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Gebiude in der Darstellungstheorie
itber lokalen Zahlkorpern

P. Schneider, Miinster

Dieser Artikel ist eine leicht erweiterte Fassung meines Vortrages auf der
DMV-Tagung 1994 in Duisburg. Ziel ist der Versuch, dem Leser etwas von der
Faszination zu vermitteln, die die Bruhat-Tits-Gebdude auf den Autor ausiiben. Alle
Graphiken sind mit Hilfe eines Computerprogrammes erstellt, das von meinen
Mitarbeitern Erdmann, Landvogt und Wettig entwickelt wurde.

Ich mochte mit einer Analogie beginnen, die allen vertraut ist. Die obere
Halbebene IH = {z € € : Im(z) > 0} stellt sich mittels der Bijektion

SL,(IR)/SO(2) = H
g — g

als ein homogener Raum der Liegruppe SL,(IR) nach der maximalen kompakten
Untergruppe SO(2) dar. Welch fundamental wichtige Rolle die obere Halbebene IH
in verschiedenen Bereichen der Mathematik spielt, braucht hier nicht niher erlidutert
werden. Zum Vergleich mit dem, was spéter gesagt werden wird, sei ein Aspekt aber
herausgestellt: Geeignete Raume von Funktionen auf IH liefern explizite Modelle fiir
gewisse Serien von (unendlich-dimensionalen) Darstellungen der Liegruppe SL;(IR).

Obige Bijektion ist ein Spezialfall des allgemeinen Prinzips

halbeinfache maximale kompakte _ .
/ = symmetrischer Raum.

reelle Liegruppe Untergruppe

Die Wahl der maximalen kompakten Untergruppe spielt dabei keine Rolle, da sie
nach dem Cartanschen Fixpunktsatz alle konjugiert sind.

In der Zahlentheorie stehen gleichberechtigt neben dem Kérper IR der
reellen Zahlen die lokalen oder p-adischen Zahlkérper @, zu jeder Primzahl p. Der
Koérper @, entsteht aus dem Korper der rationalen Zahlen @ durch Vervollstindi-
gung beziiglich des p-adischen Absolutbetrages | |p, der wie folgt definiert ist:
Schreiben wir die rationale Zahl x € @ als x=p"-¢ mit me Z und zu p
teilerfremden a, b € Z, so ist |x|, := p~". Mit anderen Worten der p-adische Betrag
miBt, wie oft eine gegebene Zahl durch die Primzahl p teilbar ist. Eine wichtige
Besonderheit dabei ist, daB | |, ein nicht-archimedischer Betrag ist, d. h. die strikte
Dreiecksungleichung |x + y|, < max (|x|,, |y|,) erfiillt. Das hat zur Folge, daB @,
den diskreten Bewertungsring
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Umgebung einer Ecke zuriickgefiihrt auf die wohlverstandene Kombinatorik der
parabolischen Untergruppen in der algebraischen Gruppe SL, iiber dem endlichen
Korper IF,.

Hierzu zwei Bilder: Im Falle der Gruppe SL3(@>) ist jede Ecke von X in genau 21

2 Dim=rpanpnlger—r ey (520 gickglng Sh'hafdygehdna cwgon Waht Mo —

darstellen. Deswegen zeigt Fig.2 nur 12 davon, die nach rein asthetischen
Gesichtspunkten ausgewahlt wurden.

\Y

Das bisher Geschilderte 148t sich auch dahingehend verallgemeinern, daB3 man {iber
einer endlichen Erweiterung von @, statt iiber Q, selbst arbeitet. Betrachten wir die
Gruppe SLj iiber einer quadratischen Erweiterung von ®;, deren Restklassenkérper
IF, ist, so sind es schon 105 2-Simplizes, die eine gegebene Ecke von X enthalten.
Fig. 3 zeigt 15 davon, nidmlich genau diejenigen, die jeweils zusammen mit den
dunkelgrau ausgefiillten Simplizes in einem gemeinsamen Apartment (siche unten)
liegen.

2) Die sogenannten Apartments:

Bezeichne 4 den Unterkomplex von X, der aufgespannt wird von allen Ecken tKot™!,
wobei t simtliche Diagonalmatrizen in GL,(Q,) durchlduft. Zum Beispiel erhélt man

— fiir SL,(@p) einen in beide Richtungen unbeschrinkten Pfad im Baum (also eine
triangulierte reelle Gerade) (Fig. 4),
— fiir SL3(@p) eine wie in Fig. 5 triangulierte reelle Ebene.

Die Unterkomplexe g4 von X, die durch Anwenden eines Gruppenelementes g € G
auf A4 entstehen, heiBen die Apartments des Gebdudes. Sie iiberdecken X, d. h. es gilt

X = g4
geG
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Fig. 3

Fig. 4

Die allgemeine Theorie geht aus von einer zusammenhingenden reduktiven
algebraischen Gruppe @ iiber Q,. Die Gruppe G = G(@,) der @,-rationalen Punkte
von & ist in natiirlicher Weise eine lokalkompakte total-unzusammenhingende
topologische Gruppe. Am leichtesten sieht man dies, indem man @& als Gruppe von
Matrizen realisiert. Nach dhnlichen, wenn auch ungleich komplizierteren Prinzipien
konstruieren Bruhat und Tits ((BT]) das Gebdiude X = X (G) zu G. Dabei handelt es
sich um einen topologischen Raum, der in natiirlicher Weise mit einer Zellenstruktur,
einer Metrik und einer G-Operation versehen ist. Letztere respektiert Zellenstruktur
und Metrik. Auch die Strukturaussagen 1) und 2) sind Spezialfille allgemeiner
Sachverhalte:
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Fig. 5

Ad 1): Zu jeder Ecke x von X konstruieren Bruhat und Tits ein ,,Modell* von & tuiber
Z,, also ein Gruppenschema G, tiber Z,, dessen allgemeine Faser iiber @, gerade die
algebraische Gruppe @ ist. Dabei gilt:

— Die Schnittgruppe G.(Z,) stimmt im wesentlichen mit dem Stabilisator P, der Ecke
x in G iiberein;

— die Struktur des Gebdudes X in der Umgebung der Ecke x ist bestimmt durch die
Struktur der endlichen Gruppe Gx(IF,).

Wieder ein Bild dazu: Im Gebaude zur Gruppe Sp4(®) gibt es Ecken, die in genau 45
2-Simplizes enthalten sind. Entsprechend dem obigen Auswahlkriterium stellen wir
nur 19 davon dar, was allerdings schon eine Selbstdurchdringung erzwingt. Sdmtliche

hell wie dunkel ausgefiillten Simplizes liegen sogar in einem gemeinsamen Apartment
(Fig. 6).

Ad 2): Die Apartments des Gebdudes X sind als metrische Rdume sdmtlich
isometrisch zum euklidischen Raum IR?, wobei d den halbeinfachen @,-Rang der
Gruppe & bezeichnet. Die Zellenstruktur der Apartments ist im wesentlichen
bestimmt durch das zur reduktiven Gruppe G gehorige Wurzelsystem in IR?. Stets
wird X von seinen Apartments {iberdeckt.

Ein Apartment zur Gruppe Sps(®,) sicht wie in Fig. 7 aus.

SpaBeshalber in Fig. 8 noch die Zusammenfiigung eines Apartmentbildes mit einem
,Jokalen* Bild.

Zusammenfassung: Die Operation der Gruppe G auf ihrem Bruhat-Tits-
Gebiude X (G) beschreibt in geometrischer Weise die innere Struktur von G.

Im Weiteren mochte ich zeigen, daB das Gebdude X auch geeignet ist,
»auBere“ Strukturen der Gruppe G zu beschreiben. Dabei beschranke ich mich auf die
sogenannte glatte Darstellungstheorie von G und berichte {iber Resultate aus der
gemeinsamen Arbeit [SS] mit U. Stuhler.
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Fig. 6

Fig. 7

Definition: Eine glatte Darstellung V' von G ist ein €-Vektorraum V mit
einer linearen G-Aktion, so daB fiir alle v € V gilt:

{g € G:gv=)ijst offenin G.
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Fig. 8

Es ist wichtig sich bewuBt zu machen, daB eine so naheliegende Darstellung wie die
Standardaktion der Gruppe SL,(@Q,) auf dem n-dimensionalen @,-Vektorraum
nicht glatt ist. In der Tat sind, von der trivialen Darstellung abgesehen, alle
irreduziblen glatten Darstellungen von SL,(®,) unendlich-dimensional! Dies ist ein
typisches Phanomen, das das Aussehen der Theorie prigt. Insbesondere ist es nicht
erstaunlich, daB die harmonische Analyse auf der lokalkompakten Gruppe G eine
tragende Rolle spielt. Ein sehr gutes Beispiel fiir eine irreduzible glatte Darstellung ist
die sogenannte Steinberg-Darstellung St von SL,(®,): Dazu bezeichne ¥ den Raum
der @C-wertigen lokalkonstanten Funktionen auf der projektiven Geraden IP!(®,)

tiber dem Korper @Q,. Lassen wir SLy(Q,) durch Linkstranslation auf ¥ operieren, so
ergibt das eine glatte Darstellung. Die konstanten Funktionen bilden ersichtlich einen
invarianten Unterraum in V. Der Quotient St := V/C ist irreduzibel.

An dieser Stelle ist doch eine kurze Erkldrung angebracht, warum diese auf
den ersten Blick so wenig arithmetisch erscheinende Begriffsbildung von groBter
Wichtigkeit fiir die Zahlentheorie ist. Ein fundamentales Interesse der Zahlentheorie
ist es, die absolute Galoisgruppe Gal((l_),, /@,) des algebraischen AbschluB3es Qp iber
@, beziehungsweise deren endlich-dimensionale Darstellungen zu verstehen. Man
mochte letztere klassifizieren mit Hilfe von Daten, die unmittelbar durch den
Grundkérper @, gegeben sind. In der lokalen Klassenkoérpertheorie wurde diese
Aufgabe gelost fiir die 1-dimensionalen Darstellungen von Gal(@p/(])p). In dem
sogenannten lokalen Langlands-Programm wird die Vermutung ausgesprochen, da3
die Parametermenge fir die allgemeine Klassifikationsaufgabe im wesentlichen
gerade die Menge der Isomorphieklassen irreduzibler glatter Darstellungen der
Gruppen GL,(@Q,) mit variierendem »# € N ist (fiir eine genaue Formulierung vgl.
[Ta]).

Zuriuck zur glatten Darstellungstheorie selbst. Ein Standardversuch, die
irreduziblen glatten Darstellungen in den Griff zu bekommen, 148t sich grob wie
folgt beschreiben. Sei K C G eine maximale kompakte Untergruppe. Es ist eine
unmittelbare Konsequenz der Glattheitsbedingung, daB jede irreduzible glatte K-
Darstellung endlich-dimensional ist und iber einen endlichen Quotienten von K
faktorisiert. Mit anderen Worten die glatte Darstellungstheorie der kompakten
Gruppe K reduziert sich auf die Darstellungstheorie endlicher Gruppen, die wir in
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unserem Kontext groBziigigerweise als ,,bekannt ansehen wollen. Ist V' eine glatte
G-Darstellung endlicher Linge, so ergibt sich (vgl. [Ca]), daBsich V" als K-Darstellung
in eine direkte Summe

V=8, % my(w)-m

iiber die irreduziblen glatten K-Darstellungen 7 € K mit endlichen Multiplizitéten
my (r) zerlegt. Die Hoffnung ist nun, daf irreduzible ¥ durch die Wahl von K und die
Multiplizititen my (7) charakterisiert werden. Fiir die Gruppen GL,(@,) ist diese
Strategie jiingst in [BK] erfolgreich verwirklicht worden.

Der Wunsch ist naheliegend, diese Betrachtungsweise in eine funktorielle
Form zu bringen. Sicherlich miissen dazu alle moglichen K simultan betrachtet
werden, wodurch wohl das Gebidude X = X(G) ins Spiel zu kommen hat. In [SS]
gehen wir folgendermaBen vor (der Einfachheit halber sei hier die reduktive Gruppe
@ als halbeinfach vorausgesetzt):

Zu jeder Zelle F C X bezeichne PI C G den Stabilisator; dies ist eine kompakte
offene Untergruppe. Wir konstruieren eine natiirliche G-aquivariante Filtrierung

PLlov®2..2UY2...

durch kompakte offene Normalteiler U}e) in P;. Fiir das Folgende fixieren wir einen
,Level“ e > 0. Sei V eine glatte G-Darstellung endlicher Lange und setze

(e)
VU = {ve Vigv=v firalle g€ U}e)}'

Dann hat man das
U(e) .

11§

Ml gooreme T

dimanoinnel

stellung der endlichen Gruppe P}/ U}e).

Die eigentlich einfache Beobachtung ist nun, daB sich diese Invarianten-
rdume fiir variierendes F (aber festes e¢) zusammenfassen lassen zu einer Garbe
V auf dem Gebiude X, so daB gilt:

(e)
Halm von V' im Punkte x = VUFe ,falls x € F.

Mehr oder weniger per Konstruktion haben wir:

— Die Garbe lf ist konstruierbar;
— die Gruppe G operiert auf V;
— die Zuordnung V'~ J ist ein exakter Funktor.

Die Rechtfertigung fiir diese Bildung wird durch ein tiefer liegendes Resultat in [SS]
geliefert:

— Wird der Level e groB genug gewahlt (in Abhéngigkeit von V), so 1aBt sich die
G-Darstellung V aus der Garbe ¥ durch Ubergang zu einer geeigneten Homo-
logiegruppe zuriickgewinnen. )

Zusammenfassung: Die Garbe V" auf dem Gebdude X ist eine ,,Lokalisie-
rung” der G-Darstellung V.

Fir die Untersuchung von Garben stehen die Methoden der algebraischen Topologie
zur Verfiigung. In der Tat gewinnen wir in [SS] durch die Berechnung von
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(Co)homologiegruppen Aussagen iiber die homologische Algebra der Kategorie der
glatten G-Darstellungen. Beenden mochte ich diesen Bericht aber damit, daB ich eine
Anwendung auf die harmonische Analyse der Gruppe G beschreibe.

Ist V unendlich-dimensional, so ist es sinnlos, die Spur eines Elementes geGaufV
im Sinne der linearen Algebra bilden zu wollen. Nichtsdestoweniger existiert aber der
Charakter der Darstellung V" als Distribution. Das bedeutet das Folgende. Bezeichne
H den Raum aller C-wertigen lokalkonstanten Funktionen mit kompakten Triger
auf G. Dies ist eine assoziative Algebra beziiglich der Konvolution

(0 % 0)(h) := / o(2)ule h)dg ;

G

dabei ist dg ein fest gewahltes Haar-MaB auf der lokalkompakten Gruppe G. Die
Algebra H heilt Hecke-Algebra und ist als die in diesem Kontext richtige Version der
Gruppenalgebra anzusehen. Die Glattheitsbedingung hat nimlich zur Folge, da3
jede glatte G-Darstellung ¥ automatisch ein H-Modul ist mittels

p*vi= / p(g)gudg.
G

Hat V endliche Lénge, so hat der Konvolutionsoperator ¢ * . : ¥—V endlichen
Rang, so daB die Spur Tr(ip; V') definiert ist ([Ca]). Wir erhalten also eine Linearform

Tr(.;V): H—C.

Ein tief liegendes Theorem von Harish-Chandra und Howe aus der harmonischen

Analyse besagt (vgl. [Si]), daB eine lokal-integrable Funktion 8 auf G existiert, so daB3

gilt:

Tr(p; V) = /cp(g)GV(g)dg firalle ¢eH.
G

Diese Charakterfunktion 6y besitzt die iibliche Eigenschaft, irreduzible V bis auf
Isomorphie zu charakterisieren. Aber die Bedeutung der Werte der Funktion 6
bleibt unklar.

Zumindest fiir die sogenannten elliptischen Elemente in G fithrt unsere Lokalisie-
rungstheorie hier zu einer Antwort. Ein Element g € G heiBt elliptisch, falls sein
Zentralisator in G kompakt ist. In vielen Problemen der harmonischen Analyse 148t
sich das Studium der nicht-elliptischen Elemente auf den elliptischen Fall
zuriickfithren durch Ubergang zu geeigneten reduktiven Untergruppen von G. In
gewisser Weise bilden also die elliptischen Elemente den ,,harten Kern“ von G. Ist
g € G elliptisch, so ist die Fixpunktmenge

Xe:={xeX: gx=x}

im Gebédude kompakt. Da die Garbe V' konstruierbar ist, sind die Cohomologie-
gruppen H*(X$V) also endlich-dimensional. Wegen der G-Aquivarianz von 14
operiert auBerdem das Gruppenelement g nach wie vor auf dieser Cohomologie. In
[SS] zeigen wir, daB folgende Spurformel vom Hopf-Lefschetz-Typ gilt.
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Spurformel: Fiir V' von endlicher Lange, fiir geniigend groB gewihlten Level

e und fiir elliptisches g € G gilt

(BK]

[BT]

[Ca]

(Si]
(SS]

[Ta]

d
Ov(g) =Y (—1)'- Spur(g; H'(X%, V).
i=0
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Diophantine Equations: the geometric approach
Sir Peter Swinnerton-Dyer, Cambridge

1 Introduction

A Diophantine problem is concerned with the solutions either in Z or in @ of a
finite system of polynomial equations

(l) fu(Xl,---,Xn)ZO for 1<pu<m

with coefficients in Z. Such a system is called a Diophantine equation; it is only of
interest if the system is indeterminate — that is, if it has an infinity of solutions in €.
Some of the most obvious questions to ask about such a system are:

Does the system have solutions?

If so, can we exhibit a solution?

Can we describe the set of all solutions?

Is the phrase ‘density of solutions’ meaningful, and if so what can we say about it?

Almost all the questions and answers can be generalized to an arbitrary
algebraic number field and the ring of integers in it. Some of the proofs become much
harder, but there is only one place (mentioned in §3) where the theory is known to be
different.

A necessary condition for (1) to be soluble in @ is that it should be soluble in
every completion of @ — that is, in IR and every @Q,. In what follows, @, will denote
any completion of @. As will be explained below, solubility in every @, is a
computationally decidable property; and for this and other reasons, it is useful to
study the solutions of (1) also in the @,. As a first step to this for @Q,,, one also needs to
study the solutions in each GF(p) of the system (1) reduced mod p, where GF(p)
denotes the finite field of p elements.

The subject was created by Diophantus of Alexandria, who lived at some time
between 300BC and 300AD; and individual Diophantine problems were considered
by such great mathematicians as Fermat, Euler and Gauss. But it was Hilbert’s
address to the International Congress in 1900 which led to the development of a
systematic theory. His tenth problem asked for an algorithm for determining whether
any given Diophantine equation has solutions in integers. It is now known that no
such algorithm can exist. Indeed Matiyasevich has shown how to write down a
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1.1 Reduction mod p

Let V' be an absolutely irreducible variety in IP” defined over @, and let I be
the ideal of all polynomialsin Z [ Xp, . .., X,,] which vanish on V. For any fixed prime
p, denote by I, the ideal in GF(p)[Xo, ..., X, ] obtained by reducing mod p the
coefficients of all the polynomials in 7. The ideal I; defines a variety I7p defined over
GF(p), which is called the reduction of ¥ mod p. For all but finitely many p, V, is
absolutely irreducible, has the same dimension as V and is nonsingular if ¥ is. In this
case we say that V" has good reduction at p.

A symbol like ¥ or 17,, will denote a variety defined over a finite field; but it
does not imply the existence of a precursor ¥ from which ¥ was derived by reduction
mod p.

1.2 Lifting

A lifting of the rational points on a variety V is a finite set of maps W, — V
such that any rational point P on V is the image of some rational point Q, on some
W,. The W, corresponding to a given P will nearly always be unique, though this is
not a requirement; the 0, will hardly ever be unique. Usually there is a group G
independent of P which acts faithfully on the fibre of the map above any given P; the
appearance of a group in this way contributes valuable additional structure. As the
examples below will show, the standard way of constructing a lifting is to exhibit an
infinite set of varieties W, and maps W,, — ¥V such that every rational P on V lifts to
one of the W, and then to show that only finitely many of the W, can have rational
points.

Example 1 To any rational point (x, y,z) on the curve
) V:YZ=X-02Z)(X-aZ)(X-caZ),
where the ¢; are distinct integers, there are square-free integers my,my, my with
mimyms = m? such that
z(x—cz) =my? (i=1,2,3)
for some rational y;. There is a corresponding curve W given by the equations
Z(X —aZ)=mY? (i=1,2,3),
and the map W — V is given by
(X, Y1,Y2, Y3, Z) = (X,mY Y, Y3272 7).

Itiseasy tocheck that (0, 1, 0) lifts to the curve with m; = m; = m3 = 1. For any other
rational point (x,y,z) on (2) we can assume that x,z are coprime integers. Now
suppose that p is a prime dividing some m;. Then it must divide just two of the m;
because mmym; is a square; hence it divides just two of the z(x — ¢;z) to an odd
power. If p divides z then it does not divide any of the (x — ¢;z) and we obtain a
contradiction; if not, then it must divide two of the (x — ¢;z) and hence must divide
(c1 — ¢2)(c2 — ¢3)(c3 — ¢1). Thus the p which can occur belong to a finite set; in other
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words only finitely many of the W contain rational points. In this example each point
of V lifts to four points of . We shall return to this example in §3.

Example 2 Let fi(\, ), f2(A, 1) be two coprime homogeneous quadratic
polynomials in Z[A, 44]. The equation

(3) x? +7? =fi(A, IL) 2()‘, P’)Zz

represents a pencil of conics (and thus a surface) in IP> x IP!. Any rational point on (3)
can be lifted to a point on a variety of the form

@ X+Y=mi\p (=12
for some square-free integer m, in view of the identity
X+ YH(X3+Y) =X+ L)+ (0 Y- Xo1)o

Using the same identity, we can remove from m any prime factor which is the sum of
two squares — that is, 2 and any prime congruent to 1 mod 4. We can also confine
ourselves to solutions of (3) for which A, u are coprime integers. But p = 3 mod 4
cannot divide a sum of two squares to an odd power; so p|m implies p| f;(), 1) for
i = 1,2, whence p divides the resultant of f; and f5. Since there are only finitely many
such p, there are only finitely many essentially distinct systems (4) which contain
rational points. In other words, what we have constructed is indeed a lifting.

If the f; are irreducible over @, the lifting obtained in this way looks the most
natural one; but it turns out not to be the most useful. To obtain the latter, write

Sl p) = A+ aip)(A+ ajp)  (i=1,2)

where o, o} are conjugate over Q. Much as before, we can lift any rational point on (3)
to a point on some variety W given by the equations

(5)  (Pi+ Q) + (Ri+ iSi)” = (mi + cim)(A + oup) (i =1,2)

for some m;, n; in @, together with their conjugates over @; and as before there are
only finitely many essentially distinct W which have points in every completion of @.
Eliminating A and u, we see that W can be regarded as a very special intersection of
two quadrics in IP7; so it has dimension 5 whereas the original ¥ was a surface. We
shall return to this example in §4.

1.3 The Hasse Principle

A necessary condition for a variety ¥ to have pointsin @ is that it has pointsin
every @Q,. Conversely, we say that a family of varieties V satisfies the Hasse principle if
for each V in the family

V has points in every @, = V has points in @.

The Hasse principle is so named because Hasse proved that it held for non-singular
quadrics of any dimension over an arbitrary number field — the corresponding
property over @ having long been known. His proof depended on class field theory,
and it seems that any proof that the Hasse principle holds for a particular family of
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varieties must depend either on class field theory or on analytical methods. However,
it is often possible to prove the Hasse principle for one family of varieties by reducing
to the case of another family for which the principle is already known.

One of the reasons for the importance of the Hasse principle is that, for a given
variety V, solubility in every @, can be tested in a finite number of steps. This is
certainly true for IR, so we need only consider the @,. If " has good reduction at p and
p is not too small, crude estimates show that V' contains nonsingular points defined
over GF(p). Hensel’'s Lemma (which is just Newton’s method of successive
approximation in a p-adic context) then shows that ¥ contains points defined over
@,. Hence the only primes which need individual attention are

o ‘small’ primes, where the definition of ‘small’ depends only on the degree and
dimension of V, and

e primes at which ¥ has bad reduction; these are finite in number and can easily be
listed.

For each such n, to prove solubilitv of ¥ in @. we have only to find a point of the
ambient space defined over @, and near enough to V; we can then apply the
appropriate successive approximation algorithm.

For any family.# of varieties, there are three obvious questions related to the
Hasse principle:

e Does .# satisfy the Hasse principle?
o If not, what is the obstruction to the Hasse principle?
o For what families .# is the previous question a sensible one to ask?

The generally accepted answer to the second question is that if the right approach is in
terms of the Hasse principle then the only obstruction to it is the Brauer-Manin
obstruction described in the next subsection. On the third question there are wide
differences of opinion. Some optimists believe that it is a sensible question for every
F . My own view is that even a conjecture would be premature.

When it is applicable, the Hardy-Littlewood method provides a quantitative
form of the Hasse principle; for it expresses the density of rational solutions as the sum
of a ‘leading term’, which can be interpreted as the product over all v of the density of
v-adic solutions, and an error term. It is applicable when the error term can be shown
to be small compared to the leading term; but even when this is not so, it is sometimes
plausible to regard the leading term as giving the conjectural density of rational
solutions. One hopes that this conjectural density will be correct for any family for
which the Hasse principle holds. More generally, one hopes that for any family of
unirational varieties it only needs to be adjusted by a factor which can be calculated in
terms of the Brauer-Manin obstruction.

1.4 The Brauer-Manin Obstruction

Let A be a central simple algebra — that is, a simple algebra which is finite-
dimensional over a field K which is its centre. Each such algebra consists, for fixed D
and n, of all n x n matrices with elements in a division algebra D with centre K. Two
central simple algebras over K are equivalent if they have the same underlying division
algebra. Formation of tensor products over K gives the set of equivalence classes the
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structure of a commutative group, called the Brauer group of K and written Br(K).
For each p there is a canonical isomorphism 7, : Br(Q,) ~ Q/Z; and there is a
canonical isomorphism 1, : Br(IR) ~ {0,1}, the nontrivial division algebra over IR
being the classical quaternions.

Let B be an element of Br(@®); tensoring with any @, induces an element of
Br(@®,) which we can call B,. There is an exact sequence

0 — Br(Q) — & Br(Q,) — Q/Z—0,

due to Hasse, in which the third map is the sum of the 1,; it tells us when a set of
elements, one in each Br(@,), can be generated in this way from some element of
Br(Q).

Now let V' be a nonsingular variety and 4 an Azumaya algebra on V' —that is,
a simple algebra with centre Q@ (V') which has a good specialization at every point of V.
If P is any point of V, with field of definition @Q(P), we obtain a simple algebra A(P)
with centre @Q(P) by specializing at P. For all but finitely many p, we have
14(A(Pp)) = 0 for all p-adic points P, on V. Thus a necessary condition for the
existence of a rational point P on V is that for every v there should be a v-adic point P,
on V such that

> (A(P,) =0 forall 4.

This is the Brauer- Manin condition. It is clearly unaffected if we add to 4 a constant
algebra - that is, an element of Br(®). If G =Br(V)/Br(®), the group of equivalence
classes of Azumaya algebras on V, is finite and if one knows a representative of each
element of G, then this condition is computable. Unfortunately, at the moment we
only have a straightforward process for computing G when V is unirational; and even
if we know G it is not necessarily straightforward to exhibit representatives of its
elements. It is generally agreed that the class of varieties for which the Brauer-Manin
obstruction is the only obstruction to the Hasse principle includes all unirational
varieties but is wider than that. It is commonly said that there is no family of varieties
for which the Brauer-Manin obstruction is known not to be the only obstruction to
the Hasse principle; but this may be because in general so little is known about the
Brauer group and therefore about the Brauer-Manin obstruction. The case of elliptic
curves is particularly interesting, since for an elliptic curve the Brauer group is closely
related to the Tate-Safarevi¢ group. (For definitions, see §3; for a more exact
statement, see the paper by Tate listed in §5.)

1.5 Zeta-functions and L-series

Let ¥ be a nonsingular projective variety of dimension d defined over the
finite field GF(g) of g elements. Weil conjectured that there are complex numbers a,,
with |a,,| = ¢*/% such that the number of points on ¥ defined over GF(g") is

(6) I—Za'l’y-f—Zagy—...-i-q"d

for each n. His underlying motivation was the analogy with the Lefschetz Fixed Point
Theorem, the map of ¥’ to itself in this case being the Frobenius map which replaces
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each coordinate of a point by its ¢ power. He implied that there should be a
cohomology theory such that the a,, for fixed u were the characteristic roots of the
action of Frobenius on the cohomology of ¥ in codimension y. Hasse had already
proved these results for curves of genus 1, and Weil proved them for all curves. They
have now been proved by Dwork and Deligne for all varieties.

The o, are roots of a characteristic polynomial, which it is convenient to
write in the slightly disguised form

7 LV, =TL1 - awx)™

Now let ¥ be a nonsingular projective variety defined over @ and denote by V the
reduction of ¥ mod p. If ¥ has good reduction mod p, the Ly V,) are defined by D,
and we can define them in a similar but more comphcated way for primes of bad
reduction. Write

LAV, s) =1, Ly (Vp,p™).

The domain of absolute convergence of this product is ®s > 1 + 1/2, but by calling it
an L-series we have implicitly conjectured that L*(V/, s) can be analytically continued
over the whole s-plane except for possible isolated poles, and that it satisfies a
functional equation of the form

AV, p+1—s5)=2A4(V,s)

where A is the product of L and certain Gamma-functions. The latter can be regarded
as the contribution from the infinite prime.

2 Survey

Geometers classify varieties by their discrete-valued invariants. The simplest
and most important of these is the dimension d. Current geometric fashion is to
consider next the Kodaira dimension k, which can take the values —oc or0, ... ,dandis
defined as follows. Let V' be a projective variety defined over € and b a divisor on V.
Denote by L(b) the linear space of all functions f on ¥V such that (f) + b > 0, and
assume that L(d) contains functions other than 0. Choose a base fy, . . ., fy for L(d);
then there is a rational map ¥ — IP" defined by

P—(fo(P),....fn(P))

which, up to a linear transformation in IV, depends only on the divisor class of d. We
callit the map of V' into projective space associated with the divisor class of d. Now let
i be a canonical divisor on ¥ and let W, be the image of the map of V" associated with
nf; we write k = —oo if L(nf) consists only of the function 0 for every #n > 0 and
k = sup dim(W},)
n>0
otherwise. For number-theoretic purposes the classification given by « is not entirely
satisfactory, but we have to use it for lack of anything better. Classical geometers
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obtained a detailed classification of curves and of surfaces with k < 2, up to birational
equivalence over €; present-day geometers aspire to extend this, but progress is
patchy. For our purposes, the important distinction is between the four cases
k=-00, k=0, 0<k<d and K =d. The two areas in which research on
Diophantine problems is currently most active are curves with k = 0 (described in
§3) and surfaces with k = —oo (described in §4). In the rest of this section, we consider
the remaining cases.

2.1 Curves

Curves are classified into continuous families by means of one discrete-valued
invariant, the genus g; g = 0 is equivalent to kK = —co, g =1toxk =0and g > 1 to
k=1

For a curve with g = 0, canonical divisors are just those of degree —2; thus if
such a curve is defined over @) it is birationally equivalent over @) to a conic by means
of the map induced by —f. We have already remarked that conics satisfy the Hasse
principle; this answers the question of solubility but does not enable us to exhibit a
solution. However, it is known that if a conic is written as aX? + bY? + ¢Z? = 0 with
a, b, c integers and if this equation has a nontrivial integral solution, then it has one
which satisfies the three conditions like |X| < |bc|. This provides an algorithm for
constructing a solution when one exists; it also gives a test for solubility, but one which
is much less enlightening than the Hasse principle. If a conic has a rational point, then
it is equivalent to the projective line; so all other Diophantine questions become

trivial.
- ——— T - ) Y —
W P— S —
-

,{ |




154 Sir Peter Swinnerton-Dyer

height of P, is large, then Q has smaller height than P. Here if P = (xo,...,x,) isa
point of IP* where the x, are integers with no common factor, the height of P is
defined to be

(8)  A(P) = max|x,|.

(This height is sometimes called the exponential height; some authors prefer the
logarithmic height log max |x,|.) This argument gives a sensible upper bound for the
order of G/2G and hence for the number of generators of G, but we can only evaluate
[G/2G]if we can decide which W contain points defined over K. Curves with g = 1 are
further treated in §3.

For curves with g > 1, there is one key result; this was conjectured by Mordell

and proved bv Faltings. building on ideas of Safarevi¢. Tateond Zarhin.

The justification of this, and the natural way to try to prove it, is that if we
embed C in its Jacobian J and use Theorem 1, then it will be enough to show that C
meets any finitely generated subgroup of J in only finitely many points. This is a
purely geometric assertion and is in fact true; unfortunately the only known proof
depends on first proving Theorem 2. However, the Theorem has been proved along
entirely different lines. A key step is the following:

Theorem 3 (Safarevi¢ Conjecture) Let K be an algebraic number field and . a
Sfinite set of places of K. Then there are only finitely many isomorphism classes of Abelian
varieties, of given dimension and polarisation degree, which have good reduction outside

The corresponding result for curves of fixed genus follows immediately. Now
let Cbe acurve withg > 1defined over an algebraic number field K. Let . be a finite
set of places of K, containing all places lying over 2, such that C has good reduction
outside. . There is a finite extension K of K containing all extensions of K of degree
at most 2% which are unramified outside .%. It can now be shown that for some N
depending only on C and for each point P of C(K) there is a curve I'p defined over K;
and amap fp : I'p — C of degree at most N and ramified precisely at P; and I'p has
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about these. The most natural questions to ask are about r-cycles modulo algebraic
eauivalence: for examnle which cohomologv classes in H2¢="(}) contain r-cvcles

Even if we work over € instead of @), this is an arithmetic question; for there is a
criterion due to Lefschetz which instructs one to write down certain definite integrals
and investigate the linear dependence relations over Z between their values. It would
be ridiculous to hope that this criterion could be turned into an algorithm; but
unexpectedly there is a different (conjectural) line of approach.

Conjecture 1 (Tate) Let V be a complete non-singular variety defined over @
and let n be the rank of the subgroup of H¥ (V') consisting of those cohomology classes
which can be realized by codimension r subvarieties of V defined over Q. Then the
function L¥ (V,s) has a pole of order exactlynats =r+ 1.

The full conjecture includes an interpretation of the value of the leading
coefficient of L (V,s) at s = r + 1. This and the Birch-Swinnerton-Dyer Conjecture
below were the fore-runners of what is now a flourishing industry: describing the
behaviour of the L™(V,s) at integer or half-integer values of s in terms of the
arithmetic or geometric properties of V. The major figures in this industry are
Beilinson, Bloch and Kato, and an impressive and beautiful structure of conjectures
has been built up on the basis of a rather limited amount of computation.

When d = 2 the possible values of x are —o00, 0, 1 and 2. So far as arithmetic is
concerned, there is a substantial body of knowledge only when x = —o0, and even
there much more is conjectured than we currently know how to prove. It is therefore
not surprising that work on varieties with d > 2 has been confined to very particular
examples — apart from those varieties, with d large compared to the degree, to which
the Hardy-Littlewood method is applicable. Because there is most to say about the
case kK = —oo, the description will be in the order of x decreasing.

Varieties with k = d are known as ‘varieties of general type’, which indicates
that they are best avoided. The simplest examples are nonsingular hypersurfaces in IP”
of degree at least # + 2. At present there is only one thing that can be said about them:

Conjecture 2 If V is of general type, there is a finite set of proper subvarieties
W, of V such that every rational point of V lies on some W,

Theorem 2 is the special case of this with d = 1; for the only proper
subvarieties of a curve are points. If we knew how to obtain explicitly the W,
corresponding to a given V, then by induction the search for rational points on any
V' of general type would be reduced to similar searches on varieties of lower
dimension and not of general type; but this is probably too much to hope for. A first
step must be to obtain a description of all subvarieties of ¥ defined over @, and a
first step towards that is given by Conjecture 1.

The Zariski tovologv on V is the weakest tonologv in which all subvarieties are

closed sets. In that language, Conjecture 2 asserts that if V' is of general type, then
V(@) is not Zariski dense in V. It is natural to ask whether a property of this kind can
be used to characterize varieties of general type. Some adjustment is needed to allow
for the fact that there are varieties ¥ not of general type for which ¥V (@®) is finite or
even empty. Manin has posed the question which varieties V' have the following
property: there is no algebraic number field K such that V' (K) is Zariski dense in V.
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A sensible guess at the answer would be a useful step towards a more satisfactory
classification of Diophantine problems.

If 0 < x < d then there is a generically surjective map V — U, where U is
some variety of dimension «. Very little has been done on this case, probably because
the varieties concerned do not have equations which look attractive; but some at least
of the problems should be reasonably tractable. The obvious strategy is first to
investigate the rational points on U and then to consider each of the corresponding
fibres of the map. Clearly one should only attempt those cases in which there is already
a good theory both for U and for the family which contains the generic fibre.

Surfaces with x = 0 fall into four families, of which the most important are
Abelian surfaces and K3 surfaces; the surfaces in the other two families have special
cases of these as finite coverings. There is no reason to doubt that the theory of
Abelian surfaces, and indeed of Abelian varieties generally, is the natural general-
isation of the theory of elliptic curves — except that the theory of modular curves
generalises at most to very special classes of Abelian varieties.

The general K3 surface is an analytic object which does not possess a
geometric model; the simplest kinds of variety which are K3 surfaces are nonsingular
quartics and the nonsingular intersections of three quadrics in IP. One special but
important family of K3 surfaces consists of the Kummer surfaces, which are obtained
by desingularizing the quotient of an Abelian surface by the involution P— — P. A
great deal of work has been done on particular K3 surfaces, and primarily on those
which are well equipped with curves. But general conjectures are still lacking: it is not
known, for example, whether there can be a K3 surface ¥ for which V(@) is finite but
not empty. However, there are now families of K3 surfaces for which one can
confidently (though conjecturally) identify and compute the obstruction to the Hasse
principle: it looks like a Brauer-Manin obstruction except that it is not clear what the
underlying Brauer group is.

Over € there are three substantially different ways of characterizing what
might be called the nicest families of varieties. To describe them, we need two further
definitions. A variety is Fano if it can be embedded in projective space by means of —nt
for somen > 0, where fis canonical. The complete list of Fano three-folds is known; it
contains more than one hundred entries. A variety V is unirational if there is a
generically surjective map IPY — V for some N. For general d the three alternative
characterizations are
e varieties with K = —oo;

e varieties birationally equivalent to a Fano variety;

e unirational varieties.

Even when d = 2 the first of these classes is larger than either of the others, because it
includes surfaces of the form IP! x curve — which from the number-theorist’s point of
view cannot be regarded as ‘nice’. Geometers also single out rational varieties — that is,
ones which are birationally equivalent to some IP” over €. For surfaces, rational is the
same as unirational, but in higher dimensions rationality is something for which it
seems hard to provide a purely geometric criterion. Perhaps rationality is another
concept which can be defined in purely geometric terms but which is in essence
arithmetic, though we have no idea what the arithmetic criteria for it should be. It
plays no part in the arithmetic theory as currently formulated.
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Conjecture 3 For any family of unirational or Fano varieties, the only
obstruction to the Hasse principle is the Brauer-Manin obstruction.

For many families .# of unirational varieties, including in particular all
unirational surfaces, Colliot-Théléne and Sansuc have defined a canonical lifting
{W, — V}, in which they call the W, universal torsors. It has the following property:

Theorem 4 (Colliot-Théléne/Sansuc) Let & be the family consisting of all the
universal torsors over varieties in F . Then the Brauer-Manin obstruction is the only
obstruction to the Hasse principle on F if and only if the Hasse principle holds for &.

We have already seen an instance of this in Example 2, for the varieties (5) are
universal torsors over the variety (3) and it follows from classical results that the
family which contains them satisfies the Hasse principle. Hence for pencils of conics of
the form (3) with the f; irreducible, the Brauer-Manin obstruction is the only

obstruction to the Hasse vrincinle. A more general version of the same argument

shows that this holds for all pencils of conics which have at most four degenerate
fibres.

3 Curves of genus 1

Let C be a curve of genus 1. We have already seen that if C contains a rational
point then it can be identified with its Jacobian and the rational points on it form a
finitely generated commutative group. It is natural to separate Diophantine problems
on curves of genus 1 into two parts:

e Does C have a rational point?
e If C is an elliptic curve, describe its Mordell-Weil group G - that is, the set of
rational points on it.

Consider the classes of curves of genus 1 (under birational equivalence over Q) which
have points in every @, and have a given elliptic curve E as their Jacobian. The set of
these classes can be regarded as the obstruction to the Hasse principle for curves with
E as Jacobian. This set has a natural group structure; it is called the Tate-Safarevi¢
group of F and is denoted by III. Since it is an obstruction, it will be no surprise that it
can also be written as a cohomology group; and indeed it is closely related to the
Brauer group of E. But neither of these facts helps in computing it.

In any particular case, one tackles both the questions above by means of a
‘descent’ process —a special case of lifting which goes back to Fermat. Assume that C
contains points defined over each @, and let E be its Jacobian. Foranyn > 1 thereisa
lifting of C in which all the covering varieties are curves which themselves have E as
Jacobian, and in which each fibre of the covering map is a principal homogeneous
space under the group of n-division points on E. The curves themselves are called n-
coverings of C; the calculation in Example 1 illustrates this process in the particularly
simple case when C is E, n = 2 and all the 2-division points on E are rational. If each
covering variety is insoluble in some Qv, then C itself cannot have ratlonal pomts and

-
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torsion part of G is straightforward. But even if Il is finite (as is generally believed),
this process is far from being an algorithm; and if the p-component of III is infinite
then the process will not terminate for any # divisible by p.
That describes the state of the theory as it was in about 1960; there seemed to
be no loose ends and it was generally accepted that (much as one would like to have
them) there probably did not exist algorithms to comnute G or. IIL The only hanenf______

escaping from this impasse was to introduce a new concept; the right one turned out to
be the L-series, which were wholly unfashionable at that time. Changing the notation
slightly from that of §1.5, if E has good reduction at p we can write the number of
points on E, defined over GF(p) as

Ny=1-ap—a,+p=(1-0q,)(l -a,);

the density of p-adic points on E is then N,/p. If E has bad reduction at p the
corresponding density is ¢, N,/p where ¢, is the number of components of the Néron
model which contain p-adic points. Similarly we write ¢, =2 if E(IR) has two
connected components. The only L-series of interest is

-1
LEs) =] (1= ap™) 1 —app™)
and formally we have

L(E1) =[] (p/N,).

Certain rather wild analogies suggest that the faster the product on the right diverges
to 0, the larger G should be. The size of G is measured by

e the order of its torsion subgroup Gior,

e r, the number of generators of infinite order, and

e R, the regulator, which is analogous to the regulator of a number field.

There is a canonical height on G, defined by
h*(P) = lim n~2logh(nP)
n—0o0
where £ is as in (8); it has the property that if Py, ..., P, are a base for G/Gor and
P=n P+ -+ nPr mod Gior,

then 4*(P) is equal to a quadratic form in the n;. The regulator is just the discriminant
of this quadratic form.

There are two kinds of elliptic curve for which L(E,s) can be analytically
continued over the whole s-plane: curves with complex multiplication and modular

e e P
| Dt — - 000
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Here Q2 is the real period of E and the product is over all places of bad reduction, finite
or infinite. This statement of course presupposes that |III| is finite. There is an
alternative formulation of (9) which brings out the similarity to other density
theorems. For this we have to introduce the function

f(E.s)=_ exp(—msh"(P))
w m is taken over all ratlonaLnomts Pon E. Now we can rewrite (9)inthe

form
(10)  Q7'L(V,s+ 1)(f(E )= W[ [] e

as s — 0 through real positive values.

A typical family of curves E with complex multiplication is ¥? = X3 —
for which End(E) ~ Z[i]; in this case it is easy to show that a, must be in Z[i] if
p=1mod4and N, =p+ 1 if p = 3 mod 4. Some easy congruences now determine

the o, and it turns out that L(E,s) is a Hecke L-series. Thls provides analytic
li‘ g o deand farnmnde £an X LT2 1N faacamm vr- 1|f ﬁi.ug vin thas

"|Gior|"L(E, 1) is a rational integer. In the many numerical cases that have been
computed, itis 0ifr > 0and [] ¢, times a non-zero squareif r = 0; and itis known that
|I] is a square if it is finite.

When E has complex multiplication, the conjecture is now known to be true,
except perhaps for the powers of bad primes in |III|, whenever L(E, s) has at most a
simple zero at s = 1. [Coates/Wiles,. . .]

Modular curves are curves parametrized by elliptic modular functions; the
reason for introducing them in this context is as follows. If V' is any variety, its
conductor N is a product of the primes of bad reduction, to powers which measure
how bad the reduction is. Specializing to the case of an elliptic curve E defined over @,
write L(E,s) = Y a,n~* and let

M(E, )= Z ay exp(2minT)

be the Mellin transform of L(E,s). The conjectural functional equation for L(E,s)
translates into a functional equation
M(E,~1/N7) = £NT°M(E, ),

which happens also to be satisfied by certain modular forms of weight 2 for T'y(N).
Moreover, if we insert a Dirichlet character into both series the two functional
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suggested that this point was nontrivial precisely when r = 1. Kolyvagin has shown
that if L(E, s) has at most a simple zero at s = 1 then |II| is finite and r is equal to the
order of the zero at s = 1. Gross and Zagier have shown that if L(E, s) has a simple
zero ats = 1 then L'(E, 1)/ R is rational and the Heegner point is a point of infinite
order.

The conjectures of Birch/Swinnerton-Dyer and Weil/Taniyama together
imply that for curves C of genus 1 defined over @ there are algorithms to decide each
of the three following problems:

e Does C have a rational point?
e If so, find a set of generators for its Mordell-Weil group.
e Also if so, determine the order of |I|.

For conductors of moderate size, it would be perfectly feasible to implement these
algorithms.

4 Rational Surfaces

If one ignores IP? and quadrics, up to birational equivalence over @ rational surfaces
fall into two classes: pencils of conics and Del Pezzo surfaces. Any pencil of conics can
be written in the form

(11)  ao(A\ ) X3 +ar(\ p) X2 + ax(\, ) X2 = 0

where the ¢; are homogeneous polynomials of the same degree. They are divided into
families according to the number of degenerate fibres. Over @ a Del Pezzo surface of
degree d is obtained from IP? by blowing up (9 — d) points in general position; here
1 < d < 9but wecanignore the cases when d = 7, 8 or 9 because their number-theory
reduces to that of quadrics. Del Pezzo surfaces of degree 6 satisfy the Hasse principle,
those of degree 5 contain rational points unconditionally, and for aesthetic reasons
those of degrees 2 and 1 have been little studied. Both geometers and arithmeticians
have concentrated on Del Pezzo surfaces of degree 3, which are the nonsingular cubic
surfaces, and to a lesser extent on those of degree 4, which are the nonsingular
intersections of two quadrics in IP*. Despite this bias, the problems connected with the
latter are in fact the easier.

Neither pencils of conics nor Del Pezzo surfaces of degree 3 or 4 satisfy the
Hasse principle. The simplest counter-example is

(12) X2+ Y2 = (3)\2 — ) (2 — 222) 22

It is straightforward to verify that this can be solved in every @,. In looking for
solutions in @ we can take A, 11 to be coprime integers. Then 3% — p2 and 2 — 2A2 are
coprime and positive, and their product is the sum of two squares; so each of them
must be the sum of two squares. But solubility in @, requires A odd and 4|u; so
3\ — 42 = 3mod 4, and this is a contradiction. Another way of phrasing the same
argument is to use the lifting process in Example 2; it turns out that the rational points
on (12) can be lifted to the null set. Similar arguments show that

X?+ Y2 = p(dh + Tp)(2p% — M) Z?
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has rational pointsin \/u < —7/4 but none in A?> < 2,2, This last example raises new
questions. We say that a family # admits weak approximation if any V in &
containing rational points satisfies the following condition: for each of a finite set of
places v; let P; be a v;-adic point of V; then there is a rational point P on ¥ which is
arbitrarily close to each P; in the v;-adic topology. Some of the main Diophantine
problems for families of rational surfaces are:

e Does the Hasse principle hold, and if not, what is the obstruction to it?

e Does weak approximation hold, and if not, what is the obstruction to it?

o If we know some rational points on a rational variety V, is there a construction for
generating further ones?

e Is there a lifting { W, — V'} in which every W is a IPY — in other words, is there a
finite set of parametric solutions which between them give all rational points of V?
o Can we give an estimate for the number of rational points on V' with height less than
X?

It is conjectured that the only obstruction to the Hasse principle is the Brauer-Manin
obstruction, and that the only obstruction to weak approximation is the obvious
analogue to it. For Del Pezzo surfaces we can generate new rational points from old
ones, but for pencils of conics with more than four degenerate fibres we do not know
how to do so.

The lifting question is almost entirely open, and we do not even know what the
answer should be; but it can be shown that we normally need to take N > 2 and that
we cannot expect to get all rational points from a single parametric solution. Both
these statements can be illustrated by the case of conic bundles with four degenerate
fibres, where each universal torsor W is an intersection of two quadrics in IP7 with the
following property: there is a quadratic extension K/@ such that W contains two
disjoint linear threefolds L', L” conjugate over @ and each defined over K. (The case
worked out in Example 2 is typical.) Now let Py be a fixed rational point of W, let P’
run through the points of L’ defined over K and let P be the conjugate of P’ over Q).
The plane PoP’'P" meets W in one further point P, which is rational; this gives a
parametrization of the rational points on W and hence of those rational points on V'
which lift to W.

For pencils of conics, some progress has been made towards showing that the
Brauer-Manin obstruction is the only obstruction to the Hasse principle. The case
when the pencil has four degenerate fibres has already been described after Theorem
4; we now consider the general case. We take the pencil in the form (11) with the
a;(\, 1) inZ[A, ), and we assume that (11) is soluble in each @,,. By absorbing suitable
factorsinto the X;, we can replace the condition that the a; have the same degree by the
condition that they are coprime; note that their degrees will still have the same parity.
We define the bad places for (11) to be 2 and co, primes which divide the discriminant
of apaja; and primes p < 5 deg(a;). (In general, bad places for any Diophantine
equation are those which it can be predicted in advance will cause trouble in the
subsequent argument.) For each bad place v we impose v-adic conditions on A, i
strong enough to ensure that the resulting conic is soluble in @,. It would now be
enough to choose A, 12 in Z so that the equation is soluble with X; in Q, for each good p
which divides some a;(, ). Unfortunately we do not know which these p are until we
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have chosen A, i; but we can proceed as follows. Let the ¢;;(), 1) be obtained by taking
the irreducible factors of a;( A, 1) and removing the powers of bad primes which divide
their values; and consider the three sets of functions like

—ai (A, A
| “I(COIEQ,";% ﬂ)]

where the outside bracket is the quadratic residue symbol. (A neater definition can be
given with the help of the Hilbert symbol.) These functions are well-defined when X, ;1
are coprime, and a necessary condition for the solubility of (11)is that they all have the
value +1.

It turns out that these functions are continuous in the topology induced by the
bad places; the proof of this uses the fact that all the deg(a;) have the same parity. It
can also be shown that there exist A, u which give all these functions the value +1 if and
only if the Brauer-Manin condition holds. If we could choose ), i so that all the
c;j(A, ) were prime, then our necessary conditions for solubility would also be
sufficient; in other words, we would have shown that the Brauer-Manin obstruction is
the only obstruction to the Hasse principle for pencils of conics. There are two
approaches to this, neither of which quite achieves it: by using Schinzel’s Hypothesis
or by making a field extension.

Conjecture 5 (Schinzel’s Hypothesis) Let the F,(X) be finitely many
nonconstant irreducible polynomials in Z[X] with positive leading coefficients, and
suppose that for each p there exists n = n(p) such that none of the F,(n) is divisible by p.
(This condition is automatically satisfied if p > Y deg(F,).) Then we can find an
integer N such that all the F,(N) are prime.

On probabilistic grounds one expects this to be true, though no sane person
would attempt to prove it. It is precisely what one needs to complete the argument
above; so one can at least conclude that it would be a waste of time to look for any
further obstruction to the Hasse principle for pencils of conics. The alternative
approach depends on the following rather technical result.

Lemma 1 Let the F,(X) be as for Schinzel’s Hypothesis. For any
d > " deg(F,) there is a field K with [K : Q) = d and an integer a in K such that
each of the F,(a) is a prime in K.

It follows from this that provided the Brauer-Manin condition holds we can at
least find a point on (11) defined over K; taking d odd we derive a rational 0-cycle of
degree 1 on (11). This raises the question which families of (unirational) varieties have
the following property: if V' contains a rational 0-cycle of degree 1 then it contains a
rational point. This is known to be true for nonsingular intersections of two quadrics
in IP, and it is undecided for nonsingular cubic surfaces; unfortunately it can be shown
to be false for pencils of conics.

The key to the argument above is that conics satisfy the Hasse principle, and
the same ideas can be applied to many (although not all) pencils of varieties which
satisfy the Hasse principle. If we try to apply it to Del Pezzo surfaces, we encounter a
difficulty: the only known ways of obtaining curves of genus 0 defined over @ on
such a surface depend on first knowing a rational point on it. It is easy to find pencils
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but
(14 J[a-r7> 0o +p>)7,
P v

because this is the product whose behaviour as s — 2 gives an acceptable
interpretation of [J(p?/N,). On the other hand, we would also expect the function
on the right of (13) to be an L-series in the sense of having analytic continuation and a
functional equation; and there is no reason to expect that (14) has either of these. The
most likely way of clarifying the situation is by extensive computation.

5 Further Reading

A comprehensive bibliography would double the length of this article,
without necessarily being very useful. Many results and conjectures have been
common knowledge among the experts long before they were published, and many
results which are ascribed to one person actually first appeared in an expository article
by another. Among the most seminal papers in the modern theory are:

o A Weil, L’arithmétique sur les courbes algébriques, Acta Math. 52 (1928), 281-315.
e J.Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric
analogue, Séminaire Bourbaki 1965-66 No. 306.

e J.Coates and A.Wiles, On the conjecture of Birch-Swinnerton-Dyer, Invent. Math.
39 (1977), 223-251.

e P.Vojta, Diophantine approximations and value distribution theory, Springer
Lecture Notes 1239 (1987).

e V.A Kolyvagin, Finiteness of E(@Q) and III(E/®) for a class of Weil curves, Izv.
Akad. Nauk SSSR Ser. Mat. 52 (1988), 522-540, translation Math. USSR Izv. 32
(1989), 523-541.
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e J.Manin and J.A.Tsfasman, Rational varieties, algebra, geometry and arithmetic,
Uspekhi Mat. Nauk 41 (1986), 43-94, translation Russian Math. Surveys 41 (1986),
51-116.

e D. Husemoller, Elliptic Curves (Springer, 1986).

e S.Lang, Number Theory III (Encyclopaedia of Mathematical Sciences, vol. 60)
(Springer, 1991).

o W.W.J.Hulsbergen, Conjectures in Arithmetic Algebraic Geometry (Aspects of
Mathematics, vol. E18) (Vieweg, 1992).
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establishing o-minimality of expansions of the real field. Khovanskii’s theorem
also played a key role in the proof.

Khovanskii used his results to obtain information on the topology of
zerosets of “fewnomials” (polynomials with few terms). The idea is that one can
replace a monomial x{' ... x/» via the transformation of variables x; = e, ..., x,= e’
by the exponential exp (i1y; + ... +i,y,). Similarly, Wilkie’s theorem can be used in
combination with the generic triviality theorem for o-minimal structures (see next
section) to obtain the following finiteness result on fewnomials.

Application. Let m, n be given natural numbers. Then there are only finitely
many (embedded) topological types among the subsets of R" of the form
{xeR":P(x)=0}, where PeR[X,,...,X,] has at most m monomials (with no
restriction on the degree of P).

More generally, one can establish in this way a qualitative form of the
Benedetti-Risler conjecture [1, p.214] for semialgebraic sets of bounded additive
complexity, see [6, Ch.9]. An ambitious goal is to explain other finiteness
phenomena in real algebraic and real analytic geometry as consequences of
“o-minimality”. In this connection it may be worth considering Hilbert’s 16th
problem on limit cycles, and the deep work of I1’yashenko and Ecalle on Dulac’s
conjecture. Let us now turn to the definition of “o-minimal structure on the real
field” and give some examples.

In the following we let R :=(R, +, *) denote the field of real numbers.

Definition. An o-minimal structure $on R consists of a boolean algebra &,
of subsets of R” for all n, such that

1. Aj={xeR":x;=x;}€%,, where 1<i<j<n.

2. Ae%,=RXA,AXRe,. .

3. Ae ¥, =n(A)e¥,, where n:R""!=R" is given by 7m(x|,...,Xp, Xp:1)=
(xl, veey X,,).

4. The graphs of + and - belong to %;.

5. Thesetsin &, are exactly the subsets of R that have only finitely many connected
components, that is, the finite unions of intervals of all kinds. (“O-minimality
axiom”,

The first three axioms together with the boolean algebra requirement express that
the system of sets & is closed under “first-order definability”. The o-minimality
axiom can be viewed as expressing compatibility with the order (and hence
topology) of the real line. It is the simplest compatibility condition of this kind,
which explains the term “o-minimal” (= “order-minimal”).

Examples.
(i) The semialgebraic sets in R" for n=0, 1,2, ... (Tarski [22]).
(ii) The subsets of R” for n=0, 1,2, ... that are subanalytic in the projective space
P”(R) (Gabrielov [10]).
(iii) The subexponential sets in R" for n=0, 1,2, ... (Wilkie [23]).
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(iv) The images in R” for n=0, 1,2, ... under projection maps R"*¥ — R”" of sets of
the form

{x,y) eR" : P(x, y, €%, €)= 0, f(x, y) = 0}

where P s a real polynomial in 2(n + k) variables and f: R"**¥ — R is a function such
that f]|1 1.« is analytic, and f is identically zero outside [-1, 17", (See in
particular [8].)

For those not familiar with subanalytic sets, I might mention that the subsets of R”
that are subanalytic in P*(R) can also be described as the images in R” under
projection maps R”*¥ — R" of sets of the form

{(x, ) eR"¥: P(x,»)=0, f(x, y) = 0}

where P is a real polynomial in n +k variables and f:R"**¥—R is a function such
that f]_1, 1.« is analytic, and fis identically zero outside [—1, 1]7**. The class of
semialgebraic sets is (in obvious sense) the smallest o-minimal structure on the real
field_FExamnle (iv) is the smallgst o-minimal structire on the real field that contains

the 0- mlmmal structures of examples (11) and (111) All other well- documented

! L. e Al

make some remarks on work in progress to construct o-minimal structures on R
that are not contained in example (iv). (It is not known if for any two o-minimal
structures on R there is a third one that contains them both.) Next I discuss general
properties of o-minimal structures on R.

Basic Results

In what follows we fix an o-minimal structure & on R.

Terminology. Let A cR™and f: A —~ R". We say that 4 belongs to &, or is in
&, if Ae S, and that fbelongs to &, or is in &, if its graph I'(f) € Ly 1.

Some easy results are that if 4 belongs to &, then also its closure cl (4), its
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These two theorems have many consequences. Here are some. Let 4 —cR”
belong to &, and let the (not necessarily continuous) map f: 4 — R" belong to %,
and let r be a positive integer.

1. A has only finitely many connected components, and each component belongs

to & and is path connected.

2. There is a partition of 4 into finitely many cells, such that each cell is a C”

submanifold of R” and the restriction of fto each cell is of class C’.

3. 4 has a well defined dimension dimA4 e{—<, 0,1, ..., m}, with dim 4 = — iff

A=0, and dim 4 =0 iff A is finite and = @.

4. dim A >dim f(A), with equality if fis injective; also for each d€{0, ..., m} the set
, RS vaaR" 'iqjm f=lf =} helanor tn. Leminddim { £ 1R \) maliee (B) 2

,ﬁ

S. dim(cl(4)—A))<dim A4 if A+#0.

6. (“Curve Selection”.) If aecl(A), then there is a map y:[0,1]—=R"™ of class C”
belonging to & such that y(0)=a and y(¢)e A4 for 0 <¢< 1.

7. There is a Whitney stratification of R™ into finitely many cells that are also C”
submanifolds of R™ and such that 4 is a union of strata.

For the particular o-minimal structures mentioned in the introduction the items 2,
6 and 7 are even true with » =, where “C®” means “analytic”.

These results are roughly proved in the order indicated. Somewhat deeper
lie the next two theorems.

Triangulation. There is a finite simplicial complex K in R™ and a homeomor-
phism from A onto a finite union of open simplices of K.

Generic Triviality. If fis continuous, then there is a partition of f(A) into cells
B, ..., By such that fis &-trivial above each B;, in particular, if x, y € B;, then the fibers
S Y(x) and f~(y) are homeomorphic by a homeomorphism in & .

In the semialgebraic case “generic triviality” is due to Hardt [11]. In
combination with Wilkie’s theorem the generic triviality theorem implies the result
about the Benedetti-Risler conjecture that I mentioned in the Introduction (see [6,
chapter 9] for details).

Shiota [21] has announced the following impressive result.

“Hauptvermutung” for &. If K, L are finite simplicial complexes in R" and
there is a homeomorphism |K|==|L| in &, then there is a piecewise linear such
homeomorphism.

Here the definition of “finite simplicial complex K in R”” includes the
requirement that each face of a simplex in K is also in K; hence |K | < R"is compact.

Next some results in a different vein. Let S c R™ " belong to &. For xe R”
we put S,:={yeR":(x, y)e S}, and we associate to S the collection {S,: xe R"} of
subsets of R”, all belonging to . Let us say that the set Y cR” is a limit of the
collection {S,:xeR™} if Y agrees on each finite set Fc R" with some S,, that is:
YN F=S8,nF for some xeR"™ depending on F. The following theorem is closely
related to a model theoretic result due to Marker and Steinhorn [17]; see also [7,
section 7] for more on this.
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Theorem on limits. If' Y — R" is a limit of {S,: x e R™}, then Y belongs to &. In
fact, thereisaset S’ cR™""in & for some M, such that {S}. : x’ e RM} is the collection
of all limits of {S,:xeR™}.

This theorem remains true with “Hausdorff limits” instead of “limits”. (A
set Y < R"is called a Hausdorff limit of the collection {S,: x e R"} if for each ¢ >0
and each R >0 there is x € R™ such that each point of ¥ nB(R) is at distance <¢
from a point of S, and each point of S, ~ B(R) is at distance < ¢ from a point of ¥,
where B(R) denotes the euclidean open ball of radius R in R” centered at the
origin.)

Here is a purely combinatorial result about such collections:

Theorem. There are numbers C=C(S)>0 and d=d(S)eN such that each
finite set FeR" has at most C- card (F)“ subsets of the form F A S, with xeR™.

This results expresses in a purely combinatorial way that the variation
among the sets S, is highly restricted as x ranges over R”. In probabilistic terms it
means that {S,:xeR"}is a Vapnik-Chervonenkis class. See Laskowski [15] for a
proof of the theorem above. There is work in progress on making this kind of result
quantitatively more precise (Wilkie, Macintyre, Sontag). Vapnik-Chervonenkis
classes play a role in mathematical learning theory, neural networks, and other
computer science oriented subjects.

Further Results

We now come to some results closely related to the monotonicity theorem.
Note that by this theorem the germs at +9° of the functions f: R — R belonging to &
form a Hardy field. (See Bourbaki [4] and Rosenlicht [20] for the basic theory of
Hardy fields.) This calls our attention to the possible growth orders of one-variable
functions belonging to &. Here we have the following surprising dichotomy among
o-minimal structures on the field of real numbers, discovered by Miller [18].

Theorem. - Either each function f:R—R in S is polynomially bounded
towards + (i.e., there is d=d(f)eN and C= C(f)>0 such that | f(x)| <x9for all
x> C), - or the exponential function exp : R — R belongs to &.

If we are in the first case we call & polynomially bounded. The first two
examples (class of semialgebraic sets and class of finitely subanalytic sets) are
polynomially bounded, the last two are clearly not. The usual Lojasiewicz
inequalities go through for polynomially bounded %, as the next results
indicate.

Theorem. Suppose & is polynomially bounded. Let f, g: A — R be continuous
and belong to & with A CR™ closed in R™, and suppose that f'(0) = g~'(0). Then
gV=hf for some positive integer N and some continuous function h:A—R in &.
(Hence, if A is compact, there is a constant C>0 such that lgIY< ClIf])

In applications one often takes for g the distance to £~ !(0), or for f the
distance to g~!(0). This inequality has numerous consequences: Holder continuity
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of continuous functions in & on compact sets, descending chain condition for zero
sets of C* functions in &, and so on.

There is a generalization of the Lojasiewicz inequality to arbitrary &. The
point is simply to replace “taking the N-th power” by another suitable one-variable
function:

With f, g, A as in the last theorem and r any positive integer we have

pog=hf
for some continuous h: A — Rin & and some strictly increasing odd function ¢ :R —R
in & of class C" with $(0)=0 for all i <r.

Here are some related results. The first one is due to Bierstone, Milman and
Pawtucki in the subanalytic case.

Each closed set ACR™ in & is of the form A=f"1(0) for some C” function
f:R">Rin&.

Each path in R" belonging to & is rectifiable. (Here a path in R" is simply a
continuous map [0,1]—R".)

If ACR™ belongs to & and is compact and connected, then each two points
x,y € A can be connected by a rectifiable path in A belonging to & of length at most
&(|x—y|) with ¢ :R—R a continuous strictly increasing odd function in &.

New O-minimal Structures on the Real Field

One attractive goal is to show that any “tamely” behaving (real) functions
that arise in mathematical nature belong to an o-minimal structure on R. Here
“tame behaviour” would imply such properties as having only finitely many zeros,
etc. In fact, there are whole classes of such functions, of which I mention only the
following:

(1) Functions given near +% by convergent Dirichlet series.
(2) Functions given near + by (possibly divergent) Borel summable power series.

Work is in progress to construct an o-minimal structure on R containing the
functions in (1), and another one containing the functions in (2).

Final Remarks

It hardly needs to be mentioned that most results above are actually known
in more general form. Also, they have various sharpenings, especially for
particular o-minimal structures. I refer to the literature for details. I might also
mention that almost all the results above can be obtained by more or less direct
geometric means. Notable exceptions are Wilkie’s theorem and its successors, and
the result on (Hausdorff) limits of #-collections; in these cases the only known
proofs depend on (elementary) model theory.
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Buchbesprechungen

DeVore,R.A., Lorentz,G.G., Constructive Approximation (Grundlehren der
mathematischen Wissenschaften 303), Berlin u. a.: Springer Verlag 1993, 449S., DM 168,-

Die konstruktive Approximation behandelt quantitative Erweiterungen des Weier-
straBschen Approximationssatzes. Sind V< V; c ¥, ... F endlichdimensionale lineare
Teilrdume eines normierten Raumes F, so fragt man fiir gegebene fe F nach dem Verhalten
der Approximationsfehler

E,(f):= inf || f—v]
veV,
fiir n — 0. Es geniigt dabei nicht, wie beim Satz von Weierstraf eine Dichtheitsaussage fiir
\J VuinFim Sinne von

n=0

Jdim E,(f)=0 firalle feF
anzustreben, sondern man will die Konvergenzgeschwindigkeit von E,(f) gegen Null
moglichst genau bestimmen, und zwar in Abhingigkeit von Glitteeigenschaften von f, die
durch geeignete Stetigkeitsmoduli beschrieben werden. Die Frage nach der Konvergenzge-
schwindigkeit von Fourierreihen ist ein Spezialfall dieser Problemstellung, und deshalb ist
die konstruktive Approximation eine moderne Fortsetzung eines klassischen Teilgebiets der
reellen Analysis.

Besondere Wichtigkeit erhilt die konstruktive Approximation durch moderne
Anwendungen, von denen hier zwei herausgegriffen werden sollen:

® Bei der Methode der finiten Elemente zur Losung gewohnlicher und partieller Differenti-
algleichungen wird der Fehler des Rayleigh-Ritz-Galerkin-Verfahrens durch eine Koerziti-
vitatsungleichung auf einen Approximationsfehler reduziert, so dal die konstruktive
Approximation dort die fundamentale quantitative Fehlerabschitzung liefert.

® Die Berechnung spezieller Funktionen in Rechenanlagen basiert notwendig auf der
Auswertung stiickweise polynomialer oder rationaler Funktionen mit moéglichst wenig
Koeffizienten, und deshalb ist die Kenntnis des fiir eine feste Funktion fin verschiedenen
Riumen erzielbaren Approximationsfehlers von entscheidender Bedeutung.

Das vorliegende Buch ersetzt eine ganze Reihe dlterer Werke zum gleichen Thema,
und es geht in mehrfacher Hinsicht deutlich iiber frithere Vorbilder hinaus. Dies gilt
insbesondere fiir die konsequente Einbeziehung der Spline-Funktionen, die als Verallgemei-
nerung von Polygonziigen angesehen werden kénnen und die bei der Approximation nicht
allzu glatter Funktionen den Polynomen deutlich iiberlegen sind. Eine zweite Erweiterung
betrifft die Verwendung neuerer Stetigkeitsmoduli, die auf Ditzian und Totik zuriickgehen,
und die das schwierig zu untersuchende Randverhalten des Fehlers bei Approximation
durch algebraische Polynome genauer zu erfassen gestatten. Drittens kommen auch die sehr
aktuellen shift-invarianten Riume zur Darstellung, die fiir die Untersuchung der Approxi-
mationseigenschaften von wavelets benotigt werden, und viertens werden neuere Satze iiber
formerhaltende Approximationen einbezogen. Last but not least enthdlt das Buch zur
Uberraschung des Rezensenten viele ganz neue Beweise, und zwar auch fiir altbekannte
Sdtze. DaB dabei gegeniiber alten Lehrbiichern von der Theorie der K-Funktionale
entscheidend Gebrauch gemacht wird, ist nicht weiter verwunderlich, nur die konsequente
und gradlinige Durchfithrung ist beeindruckend.

Insgesamt ist den Autoren ein grofler Wurf gelungen, der die meisten dlteren Werke
obsolet werden laBt. Wiinschenswert wiren lediglich zusitzliche Hinweise auf die vielfalti-
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gen Anwendungen, denn die konstruktive Approximation hat innerhalb der , mathematical
community“ nicht das Gewicht, das ihrer Bedeutung fiir die Praxis entspricht.

Gottingen R. Schaback

Dembod, A., Zeitouni, O., Large Deviations Techniques and Applications, Boston
u.a.: Jones and Bartlett 1993, 334S., $ 44.50

Dies ist ein erstaunlich gut lesbares Buch iiber GroBe Abweichungen (grob gesagt,
der asymptotischen Berechnung exponentiell kleiner Wahrscheinlichkeiten). Es ist eine
willkommene Erginzung fritherer Monographien zu diesem Gebiet (Freidlin & Wentzell
(1979), Varadhan (1984), Ellis (1985), Deuschel & Stroock (1989), Bucklew (1990)).

Die Autoren haben sich das Ziel gestellt, einige grundsitzliche Methoden grofer
Abweichungen darzulegen und deren Niitzlichkeit in einer Reihe von Anwendungen zu
demonstrieren.

Die Darstellung glanzt durch mathematische Strenge, gepaart mit gut verstindli-
chen Erlduterungen, Motivationen, Einordnungen, einer Fiille von Anwendungen sowie
Ubungen am Ende der meisten Paragraphen (oft mit Lésungshinweisen versehen).

Beginnend mit Wahrscheinlichkeiten auf einer endlichen Menge, dann auf endlich-
dimensionalen Raumen, werden schlieBlich abstraktere Fille behandelt. Eine Besonderheit
besteht darin, daB8 dabei konsequent projektive Limites eingesetzt werden (Dawson-
Girtner).

Historische Bemerkungen und eine Fiille von Literaturhinweisen runden das Bild
und sind eine Hilfe fiir ein weitergehendes Studium.

Das Buch sei nachdriicklich allen empfohlen, die mit Methoden grofer Abweichun-
gen bekannt und vertraut werden wollen.

Es folgt nun eine grobe Inhaltsangabe. Ausgehend von Erliduterungen iiber seltene
Ereignisse und deren Wahrscheinlichkeiten, werden im einfithrenden Kapitel grundlegende
Definitionen des Prinzips grofier Abweichungen gegeben und diskutiert (Ratenfunktion,
exponentielle Straffheit, ...).

Ein GroBteil von Kapitel 2 ist dem Cramérschen Theorem iiber groBe Abweichun-
gen des empirischen Mittels von unabhingigen, identisch verteilten ZufallsgroBen gewid-
met, beginnend mit Werten in einer endlichen Menge (mittels des Kontraktionsprinzips aus
dem Sanov-Theorem, das mit kombinatorischen Methoden bewiesen wird), dann mit
reellwertigen Groflen (Konvexitatsmethoden) und schieBlich mit zufilligen GroBen im R?
(hier mit der Voraussetzung endlicher exponentieller Momente). Es schlieBt sich das
sogenannte Gértner-Ellis-Theorem an fiir groBe Abweichungen einer Folge endlichdimen-
sionaler ZufallsgroBen mit ,im wesentlichen glatter, skalierter Kumulantenfunktion.

Ein ganzes Kapitel mit Anwendungen folgt: Groe Abweichungen fiir Markovsche
Ketten mit endlich vielen Zusténden, lange seltene Segmente in zufilligen Irrfahrten im RY,
Gibbs conditioning principle, Hypothesen-Test-Probleme, Quellenkodierung der Informa-
tionstheorie, ...

Kapitel 4 ist der abstrakten Theorie gewidmet: Existenz- und Eindeutigkeitsfragen,
groBe Abweichungen unter Transformationen, Zusammenhinge zu exponentiellen Integra-
len, projektive Limites, ...

Pfadeigenschaften stochastischer Prozesse stehen im Mittelpunkt von Kapitel 5:
GrofBe Abweichungen fiir zufallige Irrfahrten (Mogulskii), Brownsche Bewegung (Schilder),
multivariate Verallgemeinerungen, Diffusionsprozesse (Freidlin-Wentzell-Theorie), An-
wendungen in der Leistungsanalyse von Kommunikationssystemen, Tracking loops
analysis, ...
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Abstrakte Fassungen der Theoreme von Cramér und Sanov werden in Kapitel 6
geboten, gefolgt von der Behandlung empirischer MaBe fiir Markovsche Ketten bzw. fur
stationire Prozesse unter Mischungsbedingungen.

Das letzte Kapitel des Buches ist wieder Anwendungen gewidmet: Hypothesentests,
Sampling ohne Zuriicklegen, Gibbssche Prinzipien, ...

In einem Anhang sind schlieBlich ein paar niitzliche Grundlagen der konvexen
Analysis, Topologie, MaB- und Integrationstheoric und der Stochastischen Analysis
zusammengefaBt.

Berlin K. Fleischmann

Priiss, J., Evolutionary Integral Equations and Applications, Basel: Birkhéuser-
Verlag 1993, 392S., DM 188.—

Gegenstand der vorliegenden Monographie ist die mathematische Analyse von
linearen Integralgleichungen der folgenden Art:

1) u(t)= [ A@u( — vydr + f(t), teR.,
0

) o(t)= [ A(@v(r — 1)dr + g(1), teR.
0

Hierin reprasentiert die Schar 4(7) eine Familie von i. a. unbeschrinkten Operatoren, die
zwischen geeigneten Banachriumen erkldrt sind. Spezifika dieser Gleichungen sind
Kausalitit, Zeitinvarianz und, im Falle der zweiten Gleichung, Translationsinvarianz. Die
Gleichungen (1), (2) sind Prototypen von Volterra-Integral- oder Integrodifferentialglei-
chungen im unendlichdimensionalen Raum. Von besonderem Interesse sind die sogenann-
ten skalaren Versionen von (1), (2), in denen sich die Operatorenfamilie 4 () darstellen 146t
als ein Produkt 4(¢) = a()A4 aus einem Faltungskern und einem zeit-invarianten Operator.
Dieser Fall impliziert mit der Wahl a(f) = 1 das abstrakte Cauchy Problem erster Ordnung
in der Zeit, wihrend die Wahl a(¢) = t auf das Cauchy Problem zweiter Ordnung in der Zeit
fithrt. Auf diese Weise ermoglicht die hier vorgestellte Theorie eine Einordnung der
klassischen parabolischen und hyperbolischen partiellen Differentialgleichungen in den
Begriffsrahmen der Integralgleichungen vom Volterra Typus. Natiirlich erschopft sich die
Theorie nicht in dieser Einordnung: In der Tat ist es die Behandlung von geschichtsbehafte-
ten oder hereditdren Prozessen, von solchen, denen ein schwindendes Geddchtnis zugrunde
liegt. Derartige Prozesse sind von Vito Volterra zum Beginn dieses Jahrhunderts einge-
fithrt und durch die Schule der rationalen Mechanik in den fiinfziger und sechziger Jahren
mit Blick auf die Modelle der (Thermo-) Viskoelastizitat elastischer Festkorper und '
Fliissigkeiten intensiv untersucht worden. Das Bediirfnis nach derart verfeinerter Model-
lierung entstand aus der Notwendigkeit, die Wechselwirkung von elastischem oder
diffusivem Systemverhalten mit inneren (verborgenen) Parametern zu beriicksichtigen.
Eine solche Wechselwirkung kann Phinomene hervorrufen, wie zum Beispiel eine
Koexistenz von Glittung und wellenfrontartiger Ausbreitung, die durch die klassischen
Konzepte der Differentialgleichungen nicht beschrieben werden kénnen. Die in diesem
Kontext entstandene Phinomenologie einer Interpolation zwischen Diffusion und Wellen-
ausbreitung war, in der Originalliteratur, meistens einem bestimmten Anwendungskon-
text verpflichtet. Mit dem vorliegenden Werk wird erstmals eine umfassende lineare
Theorie vorgestellt, die alle wesentlichen bekannten Anwendungsbereiche umfa3t und in
einen neuen Kontext stellt. Insbesondere im Fall skalarer Faltungskerne gelingt dem Autor
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mit dem Prinzip der Subordination eine iiberaus transparente und iiberraschende Darstel-
lung sowie Deutung der oben angesprochenen Phianomene. Dieses Prinzip gestattet es, das
Losungsverhalten einer Gleichung der oben angegebenen Art aus dem entsprechenden
Verhalten eines ,master*-Problems herzuleiten. Dies bedeutet genauer, dal}, etwa im
Kontext einer zugrunde gelegten Differentialgleichung, wo der Operator A ein Halbgruppe
oder eine Cosinusfamilie erzeugt, die zur Integralgleichung (1) korrespondierende Resol-
ventenfamilie (die eine verallgemeinerte Variation der Konstanten Formel ermoglicht) eine
Darstellung zuliBt, die vollstandig durch die von 4 erzeugte Halbgruppe (resp. Cosinus-
familie) und einer sogenannten Ausbreitungsfunktion (propagation function) charakteri-
siert wird. Diese Funktion, die ausschlieBlich von dem Faltungskern herrithrt, geniigt
selbst einem typischen Geschichtswertproblem auf der Halbachse. Es ist eine iiberraschen-
de und bemerkenswerte Tatsache, daB jenes Problem auf der Halbachse gerade dem
klassischen Rayleigh Problem fiir viskose Fliissigkeiten entspricht. Mit anderen Worten,
durch das Subordinationsprinzip gelingt es, eine groBe Klasse von linearen Integralglei-
chungen, und insbesondere von partiellen Volterra-Integrodifferentialgleichungen, auf das
Studium von Halbgruppen und Cosinusfamilien einerseits und skalaren Integrodifferen-
tialgleichungen eines Standardtypus andererseits zuriickzufiihren. Allein die Transparent-
machung dieses Aspekts weist dem vorliegenden Werk eine besondere Rolle zu. Unabhin-
gig von diesem Gesichtspunkt bietet dieses gut durchdachte und sehr klar abgefalite Buch
neben der bis ins Beweisdetail gehenden Darstellung und Zusammenfassung von bekann-
ten Tatsachen einen grofien Reichtum an Originalresultaten und offenen Problemen. Es
eignet sich daher hervorrragend sowohl zur Einfithrung in dieses interessante und
anwendungsreiche Gebiet als auch zur Grundlage weiterer Forschung. Ein vorbereitendes
Kapitel stellt eine Fiille interessanter Ergebnisse iiber Laplace- und Fouriertransformierte
zusammen. Im Weiteren werden im Rahmen der Untersuchungen zur ,korrekten Gestellt-
heit® analytische und parabolische Resolventen eingefiihrt und analysiert. Neben der
Existenz- und Eindeutigkeitstheorie sind die maximale Regularitdt und Darstellungsfor-
meln sowie Storungsresultate von Interesse. In der Entwicklung des angedeuteten Subordi-
nationsprinzips spielen verschiedene Funktionsklassen, wie etwa die vollstindig monotonen
(oder auch die k-monotonen), die absolut monotonen, die vollstindig positiven Funktionen,
sowie die k-reguliren und die Bernsteinfunktionen eine gewichtige Rolle. Jeder einzelnen
Klasse kommt ihre eigene Theorie zu, und doch versteht es der Autor, entscheidende
Relationen zwischen den verschiedenen Klassen in gebotener Kiirze darzustellen. Auch in
dieser Hinsicht bietet das Buch eine sehr niitzlichen und selten dargebotenen Uberblick,
der sonst nur in mithsamer Literaturrechereche erwirkt werden kann. Das erste Kapitel
schliet mit einer Reihe prominenter Anwendungen aus der Mechanik und der Elektro-
dynamik. Es lieBen sich umstandlos weitere Anwendungen aus anderen naturwissenschaft-
lichen Gebieten angeben.

Das zweite Kapitel ist den nicht-skalaren Gleichungen von Typ (1) gewidmet, in
denen die Faltungskerne operatorwertig sind. Es werden wieder hyperbolische und
parabolische Probleme und deren Anwendungen analysiert. Dabei werden die typischen
Schwierigkeiten und neuartigen Phidnomene dargestellt. Das dritte Kapitel schlieBlich ist
den Problemen auf der ganzen reellen Achse zugewiesen. Es behandelt (neben Anderem) die
Integrabilitit der Resolventen und die zugehdrigen Limes-Gleichungen. Neben der Existenz-
und Eindeutigkeitstheorie werden wieder Fragen maximaler Regularitit, Stérungsresultate
etc. diskutiert. In diesem Kapitel finden sich neben den Anwendungen auch Abschnitte iiber
fast periodische Lisungen, Ergodizitit, sowie eine Ubersicht iiber Halbgruppen-Zuginge zu
dem Geschichtswertproblem und ein Ausblick auf nichtlineare Probleme.

Jeder Abschnitt ist von einer Kommentarsektion begleitet, in der eine prizise
Einordnung der Resultate in die Literatur vorgenommen wird. Danaben werden wertvolle
Hinweise auf offene Fragen gegeben. Die Bibliographie umfaft eine substantielle Auswahl
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von 350 einschlidgigen Publikationen. Diese Buch wird sich zweifellos als Standardwerk im
Bereich der evolutiven Prozesse etablieren.

Bayreuth G. Leugering

de Melo, W., van Strien, S., One-Dimensional Dynamics (Ergebnisse der Mathema-
tik und ihrer Grenzgebiete, 3. Folge, Band 25) Berlin u. a.: Springer-Verlag 1993, 605S.,
DM 148,-

,Eindimensionale Dynamik*, hinter diesem Titel verbirgt sich die Untersuchung
des Langzeitverhaltens Zeit-diskreter dynamischer Systeme, deren Phasenraum X ein
Intervall oder die Kreislinie ist und deren Dynamik durch die Iteration einer Abbildung
f: X — Xbeschrieben wird. Trotz klassischer Wurzeln (z. B. in Poincarés Untersuchungen zu
Kreishombomorphismen von 1880 und Denjoys Arbeit iiber Kreisdiffeomorphismen von
1932) hat das Gebiet erst seit Mitte der 60er Jahre wesentliche neue Impulse erhalten:
Sarkovskiis Satz uiber die ,, Koexistenzregeln“ periodischer Orbits bei stetigem f (der bei
seinem Erscheinen 1964 der Entwicklung so weit voraus war, da Li und Yorke in ihrer
berithmten Arbeit Period three implies chaos noch 1975 im wesentlichen einen Spezialfall des
Satzes von Sharkovskii publizieren konnten), die von Milnor und Thurston entwickelte
kombinatorisch-topologische Knettheorie, Guckenheimers topologisch-metrische Struk-
turuntersuchungen, Feigenbaums Entdeckung universellen Skalierungsverhaltens bei der
Periodenverdopplung sowie Jakobsons Nachweis, dafB} die logistischen Abbildungen f(x)=
ax(1 —x) fiir eine Menge von Parametern a von positivem Lebesgue Maf ein absolut stetiges
invariantes Mal besitzen, gehoren sicher zu den wichtigsten Ergebnissen der 70er Jahre.
Diesen Stand der Dinge spiegelt Collet und Eckmanns Buch Iterated Maps of the Interval as
Dynamical Systems von 1980 wieder, das seitdem als Standardreferenz gegolten hat.

Von nun an wird One-Dimensional Dynamics diese Rolle iibernehmen. Den
Autoren ist es iiberzeugend gelungen, die oben angedeuteten unterschiedlichen Entwick-
lungsstrange mit ihren vielfaltigen Querverbindungen unter Einbeziehung aktuellster
Resultate einheitlich darzustellen. Da sie zu diesem Zweck viele Beweise véllig neu
konzipiert haben, erscheinen selbst klassische Ergebnisse oftmals in neuem Licht, und auch
ein mit der Materie gut vertrauter Leser kann eine Fiille von Einsichten gewinnen. Die
Abschnitte, in denen offene Probleme diskutiert werden, sind fiir einen solchen Leser
geradezu eine Pflichtlektiire. Da die einzelnen Kapitel im wesentlichen unabhingig
voneinander sind, kann sich aber auch der , Einsteiger” anhand des Buches in ein begrenztes
Thema einarbeiten und bis zum aktuellen Stand der Forschung vorstoen. Mit Lésungshin-
weisen versehene Ubungen regen zum selbstindigen Weiterarbeiten an. Mehr als 400
bibliographische Eintrige verschaffen einen guten Uberblick iiber die Originalliteratur.

Inhalt: Nach einem einfithrenden Kapitel0, in dem die Leitfragen des Buches
vorgestellt werden, dreht sich im 1. Kapitel alles um Kreishomdo- und -diffeomorphismen f.
Die Rotationszahl wird dynamisch durch eine Folge von Riickkehrzeiten des kritischen
Punktes definiert, wodurch sich ein sehr direkter Zusammenhang zwischen algebraischen
Eigenschaften der Rotationszahl und dynamischen Eigenschaften von f ergibt. (Dariiber
hinaus hat diese Methode den Vorteil, daBl die gleichen Konzepte auch bei der Untersuchung
nichtinvertierbarer Abbildungen eine wesentliche Rolle spielen.) Neben den klassischen
Ergebnissen von Poincaré und Denjoy iiber die topologische (Semi-) Konjugation solcher
Abbildungen zu Rotationen, wird auch Hermans Satz iiber C'-Konjugation in einer etwas
abgeschwichten Form bewiesen.

Kapitel 2 ist der kombinatorischen Theorie nichtinvertierbarer eindimensionaler
Abbildungen gewidmet. Nach einem einleitenden Abschnitt zum Satz von Sharkovskii
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werden mit der Knettheorie und Hofbauers Markov-Diagrammen zwei Zuginge zur
kombinatorischen Beschreibung der essentiellen Konjugationsklassen solcher Abbildungen
dargestellt. AnschlieBend wird der Thurston-Algorithmus zum Auffinden gegebener
~kombinatorischer Typen“ in ,vollen Familien® /-modaler Abbildungen untersucht. Im
Spezialfall der unimodalen quadratischen Abbildungen fiihrt das bis zu einem (sehr knapp
gehaltenen) Beweis fiir die monotone Abhingigkeit der Knetinvariante vom Parameter.
Weitere Stichworte zu diesem Kapitel sind die topologische Entropie, die Konjugation /-
modaler zu stiickweise linearen stetigen Abbildungen und, im Vorgriff auf Kapitel 4, die
Nichtexistenz wandernder Intervalle firr unimodale Abbildungen mit negativer Schwarz-
scher Ableitung und einem nichtflachen kritischen Punkt. In Kapite! 4 selbst wird gezeigt,
daB ganz allgemein C%-Abbildungen mit nichtflachen kritischen Punkten keine wandernden
Intervalle haben und dariiberhinaus alle periodischen Punkte von hinreichend hoher
Periode instabil sind. Der Beweis dieses Ergebnisse wird von sehr allgemeinen Sitzen iiber
Distorsionsabschitzungen (Stichworte: Doppelverhiltnis, reelles Kébe-Prinzip) vorberei-
tet. Dem Zusammenhang zwischen Hyperbolizitit und struktureller Stabilitit sowie der
Beschreibung der nichtwandernden Menge multimodaler Abbildungen ist das 3. Kapitel
gewidmet. Dazu kommen der Beweis eines Satzes von Mafié, der besagt, daB eine kompakte,
invariante Menge einer C2-Abbildung hyperbolisch ist, wenn nur alle periodischen Punkte
dieser Menge hyperbolisch sind und die Menge keinen kritischen Punkt enthilt, sowie
Verallgemeinerungen dieses Satzes fiir den Fall, daB die invariante Menge kritische Punkte
enthilt (Misiurewicz-Abbildungen).

In Kapitel5 werden ergodische Eigenschaften (relativ zum Lebesgue MaB) von
Intervallabbildungen untersucht, zumeist unter der Voraussetzung negativer Schwarzscher
Ableitung. Behandelt werden die Klassifikation metrischer Attraktoren fiir unimodale
Abbildungen, Zusammenhinge zwischen der Existenz absolut stetiger invarianter Wahr-
scheinlichkeitsmaBe und verschiedenen nichtgleichméBigen Expansionseigenschaften, Bo-
wen-Ruelle-Sinai-MaBe und schlieBlich ein ausfiihrlicher Beweis des schon oben erwidhnten
Satzes von Jakobson in der Fassung von Benedicks und Carleson.

Das 6. Kapitel enthilt eine detaillierte Ausarbeitung der Sullivanschen Renormali-
sierungstheorie fiir unendlich oft renormalisierbare unimodale Abbildungen endlichen
kombinatorischen Typs mit quadratischem kritischen Punkt. Das Hauptergebnis besagt,
dafl der Renormalisierungsoperator %, eingeschrinkt auf Klassen von Abbildungen
gleichmiBig beschrankten topologischen Typs, eine kompakte invariante Teilmenge &/ mit
folgenden Eigenschaften besitzt: i) Fiir alle £ geht der C! " *-Abstand von #"fzu &/ gegen 0,
ii) R, ist topologisch konjugiert zu einem vollen zweiseitigen Shift iiber endlich vielen
Symbolen, iii) fiir Abbildungen f, g gleichen kombinatorischen Typs konvergiert Z"f — #"g
gegen 0. Durch die Heranziehung tiefliegender Methoden der komplexen Analysis
unterscheidet sich dieses Kapitel wesentlich vom Rest des Buches.

Erlangen G. Keller

Malkowsky, E., Nickel, W., Computergraphik in der Differentialgeometrie, ein
Arbeitsbuch fiir Studenden inklusive objektorientierter Software (herausgegeben von Kurt
Endl), Wiesbaden u. a.: Vieweg-Verlag 1993, 588 S., DM 148,

Der Band nennt sich , Ein Arbeitsbuch fiir Studenten inklusive objektorientierter
Software“. Zielgruppe diirften weniger Studenten und Dozenten sein, die auf dem Gebiet
der Differentialgeometrie arbeiten und am Computer einmal sehen mdchten, was sie da
eingentlich tun. Vielmehr scheint dies Buch geschrieben fiir Freunde des objektorientierten
Programmierens in Pascal.
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Das Buch hat sich das - in meinen Augen sehr reizvolle und lohnende - Ziel gesetzt,
die Moglichkeiten des Personal Computers zur Darstellung differentialgeometrischer
Begriffe zu erschliefen. Hierzu wird ein offenes, objektorientiertes und erweiterbares
Softwarepaket zur Darstellung zwei- und dreidimensionaler differentialgeometrischer
Sachverhalte motiviert, vorgestellt und dokumentiert. Der Umfang des Softwarepaketes ist

zugleich (fast) Inhalt des Buches - parallel zur Theorie der (klassischen) Differentialeeome-

trie werden die Implementation der dazugehorigen Objekte mit den jeweiligen Methoden
erklart.

Das erste Kapitel umfaBlt die graphische Darstellung von Kurven und Flidchen
sowie die objektorientierte Implementation der Objekte fiir Kurven und Fliachen und wird
durch einfache Beispiele motiviert.

Die Kapitel I bis V behandeln den (klassischen) Stoff der Differentialgeometrie im
R? und R*? bis zum Theorema Egregium. Entsprechend der Intention des Buches wird der
Stoff wenig motiviert (besonders in Kapitel IV und V), Kenntnisse der Differentialgeometrie
sind hilfreich bis notwendig. Zu den vielen Beispielen von Kurven und Flichen und ihren
differentialgeometrischen Eigenschaften werden jeweils Implementation von (abgeleiteten)
Objekten und (virtuellen) Methoden erklart. Die Erklirung der Implementation der
Methoden ist allzeit detailliert, wirkt aber oft monoton. Es fillt auf, daB Objekte und
Methoden in groBem Umfang spezialisiert, jedoch wenig verallgemeinert werden. Die
Formeln sind schwer lesbar, da Indizes und Exponenten nur durch den Kontext zu
unterscheiden sind und zudem die gleiche Gr6Be wie der Text haben. Die vielen Beispiele
und die Ausfiihrlichkeit der Beschreibung von Objekten und Methoden leiden unter den
schwer lesbaren Formeln und der Monotonie der Beschreibungen.

In Kapitel VI werden die numerischen Methoden zur Nullstellensuche und zur
Integration erkldrt. Unverstdndlich ist, daB hier das Bisektionsverfahren als Einschlufver-
fahren verwendet wird, obwohl EinschluBverfahren von weitaus héherer Konvergenzord-
nung bekannt sind. Kapitel VII befaf3t sich mit der Ausgabe von Grafiken auf Peripheriege-
riten mittels z. B. HPGL oder Postscript. In Kapitel VIII findet der Leser einen Uberblick
tiber die im Softwarepaket verwendeten Units, eine vollstindige Beschreibung der Objekte
fiir Kurven, Flachen und Kurven auf Flichen sowie eine Hierarchie aller Objekte.

Das mitgelieferte Softwarepaket ist tatsichlich objektorientiert, verstindlich und
gut dokumentiert und dadurch erweiterbar. Schwierigkeiten entstehen allenfalls durch die
hohe Anzahl der verschiedenen abgeleiteten Objekte.

Ich habe von den 148 mitgelieferten Programmen etwa die Hélfte ausprobiert. Sie
funktionierten ausnahmslos, allerdings erst nachdem ich alle residenten Programme aus
meinem Autoexec.Bat herauskommentiert hatte. Wer diese Programme laufen 148t, braucht
viel Arbeitsspeicher und auch viel Zeit. Einem Studenten, der sein Studium innerhalb der
Regelstudienzeit abschlieBen mochte, wiirde ich das Buch nicht in die Hand driicken.

Meine Meinung zu diesem Band ist sehr zwiespiltig: Einerseits ist das Buch zu
diesem Thema mit einem offenen, solide programmierten Softwarepaket véllig neu,
anregend und z. T. auch &sthetisch reizvoll. Manche der Programme faszinierten mich sehr.
Andererseits wird gelegentlich der Aufwand iibertrieben. Der Computerbildschirm ist
graphischer Reproduktion nur dort iiberlegen, wo sich etwas bewegt. Und das ist hier leider
meist so programmiert, daf3 durch die Bewegung die schon vorhandenen Linien aufgefres-
sen werden. Besonders betroffen war ich iiber das, was die Autoren als implizite Fliache
verkaufen. Da mich das Zeichnen impliziter Fldchen sehr interessiert, und weil dies noch
keines der kommerziellen Softwarepakete wirklich kann, war der Paragraph II1,5 iiber
Darstellung von Fliachen in impliziter Form der erste, den ich mir ansah. Zu meiner
grenzenlosen Enttduschung entpuppten sich die Fldchen dort aber als im héchsten MafBe
explizit, ganz normale Funktionsgraphen, wie sie schon lange Standard in der Computer-
graphik sind. Ein derartiger Miflbrauch der Sprache darf nicht passieren.
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Das Buch weist neue Wege und enthélt neue Ideen. Jeder, der sich fiir Visualisie-
rung von Geometrie interessiert, sollte es sich ansehen. Ich hoffe aber, daB3 es auf seinem
Gebiet in dieser Art nicht das letzte Buch sein wird.

Erlangen W. Barth
(unterstiitzt von S. Endral)

Barnsley, M., Fractals Everywhere (zweite Aufl.), Boston u.a.: Academic Press
1993, 5318., £33,-

Dies ist ein ungewohnliches Buch, dessen 1988 erschienene erste Auflage die
unterschiedlichsten Reaktionen hervorgerufen hat, von begeisterter Zustimmung bis zur
totalen Ablehnung.

Abwechslung zur niichternen ,Einfithrung in die Theorie ...“ verheifit schon der
Titel, der offenbar Schule macht. Das neue Stochastik-Lehrbuch von E. Behrends nennt sich
,Uberall Zufall“ - eine These, die gewiB vorbehaltloser angenommen wird als die von
Barnsley. Auffallend ist ferner die Ausstattung des Buches: groBziigig im Layout, leicht und
fliissig in der Sprache, und vor allem: tiberall Illustrationen, schwarz-weil und in Farbe, mit
viel Sorgfalt durch den Computer erzeugt.

Diirfen Mathematiker Bilderbiicher haben? Ich denke, wir brauchen sie. Die
Meinung von Studenten ist iiberwiegend positiv: ,Ein mathematisches Lesebuch, nicht
besonders akademisch, aber dafiir auch nicht so trocken, es animiert zum Weiterlesen und
ist als First Course doch wunderbar gelungen“. Sicher gibt es generationsbedingte
Unterschiede im Leseverhalten, und die Studenten von heute sind von klein auf von den
Medien umworben worden. Ein Fachbuch wendet sich an den Verstand. Bei einem
Lehrbuch, das feeling fiir hohere Mathematik vermitteln will, ist die Frage schon legitim,
was es den Sinnen, wenigstens dem Auge, bietet.

Dementgegen steht die ebenfalls ernstzunehmende Kritik von Kollegen. Neben der
einseitigen Ausrichtung des Buches und dem iibermaBigen Gebrauch von Superlativen wird
bemaéngelt, daf3 sich iiber 100 kleinere und gréBere Fehler in der ersten Auflage gefunden
haben, zuviel fiir einen First Course. Auch in der neuen Auflage gibt es viele Druckfehler.
Schwerer wiegt es, wenn des 6fteren der mathematische Kern eines Problems durch
blumenreiche Sprache umgangen wird und sich dadurch Fehler einschleichen. So wird etwa
der Schubfachschluf} in folgender laxen Art abgehandelt: ,, By the Pigeon-Hole Principle ( a
huge number of pigeons laying eggs in two letter boxes = at least one letter box contains a
huge number of angry pigeons), one of the balls, say B;, contains infinitely many of the
points x,.“ Verstindlicher ist hier ohne Zweifel eine strenge Formulierung, z. B. ,weil die
Vereinigung von endlich vielen endlichen Mengen endlich ist‘.

Was mathematische Siatze und Definitionen betrifft, bleibt der Text weitgehend im
Rahmen eines traditionellen Einfithrungskurses in die Topologie der metrischen Rdume. Es
werden kaum Vorkenntnisse vom Leser erwartet. Der Stoffumfang ist, gemessen an der
Seitenzahl des Buches, recht gering. Im Mittelpunkt stehen einige nicht allzu tiefliegende
Sitze tiber Existenz und Konstruktion selbstihnlicher Mengen und Maf3e. Selbstéhnlichkeit
fur eine kompakte Menge 4 im R" bedeutet, daf} sie Vereinigung von Teilen w; (4) ist, wobei
die w; gewisse kontraktive Abbildungen, z.B. Ahnlichkeitsabbildungen bezeichnen. Der
Verfasser hat hierfiir den Begriff IFS (iterated function systems) geprigt, weil sich A4 durch
zufillige Iteration der w; auf dem Computer erzeugen 14t. Die Funktionen w; sind bei
Barnsley fast ausschlieBlich affine Abbildungen. Dies stellt im Rahmen der Thematik
,Fraktale* zwar eine Einschrinkung dar, aber es wird damit an Arbeiten des Verfassers
angekniipft. Barnsleys Gruppe hatte als erste natiirlich wirkende Bilder mit affinen
Abbildungen synthetisiert. Der durch vier Abbildungen erzeugte Farn dient hierfiir als
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iltere bekannte Werke, wie etwa den Grobner u. Hofreiter, durch mehr Systematik und
Streben nach Perfektion weitgehend verdréngt. Es sind dies:

Das vierbandige Werk ,,Integrals and Series“ von A. P. Prudnikov, Yu. A. Brychkov
u. O.I. Marichev (abgekiirzt PBM), vertrieben von Gordon and Breach zu einem regulidren
Preis von $ 175.- pro Band mit erheblicher Reduktion fiir Privatpersonen.

Das zweibiandige Werk , Tafeln“ von Gradstein und Ryshik bei Harri Deutsch (kurz
GR(hd)), identisch mit der Ubersetzung des fritheren Deutschen Verlags der Wissenschaften
in der DDR und, falls nicht inzwischen vergriffen, zu einem Gesamtpreis von DM 68,—
erhiltlich.

SchlieBlich die oben genannte einbindige englische Ubersetzung desselben russi-
schen Originalwerks, die jetzt als fiinfte Auflage vorliegt und kurz GR(ap) genannt sei.

Zunichst seien die beiden GR-Ausgaben mit dem PBM verglichen. Mit seinen vier
Bianden (Bd.1 Elementary Functions, Bd.2 Special Functions, Bd.3 More Special
Functions, Bd. 4 Laplace Transforms) ist der PBM viel umfangreicher. Die ersten beiden
Binde entsprechen etwa dem Stoff des GR. Dabei ist der GR im einzelnen keineswegs
magerer. So konnten wir z. B. im GR zwolf Integrale mit der Funktion 1n In finden,im PBM
dagegen nur sieben. Ein gesuchtes Integral ist im PBM leichter zu lokalisieren, da bereits im
Inhaltsverzeichnis die verschiedenen Typen in mathematischer Schreibweise aufgelistet
sind, wahrend sie beim GR mit knappen Worten klassifiziert werden.

Der GR erfordert dagegen etwas Sachverstand. Ausfiihrlich wird beschrieben, wie
man das Werk benutzen soll. Von Integralen, die durch Substitution auseinander
hervorgehen, ist in der Regel nur der einfachste Vertreter aufgelistet. Der Benutzer muf also
bereit sein, etwas Vorarbeit zu leisten. Gelegentlich finden sich kleine Hinweise, wie man
durch eine geeignete Substitution weitere Typen erschlieBen kann. Eine Stammfunktion, die
man unter , Indefinite Integrals“ vergeblich sucht, kann eventuell unter ,,Definite Integrals“
als Wert eines Integrals mit allgemeiner Grenze auftauchen. Im PBM ist die Trennung der
Kapitel konsequenter.

Eine wesentliche Schwiche des PBM besteht darin, dafl man auf die Richtigkeit der
Formeln blind vertrauen mufl und auch keinen Zugang zu ihrer Herleitung bekommt,
wihrend der GR zu jeder nichttrivialen Formel eine Quelle angibt. Erwahnt sei auch, daB
der PBM unserer Bibliothek bei guter Papierqualitiat schlecht gedruckt ist, so daB
Exponenten und Betragsstriche oft unlesbar sind.

Abgesehen von der unterschiedlichen GréBenordnung der Anschaffung — man
sollte nur die ersten beiden Bande des PBM mit dem GR vergleichen - meinen wir, daf} der
Mathematiker mehr zum GR neigen sollte, wihrend der Nichtmathematiker den PBM als
bequemer empfinden kénnte.

Hat man sich einmal zum GR durchgerungen, dann gibt es mehrere gute Griinde
fiir GR(ap), die neue Auflage bei Academic Press:

Die fiinfte Auflage wurde vollstindig neu gesetzt. Das Format ist mit 19 cm X 24 cm
jetzt gréBer, auch gegeniiber dem GR(hd). Dadurch konnten die meisten Formeln in einer
einzigen Zeile dargestellt werden.

Papier- und Druckqualitit sind ebenso gut wie bei der vierten Auflage und
iibertreffen damit deutlich die des GR(hd), der in diesem Punkt noch DDR-Niveau besitzt.

Die Numerierung der Formeln stimmt sowohl beim GR(ap) als auch beim GR(hd)
mit der des russischen Originals iiberein, doch wurden in den GR(ap) zahlreiche neue For-
meln aufgenommen und unter Fortfiihrung der Numerierung gesondert gekennzeichnet.

Wihrend der GR(hd) im Band 2 mit Kapitel 9 endet, besitzt der GR(ap) die im
russischen Original nicht vorhandenen Kapitel 10-17, die bereits der vierten Auflage
hinzugefiigt wurden. Sie tragen die Titel: Vector Field Theory, Algebraic Inequalities,
Integral Inequalities, Matrices and Related Results, Determinants, Norms, Ordinary
Differential Equations und schlieBlich Fourier, Laplace and Mellin Transforms. Mit diesen
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gezeigt, wie man mittels dieser Methode auf elegante Art Ungleichungen mit bestméglichen
Konstanten iiber Martingale gewinnt. Das Kapitel wird dann abgeschlossen mit einer
Einfithrung in die sogenannten Propheten-Ungleichungen.

Im 4. Kapitel wird die Martingaltheorie auf gerichteten Indexmengen ziemlich
komplett dargestellt. Die hierfiir charakteristischen Vitali-Bedingungen werden mittels
Stopzeiten oder verallgemeinerten Stopzeiten definiert. Dies wirkt sich auf die Verstandlich-
keit der Darstellung duflerst vorteilhaft aus. Die Niitzlichkeit der Amarts wird erneut
herausgestellt. Wahrend die klassische Vitali-Bedingung (V) notwendig und hinreichend fiir
die fast sichere Konvergenz von L! beschrinkten Amarts ist, erweist sich fiir die fast sichere
Konvergenz von L' beschrinkten Martingalen die erst von Millet und Sucheston
eingefiihrte schwache Vitali-Bedingung (C) als notwendig und hinreichend.

Im 5. Kapitel wird das Wechselspiel zwischen geometrischen Eigenschaften von
Banachrdumen einerseits und Konvergenzeigenschaften von Martingalen und Amarts
andererseits vorgefithrt. Bei Zufallsvariablen mit Werten in Banachriumen zeigt sich
allerdings ein fundamentaler Unterschied zwischen Martingalen und Amarts: wihrend man
fir Amarts nur fast sichere schwache Konvergenz erhilt, hat man fiir Martingale fast sicher
Normkonvergenz, falls der zu Grunde liegende Banachraum die Radon-Nikodym-Eigen-
schaft erfiillt. Weitere typische Schlagworte und Hauptresultate sind: Dentabilitit,
Operatorideale, Pietsch-Faktorisierung, Asplund-Operatoren, Choquet-Edgar-Theorem,
Ryll-Nardzewski-Fixpunktsatz, Dvoretzky-Rogers-Lemma sowie die geometrische Cha-
rakterisierung der Radon-Nikodym-Eigenschaft von Phelps und Bourgain.

Im 6. Kapitel wird die Theorie der reellwertigen Martingale {iber der Indexmenge N
weiterentwickelt. Neben Standardresultaten von Hajek-Renyi und Chow, interessanten
Anwendungen auf *-mischende Folgen und das Lifting-Problem werden einige grundlegen-
de Sitze iiber die quadratische Variation eines Martingales bewiesen, jedoch nicht mittels
der im 3. Kapitel vorgestellten Methode der Bikonkavitit, sondern einer #lteren, ebenfalls
auf Burkholder zuriickgehenden Methode.

Im 7. Kapitel wird neben einer kurzen Einfithrung in die Ableitungstheorie auf dem
R" die abstrakte Ableitungstheorie entwickelt. Diese steht weitgehend in Analogie zu der im
4. Kapitel vorgestellten Martingaltheorie auf gerichteten Indexmengen. Da jedoch das
intuitive Konzept der Stopzeit nicht mehr zur Verfiigung steht, ist die Darstellung weniger
leicht verstiandlich und technisch aufwendiger. Daneben werden auch noch die sogenannten
Halo-Sétze und andere Resultate, die kein Gegeniiber in der Martingaltheorie besitzen,
dargestellt, jedoch sucht man vergeblich nach einer Reihe klassischer Resultate auf dem R”,
wie zum Beispiel das berithmte Uberdeckungslemma von Besicovitch.

Im 8. Kapitel werden die L'-Ergodensitze abgehandelt. Hohepunkt ist der duBerst
allgemeine Ergodensatz von Akcoglu und Sucheston fiir subadditive Prozesse, der
insbesondere den klassischen Ergodensatz von Chacon und Ornstein umfaft.

Im 9. Kapitel wird eine allgemeine Methode dargestellt, wie man aus einparametri-
gen Konvergenzsdtzen mehrparametrige Konvergenzsitze erhalt. Dies gilt sowohl fiir
Konvergenzsitze von Martingalen als auch Ergodensitze. L log* L-Bedingungen sind
typisch fiir die gewonnenen Sétze, was wiederum eine ganze Reihe klassischer Mehrparame-
ter-Resultate ausschlief3t.

Insgesamt 148t sich sagen, dal man mit diesem Buch Wissen aus erster Hand erhalt.
Das Buch wird durch viele Ubungsaufgaben am Ende der einzelnen Abschnitte bereichert.
In diesen werden zahlreiche weiterfithrende Resultate entweder durch knappe Beweisskiz-
zen oder durch Literaturhinweise fiir den Leser aufbereitet. Ein umfangreiches Literaturver-
zeichnis sowie vollstandige Sach- und Personen-Indizes runden das insgesamt sehr
gelungene Buch ab. Die Zahl der Druckfehler hilt sich im iiblichen Rahmen. Leider sind
mancherorts die Nummern bei zitierten Sdtzen nicht korrekt. Die Verarbeitung des Buches
ist sehr gut und der Preis angemessen. Das Buch eignet sich gut fiir Seminare und
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Pfeilen“; Kocher und ihre Darstellungen hat Grothendieck schon sehr frith unter den
Namen diagram schemes und diagrams betrachtet; neu ist bei Gabriel der systematische
Einsatz von Kochern zur Beschreibung von Algebren (8.1): jede endlich-dimensionale
Basisalgebra 4 ist Faktoralgebra der Wege-Algebra eines endlichen Kéchers 4(4); die
Kategorie der 4-Moduln ist auf diese Weise eine volle Unterkategorie der Kategorie der
Darstellungen von 4(d4). Der Kécher 4(A4) ist sicher die wichtigste darstellungsthereotische
Invariante von 4; die Punkte des Kéchers entsprechen den Isomorphieklassen der einfachen
A-Moduln, die Pfeile nicht-zerfallenden Erweiterungen zwischen einfachen A-Moduln;
bezeichnen wir mit J(4) das Radikal von 4, so beschreiben die Punkte des Kéchers 4 /J(A),
die Pfeile dagegen J(4)/J(A)2.

Um brauchbare Klassifikationssétze fiir unzerlegbare Moduln zu erhalten, mufl
man einschneidende Voraussetzungen an die zu untersuchenden Algebren stellen. Wie man
am n-Unterraum-Problem fiir n >4 (hier arbeitet man mit einer Algebra der Dimension
2n+1) oder am Matrizenbiischel-Problem (die zugehorige Algebra ist 4 dimensional)
ablesen kann, wird es iiblicherweise unendlich viele Isomorphieklassen unzerlegbarer
Moduln geben; man hat sich daher gefragt. welche Algebren darstellungs-endlich sind. waon

Brauer und Thrall haben wohl schon in den 40er Jahren zwei Vermutungen in die
Welt gesetzt, die viel Interessen auf sich gezogen haben und deren Ldsungen einen
wesentlichen Teil des vorliegenden Buches beanspruchen. Die erste explizite Formulierung
der Vermutungen findet sich bei Jans; zwar wird berichtet, daB Brauer diese Fragestellungen
eher als Ubungsaufgaben (beim Studium von Gruppenalgebren) verstanden wissen wollte,
aber man kann festhalten, daB} viele der neuen Methoden der Darstellungstheorie beim
Arbeiten an dieser Problemstellung entwickelt worden sind, und daB sich diese Methoden
dabei bewidhrt haben.

Die erste Brauer-Thrall-Vermutung (4.5) besagt, daB eine Algebra entweder
darstellungs-endlich ist oder unzerlegbare Moduln beliebig grofer Dimension besitzt. Diese
Vermutung wurde 1968 von Roiter bewiesen. In der Folge gab es eine Vielzahl von Arbeiten
der Kiever Schule von Nazarova und Roiter, in denen als Hilfsmittel zur Entwicklung der
Darstellungstheorie von Algebren eine solche fiir Halbordnungen und hnliche Strukturen
entwickelt wurde. Von besonderer Bedeutung haben sich dabei die Unterraumkategorien
von Vektorraumkategorien erwiesen. Interessanterweise wird die erste Brauer-Thrall-
Vermutung im vorliegenden Buch mit Hilfe derartiger Unterraumkategorien bewiesen.
Reduktionsalgorithmen (5.3) erlauben es, komplizierte Darstellungen induktiv zu konstru-
ieren. Mit ihrer Hilfe konnte Kleiner sowohl alle minimalen darstellungs-unendlichen
Halbordnungen (es gibt 5 solcher Halbordnungen) als auch die ,,aufrichtigen* darstellungs-
endlichen Halbordnungen (es gibt 14) klassifizieren (5.4). Dabei zeigt sich, da man jeder
Halbordnung eine quadratische Form zuordnen kann, an der man den Darstellungstyp
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man den Auslander-Reiten-Kécher von 4, seine Punkte sind die Isomorphieklassen der
unzerlegbaren 4-Moduln, Pfeile zeigen die Existenz sogenannter irreduzibler Homomor-
phismen an; auch fiir darstellungs-unendliche Algebren kann man einen derartigen
Auslander-Reiten-Kécher definieren.

In der Darstellungstheorie hat es sich bewihrt, Ringe und additive Kategorien als
Dinge anzusehen, die nicht wesentlich voneinander verschieden sind: Ringe sind additive
Kategorien mit einem einzigen Objekt; additive Kategorien sind also, wie Mitchell
formulierte, ,Ringe mit vielen Objekten“. Suchen wir eine Entsprechung zu endlich-
dimensionalen Algebren, so empfiehlt es sich, additive Kategorien zu betrachten, in denen
einerseits die Homomorphismenrdume Hom(X, Y) endlich-dimensionale k-Vektorrdume
sind, andererseits jeder idempotente Endomorphismus die Projektion auf einen direkten
Summanden ist, sie werden im vorliegenden Buch Aggregate genannt und bilden den
Hauptgegenstand der Untersuchung Der Algebra 4 entspricht das Aggregat A-pro der
endlich-erzeugten projektiven 4-Moduln; wichtig ist, daB die Kategorie A-mod aller
endlich-dimensionalen 4-Moduln selbst wieder ein Aggregat ist. Ist & ein Aggregat, so
konnen wir wie bei Algebren vom Radikal .# von & sprechen und mit Hilfe von #/.#2einen
Kocher von o konstruieren; seine Punkte sind die Isomorphieklassen der unzerlegbaren
Objekte in &, Pfeile entsprechen ,,irreduziblen Homomorphismen.

Der Begriff der irreduziblen Homomorphismen wurde von Auslander und Reiten
geprigt (vor dem Hintergrund der Analogie von additiven Kategorien und Ringen
entsprechen die irreduziblen Homomorphismen den irreduziblen Elementen, wie sie etwa
fiir kommutative Ringe definiert sind: irreduzible Homomorphismen sind solche, die keine
Jnicht-trivialen“ Faktorisierungen besitzen); der Kocher von 4-mod, den man auf diese
Weise erhilt, ist (zusammen mit einer zusétzlichen Struktur, der sogenannten Auslander-
Reiten-Verschiebung) der Auslander-Reiten-Kécher von A. Die Existenz ,vieler” irreduzi-
bler Homomorphismen in einer beliebigen Modulkategorie muf3 iiberraschen: sie folgt aus
der Existenz der fast-zerfallenden Erweiterungen, die von Auslander-Reiten gezeigt wurde
©.7N.

Die dritte Entwicklungslinie beginnt mit Gabriel’s Untersuchung zur Darstellungs-
theorie von Kéchern, die ebenfals 1972 vorgelegt wurde: die Wege-Algebra eines Kochers ist
genau dann darstellungs-endlich, wenn der zugrundeliegende Graph eine disjunkte
Vereinigung von Dynkin-Diagrammen A, ID,, [Eg, [E; oder g ist, und in diesem Fall gibt es
eine kanonische Bijektion zwischen den Isomorpieklassen der unzerlegbaren Darstellungen
des Kochers und den positiven Wurzeln der entsprechenden halbeinfachen komplexen Lie-
Algebra (7.1). Kurz danach haben Bernstein, Gelfand und Ponomarev den Zusammenhang
zwischen der Darstellungstheorie endlicher Kocher und Methoden der Lie-Theorie klarer
herausgearbeitet, indem sie Spiegelungsfunktoren definierten, die den Erzeugenden der
Weylgruppe entsprechen. Auf diese Weise zeigen sie, dal die Wege-Algebra eines Dynkin-
Kochers darstellungs-gerichtet ist, daf} also die unzerlegbaren Darstellungen M,, ..., M, so
angeordnet werden koénnen, dal Hom (M;, M;) =0 fiir i > j gilt; entsprechend konstruieren
sie im darstellungs-unendlichen Fall zwei abzdhlbare Folgen unzerlegbarer Moduln, die
sogenannten praprojektiven und priinjektiven Moduln.

Donovan-Freislich und Nazarova haben auch die unzerlegbaren Darstellungen der
erweiterten Dynkin-Diagramme A,, D,, Es, IE;, oder IE; (man nennt dies die zahmen
Kocher) klassifiziert; neben den praoprojektiven und den priinjektiven Darstellungen gibt
es eine durch die projektive Gerade IP, indizierte Familie von ,,R6hren” (11.1, 11.6).

Ganz allgemein hat dann Kac gezeigt, daB} fiir einen beliebigen endlichen Ko6cher
ohne orientierte Kreise gilt: die Dimensionsvektoren der unzerlegbaren Darstellungen sind
gerade die positiven Wurzeln der zugehorigen Kac-Moody Lie-Algebra; zu den reellen
positiven Wurzeln gehort eine einzige Isomorphieklasse, zu den imagindren positiven
Wurzeln geh6ren unendlich viele (7.4). Was ist die Bedeutung eines derartigen Ergebnisses?
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Die Wege-Algebren von Kéchern sind gerade die erblichen Algebren, aber nur in wenigen
Anwendungen st68t man auf erbliche Algebren. Allerdings gilt: Fiir jede Algebra werden
die Moduln mit Sockelldnge 2 durch eine erbliche Algebra beschrieben. Wir sehen also, daf
man fiir eine beliebige Algebra den unzerlegbaren Moduln der Sockellinge 2 als Invariante
eine positive Wurzel zuordnen kann.

Die genannten drei Entwicklungen begannen mit Fragen iiber darstellungs-
endliche Algebren, stellten aber Methoden bereit, die auch fiir darstellungs-unendliche
Algebren von Interesse sind. Die Methoden wurden unabhingig voneinander entwickelt
und es ist sehr reizvoll zu sehen, daB sie sich sehr schén erginzen. Gerade das
Zusammenspiel dieser verschiedenen Methoden sollte betont werden. Alle Methoden
werden im vorliegenden Buch umrissen.

Ausgangspunkt vieler Uberlegungen sind relativ allgemeine Begriffsbildungen der
homologischen Algebra. Der erste Beweis fiir die Existenz der fast-zerfallenden Erweiterun-
gen beruhte auf einer extremen Spezialisierung einer Adjunktionsformel im Buch von
Cartan-Eilenberg. Wir haben oben mehrfach gesehen, daB bei darstellungstheoretischen
Problemen ganzzahlige quadratische Formen herangezogen werden kénnen. Diese Formen
leben jeweils auf Grothendieck-Gruppen (zum Beispiel auf der Grothendieck-Gruppe Ko(A4)
aller endlich-dimensionalen 4-Moduln modulo exakter Folgen); sie kodieren Informatio-
nen, die durch die Ext-Gruppen gegeben sind. Typisches Beispiel ist im Fall einer Algebra
von endlicher globaler Dimension die Form, die durch die alternierende Summe der
Dimensionen der Ext-Gruppen gegeben ist.

SchlieBlich sollten noch die Kipp-Funktoren erwihnt werden, die einerseits die
Morita-Aquivalenzen, andererseits die Spiegelungsfunktoren von Bernstein-Gelfand-
Ponomarev verallgemeinern. Die Tatsache, daB viele Modulkategorien zwar sehr dhnlich,
aber nicht zueinander Aquivalent sind, weist darauf hin, daB man statt mit Morita-
Aquivalenzklassen mit groBeren Ahnlichkeitsklassen von Algebren arbeiten sollte (zum
Beispiel bringen die Spiegelungsfunktoren die Darstellungen von Kéchern mit gleichen
unterliegenden Graphen, aber verschiedenen Orientierungen, zueinender in Beziehung).
Die Existenz eines Kipp-Funktors von der Kategorie A-mod der 4-Moduln in die
Kategorie B-mod der B-Moduln impliziert, da} die derivierten Kategorien von 4-mod und
B-mod 4quivalent sind. Ein Einschub im vorliegenden Buch von B. Keller ist der Kipp-
Theorie gewidmet; hier wird die Rickard’sche Charakterisierung deriviert-iquivalenter
Algebren formuliert (12.6) und es wird gezeigt, wie man explizit mit Kipp-Moduln arbeiten
kann.

Die Kipp-Theorie erlaubt es, darstellungsgerichteten Algebren erbliche Algebren
zuzuordnen; auch zeigt sie, dafl die Klassifikation der unzerlegbaren Darstellungen der
zahmen Kocher auf eine groBe Klassen von Algebren, die zahmen ,,verkleideten“ Algebren
iibertragen werden kann. Die Liste dieser Algebren (10.7) wurde von Happel-Vossieck
erstellt und ist ein oft verwendetes Arbeitsmittel beim Umgang mit zahmen Algebren;
insbesondere verweist das wichtige Bongartz-Kriterium fiir Darstellungsendlichkeit (14.7)
darauf.

Die allgemeine Theorie der darstellungs-endlichen Algebren und der minimal
darstellungs-unendlichen Algebren beruht auf der Existenz multiplikativer Basen (13.10,
13.14): jede derartige Algebra A besitzt eine Basis, so daB das Produkt zweier Basiselemente
entweder Null oder wieder ein Basiselement ist und zusétzlich das Radikal rad 4 von einer

Teilmenge dieser Basis erzeuet wird. Der Beweis von Bautista, Gabriel Rajter_nnd

Salmeron liefert zusatzliche sehr interessante Strukturaussagen fiir solche Algebren.
Algebren mit einer multiplikativen Basis sind durch rein kombinatorische Daten
gegeben. Dies erlaubt es fast immer, derartige Algebren geeignet zu graduieren (als Gruppe
wird dabei eine endlich-erzeugte freie Gruppe verwendet) und mit graduierten Moduln zu
arbejten; mit Hilfe dieser ,Uberlagerungstheorie werden Fragen iiber darstellungs-
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endliche Algebren auf solche iiber darstellungs-gerichtete, und damit iiber erbliche
Algebren zuriickgefiihrt.

Die Existenz multiplikativer Basen ist auch ein wesentliches Hilfsmittel beim
Beweis der 2. Brauer-Thrall Vermutung von Bautista und Bongartz: Ist A eine darstellungs-
unendliche Algebra, so gibt es eine natiirliche Zahl d, so daB es fiir jede der Dimensionen s+ d
unendlich viele Isomorphieklassen unzerlegbarer Moduln gibt (14.8).

Die letzte Seite des Buchs berichtet iiber zwei andere wichtige Ergebnisse: Drozd
hat schon 1980 gezeigt, daf} jede endlich-dimensionale Algebra zahm oder wild (und nicht
gleichzeitig beides) ist; Crawley-Boevey hat 1988 bewiesen, daf} bei einer zahmen Algebra
fast alle unzerlegbaren Moduln vorgegebener Dimension zu homogenen Rohren gehoren.
Die fiir die Darstellungstheorie wichtigen Begriffe zahm und wild werden erst hier
eingefithrt und leider auch nicht weiter motiviert.

Da es bisher keine systematische Darstellung der Theorie gab, wurde der
vorliegende Band dringend erwartet. Gleichzeitig erschien von Simson Linear Representa-
tions of Partially Ordered Sets and Vector Space Categories (Gordan and Breach); beide
Biicher haben trotz ihrer verschiedenen Titel vieles gemeinsam. Die Darstellungstheorie der
Halbordnungen ist ein wichtiges Hilfsmittel fiir die Darstellungstheorie der endlich-
dimensionalen Aleebren und Gabrie)-Roiter riumen ihr einen entsnrechenden Platz ein: die

grundlegenden Abschnitte 1, 4 und 5 und cin Teil des Abschmitts 6 sind ibr gewidmet;
allerdings sollte der Leser dem Leitfaden auf Seite 2 entnehmen, daB die der Motivation
dienenden (aber fiir viele Mathematiker sicher abschreckend wirkenden) Abschnitte iiber
Matrizen-Probleme bis auf die Kleiner’schen Sétze eher entbehrlich sind.

Anzumerken ist, da das Buch fast vollig fehlerfrei zu sein scheint (zum
Abschnitt 10.4 muf} allerdings angemerkt werden, daBl das dort vorgestellte Verfahren
keinesfalls immer praprojektive Komponenten liefert; und falls man wirklich eine pripro-
jektive Komponente erhilt, so braucht sie nicht vollstindig zu sein). Leider haben Autoren
und Verlag einige Stolpersteine eingebaut: so werden manche der vielen FuBnoten-Indizes
einfach mathematischen Symbolen angefiigt (z. B. p. 132, 1.-7; liest man also etwa x + 3 so
ist es ratsam, erst zu kontrollieren, ob nicht etwa x + y gemeint ist, und x und y in den
Anmerkungen 2 und 3 erldutert werden). Entsprechend werden Textverweise einfach an
Formeln angefiigt (z. B. p. 88, 1.13 und an vielen anderen Stellen). Auch wird nirgendwo die
wechselnde Bedeutung der Verwendung punktierter und gestrichelter Linien (Blockeintei-
lung von Matrizen, Auffiillen von Matrizen mit Nullen, Auslander-Reiten-Verschiebung,
Nullrelationen, Auslassungen, ...) erklirt.

Die historischen Hinweise erfolgen teilweise mit groBter Akribie. So wird bei vielen
Publikationen notiert, in welchem Jahr zum ersten Mal iiber die Ergebnisse vorgetragen
wurde; ein Zeichen fiir die Bedeutung, die der Priorititsfrage gewidmet wird. Weniger
vollstandig sind Hinweise auf 4ltere Arbeiten, so gibt es zum Beispiel keinen Hinweis auf die
Nagoya-Journal-Arbeiten, in denen die Bedeutung von rad/rad? herausgearbeitet wurde.
Manche Hinweise sind eher selektiv (beim Begriff coherent wird auf Serre verwiesen, beim
Begriff injective aber keineswegs auf R. Baer) oder ungenau: so geht die Morita-Aquivalenz
auf Bass und weniger auf Morita zuriick; die Arbeit von Morita, die zitiert wird, beschiftigt
sich mit dem ungleich viel schwereren Problem der Morita-Dualitit; ob schon Brauer, wie in
den Anmerkungen gemutmaBt wird, die allgemeine Morita-Theorie kannte, scheint nicht
sicher zu sein; - natiirlich war er aber mit dem fiir das Buch einzig relevanten, aber auch
trivialen Spezialfall endlich-dimensionaler Algebren vertraut.

Themenauswahl und Beweisfithrungen sind in vielerlei Hinsicht makellos, leider
mul aber auf einen Punkt eingegangen werden, der wohl verhindern wird, daB das Buch zu
einem Standard-Werk werden wird: die Unzahl neuer Wortpriagungen. Es ist zu hoffen, daB
sich einige sinnvolle Alternativen zum iiblichen Sprachgebrauch durchsetzen werden, wie
die postprojektiven Komponenten, statt prdprojektiver Komponenten; bei vielen anderen
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Neusch6pfungen ist aber dem Referenten nicht klar, warum altbewihrte und allgemein
akzeptierte Begriffsbildungen aufgegeben wurden: so heilen kurze exakte Folgen coflations,
statt von Morita-Aquivalenz wird von modular equivalence gesprochen. Ein Prinzip wird
explizit formuliert: die Sprache der Darstellungstheorie soll von Eigennamen gereinigt
werden; so wurden die Auslander-Reiten-Kocher zu representation-quivers, die Krull-
Schmidt-Kategorien zu multilocular categories, usw. (auBerhalb der eigentlichen Darstel-
lungstheorie wurde gliicklicherweise dieses Prinzip nicht weiterverfolgt, so gibt es also
zumindest Weyl-Gruppen und Dynkin-Diagramme). Die vielen neuen Termini machen die
Lektiire fiir den Fachmann lastig und sie erschweren jedem Studenten, der sich anhand
dieses Buchs in die Theorie einarbeitet, das Arbeiten mit der Originalliteratur, selbst mit den
fritheren Arbeiten der beiden Autoren. Und gerade das Heranfiihren an die Literatur wird
als Hauptziel des Buches notiert: we try to lead the reader to a point where he can find his way
in the original literature. Meines Erachtens wiire es das Beste, wenn der Verlag statt des
gedruckten Textes eine Disketten-Fassung anbéte: dies wiirde jedem Leser gestatten, mit
Hilfe eines Texteditors irritierende Neuschdpfungen durch Standard-Bezeichnungen zu
ersetzen.

Zusatz (30. 4.1996)

Die vorliegende Besprechung wurde im Mirz 1994 fiir den Jahresbericht geschrie-
ben. In der Zwischenzeit ist ein Buch von M. Auslander, I.Reiten und S.O.Smalg
erschienen, das dhnlichen Fragestellungen gewidmet ist: Representation Theory of Artin
Algebras (Cambridge Studies in Advanced Mathematics 36, Cambridge University Press
1995). Das Hauptinteresse auch dieses Buches gilt der Darstellungstheorie der endlich-
dimensionalen Algebren, allerdings werden die Ergebnisse in einem etwas allgemeineren
Rahmen prisentiert: Bei den im Titel genannten ,Artinalgebren® handelt es sich um
Folgendes: Gegeben ist ein kommutativer artinscher Ring R, betrachtet werden R-Algebren,
die als R-Moduln endlich erzeugt sind; typischerweise ist R ein kommutativer Kérper (dann
erhilt man gerade die endlich-dimensionalen Algebren iiber einem Kérper) oder ein Ring
der Form Z/nZ, wobei n>2 eine natiirliche Zahl ist (die entsprechenden R-Algebren spielen
zum Beispiel bei zahlentheoretischen Untersuchungen eine Rolle). Das Buch von Auslan-
der, Reiten und Smalg kann ohne jede Einschrinkung als Einfithrung empfohlen werden.
Die Grundbegriffe der Darstellungstheorie, wie sie vor allem von Auslander und Reiten
eingefithrt wurden, werden dort ausfiihrlich und wohlfundiert prisentiert, allerdings wird
auf die Behandlung vieler weiterfithrender Themen vollstindig verzichtet.

Bielefeld C. M. Ringel

Zu der Besprechung (im Heft 97, 3) des Buches Neutsch, W., Scherer, K., Celestial
Mechanics, BI-Wissenschaftsverlag teilen die Autoren mit, dafl — infolge der Auflésung des
Verlages — bei ihnen Restexemplare des Buches verbilligt (DM 50,-) bezogen werden kénnen
(PD. Dr. W. Neutsch, Institut fiir Astrophysik, Auf den Hiigeln 71, 53121 Bonn).
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