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38 K. Johannson

Topologie der hoherdimensionalen Mannigfaltigkeiten erneut ein simolizialer Stand-

pr———____________________________________________________ee————

.

Die niedrigdimensionale Topologie hat dagegen immer sehr viel stirker den
semi-linearen Standpunkt beibehalten, obwohl erst 1952 und zwar von Moise
[Moise, 1952] die Triangulierbarkeit aller 3-Mannigfaltigkeiten nachgewiesen wurde
(fiir alternative Beweise siche [Bing, 19591, [Shalen, 1971], [Moise, 1977], [Hamilton,
1976]). Dies ist ein Resultat, das fiir Flichen schon in [Rado, 1924] bewiesen wurde
und das bekanntlich fiir h6herdimensionale Mannigfaltigkeiten im allgemeinen
falsch ist [Kirby-Siebenmann, 1969]. Der semi-lineare Standpunkt hat seine Wur-
zeln in den Bemithungen der Polyedertheorie des 19. Jahrhunderts, den Eulerschen
Polyedersatz zu verallgemeinern [Scholz, 1980]. Gerade hieran aber zeigt sich so-
wohl Nachteil als auch Vorzug des semi-linearen Standpunktes: Einerseits ist es
schwierig fiir simpliziale Mannigfaltigkeiten die Invarianz solcher Grofien, wie etwa
die Euler-Charakteristik, zu zeigen. Andererseits bietet gerade der simpliziale Stand-
punkt iiberhaupt erst eine Moglichkeit, Invarianten wirklich zu berechnen, oder gar
einen Ansatz, um die Klassifikation von Mannigfaltigkeiten
anzugreifen. Dabei verstehe ich hier mit Papakyriakopoulos [Papakyriakopoulos,
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digen (nicht notwendig endlichen )Aufzéihluhg ohne Wiederholung.

Von nun an soll, wenn nichts anderes gesagt ist, unter einer 3-Mannigfaltig-
keit eine kompakte, orientierbare, simpliziale 3-dimensionale Mannigfaltigkeit ver-
standen sein. In diesem Sinne lassen sich nun 3-Mannigfaltigkeiten zumindest auf-
zdhlen. Man erzeugt zu diesem Zweck einfach — durch eine Rekursion iiber die
Anzahl der verwendeten 3-Simplizes — alle moglichen 3-Komplexe und sortiert in
jedem Schritt aus diesen die aus, die keine Mannigfaltigkeiten sind. 3-Mannigfaltig-
keiten sind ja (zusammen mit den 1- und 2-Mannigfaltigkeiten) dadurch ausgezeich-
net, dafl man den letzten Schritt fiir sie wirklich ausfiihren kann: Ein n-Komplex,

n < 3, ist ndmlich genau dann eine n-Mannigfaltigkeit, wenn der Umgebungsrand
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Topologie und Geometrie von 3-Mannigfaltigkeiten 39

heute bekannt. So sind schon die Polyeder-Prasentation unddie
Heegaard-Diagramme, wiesie sich in dem Standardwerk [Seifert-Threl-
fall, 1934] dargestellt finden, zwei Prisentationen von 3-Mannigfaltigkeiten, die
auf den ersten Blick recht iibersichtlich wirken. Weiter zeigte Alexander [Alexander,
1920] (siehe auch [Lickorish, 1973]), daB jede 3-Mannigfaltigkeit auf dhnliche Weise
eine verzweigte Uberlagerung derS?ist, wie jede orientierbare Fliche
verzweigte Uberlagerung der S? (= 2-dim. Sphire) ist. Nur ist die Verzweigungsmenge
nicht mehr eine endliche Menge von Punkten, sondern ein System von miteinander
verschlungenen, geschlossenen Kurven (d. h. eine Verschlingung) in der S3. Diese
Verzweigungsmengen wurden vor einigen Jahren intensiv studiert und dariiber
hinaus wurde von verschiedenen Autoren gleichzeitig und unabhingig gezeigt, dafy
jede 3-Mannigfaltigkeit die S3 sogar dreiblittrig verzweigt iiberlagert [Montesinos,
1974], [Hilden, 1974], [Hirsch, 1974]. Es zeigte sich, daf’ dies eine Folge der oben
erwihnten Moglichkeit einer Heegaard-Priasentation von 3-Mannigfaltigkeiten ist.
Als eine andere Folge ergibt sichdie Chirurgie-Prdsentation von
3-Mannigfaltigkeiten. Die geometrische Konstruktion, die wir heute Chirurgie nen-
nen, wurde seinerzeit von Dehn in der fiir die Herausbildung einer Theorie der
3-Mannigfaltigkeiten so wichtigen Arbeit [Dehn, 1910], eingefiihrt. Dehn macht
dort darauf aufmerksam, dafd durch Ausbohren einer kleinen, tubenartigen Umge-
bung eines Knotens in der S3, d. h. eines Vollringes in der 3-Sphire, und durch
anschlieffendes, aber verindertes Wiedereinsetzen dieses Vollringes (d. h. ,,durch
Chirurgie am Knoten*) wieder eine 3-Mannigfaltigkeit entsteht, die jetzt aber i. a.
verschieden ist von der S3. Viele dieser so entstehenden 3-Mannigfaltigkeiten M3
sind Homologiesphiren (d. h. H (M3, Z) = H,(S3, 2), fiir alle k = 0), und so sah man
in der Chirurgie zunichst eine Methode, um konkrete Beispiele zu konstruieren.
Dehn hatte aber alle Mittel in der Hand, um dariiber hinaus zu zeigen, da alle
3-Mannigfaltigkeiten durch eine solche Chirurgie (evtl. an einer Verschlingung statt
an einem einzelnen Knoten) erhalten werden kénnen (siehe hierzu auch § 2), und
dennoch wurde diese Tatsache (die Chirurgie-Prisentation) erst 1962 von Lickorish
ausgesprochen (und bewiesen) [Lickorish, 1962].

Die bisher beschriebene Situation hat formal eine gewisse Ahnlichkeit mit
der kombinatorischen Gruppentheorie. Auch dort werden die Objekte, die Gruppen,
durch ein Schema und zwar in diesem Fall durch Angabe von Erzeugenden und
Relationen prisentiert. Tatsdchlich kann man nun aus den Prisentationen von
3-Mannigfaltigkeiten eine solche der zugehorigen Fundamentalgruppen bestimmen,
und es bestand umgekehrt die Hoffnung, durch ein rein algebraisches Studium der
Gruppen und ihrer Prisentationen genaueres auch iiber die 3-Mannigfaltigkeiten
selbst zu erfahren. Wir wissen zwar heute, daf’ sich eine ganze Reihe von topologi-
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Topologie und Geometrie von 3-Mannigfaltigkeiten 41

Knoten (= Einheitskreis in der Einpunkt-Kompaktifizierung des R3) der ,,einfachste*
Knoten, allerdings mit dem Unterschied, da} der triviale Knoten wirklich eine ein-
fache geometrische Charakterisierung hat, die mit der Fundamentalgruppe eng
zusammenhingt. Er ist nimlich der Knoten, der Rand einer nicht-singuldren
2-Scheibe, bzw. dessen Aufenraum ein Vollring ist. Die Gruppe des trivialen Kno-
tens ist also isomorph zu Z. Fiir die Umkehrung machte Dehn die Beobachtung, daf3
ein Knoten zumindest eine singulire 2-Scheibe berandet, deren Inneres den Knoten
nicht trifft, falls seine Gruppe isomorph ist zu Z. Die Frage, ob die Fundamental-
gruppe wenigstens den trivialen Knoten charakterisiert, ist so in ein geometrisches
Problem iibersetzt, namlich in die Frage, ob die Existenz einer solchen singuldren
Scheibe in einer 3-Mannigfaltigkeit immer auch die einer nicht-singuliren Scheibe
mit gleichem Rand impliziert. Dies ist der Inhalt des beriihmten ,,Dehnschen
Lemmas* [Dehn, 1910], doch stellten sich bald Zweifel an der Richtigkeit seines
Beweises ein, die dann in [Kneser, 1929] offiziell ausgesprochen wurden. Erst rund
ein halbes Jahrhundert nach der Formulierung des Dehnschen Lemmas wurde
dieses dann wirklich bewiesen ([Papakyriakopoulos, 1957] nach Vorarbeiten in
[Johansson, 1935]). Bis dahin waren all die Arbeiten unsicher, die sich auf das
Dehnsche Lemma bezogen. Welche Bedeutung diese Situation fiir das Studium der
3-Mannigfaltigkeiten hatte, wird wohl am ehesten durch die Tatsache beleuchtet,
daf die Herausbildung einer umfassenden Theorie der 3-Mannigfaltigkeiten erst

in den 60er Jahren, also nach dem Beweis des Dehnschen Lemmas einsetzte (siehe

§ 4).

Was die3-dim. Raumformen betrifft, so wurden diese zwar nicht
mit semi-linearen Methoden studiert, hatten und haben aber gleichwohl einen
grofien Einfluf} auf die Entwicklung der Theorie der 3-Mannigfaltigkeiten. Sie stell-
ten die Antwort auf die Frage dar, welche Gestalt unser physikalischer Raum hat.
Bekanntlich wurde von Riemann [Riemann, 1867] und unabhingig von ihm von
Helmholtz [Helmholtz, 1868] herausgearbeitet, daf® die empirischen Daten eine
(evtl. nicht kompakte) 3-Mannigfaltigkeit als Modell des physikalischen Raumes
erzwingen, die dariiber hinaus versehen ist mit einer vollstindigen Riemannschen
Metrik von konstanter Kriimmung. Eine solche Mannigfaltigkeit heifst euklidische,
sphirische oder hyperbolische Raumform, je nachdem, ob keine, eine positive oder
eine negative Krimmung vorliegt. Alle Versuche zu entscheiden, welche von diesen
Arten auf den physikalischen Raum zutrifft, scheiterten bisher an den Mef3genauig-
keiten (vgl. hierzu auch [Klein, 1928]). Dafiir konnten aber bereits in den 30er
Jahren sowohl die 3-dimensionalen euklidischen als auch die sphirischen Raumfor-
men fast vollstindig klassifiziert werden, und es kamen dabei, auch im Hinblick
auf ihre Fundamentalgruppe, einige bemerkenswerte Eigenschaften zutage. So sind
z. B. der euklidische, sphirische und hyperbolische R au m die einzigen Raumfor-
men mit trivialer Fundamentalgruppe und somit ist die universelle Uberlagerung
von Raumformen bekannt. (Dies ist besonders deshalb bemerkenswert, weil nicht-
kompakte 3-Mannigfaltigkeiten mit trivialer Fundamentalgruppe keineswegs immer
homéomornh zum R? sein miissen, fiir ein. Gegenbeisniel siche [Whitehead. 19351)

Die Fundamentalgruppe von Raumformen operiert, wie man es von den Riemann-
schen Fliachen her kennt, als diskontinuierliche Bewegungsgruppe auf diesen Modell-
rdumen. Hopf beginnt das Studium der Raumformen iiber diese Operationen. Waren
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bis dahin an 3-Mannigfaltigkeiten mit endlicher Fundamentalgruppe lediglich die
Linsenrdume (entstehen aus der Verheftung der Rinder zweier Vollringe) und
Poincarés Homologiesphire (bisher die einzige bekannte Homologiesphire mit end-
licher Fundamentalgruppe) bekannt, so konnte Hopf in seiner Dissertation [Hopf,
1925] iiber die Raumformen hierfiir eine ganze Reihe neuer Beispiele gewinnen.

In einem ganz anderen Zusammenhang und einige Jahre spiter machte Hopf darii-
ber hinaus die Beobachtung, daf sich die S3 in eine Schar von disjunkten Kreisen
zerlegen 1afst (Hopf-Faserung) und daf durch die Kontraktion jedes dieser Kreise
zu einem Punkt das fiir die Topologie so folgenreiche Beispiel einer nicht-zusam-
menziehbaren stetigen Abbildung S3 - S? entsteht [Hopf, 1931]. Threlfall und
Seifert [Threlfall und Seifert, 1930 und 1932] greifen die Hopfschen Methoden fiir
das Studium von sphirischen Raumformen auf und zeigen u. a. die bemerkenswerte
Tatsache, dafd es zu jeder endlichen, fixpunktlosen, sphirischen Bewegungsgruppe
eine Zerlegung der S3 in disjunkte Kreise (Seifert-Faserung) gibt, die unter der
Gruppe in sich iiberfiihrt wird. Insbesondere hat dann auch jede sphirische Raum-
form eine solche Zerlegung, ist also mit einer Seifert-Faserung versehen (siche
[Epstein, 1972] dafiir, daf} diese Beschreibung der Seifert-Faserung als codim 1
Blatterung fiir orientierbare, kompakte 3-Mannigfaltigkeiten zu der urspriinglich
von Seifert in [Seifert, 1932] gegebenen Definition dquivalent ist). Diese ist, abge-
sehen von den Ausnahmen: Prismenriume und Linsenrdume, auch eindeutig
[Threlfall-Seifert, 1932]. Seifert fiihrt dann in einer eigenen Arbeit [Seifert, 1932]
die Klasse der 3-Mannigfaltigkeiten ein, die eine Zerlegung in Kreisen, d. h. eine
Seifert-Faserung, zulassen. Diese 3-Mannigfaltigkeiten heiflen heute Seifertsche
Faserriaume. Kontrahiert man jeden der Kreise (= Faser der Seifert-Faserung)
zu einem Punkt, so entsteht, wie in dem Hopfschen Beispiel, eine 2-Mannigfaltigkeit,
die sog. Zerlegungsflache. Seifert zeigt wie deshalb i. w. aus der Klassifikation der
Flichen (plus einiger zusitzlicher Daten) auch die der Seifertschen Faserriume und
zwar bzgl. fasertreuer Homoomorphie folgt. (In [Orlik-Vogt-Zieschang, 1967] und
[Waldhausen, 1967'] wird spiter gezeigt, daf dies fiir ,,geniigend grofe** Seifertsche
Faserrdume auch eine Hom6omorphie Klassifikation ist). Da die sphirischen Raum-
formen in der Klasse der Seifertschen Faserrdume (echt) enthalten sind, sind jene,
abgesehen von den obigen Ausnahmen, mit diesen ebenfalls klassifiziert. Es zeigt
sich auch, daf} jene (abgesehen von den Ausnahmen) bereits durch die Fundamen-
talgruppe charakterisiert sind. Fiir Linsenrdume ist dies allerdings falsch! Dennoch
konnten auch diese, und zwar von Reidemeister, mittels einer neuartigen Invari-
ante, der Reidemeister-Torsion, vollstindig klassifiziert werden [Reidemeister,
1935], [Franz, 1935], [Milnor, 1966], [Cohen, 1973]. Fiir Prismenriume siche
[Rubinstein, 1979'] und [Wolf, 1967]. Damit sind die sphirischen Raumformen

i. w. erledigt. Die 3-dim. euklidischen Raumformen wurden, wenig spiter als die
Arbeit von Threlfall und Seifert, klassifiziert [Hantzsche-Wendt, 1935]. Abgesehen
von der Moglichkeit ihrer Klassifikation, ist schon die Entdeckung des Begriffs des
Seifertschen Faserraumes allein ein wichtiges Resultat des Studiums der 3-dim.
(euklidischen und sphérischen) Raumformen. Auch wenn die Seifertschen Faser-
rdume in der Menge der 3-Mannigfaltigkeiten insgesamt recht selten sind (z. B.

sind die Torusknoten die einzigen Knoten, deren Aufienriume Seifertsche Faser-
rdume sind), so spielen sie doch neuerdings auch fiir die allgemeine Theorie der
3-Mannigfaltigkeiten eine wichtige Rolle (siche § 5).
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Was allerdings die 3-dim. hyperbolischen Raumformen angeht, so kannte
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Studium der Flichen zeigte aber, daf 1. fast alle Flichen 2-dim. hyperboli-
s ¢ h e Raumformen sind und daf sich 2. gerade die hyperbolische Struktur beson-
ders gut zum Studium der Flachen eignet.

§2 Flichentheorie

Wie bereits hervorgehoben, konnten, im Gegensatz zu den 3-Mannigfaltig-
keiten, die kompakten Flichen schon friih vollstindig klassifiziert werden und
,-haben sich daher frithzeitig fiir tieferdringende Problemstellungen dargeboten*
(Nielsen). Hierzu gehort vor allem das Studium der Homdomorphismen und der
Gruppen von Homdomorphismen beliebiger, kompakter Flichen. Um aber die
Einheitlichkeit der Darstellung nicht storen zu miissen, betrachten wir in diesem
Paragraphen generell nur orientierbare, geschlossene Flichen M? vom Geschlecht = 2.

Der Homotopietyp der topologischen Gruppe H(M?) aller Homéomorphis-
men von Flichen M? ist heute véllig bekannt: Die Komponenten dieser Gruppe sind
die Isotopieklassen von Hombomorphismen und diese sind (unter obiger Voraus-
setzung an M?) zusammenziehbar [Scott, 1970], [Hatcher, 1976]. Wird H(M?) durch
den Normalteiler aller zur Identitit isotopen (= homotopen) Homéomorphismen
dividiert, so entsteht die Abbildungsklassengruppe, Abb(M?). Diese Gruppe mit
ihren vielen interessanten Untergruppen ist in der Flachen-Topologie (und bekannt-
lich auch in der Funktionentheorie) besonders intensiv studiert worden. Da ich
hierauf nicht weiter eingehen kann, verweise ich auf [Birman, 1974], [ Zieschang-
Vogt-Coldewey, 19801], [Zieschang, 1981] und die dort angegebene Literatur. Hier
sei nur erwihnt, daf Dehn schon 1938 gezeigt hat [Dehn, 1938], da*Abb(M?) von
sog. Dehn-Twists, d.h. von solchen Flichen-Homdomorphismen erzeugt
wird, die auferhalb der Umgebung einer einfachen geschlossenen Kurve die Identi-
tit sind. Lickorish hat hervorgehoben [Lickorish, 1964], da hierfiir endlich viele
Dehn-Twists einer Fliche ausreichen, die man dariiber hinaus explizit und ganz
kanonisch wihlen kann. Dies ist, wie so manches Resultat iiber Flichen, eine Tat-
sache, die auch in der Theorie der 3-Mannigfaltigkeiten Anwendungen gefunden hat,
und insbesondere der Chirurgie-Prasentation und der Priasentation von 3-Mannig-
faltigkeiten als dreiblittrige, verzweigte Uberlagerung zugrunde liegt (siche § 1,
und § 5 fiir weitere Anwendungen). Was aber Abb(M?) betrifft, so war lange Zeit

_____ die Fraee offen. ob Abb(M?\ nicht nur endlich erzeugt. sondern auch endlich nrii-
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der universellen Uberlagerung von hyperbolischen Flichen, und Thurston hat vor
einigen Jahren sogar eine Kompaktifizierung des Teichmiiller-Raumes gefunden,
die aus diesem einen (6g — 6)-dim. Ball macht, auf den dariiber hinaus die von den
Flichen-Homoéomorphismen induzierten Homdomorphismen fortgesetzt werden
konnen [Thurston, 1978], [Fathi-Laudenbach-Poenaru, 1979]. So induziert jeder
Flichen-Homdomorphismus, oder besser seine Isotopieklasse, jetzt auch einen

(bis auf Konjugation) eindeutig gegebenen Homdomorphismus der Randsphére des
so kompaktifizierten Teichmiiller-Raumes. Ganz im Sinne von Nielsen, lassen sich
nun auch aus der Dynamik dieser Homdomorphismen von S8~ 7 Riickschliisse auf
die der Isotopieklasse von Flichen-Homoomorphismen ziehen (siehe unten und fiir
Einzelheiten die obige Literatur).

Eine weitere Moglichkeit fiir das Studium der Isotopieklassen von Fliachen-
Homéoéomorphismen bietet sich, wenn den Flichen-Homoomorphismen, dhnlich wie
den Mannigfaltigkeiten, Invarianten und zwar diesmal Invarianten des Isotopietyps
zugeordnet werden. Ist 7 : H(M?) - R* eine Abbildung, dann li3t sich durch

7+[h] = inf {7(h") |h’ isotop zu h}

sofort eine Abbildung 7, : Abb(M?) = R und so eine Invariante des Isotopietyps
definieren. Ist eine solche Invariante etabliert, stellt sich die Frage ihrer Berechen-
barkeit, und hat sie Werte in R, die Frage ihrer Realisierbarkeit. Dabei heifdt 7
realisierbar, wenn es zu jedem Flichen-Homo6omorphismus h einen solchen Homoo-
morphismus g (derselben Fliche) gibt mit 7,[h] = 7(g). Besonders interessant ist
dabei der Fall der eindeutigen Realisierbarkeit. In diesem Fall heif’t die Realisie-
runggein extremaler Homdomorphismus (bzgl. 7), und die quali-
tativen Eigenschaften von extremalen Homdomorphismen konnen nun auch als
Eigenschaften der ganzen Isotopieklasse aufgefafit werden. Diese Eigenschaften hian-
gen aber natiirlich von der Definition von 7 ab.

Die folgenden Beispiele fir 7 und 7, haben sich als besonders wichtig fiir
Flﬁgpcq-Homéomomhismen h heﬁrausge_:stellt_j man beachte unsere Voraussetzung

\

i " |
.~
1. Beispiel 7,(h) := topologische Entropie von h (fiir die Definition von
topologischer Entropie siehe z. B. [Fathi-Laudenbach-Poenaru, 1979, S. 182]).

2. Beispiel Die Menge der Fixpunkte eines Flachen-Hom&omorphismus h
ist i. a. natiirlich nicht endlich. Deshalb fiihrt Nielsen in [Nielsen, 1927] den Begriff
der Fixpunktklassen ein und zeigt, daR® wenigstens die Menge dieser Klassen immer
endlich ist. Dabei gehOren nach Nielsen zwei Fixpunkte von h genau dann zur
selben Klasse, wenn es einen Verbindungsweg k zwischen ihnen gibt, so daf’ der
verkniipfte Weg k * (h © k)~ ! zusammenziehbar ist. Erfiillt h eine gewisse technische
Nebenbedingung, die im iibrigen immer durch eine Isotopie von h erreicht werden
kann, dann kann, wieder nach Nielsen, jeder Fixpunktklasse von h ein Index zuge-
ordnet werden (dieser kann aber leider auch negativ sein). Somit kénnen wir defi-
nieren:

75(h) := Anzahl der Fixpunktklassen von h,

75(h) := Anzahl der Fixpunktklassen von h, deren Index von Null verschie-
den ist.
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7,(h) := Summe der Indizes der Fixpunktklassen.

Zwar sind 73 und 7, nur fiir gewisse Teilmengen von H(M?), dafiir aber (75 )., (75),
und (7,), auf ganz Abb(M?) definiert.

3. Beispiel Sei F, eine Fliche mit fester hyperbolischer Struktur o. Diese
Fliche kann eindeutig mit einer Riemannschen Fliche identifiziert werden, und da
wir nur kompakte Flichen betrachten, ist jeder Flichen-Hombomorphismus
h : F, > F, eine quasi-konforme Abbildung [Lehto-Virtanen, 1965]. Somit kann h
eine Dilatation K,(h) = 0 zugeordnet werden (ist diese etwa Null, dann ist h eine
Isometrie und damit ein periodischer Homdomorphismus [Lehto-Virtanen, 1965],
[Bers, 1960]. Die Zahl K ,(h) hingt zwar von der komplexen Struktur o ab, aber
durch K(h) = inf K4(h) kann hieraus eine rein topologische Gréfie gemacht werden.
Wir kénnen also definieren:

73(h) := K(h).

Die Fixpunktmengen von Flichen-Hom&omorphismen wurden besonders
in den 20er und 30er Jahren von verschiedenen Autoren wie Brouwer, Alexander,
Birkhoff, Hopf und vor allem Nielsen intensiv studiert. Insbesondere interessierte
sich Nielsen fiir die Berechnungen von (73 )«, (73)% und (7,)x. In der schon oben
erwihnten Arbeit [Nielsen, 1927] wird bewiesen, daft Abb(M?) = Out 7,M?, wobei
Out 7;M? der Quotient der Gruppe der Automorphismen von 7,;M? modulo den
inneren Automorphismen ist (elementare Hindernistheorie zeigt, daf} fiir asphirische
simpliziale Komplexe, wie etwa die hier betrachteten Flichen, jeder Isomorphismus
der Fundamentalgruppe immer durch eine, bis auf Homotopie eindeutige, Homo-
topiedquivalenz induziert wird). Somit konnen die Isotopieklassen [h] von Flichen-
Homoomorphismen durch end1lich viele Daten gegeben werden, nimlich durch
die Wirkung der entsprechenden Isomorphismen von m;M? auf den Erzeugenden
von m;M2. Ziel ist es, (7)« [h] aus diesen Daten zu berechnen. Nielsen vermutet in
[Nielsen, 1927], da bereits 7, und besonders auch 75 Isotopie-Invarianten sind und
hebt hervor, daf} in diesem Fall die Alexandersche Formel [Alexander, 1923'] eine
Berechnung von (75 )« liefert. Nielsen selbst entwickelt eine Methode, die zwar
keine allgemeine Formel, aber doch Abschitzungen fiir 7; und 75 und die Berech-
nung von (73)« und (7,)x fiir viele Einzelfille liefert. Sind 75 und 7, definiert, dann
gilt nach Nielsen

T, (h) ’ falls 0 T2(h)
75(h) = 715(h) > 1, falls —-4(g—-1)<7,(h)<0
IT2(h) | —4(g— 1), falls 7,(h)<-4(g—1)

<
<

Weiter lassen sich (73)x und (7,) fiir alle solche Homéomorphismen bestimmen,
die entweder das Produkt von Dehn-Twists entlang von paarweise disjunkten Kur-
ven sind, oder einen Isomorphismus endlicher Ordnung in Out 7,M? induzieren.

In einer weiteren Arbeit [Nielsen, 1942] formuliert Nielsen den Satz, daf} die letz-
teren Homoomorphismen immer isotop sind zu Hom&omorphismen endlicher Ord-
nung — doch enthilt nach Zieschang der diesbeziigliche (umfangreiche) Beweis eine
Liicke. Der Satz selbst bleibt aber richtig, wie Fenchel mit Hilfe der Teichmiiller-
Theorie zeigen konnte (siehe hierzu [Zieschang-Vogt-Coldewey, 1980]) und hieraus
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entwickelte sich allgemeiner die Frage, ob iiberhaupt jede endliche Untergruppe
von Out m,M? von einer endlichen Untergruppe von H(M?) induziert wird (Nielsen-
sches Realisierungsproblem). In [Kerckhoff, 1980] [Kerckhoff, 1983] beantwortet
Kerckhoff diese Frage, mit Hilfe von Teichmiiller-Theorie und Resultaten von
Thurston, positiv (siche auch [Zieschang, 1981]).

Die von Teichmiiller initiierten Methoden zum Studium von Flichen-
Homoéomorphismen kulminieren schlieflich in den Arbeiten von Thurston und
Bers [Thurston, 1978], [Bers, 1978] (siche auch [Miller, 1982] fiir den Zusammen-
hang dieser Arbeiten mit denen von Nielsen). Es zeigt sich, daf fiir alle solche
Homoéomorphismen h, die weder zu periodischen noch zu reduzierbaren Homéo-
morphismen isotop sind, die Zahl (73)4 [h] eindeutig realisierbar ist (dabei heifdt
ein Homdomorphismus reduzierbar, wenn er ein nicht-triviales System von Kurven
invariant 1483t). Der entsprechende extremale Homdomorphismus g in [h] lift eine
sehr iibersichtliche, globale Beschreibung zu, aus der eine Reihe von Informationen
zur Dynamik von Flichen-Abbildungen entnommen werden konnen (siehe [Fathi-
Laudenbach-Poenaru, 1979]). Insbesondere ergibt sich, dal der bzgl. 73 extremale
Homd&omorphismus g nicht nur (73)«, sondern auch (73 ) und (7, )y realisiert (hier-
fur vgl. [Thurston, 1978]. Fiir eine tatsichliche Berechnung der Entropie von
extremalen Hombomorphismen vgl. [Fathi-Laudenbach-Poenaru, 1979, Exposé 10]).

Flichentheorie und Theorie der 3-Mannigfaltigkeiten sind eng verkniipft.
Insbesondere wurden in der Flichentheorie schon friih Fragen herausgearbeitet
(und z. T. beantwortet), die sich ebenso auch fiir 3-Mannigfaltigkeiten stellen lassen
und an denen sich die 3-Mannigfaltigkeitstheorie orientieren konnte. Ich kehre nun
wieder zu den 3-Mannigfaltigkeiten zuriick, indem ich, entsprechend der historischen
Entwicklung, im nichsten Paragraphen einige Resultate iiber Flichen in 3-Mannig-
faltigkeiten diskutiere.

§3 Entscheidungsprobleme

In den 30er Jahren wurde von den Logikern der Begriff ,,Algorithmus*
geklirt und die ersten Unentscheidbarkeitsresultate gewonnen. Aber erst in den
50er Jahren zeigten Novikov, Adjan, Rabin u. a., da} selbst solche Probleme der
kombinatorischen Gruppentheorie wie das Wortproblem, das Trivialititsproblem
und schlieflich sogar das Isomorphieproblem fiir endlich prisentierte Gruppen all-
gemein nicht algorithmisch 16sbar sind [Novikov, 1958], [Rabin, 1958]. Dies mufite
auch einen Einfluf haben auf die Formulierung des Klassifikationsprogramms fiir
3-Mannigfaltigkeiten — insbesondere nachdem Markov [Markov, 1958] bewies, dafy
jede endlich prisentierte Gruppe auftritt als Fundamentalgruppe einer kompakten
4-dim. Mannigfaltigkeit und damit zeigte, daR das Homoomorphieproblem fiir
Mannigfaltigkeiten der Dimension = 4 allgemein unlésbar ist. Eine blofe Uber-
setzung einer topologischen Frage in Algebra war somit allein keine Losung mehr.
Es war zwar nicht ausgeschlossen, da die gruppentheoretischen Entscheidungs-
probleme wenigstens fiir die spezielle Klasse von Gruppen 15sbar sind, wie sie die
Fundamentalgruppen von 3-Mannigfaltigkeiten darstellen, aber um dies zu zeigen,
wird man nicht umhin kénnen, die speziellen Eigenschaften dieser Gruppen und
damit stirker die Geometrie der 3-Mannigfaltigkeiten heranzuziehen. ’
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Unabhingig hiervon begann Schubert schon 1949 Verfahren zu studieren,
,,die es gestatten, aus einem oder mehreren Knoten neue, ,kompliziertere‘ Knoten
abzuleiten‘* (Schubert) und schligt mit dem Begriff des ,,Begleitknotens‘ einen
Kompliziertheitsbegriff vor, dem sich die bis dahin bekannten Knotenbildungen,
wie Schlauchknoten, Schlingknoten und Produktknoten als Spezialfille unterord-
nen [Schubert, 1949 und 1953]. Entsprechend kann man auch fiir 3-Mannigfaltig-
keiten nach Kompliziertheitsbegriffen suchen. Obwohl Schuberts Resultate fiir
Knoten formuliert wurden, sind doch die verwendeten Beweistechniken im Grunde
Methoden der 3-Mannigfaltigkeitstheorie. Insbesondere wurde der von Dehn
benutzte Proze der ,,Umschaltung* wieder aufgegriffen. Weiter ist die Bildung von
Produktknoten eine 3-Mannigfaltigkeitskonstruktion, nimlich ein Sonderfall der
Bildung der zusammenhéngenden Summe [Hempel, 1976]. Schubert zeigte fiir
Knoten [Schubert, 1949], daB die entsprechende Zerlegung eines Knotens in Prim-
knoten eindeutig ist. Was nun die 3-Mannigfaltigkeiten betrifft, hatte Kneser schon
1929 bewiesen, daB es in jeder 3-Mannigfaltigkeit hochstens endlich viele, disjunkte
und nicht-parallele, wesentliche 2-Sphéren geben kann [Kneser, 1929]. Haken
[Haken, 1961'] (unabhiingig davon auch [Milnor, 1962]) zeigte weiter, daf ein sol-
ches maximales System von 2-Sphiren immer eindeutig ist, zwar i. a. nicht
bis auf Isotopie, aber jedenfalls bis auf Homoomorphie. Damit zerfillt also auch
jede 3-Mannigfaltigkeit eindeutig in Primfaktoren, d. h. in eine zusammenhingende
Summe von solchen 3-Mannigfaltigkeiten, die keine zerlegende, wesentliche 2-Sphire
enthalten. Solche Mannigfaltigkeiten sind entweder S?-Biindel iiber der S! oder
irreduzibel indem Sinne, daf} sie iiberhaupt keine wesentlichen 2-Sphiren
enthalten. (An dieser Stelle merken wir noch an, daB fiir berandete 3-Mannigfaltig-
keiten diejenigen 3-Mannigfaltigkeiten M3 rand-irreduzibel genannt werden, die
keine wesentlichen 2-Scheiben D enthalten mit D N oM = 9D). Abgesehen von den
offensichtlichen Ausnahmen sind die S3 [Alexander, 1924], alle Knotenriume
[Alexander, 1924], alle Seifertschen Faserrdume, alle I-Biindel iiber einer Fliche
und alle Flachenbiindel iiber der S! [Waldhausen, 1967] Beispiele fiir irreduzible
(und rand-irreduzible) 3-Mannigfaltigkeiten. Die mit dem Resultat von Haken nun
mogliche Reduktion des Studiums der 3-Mannigfaltigkeiten auf irreduzible 3-Man-
nigfaltigkeiten hat ihren Vorzug z. B. darin, da Homotopiesphiren als Primfaktoren
vermieden und so die ungeldste Poincarésche Vermutung vorldufig umgangen wer-
den kann. — Wir kommen auf die Bedeutung der irreduziblen 3-Mannigfaltigkeiten
noch zuriick. Weiter werden wir in § 5 noch eine andere kanonische Aufspaltung
von 3-Mannigfaltigkeiten betrachten miissen, ndmlich die an Kreisringen und Tori
statt wie bisher an Scheiben und 2-Sphéiren.

Nicht nur, wie oben, fiir die 3-Mannigfaltigkeiten selbst, sondern auch fiir
die in ihnen enthaltenen Unterobjekte, wie Flichen, kann man nach einem kanoni-
schen ,,Vereinfachungsproze“ suchen. Schon Dehn hatte ja versucht [Dehn, 1910],
durch seinen ,,Umschaltungsprozef’*‘ Selbstschnitte von singuldren 2-Scheiben zu
beseitigen, d. h. die ,,Komplexitdt* von singuldren Scheiben durch ein kanonisches
Verfahren soweit zu reduzieren, bis schlieBlich eine nicht-singuliare Scheibe entsteht.
Auch wenn Dehns Anwendung dieses Prozesses auf singulire Scheiben (Dehnsches
Lemma) gescheitert war, so ist er doch inzwischen, von Schubert ausgehend, fiir die
Betrachtung von nicht-singuliren Flichen in 3-Mannigfaltigkeiten sehr wichtig
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den noch eine Reihe weiterer Entscheidungsprobleme geldst (siehe [Haken, 1961
und 1961'] und [Schubert, 1961]).

Wir sehen, wie wichtig Flichen und besonders Normalflichen in Hakens
Programm sind. Es sei aber in diesem Zusammenhang angemerkt, daf8 (bzgl. einer
festen Triangulation von M?3) keineswegs alle Flichen einer 3-Mannigfaltigkeit M3
Normalfliachen sind. Dies ist aber auch weder unbedingt notig noch wiinschenswert,
denn es interessieren ja nur die Fliachen, die relevant sind fiir eine je spezifische,
topologische Fragestellung und es geniigt, wenn diese Flichen Normalflichen sind.
Dies ist oft der Fall. Haken selbst hat als solche ,,topologisch relevante‘“ Flachen
die inkompressiblen und rand-inkompressiblen Flichen einer 3-Mannigfaltigkeit
herausgestellt. Dabei heif3t eine Fliche F in M3 mit F N oM3=0F kompres-
sibel, wenn sie entweder eine 2-Sphire ist oder wenn es eine 2-Scheibe D in M3
gibt mit D N F = 9D, so daf} oD nicht in F zusammenziehbar ist. Diese technisch
etwas aufwendige Definition soll nichts weiter besagen, als daf} eine inkompressible
Fliche weder eine 2-Sphire ist noch irgendwelche in M3 triviale Henkel hat. Ahn-
liches gilt fiir rand-inkompressible Flichen [Waldhausen, 1967']. Eine Fliche F in
M3 mit F N 9M3 = 9F nenne ich kurz wesentlich, wenn sie inkompressibel,
rand-inkompressibel und nicht parallel ist zu einer Fliche aus oM, denn diese Fli-
chen sind fiir die Topologie von 3-Mannigfaltigkeiten wesentlich. Irreduzible und
rand-irreduzible 3-Mannigfaltigkeiten, die wenigstens eine wesentliche Fliache ent-
halten, werden heute Haken-3-Mannigfaltigkeiten genannt. Diese
Klasse von 3-Mannigfaltigkeiten hat sich inzwischen als besonders wichtig heraus-
gestellt und ist intensiv studiert worden. Davon soll im folgenden berichtet werden.
Von besonderer Bedeutung (fiir die Klassifikation von Haken-3-Mannigfaltigkeiten)
ist dabei die Tatsache, daf alle wesentlichen Flichen in einer Haken-3-Mannigfaltig-
keit Normalflichen sind. Insbesondere gilt also

Satz (Haken) Die Menge der wesentlichen Flichen einer Haken-3-Mannig-
faltigkeit kann (bis auf Isotopie), durch sukzessives Umschalten, aus einer endlichen,
konstruierbaren Menge von (Fundamental-) Flichen erhalten werden. (Achtung:

Die Fundamentalflichen miissen selbst nicht wesentlich sein. Dies ist also kein

- Y¥ 1 A g s
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rekursiven Definition: Ist F eine wesentliche Fliche in M, = M3, spalten wir M, an
F auf und erhalten eine 3-Mannigfaltigkeit M,. Diese ist entweder ein 3-dim. Ball,
oder man findet in ihr (da M, # Q) entweder eine wesentliche Scheibe oder eine
andere wesentliche Fliche F, usw. Unter Benutzung einer ebenfalls von Haken
stammenden und fiir alle Haken-3-Mannigfaltigkeiten giiltigen Verallgemeinerung
des Endlichkeitssatzes von Kneser auf alle wesentlichen Flichen [Haken, 1968]
kann man leicht zeigen, daf der obige Prozeft immer abbrechen, eine Haken-3-Man-
nigfaltigkeit, also immer eine Hierarchie endlicher Linge haben muf (siehe z. B.
[Hempel, 1976)). Eine Hierarchie definiert so eine endliche Folge von Flichen, die
wir auch als Fliachen in M? auffassen kdnnen, und deren Komplement dort aus
3-dim. Billen besteht.

Nicht eine einzelne Hierarchie, aber — wie Haken betont — die Menge aller
Hierarchien (mod Isotopie) in M bildet eine Homdomorphie-Invariante fiir 3-Man-
nigfaltigkeiten, die sich mit dem Endlichkeits-Satz von Haken kontrollieren lassen
sollte. Das von Haken formulierte Programm laft sich tatsichlich realisieren. Da
sich aber heute dieses Klassifikations-Programm etwas bequemer in der Sprache
der charakteristischen Untermannigfaltigkeiten formulieren 1aft, will ich erst in
§ 5 hierauf etwas niher eingehen. Zuvor ist aber Waldhausens Anwendung des
Begriffes der Hierarchie auf das Studium der Homotopie-Aquivalenzen von Haken-
3-Mannigfaltigkeiten zu besprechen.

§4  Homotopie-Aquivalenzen

1957 bewies Papakyriakopoulos [Papakyriakopoulos, 1957 und 1957'] das
Dehnsche Lemma, den Schleifensatz und den Sphirensatz, ein Ereignis von grofler

Bedeutung fiir die Theorle der 3-Mannigfaltigkeiten. Kurz danach wurde die dabe1
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weitergehende Resultate zu erzielen. So bewies Stallings eine Verfeinerung des
Schleifensatzes [Stallings, 1960}, Shapiro und Whitehead eine Verallgemeinerung
des Dehnschen Lemmas auf beliebige planare Flichen [Shapiro-Whitehead, 1958],
und Waldhausen verallgemeinerte schlieflich in [Waldhausen, 1967"] den Schleifen-
satz auf planare Flichen. Fiir uns sind hier der urspriingliche Spharensatz und
Qehleifencatz am wichtiosten und zwar in der foleenden Fassung:
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2. Die Fundamentalgruppe einer irreduziblen und rand-irreduziblen 3-Man-
nigfaltigkeit M3 ist kein nicht-triviales freies Produkt, d. h. aus m,M3 = A * B folgt,
da} A oder B trivial ist [Stallings, 1959]. (Damit ist die Frage algorithmisch un-
entscheidbar, ob eine gegebene Gruppe G die Fundamentalgruppe einer irreduzib-
len, rand-irreduziblen 3-Mannigfaltigkeit, insbesondere die, ob G eine Knotengruppe
ist. Zum Beweis beachte man nur, daB dies andernfalls auch fiir G * Z entschieden
werden kénnte und man so ein Entscheidungsverfahren fiir die Trivialitit von Grup-
pen hitte.)

3. Irreduzible 3-Mannigfaltigkeiten mit unendlicher F undamentalgruppe
sind asphdrisch, d. h. alle Homotopiegruppen mM?3 verschwinden, fiir i = 2. Ins-
besondere sind alle Haken-3-Mannigfaltigkeiten (§ 3) aspharisch [Waldhausen, 1967].
Wie bereits erwihnt, werden die Isomorphismen der Fundamentalgruppen von
asphiérischen simplizialen Komplexen von Homotopie-Aquivalenzen induziert.
Somit hingen fiir Haken 3-Mannigfaltigkeiten die Fundamentalgruppen mit den
Homotopie-Aquivalenzen eng zusammen. Daneben verdienen die Homotopie-
Aquivalenzen aber auch ein durchaus unabhingiges, eigenstindiges Interesse und
Schleifen- sowie Sphirensatz erdffnen die Moglichkeit ihres Studiums. So folgt aus
dem Schleifensatz, neben den obigen Tatsachen, auch noch:

4. Eine (orientierbare) Fliche F in M3 mit F N aM3 = oF ist genau dann
inkompressibel (§ 3) in M3, wenn F keine 2-Sphire ist und die Inklusion F C M3
einen Monomorphismus der Fundamentalgruppen induziert.

Hieraus wiederum folgt sofort (die schon Alexander bekannte Tatsache [Alexander,
1924]), da® der 3-Ball und die 3-Sphire keine inkompressiblen Flichen enthalten
konnen. Dies aber impliziert seinerseits die Tatsache, da® das Komplement einer
inkompressiblen Fliche in M? irreduzibel ist, falls M? irreduzibel ist [Waldhausen,
1967]. In einer Haken-3-Mannigfaltigkeit ist also das Komplement einer inkompres-
siblen Fliche aspharisch. Dies ist nun die Grundlage fiir eine (auf Stallings zuriick-
gehende) Technik, die auch als Chirurgie von Abildungen bezeichnet
wird.

Die Chirurgie ist ein lokal definierter Proze, mit dem es moglich wurde,
Abbildungen f : M3 - N3 zwischen Haken-3-Mannigfaltigkeiten so zu deformieren,
daf} danach das Urbild einer gegebenen inkompressiblen Fliche G in N3 unter f ein
System von inkompressiblen Flichen ist [Stallings, 1962], [Waldhausen, 1967). Ein
seitdem héufig benutztes Verfahren fiir das Studium von Abbildungen zwischen
Haken 3-Mannigfaltigkeiten vom semi-linearen Standpunkt aus.

Der Vorteil der so erreichbaren Inkompressibilitiat der Flichen F; aus f~1G
besteht darin, dafs dann fiir solche Abbildungen f : M3 - N3, die einen Monomor-
phismus der Fundamentalgruppen induzieren, automatisch auch die Einschriin-
kungen f|F; : F; > G einen solchen Monomorphismus induzieren. Bildet eine der-
artige Flachenabbildung zusidtzlich noch den Rand in den Rand ab (z. B.
wenn die Flichen geschlossen sind), dann besagt eine Verschirfung des Satzes von
Nielsen [Waldhausen, 1968], daf diese homotop ist (mod 9) zu einer Uberlagerungs-
abbildung — es sei denn F; ist eine Scheibe oder ein Kreisring.

Die letzte Einschrankung ist der Grund dafiir, da} die weitere Behandlung
von Homotopie-Aquivalenzen und Abbildungen von 3-Mannigfaltigkeiten in zwei
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Wir halten fest- Ist f - M3 - N3 eine Homotonie-Aguivalenz zwischen
geschlossenen Haken-3-Mannigfaltigkeiten, dann ist f ~1G, nach einer geeigneten
Homotopie von f, inkompressibel und f|F; : F; > G eine Uberlagerungsabbildung,
fiir alle Komponenten F; von f~'G. Spalten wir also M? an f'G und N3an G auf
(ganz dhnlich wie Fliachen an Kurven aufgeschnitten werden), dann induziert f eine
Abbildung zwischen den so entstehenden 3-Mannigfaltigkeiten M? und N3. Diese
Abbildung ist nun zwar i. a. keine Homotopie-Aquivalenz mehr, aber sie induziert
ihrerseits immerhin noch einen Monomorphismus der Fundamentalgruppen. Also
kénnen wir das Verfahren iterieren, indem wir eine inkompressible Flache G in N3
wihlen. Dies geht jedenfalls dann, wenn unter den Komponenten von f~ 1G keine
Scheiben oder Kreisringe vorkommen (was fiir den 1. Schritt wegen der vorausge-
setzten Geschlossenheit gewahrleistet ist). In den anderen Fillen gibt es ein Problem.
Waldhausen zeigte aber, wie man auch diese Spezialfille umgehen und den obigen
Prozef somit solange wiederholen kann, wie man inkompressible Flachen in den
jeweils aufgespaltenen Mannigfaltigkeiten findet [Waldhausen, 1968]. Diese Wahl
von Flichen definiert aber genau eine Hierarchie (von N3) im Sinne von Haken
(§ 3) und muB daher nach endlich vielen Schritten abbrechen. Eine Abbildung
einer irreduziblen 3-Mannigfaltigkeit in einen 3-Ball, die 1. einen Monomorphismus
der Fundamentalgruppen induziert, 2. den Rand in den Rand abbildet und 3. deren
Einschrinkung auf den Rand bereits, wie in unserem Fall, eine Uberlagerungsabbil-
dung ist, ist selbst, bis auf Homotopie (rel 0) eine Uberlagerung (sogar ein Homdo-
morphismus. Nach einem Satz von Alexander [Alexander, 1923]). Damit ist die
Ausgangsabbildung f homotop zu einer Uberlagerungsabbildung. Die Abbildung f
sollte aber eine Homotopie-Aquivalenz sein, speziell hat also fy(7;M) den Index 1
in m,N3. Eine Uberlagerung ist aber unter dieser Voraussetzung bekanntlich ein
Homdomorphismus. Auf diese Weise hat Waldhausen den wichtigen Satz gezeigt:

Satz (Waldhausen) Homotopie-Aquivalenzen zwischen geschlossenen
Haken 3-Mannigfaltigkeiten sind immer homotop zu Homéomorphismen.
[Waldhausen, 1968].

Insbesondere sind geschlossene Haken-3-Mannigfaltigkeiten vollig durch
ihre Fundamentalgruppe bestimmt! Dieser Satz ist deshalb so bemerkenswert,
weil fiir gewisse andere Mannigfaltigkeiten, wie die Linsenraume, hierfiir schon frith
Gegenbeispiele auftauchten (§ 1). Auch fiir berandete 3-Mannigfaltigkeiten ist die-
ser Satz i. a. falsch, wie gewisse Knoten-Auflenrdume zeigen [Fox, 1952]. Was die
Homotopie-Aquivalenzen f : M3 - N3 zwischen berandeten Haken-3-Mannigfaltig-
keiten betrifft, so liefert die obige Methode von Waldhausen, daf} auch diese noch
homotop sind zu Homdomorphismen, falls zusitzlich f(dM3) C 8N3. Diese zusitz-
liche Bedingung wird man aber i. a. nicht von Homotopie-Aquivalenzen erwarten
konnen. Insbesondere 148t sich schwerlich testen, ob ein Isomorphismus
¢ : mM3 - 7,N3 von einer Homotopie-Aquivalenz induziert wird, die den Rand
respektiert oder nicht. Dennoch 1afit sich auch diese Situation vollstindig analy-
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Eindeutigkeit der charakteristischen Untermannigfaltigkeit V von M3 definiert

(dV — 0M3)~ ein (sogar bis auf Isotopie) eindeutiges System von wesentlichen Kreis-
ringen und Tori. Wahrend eine 3-Mannigfaltigkeit (bis auf Homdomorphie) eindeu-
tig an einem maximalen System von wesentlichen 2-Sphéren zu primen Mannigfal-
tigkeiten aufgespalten wird (§ 3), wird eine Haken-Mannigfaltigkeit an dem eindeu-
tigen System von wesentlichen Kreisringen und Tori zu I-Biindeln (iiber Flichen),
Seifertschen Faserriumen und einfachen Mannigfaltigkeiten aufgeschnitten. Dabei
nenne ich eine Haken-3-Mannigfaltigkeit ein fach, wenn ihre charakteristische
Untermannigfaltigkeit trivial, d. h. hochstens eine Umgebung von Randkomponen-
ten ist.

Die einfachen 3-Mannigfaltigkeiten spielen fiir die Theorie der Haken-3-
Mannigfaltigkeiten eine besondere Rolle. So besagt z. B. der Endlichkeitssatz fiir
Flichen bei Haken (siehe § 3), daR es in einfachen 3-Mannigfaltigkeiten nur end-
lich viele wesentliche Flichen minimaler Euler-Charakteristik geben kann (mod
Isotopie). Dies kann man nun seinerseits zum Anlafl nehmen, um Hakens Begriff
der Hierarchie etwas zu modifizieren: Statt Systeme von Fliachen, sollen von nun
ab Systeme von Flichen und gefaserten Mannigfaltigkeiten betrachtet werden,
die wie folgt verschachtelt sind. Beginnend mit M, = M3, wihlen wir als erste gefa-
serte Mannigfaltigkeit die charakteristische Untermannigfaltigkeit V, von M,. Die
Hierarchie bricht hier ab, oder wir finden in M, = (M; — V,)~ eine wesentliche
Fliche F, von minimaler Euler-Charakteristik (oder eine wesentliche 2-Scheibe).
Mit M; bezeichnen wir die Mannigfaltigkeit, die wir aus M, durch Aufschneiden an
F, erhalten. In M; wihlen wir wieder die charakteristische Untermannigfaltigkeit
usw. Dieser Proze endet, wieder nach Hakens Argument, in endlich vielen Schrit-
ten. Das entstehende, derartig verschachtelte System vom Fliachen und gefaserten
Mannigfaltigkeiten in M3 nenne ich eine grofe Hierarchie von M3 Eine
Besonderheit der grofien Hierarchien ist, da® die Menge aller grof3en Hierarchien
(mod Isotopie) fiir jede Haken-3-Mannigfaltigkeit endlich ist. Damit bieten sich die
grofden Hierarchien sowohl fiir das Studium der Abbildungsklassen-Gruppe als auch
als Sprechweise fiir das Klassifizierungs-Problem von 3-Mannigfaltigkeiten an.

Die Abbildungsklassen-Gruppe Abb(M?) operiert auf der Menge der grofien
Hierarchien, die, wie gesagt, endlich ist. Also hat der Normalteiler aller derjenigen
Homoomorphismen von Abb(M?), die auf dieser Menge trivial operieren, einen
endlichen Index in Abb(M3). Daraus folgt aber nicht unbedingt die Endlichkeit
von Abb(M3) selbst, denn es kann durchaus nicht-triviale Homéomorphismen von
M3 geben, die jede grofRe Hierarchie in sich iiberfiihren. Ahnlich verhilt es sich mit
dem Klassifikations-Problem fiir 3-Mannigfaltigkeiten: Haben zwei vorgelegte
3-Mannigfaltigkeiten gleiche, grofle Hierarchien, dann folgt daraus noch nicht not-
wendig die Hom6omorphie dieser Mannigfaltigkeiten. Zur Illustration dieses Phi-
nomens sei zunichst als ein nicht-triviales Beispiel die Klasse der einfachen Flichen-
biindel iiber der S! betrachtet. Diese haben eine besonders einfache, groRe Hierarchie
und stehen so gewissermafien am Beginn einer allgemeinen Theorie der Haken-3-
Mannigfaltigkeiten.
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Deckel von F x I, mittels eines Homdomorphismus f : F - F, verheften. M3 ist also
in unserem Fall durch das Paar (F, f) gegeben, d. h. M3 ist der Abbildungstorus von
f. Diese Darstellung ist aber nicht eindeutig. Fiir zwei gegebene Flichenbiindel M3
und N3 14t sich zwar mit Hakens Algorithmus fiir Flichen (§ 3) testen, ob beide
die gleiche Faser haben koénnen, d. h. Darstellungen (F, f) resp. (F, g) haben, aber )
dies ist fiir die Homdomorphie von M3 und N3 lediglich notwendig und nicht hin-
reichend. Setzen wir nun voraus, daf M3 und N3 gleiche Fasern, d. h. gleiche, grofle
Hierarchien haben. Dann ist es nicht schwer einzusehen, dafl ein Homéomorphismus
M3 - N3, der diese grofien Hierarchien ineinander iiberfiihrt, einen Flichen-Hom&o-
morphismus h : F = F mit hgh™ = f induziert und umgekehrt. Das Klassifikations-
Problem fiir Flichenbiindel reduziert sich somit auf ein Flichenproblem, nimlich
auf ein Konjugationsproblem fiir die Abbildungsklassen-Gruppe von F. Dieses
Problem aber wurde von Hemion geldst [Hemion, 1979] (Thurston hat angekiindigt,
daf} dieses Problem auch mit seiner Theorie der Flichen-Homéomorphismen 16sbar
ist), und er gibt damit die Losung fiir das Klassifikations-Problem fiir einfache Fli-
chenbiindel (iiber S1).

Mit der Klassifikation der einfachen Flichenbiindel durch Hemion ist aber
genau der Schritt ausgefiihrt, der nun endgiiltig die Durchfilhrung des Hakenschen
Klassifikationsprogramms fiir die Menge aller Haken 3-Mannigfaltigkeiten ermog-
licht. (Waldhausen hat in dem Ubersichtsartikel [Waldhausen, 1978] etwas niher
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Untermannigfaltigkeiten dargestellt werden kann). Damit ist das Klassifikations-
Problem fiir Haken-3-Mannigfaltiekejten gelést. Da Knoten-Aufienriume fiir nicht-

triviale Knoten immer Haken-3-Mannigfaltigkeiten sind, 14t sich insbesondere fiir
je zwei Knoten immer entscheiden, ob sie dquivalent sind — und zwar fiir jede der
hierbei bekannten Aquivalenz-Relationen (allerdings ist das Entscheidungsverfahren
vom praktischen Standpunkt nicht besonders effektiv).

Hemions Art der Losung des Konjugations-Problems fiir Abb(M?) entnimmt
man aber auch, daf’ es nur endlich viele Homdomorphismen (bis auf Isotopie)
geben kann, die eine grofie Hierarchie eines einfachen Flichenbiindels in sich tiber-
fiilhren. In [Johannson, 1979] wird gezeigt, wie sich diese Tatsache auf alle einfa-
chen 3-Mannigfaltigkeiten verallgemeinern Lifdt. Damit ist Abb(M?3) zumindest fiir
einfache 3-Mannigfaltigkeiten endlich. Fiir nicht-einfache Haken-3-Mannigfaltigkei-
ten ist dies dagegen nicht immer der Fall. Nennen wir einen Homdomorphismus
einer 3-Mannigfaltigkeit M3 (im Anschluf} an die entsprechende Bezeichnung fiir
Flichen) einen Dehn-Twist, wenn er auerhalb der reguliren Umgebung
eines wesentlichen Kreisrings oder Torus in M3 die Identitit ist, dann werden solche
Dehn-Twists i. a. unendliche Ordnung in Abb(M3) haben. In [Johannson, 1979’']
wird, unter Ausnutzung der Eindeutigkeit der charakteristischen Untermannigfal-
tigkeit, gezeigt, dafd dies im wesentlichen die einzigen Beispiele sind und daf} die
Dehn-Twists fiir jede Haken-3-Mannigfaltigkeit M3 einen Normalteiler von endli-
chem Index in Abb(M3) erzeugen (dies nutzt auch die von Waldhausen bewiesene
Tatsache aus, daf® Homdomorphismen von geniigend grofien Seifertschen Faser-
rdumen in fasererhaltende deformiert werden kénnen [Waldhausen, 1967')). Fiir
gewisse 3-Mannigfaltigkeiten kann sogar eine Art Berechnung der ganzen Abb(M3)
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Tatsache hat nun Konsequenzen fiir die Homotopie-Aquivalenzen f : M3 - N3 zwi-
schen einfachen 3-Mannigfaltigkeiten. Bei geeigneter Wahl einer wesentlichen Fliche
G in N3 (und diese Wahl it sich immer treffen) sind namlich die Komponenten
von f~'G (mod Homotopie von f) wieder wesentliche Flachen, die paarweise homo-
top und damit parallel sind. Nach einem Trick von Stallings kann man in diesem
Fall f weiter so deformieren, dafl G zusammenhingend ist [J ohannson, 1979').
Mit anderen Worten, Homotopie-Aquivalenzen zwischen einfachen 3-Mannigfaltig-
keiten lassen sich an Flichen , spalten®,

Die Spaltungs-Eigenschaft der charakteristischen Unterman-
nigfaltigkeit besagt nun schlieBlich, dafl sich Homotopie-Aquivalenzen zwischen
Haken-3-Mannigfaltigkeiten an den charakteristischen Untermannigfaltigkeiten
spalten lassen. Genauer: Seien M, und M, zwei Haken-3-Mannigfaltigkeiten und V,
resp. V, ihre charakteristischen Untermannigfaltigkeiten. Dann 148t sich jede
Homotopie-Aquivalenz f : M; = M, so in eine Abbildung g deformieren, daf}

gV))=V, und gM;-V,)= M, - V,.

Diese beiden Spaltungs-Eigenschaften (an charakteristischen Untermannigfaltig-
keiten und an Flichen in einfachen 3-Mannigfaltigkeiten) ermoglichen nun die
Verwendung der grofien Hierarchien fiir Homotopie-Aquivalenzen. Es folgt, daft
die charakteristische Untermannigfaltigkeit gewissermafien das Hindernis dafiir ist,
dafl Homotopie-Aquivalenzen zwischen Haken-3-Mannigfaltigkeiten nicht immer
in einen Homdomorphismus deformierbar sind. Es gilt der

Satz (Johannson) Ist f : M3 - N3 eine Homotopie-Aquivalenz zwischen
beliebigen Haken 3-Mannigfaltigkeiten (d. h. mit oder ohne Rand) und sind Vi
resp. V, die charakteristischen Untermannigfaltigkeiten in M, resp. M,, dann ist f
homotop zu einer Abbildung g mit

1. g(VI) = V2 und g(Ml - Vl) = M2 - V2, und
2.glV, . Vi =V, ist Homotopie-Aquivalenz und

gIM;—V,;: M, - V,>M, -V, ist Homéomorphismus.

Insbesondere sind alle einfachen 3-Mannigfaltigkeiten durch ihre Fun-
damentalgruppe bestimmt. Als eine weitere Folgerung des Satzes ergibt sich, dafd
der Homotopietyp einer Haken 3-Mannigfaltigkeit nur endlich viele Haken 3-Man-
nigfaltigkeiten enthilt und diese konnen alle konstruiert werden [Johannson, 1979'].
Zusammen mit der Losung des Homomorphie-Problems fiir Haken-3-Mannigfaltig-
keiten, 1af3t sich somit auch die Frage entscheiden, ob zwei vorgelegte Haken-3-
Mannigfaltigkeiten homotopie-iquivalent sind. Insbesondere 14t sich entscheiden,
ob zwei Fundamentalgruppen von Haken-3-Mannigfaltigkeiten isomorph sind.

Damit ist speziell auch das Isomorphie-Problem fiir Knotengruppen gelost
— . D e ——
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§ 6  Erweiterungen der Theorie

Nach den guten Erfahrungen, die sich im Umgang mit Haken-3-Mannigfal-
tigkeiten machen liefen, dringt sich die Frage auf, inwieweit die Klasse aller 3-Man-
nigfaltigkeiten schon durch die der Haken-3-Mannigfaltigkeiten erfafit wird. In § 3
wurden Kriterien genannt, die sicherstellen, daf} eine vorgelegte 3-Mannigfaltigkeit
wirklich eine Haken-3-Mannigfaltigkeit ist. Leider gibt es aber auch eine Reihe von
Beispielen von Nicht-Haken-3-Mannigfaltigkeiten. Neben den reduziblen 3-Mannig-
faltigkeiten z. B. auch alle die 3-Mannigfaltigkeiten mit endlicher Fundamentalgruppe,
sowie einige spezielle Seifertsche Faserrdume. Tatsdchlich wird es aber neuerdings
immer deutlicher, daf} es noch sehr viel mehr derartige Beispiele geben muf}, denn es
zeigt sich, daf z. B. fiir gewisse Knoten, fast alle Chirurgien an diesem Knoten (§ 1) zu
Nicht-Haken-3-Mannigfaltigkeiten mit unendlicher Fundamentalgruppe fiihren, die
auch keine Seifertschen Faserraume sind [Thurston, 1979], [Hatcher-Thurston, 1979],
[Hatcher, 1982]. Dariiber hinaus sind noch weitere Beispiele bekannt. Dennoch
bleibt die Hoffnung bestehen, wenigstens alle 3-Mannigfaltigkeiten mit unendlicher
Fundamentalgruppe schlieflich doch durch ein genaues Studium der Haken-3-
Mannigfaltigkeiten mitzuerfassen. Zwei Wege zeichnen sich hierzu ab.

Der erste Weg ist ein Ansatz zu einer dquivarianten Theorie der Haken-3-
Mannigfaltigkeiten. Schon Waldhausen stellte die Frage [Waldhausen, 1968'], ob
nicht jede irreduzible 3-Mannigfaltigkeit mit unendlicher Fundamentalgruppe
endlich-blittrig von einer Haken-3-Mannigfaltigkeit iiberlagert wird. In diesem Fall
wire die vorgelegte 3-Mannigfaltigkeit der Quotient (Orbitraum) einer Haken-3-
Mannigfaltigkeit unter der fixpunktfreien Operation einer endlichen Gruppe, und
es bietet sich an, die Konstruktionen der 3-Mannigfaltigkeits-Theorie dahingehend
zu liberpriifen, ob sie sich dquivariant bzgl. einer solchen Gruppenoperation aus-
filhren lassen. Abgesehen von sehr speziellen Fillen, wie z. B. Z,-Operationen
[Boehme, 1972], [Tollefson, 1981], konnte hierzu lange Zeit kaum ein Fortschritt
erzielt werden. Neuerdings wird aber von Meeks und Yau vorgeschlagen, hierzu
neue Methoden, nimlich die aus der Differentialgeometrie bekannte Theorie der
Minimalfliachen, heranzuziehen. Es gelang ihnen tatsichlich, mit dieser Methode
die dquivariante Version des ja fiir die Theorie der 3-Mannigfaltigkeiten so zentra-
len Schleifen- und Sphirensatzes zu beweisen [Meeks-Yau, 1979 und 1982]. Scott
greift diesen Vorschlag auf und erweitert Boehmes oben zitiertes Resultat dahin-
gehend, dafd j e d e irreduzible (geschlossene) 3-Mannigfaltigkeit mit unendlicher
Fundamentalgruppe bereits homéomorph ist zu einem Seifertschen Faserraum,
wenn ihre Fundamentalgruppe isomorph ist zu der eines Seifertschen Faserraumes
[Scott, 1983].

Der zweite Weg besteht in der Heranziehung geometrischer Struk-
turen von 3-Mannigfaltigkeiten, d. h. ihre Betrachtung als Raumformen (sofern
moglich). Ich habe schon darauf hingewiesen, da} bereits friih euklidische und
sphirische Raumformen der Dimension 3 betrachtet wurden und daB fiir Flichen
speziell die Existenz von hyperbolischen Strukturen ausgesprochen niitzlich ist.

Die hyperbolischen Strukturen auf 3-Mannigfaltigkeiten, sind aber schwerer zu
sehen. Erst zogernd wurden einige Beispiele gefunden [Threlfall, 1932], [Gieseking,
1912], und in neuerer Zeit [Riley, 1975], [Joergensen, 1977] bis schlieBlich Thurston
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(unter Verwendung seiner Ergebnisse iiber Flichen-Homdomorphismen) zeigte, dafy
alle Flichenbiindel iiber der S! entweder einen wesentlichen Torus enthalten, ein -
Seifertscher Faserraum sind oder eine vollstindige, hyperbolische Metrik mit end-
lichem Volumen zulassen [Thurston, 1980], [Sullivan, 1980]. In einem wichtigen
Punkt verhalten sich die hyperbolischen Raumformen (mit endlichem Volumen)
dhnlich wie die, im letzten Paragraphen diskutierten, einfachen 3-Mannigfaltigkei-
ten: Jeder Isomorphismus zwischen den Fundamentalgruppen solcher Raumformen
ist von einem Hom&éomorphismus (sogar von einer eindeutig gegebenen Isometrie)
induziert [Mostow, 1968], [Prasad, 1973] und ihre Abbildungsklassen-Gruppe ist
endlich (siehe z. B. [Riley, 1979]). In einer Reihe von Ankiindigungen wurde nun
von Thurston der Satz aufgestellt, daf’ nicht nur das Innere aller einfachen 3-Man-
nigfaltigkeiten, sondern iiberhaupt aller der Haken-3-Mannigfaltigkeiten M3, die
keinen wesentlichen Torus enthalten und nicht das I-Biindel {iber der Kleinschen
Flasche sind, eine vollstindige, hyperbolische Struktur hat (siehe z. B. [Thurston,
1982]). Diese hat genau dann ein endliches Volumen, wenn dM3 aus Tori besteht
(siehe etwa [Marden, 19741]), also nach Thurston insbesondere genau dann, wenn
M3 einfach ist. In jedem Fall aber impliziert die Existenz einer vollstindigen, hyper-
bolischen Struktur von (M3)°, die Existenz einer diskreten, treuen und torsions-
freien Darstellung m, (M3) = PSL,C. Die Fundamentalgruppe von M? operiert nim-
lich fixpunktfrei, als Gruppe von Isometrien, auf der universellen Uberlagerung,
und diese ist ja der 3-dim. hyperbolische Raum. Nehmen wir als Modell des hyper-
bolischen Raumes das bekannte Poincarésche Modell des Inneren E der Einheits-
kugel im R3, dann entsprechen den Kreisen in der Randsphire 0E = S2=C U o
umkehrbar eindeutig die geoddtischen Ebenen des hyperbolischen Raumes. Jede
Isometrie des hyperbolischen Raumes muf} also eine eindeutig gegebene konforme
Abbildung von S? (und so von C) induzieren, und eine solche Abbildung ist bekannt-
lich umkehrbar eindeutig durch ein Element von PSL,C gegeben (z. B. [Ford, 19291]).
Also ist 7;M3 isomorph zu einer Untergruppe von PSL,C (und diese ist diskret). Mit
der Existenz der Darstellung 7,;M? - PSL,C wird nun das Studium von M3 (d. h.
der Haken-3-Mannigfaltigkeiten) sowohl den Methoden der Theorie der Kleinschen
Gruppen (wie sie von Ahlfors, Bers und ihren Schiilern entwickelt wurden) als auch
tiefliegenden algebraischen Methoden und Methoden der algebraischen Geometrie
zuginglich (siehe hierzu z. B. [Shalen, 1979], [Culler-Shalen, 1983]). So impliziert
beispielsweise die aus der Algebra bekannte Tatsache, daf’ alle endlich erzeugten
Untergruppen von GI,C residuell endlich sind, da} dies zumindest auch fiir die Fun-
damentalgruppen von hyperbolischen 3-Mannigfaltigkeiten gilt. Weiter wird sich
besonders der Algebraiker dafiir interessieren, ob sich die Darstellung m,M* - PSL,C
(evtl. auch fiir spezielle Klassen von M?) nicht noch verschirfen lif8t, um so noch
genauere Aussagen iiber 7, M® machen zu kénnen. Dies ist ein eigenes Forschungs-
programm, das ich aber hier nicht weiter behandeln kann. Ich méchte daher nur
auf den Struktursatz von Bass fiir Untergruppen von PSL,C hinweisen [Bass, 1979],
weil er fir die Losung der Smith-Vermutung eine wesentliche Rolle spielt (siehe
unten) und auch in diesem Zusammenhang entdeckt wurde.

Abgesehen von der Algebra zeigt Thurston in seinen Notes [Thurston, 1979]
aber auch wie man die interne Geometrie der hyperbolischen Raumformen direkt
benutzen kann, um rein topologische Sitze iiber 3-Mannigfaltigkeiten zu beweisen.
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flichen gezeigt, da sich eine nicht-triviale, endliche Untergruppe von I(M?3) immer
in eine Torus-Aktion von M3 einbetten 14t [Freedman-Yau, 1983], und nur Sei-
fertsche Faserrdume lassen Torus-Aktionen zu. Fiir Nicht-Haken-3-Mannigfaltigkei-
ten ist dagegen die diesbeziigliche Frage ungeldst. Doch konnten immerhin fiir die
3-Sphire einige wichtige Fortschritte erzielt werden. Im Falle der 3-Sphire S ist
I(S3) die volle H*(S3) der (orientierungserhaltenden) Homdomorphismen von S3.
Unter den Gruppen von linearen Homdomorphismen von S3 (d. h. diejenigen
Homé&omorphismen der Einheitssphire im R4, die Einschrinkungen von linearen
Homoomorphismen des R* sind), finden sich eine ganze Reihe von Beispielen von
endlichen Untergruppen von H*(S3). Dariiber hinaus gibt es in der topologischen
Kategorie noch sehr viel mehr Beispiele. Was aber die semi-lineare Kategorie
betrifft, so besagt eine berithmte Vermutung, daf alle endlichen Gruppen von
semi-linearen Homdomorphismen der S3 konjugiert sind zu solchen von linearen
Homoomorphismen. Beziiglich dieser Vermutung ist zu unterscheiden zwischen
den Homdéomorphismen mit und ohne Fixpunkten. Wihrend im letzten Fall so gut
wie nichts bekannt ist (abgesehen von Spezialfillen [Waldhausen, 1969], [Ritter,
1973], [Rubinstein, 1979]), kann man im ersten Fall das Problem iiber die Struk-
tur der Fixpunktmenge Fix(h) der Homdomorphismen h anzugehen versuchen.

Betrachten wir den Fall eines einzigen, periodischen (semi-linearen) Homéoo-
morphismus h auf §3. Schon Smith zeigte. daf® Fix(h) homomoroh zu einer Sohire

sein muf. Ist h homotop zur Identitit (d. h. orientierungs-erhaltend, wie wir jetzt
weiter voraussetzen wollen), dann ist diese Sphire eine in die S3 eingebettete S?,

d. h. ein Knoten. Die Vermutung von Smith besagt, daf} dieser Knoten trivial ist
(in diesem Fall wire h konjugiert zu einem linearen Hom&omorphismus). Dies

war lange Zeit eins der grofien Probleme in der Theorie der 3-Mannigfaltigkeiten,
bis es 1978 geldst wurde. Im Jahre 1979 wurde in einem Symposium zur Smith-
Vermutung zusammengestellt, wie all die in diesem Paragraphen angedeuteten
neuen Entwicklungen in der Theorie der 3-Mannigfaltigkeiten zu einer positiven
Losung der Smith-Vermutung fithren. Fiir eine ausfiihrliche Darstellung verweise
ich auf den geplanten Bericht [Smith, 1979] und beschrinke mich im folgenden
auf eine Andeutung. Wir betrachten dafiir sowohl die Quotientenabbildung

p : S3— S3/h als auch den Quotienten M = (S* - U(k))/h des AuBenraumes von

k = Fix(h). Dann ist sowohl S3/h als auch M eine 3-Mannigfaltigkeit. M enthilt
entweder eine geschlossene wesentliche Fliche oder nicht, und die weitere
Argumentation ist in diesen beiden Fallen wesentlich verschieden. Im ersten Fall
betrachten wir F = p_ ~1F. Dies ist eine wesentliche Fliche in M=S3- U(k) Trivia-
lerweise ist Kern (1r,F - 7,8%) = 0, und so folgt aus dem dquivarianten Schleifensatz
die Existenz eines Systems D von 2-Scheiben in S3 mit D N F = 3D, so da 1. die
regulire Umgebung U(F U D) aus einer Kopie von F und einem System von 2-Sphi-
ren besteht und 2. h(aU(F uD))= aU(F U D) ist. Nun gilt die Smlth-Vermutung
fir 2-Sphiren und daraus folgt, da} jede der 2-Sphéren von 3U(F U D) den Knoten
k = Fix(h) in genau zwei Punkten trifft. Da der Knoten k 0.B.d.A. als Primknoten
(§ 3) vorausgesetzt werden darf, trennen alle diese 2-Sphéren einen unverkno-
teten Bogen von k ab. Dies aber widerspricht der Voraussetzung, daB F und so F
wesentlich (d. h. insbesondere nicht rand-parallel) in S3 - U(k) ist. Somit kann M
keine geschlossene wesentliche Fliche enthalten. Insbesondere enthilt sie keinen
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wesentlichen Torus, d. h. M ist eine einfache 3-Mannigfaltigkeit. Nach Thurston
hat dann M eine hyperbolische Struktur. Die Existenz einer solchen hyperbolischen
Struktur sichert, wie erwihnt, eine diskrete, treue Darstellung m;M - PSL,C, und
wir kénnen den Struktursatz von Bass iiber diskrete Untergruppen von PSL,C
anwenden [Bass, 1979]. In unserem Kontext impliziert dieser [Shalen, 1979] eine
algebraischen Zahlen ist

und, nach einem einfachen algebraischen Argument von Shalen fiihrt dies in der
sehr speziellen Situation der Smith-Vermutung zum Widerspruch (siehe auch
[Morgan, 1981 1. Fix(h) ist also notwendig unverknotet.

Fiir Operationen von endlichen Gruppen auf S3 verweise ich auf [Milnor,
1957], [Morgan, 1981], [Davies-Morgan, 1979], [Thomas, 1978 und 1980] und
fiir eine Verallgemeinerung der Smith-Vermutung auf beliebige 3-Mannigfaltigkei-
ten auf [Thurston, 1982].

Damit mdchte ich meinen Bericht schlieffen. Ich hoffe, mit meinen Aus-
filhrungen einige der wesentlichen Entwicklungen in der Theorie der 3-Mannigfal-
tigkeiten zum Ausdruck gebracht zu haben.
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Die Ausdriicke der Sprache L, der ersten Stufe sind Zeichenreihen, die in fest vor-
geschriebener Weise aus den folgenden Zeichen zusammengesetzt sind:

— Variablen x, y, z, . . . zur Bezeichnung beliebiger Elemente des Trigers;

— den ,,logischen* Zeichen — (nicht), A (und), v (oder), = (wenn — s0), < (gdw),
V (fur alle), 3 (es gibt);

— dem Gleichheitszeichen =;

— den Klammern (,);

und fiir jeden Typ von Struktur die entsprechenden Zeichen, also etwa im Falle
von Strukturen vom Typ (1) einer geordneten Gruppe

— ein zweistelliges Funktionszeichen o, ein Konstantenzeichen e und ein zwei-
stelliges Relationszeichen <.

Beispiele fiir Ausdriicke sind etwa
VxVy Xoy=yoXx, 3Ix(e<xaVyle<y—=>x=yvx<y)).

Abweichend von der iiblichen Festlegung fordern wir, da in einem Ausdruck jede
Variable im Wirkungsbereich eines Quantors steht. In natiirlicher Weise 1ift sich
dann fiir eine Struktur A und eine Formel ¢ definieren, ob ¢ in A gilt. Man sagt
dafiir auch, A ist ein Modell von ¢, und schreibt A = ¢. So gilt z. B. fiir eine geord-
nete Gruppe A,

AFEVXVy xoy=yox gdw A istabelsch,
und AFIx(e<xaVyle<y—->(x=yvx<y)) gdw A istdiskret geordnet.

Die Bezeichnungen ,,Sprache der ersten Stufe* und ,,elementare Sprache‘ fiir L,
weisen darauf hin, da in dieser Sprache nur iiber Objekte erster Stufe quantifiziert
werden kann, d. h. nur iiber Elemente des Trigers und nicht iiber Teilmengen. So
lassen sich etwa Aussagen der Gestalt

,,Fir alle Untergruppen . . .*

in dieser Sprache nicht wiedergeben, wohl dagegen die Axiome fiir Ordnungen,
Gruppen, Korper, reell abgeschlossene und algebraisch abgeschlossene Korper.

Wir gehen nun auf die Ergebnisse der klassischen Modelltheorie ein; dabei
koénnen wir jedoch keinen systematischen Uberblick geben, sondern nur anhand
von Beispielen einen Eindruck von der Natur modelltheoretischer Ergebnisse
gewinnen. So werden wir etwa sehen, dafl modelltheoretische Begriffsbildungen
und Methoden

— den Rahmen zur Formulierung allgemeiner mathematischer Sachverhalte liefern,
— zu Teilldsungen des Isomorphieproblems der Algebra fiihren,
— auf die besondere Bedeutung gewisser Strukturen fiir die Mathematik hinweisen.

Zunichst wenden wir uns Ergebnissen zu, die Auskunft iiber die Existenz
und die Anzahl von Modellen in verschiedenen Michtigkeiten geben. Die Aussagen
1.1 und 1.3 sind im sog. Satz von Lowenheim-Skolem-Tarski (vgl. [5]) enthalten.

1.1 Satz Hat die Menge ® von Ausdriicken erster Stufe ein unendliches
Modell, so hat ® beliebig grofle Modelle (d. h. zu jeder Kardinalzahl k gibt es ein
Modell A von ®, dessen Trager A eine Mdchtigkeit 2 K hat).
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Sei etwa ® die Menge der Gruppenaxiome. Da es unendliche Gruppen gibt,
erhalten wir mit 1.1 die Existenz von beliebig grofien Gruppen. Entsprechend zeigt
man mit 1.1, da es beliebig grofie Ordnungen und beliebig grofie reell abgeschlos-
sene Korper gibt. Fiir jede einzelne der genannten Theorien a3t sich die entspre-
chende Behauptung sehr leicht mit algebraischen Mitteln beweisen. Die Modell-
theorie, genauer die Sprache der ersten Stufe; liefert in diesem Fall — und dasselbe
gilt fiir viele andere Situationen — den Rahmen, in dem so ein Ergebnis allgemein
formuliert und bewiesen werden kann. Die Bedeutung der modelltheoretischen
Formulierung liegt dann hiufig nicht so sehr in der erzielten Verallgemeinerung,
sondern wohl eher darin, wie sie die allgemeine Natur eines Problems klirt, wie sie

das Alleermeine yom Besonderen unterscheidet (vel. [211. S. 184).
rao A J

Hierzu ein weiteres Beispiel: Ein Axiomensystem ® ist in einer Mdchtigkeit
kategorisch, falls ® bis auf Isomorphie genau ein Modell dieser Méchtigkeit hat.
Eine scharfsinnige Analyse und Verallgemeinerung der algebraischen Theorie der
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Elementar dquivalente Strukturen haben somit dieselben in der elementaren Sprache
(formulierbaren) Eigenschaften.

Der Begriff der elementaren Aquivalenz ist von zentraler Bedeutung in der
Modelltheorie. In der Algebra steht der Begriff der Isomorphie im Vordergrund.
Ein Ziel z. B. der Gruppentheorie besteht darin, sich einen Uberblick iiber alle Iso-
morphietypen von Gruppen zu verschaffen. Dies gelingt etwa fiir endlich erzeugte
abelsche Gruppen. Jede solche Gruppe bestimmt gewisse natiirliche Zahlen
(Invarianten); und fiir je zwei endlich erzeugte abelsche Gruppen gilt:

A=8 gdw Aund B haben dieselben Invarianten.

Die Invarianten bestimmen also die strukturellen Eigenschaften der Gruppe. —

In vielen anderen Fillen, etwa fiir beliebige abelsche Gruppen, gelingt eine solche
Klassifikation nicht. Manchmal ist es dann aber moglich eine Klassifikation nach
der elementaren Aquivalenz an Stelle der Isomorphie vorzunehmen, also nicht alle
sondern nur elementare strukturelle Eigenschaften zu beriicksichtigen. Zum Beispiel
bestimmt jede abelsche Gruppe ,.elementare Invarianten®, und fiir je zwei abelsche
Gruppen A und B gilt:

A=B8 gdw Aund B haben dieselben elementaren Invarianten.

Eine Bemerkung zur Natur dieser Invarianten: Jede abelsche Gruppe ist zu einer Gruppe
elementar dquivalent (vgl. [10], [37]), die aus den folgenden Bausteinen aufgebaut ist:

Z(p"), der zyklischen Gruppe der Ordnung p" (p Primzahl, n > 1),
Z(p™), der p-ten Priifergruppe,

Q,, der additiven Gruppe der rationalen Zahlen mit zu p teilerfrem-
dem Nenner,
Q, der additiven Gruppe der rationalen Zahlen.

Und zwar gilt

A= @ (@ zeW*™) @ zp™)'® @ o) © @
p Primzahl n>1

wobei v(p, n), d(p), t(p) EN U {oo}, § € {0, 1} und & = 1, falls A nicht von
beschriankter Ordnung ist. Diese Zahlen sind durch A eindeutig bestimmt, sie sind
die A zugeordneten elementaren Invarianten. Hier fiihren also Begriffsbildungen
der Modelltheorie zu Teillosungen des allgemeinen Isomorphieproblems der Algebra.

Es wurden algebraische Methoden entwickelt, mit denen man die elementare
Aquivalenz von Strukturen nachweisen kann (vgl. [5] und [11] fiir rein algebraische
Charakterisierungen der elementaren Aquivalenz mit Ultraprodukten bzw. parti-
ellen Isomorphismen). In einigen Fillen hilft bereits der folgende Satz.

1.4 Satz Sei ® eine Menge von Ausdriicken der 1. Stufe, die nur unendli-
che Modelle besitzt. Ist @ in einer unendlichen Mdchtigkeit kategorisch, so sind je
zwei Modelle von ® elementar dquivalent.

Insbesondere erhalten wir:

Je zwei algebraisch abgeschlossene Korper derselben Charakteristik sind
elementar dquivalent.
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Man kann dieses Resultat als eine erste Prizisierung eines heuristischen Prinzips
ansehen, das auf Lefschetz zuriickgeht und das Weil in [38] so formulierte:

There is but one algebraic geometry of characteristic p for each value of p.

Anhand der elementaren Aquivalenz machen wir noch auf einen weiteren
Aspekt modelltheoretischer Untersuchungen aufmerksam. Mit 1.1 148t sich zeigen,
daf ein echter geordneter Erweiterungskdrper R* des geordneten Korpers R der
reellen Zahlen mit R = R* existiert. Als echte Erweiterung von R enthilt R* — wie
man sich leicht iiberlegt — auch unendlich kleine sog. infinitesimale Elemente, d. h.
positive Zahlen, die kleiner als jede reelle Zahl sind. Da R und R* elementar dqui-
valent sind, hat R* dieselben elementaren Eigenschaften wie R, man kann daher in
R* so rechnen wie in R. In B* 14t sich in sehr intuitiver Weise die gewohnliche
Analysis (Infinitesimalrechnung) aufbauen (vgl. [18], [32]). Treiben wir Analysis
in R*, so sprechen wir von Nichtstandardanalysis, ein etwa 25 Jahre altes Gebiet der
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tikers. Mit Nichtstandardmethoden wurden in den letzten Jahren klassische Pro-
bleme aus verschiedenen Gebieten der Analysis wie z. B. der Funktionalanalysis
([4], [15]) und der stochastischen Analysis (vgl. [17], [19]) geldst (vgl. dariiber
hinaus [30], [32], in denen auch auf Anwendungen von Nichtstandardmethoden in
anderen Gebieten der Mathematik eingegangen wird). In diesem Fall, aber auch im
Fall der existentiell abgeschlossenen Strukturen, haben erst modelltheoretische
Untersuchungen auf die besondere Bedeutung gewisser Strukturen fiir die Mathe-
matik aufmerksam gemacht.
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) {¢ly Li-Ausdruck, o gilt in allen T;-Rdumen}

als invariante Theorie der T3-Rdume. — Nun kann man in der klassischen Modell-
theorie zeigen (vgl. [22]), daB die elementare Theorie der Ordnungen entscheidbar
ist. Damit meint man, daf es einen Algorithmus (ein Verfahren) gibt, mit dessen
Hilfe man fiir jeden L;-Ausdruck entscheiden kann, ob er zur Menge (1) gehort,

d. h. ob er in allen Ordnungen gilt. Aus der Entscheidbarkeit der elementaren
Theorie der Ordnungen erhilt man mit 2.5 die Entscheidbarkeit der invarianten
Theorie der T5-Riume, d. h. der Menge in (2).

Ein Verfahren, das die Zugehorigkeit zu einer Theorie entscheidet, ist hdu-
fig von geringem praktischen Nutzen (das Verfahren ist vielleicht zu zeitaufwendig
oder zu wenig ,,problemorientiert‘‘). Da aber die Existenz eines solchen Verfahrens
besagt, daf® wir fiir jede (in der Sprache formulierbaren) Eigenschaft deren Giiltigkeit
in den Modellen der Theorie systematisch priifen kdnnen, weist die Entscheidbar-
keit darauf hin, daf eine Klassifikation der Modelle moglich sein sollte. Konkret:
Die Entscheidbarkeit der invarianten Theorie der T;-Rdume fordert eine Klassifika-
tion der T;-R4ume nach ihren invarianten Eigenschaften heraus; wir hiatten damit
eine Teilldsung des Isomorphieproblems (Hom&omorphieproblems) fiir T3-Raume
gewonnen.

Wie erhilt man eine Klassifikation der T3-Raume nach ihren invarianten
Eigenschaften? Hier fiihrt uns eine allgemeine modelltheoretische Methode, die
sogenannte Hin- und Hermethode, in natiirlicher Weise auf den entscheidenden
topologischen Begriff, den Begriff des n-Typs eines Punktes. Bei der Hin- und Her-
methode, auf die ich hier nicht niher eingehen will (vgl. [2]), handelt es sich um
eine modelltheoretische Verallgemeinerung einer Technik, die Cantor angewendet
hat, um zu zeigen, daf je zwei abzihlbare dichte Ordnungen isomorph sind. Die
Hin- und Hermethode ist ein wichtiges Hilfsmittel bei der Herleitung sowohl von
theoretischen Sitzen als auch von konkreten Anwendungen der klassischen und
der topologischen Modelltheorie (wir erinnern: ,,I want to see model theory taking
constructions from mathematics, generalizing them, and giving back applications*¢).
Eine solche konkrete Anwendung fiihrte zu den folgenden Begriffsbildungen und
dem nachfolgenden Ergebnis:

Die Menge T, der n-Typen wird induktiv definiert durch: T, = {*} und
T,+, = P(T,), die Potenzmenge von T,. Zum Beispiel gibt es nur einen 0-Typ, *,
zwei 1-Typen, {*} und @, vier 2-Typen {{*}, O}, {{*}}, {®} und @, usw. Ist a ein
Punkt des topologischen Raumes (A, 0), so wird der n-Typ von a, t,(a) €T,, induk-
tiv wie folgt definiert:

to(a) =*

ta+1(a) = {a €T, | in jeder Umgebung von a gibt es einen Punkt b mit
b #aund t,(b) = o},

So ist z. B.
th+1(@) =0 gdw a ist isoliert,
ty(a) = {*} gdw a ist Hiufungspunkt,

tp(a) = {{*},0} gdw a ist Hiufungspunkt von Hiufungspunkten und
von isolierten Punkten.
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Nun gilt:

2.6 Satz Fiir Ts-Rdume (A, o) und (B, 1) sind dquivalent:

(i) (A, 0) =(B, 1),d. h. (A, 0) und (B, 1) haben dieselben invarianten Eigen-
schaften.

(ii) Fiir jedes n und jeden n-Typ o gibt es in (A, o) und in (B, 1) gleichviele
Elemente vom Typ a, wobei wir zwischen unendlichen Mdchtigkeiten nicht unter-
scheiden.

Dieser Satz zeigt zum Beispiel, daf} es bis auf invariante Aquivalenz nur einen
abzihlbaren T3-Raum mit genau einem Hiufungspunkt und abzihlbar vielen iso-
lierten Punkten gibt, wihrend drei paarweise nicht homdomorphe solche Riaume
existieren (man wihle etwa als Triger A= {0} U {}/pIn=>1},A,=Q N[0, 1]
und A, = {0} U {}/,In=> 1} U(QN[I1,2]) und richte die Topologie in jedem der
A, so ein, daf} der Punkt O der einzige Haufungspunkt ist und eine Umgebungsbasis
hat, die aus den Mengen U, = {b € A; | b< a} fiir a € A;, a # 0, besteht).

Kein Punkt in einem T5-Raum kann den 3-Typ {{{)}} haben. Denn wiire
t3(a) = {{@ )}, so wire a Hiufungspunkt von Punkten, die wiederum Haufungs-
punkte von isolierten Punkten sind. Dann wire aber auch a ein Haufungspunkt
von isolierten Punkten, d. h. @ € t;(a), ein Widerspruch. Wir sagen, der 3-Typ {{Q}}
ist nicht erfiillbar. Lafdt sich stets auf so einfache Weise feststellen, ob ein n-Typ a
erfiillbar ist? Die Aussage

,,Es gibt keinen Punkt mit n-Typ o*

148t sich in L; durch einen Ausdruck ¢? wiedergeben. « ist somit genau dann erfiill-
bar, wenn 2 nicht in allen T3-R4umen gilt, d. h. kein Satz der invarianten Theorie
der T5-Riume — der Menge in (2) — ist. Aus einem Entscheidungsverfahren fiir diese
Theorie gewinnt man also einen Algorithmus, mit dem man fiir jeden vorgelegten
Typ entscheiden kann, ob er erfiillbar ist. Dieser ,,logische‘‘ Algorithmus fithrte
dazu, daf® man ein rein topologisches Kriterium fiir die Erfuillbarkeit suchte und
auch fand (vgl. [13]).

Also bereits fiir T3-Ridume, einer Klasse von Strukturen die nur eine topolo-
gische und keine algebraische Struktur tragen und damit am ,,weitesten entfernt*
von den Strukturen der klassischen Modelltheorie sind, fithrt die Sprache L, zu
interessanten Begriffsbildungen und Klassifikationsmoglichkeiten. Man sollte
andererseits aber nicht iibersehen, daf} in diesem extremen Fall die invariante
Sprache L, von sehr beschrinkter Ausdrucksstirke ist. So sind etwa wegen Satz 2.6
je zwei unendliche T53-Riume ohne isolierte Punkte invariant dquivalent.

Wir betrachten nun Fille, bei denen sowohl eine algebraische als auch eine
topologische Struktur vorliegt. Bis jetzt sind in erster Linie Klassen von topologi-
schen Gruppen, Korpern und Vektorrdumen untersucht worden (vgl. [13]). Wir
schildern zunichst einige Ergebnisse iiber topologische Gruppen. Dabei verstehen
wir unter Gruppe stets eine abelsche Gruppe und unter topologischer Gruppe stets
eine hausdorffsche topologische Gruppe.

Jede geordnete Gruppe ist eine topologische Gruppe, wenn sie mit der
Ordnungstopologie versehen wird. Welche topologischen Gruppen haben dieselben
invarianten Eigenschaften wie ordenbare Gruppen, d. h. wann gibt es zu einer topo-
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logischen Gruppe (A, o) eine geordnete Gruppe (B, <) mit (A, o) =, (B, 0<)? Eine
solche topologische Gruppe muf} natiirlich torsionsfrei sein; weiterhin muﬁ in ihr
fiir jedes n =1 die partielle Funktion der Division durch n stetig sein. Eine belie-
bige topologische Gruppe heifle lokal rein, wenn sie fiir jedes n = 1 die folgende in
L, formulierbare Eigenschaft besitzt:

Zu jeder Umgebung U von Null gibt es eine Umgebung V von Null, so daf

Vx(x€UAJzn-z=x)>Iy(yEV An-y=x)).

Man iiberzeugt sich leicht, daf dies in torsionsfreien Gruppen gerade die Stetigkeit
der Division durch n beinhaltet. Nun gilt:

2.7 Satz Sei (A, o) eine topologische Gruppe und o nicht die diskrete
Topologie. Dann sind dquivalent:

(i) Es gibt eine geordnete Gruppe (B, <) mit (A, 0) =, (B, 0<).

(ii) (A, o) ist torsionsfrei und lokal rein.

Beim Beweis der Richtung (ii) = (i) zeigt man zunichst, daf} jede torsions-
freie und lokal reine topologische Gruppe zu einer topologischen Gruppe invariant
dquivalent ist, die eine aus reinen Untergruppen bestehende Umgebungsbasis des
neutralen Elementes besitzt. Die zugehorigen Faktorgruppen sind torsionsfrei und
damit ordenbar. Aus Ordnungen der Faktorgruppen 1i8t sich dann eine die Topo-
logie induzierende Ordnung der Gruppe konstruiereri.

Sei 2 die Gruppe der ganzen Zahlen und habe die Null in der Topologie o
eine Umgebungsbasis bestehend aus den Mengen nZ := {nz |z €2} mitn > 1.
Dann ist (2, o) torsionsfrei und lokal rein. o ist keine Ordnungstopologie; aufgrund
des vorangehenden Satzes hat aber (2, o) die invarianten Eigenschaften von orden-
baren topologischen Gruppen. — Versehen wir Z dagegen mit der Topologie 7, die
{(2-3"2Z |n =1} als Ungebungsbasis der Null hat, so ist (Z, 7) ein Beispiel einer
nicht lokal reinen Gruppe.

Aus dem Ergebnis der klassischen Modelltheorie, daf die elementare The-
orie der geordneten Gruppen entscheidbar ist (vgl. [14]), erhalten wir mit dem
vorangehenden Satz die Entscheidbarkeit der invarianten Theorie der torsionsfreien
und lokal reinen topologischen Gruppen. Und wiederum ist es moglich eine Klassi-

. fikation dieser Gruppen nach ihren invarianten Eigenschaften vorzunehmen
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chendes gilt fiir die topologische Modelltheorie; hier kann man aber auch die inva-
rianten Eigenschaften von Strukturen der Gestalt (A, o4, . . ., 0,) mit Topologien
01, . . ., 0 auf A untersuchen. Wir erwihnen abschliefend ein Ergebnis, das in die-
sem mehrsortigen Rahmen formuliert ist (vgl. [28]).

Sei (A, o) ein topologischer Korper. Mit o, bezeichnen wir den Umgebungs-
filter der Null. Eine Teilmenge S von K heifdt beschrinkt, wenn es zu jedem U € ¢
ein V € g gibt mit V - S C U. ¢ ist eine V-Topologie, wenn jede Teilmenge S von
K\{0}, zu der es ein U € g, gibt mit U N S7! =, beschrinkt ist. Kowalsky und
Diirbaum haben gezeigt, dal jede V-Topologie von einem Absolutbetrag oder einer
Bewertung induziert wird. Als modelltheoretische Folgerung ergibt sich hieraus:

2.9 Satz Sei A ein Korper und o, . . . 0, Topologien auf A. Dann sind
dquivalent:

(i) 0y, . . ., 0, sind V-Topologien auf A.
(i) (A, 64, . . ., 0y) ist zu einer Struktur (B, 1y, . . ., 7,) invariant dquivalent,
bei der die Topologien 7,, . . ., T, von Bewertungen des Korpers B induziert werden.

Sind o4, . . ., 0, V-Topologien, so hat also (4, o,, . . ., 0,) dieselben invarianten
Eigenschaften wie ein mit Bewertungstopologien versehener Korper. Als Anwen-
dung erhalten wir aus dem Approximationssatz fiir Bewertungen den folgenden
Approximationssatz fiir V-Topologien, indem wir beachten, daf sich die Aussage
dieses Approximationssatzes in der (entsprechenden mehrsortigen) invarianten
Sprache formulieren lafdt.

2.10 Satz Seien o4, . . ., 0, verschiedene V-Topologien auf dem Kérper A.
Dann gibt es zu a,, . . ., a, € A und Nullumgebungen U, €0y, ..., U, € 0, ein
bEAmitb—a, €U, ...,b—a,€U,.

3 Schluf}

Wir haben in diesem Artikel einen Einblick in die Begriffsbildungen und
Ergebnisse der klassischen und der topologischen Modelltheorie gegeben und dabei
gesehen, daf® die Natur der Fragestellungen und der gewonnenen Sitze in beiden
Gebieten vergleichbar ist, oder anders formuliert, daf die Rolle, welche die Sprache
der ersten Stufe im Bereich der algebraischen Strukturen spielt, bei den topologi-
schen Strukturen von der Sprache L, iibernommen wird. Indem man also die
Bedeutung des topologischen Begriffes der invarianten Eigenschaft erkannte und
ihn im Rahmen einer formalen Sprache prizisierte, war es moglich, das oben
erwihnte Programm von Robinson in Angriff zu nehmen. Die Feststellung, daf} L,
im Bereich der topologischen Strukturen die Rolle der Sprache der ersten Stufe
{ibernimmt, 148t sich durch gewisse metamathematische Sitze, die Sitze von Lind-
strém und Ziegler, untermauern. Wir gehen hier auf diese Ergebnisse nicht naher
ein (vgl. etwa [7], [12]), erwdhnen nur noch, daf} sie auch verdeutlichen, warum
die Sprache der ersten Stufe fiir algebraische Strukturen eine ausgezeichnete Stel-
lung einnimmt.

Andererseits sollte man die Augen nicht vor der Tatsache verschlieffen, dafy
in vielen Fillen fiir das Studium algebraischer und topologischer Strukturen andere
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formale Sprachen geeigneter sind. So bietet sich etwa fiir modelltheoretische Unter-
suchungen bei Torsionsgruppen eine Sprache an, in der man (abzihlbar) unendliche
Konjunktionen und Disjunktionen bilden kann (vgl. [3]). Auch das in dieser Arbeit
erwihnte heuristische Prinzip von Lefschetz findet erst im Rahmen dieser unend-
lichen Sprachen eine zufriedenstellende Prizisierung (vgl. [9]).

Dariiber hinaus hat sich in den letzten Jahren gezeigt, daf formale Spra-
chen auch bei der Untersuchung anderer Typen von Strukturen niitzlich sind, etwa
bei Strukturen der Gestalt (A, u), wo u ein Maf} auf dem Triger A ist (vgl. [20]).

Es gibt sogar Modelltheoretiker die bereits so weit gehen und behaupten, ,,the
building of logics [in unserer Terminologie: Sprachen] has become a way of life*.
Man solle also jeweils fiir den zu untersuchenden Typ von Strukturen eine entspre-
chende formale Sprache einfiihren. Es wire dann vornehmlich die Aufgabe der Mo-
delltheoretiker, Kriterien zu entwickeln und Wege zu finden, die uns in jedem Ein-
zelfall zeigen, wie man die geeignete Sprache findet.
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Buchbesprechungen

Weil, A., Collected Papers (3 Binde), Berlin — Heidelberg — New York: Springer 1979,
Bd.1878S.,Bd. 11 561 S.,Bd. III 465 S., insges. DM 199,—

André Weil ist einer der prominenten und einflureichen Mathematiker der Gegenwart
und unmittelbaren Vergangenheit. Wer sich fiir die Ideengeschichte der Mathematik in unserer
Zeit interessiert, der kann an dem Werk von A. Weil nicht vorbeigehen. Es erscheint daher ange-
bracht, seine wissenschaftlichen Arbeiten gesammelt herauszugeben; dies liegt gleichermafien im
Interesse der Mathematiker wie der Historiker.

Die vorliegenden drei Binde enthalten alle mathematischen Publikationen von A. Weil
in chronologischer Reihenfolge bis zum Jahre 1978 — mit Ausnahme seiner Biicher. Die Auslas-
sung der Buchpublikationen ist vielleicht verstindlich, aber doch zu bedauern. Denkt man etwa
an die ,,Foundations of Algebraic Geometry‘‘ oder an das Buch zur Riemannschen Vermutung
fiir Funktionenkérper, so erkennt man, daf diese Biicher eine Reihe von Ideen und Resultaten
enthalten, die nicht schon — auch nicht partiell — in anderen Publikationen zu finden sind. Das-
selbe gilt fiir seine anderen Biicher. Als Trost fiir den Leser sind in dieser Sammlung wenigstens
die Einleitungen zu den Biichern des Autors abgedruckt.

Die Sammlung enthilt ferner eine Reihe von kleineren Gelegenheitspublikationen, einige
bislang unpublizierte Briefe, Vortriige, Rezensionen etc.

Fast alle Beitrige der Sammlung sind durch den Autor mit Kommentaren versehen,
welche die Umstinde der Entstehung und die Intentionen des Autors erliutern, gelegentlich
auch die Wirkung der Arbeit auf die weitere wissenschaftliche Entwicklung. Diese Kommentare
geben den ,,Gesammelten Abhandlungen‘ einen ganz eigenen, unverwechselbaren Charakter.
Nicht nur der Mathematiker sondern auch der Historiker oder der Biograph wird die vorliegenden
Bénde schon allein der Kommentare wegen mit Interesse zur Hand nehmen.

Nehmen wir zum Beispiel die Thése des Autors aus dem Jahre 1928, in der sich u. a. der
beriihmte Satz von Mordell-Weil findet, iiber die endliche Erzeugbarkeit der Divisorklassengruppe
einer algebraischen Kurve, definiert iiber einem algebraischen Zahlkérper. In den Kommentaren
dazu erfahren wir, welche Literatur der damals junge Autor zuvor gelesen hatte (Riemann,
Fermat, F. Klein, Poincaré, vielleicht auch Hilbert und Hurwitz), inwieweit er durch den Kontakt
mit der italienischen Geometrie (Enriques, Severi) beeinfluBt worden war, und vor allem die ent-
scheidende Rolle, die die Bekanntschaft mit der heute klassischen Arbeit von Mordell am Zustan-
dekommen der Thése spielte. Mordell selbst pflegte ja gegen die Bezeichnung ,,Satz von Mordell-
Weil* Einwinde zu erheben; er meinte, daf er (Mordell) und Weil zwei ganz verschiedene, nur
locker miteinander zusammenhingende Sitze bewiesen hitten, die somit auch getrennt zu zitie-
ren wiren: ,,Satz von Mordell* und ,,Satz von Weil“. Liest man jedoch hier, da der Satz von
Weil von vorneherein als direkte Verallgemeinerung des Satzes von Mordell auf Kurven héheren -
Geschlechts konzipiert, und auch die Beweismethode der descente infinie bei Weil unmittelbar
durch die bei Mordell beeinfluit worden war, dann erscheint es jedenfalls aus historischer Sicht
durchaus gerechtfertigt, von dem ,,Satz von Mordell-Weil* zu sprechen, wie es heutzutage ja auch
allgemein geschieht. — Aus den Kommentaren erfahren wir ferner, da88 der junge Autor in Got-
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sant ist auch die Reaktion von Severi auf die Mitteilung iiber den Mordell-Weilschen Satz: Severi
sah sofort einen engen Zusammenhang mit seinem ,,Basissatz* fiir algebraische Flichen; seine
Intuition wurde jedoch erst mehr als 20 Jahre spiter durch Néron bestitigt. — Wir erfahren auch
einen der Griinde, weshalb sich die Thése in Diktion und Stil so sehr von dem unterscheidet, was
wir aus den spiteren Publikationen von A. Weil kennen. Namlich: die franzdsische Tradition, mit
E. Picard als bedeutendstem Repriisentanten, hielt eine vollkommene Prizision nicht fiir erforder-
lich. Daher glaubte sich auch der Autor berechtigt, einige Passagen seiner Thése nur skizzenhaft
auszufilhren; die Jury nahm jedenfalls keinen Anstof an dem Fehlen der Prizision. Und in der
Folge stellte es sich ja in der Tat heraus, da} der wesentliche Kern der Arbeit solide ist.

Alle Kommentare sind bewuf3t subjektiv gehalten, bezogen auf die eigene Person des
Autors und seine Beziehung zu dem betreffenden Problem. Eine Bemithung um Objektivitit ist
nicht zu erkennen. (Vgl. z. B. die Reaktion des Autors auf ein Referat von H. L. Schmid aus
dem Jahre 1940, in welchem eine Comptes Rendus-Note des Autors anscheinend nicht gebiihrend
gewiirdigt worden war: Band I, S. 550.) Diese Subjektivitit mindert jedoch den Informationswert
der Kommentare nicht, wie ich meine. Nicht nur wird dadurch eine gewisse Lebendigkeit erreicht,
die das Interesse wachhilt, sondern der Leser erfihrt auf diese Weise auch etwas iiber die ganz
personlichen Triebkrifte und Motivationen, die unsere Wissenschaft weiter gefilhrt haben.

Eine dhnliche Bedeutung besitzt fiir uns der Brief des Autors an seine Schwester Simone
Weil, geschrieben im Jahre 1940 aus dem Militirgefangnis ,,Bonne Nouvelle** von Rouen. Wohl
kaum jemand, der diesen Brief liest, wird sich dem Eindruck entziehen kénnen, hier ein bedeu-
tendes biographisches Zeugnis vor sich zu haben. Im ersten Moment wird man an den beriihmten
Brief von Galois an seinen Freund Chevalier erinnert; bei niherem Zusehen bemerkt man jedoch,
daB es sich hier um eine Schrift ganz anderer Art handelt. Wahrend im Galoisschen Brief neue
mathematische Ideen zur Sprache kommen (u. a. das Ideengebzude der heute so genannten
Galoisschen Theorie), so handelt es sich im Weilschen Brief um ein historisches Exposé (subjektiv,
aus der Sicht des Autors), verbunden mit einem Essay iiber die Rolle der Analogie und der
Intuition als Triebkraft fiir die mathematischen Entdeckungen. Die ungeschriebenen Gesetze der
modernen Mathematik, so schreibt der Autor, verbieten es absolut, dal man in schriftlicher Form
Ansichten duflert, die nicht prizise formulierbar sind, geschweige denn einer strengen Nachprii-
fung zuginglich. Jedoch gebe es erlaubte Ausnahmen, wofiir Hilbert zitiert wird. Auch der gesamte,
nunmehr publizierte Brief des Autors ist offenbar als eine solche Ausnahme anzusehen. Es gibt
Passagen, die man fast lyrisch nennen konnte, in denen, unter Bezugnahme auf die Gird, die
Situation eines Mathematikers auf dem Weg zur Erkenntnis geschildert wird. An einer anderen
Stelle des Briefes vergleicht der Autor seine eigene mathematische Aktivitit mit der Entzifferung
eines dreisprachigen Textes, wobei die drei Sprachen den drei mathematischen Gebieten (1)
Zahlentheorie, (2) Riemannsche Funktionentheorie, (3) Algebraische Funktionentheorie iiber
endlichem Konstantenkérper, entsprechen. Es geht dem Autor darum, die Analogien zwischen
diesen Gebieten zu erkennen und zu erkliren, aber auch die Unterschiede zu beriicksichtigen,
um schlieBlich zu einer einheitlichen Interpretation zu gelangen. Bei der Lektiire wird der Leser
an die ,,drei Gauischen A“ erinnert: (1) Arithmetik, (2) Analysis, (3) Algebra. Im Grunde &uflert
der Autor also keine besonders originelle Idee, wenn er die drei klassischen Gebiete benennt, deren
Erforschung, insbesondere in bezug auf die gegenseitigen Zusammenhinge, viele Mathematiker-
generationen immer wieder von neuem fasziniert haben. Bemerkenswert ist jedoch hier der pro-
grammatische Charakter der Ausfihrungen des Autors. Moglicherweise kénnen wir in diesem
Gleichnis mit dem dreisprachigen Text den Schliissel zu seinem gesamten wissenschaftlichen
Werk finden, dessen Vielseitigkeit und Vielgestaltigkeit von daher die Motivierung und Erkldrung
in einem einheitlichen Rahmen findet. Daf es sich nicht um eine AuBerung des Augenblicks
handelte, sondern daB wir hier tiefergehenden Vorstellungen begegnen, darauf deutet die Tat-
sache, da der Autor viel spiter noch einmal denselben Faden aufnimmt, niamlich in einem 1960
erschienenen Artikel mit dem Titel ,,Uber die Methaphysik der Mathematik*. Dort finden sich
wortlich lingere Passagen des Briefes an Simone Weil abgedruckt.
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Der Band gehort zur von G.-C. Rota herausgegebenen Serie ,,Contemporary Mathe-
maticians*. Die Moglichkeit, sich mit dem Werk und der Eigenart bedeutender zeitgendssischer
Mathematiker niher bekannt zu machen, bestand auch bisher durch Editionen anderer Verlage,
doch ist die sich hier anbahnende Erweiterung lebhaft zu begrifien.

Erlangen K. Jacobs

Die Werke von Daniel Bernoulli. Bd. 2: Analysis, Wahrscheinlichkeitsrechnung. Bear-
beitet und kommentiert von L. P. Bouckaert, B. L. van der Waerden unter Beniitzung von Vorar-
beiten von H. Straub . Basel — Boston — Stuttgart: Birkhiuser Verlag 1982. 403 S., Leinen,
DM 138,—

Unter den Mathematikereditionen stellen ,,Die gesammelten Werke der Mathematiker
und Physiker der Familie Bernoulli*, in deren Rahmen der vorliegende Band erscheint, nicht
zuletzt wegen des Gesamtumfangs ein besonderes Problem dar. Allein die Veréffentlichung der
Werke ohne die wissenschaftshistorisch hochst bedeutsamen Briefwechsel wird mindestens
30 Binde erfordern. Dabei entfallen voraussichtlich je rund 8 Binde auf Jakob I, Johann I und
Daniel Bernoulli. Nach dem Tod von Hans Straub (1972) und J. O. Fleckenstein (1980) iiber-
nahm David Speiser (Louvain-la-Neuve) die Verantwortung fiir die Werke Daniels. Dank der Mit-
arbeit der im Titel genannten Kollegen kann er als erstes den zweiten Band vorlegen — Band 1
soll die Jugendschriften und die Medizin enthalten, die Binde 3 bis 8 werden die physikalischen
und technologischen Arbeiten umfassen. Von den frithen Abhandlungen abgesehen, enthilt also
der vorliegende Band die rein mathematischen Arbeiten, hier gruppiert in die beiden Abteilungen
Analysis und Wahrscheinlichkeitsrechnung. Mit Ausnahme der wenigen franzésisch geschriebe-
nen Texte wurden die Aufsitze in der zumeist von Daniel Bernoulli verwendeten lateinischen
Sprache wieder abgedruckt.

Die Bearbeitung der Abhandlungen zur Analysis wurde von L. P. Bouckaert vorgenom-
men. In einer 25seitigen franzosischen Einleitung gibt er einen Uberblick iiber diese Schriften,
die in drei Gruppen ,,Rekurrente Reihen, , Summierung divergenter Reihen* und , Ketten-
briiche‘* zusammengefafit sind. Von besonderem Interesse mag sein, daf® D. Bernoulli bereits
die Summationsmethode von Cesaro zu entwickeln begann und daf er fiir bestimmte Fille zeigte,
daf Eulers Methode der Konvergenzfaktoren zum gleichen Ergebnis fithrt. Ferner dehnte Bernoulli
diese Untersuchungen auf trigonometrische Reihen aus und gewann dabei auf neue Weise einige
damals schon bekannte Werte der Zeta-Funktion. Auch die Abhandlungen iiber Kettenbriiche,
in denen er u. a. den Brounckerschen Kettenbruch fiir 4/ studierte, hingen mit den Betrachtun-
gen iiber Reihen zusammen.

Die Arbeiten zur Wahrscheinlichkeitsrechnung — mit einer Ausnahme erst ab 1760 ent-
standen — hat B. L. van der Waerden auf ebenfalls ca. 25 Seiten in deutscher Sprache kommen-
tiert, unter Verwendung von Vorarbeiten von H. Straub und Verweisen auf I. Todhunters ,,A
history of the mathematical theory of probability* (Cambridge 1865). Die friihe Schrift scheint
durch das Petersburger Paradoxon angeregt worden zu sein, zu dessen Erledigung Bernoulli den
Begriff der moralischen Erwartung einfiihrte. Die spiteren Arbeiten versuchen u. a., die Vorteile
der Pockenimpfung und andere bevolkerungsstatistische Fragen mit wahrscheinlichkeitstheore-
tischen Methoden quantitativ zu erfassen. Dabei zieht Daniel Bernoulli auch die Differentialrech-
nung heran. In einer in das Gebiet der Fehlertheorie fallenden Arbeit formuliert er zum ersten
Mal das Maximum-Likelihood-Prinzip.

Wie D. Speiser im Vorwort ausfiihrt, ist es das erste Ziel der Ausgabe, die Werke Daniels
dem heutigen Leser wieder zugénglich zu machen. Deshalb wurde auf eine iiber die beiden
genannten Einfithrungen hinausgehende Kommentierung einzelner Stellen und eine wissenschafts-
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héingigkeit von den iibrigen Axiomen: Gédel (1938/1940) zeigte die relative Widerspruchsfrei-
heit, Cohen (1963) die volle Unabhiingigkeit.

G. H. Moore stellt in seinem Buch ausfiihrlich die Geschichte des Auswahlaxioms mit
all jhren methodischen, technischen und erkenntnistheoretischen Beziigen dar. Der Hauptteil
behandelt der Reihe nach die Zeitriume vor 1904, 1904—-1908, 1908—-1918, 1918—1940 und -
die Zeit nach 1940. In Anhingen folgen eine englische Wiedergabe des Briefwechsels zum Aus-
wahlaxiom zwischen Baire, Borel und Hadamard aus dem Jahre 1905 und eine Reihe von Tabel-
len, in denen Varianten und Aquivalente des Axioms mit ihren Beziehungen untereinander
zusammengestellt sind. Ein Literaturverzeichnis mit etwa 850 Eintrigen und ein umfangreiches
Register runden das Buch ab.

Der Autor hat eine beeindruckende Fiille von Informationen mit Quellen, Zitaten und
Beweisskizzen zusammengestellt, die bis in die jingste Vergangenheit reichen und die mit zuwei-
len neuen Sichtweisen oder wenig bekannten Einzelheiten auch den Kenner erfreuen. Zahlreiche
Wiederholungen und Zusammenfassungen sollen dazu dienen, das Geflecht der Entwicklungs-
linien klarer zu sehen. Sie erleichtern aber auch ein ,,lokales* Lesen. Nur an erstaunlich wenigen
Stellen finden sich Thesen, die zum Hinterfragen herausfordern, oder sachliche Unstimmigkeiten.
Zu einigen Punkten allerdings mochte man sich prizisere Informationen wiinschen, z. B. im
Zusammenhang mit intuitionistischen Aspekten. Zuweilen fihrt die geraffte Beschreibung diffi-
ziler Uberlegungen in ihrer Verkiirzung zu Unklarkeiten oder Formulierungen, die nur der Ken-
ner durchblickt. Man vergleiche hierzu etwa die Skizze der von Neumannschen Kategorizitits-
iiberlegungen auf Seite 267. Natiirlich bleibt in diesen Fillen die (vom Autor sicherlich intendierte)
Hinwendung zum jeweiligen Original.

Das Buch ist zu Beginn weitgehend voraussetzungslos geschrieben und gibt Fragen phi-
losophischen Charakters viel Raum. Eine schirfere Trennung zwischen intuitiven Uberlegungen
und mathematischen Beweisen fiir die Notwendigkeit des Auswahlaxioms in bestimmten Argu-
mentationen wire allerdings hilfreich. Spiter verengen sich die dargestellten Aspekte stirker auf
solche mathematisch-technischer Natur, entsprechend der These des Autors, daB die philosophisch-
erkenntnistheoretische Aufarbeitung mit der mathematischen Entwicklung nicht Schritt gehal-
ten habe. Doch in allen Teilen findet der Leser guten Zugang zu einer Klirung der ihn interessie-
renden Fragen — Moglichkeiten, die das Buch zu einem Standardnachschlagewerk machen wer-
den. Dariiber hinaus entfaltet sich gerade in den ersten Teilen die erregende Epoche, in welcher
der methodische Rahmen der Mathematik um so viel weiter gespannt wurde, und der Leser wird
Zeuge der grofien begrifflichen und erkenntnistheoretischen Schwierigkeiten, die dabei Pate
gestanden haben — vielleicht mit neu erwachender Sensibilitit fiir deren Problematik.

Freiburg ’ H.-D. Ebbinghaus

Chandler, B.; Magnus, W., History of Combinatorial Group Theory: A Case Study in
the History of Ideas (Studies in the History of Math. and Physical Science 9), Berlin — Heidel-
berg — New York: Springer-Verlag 1982, VI + 234 S., DM 128,—

Kombinatorische Gruppentheorie betrachtet Gruppen beschrieben durch Erzeugende
und Relationen. Lie-Gruppen und abelsche Gruppen hoher Michtigkeit liegen daher auRerhalb
des Bereichs. Das vorliegende Buch besteht aus zwei Teilen, wobei der erste die Zeit vor 1918,

der zweite vor allem 1918—1945 behandelt. Die Autoren !Leg_nlndgx_dj.esc_limmlunc s0: 1918 |
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Die im zweiten Kapitel eingefiihrten Ideen werden in den Kapiteln 3 bis 5 zum Studium
von Automorphismengruppen symmetrischer Blockplane verwendet. Nach einigen vorbereiten-
den Ergebnissen iiber Fixpunkte und Fixblécke sowie einem Uberblick iiber die bekannten Klas-
sen von symmetrischen Blockplinen mit zweifach transitiver Gruppe werden im dritten Kapitel
zunichst Automorphismen von Primzahlordnung untersucht. Die Moduln und Codes aus Kapi-
tel 2 erweisen sich als Darstellungsmoduln der entsprechenden Gruppe; die Existenz selbstdualer
Untermoduln erlaubt dann interessante Schluffolgerungen iiber die Vielfachheiten der Komposi-
tionsfaktoren (z. B. miissen selbstkontragrediente Faktoren mit gerader Vielfachheit auftreten).
Daraus ergeben sich notwendige Existenzbedingungen, die die in den finfziger Jahren von
D. R. Hughes bewiesenen Sitze etwas verstirken.

In den Kapiteln 4 und 5 werden dann symmetrische Blockpline mit reguldren Auto-
morphismengruppen studiert; dquivalent dazu sind bekanntlich ,»Differenzenmengen®. Zur
Erinnerung: Eine (v, k, A)-Differenzenmenge ist eine Menge von k Elementen einer (additiv
geschriebenen) Gruppe der Ordnung v, fiir die die k(k — 1) Differenzen #0 von je zwei dieser
Elemente jedes Gruppenelement #0 genau A-mal enthalten. Die vorher eingefiihrten Methoden
werden dann (zusammen mit weiteren Sitzen der Darstellungstheorie und der algebraischen
Zahlentheorie) zum Nachweis zahlreicher Existenzbedingungen verwendet; in jedem Fall wer-
den ausfiihrlich Beispiele von Parametertripeln und Gruppen angefiihrt, fiir die eine Differenzen-
menge aufgrund des entsprechenden Kriteriums nicht existieren kann. Dabei ist Kapitel 5 ganz
dem Beweis von Multiplikator-Sitzen gewidmet; diese geben Kriterien an, wann ein Automor-
phismus der betrachteten Gruppe gleichzeitig einen Automorphismus des zugehorigen Blockplans
induziert. Beide Kapitel enthalten neben bekannten Resultaten viele neue Ergebnisse. In Kapitel 6
werden schlieflich einige offene Probleme vorgestellt und Tabellen von Differenzenmengen gege-
ben.

Die wesentlichen Methoden des Buches stammen alle aus der Oxforder Dissertation des
Autors (1980). Ihre Bedeutung kann meiner Meinung nach kaum iiberschitzt werden. Wenn der
erste Multiplikatorsatz von M. Hall (1947) zu Recht als klassisch gilt und heute als das erste grofle
Ergebnis algebraischer Methoden in der Blockplan-Theorie erscheint, so bedeutet die Dissertation
von Lander in meinen Augen den zweiten Durchbruch auf diesem Gebiet. Die urspriinglichen
Beweise der Multiplikatorsitze waren technisch derartig verwickelt, daB8 der eigentliche Grund
fiir die Giiltigkeit dieser Sitze verschleiert blieb. Durch die Arbeit von Lander wird endlich der
darstellungstheoretische Grund fiir diese Sitze klar sichtbar. Zudem erdffnen seine Methoden
den Weg zu neuen, stirkeren Resultaten. Das vorliegende Buch ist fiir mich — gerade auch im
Zusammenhang mit Arbeiten von Ott, die sich in dhnlicher Weise algebraischer Methoden bedie-
nen — ein weiteres Indiz dafiir, daf§ die Durchdringung der endlichen Geometrie mit algebraischen,
insbesondere darstellungstheoretischen Verfahren zur Zeit wohl die interessanteste und aussichts-
reichste Entwicklung auf diesem Gebiet ist. Auf diesem Wege sollte — wie das in dhnlicher Weise
auf anderen Teilgebieten der Kombinatorik schon geschehen ist — die Entwicklung einer in sich
geschlossenen Theorie moglich sein (wihrend zur Zeit doch vieles noch eher zufilliger Bastelei
dhnelt).

Erfreulicherweise entspricht auch die Darstellung des Stoffes der eben begriindeten
inhaltlichen Relevanz. Das Buch ist zwar knapp, aber trotzdem fliissig und gut lesbar geschrieben.
Die benétigten algebraischen Vorkenntnisse sind in 7 Anhingen kurz und klar dargestellt.

Ohne eigene Arbeit wird der Text sich dem Leser allerdings nicht erschliefen. Fiir Leser, die noch
keinerlei Erfahrung auf diesem Gebiet der Kombinatorik haben, mag das einfiihrende erste
Kapitel vielleicht zu knapp sein; diese Schwierigkeit lieBe sich aber etwa durch Lektiire der ein-
schligigen Kapitel in dem wunderschonen Buch von Ryser (Combinatorial Mathematics, Carus
Mathematical Monographs No. 14, 1963) leicht beheben.

Einige Kritikpunkte bleiben dennoch: Manche der nicht allzu hiufigen Druckfehler
sind storend (z. B. mu in Problem 23 auf S. 110 von einem (v, k, 2)-Blockplan, nicht von einem
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(v, k, N)-Blockplan die Rede sein; und auf S. 98 ist in Theorem 3.22 nicht eine ,,symmetric*,
sondern eine ,,semi-standard“ Gruppe gemeint). Auch ist die Aufmachung des Textes nicht immer
erfreulich; so sind etwa die Indizes auf S. 13 schlecht lesbar. Schlieflich ist die auf S. 178 ange-
deutete Losungsmethode fiir Problem 3.(v) unméglich, da die Existenz eines ,,partial spread*
mit p Komponenten in D, x Dy, fiir Primzahlen p > 3 einem Satz von Sprague (Translation
nets. Mitt. Math. Sem. Giefen 157 (1982)) widerspricht. Ob die vom Autor gewiinschten Dif-
ferenzenmengen in diesen Gruppen iiberhaupt existieren, ist mir unbekannt.

Trotzdem sind diese Kritiknunkte im Vergleich zur Wichtigkeit und Eleganz des Buches

absolut zweitrangig. Ich mochte dieses Werk jedem Mathematiker, der sich fiir endliche Algebra
und jhre Anwendungen interessiert, wirmstens empfehlen.

Gieflen D. Jungnickel

Rademacher, H., Higher Mathematics from an Elementary Point of View (ed. D. Gold-
feld), Basel — Stuttgart: Birkhduser Verlag 1982, 138 S., gebd. DM 66,—

Die vorliegende Ausarbeitung einer Vorlesung von Rademacher an der Stanford Uni-
versity im Jahre 1947 ist fiir mathematische Laien gedacht, denen ein erster Eindruck von
(hauptsichlich) zahlentheoretischen Fragestellungen, Ideen und Beweismethoden vermittelt
werden soll (Kapitel: Primzahlen. Primzerlegung. Briiche. Farey-Briiche. Dezimal-Briiche. Prinzip
der Ein- und AusschlieBung. Approximation von Irrationalzahlen. Ford-Kreise. Linear-gebrochene
Abbildungen. Modulfunktionen. Gestiinge). Das Biichlein ist lebendig und mitreifiend geschrieben,
ohne Formalititen und mit einem Minimum an Technik, auch fiir interessierte Schiiler mit
Gewinn lesbar. Von den mathematischen Kenntnissen der gymnasialen Mittelstufe ausgehend
fithrt der Autor in eine reichhaltige zahlentheoretische Welt und ihre Verbindung zur Geometrie
ein. Das letzte, etwas aus dem Rahmen fallende, Mathematikern weniger vertraute Kapitel behan-
delt verschiedene mechanische Hilfsmittel fiir Konstruktion von Kreisverwandtschaften, so z. B.
exakte Losungen des Wattschen Problems, lineare Bewegung in Drehbewegung zu verwandeln.

Der Herausgeber hat einigen Kapiteln niitzliche Anhinge gegeben, die den Leser auf
Weiterentwicklungen seit 1947 aufmerksam machen. Ein sensibler Leser wird sich vielleicht
wundern, da® Rademacher im Jahre 1947 erzihit, D. N. Lehmer hitte im Jahre 1956 eine Liste
der Primzahlen < 107 berechnet (daB die erste Auflage dieser Liste aus dem Jahr 1913 stammt,
erfahrt man nicht). Hat Rademacher den Konigsberger Pfarrerssohn Christian Goldbach, Sekretir
der Petersburger Akademie, wirklich ,,a Russian named Goldback* apostrophiert? Doch das sind
minore Fragen am Rande.

Dem Birkhiuser-Verlag ist zu danken, daf} er an die Seite des seit 1930 vorliegenden
Klassikers ,,Von Zahlen und Figuren von H. Rademacher und O. Toeplitz (Nachdruck: Sprin-
ger 1968) eine zweite Kostprobe von Rademachers Fihigkeit gestellt hat, gehaltvolles mathe-
matisches Denken in elementarer Form exemplarisch auszubreiten. Leider wird der jetzige Preis
der wiinschenswerten Verbreitung des Biichleins (z. B. bei Schiilern) im Wege stehen.

Erlangen W.-D. Geyer

Jones, W. B.; Thron, W. J., Continued Fractions: Analytic Theory and Applications
(Encyclopedia of Mathematics and its Applications 11), Reading, Mass.: Addison-Wesley 1980,
XXVIII +428 S, £22.50

Die beiden Autoren Jones und Thron sind seit langer Zeit und mit einer groen Zahl
von Beitrigen auf dem Felde der Kettenbriiche aktiv. Ihr Buch hier steht jetzt als letztes Glied
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lenken wiederholt das Interesse des Lesers auf ein vom Grundkorper unabhéngiges Konvergenz-
kriterium, auf den Satz von Pincherle, nach dem der Kettenbruch (Sp(0)q > 1 dann und nur dann
konvergiert, wenn die Drei-Term-Rekursion

Yn+1=3nYntba¥Yn-1

eine Minimallésung y,, = hy, besitzt; und wenn das der Fall ist, so gilt lim S;(0) = —h, /h,. Die

n—> oo

Bedeutung dieses Satzes auch fiir numerische Fragestellungen wird unterstrichen durch die Auf-
nahme von Appendix B mit Resultaten iiber Minimallsungen von P. Henrici. Es mag zum Schluff
erwihnt sein, da Kapitel 7 in seinem letzten Abschnitt eine glatte und elementare Darstellung
einer Variante des Hurwitzschen Stabilitétskriteriums bringt fiir Polynome iiber C. Die zugehori-
gen Behauptungen und Beweise konnen ganz ohne die Sprache der Kettenbriiche formuliert wer-
den. Nach meiner Erfahrung ist dieser Abschnitt geeignet, auch bei Ingenieurstudenten das
Interesse an den Mobiustransformationen zu wecken.

[1] Henrici, P.: Applied and Computational Complex Analysis. Vol. 1,2. J. Wiley & Sons
1974, 1977

[2] Khovanskii, A.N.: The Application of Continued Fractions and their Generalizations
to Problems in Approximation Theory. P. Noordhoff, Groningen 1963

[3] Perron, O.: Die Lehre von den Kettenbriichen. Bd. II. Teubner, Stuttgart 1977 (repro-
graphischer Nachdruck der 3. Auflage von 1957)

[4] Wall, H.S.: Analytic Theory of Continued Fractions. van Nostrand, New York 1948

Miinchen A. Leutbecher

Frohlich, A., Galois module structure of algebraic integers (Ergebnisse der Math., Neue
Serie Bd. 1), Berlin — Heidelberg — New York: Springer-Verlag 1983, 320 S., DM 88 ,—

Wohl viele werden auf dieses Buch mit Ungeduld gewartet haben! Und zwar deswegen:
Um sich endlich zusammenhingend und aus einer Quelle iiber eine tiefe und iiberraschende
Theorie informieren zu konnen, die da in den letzten zehn bis fiinfzehn Jahren aus dem Zusam-
menspiel von Analytischer und Algebraischer Zahlentheorie entstand und in der Verbindung
zweier scheinbar unabhingiger Invarianten einer galoisschen, zahm-verzweigten Zahlkorpererwei-
terung L/K ihren Hohepunkt fand; diese sind einmal die Struktur des Ganzheitsringes Oy von L
als Modul iiber dem ganzzahligen Gruppenring ZG der Galoisgruppe G von L/K und zum anderen
die aus der Funktionalgleichung der Artinschen L-Reihen zu den symplektischen Charakteren
von G resultierenden Wurzelzahlen. Wie ist die Beziehung dieser Invarianten zueinander aufge-
deckt worden? Damit genau beginnt das Buch; es wird zunichst rekapituliert, was geschehen ist.
Auf der einen Seite steht die Suche nach der Antwort auf die Frage, wann L/K eine Ganzheits-
normalbasis besitzt (wofiir schon E. Noether die zahme Verzweigung als notwendige Bedingung
erkannte), auf der anderen Seite steht das Problem der Vorzeichenbestimmung der Wurzelzahlen.
Im einzelnen wird nun die Entwicklung beschrieben, die auf der jeweiligen Seite durch Arbeiten
von hauptsichlich Martinet, Armitage, Serre und dem Autor selbst eingeleitet wurde, bis hin zu
dem, was als ,,grazy idea‘ von Serre (1971) zitiert wird, namlich dafl das Vorzeichen der Wurzel-
zahl Einflu} auf die mogliche Existenz einer Ganzheitsnormalbasis haben konnte — hier zunichst
nur fiir die von Martinet gerechneten Fille mit K = Q und G = Hg = achtelementige Quaternio-
nengruppe. Die folgenden Paragraphen des 1. Kapitels sind nun der Reihe nach den Grundbau-
steinen der Theorie zugeordnet: der von Frohlich entwickelten Beschreibung der Klassengruppe
von OkG iiber die sogenannten Hom-Gruppen und der Angabe von Oy hierin mittels seiner ver-
allgemeinerten Lagrangeschen Resolventen, sowie den Galois-Gau3-Summen, die die Verbindung
zu den Wurzelzahlen ermoglichen. Im Grunde liegt damit die ganze Theorie schon vor, vieles ist
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auch schon bewiesen, alle Hauptsitze sind formuliert und verstindlich gemacht; wir haben aber
gerade die ersten 50 Seiten gelesen! Die nichsten Kapitel sind dann, sozusagen, den Feinheiten
gewidmet. Im zweiten Kapitel, Classgroups and Determinants, erscheint erstmals Taylors Logarith-
mus fiir Gruppenringe, der die Haupthilfe seines Beweises von Frohlichs Vermutung war, daf
niimlich nur die Vorzeichen der Wurzelzahlen der symplektischen Charaktere der Existenz einer
Ganzheitsnormalbasis im Wege stehen konnen. Im dritten und vierten Kapitel finden die wichti-
gen Rechnungen mit Galois-Gau-Summen statt, so daf jetzt die Beweise der Hauptsitze der
Theorie vollendet werden konnen. Es schlieBen sich noch zwei weitere Kapitel an: Das fiinfte
behandelt die Frage der expliziten Bestimmung der Vorzeichen der Wurzelzahlen (immer im
zahmen Fall) und die Frage nach ihrer Verteilung; hier wird also G festgehalten, nicht aber die
Korpererweiterung selbst. I. w. handelt es sich bei diesem Kapitel um die Wiedergabe der Arbeit
[Proc. London Math. Soc. (3) 46 (1983) 83—99] des Autors. Das letzte Kapitel schlieflich besteht
aus dem Studium von O, als OxG-Modul (anstatt als 2G-Modul). Genauer: gegeben K und G,
welches sind die Klassen Oy, in der Klassengruppe von OgG, wenn L/K zahm und galoissch mit
Gruppe G ist? Hier werden einmal die schénen Resultate von Brinkhuis wiedergegeben, der diese
Frage im Zusammenhang mit Einbettungsproblemen behandelt hat, zum anderen die von
McCulloh, die vielleicht am besten unter der Uberschrift , Stickelberger-Relationen auf der Klas-
sengruppe eines Gruppenringes* zusammengefafit werden. In einem Anhang wird schliefSlich auf
die neuesten Entwicklungen und Forschungsrichtungen hingewiesen; hier findet auch Cassou-
Nogués und Taylors sogenannte Umkehrung des Hauptsatzes der Theorie Erwihnung, niimlich
dafl die Wurzelzahlen alle = 1 sind, wenn O, trivial in der von Fréhlich eingefiihrten Hermiteschen
Klassengruppe von ZG ist; hier ist des weiteren auf Queyruts Diskussion des Falles, in dem L/K
nicht unbedingt mehr zahm-verzweigt ist, eingegangen.

Das Buch ist auBerordentlich lebendig geschrieben. Es scheint dadurch mit ziemlicher
Leichtigkeit in diese doch sehr tiefliegende Theorie mit ihrer ganzen Vielfalt von neuen Ideen
hineinzufithren.

Thm gehort dariiber hinaus eine Besonderheit dadurch, dal es den Leser zu einem Beglei-
ter der Entwicklung dieser ganzen faszinierenden Geschichte macht und ihm stindig das Gefiihl
gibt, als wire er eigentlich mit im Geschaft — anstatt dafl es ihm nur das fertige Gebiude vor-
stellt. Und das ist wohl deshalb so, weil hier der, der die Theorie so mafigeblich beeinfluft hat
und der sozusagen ihr Vater ist, das Buch schrieb und nicht ein AuBenstehender.

Augsburg J. Ritter

Dauns, I., A Concrete Approach to Division Rings, Berlin: Heldermann Verlag 1982,
417S.,DM 78 ,—

Auf der Riickseite des Bucheinbandes ist u. a. folgendes zu lesen:
This is the first book which treats all types of division rings. Traditionally, the theory of division
rings has been based on heavy algebra, . . . In contrast, the first objective of this book is to develop
the important basic facts quickly in as straightforward a manner as possible. . . . Thus this book
provides a vehicle with which the non-expert can easily and quickly reach the frontiers of the sub-
ject.

Leider muf ich schon hier sagen, daf all diese Anspriiche nicht annihernd erfiillt wer-
den. Insbesondere sollte man dieses Buch Nichtexperten tunlichst vorenthalten; diese wiirden
dadurch nur griindlich verwirrt.

Zur Begriindung meiner herben Kritik wird man Vergleiche mit vorhandenem ziehen
miissen, etwa mit (das ist natiirlich keine vollstindige Aufzihlung):
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[1] Deuring, M.: Algebren. Springer 1935

[2] Albert, A. A.: Structure of Algebras. AMS Coll. Publ. 24 (1939)

[3] Artin, E; Nesbitt, C.J; Thrall, R. M.: Rings with Minimum Condition. Univ.
of Michigan Press 1948

[4] Blanchard, A.: Les corps non commutatifs. Collection SUP (1972)

[5] Jacobson, N.: Pl-Algebras. Springer Lecture Notes 441, 1975

[6] Cohn, P.M.: Skew Field Constructions. LMS Lecture Note 27, 1977

[7] Draxl, P.K.: Skew Fields. LMS Lecture Note 81 (1983)

‘ ‘)l_Ll“A »)ﬁ.@n*" Wﬁ?ﬁi’"ﬁ’hmﬁi(ﬁcﬂl"c’" alwabrninahan Tail

keine ,heavy algebra®. [1], [2] und [4] haben einen arithmetischen Teil, [6] ist das Buch fiir den
unendl.-dim. Fall (als Algebra iiber dem Zentrum betrachtet), die anderen 6 behandeln vorwie-
gend den endl.-dim. Fall. [4] kommt in der Bibliographie unseres Buches nicht vor, [7] ist danach
erschienen.

Unser Buch behandelt etwa zu gleichen Teilen den endl.- und unendl.-dim. Fall, die sich
von den Methoden her zum Teil erheblich unterscheiden (etwa wie endl. und unendl. Gruppen).
Es beginnt in Ch. I (17 S.) mit den reellen Quaternionen und deren Relevanz fiir die Geometrie.
Solch ein Beginn ist nie verkehrt ([4] beginnt genauso, nur deutlich eleganter), doch hitte man

dort ist von ,,verallgemeinerten** Quaternionenalgebren die Rede, womit de facto Tensorprodukte
iiblicher Quaternionenalgebren mit gewissen Schiefkdrpern gemeint sind. Hier findet sich auch
das K6thesche Beispiel eines unendl.-dim. Schiefkorpers. Dieses Kapitel gefillt noch am ehesten,

schon wegen seiner Kiirze.
Nun Farmmt der Kern dec endl -dim Teils des Buches Ch I (153 S.)) iiber ..zentral
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Ch. 1/2 in [6] sind besser. Nun kommt Ch. V iiber Schiefkdrpererweiterungen; dieses (hochinte-
ressante) Gebiet kommt eher zu kurz (trotz der 35 S.). Man hitte sich vieles aus [6] gewiinscht,
so ein Beispiel einer Erweiterung mit unterschiedlichem Links- und Rechtsgrad. Bleiben Ch. VI/VII
(zus. 45 S.); namentlich das letzte gefillt wieder besser; es handelt von Halbgruppenpotenzreihen-
ringen und enthalt neues Beispielmaterial. Dort flieBt auch einiges aus anderen Veréffentlichungen
des Autors ein.

Nun die Anhénge: A-1 (7 S.) erginzt Ch. I/II, A-II (6 S.) erginzt ein Beispiel in Ch. III,
A-III (11 S.) gibt einen Uberblick iiber (nullteilerfreie) nichtassoziative Ringe (z. B. Cayleysche
Zahlen) und A-IV (27 S.) diskutiert Fragen der Faktorisierung von Elementen gewisser nicht-
kommutativer Ringe.

Das Buch schliefit mit einer (niitzlichen) Liste der Symbole u. 4. (geordnet nach Kapi-
teln), der Bibliographie, einem Autor- und einem Sachindex.

Die Bibliographie mit ca. 409 Titeln gibt (wenn méglich) auch Hinweise auf die entspre-
chenden Kommentare im Zbl. f. Math. Es fillt auf, da nur ungefihr 134 (also knapp ein Drittel)
dieser Titel im Buchtext erwihnt werden; umgekehrt geistert das nicht aufgefiihrte [Cohn 63]
durch ganz A-IV. Dal man andererseits etliches vermifit, ist weiter oben schon dargelegt worden.
Solch eine aufgeblasene Bibliographie kann natiirlich durchaus von Wert sein, doch bleibt es frag-
lich, ob es sinnvoll ist, auf Fragenkreise hinzuweisen, welche im Buchtext iiberhaupt nicht
erwihnt werden; Beispiel: die Arbeiten von Platonov oder Rehmann (der Begriff ,,reduzierte
Norm* kommt nirgends im Buche vor, was an sich ein deutliches Manko ist).

Was bringt das Buch nun eigentlich? Nun ja, der Experte wird aus manchem Beispiel
doch einiges lernen (und wird das Durcheinander iiberwinden kénnen) und auch so manchen
Hinweis auf die Literatur entdecken. Der Nichtexperte sollte beispielsweise zunichst die ersten
72 S. von [6], sodann die ersten 95 S. von [3] (resp. die ersten 111 S. von [7]) und schlieBlich
die 114 S. von [5] lesen; dann ist er (nach insgesamt 278 resp. 297 leicht verdaulichen Seiten —
gegeniiber den 370 Textseiten des vorliegenden Buches) Experte genug, so da8 fortan fiir ihn
das oben fiir Experten gesagte gilt.

Bielefeld P.X. Draxl (1)

Draxl, P. K., Skew Fields (London Mathematical Society Lecture Note Series 81),
Cambridge Univ. Press, 1983, 182 p., £ 1095

Bei einem Buch mit dem Titel ,.Skew Fields* stellt sich als erstes die Frage: endlich-
dimensionale oder unendlich-dimensionale, denn es ist wohlbekannt, daf} diesen beiden Fillen
zwei Theorien entsprechen, die in jhren Methoden und Resultaten fast nichts gemeinsam haben.
Hier handelt es sich ganz iiberwiegend um die Theorie endlich-dimensionaler zentraler einfacher
Algebren, also um einen wesentlichen Teil der klassischen Wedderburn-Noether-Brauer-. . .-Artin-
Theorie. Derjenige, der etwas von der Entwicklung der letzten zwei Jahre mitbekommen hat,
wird dann als nichstes wissen wollen: Erfahrt man etwas iiber die sensationellen neuen Ergeb-
nisse von Merkurjev und Suslin? Die Antwort ist: ein wenig. Diese Sitze werden (nicht in allen

Yersionen) formuljert. aber zum Beweis wird nichts und zu Anwendunegn fast_nichts pesaet

Daraus kann man dem Verfasser keinen Vorwurf machen: Die Zeit war zu kurz, und er hat
einfach Pech gehabt, daf} sein Buch gerade in dem Zeitpunkt erscheint, da nach fast finfzig-
jahriger ziemlicher Stagnation die ganze Theorie wieder in Bewegung gerit.

Der Kern des Buches ist also die klassische Theorie der endlich-dimensionalen zentralen
einfachen Algebren (§§ 2, 3,7, 8,9, 12, 22). Dieser Stoff ist sehr geschickt und effektiv organi-
siert. Natiirlich kann man in der Darstellung keine groen Uberraschungen mehr erwarten, aber
es ist dem Verfasser durchaus gelungen, gegeniiber frilheren Biichern neue Aspekte zu betonen,
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z. B. die frithzeitige Einfihrung und systematische Verwendung der Corestriktion (nach Riehm).
Der Experte wird ganz besonders begriiBen, dafl er nicht die Miihe gescheut hat, in § 22 die wich-
tigen und fir viele Beweise niitzlichen Schachtelungsformeln fiir reduzierte Norm und Spur zu
beweisen, die man bisher in den gingigen Biichern vergeblich suchte. Einige Paragraphen

(§ 4,5, 6, 13) enthalten mehr technische Hilfsmittel, insbesondere iiber Tensor-Produkte und
Galois-Cohomologie, wobei auch hier die Darstellung ofter vom gewohnten abweicht. Schlie3-
lich finden sich noch einige Erganzungen und vor allem die Diskussion wichtiger Klassen ein-
facher Algebren. Es geht um zyklische Algebren, Normrest-Algebren, Quaternionen-Algebren,
p-Algebren und Involutionen. Hier stehen die formalen und funktoriellen Eigenschaften dieser
Algebren (aufgefat als Funktionen ihrer definierenden Daten) im Vordergrund. Zum Beispiel
werden die neuen Ergebnisse von Rosset und Tate iiber das Verhalten von Potenzrest- und
Quaternionen-Algebren bei Verlagerung bewiesen.

Das Thema des letzten Teiles des Buches (Reduced K;-Theory of Skew Fields) ist die
Struktur der allgemeinen und speziellen linearen Gruppen. Diese Theorie hat einen anderen
Charakter als die im Hauptteil des Buches behandelte, so dafl der behandelte Stoff sich nicht
ganz harmonisch und bruchlos an das frithere anschlieft. Es geht zunichst um folgende Ergeb-
nisse: Bruhatsche Normalform fiir Matrizen iiber beliebigen Schiefkrpern, die (originellerweise)
benutzt wird, um die Dieudonné-Determinante zu definieren, Charakterisierungen der speziellen
linearen Gruppen (als von den Elementarmatrizen erzeugt, bzw. als Kommutatorgruppe), Ein-
fachheit der projektiven linearen Gruppe. Dann kommt der Verfasser zu dem, was ihn wohl
eigentlich interessiert: Er beschrinkt sich wieder auf den Fall endlich-dimensionaler Schiefkér-
per und untersucht die Gruppen K (D) und insbesondere SK, (D), die reduzierte Whitehead-
Gruppe, die als Kern der von der reduzierten Norm induzierten Abbildung definiert ist. Aus den
formalen Eigenschaften der reduzierten Norm folgt sofort, daf SK, (D) Torsions-Gruppe ist,
deren Exponent den Index i(D) teilt. Als Hauptergebnis wird das wesentlich auf den Verfasser
zuriickgehende Resultat bewiesen: SK; =1 fiir ,,verniinftiges** Zentrum k. Dieses Resultat ent-
hilt den rein algebraischen Teil des Wangschen Satzes SK; = 1 fiir lokale und globale K érper.
Das Buch schlieft mit den bekannten Beispielen des Verfassers fiir D mit SK, (D) # 1 und eini-
gen Bemerkungen zum unitiren SK, (D).

Insgesamt handelt es sich um eine gelungene Darstellung in ein gerade wieder aktuell
gewordenes klassisches Teilgebiet der (linearen) Algebra. Jedem, der sich schnell und griindlich
iiber die Theorie der endlich-dimensionalen einfachen Algebren informieren will, kann man das
Buch als prizise und inhaltsreiche Informationsquelle empfehlen. Es eignet sich auch als Vorlage
fiir ein Seminar oder eine Spezialvorlesung im Anschluf an eine einfithrende Algebra-Vorlesung
und wird Studenten niitzlich sein, die sich fiir eine Examensarbeit in dieses Gebiet einarbeiten
wollen.

Miinster W. Scharlau

Weil, A., Adeles and Algebraic Groups, Basel — Boston — Stuttgart: Birkhiuser-Verlag
1982,138 S., DM 30,—

Die Vorlesungsausarbeitung der Vorlesungen von Weil iiber Adele und algebraische
Gruppen, die etwa fiir zwei Jahrzente nur als Ausarbeitung vom Institute for Advanced Study
zu beziehen war, ist hier vom Birkhiuser Verlag neu aufgelegt worden. Die Ausarbeitung zihite

- zu den Werken der Mathematik, die von sehr unscheinbarem Aufieren sind, aber dennoch aller-

groiten Einfluf auf die Entwicklung der Mathematik haben.

Dies Buch ist ein unverdnderter Abdruck der Vorlesung. Nach zwei einfithrenden Kapi-
teln, in denen die Adele, die adelewertigen Punkte auf algebraischen Mannigfaltigkeiten und die







Jahresbericht

der Deutschen Mathematiker-Vereinigung

Hinweise fiir Autoren

Fiir den Abdruck vorgesehene Manuskripte sind in einwandfrei leserlicher und véllig satz-
fertiger Form (einseitig beschriebenes Manuskript, Schreibmaschinenschrift 1 1/2-zeilig) und ent-
sprechend den nachstehenden Richtlinien ausgezeichnet einzureichen.

Der Beginn von Absitzen oder neuen Abschnitten sollte deutlich durch Einriicken ge-
kennzeichnet sein. In jedem Fall sollte ein Hinweis fiir den Setzer, in dem alle Besonderheiten
aufgefiihrt sind, beigefiigt werden.

Ferner sollten die Manuskripte entsprechend dem Subject Classification Schemes der
Mathematical Reviews (AMS/MOS) klassifiziert sein. Am Ende der Manuskripte sollte die genaue
Anschrift des oder der Verfasser angegeben werden. Zuschriften sowie die Versendung der Kor-
rekturabziige erfolgen, sofern nicht anders vermerkt, immer an den erstgenannten Autor.

Zeichnungen sollten fortlaufend numeriert werden und auf gesonderten Blittern in Form
von klaren Bleistiftzeichnungen im richtigen maistiblichen Verhiltnis moglichst in doppelter
Grofe dem Manuskript beigefiigt werden. Am linken Rand des Textes sollte ein Hinweis auf die
jeweils einzufigende Figur angebracht werden.

Fufinoten sollten auf der jeweiligen Seite, auf die sie Bezug nehmen, angebracht werden
(nicht am Ende des Textes). Literatur sollte in folgender Weise zitiert [1] und dann am Ende des
Textes in alphabetischer Reihenfolge zusammengestellt werden. Verweise sollten in folgender
Form vorgenommen werden:

[1] Neven, J.: Martingale Problems. Jber. d. Dt. Math.-Verein. 79 (1957) 175—180

[2] Wittenburg, J.: Dynamics of Systems of Rigid Bodies. Stuttgart: Teubner 1977. =
Leitfiden der Angewandten Mathematik und Mechanik Bd. 33.

Um eine rasche Veroffentlichung zu erreichen, erhalten die Autoren nur einen Korrek-
turabzug. Die Autoren werden gebeten, nur Druckfehler zu korrigieren. Sollten weitere Korrek-
turen wie Einfiigungen oder Streichungen vorgenommen werden, miissen diese dem Autor be-
rechnet werden. Die von den Autoren durchgesehenen Korrekturabziige sind umgehend an den
Herausgeber zuriickzusenden.

Die Autoren erhalten von ihren Arbeiten nach Veroffentlichung 75, von Buchbespre-
chungen 2 Sonderdrucke unentgeltlich. Zusitzliche Sonderdrucke kénnen gegen entsprechende
Berechnung zum Zeitpunkt der Riickgabe der Korrekturen bestellt werden.
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Auszeichnungen fiir den Satz

Die im Manuskript enthaltenen Formelbuchstaben werden generell steil gesetzt. Beson-
dere Schriftarten sind entsprechend den folgenden Richtlinien farblich auszuzeichnen.

gestrichelte schwarze Unterstreichung — Sperrung

doppelte schwarze Unterstreichung halbfett (nur im laufenden Text zu verwenden,
nicht in Formeln)

kursiv (nur im laufenden Text zu verwenden,
nicht in den Formeln)

halbfette lateinische Buchstaben (in Formeln)

griine Unterstreichung

|

doppelte griine Unterstreichung

rote Unterstreichung — griechische Buchstaben

lila Unterstreichung — Groteskbuchstaben

doppelte lila Unterstreichung — halbfette Groteskbuchstaben z. B. fiir
R, N, C usw.

blaue Unterstreichung*) — Fraktur

gelbe Unterstreichung — Grof8buchstabe O (zur Unterscheidung von der
Ziffer Null)

gelb eingekastelt*) — Skript

lila eingekastelt — logische und mengentheoretische Symbole wie
z.B. 3, ¥, v, A, =, Malkreuz x, Verkniipfungs-
zeichen o, N, U, N, U, €, C, Laplace-Operator
A, Nabla V

griin eingekastelt — Kleinbuchstabe £ (zur Unterscheidung zur
Ziffer eins (1))

Die Bezeichnungen Theorem, Lemma, Korollar, Proposition, Definition usw. werden
iiblicherweise halbfett gesetzt. Der danach folgende Text (bis auf Formelbuchstaben) wird kur-
siv gesetzt. Die Bezeichnungen Beweis, Bemerkung, Hinweis usw. werden normal gesetzt, jedoch
gesperrt. Der nachfolgende Text wird in normaler Schrift gesetzt.

Mathematische Formeln sollten so deutlich geschrieben werden, da} kein Mifiverstind-
nis moglich ist. Die Autoren werden gebeten, insbesondere deutlich zu unterscheiden zwischen
Grofbuchstaben und Kleinbuchstaben, Null sowie kleinem o oder grofem O, griechischen Buch-
staben ¢, ¢, @, k, K, 9, 8, ©, Strich (z. B. Ableitungsstrich) und Apostroph. Ferner sollte darauf
geachtet werden, daB keine Verwechslung zwischen k, K, r, u, v (lateinisch) und «, u, v (griechisch)
sowie € und e (griechisch) moglich ist.

*) Von der Verwendung dieser Schriftarten ist beim Composersatz nach Méglichkeit
abzusehen.

B. G. Teubner, Postfach 80 10 69, D-7000 Stuttgart 80




Please order from your Bookseller
or Birkhduser Verlag, P.O. Box 133,
CH-4010 Basel/Switzerland

or Birkh4user Boston Inc.,

380 Green Street, Cambridge

MA 02139/USA

Prices are subject to change
without notice 11/83

New series

Monographs
in Mathematics

formerly:

Lehrbiicher und Monographien aus dem
Gebiete der exakten Wissenschaften,

Mathematische Reihe

The new series
Monographs in
Mathematics is devoted
to the publication of
definitive research level
monographs selected
for their quality of
exposition, current
interest, and
mathematical
relevance. Volumes will
be of interest to all
mathematicians and
graduate students as an
important source of
major developments in
specific fields.

Edited by
A.Borel
J.Moser
S.T. Yau

Volume 78

Hans Triebel
University of Jena, GDR

Theory of Function

Spaces

1983. 284 pages, Hardcover
sFr. 78.—/DM 90.—

ISBN 3-7643-1381-1

Volume 79

Gennadi M. Henkin

Academy of Sciences, Moscow,
USSR

Jiirgen Leiterer

Academy of Sciences, Berlin, GDR

Theory of Functions on

Complex Manifolds
1983. 240 pages, Hardcover
sFr. 68.—/DM 79.—

ISBN 3-7643-1477-X

Birkhiuser
Verlag
Basel - Boston - Stuttgart



An approach through history

André Welil

Professor Emeritus at the Institute for Advanced Study,
Princeton, USA

Number Theor

From Hammurapi to Legendre

384 pages, Hardcover
sFr. 64.-/DM 74.—
ISBN 3-7643-3141-0

André Weil, one of the outstanding e g
contributors of our time to number
theory, has written an historical
exposition of this subject; his study
examines texts that span roughly
thirty-six centuries of arithmetical
work - from an Old Babylonian
tablet, datable to the time of
Hammurapi to Legendre’s Essai sur
la Théorie des Nombres (1798).
Motivated by a desire to present the
substance of his field to the
educated reader, Weil employs an
historical approach in the analysis
of problems and evolving methods of
number theory and their significance
within mathematics. In the course
of his study Weil accompanies the
reader into the workshops of four
major authors of modern number
theory (Fermat, Euler, Lagrange -
and Legendre) and there he |
conducts a detailed and critical
examination of their work.
Enriched by a broad knowledge of
intellectual history, Number Theory
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These three volumes contain almost all scientific
papers of Armand Borel, including those publica-
tions with coauthors, from 1948 until the end of
1982, as well as two previously unpubhshed
papers.

Several papers have been wholly reset. Where ap-
propriate, corrections have been carried out direct-
ly in the text. Some lengthier revisions have been
included together with further comments at the
end of each volume: these provide, additionally,
references to later results complementing or gen-
pralizing the assedtion of the 1" or—neunsing.

Springer-Verlag
Berlin
Heidelberg
New York
Tokyo

17, D-6900 H

175 Fifth Ave., New York, NY 10010 USA
37-3, Hongo 3-chome, Bunkyo-ku, Tokyo 113, Japan

questions raised there. A few open problems are
also mentioned. A complete listing of all Borel’s
publications is included in each volume.

The significance of Armand Borel’s contributions
to many areas of mathematics such as algebraic
topology, algebraic groups, Lie groups, automor-
phic forms, will make these volumes of lasting
interest. In particular the many painstakingly
written expository and survey articles which have
been published in the “Seminaire Bourbaki” or in
the “Lecture Notes in Mathematics”, for instance,
will provide all who have long been familiar with.
his work, as well as the youﬁgeg generation, with
considerable stimulus and motivation for research
in various fields.
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(Bermo Artmann )

Der Zahlbegriff

(Moderne Mathematik in elementarer Darstellung, Band 19).
1983. VIII, 265 Seiten mit 81 Abbildungen, kart. DM 34,—

Was ist eine reelle Zahl? Ist eine genaue Festlegung dieses Grundbegriffs der
Mathematik tiberhaupt méglich? Welche Antworten wurden in der Geschichte
der Mathematik gegeben? Fragen dieser Art werden in den ersten beiden Kapiteln
des Buches diskutiert. Dabei kommen die Urspriinge der reellen Zahlen bei den
Griechen ebenso zur Sprache wie die heutigen Fassungen des Vollstéindigkeits-
begriffs, aus denen hervorgeht, weshalb man nur auf der Grundlage der reellen
Zahlen sinnvoll Analysis treiben kann. Andere Kapitel handeln von leicht zugédng-
lichen Eigenschaften der Irrationalzahlen, von dem Fundamentalsatz der Algebra
in € und seiner Konsequenz, da man fiir n>2 den IR nicht (in verniinftiger
Weise) zu einem Kérper machen kann. Von den mengentheoretischen Machtig-
keiten der Zahlenbereiche geht es weiter zu den transfiniten Kardinalzahlen bis
zum Beweis von (R?, +) = (R, +). Auch die Zahlbereiche der non-standard-
Analysis und die Quaternionen mit ihren Beziehungen zur Geometrie des IR®
werden in elementarer Fassung besprochen.

Werner Blum / Giinter Torner
Didaktik der Analysis

(Moderne Mathematik in elementarer Darstellung, Band 20).
1983. XIV, 292 Seiten mit zahlreichen Figuren, DM 39,—

Die Analysis (reelle Zahlen, Funktionen, Konvergenz, Differential- und Integral-
rechnung) ist das zentrale Thema des Mathematikunterrichts der Sekundarstufe II
(Gymnasien, Fachoberschulen). In diesem Buch werden zum einen (in Teil A)
die wichtigsten stoffdidaktischen Aspekte des Themas Analysis dargestellt und
diskutiert. Zum anderen werden (in Teil B) curriculare Fragen zu Vor-, Grund- und
Leistungskursen in Analysis erortert. Zu jedem Kapitel werden Ubungen zur
vertiefenden Beschaftigung mit dem Stoff angeboten. Zusatzlich werden (in Teil C)
allgemeinere Aspekte (wie didaktische Prinzipien oder Anwendungsorientie-
rung) kurz behandelt. Ein umfassendes Literaturverzeichnis erleichtert die Durch-
arbeitung des Stoffes.

Das Buch wendet sich an alle Mathematik-Lehrer, -Referendare und -Lehrer-
studenten der allgemeinen und der beruflichen Sekundarstufe II und an alle
Ausbilder von Mathematiklehrern in der ersten und zweiten Phase. Es ist hervor-
gegangen aus Vorlesungen zur Didaktik der Analysis an verschiedenen Univer-
sitdten sowie aus Lehrerfortbildungsveranstaltungen. Die Aussagen des Buches
sind abgestiitzt durch Unterrichtserfahrungen in Gymnasien und Fachoberschulen
von zahlreichen Lehrern wie auch der beiden Verfasser.
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