und Lie-Algebren ist ein weites Gebiet, das einer-
seits in vielen Bereichen der Mathematik und der mathematischen Physik Anwendungen
findet und andererseits aus vielen verschiedenen Bereichen Resultate heranzieht, um sich
selbst zu entwickeln. Dies wird deutlich, wenn man sich die Entwicklung des Konzepts
einer Lie-Gruppe vor Augen fiihrt, das bei Sophus Lie zunichst nur das Konzept einer
lokalen Transformationsgruppe auf einer offenen Teilmenge des IR” war. Der Begriff der
topologischen Gruppe, so wie wir ihn heute kennen, wurde erst in den 20er Jahren von
Schreier entwickelt und war das Fundament fiir die Konzeption einer globalen Lie-Grup-
pe, die sich in den beiden folgenden Jahrzehnten konkretisierte, und in Chevalleys Buch
von 1946 ihre erste systematische Darstellung findet.

Das Ziel des vorliegenden Lehrbuches ist es, einem Leser, der iiber Grundkennt-
nisse in der elementaren Lieschen Theorie verfiigt (z. B. im Umfang von Chap. IV in Che-
valleys Buch), die strukturtheoretischen und darstellungstheoretischen Kenntnisse zu ver-
mitteln, die in der Theorie der unendlichdimensionalen (unitiren) Darstellungen benétigt
werden. Hierzu werden in mehreren Abschnitten klare Schnittstellen beschrieben, in de-
nen der Leser erfihrt, was er z. B. iiber differenzierbare Mannigfaltigkeiten, Integration
von Vektorfeldern, Uberlagerungen etc. wissen sollte. Ein Charakteristikum des vorlie-
genden Buches ist, daB es, im Gegensatz zu den traditionellen, mehr differentialgeometri-
schen Zugéngen zu Lie-Gruppen, den Zugang tiber die Matrizengruppen als Prototypen
von Lie-Gruppen in den Vordergrund stellt. Zum Beispiel werden manche Beweise, die
man an einer spéteren Stelle des Buches in einer allgemeineren Form findet, zuerst fiir ein
Beispiel vollstindig durchgefiihrt. Hierdurch wird der Leser schon recht frith orientiert
und kann sich so leichter in den abstrakten Sdtzen zurechtfinden, also die Briicke von der
konkreten zur abstrakten Theorie schlagen. Die Orientierung des Zugangs an den Matri-
zengruppen hat natiirlich den Vorteil, daB es hierdurch gelingt, den benétigten differen-
tialgeometrischen Hintergrund minimal zu halten und man sich Beispielen bedient, die
Studenten schon recht frith kennenlernen.

Das Material des Buches ist aus Vorlesungen entstanden, die der Autor in den
Jahren 1971-1995 an der Cornell University bzw. SUNY Stony Brook gehalten hat. Das
Buch gliedert sich in acht Kapitel und drei Anhédnge iiber multilineare Algebra, Lie’s drit-
ten Satz und Tabellen zu den einfachen Lie-Algebren. Jedes der Kapitel ist mit einem aus-
fithrlichen Abstract versehen, der den Leser dariiber orientiert, was er in diesem Kapitel
lernen kann. Der letzte Abschnitt jedes Kapitels besteht aus Ubungsaufgaben, die sowohl
den Leser an speziellere Fakten heranfiihren, als auch einzelne Beispiele bzw. Beispielklas-
sen ausfiihrlich diskutieren. Diese Aufgaben sind eine reine Ergidnzung, und im Text wird
nicht auf sie verwiesen. Am Ende des Buches findet man einen Abschnitt mit Hinweisen
bzw. Losungen zu den Aufgaben. Eine Spezialitit des Buches sind die sehr sorgféltig re-
cherchierten historischen Anmerkungen zu den einzelnen Kapiteln, die am Ende des Bu-
ches gesammelt sind. Sie geben einen sehr lebhaften Einblick in die historische Entwick-
lung der Theorie.

Kapitel I enthélt eine Einfilhrung in die allgemeine Theorie der Lie-Algebren
(Satze von Engel, Lie, Cartan-Kriterien, sl(2)-Darstellungstheorie), eine erste Annéhe-
rung an allgemeine Lie-Gruppen sowie eine Diskussion der klassischen halbeinfachen
Gruppen. Das Kapitel II behandelt komplexe halbeinfache Lie-Algebren einschlieBlich
der Klassifikation. Kapitel III diskutiert die einhiillende Algebra einer Lie-Algebra und
enthilt als zentrales Resultat den Satz von Poincaré-Birkhoff-Witt.

Nachdem die ersten Kapitel eher von algebraischer Natur sind, werden in Kapitel
IV kompakte Lie-Gruppen behandelt. Im Zentrum stehen der Peter-Weyl-Satz (als Plan-
cherelsatz fiir LX(G)), maximale Tori und die Weyl-Gruppe. Die Existenz des Haarschen
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MabBes auf einer allgemeinen kompakten Gruppe wird hier nicht bewiesen, kann aber fiir
die Lie-Gruppen aus Kapitel VIII gezogen werden.

In Kapitel V wird nun die endlichdimensionale Darstellungstheorie komplexer
halbeinfacher Lie-Algebren diskutiert (Weylsche Charakterformel, Harish-Chandra-Iso-
morphismus, Satz vom hochsten Gewicht), wobei im letzten Abschnitt die Briicke zu den
kompakten Gruppen geschlagen wird.

Kapitel VI ist eines der Kernstiicke des Buches. Hier beginnt die Strukturtheorie
halbeinfacher Gruppen. Eines der Highlights ist ein neuer Zugang zur Klassifikation der
reellen halbeinfachen Lie-Algebren durch Vogan-Diagramme. Diese Klassifikation orien-
tiert sich an maximal kompakten Cartan-Unteralgebren, im Gegensatz zum Zugang iiber
maximal nichtkompakte Cartan-Unteralgebren, der auf die Satake-Diagramme fiihrt.

Die Strukturtheorie wird in Kapitel VII weitergefiihrt und verfeinert. Hier lernt
man die verschiedenen Zerlegungen halbeinfacher Gruppen kennen, und es werden para-
bolische Untergruppen und Cartan-Untergruppen diskutiert. Die zugehdrigen Integral-
formeln werden schlieBlich in Kapitel VIII, aufbauend auf der Integrationstheorie auf
Mannigfaltigkeiten, behandelt. Hier findet man z. B. auch einen Beweis der Weylschen
Integralformel.

Zusammenfassend 148t sich sagen, daB dieses Buch seiner Zielsetzung, den Leser
von der elementaren Lie-Theorie hin zur unendlichdimensionalen Darstellungstheorie
halbeinfacher Gruppen zu fiihren, sicher voll und ganz gerecht wird. Das Material ist viel-
fach lehrerprobt und héchst sorgfiltig aufbereitet. Auch Kennern der Materie hat das
Buch einige Perlen wie die schon erwéhnten historischen Notizen zu bieten. Der Preis ist
mit_DM 94 fiir ein Rych.dieses Ummfangs erfrenlich niedrig. In diesemn Sinne ist das Buch

uneingeschrinkt zu empfehlen.

Erlangen K.-H. Neeb

Salzmann, H., Betten, D., Grundhofer, Th., Hihl, H., Lowen, R., Stroppel, M.,
Compact Projective Planes, with an Introduction to Octonion Geometry (de Gruyter Ex-
positions in Mathematics Vol. 18), Berlin etc.: de Gruyter 1996, 688 pp., clothbound,
DM 258,—

In almost the whole nineteenth century, geometry — whether Euclidean or projec-
tive — was as a matter of course real geometry. Complex planes came also into focus, but
rather in an auxiliary role for the study of real planes. By the middle of the century, metric
arguments were weeded out of projective geometry. In Von Staudt’s Geometrie der Lage
(1847) it looked as if the foundations of projective geometry were laid with incidence rela-
tions only. It was Felix Klein who discovered in 1873 that in Von Staudt’s proof of the
Fundamental Theorem a continuity assumption is hidden, where he concludes from the
invariance of the points of a harmonic net that all points of the projective line are fixed.
Pasch essentially filled up this gap in his Vorlesungen iiber neuere Geometrie (1882). The
development culminated in Hilbert’s Grundlagen der Geometrie (1899), where real Eucli-
dean geometry is based on five groups of axioms. Hilbert uses the axioms of (geometrical)
order also to get a topology.

This use of order to get a notion of continuity helds as a disadvantage that geo-
metries over the complex numbers, the quaternions or the octonions are excluded. From
the early thirties on one started to study these by combining incidence axioms with purely
topological assumptions. A projective plane (points, lines, incidence) is said to be topolo-
gical if the set of points and the set of lines carry a topology (neither discrete nor indis-
crete) such that the operations of joining distinct points and of intersecting distinct lines
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are continuous. To get deeper results one has to add topological assumptions like com-
pactness, local compactness, connectedness, separate, ...

The small group of pioneers in the study of topological planes was joined in the
fifties by Helmut Salzmann with two papers in the Math. Z. (1955 and ’57, the latter
being his dissertation). Since then, Salzmann has built up an impressive body of work on
topological planes, compact planes, Lie groups of collineations, etc. The groups of contin-
uous collineations of compact topological projective planes, with the compact open topol-
ogy, are locally compact transformation groups. In the spirit of Klein’s Erlangen program
these groups and their relations with the planes are extensively studied: given the plane,
what can be said about the group, and conversely.

Salzmann’s love for the subject was apparently highly contagious: five of his for-
mer students appear as co-authors of the book under review. The character of the book is
twofold: an introduction to the field as well as an advanced text covering a large part of
the present knowledge of the subject. As to the former aspect, several chapters or parts
thereof can be excellently used as a text for an introductory course or for self-study. The
first chapter is typically of this nature; it is one of the largest chapters (130 pp.) and pre-
sents the basic examples: the standard projective planes over the reals, the complex num-
bers, the quaternions and the octonions. The octonion plane gets special attention as an
important example of a nondesarguesian Moufang plane, and so do its collineation group
and the elliptic motion group as exceptional real Lie groups of type E¢ and F,, respec-
tively.

Ch. 2 is a summary of incidence geometry — no topology to be seen anywhere. It
gives a number of basic facts without proofs, but with references to the literature, includ-
ing the Lenz-Barlotti classification and translation planes. Of a similar nature is Ch. 9, the
last one, an appendix with relevant material from topology and Lie theory.

Ch. 3 is devoted to planes whose point set is IR? and whose lines are curves. If
the parallel axiom holds, one can form the projective completion, a two-dimensional
compact projective plane P. A fair amount of classification results for such planes in
connection with their full collineation group X is available. For example, ¥ is a Lie
group of dimension <8; if dim £ >4, then P is the standard real projective plane;
dim X' =4 implies that P is a Moulton plane; for the case dim X =3 a complete classifi-
cation is given.

In Ch. 4 we encounter for the first time a formal definition of topological projec-
tive planes. From here on, compact planes are systematically studied. In following chap-
ters further conditions are added, e.g., on the (topological) dimension of the plane or on
the dimension of the collineation group. To mention just one typical example in this line:
an eight-dimensional compact projective plane with a collineation group of dimension
> 23 is necessarily the quaternion plane.

Most of the results on the subject proper — compact topological planes — are gi-
ven with full proofs. Only in Ch. 8 certain results are surveyed, with references to the lit-
erature (and, of course, in the chapters 2 and 9 proofs are absent as said above). The style
of the presentation is clear and makes pleasant reading. Occasionally, the authors betray
that they are not native speakers of English (a defect they share with your reviewer); thus,
on p.219, 1.-13, “exchanging the rdles” should be “interchanging the réles”, and on
p. 309, 1. 2, one should read “latest” or “previous” for “last”. Well, already Hermann
Weyl, in the preface to his The Classical Groups, complained: “The gods have imposed
upon my writing the yoke of a foreign tongue that was not sung at my cradle”. It is evi-
dent that this is an extremely beautiful book that will no doubt find its way to both ex-
perts and beginners in the field. Let me end by listing the chapter headings to give a
further indication of its contents: 1 The classical planes; 2 Background on planes, coordi-
nates and collineations; 3 Geometries on surfaces; 4 Compact projective planes; 5 Alge-
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braic topology of compact, connected planes; 6 Homogeneity; 7 Four-dimensional
planes; 8 Eight- and sixteen-dimensional planes; 9 Appendix: Tools from topology and
Lie theory; — Bibliography (35 pp.); — Notation; — Index.

Utrecht F. D. Veldkamp

Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems (Ap-
plied Mathematical Sciences 120), Berlin u. a.: Springer-Verlag 1996, 282 S., DM 94,

Das Gebiet der inversen (und schlechtgestellten) Probleme hat in den vergange-
nen drei oder vier Jahrzehnten, dank seiner Bedeutung vor allem in der Verarbeitung
und Interpretation von MeBwerten, immer mehr Ansehen auch bei Mathematikern ge-
wonnen, und so sind seit etwa Mitte der achtziger Jahre mehrere gute Monographen und
auch einfilhrende Lehrbiicher zu diesem Thema erschienen. So gehért schon etwas Mut
dazu, ein weiteres Buch iiber dieses Gebiet zu schreiben; ein solches sollte ja deutlich kon-
trastieren zu den bereits vorhandenen. Der Verfasser des hier zu besprechenden Werkes
hat lobenswerterweise diesen Mut gehabt, und dank seines personlichen wissenschaftli-
chen Werdegangs und seiner langjahrigen intensiven Beschiftigung mit dem Thema im
allgemeinen und auch mit speziellen Fragestellungen (zu nennen sind hier inverse Streu-
Probleme) ist es ihm gelungen, ein angenehm lesbares einfithrendes Lehrbuch zu schrei-
ben, das die Forderung nach Unterscheidbarkeit von anderen Werken iiber inverse Pro-
bleme sowohl durch Auswahl des Stoffes als auch durch die Art der Darstellung iiberzeu-
gend erfiillt.

Das Buch besteht aus fiinf Kapiteln und einem Anhang, der hauptsichlich eine
Ubersicht iiber die aus der Funktionalanalysis bendtigten Hilfsmittel (Normierte Riume,
Hilbert- und Sobolev-Réume, lineare beschriankte und kompakte Operatoren, Spektral-
theorie kompakter Operatoren, Fréchet-Ableitung) gibt.

In Kapitel 1 werden die Grundbegriffe erldutert, instruktive Beispiele vorgestellt
und der Begriff des schlimmstmdglichen Fehlers (der rekonstruierten Niherungslosung)
diskutiert. Die Notwendigkeit geeigneter Zusatzinformation zur erfolgreichen Rekon-
struktion wird begriindet.

Kapitel 2 ist der Regularisierungstheorie fiir Gleichungen erster Art in unendlich-
dimensionalen separablen Hilbertriumen gewidmet. Diese Gleichungen haben die Gestalt
Kx =y mit einem linearen kompakten Operator K, der einen Hilbertraum X in einen Hil-
bertraum Y abbildet. Statt y € Y ist gegeben ein y’c ¥, das in der Norm um héchstens
von y abweicht, und man will, unter Ausnutzung geeigneter Zusatz-Information iiber x
(konkret Beschrinktheit einer stirkeren Norm oder Seminorm von x) die ,,wahre Lo-
sung® x mdglichst gut rekonstruieren, d. h. durch ein x approximieren mit der Forderung

x®— x bei — 0. Der Begriff einer »Regularisierungsstrategie” wird eingefiihrt, durch die

Adjektive ,,zuldssig” und ,,optimal“ qualifiziert und schlieflich konkrefisiert durch _reen- .
B — e e——
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vom Datenfehler und der verfiigbaren Zusatzinformation wéhlen). Speziell werden auch
. Kleinste-Quadrat“-Methoden, die Bubnov-Galerkin-Methode fiir koerzitive Operatoren
und Minimum-Norm-Kollokation behandelt. Die Symmsche Integralgleichung erster Art
im Kontext von Sobolev-Riumen periodischer Funktionen dient als Objekt der Illustra-
tion. SchlieBlich gibt der Autor noch eine Darstellung der bei Geophysikern beliebten
Backus-Gilbert-Methode, die aus dem iibrigen theoretischen Rahmen herausfillt, zu de-
ren Analyse der Autor selber wesentlich beigetragen hat.

Nachdem in den ersten drei Kapiteln lineare Probleme behandelt wurden, sind
die beiden letzten Kapitel nichtlinearen Aufgaben gewidmet. In einem einfithrenden Lehr-
buch ist hier eine geschickte Auswahl notwendig, und diese erfolgt bestens, wenn wie hier
der Autor seiner speziellen Kompetenz folgt. So behandelt der Verfasser in Kapitel 4 als
Muster eines inversen Eigenwertproblems die Aufgabe, aus der Kenntnis der Eigenwerte
A der Aufgabe

—u"(xX)+qx)u(x)=Aux), 0<x<I1, u0)=0, u(l)=0,

die in L%(0, 1) liegende Funktion g(x) zu bestimmen. Zuvor untersucht er eingehend das
direkte Problem, zu gegebener Funktion ¢ die Folge der Eigenwerte und Eigenfunktionen
zu bestimmen oder wenigstens ihre wesentlichen asymptotischen Eigenschaften zu be-
schreiben im Vergleich zum Sonderfall ¢ (x) = 0. Er beschreibt auch kurz die Modifikatio-
nen, die bei Ersetzung der Bedingung u(1)=0 durch die allgemeinere Bedingung
u' (1) + Hu(1) =0 erforderlich sind. Als weitere Vorbereitung diskutiert er zwei hyperbo-
lische Probleme, darunter das Goursat-Problem, dessen Losung K(x, t) bei entsprechen-
der Datenvorgabe eine Integraldarstellung der Losung der Anfangswertaufgabe

—u" () + q()u(x) = du(x), u(0)=0, u'(0)=1

gestattet, die zur Behandlung der inversen Eigenwertaufgabe niitzlich ist. Fiir letztere gibt
er Bedingungen fiir eindeutige Losbarkeit und auch ein Verfahren zur numerischen Be-
handlung. Mit Hilfe der dargestellten inversen Eigenwerttheorie gelingt ihm auch die Auf-
stellung eines Eindeutigkeitssatzes fiir eine spezielle Parameter-Identifizierungs-Aufgabe
bei einer parabolischen Differentialgleichung.

Das fiinfte (letzte) Kapitel ist einem inversen Streuproblem im R3 aus der Aku-
stik gewidmet. Ausfithrlich wird zuerst das direkte Problem behandelt, zu gegebener ein-
fallender ebener Welle und gegebenem glattem Brechungsindex, der nur in einer be-
schrinkten Menge von 1 verschieden ist, die Losung der zugehorigen Helmholtz-Glei-
chung, das Fern-Feld-Muster und seine Eigenschaften zu bestimmen. Das inverse
Problem besteht darin, aus der Kenntnis des Fernfeldmusters fiir geniigend viele Einfall-
richtungen den Brechungsindex zu bestimmen. Hier wird bewiesen, daf3 ein zweimal-stetig
differenzierbarer Brechungsindex, der nur auf einer beschrinkten Menge von 1 verschie-
den ist, eindeutig bestimmt ist, wenn das Fernfeld fiir alle Einfallsrichtungen einer ebenen
Welle bekannt ist. AbschlieBend werden drei verschiedenartige numerische Verfahren zur
Behandlung des inversen Streuproblems vorgestellt.

Bemerkt sei noch, daB jedem Kapitel einige lehrreiche Aufgaben angefiigt sind,
deren Bearbeitung dem Leser empfohlen wird. Ein groBer Teil dieser Aufgaben enthélt
erginzenden Stoff, der an einigen Stellen auch im eigentlichen Text benutzt wird. Im we-
sentlichen ist das Buch in sich vollstindig, im fiinften Kapitel wird an manchen Stellen
auf Beweise verzichtet, aber es werden Quellen angegeben. Auch wird an vielen Stellen
auf weiterfithrende Literatur hingewiesen, und so erweist sich das 229 Titel enthaltende
Literaturverzeichnis als eine wertvolle Quellensammlung.

Berlin R. Gorenflo
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Hislop, P. D., Sigal, I. M., Introduction to Spectral Theory (With Applications to
Schrédinger Operators), (Applied Math. Sciences 113), Berlin u. a.: Springer 1996, 501 S.,
DM 84,

The book emphasizes the geometric aspect of spectral analysis where spectral
properties of operators are investigated by studying these operators on families of func-
tions having certain geometric support conditions. It presents a modern overview of this
geometric spectral analysis.

The theory of linear operators in Hilbert spaces is introduced in some detail in
the beginning of this book. This part is standard and furnishes the necessary mathemati-
cal background to tackle the remainder of the book; it may be used as a guideline by the
interested readership. The book concerns itself mainly with the discrete and essential parts
of the spectrum, although embedded eigenvalues are also introduced. This general opera-
tor-theoretical part is illustrated by examples taken from the theory of Schrédinger opera-
tors, such as the exponential decay of eigenfunctions in terms of the Agmon metric, or to
prove the essential selfadjointness, local compactness, or relative boundedness for certain
operators. This part also includes standard spectral stability results for the discrete and
essential spectrum. However, several results are also mentioned which are not so well-
known in the textbooks. One example is Perssons-theorem which gives a formula for the
bottom of the essential spectrum. Moreover, parts of semiclassical analysis are given, for
instance the semiclassical limit of eigenvalues is studied as well as quantum tunneling and
double-well potentials. The book does not contain semiclassical analysis in the context of
microlocal analysis developed e.g. by Helffer, Maslov, or Robert.

The main part of the book (more than one third) consists of a collection of results
in resonance theory. In the last two decades the theory of resonances has developed in
several different directions. There exists a bulk of material and results in the research lit-
erature. The present book gives a worthwhile overview of these results. The main topics
are spectral deformation, spectral stability, and nontrapping estimates. The theory of
Aguilar, Balslev, Combes, Simon is explained in detail and applied to shape resonances.
Spectral deformation theory is explained in IR? and then applied to Schrédinger opera-
tors. Also a general theory for spectral stability is given. This is related to nonanalytic
perturbation theory for discrete eigenvalues and to perturbations of embedded eigenva-
lues and resonances. Finally, some further topics and features from the recent resonance
literature are given. The position of the resonance is related to the resonance width. Reso-
nance phenomena arising also in the presence of an electric or magnetic field are de-
scribed. Further topics in the quantum theory of resonances are mentioned.

The main feature and probably also the main objective of this book is the over-
view of a large part of resonance theory. It does not contain the approach of Helffer and
Sjostrand. However, it emphasizes the geometric spectral analytic aspect in this theory. It
collects together important and recent results on resonances obtained during the last two
decades. A mathematical introduction to the spectral and perturbation theory of selfad-
joint operators makes this book selfcontained. Exercises are given which help to give a
better understanding of the text. The appendices are in the main devoted to explaining
the theory of linear operators in Banach spaces. Unfortunately, there is no list of symbols
used in the text. The book is well written. It gives a selfconsistent guideline for further
studies in resonance theory and geometric aspects of spectral theory. It will be useful for
graduate students as well as for mathematicians and physicists interested in spectral theo-
ry. The book fills a gap in the present literature.

Clausthal-Zellerfeld M. Demuth
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Edmunds, D. E., Triebel, H., Function Spaces, Entropy Numbers and Differential
Operators, Cambridge Univ. Press 1996, 252 S., £40.—

Die Entwicklung der Theorie der (quasi-)normierten Funktionenrdume 148t sich
grob in drei Schiibe zerlegen:

Im ersten wurden zum einen die klassischen Z,- und H,-Riume intensiv unter-
sucht, zum anderen Unterrdume der stetigen Funktionen, z.B. die Holder-Riume
C*%, 0 <s¢N, die insbesondere in der Approximationstheorie aufgrund der Sitze von
Jackson (1911) und Bernstein (1912) iiber die Konvergenzgeschwindigkeit der besten Ap-
proximation eine wichtige Rolle spielen.

Mitte der dreiBiger Jahre setzte dann mit der Einfithrung der Sobolev-Riume
(schwache Ableitungen, Sobolev-Einbettungssatz) eine zweite, konstruktive Phase ein, die
wesentlich durch die Bediirfnisse in der Theorie der partiellen Differentialgleichungen
mitgeprigt wurde. Von der Vielzahl der neuen Réume erwihnen wir nur die Rdume von
Sobolev W[f, k € N, Zygmund (der die Liicke s ¢ N bei den Holder-Rdumen schlieBt), Be-
sov, die Besselpotentialraume H; (s setzt k€ N bei den Sobolev-Riumen stetig auf R
fort), BMO, die H,-Raume von Stein und Weiss.

In einer dritten, systematischen Stufe ab Anfang der sechziger Jahre gelang es
mittels der Entwicklung der abstrakten Interpolationstheorie (reelle und komplexe Inter-
polationsmethoden), einheitliche Konstruktionsprinzipien fiir diese Rdume zu finden. In-
teressiert man sich fiir solche Funktionenrdume, ,,die niitzlich in der Theorie der partiel-
len Differentialgleichungen (insbesondere elliptischer Differentialgleichungen) sind* (vgl.
[Tril, p. 39]), so ist ein alternativer Zugang (der den Nachteil des Interpolationszugangs
vermeidet, gewisse ,,Endpunkt“-Réume zu benétigen) durch die Fourieranalysis gegeben.
H. Triebel hat letzteren Zugang gewahlt, um in den beiden Monographien [Tril, 2] die
beiden Funktionenraumskalen By, und Fy,, s € R, p, ¢ > 0, (die F} 5,1 < p < oo, sind ge-
rade die Besselpotentialriume der Ordnung s, die fiir s =0 mit den L’-Ridumen zusam-
menfallen) systematisch zu untersuchen; einige Stichworte zu deren Inhalt: Einbettungs-,
Interpolationsverhalten, Spursdtze, Charakterisierungen, Fouriermultiplikatoren, Fal-
tung, Abbildungsverhalten von (Pseudo-)Differentialoperatoren, punktweise Multiplika-
tionsalgebren fiir Funktionen auf R,, R\, auf Gebieten, auf Riemannschen Mannigfaltig-
keiten ...

In diesen Rahmen ordnet sich die vorliegende Monographie ein, indem sie Wei-
terentwicklungen in der Theorie der Funktionenrdume mit Anwendungen (ca. ein Viertel
des Buches) bei Eigenwertverteilungen (von Inversen) elliptischer Operatoren darstellt.
Schauen wir uns kurz das Letztere, in Kapitel 5 Beschriebene an.

Typisch sind nicht-symmetrische Operatoren B auf L,-Rédumen auf beschrinkten
Gebieten mit C*-Rand der Bauart

B=b,Cbh,,

wobei b und b, Elemente von geeigneten L,-Raumen seien, der Operator C z. B. die In-
verse eines reguldren elliptischen Differentialoperators ist, also glittend. Faktorisiert man

B=b2°id°C°b|,

so sieht man, daB B ein kompakter Operator ist: b,: L, — L, nach der Holder-Unglei-
chung, C: L, — H2’" fiir ein geeignetes m > 0, mittels des Embettungsoperators id kann
H; 2m kompakt in einen L,-Raum eingebettet werden, b, bildet (unter geeigneten Voraus-
setzungen) schlieBlich wieder wegen der Holder-Ungleichung in L7 ab. Die Ungleichung
von Carl

l] < V2e,
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wobei die g, || > |~ 1], die Eigenwerte von B und die e, die zugehdrigen Entropie-
zahlen sind, reduziert das Problem i.w. auf die Bestimmung der Entropiezahlen der Ein-
bettungsabbildung. DaB diese bemerkenswert einfache Methode auch in wesentlich kom-
plizierteren Situationen angewendet werden kann, liegt auf der Hand, wenn geeignete
Hblder-Ungleichungen sowie Abschitzungen fiir die Entropiezahlen zur Verfiigung ste-
hen.

Im bewuBt knapp gehaltenen ersten Kapitel werden spektraltheoretische Eigen-
schaften linearer Operatoren in Quasi-Banachrdumen bereitgestellt, insbesondere die Un-
gleichung von Carl. Kapitel 2 stellt die notwendigen scharfen Hoélder-Ungleichungen auf
Besov-Raumen Bj, und Triebel-Lizorkin-Raumen Fj, iiber R bereit, insbesondere eini-
ge Grenzfille bei den Einbettungen, die auf logarithmische Sobolev-Raume fithren; im
Falle beschrinkter Gebiete 2 mit glattem Rand werden diese Rdume iiber Restriktionen
eingefiihrt. Kapitel 3 beschiftigt sich mit oberen und unteren Abschétzungen fiir die En-
tropiezahlen der Identitdtsabbildung zwischen Besov- bzw. Triebel-Lizorkin-Rdumen
iiber £2. In Kapitel 4 werden Analoga fiir R” mittels zusétzlicher Gewichte hergeleitet.

Bei der Losung eines approximationstheoretischen Problems in L, (siehe [Pee,
p. 226]) benétigte J. Peetre bereits um 1970 Besov-Rdume B, mit p <1. Die vorliegende
Monographie enthilt das Beispiel (vgl. p. 203) eines kompakten Operators B von obiger
Bauart, bei dem erst der Gebrauch der Funktionenrdume mit erstem Parameter p < 1 der-
zeit zu einem scharfen Ergebnis auf L,, r > 1 fiihrt.

Die klaren Beweise sind technisch teils recht anspruchsvoll, wobei wesentlich Me-
thoden aus der Fourieranalysis benutzt werden. Hilfreich sind zahlreiche Skizzen, die Pa-
rameterbereiche beschreiben bzw. die Einbettungen bei der Zerlegung des kompakten
Operators B veranschaulichen, sowie der Index fiir die verwendeten Symbole. Das Buch
ist einerseits ein homogener Bericht iiber neuere Ergebnisse aus dem Bereich der Funktio-
nenriume und elliptischen Differentialoperatoren, die die Autoren und ihre Mitarbeiter
in den letzten Jahren erzielt haben und die bisher in der gingigen Lehrbuchliteratur nicht
enthalten sind. Um es andererseits auch Nichtspezialisten zugénglich zu machen, haben
die Autoren bendtigtes, bereits in Biichern vorliegendes Material referiert. Dem Leser
sind insbesondere die schoénen Einleitungen zu den jeweiligen Abschnitten hilfreich, die
ihn wissen lassen, wo er gerade steht.

Somit empfiehlt sich das Buch nicht nur dem Fachmann in der Theorie der Funk-
tionenrdume, sondern wird gewinnbringend auch von interessierten Analytikern, insbe-
sondere im Bereich der elliptischen (Pseudo-)Differentialoperatoren, gelesen.

[Pee] Peetre, J., New Thoughts on Besov Spaces. Duke Univ. Math. Series. Durham, Univ.
1976

[Tril] Triebel, H., Theory of Function Spaces. Basel, Birkhduser 1983

[Tri2] Triebel, H., Theory of Function Spaces II. Basel, Birkhduser 1992

Darmstadt W. Trebels

Davies, E. B., Spectral Theory and Differential Operators, Cambridge University
Press 1995 (paperback edition 1996), 182 S., £29.95

., The theory of differential equations is one of the outstanding creations of the
human mind. Its influence upon the development of physical science would be hard to
exaggerate. The long history and many applications of the theory, however, make it al-
most impossible to write a balanced account of the subject. Thus authors of student texts
are confronted with the choice between writing rather superficially on a range of topics or
in more depth on some narrow field, in which they have a particular interest.
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[5] Leinfelder, H.: A geometric proof of the spectral theorem for unbounded self-adjoint opera-
tors. Math. Ann. 242, 85-96 (1979)

[6] Waelbroeck, L.: Calcul symbolique li¢ a la croissance de la résolvante, Rend. Sem. Mat.
Fis. Milano 34, 51-72 (1964)

Minchen H. Kalf

Goss, D., Basic Structures of Function Field Arithmetic, Berlin u. a.: Springer-Ver-
lag 1996, XIII + 422 S., DM 108,

Wie schon von verschiedenen Mathematikern des neunzehnten Jahrhunderts be-
obachtet wurde, gibt es bemerkenswerte Ahnlichkeiten und Ubereinstimmungen zwischen
der algebraischen Zahlentheorie (d.h. der Theorie der Erweiterungen des Korpers @ der
rationalen Zahlen und ihrer Arithmetik) und der algebraischen Funktionentheorie (in heu-
tiger Sprechweise: der Theorie der kompakten Riemannschen Flichen). Wir erwédhnen hier
nur die Namen Riemann, Kronecker, Dedekind, Weber; der interessierte Leser findet wei-
tere Aufschliisse in Felix Kleins Vorlesungen [K], Kapitel 7, sowie in [U]. Wesentlich ist,
daB geometrisch-funktionentheoretische Sachverhalte durch die Arithmetik des zuge-
hérigen Funktionenkorpers iiber dem Korper € ausgedriickt werden konnen und umge-
kehrt. Die Analogie von Zahlen- und Funktionentheorie fiihrte zu entscheidenden Ent-
wicklungen in der Zahlentheorie, unter denen als erste die Erfindung der p-adischen Zahlen
durch K. Hensel und das Hasse-Minkowskische Lokal-Global-Prinzip zu nennen sind.

Wihrend die genannten Mathematiker Ideen und Methoden der ,,Funktionen®-
theorie auf die ,,Zahlen“theorie iibertrugen, scheint Emil Artin mit seiner Disseration von
1923 der Erste gewesen zu sein, der genuin zahlentheoretische Begriffe und Methoden
(Galois-Theorie, Zeta-Funktionen, Zerlegungsgesetze fiir Primstellen) auf das Studium
algebraischer Funktionenkdrper anwandte, allerdings auf (globale) Funktionenkdrper
mit endlichem Konstantenkorper. (Hier und im folgenden verstehen wir unter einem glo-
balen Funktionenkorper k eine endlich erzeugte Korpererweiterung vom Transzendenz-
grad eins iiber einem endlichen Konstantenkorper, den wir ohne Beschriankung als in k
algebraisch abgeschlossen annehmen.) Fiir solche Korper geht natiirlich die anschauliche
Interpretation mittels Riemannscher Flichen verloren; andererseits ergeben sich gerade

. fiir ihre Arithmetik verbliiffende Parallelen zu jener der algebraischen Zahlkdrper. Diese
Parallelen sind weitaus tiefer und und folgenreicher als die bisher erwédhnten, noch recht
oberflichlichen Analogien. Inzwischen wohlbekannt ist die Chevalleysche Formulierung
der (abelschen) Klassenkdrpertheorie, die gleichermaBen Aussagen iiber globale Zahl-
wie Funktionenkérper macht. Entsprechendes gilt fiir die nicht-abelschen Verallgemeine-
rungen der Klassenkorpertheorie, die sich in den Langlands-Vermutungen dufern, fiir die
Standard-Vermutungen iiber die Arithmetik spezieller Zeta- und L-Werte (z.B. Vermu-
tungen vom Typ Birch/Swinnerton-Dyer) oder Vermutungen a la Shimura-Taniyama-
Weil iiber die ,,automorphe® Interpretation von Motiven iiber solchen Korpern.

Vollig neue Gesichtspunkte in die Theorie der globalen Funktionenkorper
brachte V.G. Drinfeld mit seiner folgenreichen Arbeit ,,Elliptic Modules“ von 1973 [Dr].
Hier werden die heute als ,, Drinfeld-Moduln“ bekannten Objekte eingefiihrt, deren Theo-
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r = p™ Elementen, und sei ,,c0“ ein ein fiir allemal fest gewihlter abgeschlossener Punkt
von X des Grades d,,, iiber IF,. Wir setzen k fiir den Funktionenk6rper von X und 4 C k
fiir den Unterring der auBerhalb von oo reguldren Funktionen. Sei weiterhin K = ko die
Komplettierung an oo mit komplettiertem algebraischen AbschluB €., und normiertem
Absolutbetrag ,,|.|“. € ist wieder algebraisch abgeschlossen; es ist der kleinste vollstin-
dige algebraisch abgeschlossene Korper, dessen Bewertung diejenige von K fortsetzt. Das
Standard-Beispiel ist gegeben durch X = IP'/IF,, 4 = IF,[T], k = IF,(T). Unter der ins
Auge stechenden Analogie von (k, 4, K) mit (Q,Z,R) (A ist Dedekind-Ring endlicher
Klassenzahl, diskret und kokompakt eingebettet in K, ...) entspricht €, natiirlich dem
tiblichen Kérper € der komplexen Zahlen. Ein wesentlicher Unterschied liegt jedoch dar-
in, daB €, tber K unendlichen Grad besitzt und deshalb diskrete A-Gitter L beliebig
groBen Rangs zulaBt.

Es stellt sich nun heraus, daB die Theorie der Drinfeld-4-Moduln des festen
Rangs d unter mehreren Gesichtspunkten starke Ahnlichkeiten aufweist mit der Theorie
der elliptischen Kurven bzw. der irreduziblen abelschen Varietiten. Unter anderem erge-
ben sich k-Analoga der Sitze von Kronecker-Weber, von Eichler-Shimura, des Hauptsat-
zes der komplexen Multiplikation, des Satzes von Wiles und Taylor liber Weil-Uniformi-
sierungen elliptischer Kurven. Kombinationen verschiedener dieser Aspekte liefern ein
sehr genaues Bild der Arithmetik von k und seiner Erweiterungen.

Abgesehen vom intrinsischen Interesse an der Arithmetik globaler Funktionen-
kérper ergeben sich wichtige Motivationen fiir diese Fragestellungen deshalb auch aus
mdglichen Heuristiken fiir den Zahlkorperfall.

Im Zusammenhang mit der Erforschung der durch Drinfelds Idee erschaffenen
arithmetischen Welt gibt es naheliegende Problemstellungen, die in der folgenden, sicher
unvollstindigen Liste in willkiirlicher Reihenfolge aufgefiihrt sind.

1. Anwendungen der Theorie der Drinfeld-Moduln auf die nicht-abelsche Klassenkor-
pertheorie, Bestimmung der Kohomologie der Modulschemata als Moduln unter der Ga-
lois-Gruppe und der Hecke-Algebra, entsprechende Reziprozitatsgesetze.

2. Modulare Theorie der Drinfeld-Moduln und ihrer Modulschemata, insbesondere im
Fall des Rangs zwei, Anwendungen auf diophantische Probleme iiber k.

3. Transzendenzfragen: Arithmetische Natur der rigid-analytischen Funktionen (und ih-
rer speziellen Werte), die sich aus der WeierstraB3-Uniformisierung von Drinfeld-Moduln
herleiten.

4. Arithmetik der von Torsionspunkten erzeugten Korpererweiterungen von k (Klassen-
zahlfragen, Struktur verschiedener Galois-Moduln), insbesondere im abelschen Fall.

5. ,Innere“ Probleme der Theorie: Struktur der Torsionspunkte, der assoziierten Galois-
Darstellungen, des Endomorphismenrings eines festen Drinfeld-Moduls.

6. Arithmetik spezieller Funktionen (Analoga von Gamma-, Zeta- und L-Funktionen).

7. Verallgemeinerungen auf hoherdimensionale Objekte; Andersons ,,7-Moduln®.

Die vorliegende, in der Reihe ,,Ergebnisse der Mathematik® bei Springer erschie-
nene Monographie widmet sich neben der Grundlegung der Theorie der Drinfeld-Moduln
hauptséchlich den weiterfithrenden Fragestellungen (4) bis (7). (Fiir (1) sei der Leser auf
die beiden Bénde [L] von Laumon verwiesen, fiir (2) auf [G]. Die wesentlichen Ergebnisse
zu (3) gehen auf Jing Yu sowie Denis, Brownawell und Allouche zuriick; sie sind noch
nicht in Form einer Monographie verfiigbar.)

Wir umreiBen hier die Inhalte der einzelnen Kapitel.

Im ersten Kapitel werden die Eigenschaften additiver Polynome tiber Kérpern
der Charakteristik p entwickelt und die entsprechenden getwisteten Polynomringe k{r}
studiert (linke und rechte euklidische Algorithmen, p-Resultante, Teilbarkeitslehre). Im
zweiten Kapitel werden auf wenigen Seiten die wesentlichen spater bendtigten Resultate
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aus der nichtarchimedischen Analysis zusammengestellt: Konstruktion und Eigenschaf-
ten des Korpers €., = K, Newton-Polygon, Faktorisierung ganzer Funktionen.

Die eigentliche Beschiftigung mit Drinfeld-Moduln beginnt mit dem dritten Ka-
pitel, wo im Falle eines Grundrings A4 = IF,[T] der einfachste und historisch erste Drin-
feld-Modul eingefiihrt wird, der sogenannte Carlitz-Modul. Dieser Spezialfall der viel all-
gemeineren modernen Theorie wurde von Carlitz in den dreiBiger Jahren entwickelt. Un-
ter der WeierstraBB-Uniformisierung entspricht der Carlitz-Modul dem Gitter £4, wobei &
eine iiber k = IF,(T) transzendente ,,Zahl“ in €, ist, die unter allen denkbaren Gesichts-
punkten die Rolle der Zahl 27i in der Theorie der Exponentialfunktion spielt. Wie zitieren
aus der Einleitung des Kapitels:

,»We present here the details of the Carlitz module. This is the simplest of all
Drinfeld modules and may be given in a concrete, elementary fashion. At the same time,
most essential ideas about Drinfeld modules appear in the theory of the Carlitz module.
This is an excellent example for the reader to master and keep in mind when reading the
more abstract general theory.

Die Grundlagen der Theorie im allgemeinen Fall (Grundring 4 und Rang d be-
liebig) werden im vierten Kapitel entwickelt, wobei der Autor der algebraischen Definiti-
on die analytischen Betrachtungen um die Gitterfunktion e; in €., voranstellt. Weitere
hier behandelte Themen sind die Reduktionstheorie von Drinfeld-Moduln iiber lokalen
Korpern, ihre Theorie iiber endlichen Koérpern sowie der zu einem Drinfeld-Modul ¢ ad-
jungierte A-Modul ¢*.

Das fiinfte Kapitel ist den von G. Anderson [A] eingefithrten T-Moduln gewid-
met, einer hoherdimensionalen Verallgemeinerung von Drinfeld-Moduln. Ein T-Modul
ist eine A-Modulstruktur auf (G,)" mit einigen Nebenbedingungen. Ihre Einfithrung mo-
tiviert sich u.a. aus der Notwendigkeit, Tensorprodukte von Drinfeld-Moduln mit ver-
niinftigen Eigenschaften zu definieren, was in der Kategorie der Drinfeld-Moduln selbst
nicht moglich ist, wohl aber in der umfassenderen der 7-Moduln.

Im kurzen sechsten Kapitel werden nach einigen algebraischen Vorbereitungen
die ebenfalls von Drinfeld eingefiihrten ,,Shtukas“ definiert, worunter man sich im we-
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re Wertetheorie hingt einerseits mit der Theorie der Drinfeld-Moduln, andererseits mit
gewissen K = k.- oder auch k,-wertigen Charaktersummen zusammen.

Im abschlieBenden zehnten Kapitel werden (ohne Beweise) einige der neuesten
Entwicklungen diskutiert. Stichworte sind eine ,,Fermat-Gleichung* iiber k = IF,[T] (die
in der selben Beziehung zum Carlitz-Modul steht wie die klassische Fermat-Gleichung
zur Kreisteilungstheorie), das von Y. Taguchi bewiesene Analogon der Tate-Vermutung
fiir Drinfeld-Moduln, die ,,wesentliche Algebraizitit“ der oben beschriebenen L-Funktio-
nen, sowie einige weitere, auf die wir hier nicht niher eingehen kénnen.

Bei dem vorliegenden Band handelt es sich um die erste umfassende Monogra-
phie zum Thema, die zum Selbststudium geeignet ist. Er faBt bisher nur in Originalarbei-
ten oder Manuskripten verfiigbares Material in kohédrenter Form zusammen und fiihrt in
einigen Bereichen an den Forschungsstand heran oder gibt zumindest kommentierte Hin-
weise auf die Originalliteratur. Dies gilt insbesondere fiir die Theorie der Charakteristik-
p-wertigen arithmetischen Funktionen, die wesentlich vom Autor selbst gepriigt wurde.
Im Gegensatz zu den oben erwahnten Monographien werden alle Voraussetzungen z.B.
aus der Algebra (Ore-Polynome, zentral-einfache Algebren), der Algebraischen Geome-
trie, der nichtarchimedischen Analysis bereitgestellt, wofiir insbesondere studentische Be-
nutzer dankbar sein werden. Dennoch ist der Leser gut beraten, wenigstens aus heuristi-
schen Griinden eine gewisse Kenntnis der Theorien der Kreiskdrper, der komplexen Mul-
tiplikation, der Zeta-Funktionen und ihrer speziellen Werte mitzubringen.

Positiv hervorheben will ich die vielen weiterfithrenden ,,Remarks® und ,,Que-
stions“, die umfassende Bibliographie von 17 Seiten, welche den Stand der Dinge zum
Zeitpunkt der Drucklegung (Frithjahr 1996) offenbar vollstindig wiedergibt, und nicht
zuletzt die sorgfaltige Ausfithrung mit bemerkenswert guter Typographie und sehr weni-
gen Druckfehlern.

Fazit: Eine niitzliche und empfehlenswerte Anschaffung sowohl fiir Praktizieren-
de im Gebiet als auch fiir Newcomer. Letzteren sei allerdings empfohlen, sich (wie auch
vom Autor vorgeschlagen) bei der ersten Lektiire auf den einfacheren Fall eines Polynom-
rings als Grundring 4 zu beschrinken, da hier die zugrundeliegenden Strukturen und Ide-
en nicht durch technische Details verdunkelt werden.
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Gives in its first section a self-contained intro-
duction to the character theory of finite groups,
which can be used for a first lecture on the sub-
ject. Later sections concentrate on Clifford the-
ory, that is the relations between characters of a
group and its normal subgroups.
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Contains refereed research articles on Banach
algebras and related areas. Topics covered in-
clude algebraic structure of Banach algebras,
dual Banach algebras and invariant subspaces.
Some papers discuss the interplay with Fred-
holm theory, differential and pseudo-differential
operators, several variable spectral theory or
nonassociative normed algebras.
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Dieses Buch soll Physikern und
Mathematikern einen Zugang zu
Differentialgleichungsproblemen
und der Theorie der Operatoren
der Quantenmechanik bieten. Die
Leser werden an typischen Fillen
mit den wichtiggn Methoden zur
Behandlung von Differentialglei-
chungen vertraut gemacht. Bei den
Grundlagen der Quantenmechanik
wird der Wahrscheinlichkeitsaspekt
gebiihrend beriicksichtigt. Viele Ab-
schnitte des Buches kdnnen auf der
Basis von Band | fiir sich gelesen
werden. Die in den iibrigen Ab-
schnitten verwendeten Hilfsmittel
sind in einem eigenen Kapitel zu-
sammengestellt; die hiervon ben6-
tigten werden zu Beginn jedes Pa-
ragraphen benannt.
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