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Das Werk C. L. Siegels
in der Zahlentheorie*)

Th. Schneider, Freiburg

Wir gedenken eines der bedeutendsten Mathematiker dieses Jahrhunderts:
Carl Ludwig Siegel.

Sein Werk fand weltweite Anerkennung, was auch in zahlreichen Ehrendok-
toraten, der Ehrenmitgliedschaft oder der Mitgliedschaft angesehener Akademien
und wissenschaftlicher Gesellschaften des In- und Auslands und anderer Ehrungen,
ich nenne hier nur den Orden Pour le mérite, seinen sichtbaren Niederschlag fand.
Dabei hat er die dufiere Anerkennung nie gesucht, im Gegenteil, er ist vor ihr eher
zuriickgewichen und hat kaum Kongresse besucht. Der internationale Kongress in
Oslo 1936 und die Jahrestagungen der deutschen Mathematikervereinigung in Jena
1921 und in Gottingen 1955, an denen er vorgetragen hat, diirften die Ausnahmen
geblieben sein. Sein Name lebt fort durch seine zahlreichen Abhandlungen, vor al-
lem in der Zahlentheorie und der Funktionentheorie, aber auch in der Himmels-
mechanik. Seine gesammelten Werke sind zu seinen Lebzeiten erschienen, und
nachdem zu seinem 70ten Geburtstag die ersten drei Binde ver6ffentlicht worden
waren, schrieb Le Veque in den Mathematical Reviews: ,,The collection stands as
a monument to the genius of the author*.

Erlauben Sie mir zunichst einige biographische Bemerkungen. Carl Ludwig
Siegel wurde am 31. 12. 1896 in Berlin geboren. Seine Eltern stammten aus dem
Rheinland, er hatte keine Geschwister. Uber seine Kindheit und Jugend ist nicht
viel mehr bekannt, als da er neben seinem Interesse fir Mathematik mit besonde-
rer Freude gezeichnet hat. Sein Bildunesweg fiihrte ihniiher die Gemeindeschule.

die Realschule zur Oberrealschule. Vor dem Ubergang von der Realschule zur Ober-
realschule glaubte er, sich speziell in Mathematik noch besser vorbereiten zu miis-
sen, und er fragte in der Stadtbibliothek Berlin nach einem geeigneten Buch iiber
Algebra. Man gab ihm Webers Algebra III, da die beiden Binde I und II ausgeliehen
waren. Also begann er darin zu lesen und zu verstehen, was selbst einem Studen-
ten hoheren Semesters geniigend Miihe bereitet. Im Herbst 1915 schrieb er sich in
Berlin fiir das Studium der Astronomie ein. Er schreibt dazu in seinen Erinnerun-

gen an Frobenius (1968): ..Als ich Herbst 1915 ag der Retliner Universitit imma-

F

trikuliert wurde, war gerade ein Krieg in vollem Gange. Obwohl ich die politischen
Ereignisse nicht durchschaute, so fafite ich in instinktiver Abneigung gegen das

°) Vortrag, gehalten bei der Jahrestagung der DMV am 20. 9. 1982 in Bayreuth.
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gewalttitige Treiben der Menschen den Vorsatz, mein Studium einer der irdischen
Angelegenheiten moglichst fernliegenden Wissenschaft zu widmen, als welche mir
damals die Astronomie erschien. Daf} ich trotzdem zur Zahlentheorie kam, be-
ruhte auf folgendem Zufall. Der Vertreter der Astronomie an der Universitit hatte
angekiindigt, er wiirde sein Kolleg erst 14 Tage nach Semesterbeginn anfangen,
was iibrigens in der damaligen Zeit weniger als heutzutage iiblich war. Zu den
Wochenstunden, Mittwoch und Sonnabend 9 bis 11 Uhr, war aber auch eine Vor-
lesung von Frobenius iiber Zahlentheorie angezeigt. Da ich nicht die geringste Ah-
nung davon hatte, was Zahlentheorie sein konnte, so besuchte ich aus purer Neu-
gier zwei Wochen lang dieses Kolleg, und das entschied iiber meine wissenschaft-
liche Richtung, sogar fiir das ganze weitere Leben. Ich verzichtete dann auf Teil-
nahme an der astronomischen Vorlesung, als sie schlieBlich anfing und blieb bei
Frobenius in der Zahlentheorie*. Die Vorlesungen von Frobenius haben ihn stark
beeindruckt. Er schildert diese in seinen schon genannten Erinnerungen so: ,,Fro-
benius sprach vollig frei, ohne jemals eine Notiz zu benutzen, und dabei irrte oder
verrechnete er sich kein einziges Mal wihrend des ganzen Semesters. Als er zu An-
fang die Kettenbriiche einfiihrte, machte es ihm offensichtlich Freude, die dabei
auftretenden verschiedenen algebraischen Identititen und Rekursionsformeln mit
grofter Sicherheit und erstaunlicher Schnelligkeit der Reihe nach anzugeben, und
dabei warf er zuweilen einen leicht ironischen Blick ins Auditorium, wo die eifrigen
Horer kaum noch bei der Menge des Vorgetragenen mit der Niederschrift folgen
konnten‘“. Und an spiterer Stelle des gleichen Artikels iiber Frobenius sagt Siegel:
,,JJch habe bereits erwdhnt, daB ich nicht gut erkliren kann, wodurch die starke
Wirkung der Vorlesungen von Frobenius hervorgerufen wurde. Nach meiner Schil-
derung der Art seines Auftretens hitte die Wirkung eher abschreckend sein konnen.
Ohne daB es mir klar wurde, beeinflufite mich wahrscheinlich die gesamte schop-
ferische Personlichkeit des grolen Gelehrten, die eben auch durch die Art seines
Vortrags in gewisser Weise zur Geltung kam. Nach bedriickenden Schuljahren unter
mittelmafigen oder sogar bosartigen Lehrern war dies fiir mich ein neuartiges und
befreiendes Erlebnis“. Am Ende dieses seines ersten Semesters erhielt Siegel dann
den Eisensteinpreis, der in Berlin einmal jahrlich einem begabten Studenten der
Mathematik verlichen wurde, und den Frobenius beantragt hatte.

Die Losung des Problems, das Siegel zum Gegenstand seiner spateren Dis-
sertation gemacht hat, hatte er bereits in seinem dritten Studiensemester gefunden.
Es handelt sich dabei um die Verschirfung eines Satzes von A. Thue aus dem Jah-
re 1908 iiber die Approximation algebraischer Zahlen durch rationale. Ich werde
spiter kurz auf die mathematische Seite eingehen. Siegel schreibt dazu in einer
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vanced Study in Princeton zunichst bis 1945 ein Forschungsstipendium und da-
nach eine feste Stellung, in der er bis zum Frithjahr 1951 verbleibt. Den Winter
1946/47 hatte er wihrenddessen wieder in Gottingen als Gastprofessor verbracht,
und 1951 nimmt er wieder einen Ruf auf ein freigewordenes Ordinariat an.

Zum 1. 4. 1959 lifdt er sich in Gottingen emeritieren. Auch nach seiner
Emeritierung fithrt er die Vorlesungstitigkeit noch fiir mehrere Jahre weiter. Fer-
ner gibt er zwischen 1955 und 1967 insgesamt viermal, jedesmal fiir mehrere Mo-
nate, Gastvorlesungen am Tata-Institute for Fundamental Research in Bombay.

In zunehmender Vereinsamung, aber geistiger Frische vollendet sich sein
Leben in Gottingen am 4. 4. 1981.

Die meisten Schiiler hatte Siegel in den Jahren nach seiner Riickkehr aus
den Vereinigten Staaten. In Frankfurt waren es nur wenige, die ein Examen bei
ihm ablegten. Einem seiner damaligen Schiiler sagte er, sie sind der elfte, der eine
Dissertation bei mir begonnen und der fiinfte, der eine solche vollendet hat. An-
spruchsvolle Seminare und hervorragende, aber teils iiberwiltigende Vorlesungen
schufen eine Auswahl. Dabei waren diese Vorlesungen von einer seltenen Klarheit.
Jedes Wort war iiberlegt. Es dringt sich auf, an das zu denken, was er iiber die Vor-
lesungen von Frobenius geschrieben hat.

Sein Leben war erfiillt von seiner Wissenschaft. Andere tiefe Interessen,
z. B. fir die Malerei, bemerkte nur der ihm Niherstehende, und dieser konnte auch
erfahren, daf} er vor allem in friilheren Jahren eine grofle Anzahl von Bildern ge-
schaffen hat. Aber auch in der Mathematik spielte fiir ihn das dsthetische Moment,
etwa in der Eleganz eines Beweises, der Perfektion und Ausgefeiltheit einer Vor-
lesung oder einer Veroffentlichung eine bedeutende Rolle. Gegen so manche neu-
ere Stromungen in seiner Wissenschaft hegte er grofle Bedenken, da er dieselben
als ungiinstig fiir die kiinftige Entwicklung der Mathematik ansah. Ich méchte an
dieser Stelle den Anfang eines Satzes aus seinem Vorwort zur Reduktionstheorie
quadratischer Formen zitieren, wo es heifdt: ,,Im Hinblick auf das Prokrustesbett,
in das manche Neuerer den herrlichen Leib der Algebra gezwingt haben,* usw.

Fast die Hilfte der mathematischen Publikationen Siegels bezieht sich auf
Zahlentheorie. Der mir zur Verfiigung stehende Rahmen gestattet es jedoch nicht,
dieses inhaltsreiche zahlentheoretische Werk auch nur einigermaf}en gebiihrend zu
wiirdigen, so daf ich mich damit begniigen muf}, auf besonders herausragende Ar-
beiten hinzuweisen.

Schon die Dissertation gibt die Richtung innerhalb der Zahlentheorie an,
in die sich eine ganze Reihe von Arbeiten einordnen lassen, nimlich in das Gebiet
der diophantischen Approximationen.

In der Dissertation wird nach der Approximation einer gegebenen algebra-
ischen Zahl durch rationale gefragt, eine Frage, die dann auch allgemeiner auf die
Approximation durch algebraische Zahlen ausgedehnt wird. Beziiglich des rationa-
len Falles heifdt dies priziser: Es sei a eine algebraische Zahl n-ten Grades und

:—) eine rationale Zahl. Es wird nun nach dem kleinsten Exponenten k gefragt

derart, dafd die Ungleichung
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nur endlich viele Losungen in rationalen Zahlen —2 hat. Wenn ich das fasttriviale
Ergebnis von Liouville (1851), welches ohnehin in diese Form der Frage nicht

n
recht pafdt, iibergehen darf, so hat Thue (1908) k = 3 + 1 + € gezeigt. Dieses

v+1 v+1

n
konnte Siegel auf k = Min( + v) + e < 23/n verbessern. Er untersucht hierzu

ein mittels des Schubfachschlusses beziiglich seiner Existenz gesichertes geeignetes
Polynom in zwei Variablen, das an vorgegebenen Stellen verschwinden soll. Hier
sollte ich ein Wort iiber den Schubfachschluf}, ein auch bei anderen Siegelschen
Arbeiten wichtiges Hilfsmittel, sagen. Gemeint ist jener simple Schluf3: Wenn man
n Dinge in m Schubficher einzuordnen hat, und es ist n > m, so existiert minde-
stens ein Fach, in dem mindestens 2 Dinge liegen. Dieser schon bei Thue und bei
Dirichlet vorkommende und nach letzterem benannte Schluf} gestattet es, bei ei-
nem unterbestimmten homogenen linearen Gleichungssystem mit ganzrationalen
Koeffizienten die Existenz ganzzahliger Losungen mit einer giinstigen oberen
Schranke fiir die Absolutbetrige derselben zu garantieren. Da der Schubfachschluf§
nicht konstruktiv ist, iibertragt sich dies meist auch auf die Ergebnisse.

Bald darauf (1921) wies er durch den allgemeineren Ansatz eines Poly-
noms in geniigend vielen Verianderlichen die Richtung des Weges zu der besten
Losung des in der Dissertation behandelten Problems. Er konnte damit zeigen,

daB firk =e ( logn+ ) die vorgenannte Ungleichung entweder endlich viele

2logn
Losungen besitzt, oder falls es doch unendlich viele seien und diese nach wachsen-
— lo
den positiven Nennern q, geordnet werden, dann lim %‘:}” = oo gijlt. Durch ge-
m

eignete Anderung der Bedingungen fiir das Verschwinden des obigen Polynoms in
geniigend vielen Variablen gelang es dann (1936), die letztgenannte Aussage iiber
die Losungen der Ungleichung mit k = 2 + € zu beweisen. Schlieflich stellte K. F.
Roth (1955) durch Umkehrung der Reihenfolge in dem erforderlichen Elimina-
tionsprozef das Endresultat her, wonach fir k = 2 + € sogar nur endlich viele L6-
sungen vorkommen.

Zu den Fragen aus dem Thueschen Gedankenkreis hat sich Siegel fast
50 Jahre spater noch einmal in der aufschluireichen Arbeit mit dem Titel — einige
Erlauterungen zu Thues Untersuchungen iiber Anniherungswerte algebraischer
Zahlen und diophantische Gleichungen — (1970) geiduflert.

Bereits mit der Habilitationsschrift zeigt Siegel, da er auch in anderen Be-
reichen der Zahlentheorie produktiv ist. In seinem Habilitationsgesuch am
11. 8. 1921 schreibt er, ,,zuerst interessierte mich mehr die algebraische Richtung
der Zahlentheorie, sowie der Gruppentheorie. Als ich dann durch eingehende Be-
schiftigung mit Funktionentheorie die michtigen Hilfsmittel kennen gelernt hat-
te, mit denen sie insbesondere die Theorie der algebraischen Zahlkérper fordert,
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wandte ich mich mehr der analytischen Zahlentheorie zu. Momentan begriinde
ich die Anfinge einer additiven Theorie der Zahlkérper, deren erste Sitze in mei-
ner Habilitationsschrift entwickelt sind*. Und so legt er im Anschluf an seine
Publikation iiber die Darstellung total positiver Zahlen durch Quadrate (1921),

in der er den von Hilbert aufgestellten, aber nicht bewiesenen Satz, wonach sich
jede total positive Zahl eines Zahlkorpers K als Summe von vier Quadraten aus

K darstellen lifit, gezeigt hat, seine Habilitationsschrift mit dem Titel — Zur ad-
ditiven Theorie der Zahlkorper — (1922) vor. Hier zeigt er unter Benutzung der
analytischen Methoden von Hardy, Littlewood und Ramanujan in Ubertragung
der von diesen behandelten Fragestellungen eine asymptotische Formel fiir die
Anzahl der Darstellungen einer total positiven ganzen Zahl eines total reellen al-
gebraischen Korpers als Summe von s Quadraten (s = 5) ganzer Zahlen desselben
Korpers. Der besonders interessierende Fall s = 4 wird in einer bald darauf erschie-
nenen Arbeit des gleichen Titels II (1923) behandelt. Dabei gelingt es, durch Mo-
difikation der Methode speziell zu folgern, daf jede ganze total positive Zahl ei-
nes beliebigen Zahlkoérpers, multipliziert mit dem Quadrat einer nur von dem Kor-
per abhéngigen natiirlichen Zahl, sich als Summe von vier Quadraten ganzer Zah-
len des Korpers darstellen 1i3t.

In den beiden Arbeiten iiber die Funktionalgleichung der Dedekindschen
Zetafunktionen (beide 1922) beschiftigt sich Siegel mit der Ubertragung der ent-
sprechenden Riemannschen Sitze. Riemann hat fiir die Fortsetzbarkeit seiner
Zetafunktion zwei verschiedene Beweise gegeben. Der eine benutzt den Cauchy-
schen Integralsatz, der andere eine Formel aus der Theorie der Thetafunktionen.
Den zweiten Riemannschen Ansatz hat Hecke auf den Beweis der Fortsetzbarkeit
und die Funktionalgleichung iibertragen, und Siegel zeigt nun in seiner ersten Ar-
beit, daB auch die Idee des ersten Beweises mittels des Cauchyschen Satzes sich
sinngemif bei der Untersuchung der Zetafunktion eines Zahlkorpers verwenden
1a#3t. In der zweiten Siegelschen Arbeit wird ausgefiihrt, daf der Dirichletsche
Satz iiber die Grundeinheiten eines algebraischen Zahlkérpers, der ja bei der Defi-
nition der Zetafunktion entbehrlich ist, und der bei beiden bisher bekannten Be-
weisen iiber die Fortsetzbarkeit und die Funktionalgleichung vorausgesetzt wer-
den mufte, hierbei nicht bendtigt wird.

Im Jahre 1929 erschien nun die grofie zweiteilige Publikation mit dem be-
scheidenen Titel — Uber einige Anwendungen diophantischer Approximationen —,
die Siegel, wie er erzihlte, in Pontresina, jenem Schweizer Ferienort, den er immer
wieder aufsuchte, niedergeschrieben hat. Es steht mir nicht zu, und ich mafie mir
auch nicht an, die Arbeiten Siegels gegeneinander zu bewerten, aber wer die Genia-
htat des Zahlentheoretlkers Siegel erahnen w1ll der lese nur diese 70 Seiten. Der
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schen Satz gelingt es Siegel, die zu behandelnde Frage auf ein Approximations-
problem zuriickzufithren, auf welches sein Approximationssatz aus seiner Disserta-
tion angewendet werden kann. Dies liefert den Beweis der Behauptung. Siegel hat
die Fragestellung dann noch erweitert, indem nicht nur nach ganzzahligen Losun-
gen, sondern nach rationalen, allerdings mit beschrinkten Nennern gesucht wird,
und er beweist auch hierfiir den gleichen Satz. Diese letztgenannte Frage legt den
Gedanken nahe, das Problem umzuschreiben, indem man fiir x und y homogene
Koordinaten einfiihrt, wodurch die algebraische Gleichung in eine homogene Form
iibergeht, und man nach ganzzahligen Losungen, allerdings mit obiger Einschrin-
kung fragt. Hier liegt ein Zusammenhang mit der Gleichung von Fermat auf der
Hand, und Siegel schreibt dazu in seiner Arbeit: ,,Durch den Satz von Weil wird
nahegelegt, das Theorem von Fermat und allgemeiner die Theorie der algebra-
ischen diophantischen Gleichungen mit zwei Unbekannten von einer neuen Seite
anzugreifen. Doch diirfte wohl der Beweis der Vermutung, daB jede solche Glei-
chung, wenn ihr Geschlecht grofer als 1 ist, nur endlich viele Lésungen in ratio-
nalen Zahlen besitzt, noch die Uberwindung erheblicher Schwierigkeiten erfor-
dern.“

Seine Arbeiten iiber transzendente Zahlen schlieft Siegel (1932) mit einer
Note iiber die Perioden elliptischer Integrale erster Gattung ab, in der er zeigt, da
die beiden Invarianten g,, g; und die beiden primitiven Perioden w,, w, nicht
simtlich algebraische Zahlen sein konnen.

Im Jahre 1949 1afit er nur noch ein Buch iiber transzendente Zahlen folgen,
in dem er die Entwicklung der Theorie schildert.

Der oben genannte Siegelsche Satz iiber diophantische Gleichungen gestat-
tet wegen des Eingehens des nicht effektiven Siegelschen Approximationssatzes
nicht, etwas genaueres iiber die endlich vielen diophantischen Lésungen auszusa-
gen, ja nicht einmal ihre Anzahl zu bestimmen. Man kann letzteres nur in Spezial-
fillen tun, und so greift Siegel in seiner Arbeit (1937) die Gleichung ax™ —by" =¢
auf, die schon fiir Thue der Ausgangspunkt seiner allgemeineren Untersuchungen
war, und zeigt fir n 2 3, und wenn |ab| eine nur von n und ¢ > 0 abhiingige
Schranke nicht unterschreitet, dafl dann die Ungleichung |ax™ — by" | < ¢ héchstens
eine Losung in natiirlichen teilerfremden Zahlen besitzt. Interessant ist dabei, da®
sich mit Hilfe der Theorie der hypergeometrischen Differentialgleichung die not-
wendigen Approximationen algebraischer Funktionen durch rationale gewinnen
lassen.

Nach der Vereinfachung der Hardy-Littlewoodschen Kreismethode durch
Vinogradow, der die erzeugenden Potenzreihen durch endliche trigonometrische
Summen ersetzt hat, gelingt es Siegel mittels einer Verallgemeinerung der Farey-
Zerschneidung, seine Resultate aus dem Jahre 1922 iiber die Darstellbarkeit durch
Quadrate auf die Verallgemeinerung durch den Waringschen Satz mit beliebigen
Exponenten und fiir algebraische Zahlkorper auszudehnen (1944).

Im Jahre 1952 erschien die Aufsehen erregende Publikation von Heegner
iiber den Beweis der bekannten Gaulschen Vermutung, wonach die von Gauf an-
gegebenen 9 Diskriminantenzahlen imaginarquadratischer Zahlkoérper der Klassen-
zahl 1 die einzigen sind. Der schwer lesbare Beweis enthielt eine Liicke, die von
Deuring geschlossen werden konnte. Unabhingig davon veroffentlichte Stark im
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Jahre 1967 einen véllig andersartigen Beweis. Siegel stellte dann in einer Arbeit
(1968) fest, daf} trotzdem beide Beweise auf denselben Sitzen iiber Modulfunk-
tionen beruhen.

Interessant ist auch die mathematisch-historische Untersuchung iiber Rie-
manns NachlaB zur analytischen Zahlentheorie (1932), in der nicht nur der Frage
nachgegangen wird, ob Riemann etwa durch eine zu belegende heuristische Uber-
legung auf seine berilhmte Vermutung hitte gegkommen sein kénnen, sondern
auch gezeigt wird, wie stark Riemann die analytischen Hilfsmittel beherrscht hat.

Eine vollig neue Entwicklung stofit Siegel mit seinen drei grundlegenden
Arbeiten iiber die analytische Theorie der quadratischen Formen (1935/36/37) an.
Man verdankt Legendre den Satz, daf die diophantische Gleichung ax? + bxy +
+ cy? = d dann und nur dann in rationalen Zahlen x, y 16sbar ist, wenn die dio-
phantische Kongruenz ax? + bxy + cy? = d (mod q) fiir jeden Modul q eine ratio-
nale Losung besitzt. Trivial ist dabei die Notwendigkeit der Bedingung; daf sie je-
doch auch hinreichend ist, macht die Bedeutung des Satzes aus. Eine Verallge-
meinerung hiervon hat Hasse angegeben. Er fragt nach der rationalen Darstellbar-
keit einer quadratischen Form R von n Variablen durch eine quadratische Form
Q von m Variablen, also Q in R durch eine homogene lineare Substitution mit
rationalen Koeffizienten zu transformieren. Es sei hier nur der Fall positiv-defi-
niter Formen Q und R besprochen. Sei S die Matrix der quadratischen Form Q
von m Variablen, T die Matrix der quadratischen Form R von n Variablen und
X die Matrix der linearen Transformation, die Q in R iiberfiihrt, so gelte also
X'SX = T. Dies wird nun der rationalen Losbarkeit der Kongruenz X'SX =T
(mod q) fiir jeden Modul q gegeniibergestellt. Der Satz von Hasse sagt dann, dafl
aus der rationalen Losbarkeit der Kongruenz fiir jedes q auch wieder die rationale
Losbarkeit der Matrizengleichung folgt. Der Spezialfall m = 2, n = 1 liefert den
Satz von Legendre. Hierzu wird eine quantitative Verschirfung angestrebt, also
eine Aussage iiber Losungsanzahl statt Losungsexistenz. Dazu muf die Fragestel-
lung aber abgeidndert werden, damit sie zu einer verniinftigen Losung fithren kann,
denn es ist z. B. klar, da} aus einer einzigen rationalen Losung der Gleichung un-
endlich viele solcher folgen. Man wird also nur ganzzahlige Losungen in Betracht
ziehen. Auch die Elemente von S und T kénnen ganz vorausgesetzt werden. Sei
so A(S, T) die Anzahl der Losungen der Gleichung in ganzen Matrizen, d. h. Ma-
trizen mit ganzzahligen Elementen, und A, (S, T) die Anzahl der modulo q inkon-
gruenten ganzen Losungen der Kongruenz. Die Frage lautet dann: Welcher Zu-
sammenhang besteht zwischen A(S, T) und den A, (S, T)? Die Frage muf noch
einmal abgedndert werden, damit sie 16sbar wird. Man nennt bekanntlich zwei
quadratische Formen miteinander dquivalent, wenn sich deren Matrizen durch ei-
ne lineare Substitution mit ganzen Koeffizienten in beiden Richtungen ineinander
transformieren lassen. Es ist klar, daf die Anzahl A (S, T) sich nicht dndert, wenn
die quadratische Form mit der Matrix S durch eine dquivalente ersetzt wird, d. h.
A(S, T)ist eine Klasseninvariante. Analog nennt man zwei Formen zum gleichen Ge-
schlecht gehorig, wenn die entsprechenden Kongruenzrelationen X'SX = S, (mod q)
und X; S, X; =S (mod q) fiir jedes q ganzzahlig 16sbar sind. Nun muf ich aber
erst einmal um Entschuldigung bitten, da ich das gleiche Wort Geschlecht, wel-
ches bei den algebraischen Gebilden schon einmal vorgekommen ist, fiir zwei vol-
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lig verschiedene Begriffe verwende, aber ich halte mich dabei nur an die Literatur.
Entweder haben die Mathematiker nicht bemerkt, daf sie verschiedene Dinge mit
dem gleichen Wort bezeichnet haben, oder es ist ihnen gleichgiiltig gewesen. Die
Zahlen A4 (S, T) sind also Geschlechtsinvarianten. Liefe sich nun A(S, T) aus den
A (S, T) berechnen, so wire diese Zahl ebenfalls eine Geschlechtsinvariante. Hier-
zu ein Beispiel: Es gehoren Q = x? + 55y? und Q, = 5x? + 11y? zum gleichen Ge-
schlecht, wie man leicht einsieht. Also haben bei beliebigem q die Kongruenzen
Q= 1(mod q) und Q, = 1(mod q) die gleiche Losungsanzahl, aber es ist Q = 1
ganzzahlig 16sbar und Q, = 1 nicht. Also sind Q und Q, nicht dquivalent, d. h. die
Klasseneinteilung ist schirfer als die Geschlechtseinteilung. Ein Satz von Hermite
besagt, daf jedes Geschlecht nur aus endlich vielen Klassen besteht. Liegen nun im
Geschlecht von Q genau h Klassen, so wihle man aus jeder einen Reprisentanten
und bilde mit den zugehorigen Matrizen S,, . . ., S, die Anzahlen A(S,,T), ...,
A(Sy, T). Die h analogen Zahlen Ay (S, T), . .., Aq(Sh, T) haben alle denselben
Wert Aq (S, T). Der Hauptsatz der Theorie besagt nun, da zwischen den A4 (S, T)
und den Zahlen A(S,, T), ..., A(Sy, T) ein Zusammenhang besteht. Um diesen
formulieren zu kénnen, miissen wir noch definieren, was unter den Mittelwerten
von Ay (S, T) und A(S, T) zu verstehen sein soll. In der Kongruenz X'SX=T
(mod q) ist X eine ganzzahlige Matrix aus m Zeilen und n Spalten, also mn Ele-
menten. Durchlduft X simtliche modulo q inkongruenten Matrizen und nicht nur
die Losungen der Kongruenz, so erhilt man insgesamt q™" Matrizen X, da fiir je-
des Element von X genau q Moglichkeiten bestehen. Dann ist jedesmal X'SX =Y

eine ganzzahlige symmetrische Matrix von n Reihen. Da eine n-reihige symmetri-
n(n+1)
) unabhingige Elemente besitzt, so hat man q 2 Mog-

. nn+1
sche Matrix nur 3

lichkeiten fiir Y. Daher ist
n(n+1)
Y A5, Y)=q™, Yy l1=q %,
Y(modq) Y(modq)
und folglich kann man die Zahl q"““ﬁ('n;‘g als den mittleren Wert von A, (S, T)
bezeichnen. Entsprechend erklirt man den mittleren Wert von A(S, T). Man deute

n(n+1 - . .

die -(—i——) unabhingigen Elemente von Y als rechtwinklige cartesische Koordi-
nn+1

naten eines Punktes im Raume von —9—2——)- Dimensionen. Durch die Gleichung
X'SX = Y wird so ein beliebiges Gebiet y dieses Raumes abgebildet auf ein Gebiet
x im X-Raume, dessen Koordinaten die mn Elemente von X sind. Laf3t man nun
y auf den Punkt T zusammenschrumpfen und bezeichnet den Grenzwert des Vo-
lumenquotienten

| dX

lim —— = A. (S, T)
y=T fdy

y

als den mittleren Wert von A(S, T), und setzt man noch A (S, S) = E(S), das ist al-
so die Anzahl der ganzzahligen Transformationen der quadratischen Form mit der
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Matrix S in sich selbst, so lautet der Hauptsatz:
T
A(Sl B T) + + A(Sh; )

ES,) 7 EGw lim _AgS, T)

A. (Sl ) T) + A. (Sh) T) q—>o mn— n(n+1) ’
E(S,) o E(Sh) a 2
wenn q eine geeignete Folge natiirlicher Zahlen durchliuft, z. B. die Folge 1!, 2!,
3!, ....Im Falle m <n + 1 ist auf der rechten Seite noch der Faktor 2~! hinzuzu-

fiigen, im Falle m = n auflerdem noch im Nenner rechts der Faktor 2@ wo w(q)
die Anzahl der Primteiler von q bedeutet. Die Formel des Hauptsatzes a3t sich
noch wie folgt umschreiben. Fir teilerfremde q, r gilt Ay (S, T) = A (S, T)A((S, T),
ferner ist fiir die Potenzen q = p® bei festem p der Quotient

Aq(S, T)
27D
1)

q

bei hinreichend groflem a konstant, und dieser werde gleich a, (S, T) gesetzt. Da
auch A. (S;,T), ..., Ax(Sph, T) alle den gleichen Wert A.. (S, T) haben, ergibt
sich fiir die Formel des Hauptsatzes:

ASLT), AGy,T
E(Sll) Efsh) =A.(5,T)- n ap S, .
1 p
EGS) +...+ E(S;)

Uber dieses Resultat hat Siegel auf dem schon eingangs erwihnten inter-
nationalen Kongress in Oslo vorgetragen, und die vorstehenden Ausfithrungen sind
diesem Vortrag entnommen. Die Bedeutung der drei Arbeiten liegt vor allem darin,
daB zu diesen arithmetischen Resultaten analytische Interpretationen gegeben wer-
den, was im nédchsten Vortrag gezeigt werden soll. Siegel bemerkt dazu: ,,Dies ist
wieder ein Beispiel dafiir, daB die Funktionentheorie, der die Arithmetik so mich-
tige Hilfsmittel verdankt, auch ihrerseits durch zahlentheoretische Probleme ge-

re :.;41;‘ e ;

Lassen Sie mich zum Schluf noch sagen, da} Siegels grofie Leistungen in
der Mathematik einmal in seiner Vielseitigkeit begriindet sind, zum andern in den
michtigen Schritten, mit denen er die Teile, die er behandelt hat, férdern konnte.
Dabei halfen ihm eine ausgezeichnete Kenntnis der vorhandenen Literatur, ein ex-
cellentes Gedichtnis und die Fahigkeit, die mathematischen Zusammenhinge mit
einer seltenen Klarheit zu durchschauen und zu analysieren. Daf aber auch eine un-
geheuere Arbeitskraft dazu gehorte, sei nur am Rande erwihnt.

Er wirkte auf diejenigen, die mit ihm in Berithrung kamen, durch die Aus-
strahlung seines iiberragenden Geistes und seiner Persénlichkeit und doch, oder viel-
leicht gerade deswegen, blieb er innerlich einsam. Es geniigte ihm, zu wissen, daf er
ein Werk hinterlassen wiirde, an dem die Nachwelt ermessen konnte, wer er war.

Prof. Dr. Theodor Schneider
Kirchenholzle 6
7800 Freiburg (Eincegancgen 29 10 82)
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Das Werk C. L. Siegels
in der Funktionentheorie*)

H. Klingen, Freiburg

Am 4. April 1981 starb Carl Ludwig Siegel in Gottingen im Alter von
84 Jahren. Der nachfolgende Vortrag wurde verfat zum Gedachtnis und zur Wiir-
digung dieses groflen Gelehrten, der schon zu Lebzeiten mit den klassischen Ge-
stalten der Mathematik des 19. Jahrhunderts verglichen und an deren Seite gestellt
wurde. Gleichzeitig sollen meine Ausfiilhrungen aber auch dazu dienen, die frucht-
baren Ideen Siegels einem moglichst breiten Kreis von Mathematikern insbeson-
dere der jiingeren Generation naher zu bringen. Von den insgesamt drei Vortrigen
befafdt sich dieser zweite mit den funktionentheoretischen Arbeiten.

Siegel verstand sich zweifellos in erster Linie als Zahlentheoretiker, und
die komplexe Analysis diente ihm zunichst nur als Werkzeug und Hilfsmittel in
der analytischen Zahlentheorie. Wie ist es dann zu verstehen, daf} ein knappes
Drittel der wissenschaftlichen Aufsitze Siegels neben drei Biichern und diversen
Vorlesungsausarbeitungen der Funktionentheorie gewidmet ist? Der Grund dafiir
sind die tiefliegenden Entdeckungen iiber automorphe Funktionen in mehreren
komplexen Variablen, die Siegel bei seinen zentralen Untersuchungen iiber qua-
dratische Formen im Jahre 1935 machte. Es handelt sich um die Modulfunktionen
n-ten Grades, wie sie Siegel zu bezeichnen pflegte, heute meist Siegelsche Modul-
funktionen genannt. Man muf sich vor Augen halten, daf} die allgemeine Theorie
der Funktionen mehrerer komplexer Variabler damals noch in den Anfingen
steckte und die Entdeckung neuer Funktionsklassen sensationell wirkte. Wahrend
der folgenden Jahrzehnte erlangten diese Funktionen schnell eigenstindige Be-
deutung und fanden weltweites Interesse; beispielhaft seien Princeton und Bom-
bay genannt. In diese Epoche echter Pionierarbeit fallen viele der weiteren Unter-
suchungen Siegels aber auch grundlegende Beitrige anderer Autoren. Die Bedeu-
tung dieser Funktionen wurde so hoch eingeschitzt, da® man die Anwendbarkeit
auf die Siegelschen Modulfunktionen vielfach als Priifstein fiir Wert oder Unwert
allgemeiner funktionentheoretischer Methoden ansah.

Bei dem Umfang des Siegelschen Werkes wire jegliches Trachten nach voll-
stindiger Darstellung vermessen. Ich mochte daher zunéchst den historischen Aus-
gangspunkt der Siegelschen Modulfunktionen in der analytischen Theorie der qua-
dratischen Formen beschreiben und danach einige Themenkreise auswihlen, die

‘) Vortrag, gehalten am 20. September 1982 auf der DMV-Tagung in Bayreuth,
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von Siegel initiiert wurden. Es soll versucht werden, ihre Weiterentwicklung sowohl
in dem Siegelschen Werk selbst als auch bei anderen Verfassern bis zur Gegenwart
hin aufzuzeigen. Daf} dieses Unterfangen nur einen Eindruck vermitteln kann und
notwendig liickenhaft bleibt, versteht sich von selbst und moge entschuldigt wer-
den.

Ich beginne mit dem Siegelschen Hauptsatz, durch den Siegel zu der Ent-
deckung der Modulfunktionen gelangte. Ein berithmter Satz von Legendre besagt,
daf die quadratische Gleichung

ax? + bxy +cy? =d

bei gegebenen ganzen Zahlen a, b, ¢, d genau dann rational 16sbar ist, wenn die
Kongruenz

ax? +bxy + cy? =d mod q

fiir jeden Modul g geldst werden kann. Die Verallgemeinerung auf die Darstellung
[ =

— v e —
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einheitliche und besonders iibersichtliche Interpretatlon bekommt man, wenn man

dia Nannas manhtn vveed Llaalen ala coenlameabe 22292 1

daf} das Verhaltnis der tatsidchlichen zu den wahrscheinlichen Darstellungsanzah-
len im absoluten Sinne (linke Seite) in Beziehung gesetzt wird zu den entsprechen-
den g-adischen Grofen (rechte Seite). Es sei noch erwihnt, daf sich die rechte
Seite als unendliches Produkt

[Top(S, T
P

schreiben ldfit, wobei

a—w,q=pd 2&#
q
die p-adische Darstellungsdichte bedeutet. Beachtet man, daf die A, S, T
(»=1,...,h) alle gleich sind, so nimmt der Hauptsatz die geeignetere Gestalt

A(Sy, T)/E(S)) +...+ A(Sh, T)/E(Sh)
1/E(S)) +...+ 1/E(Sy)

(1) =Ax(S, D) [T (S, T)
P

an.

Es soll nun die von Siegel gegebene Interpretation des Hauptsatzes als ana-
lytische Identitit beschrieben werden. Man bilde fiir reelles S™ > 0 und sym-
metrisches Z(™ mit positivem Imaginirteil die Thetareihe

2) NZ,8)= Y erirsIG2)

G ganz
Sie gestattet die Fourierentwicklung
3) HZ,S)= Y A(S,1)emit(T2)

T>0

und ist somit erzeugende Funktion der Darstellungsanzahlen. Die linken Seiten
von (1) lassen sich fiir alle T erfassen durch die Geschlechtsinvariante

9(Z,S/ESi) +. .. +3(Z, Sn)/E(Sh)
1/E(S)) +...+1/E(Sp)

Die angekiindigte analytische Identitit ist nun eine Eisensteinsche Partialbruchent-
wicklung der Geschlechtsinvariante von folgendem Typ

4) F(z,898)= _}; v(S, C, D) det (CZ + D)~™/2,

F(Z,8)=
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——————=eonglsogitnt TVie saredan q#vﬁrdwn.men.drnﬂﬁﬂmimm hilden nim-

lich nach Minkowski/Witt ein Geschlecht, und in diesem Fall sind alle Koeffizien-
ten v(S, C, D) = 1. Die Identitat (4) vereinfacht sich zu

F(Z,S)= 2 det(CZ+D) ™2,
(C,D)

Gerade quadratische Formen der Determinante 1 existieren aber nicht fir jeden
Grad, sondern genau dann, wenn m = 0 mod 8 ist. Der Wert der Identitit vom
funktionentheoretischen Standpunkt aus ist daran zu ermessen, daf recht ver-
schiedenartige Bildungen, namlich Eisensteinreihen und Thetareihen, in einen
nicht-trivialen Zusammenhang gebracht werden. Die Thetareihe ist in dem Spezial-
fall eine Siegelsche Modulform, im allgemeinen nur die Wurzel aus einer Modul-
form zu einer Kongruenzgruppe. Siegels Theorie der definiten quadratischen For-
men [20], [22], [26], [27]*) fiihrt also schon zu zwei wichtigen Konstruktions-
prinzipien fir Modulformen, niamlich der Bildung von Eisensteinreihen und Theta-
reihen.

In den Abhandlungen [45], [55], [58], [60] hat Siegel auch den indefiniten
Fall behandelt. Verschiedene Abinderungen sind erforderlich. Die Darstellungsan-
zahlen, welche jetzt unendlich werden, miissen durch Darstellungsmafle ersetzt
werden. Bei der Bildung der Thetareihen sind die sogenannten Majoranten von S,
das sind positive Formen H mit S~*[H] = S, ins Spiel zu bringen. Die Thetareihen
werden jetzt zwar nicht-analytische Funktionen, haben aber weiterhin ein ein-
faches Verhalten gegeniiber Modulsubstitutionen. Erst ein Mittelungsprozef iiber
Teile des Majorantenraumes fithrt dann zu Funktionen, die wieder eine Eisenstein-
sche Partialbruchentwicklung besitzen. Der Vergleich beider Darstellungen fiihrt
dann auch im indefiniten Fall zu arithmetischen Resultaten. Hier ist ein Ansatz-
punkt fiir die spatere Behandlung von nicht-analytischen Modulformen durch H.
Maaf}, A. Selberg u. a. zu sehen.

Der erste der ausgewihlten Themenkreise moge heifien

Diskontinuierliche Gruppen und ihre Fundamentalbereiche

Es gibt eine grofere Zahl von Arbeiten in den Gesammelten Abhandlungen,
die hier einzuordnen sind. Zum Teil behandeln sie diskontinuierliche Gruppen als
Grundlage fiir die zugehorigen automorphen Funktionen, andere betreffen Fragen
der Zahlentheorie, wieder andere sind methodisch von abstrakter Art wie etwa die
Abhandlung [43] iiber ,,Discontinuous groups‘‘. Unter Verletzung der chronolo-
gischen Reihenfolge beginne ich mit der Arbeit [41] iiber ,,Symplectic geometry“.
Darin werden zunichst als Definitionsbereiche fiir automorphe Funktionen die
beschrinkten symmetrischen Gebiete im Sinne von E. Cartan vorgeschlagen. Ein
beschrinktes Gebiet G im C® heifdt symmetrisch, wenn zu jedem Punkt a € G ein
holomorpher Automorphismus von G existiert, der eine Involution ist und a als
einzigen Fixpunkt besitzt. Diese Forderung bedeutet eine gewisse Reichhaltigkeit
an holomorphen Automorphismen, was im Hinblick auf die Existenz der soge-

') Vgl. die Numerierung im Schriftenverzeichnis auf S. 201 ff.
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nannten starren Bereiche sinnvoll erscheint. Die schwichere Forderung der Homo-
genitit beinhaltet die Transitivitit der Automorphismengruppe. Bekanntlich sind
beschrinkte symmetrische Gebiete homogen. Die Umkehrung wurde lange als rich-
tig vermutet, aber schliefilich im Jahre 1959 durch ein Gegenbeispiel von I. I.
Pjateckij-Sapiro widerlegt. E. Cartan klassifizierte die beschrinkten symmetrischen
Gebiete; es gibt vier Haupttypen und zwei exzeptionelle Typen, aus denen man
alle derartigen Gebiete durch einfache Prozesse gewinnen kann. Inzwischen sind
auch die homogenen beschrinkten Gebiete klassifiziert und studiert worden; man
vergleiche dazu die Untersuchungen von S. G. Gindekin, I. I. Pjateckij-Sapiro,
E. B. Vinberg u. a.

Einer der Cartanschen Haupttypen ist der Siegelsche Halbraum

H, = {Z®™ = X +iY|Z symmetrisch, Y > 0}

bzw. ein beschrinktes Modell desselben. Die Automorphismengruppe von H, wird
beschrieben durch die Operation

Spa(R) x H, > H,,, M, Z) > M(Z) = (AZ + B)(CZ + D)!,
A B
C D

der symplektischen Gruppe Sp, (R) auf H,,. Siegel fiihrt die symplektische Metrik
und ihr Volumelement auf H, durch

X

= dXdyY
ds? = tr(Y-'dZY~'dZ), dv =W
ein und untersucht die geometrischen Eigenschaften des so entstehenden Riemann-
schen Raumes. Besondere Aufmerksamkeit verdient die von Allendoerfer-Fenchel-
Weil verallgemeinerte Gaufl-Bonnet-Formel

) ;! Kdv.

Hierin bedeutet F eine geschlossene Mannigfaltigkeit, die z. B. durch Quotienten-
bildung von H, nach einer diskontinuierlichen Gruppe I' entstanden sei, K ist die
Kriimmung, x die Eulersche Charakteristik, m die Anzahl der reellen Variablen
und dv das symplektische Volumelement. Die Krimmung K wurde von Siegel als
rationale Konstante bestimmt; somit kann die Berechnung der Eulerschen Charak-
teristik vermoge obiger Formel auf die Bestimmung des symplektischen Volumens
von F zuriickgefiihrt werden. Dieser Gedanke wurde in neuerer Zeit von G. Harder
wieder aufgegriffen.

Es werden dann allgemein diskontinuierliche Untergruppen der symplek-
tischen Gruppe behandelt. Im Hinblick auf die Theorie der automorphen Funk-
tionen sind dabei Einschrinkungen vorzunehmen. In Anlehnung an die Fuchsschen
Gruppen erster Art, die in der Theorie einer Verinderlichen eine wichtige Rolle
spielen, fiihrt Siegel diskontinuierliche Gruppen erster Art ein durch die Forde-
rung nach einem Fundamentalbereich F mit folgenden Eigenschaften:
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(i) jedes Kompaktum in H, werde von endlich vielen Bildern von F iiber-
deckt,
(ii) F habe nur endlich viele Nachbarn,
(iii) F besitze endliches symplektisches Volumen.

In der Theorie einer Verinderlichen kann man die Uniformisierungstheorie Rie-
mannscher Fliachen, geometrische Verfahren nach L. R. Ford oder arithmetische
Methoden zum Nachweis solcher Gruppen heranziehen. In mehreren Variablen

ist man bis heute auf die letzte dieser Moglichkeiten angewiesen; ein Satz von

A. Selberg aus dem Jahre 1960 bringt sogar grob gesprochen zum Ausdruck, dal
fiur n > 1 alle diskontinuierlichen Gruppen erster Art notwendig arithmetisch de-
finiert sind. — In seiner Arbeit iiber symplektische Geometrie gewinnt Siegel eine
grofe Klasse solcher Gruppen durch simultane Einheitengruppen Hermitescher
und alternierender Formen in einer imaginir-quadratischen Erweiterung eines total-
reellen Zahlkorpers. Es wird u. a. das Kommensurabilititsproblem fiir diese Grup-
pen gelost. Unter ihnen befindet sich als wichtigstes Beispiel die Siegelsche Modul-
gruppe I', = Sp,,(Z). Als Fundamentalbereich von I';, bevorzugt Siegel die durch

|det (CZ+D)| =1 fiuralle M €E€T,, Y reduziert nach Minkowski,
|Xkel < 1/2

charakterisierte Teilmenge von H,,. Von der dabei auftretenden Minkowskischen
Reduktionstheorie wird gleich noch die Rede sein. Dieser Fundamentalbereich be-
sitzt die oben genannten Eigenschaften (i)—(iii), so daf sich I',, als diskontinuier-
liche Gruppe von der ersten Art erweist. Die genaue Berechnung des Volumens er-
gibt einen interessanten Zusammenhang mit der Riemannschen ¢-Funktion durch
die Formel

V(F)=2 ﬁ (k= D! 77k¢(2k).
k=1

Eine Verallgemeinerung der Siegelschen Modulgruppe findet man in der Abhand-
lung [59] mit dem Titel ,,Die Modulgruppe in einer einfachen involutorischen Al-
gebra®.

Ich komme nun zu sprechen auf diskontinuierliche Gruppen und Funda-
mentalbereichkonstruktionen in der Zahlentheorie. Die Gruppen sollen also jetzt
lediglich auf einem topologischen Raum als Gruppe von Homéomorphismen
operieren. Die Beispiele, die Siegel in dieser Hinsicht behandelt, betreffen die qua-
dratischen Formen und traten bei der Siegelschen Modulgruppe bereits als Hilfs-
mittel in Erscheinung.

Die Reduktionstheorie der definiten quadratischen Formen geht bekannt-
lich auf H. Minkowski zuriick. Man 143t die unimodulare Gruppe U, vom Grade n
auf dem Raum P der definiten quadratischen Formen gleichen Grades n vermoge

U, xP—>P, U, Y)PY[U]

operieren. Der Minkowskische reduzierte Bereich, das ist ein Fundamentalbereich
von U,, lautet
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R={Y €P|Y[g] 2 yx fiir alle ganzen Spalten g mit (g, ..., 8) =1,
Yk-1,x = 0}

Siegels Verdienst besteht zunichst in einigen grundlegenden Vereinfachungen und
einer Systematisierung dieser Theorie. So fiithrte er zwei gegeniiber R etwas ver-
groferte Bereiche durch die folgenden endlich vielen Bedingungen ein:

Q) =(Y €Pl@)—(c)}, Q'(t) = {Y = D[ V] Jacobische Zerlegung, (d) — (e)}

@) yk <tyk+1 (d) dy <tdg+,
(b) 2lykel <tyy (e) Ivel<t.
(c) Myx<cytdetY

Dabei ist ¢, eine nur von n abhingige Konstante. R liegt in Q(t) fiir jedes t > 1;
Q(t) und Q'(s) sind wechselseitig ineinander enthalten, wenn man iiber die Para-
meter s bzw. t geeignet verfiigt. Die grundlegenden Eigenschaften von R bleiben
trotz dieser Vereinfachungen erhalten; zum Beispiel das Auftreten von hochstens
endlichfachen Uberlappungen bei den Bildern dieser Bereiche unter der unimodu-
laren Gruppe. Heute bezeichnet man solche Mengen als Siegelbereiche, sie spielen
in der Theorie der arithmetisch definierten Untergruppen von algebraischen Grup-
pen eine wichtige Rolle. — Die Abhandlungen [25], [50] und [73] befassen sich
mit der Minkowskischen Formel fiir das Volumen desjenigen Teils der Minkows-
kischen Pyramide, der durch die zusitzliche Bedingung det Y < q abgegrenzt wird.
Das Volumen 14t sich durch die Riemannsche ¢-Funktion ausdriicken. Dieser
Sachverhalt bleibt auch richtig fiir algebraische Zahlkorper und liefert Gelegenheit
zu Riickschlissen auf die dann auftretende Dedekindsche ¢-Funktion. — Zu er-
wihnen ist ferner eine Broschiire mit dem Titel ,,Zur Reduktionstheorie quadra-
tischer Formen** [72], die aus Vorlesungen in Japan entstanden ist. Hierin wird
die Kompaktifizierung behandelt, die hinsichtlich entsprechender Anwendungen
auf H, /T, (vgl. [65]) von Bedeutung ist. Die anstehenden Fragen werden konkret
mittels geeigneter Koordinaten und mit geometrischen Begriffsbildungen beschrie-
ben. Die Kompaktifizierung wird so vorgenommen, daf die Endlichkeit des Volu-
mens und die Eigenschaft des Fundamentalbereichs, nur endlich viele Nachbarn
zu besitzen, erhalten bleiben. Als letzte Arbeit zur Reduktionstheorie erschien die
Abhandlung [96] im Jahre 1972; sie ist Fragen der Konstruktivitit gewidmet,
einem besonderen Anliegen Siegels in seinen letzten Lebensjahren.

Bei den indefiniten Formen liegen andere Verhiltnisse vor. Siegel hat die-
sen Fall in seiner fundamentalen Arbeit [33] iiber ,,Einheiten quadratischer For-
men* erstmals systematisch behandelt und fiir die Einheitengruppen nutzbar ge-
macht.

Welche Bedeutung haben nun die diversen Fundamentalbereichkonstruk-
tionen, die an zahlreichen Stellen des Siegelschen Werkes vorkommen ? Hierzu seien
einige generelle Bemerkungen gestattet. Die Volumbestimmung von Fundamentalbe-
reichen spielt zunichst bei der bereits erwihnten Konzeption des Darstellungsmafies
in der Theorie der quadratischen Formen eine wichtige Rolle. Weiterhin sind Infor-
mationen iiber den Fundamentalbereich stets gleichzeitig Strukturaussagen iiber
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die betreffenden Quotientenmannigfaltigkeiten. In diesem Sinne sind die Abhand-
lungen [65] und [72] zu verstehen. SchlieBlich gibt es rein gruppentheoretische
Folgerungen aus den besprochenen Eigenschaften eines Fundamentalbereichs, z. B.
die endliche Erzeugbarkeit oder sogar die endliche Prisentation der betreffenden
Gruppe. Unter relativ weiten Voraussetzungen sind die Nachbartransformationen
Erzeugende der Gruppe, und die sogenannten lokalen Relationen — dies sind Re-
lationen vom Typ ,,Nachbartransformation x Nachbartransformation = Nachbar-
transformation** — ein vollstindiges System definierender Relationen. Diese Ge-
danken wurden, aufbauend auf Ideen von Poincaré, durch M. Gerstenhaber (1953)
und H. Behr (1962) in eine prizise Form gebracht.

Zumindest zwei Abhandlungen [43], [53] Siegels haben abstrakte Metho-
den in der Theorie der diskontinuierlichen Gruppen zum Gegenstand. Es handelt
sich darum, geeignete Darstellungsraume fiir diskrete Untergruppen einer topolo-
gischen Gruppe systematisch zu finden. Sei £ eine lokalkompakte topologische
Gruppe mit abzihlbarer Basis und I' eine diskrete Untergruppe. Es werde voraus-
gesetzt, daB das Haarsche Maf von §2 mod I" endlich ist. Als Darstellungsrdume
firr I’ kommen die Restklassenriume A\S2 nach gewissen abgeschlossenen Unter-
gruppen A in Betracht. Ein wichtiger Satz Siegels besagt, daB die Darstellung

Ap= Apy (€D

dann und nur dann diskontinuierlich ist, wenn die abgeschlossene Untergruppe

A kompakt ist. Um Darstellungsriume moglichst kleiner Dimension zu erhalten,
muf man fiir A maximale kompakte Untergruppen wihlen. Auf diese Weise ge-

langt man systematisch zu den vorher behandelten Darstellungsrdumen in der
Theorie der quadratischen Formen. Es wiirde keine Schwierigkeiten bereiten, dies
zum Beispiel fiir den definiten Fall in wenigen Zeilen aufzuzeigen. — Diese Siegel-
schen Ideen haben spiter Eingang gefunden bei weitreichenden Verallgemeinerungen
in der Theorie der algebraischen Gruppen. Sie konnen auch als Ansatzpunkt fiir

die moderne Behandlung von automorphen Funktionen als Funktionen auf der
Gruppe angesehen werden.

Der zweite Problemkreis behandelt das Thema

Algebraische Relationen

Es sollen algebraische Abhingigkeiten zwischen Modulformen und Modul-
funktionen sowie weitergehende Aussagen iiber die linearen Raume aller Modul-
formen festen Gewichts und iiber den graduierten Ring aller Modulformen be-
trachtet werden. In seiner berithmten Arbeit ,,Einfithrung in die Theorie der Mo-
dulfunktionen n-ten Grades* [32] hatte Siegel eine Modulform von ganz rationa-
lem Gewicht k noch als auf H,, holomorphe Funktion f erklirt, die dem Trans-
formationsgesetz

f(M(Z)) =det (CZ+D)*f(Z) (MET,)

geniigt und im Siegelschen Fundamentalbereich beschrinkt ist. Erst 1954 zeigte
M. Koecher, daB die letzte Bedingung fiir n > 1 iiberfliissig ist. — Modulfunktionen
wurden bei Siegel zunichst als Quotienten von Modulformen gleichen Gewichts
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eingefiihrt. Es handelte sich also um scheinbar recht ,spezielle* meromorphe und
bei I', invariante Funktionen auf H,,. Die naheliegende Frage, ob so alle mero-
morphen und I'; -invarianten Funktionen erfafit werden, hat eine lingere Geschichte
und soll noch Gegenstand meiner Ausfithrungen sein. Es ist klar, daf} bei der ur-
spriinglichen engen Auslegung des Begriffs , Modulfunktion‘ die Behandlung von
Formen und diejenige von Funktionen gleichwertige Probleme darstellten. Im fol-
genden soll daher zunichst von Formen die Rede sein. Beispiele von Modulfor-

men standen Siegel von Anfang an durch die bereits genannten Thetareihen und
Eisensteinreihen zur Verfiigung. Geringfiigig verallgemeinert handelt es sich um die
folgenden Bildungen:

S B(Z(n)’ S(m)) = z enitr(S[G+l/2A]+tBG) (A(m,n)’ B(m.n) reell),
’ G ganz
%) E(Z)= Y det(CZ+D)*.
(C,D)
Siegel hat zunichst einen Ansatz von Poincaré aufgegriffen, um die algebraische
Abhiéngigkeit von hinreichend vielen Modulformen zu beweisen. Es kommt dar-

auf an, fir den Rang der Schar der Modulformen von festem Gewicht k und Grad
n(n+1)

n die Abschitzung O(k 2 ) einzusehen. Vergleicht man nimlich diese Abschit-

zung mit der Anzahl der Glieder einer isobaren algebraischen Gleichung, so folgt

n(n+1)
2

Bei dieser Gelegenheit sollen einige Ausfithrungen iiber die linearen Riume
aller Modulformen festen Gewichts eingeschoben werden. Wie kommt man zu
einer Dimensionsabschitzung obiger Art? Es gibt verschiedene verwandte Verfahren.
Das erste arbeitet mit cen Fourierentwicklungen.

©6) f(@Z)= Y a(T)er (1D

T>0

die algebraische Abhingigkeit von je
wichts.

+ 2 Modulformen beliebigen Ge-

von Modulformen. Man schlieft aus dem Verschwinden hinreichend vieler Fourier-
koeffizienten auf das identische Verschwinden von f vermoge analytischer Eigen-
schaften. Die Anzahl der Fourierkoeffizienten, die man zum Verschwinden bringen
muf, ist dann eine obere Schranke fiir den linearen Rang. An analytischen Eigen-
schaften benutzt man die Invarianz von |det Y |2 |f(Z)| gegeniiber Modulsubsti-
tutionen und das Maximumprinzip. Die endgiiltige Fassung dieser Methode wurde
im Jahre 1951 von H. Maaf} aufgrund einer brieflichen Mitteilung von Siegel for-
muliert. — Bei einem dhnlichen Vorgehen von Pjateckij-§apiro aus dem Jahre 1958
spielt die folgende Aussage iiber Modulformen eine wichtige Rolle:

Zu jedem c > 0 existiert ein im Siegelschen Fundamentalbereich gelegenes Kom-
paktum K und eine positive Konstante a, so dafy

sup |f] <o sup |f]
Y >cl K

fiir alle Modulformen f vom Gewicht k gilt. Die Konstante a ist unabhingig von
fund k.
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Schlieflich kann man die Endlichkeit der Dimension der Vektorraume aller
Modulformen festen Gewichts mit Hilfe der Integralgleichungstheorie einsehen.
Modulformen sind nimlich Lésungen einer Integralgleichung vom Hilbert-Schmidt-
schen Typ.

Siegel selbst systematisierte sein eingangs genanntes Verfahren nochmals
in der Abhandlung [40], um es auf grofere Klassen von automorphen Formen an-
wenden zu konnen. Da man im allgemeinen aber keine Fourierreihen zur Verfi-
gung hat, muf} man stattdessen mit Taylorentwicklungen und dem Verschwinden
von hinreichend vielen partiellen Ableitungen an einer festen Stelle arbeiten.

Die Fourierreihen (6) wurden im Jahre 1975 von M. Eichler durch folgen-
den Entwicklungstyp

i AYY A
©) f(2)= Y B(Z,,Z,;t)e?"utZa) 7 = (t 1 2) , (O<r<n)
t>o0 Z, Zy
ersetzt. Die Koeffizienten 8 sind ,,fast‘* Modulformen vom Grade r beziiglich Z,
und Jacobische Funktionen beziglich Z,. Eichler konnte mit diesen Entwick-
lungen die fritheren Resultate iiber den linearen Rang wesentlich verbessern. —
Exakte Rangberechnungen konnten nur in wenigen Fillen erzielt werden.
J.-I. Igusa bestimmte 1962 den genauen Rang fiir n =2 und beliebiges gerades Ge-
wicht. Er zeigte nimlich weitergehend, daf} der graduierte Ring aller Modulfor-
men geraden Gewichts von den algebraisch unabhiingigen Eisensteinreihen E4, ES,
E!° E!2 erzeugt wird. Wenige Jahre spiter konnte er auch die ungeraden Gewichte
einbeziehen durch Hinzunahme einer Modulform vom Gewicht 35. Einen elemen-
taren Beweis fiir das erste Resultat von Igusa verdankt man E. Freitag. SchlieBlich
sind die Untersuchungen von U. Christian (1975) und Y. Morita (1974) zu nennen,
welche die Selbergsche Spurformel bei Kongruenzuntergruppen der Siegelschen
Modulgruppe vom Grade zwei zur Rangbestimmung auswerteten.

Gehen wir nun zur Behandlung von Modulfunktionen iiber. Es sei Q,, der
Korper der Modulfunktionen im ,,engeren‘ Sinne, also der Quotienten von For-
men gleichen Gewichts. Aus den erwidhnten algebraischen Relationen zwischen

(n+1) +

n
Modulformen ergibt sich sofort die algebraische Abhingigkeit von je ————

> 1

n(n+1) . I
— algebraisch unabhingige

Funktionen nach Siegel als Eisensteinreihenquotienten konstruieren. Ein allge-

meineres Verfahren, das mit Poincaréschen Reihen arbeitet, wurde 1952 von

A. Borel angegeben. Nun zeigt eine genauere Analyse der algebraischen Gleichungen

zwischen Modulformen sogar, daf jedes f € Q, beschrinkten Grad iiber C(f,, . .

fam+ny) hat, wenn f,, . . ., f;,(n+yy algebraisch unabhingig sind. Somit erweist sich
nn+1)

2 2
Q, als ein algebraischer Funktionenkorper vom Transzendenzgrad s Auf-

Funktionen aus Q,. Andererseits kann man

i3]

grund der Ergebnisse von Igusa und Freitag ist Q, sogar rational.

Unbefriedigend war natiirlich die enge Definition der Modulfunktionen als
Quotienten von Formen. Im Hinblick auf den Fall n = 1 wire es wiinschenswert ge-
wesen, Modulfunktionen als meromorphe und I',, -invariante Funktionen einzu-
filhren, wobei allerdings auch eine Meromorphieforderung im Unendlichen als not-
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wendig zu erwarten war. Das folgende Vorgehen bot sich prinzipiell an. Man kom-
paktifiziere H,/I"y, verlange die Meromorphie in den hinzugefiigten Teilen und ver-
wende Methoden aus der Funktionentheorie auf kompakten komplex-analytischen
Mannigfaltigkeiten. Welche Methoden sind dabei gemeint? Ich bin in der Lage,
auch dazu wieder auf eine wichtige Arbeit [64] Siegels verweisen zu kénnen. Sie
betrifft meromorphe Funktionen auf kompakten komplex-analytischen Mannig-
faltigkeiten M und hat folgende Aussagen zum Inhalt, wobei n die komplexe Di-
mension von M bezeichnet:

(i) Je n + 1 meromorphe Funktionen auf M sind algebraisch abhingig;

(i) sind f,, . . ., f, algebraisch unabhingige meromorphe Funktionen auf
M, so ist der Korper aller meromorphen Funktionen auf M eine endliche algebraische
Erweiterung von C(fy, . . ., f,)).

In der Arbeit [65] publiziert Siegel selbst einen ersten Ansatz zu einer Kompaktifi-
zierung von H, /T",,, der von U. Christian in dessen Dissertation ausgefiithrt wurde.
Schwierigkeiten bei der Anwendung des obigen Satzes entstehen natiirlich durch
das Vorhandensein von Singularitidten. Zur gleichen Zeit entdeckte aber I. Satake
eine bessere Kompaktifizierung in Gestalt eines normalen komplexen Raumes vom
Typ

Hn/rn = I'In/l-‘n v I_[n—l/l‘n—l u...v HO/PO-

Damit schien die Entwicklung zu einem natiirlichen Ende gekommen zu sein. Mo-
dulfunktionen waren meromorphe Funktionen auf H,/T',, sie bilden einen alge-

+
braischen Funktionenkorper vom Transzendenzgrad n(nTl) . Die Methode der

Satake-Kompaktifizierung gestattet iibrigens weitreichende Verallgemeinerun-
gen; man vergleiche dazu die Arbeit von W. L. Baily und A. Borel: Compactifi-
cation of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84
(1966).

Es dauerte aber nur kurze Zeit bis W. L. Baily im Jahre 1958 die Entdeckung
machte, daf} die Forderung der Meromorphie in den hinzugefiigten Teilen fiir
n > 1 (und im Gegensatz zum Fall n = 1) in Wahrheit iiberfliissig ist. Nach diesem
iiberraschenden Resultat schien es nicht aussichtslos, ohne Verwendung der Kom-
paktifizierung den Nachweis zu versuchen, daf jede in H, meromorphe und I';, -
invariante Funktion Quotient von Modulformen im Grofien ist. Siegel selbst gelang
ein solcher Beweis in seiner Abhandlung {75]. Das Problem wurde gleichzeitig von
H. Grauert und A. Andreotti in besonders eleganter Weise gelost. Die zuletzt ge-
nannten Autoren arbeiten mit dem Begriff der Pseudokonkavitit der zugrundelie-
genden diskontinuierlichen Gruppe. — Es sei aber darauf hingewiesen, daf} die
Kompaktifizierung fur andere Fragen dadurch keineswegs iiberfliissig wird. Zum
Beispiel kann die endliche Erzeugbarkeit des graduierten Rings aller Modulformen
bis heute nicht ohne Kompaktifizierung bewiesen werden.

Die genaue Struktur des Korpers der Siegelschen Modulfunktionen kennt
man im allgemeinen nicht. Ich erwiahnte bereits die Rationalitit im Falle n = 2.
Besondere Verdienste um diese Frage hat sich E. Freitag erworben. Er konnte mit
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sentliche Koeffizient ,,1 bei der gewohnlichen Eisensteinreihe durch eine Spitzen-
form niederen Grades ersetzt. Obige Bildung beschreibt einen Liftungsprozef f }» F
von Modulformen in wenigen Variablen zu solchen in vielen Variablen. Kiirzlich
zeigte M. Harris, daf mit f auch F rationale Fourierkoeffizienten besitzt. Diese
Aussage stellt eine direkte Verallgemeinerung des Siegelschen Satzes dar. Konkre-
tere Aussagen iiber das Verhalten der Fourierentwicklungen bei dem obigen Lif-
tungsprozefs werden gegenwiirtig manchenorts untersucht.

Zuriickkommend auf Siegels Werk sind die beiden Arbeiten [89] und [90]
zu nennen, welche die Bestimmung von {-Werten behandeln. Ich selbst hatte eine
Methode entwickelt, die es erlaubte, das konstante Glied in der Fourierentwick-
lung einer Modulform aus den hoheren Fourierkoeffizienten zu bestimmen. Es
wurden dazu die algebraischen Gleichungen zwischen Modulformen herangezogen.
Indem ich dieses Verfahren auf die Heckeschen Eisensteinreihen zur Hilbertschen
Modulgruppe anwandte, konnte ich folgendes Ergebnis iiber die Dedekindsche ¢-
Funktion erzielen. Fiir einen total-reellen Zahlkorper K vom Grade n iiber Q und
der Diskriminante A gilt

Ek(2k) =a2AY2r, (k=1,2,...)

mit rationalen Zahlen r,. Diese Aussage verallgemeinert ein bekanntes Resultat von
Euler fiir die Riemannsche {-Funktion. Siegel hat in seinen beiden Arbeiten drei
neue Gesichtspunkte ins Spiel gebracht, nimlich

(a) die Riickfithrung auf elliptische Modulformen, indem alle Variablen in
den Heckeschen Eisensteinreihen gleichgesetzt werden,

(b) die Linearisierung des Problems durch Einfiihrung von Basen,

(c) die Erkenntnis, daf es geschickter ist, die Rationalitit von {x (1 —k)
fiir k 2 1 zu untersuchen.

Diese Arbeiten Siegels haben insofern einen grofien Einflu gehabt, weil sie hin-
sichtlich Motivation und Methodik eine wesentliche Rolle bei der Entstehung der
p-adischen Modulformen durch H. P. F. Swinnerton-Dyer und J.-P. Serre spielten.

Ich komme jetzt zu funktionentheoretischen Aussagen, die in Beziehung zu
den Fourierentwicklungen stehen. Schon zu Anfang seiner Untersuchungen fiihrte
Siegel den sogenannten ¢-Operator durch den Prozef

Z, o)

fl¢(Z,) = lim f(o o

A —>oco

ein. Er 14t sich an Hand der Fourierentwicklung (6) durch

Tl 0 e21l'i!l‘(lel)
0

flo@Zy= ¥ al,

Ty >0
deuten. Durch Anwendung dieses Operators wird also der Grad einer Modulform
erniedrigt, wihrend das Gewicht unverindert bleibt. Bezeichnet man mit MX den
Vektorraum aller Modulformen vom Gewicht k und Grad n, so beschreibt ¢ fiir
jedes k einen Vektorraumhomomorphismus

¢: MK > Mk_, .
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Der Kern von ¢ besteht aus den sogenannten Spitzenformen. Sie lassen sich an
Hand ihrer Fourierentwicklung durch die Bedingung a(T) = O fiir alle singuliren
T charakterisieren. R. Godement zeigte als erster, da} die Spitzenformen genau
diejenigen Modulformen sind, welche mit den iiblichen (in einem beschrinkten
Modell des Siegelschen Halbraumes gebildeten) Poincaréschen Reihen iiberein-
stimmen. Hierdurch wird klargestellt, welchen Beitrag die Theorie der automor-
phen Funktionen auf beschrinkten Gebieten fiir die Modulformen zu leisten im-
stande ist. Man erfafit lediglich die Spitzenformen. Andererseits reicht die Kennt-
nis der Spitzenformen aus, wenn man zusitzlich die Umkehrung der Abbildung ¢
analytisch beherrscht. Letzteres wird aber durch die bereits erwihnte Bildung der
verallgemeinerten Eisensteinreihen (8) gewihrleistet. So gelangt man durch Kom-
bination von Poincaréschen und Eisensteinschen Reihen zu einem sehr durchsich-
tigen Aufbau aller Modulformen von grofiem Gewicht k. Insbesondere ist der ¢-
Operator fiir Gewichte k > 2n surjektiv.

Eine zweite Klasse von Modulformen, die mittels ihrer Fourierentwicklung
charakterisiert werden konnen, sind die singuliren Modulformen. Kennzeichnend
fiir sie ist die Bedingung a(T) = O fiir alle nicht-singuliren T. Sie stellen also ein
Gegenstiick zu den Spitzenformen dar. Fiir n = 1 handelt es sich um die Konstan-
ten, weswegen ihre Bedeutung erst in jiingerer Zeit entdeckt wurde. Beispiele
singuldrer Modulformen sind andererseits seit langem bekannt in Form der ein-
gangs erwihnten Klasseninvarianten gerader quadratischer Formen. Nach Siegel/
Witt stellt (2) eine Modulform vom Gewicht k = m/2 zu einer Kongruenzgruppe
dar. Die genaue Stufe der Modulform ergibt sich aus der Stufe der geraden qua-
dratischen Form S. Es wurde schon festgestellt, dal gerade quadratische Formen
der Stufe 1 fir m = 0 mod 8 existieren, so daf man Modulformen vom Gewicht
k =0 mod 4 erhilt. In der Fourierentwicklung (3) treten die Darstellungsanzah-
len A(S, T) auf. Fiir m <n konnen aber sicher nur singulire T dargestellt werden.
Man bekommt somit in Gestalt der Klasseninvarianten (2) Beispiele von singu-
lairen Modulformen fiir beliebige Gewichte k < n/2, k =0 mod 4. Inzwischen
weif man, da dies im wesentlichen alle singuliren Modulformen sind und daf
die singuldren Modulformen durch ihre Gewichte, nimlich durch die Bedingung
k <n/2, charakterisiert werden kdnnen. Diese Ergebnisse verdankt man E. Frei-
tag, H. L. Resnikoff, S. Raghavan u. a. Man erinnere sich nun daran, daf schon
beim Siegelschen Hauptsatz Eisensteinreihen und Thetareihen auftraten. Zusam-
men mit den Poincaréschen Reihen liefern sie viel Information iiber die Gesamt-
heit aller Modulformen. Die Eisensteinschen und Poincaréschen Reihen sind niitz-
lich bei groflen Gewichten, d. h. fiir k > 2n; die Thetareihen dagegen bei kleinen
Gewichten, d. h. fir k <n/2. Umso erstaunlicher ist es, daf man fiir die mittleren
Gewichte keine Ansitze kennt. Selbst bescheidenere Fragen, wie etwa diejenige
nach der Surjektivitit des ¢-Operators, sind fiir solche Gewichte bis heute unge-
kléart. Fiir grofle Gewichte wurde eine Charakterisierung derjenigen Raume, die
von den Thetareihen aufgespannt werden, von E. Freitag in seinen Untersuchungen
iiber stabile Modulformen gegeben?).

2) Inzwischen konnte S. Bocherer zeigen, daf die Thetareihen fiir k > 2n,k=0mod 4
den vollen Raum aller Modulformen vom Gewicht k aufspannen [Math. Z. 183 (1983) 21-46].




172  H. Klingen

In diesem Zusammenhang miissen auch nochmals die Eichlerentwicklungen
(7) genannt werden. Sie spielen einmal eine wichtige Rolle bei der Charakterisierung
der singuliren Modulformen durch ihre Gewichte; zum anderen besitzen ihre
Fourierkoeffizienten §(Z,, Z,, t) ein interessantes Transformationsverhalten, dem
durch die Bezeichnung ,,Jacobische Modulformen*‘‘ am besten Rechnung getragen
wird. Umfangreiche Untersuchungen iiber jene Funktionen werden zur Zeit von
M. Eichler und D. Zagier angestellt.

Zum Schlufl meiner Ausfithrungen méchte ich einige offene Fragestellungen
nennen, die im Zusammenhang mit Siegels Werk stehen und welche meines Er-
achtens das Interesse der mathematischen Fachwelt verdienen.

(D) Strukturbestimmung der Kérper der Siegelschen Modulfunktionen:

E. Freitags Untersuchungen iiber die Nichtrationalitit unendlich vieler Funktio-
nenkorper lassen diese Aufgabe sinnvoll erscheinen. In diesem Zusammenhang
gewinnen neue Typen von Modulformen an Bedeutung wie etwa die Thetareihen
mit harmonischen Koeffizienten.

(I1) Arithmetische Resultate im Hinblick auf die Fragestellungen der kom-
plexen Multiplikation: Bereits bei ihrer Entstehung stellte man in dieser Hinsicht
hohe Erwartungen an die Siegelschen Modulfunktionen. Bis heute stecken der-
artige Untersuchungen noch in den Anfingen und bereiten erhebliche Schwierig-
keiten.

(111) Heckes Theorie fiir die Siegelschen Modulfunktionen: Auf diesem Ge-
biet wurden vor allem durch die Arbe1ten von A. N. Andrianov beachtliche Fort-
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lichen wiihrend der letzten 10 bis 15 Jahre stattgefunden hat und daf} entspre-
chende Fragen in mehreren Verinderlichen gestellt werden kénnen, so ergibt sich
ein weites Feld fiir zukiinftige mathematische Forschungstitigkeit. Es besteht so-
mit kein Zweifel, daB Siegels Werk kommenden Generationen reiche Quelle der
Erkenntnis und der Inspiration sein wird.

Prof. Dr. H. Klingen

Mathematisches Institut

der Universitdt

Albertstr, 23b

7800 Freiburg (Eingegangen 29. 10. 82)
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Das Werk C. L. Siegels
in der Himmelsmechanik

H. Riifmann, Mainz

Siegel wollte urspriinglich Astronomie studieren, entschied sich aber dann
unter dem Einflu von Frobenius fiir Zahlentheorie. Dennoch bewahrte er sich
lebenslang ein starkes Interesse fiir Himmelsmechanik, das in Vorlesungen und
zwolf Arbeiten seinen Niederschlag fand.

Auf Anregung von Rellich fafite er das Material aus seinen Vorlesungen
und den meisten seiner bis 1956 erschienenen Arbeiten in einem Buch zusammen,
das 1971 noch eine zweite erweiterte Auflage in englischer Ubersetzung erfuhr. An
dieser zweiten Auflage war Moser als Mitautor beteiligt, dessen Beitrige neue Ent-
wicklungen in der Himmelsmechanik beriicksichtigten.

Danach schrieb Siegel noch zwei Arbeiten zum Verhalten analytischer Dif-
ferentialgleichungen in der Nihe einer Gleichgewichtslésung, in denen er friihere
Untersuchungen zum Abschluf brachte.

Im folgenden gebe ich einen Uberblick iiber diese Beitriige Siegels zur Him-
melsmechanik. In den ersten fiinf Abschnitten stelle ich die konkreten Probleme
aus der Himmelsmechanik vor, zu deren Losung Siegel beigetragen hat. Um Siegels
Leistungen zu wiirdigen, argumentiere ich aus Griinden der besseren Allgemeinver-
stindlichkeit mehr aus dem historischen Zusammenhang als mit technischen Ein-
zelheiten. Trotzdem ist die Kenntnis einiger elementarer Tatsachen iiber das n-
Korperproblem und das restringierte Dreikdrperproblem notwendig, die in den
ersten beiden Abschnitten zur Sprache kommen.

Im 7. und 8. Abschnitt werden Siegels Beitrige zum Problem der kleinen
Nenner und zur Frage der Konvergenz von Transformationen in die Birkhoffsche
Normalform bei Hamiltonschen Differentialgleichungen und inhaltstreuen Abbil-
dungen erértert.

Schlieflich wird im 6. und 9. Abschnitt Siegels Alterswerk [94], [98] *) be-
trachtet. Diese Arbeiten sind bis jetzt in der zeitgendssischen Literatur gar nicht
zur Kenntnis genommen worden. Ich habe mich daher in dem hier gegebenen Rah-
men um eine ziemlich vollstindige Inhaltsangabe bemiiht.

1 Das n-Korperproblem und der Satz von Bruns
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det [23]. Die folgenden Ausfithrungen stiitzen sich teilweise auf einen Vortrag

[35]

,den Siegel am 11. Februar 1941 gehalten hat.
In der Himmelsmechanik beschiftigt man sich mit dem n-Koérperproblem,

d. h. mit der Bewegung von n Massenpunkten P,, . . ., P, im dreidimensionalen

euklidischen Raum. die sich gegenseitig nach dem Newtonschen Gravitationsge- _
‘5_@‘ %;'—

[

Wenn wir die Masse von P, mit my, die rechtwinkligen kartesischen Ko-

ordinaten von Py mit Xy, yi, Zx und den Abstand von Py, Pp mit

ee = [(Xk — X¢)? + (Y —¥o)? + (2 —2o)*]'?

bezeichnen, so ist das Potential der Gravitation durch

(1.1) -U== Y}  mgmer!
1€k<2<n
gegeben, wobei die Gravitationskonstante zu 1 normiert wurde. Die Differential-
gleichungen der Bewegung von P lauten
. _9oU , , _oU
MmgXg = axk ’ mkyk - ayk ) myZy = azk ’ (k - 1; ..oy n)a

wobei ein Punkt Ableitung nach der Zeit t bedeutet.

Dieses System von 3n gewohnlichen Differentialgleichungen zweiter Ord-

nung kann durch Einfiihrung der Geschwindigkeitskomponenten uy, vy, wy auch
als System von 6n Differentialgleichungen erster Ordnung geschrieben werden:

(1.2

Xk = Uk, Yk = Vk,  Zgx = Wk,

) k=1,...,n)
1 aoU . 1 dU . 1 oU

Wk =

iy = =— —
k my azk

= e— e— Ve = — —
my 90Xy’ k my Ay’

Wenn ganz allgemein ein System gewohnlicher Differentialgleichungen

erster Ordnung

(13

) £k=fk(£la'-'9£m’t) (k=1’---am)

vorliegt, dann bezeichnet man als Integral dieses Systems jede Funktion ®(¢,, .. .,
£m, t), die der partiellen Differentialgleichung

o m P
a—t+kz=: fi E—O

geniigt. Eine solche Funktion ist konstant lings jeder Losung &, = £, (t) von (1.3).
Man kann daher die Gleichung ®(¢,, . . ., £,,, t) = c dazu verwenden, eine der Va-
riablen &,, . . ., £, als Funktion der anderen und der Zeit auszudriicken und so die
Zahl der Differentialgleichungen um 1 zu reduzieren. Hat man r unabhingige Inte-
grale von (1.3), so kann dieses System auf ein anderes mit m — r Differentialglei-
chungen erster Ordnung zuriickgefiihrt werden. Im Falle r = m kann (1.3) voll-
stindig aufgelost werden.

Seit den Untersuchungenvon Euler und Lagrange kennen wir

10 unabhingige Integrale des Systems (1.2), nimlich die 6 Schwerpunktsintegrale






Das Werk C. L. Siegels in der Himmelsmechanik 177

Der Beweis des Satzes von Bru ns ist ziemlich schwierig; er beniitzt aber

y dieselhgn Ideen _welche I.iouville zuseinem Theorem fithrten, daf} die ellip-

tischen Funktionen nicht als endliche Kombination von Exponential-, Logarithmus-
und algebraischen Funktionen ausgedriickt werden konnen.

Siegel hatnunden Brunschen Satz auf einen wichtigen Grenzfall
des Dreikdrperproblems iibertragen, auf den sich dieser Satz nicht direkt anwenden
1aRt. Es handelt sich um das sogenannte restringierte Dreikérperproblem, auf das
wir im folgenden zu sprechen kommen.

2 Das restringierte Dreikorperproblem und seine algebraischen Integrale

Das restringierte Dreikorperproblem ist der Grenzfall des allgemeinen Drei-
korperproblems, bei dem die Bewegung in einer Ebene stattfindet, zwei Korper
eine Kreisbahn um ihren gemeinsamen Schwerpunkt beschreiben und der dritte
Korper die Masse O besitzt. Ublicherweise wahlt man die Einheiten von Masse,
Linge und Zeit so, da die ersten beiden Korper die Gesamtmasse 1 und den Ab-
stand 1 besitzen und die Gravitationskonstante gleich 1 ist. Wahlt man dann in der
Ebene der drei Korper ein rotierendes rechtwinkliges kartesisches x-y-Koordinaten-
system, dessen Mittelpunkt mit dem ersten Korper zusammenfallt und dessen x-
Achse durch den zweiten geht, so lauten die Differentialgleichungen fiir die Bewe-
gung des dritten Korpers

oV

NS A ')
(-) X=2y aX’ y= X ay’

dabei ist

’

2
my = My, m; = u, p+l“l=1’ 0<”'<l’ m3=0’

1
V=;11(--r2+r‘l

1
+u(§r3+rf‘

2_.2 =242 212 —(y—132 —
=13, =x2+y?% 1i=13=(x—1P2+y% =1

Die Differentialgleichungen (2.1) lassen sich direkt aus dem Newtonschen
Gravitationsgesetz ableiten, oder aber aus den Differentialgleichungen (1.2) ge-
winnen. In letzterem Fall hat man nur zu verifizieren, da (1.2) firr n = 3 durch
den Ansatz

X;=—mcost, X,=p;cost, X3=(x—p)cost—ysint,
2.2) yy=—msint, ya=Mpsint, y3=(x—pm)sint+ycost,
Zl=0’ Zz=0, Z3=0

genau dann erfiillt wird, wenn x und y den Differentialgleichungen (2.1) geniigen.

Geht man mit diesem Ansatz in die Integrale ®,, . . ., ®,, des allgemeinen
Dreikérperproblems (1.2), n = 3 hinein, so ergeben sich Konstanten. Dennoch
existiert ein nichttriviales Integral von (2.1), das Jacobische Integral

(2.3) %%+ y2?—2V = constans,

wie man leicht nachpriift. Entsprechend den Bemerkungen im 1. Abschnitt ist ja
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und die geradlinigen Fille
&=m, @=0;=0, T,=1,+1;,
G,=m, &=&=0, T,=T,+%,,
~ ~ ~ ~
a3=1r, Oll=a1=0, r3=r,+r2.
Siegel konnte nun dariiberhinaus zeigen, daf auch die Winkel der Sei-
ten des Dreiecks P, P,P; mit den Achsen desjenigen raumfesten x-y-z-Koordinaten-

systems fiir t > t, Grenzwerte haben, relativ zu dem die Differentialgleichungen

(1,2), n = 3 des Drejkdrpernroblers gesehen sind

Auflerdem gelanges Siegel, die Koordinaten der Punkte P,, P,, P; in
irregulire Potenzreihen der Form

Xk = (t— )X (uy, up,u3),  ye=(t— o) Yy (uy, u,, uy),
Zk=(t—t0)2/32k(ul, U,, U3), k= 1’2’3

S f-“ﬂ'*“& A

ten sind, die in einer Umgebung von u, = u, = uy = 0 konvergieren, und

uy =(t— t0)2/3(01 +d, log |t —t,]), u, =(t- to)‘82 (c; +d, log [t —t, ),
u3=(t-to)3c,y

zu setzen ist. Hierbei sind 8,, 85 nur von den Massen m,, m,, m, abhingige positive
Konstanten. In Siegels Arbeit wird die Abhingigkeit der reellen Konstanten
€1, €2, 3, d;, d, von freien Parametern explizit angegeben, und es werden die Eigen-
schaften von f,, B3 notiert, aufgrund deren d,, d, oder d, und d, verschwinden.

Im geradlinigen Fall ist a priori c; = d; = 0, und man hat nur zwei Exponenten
2/3,8,.

Der erste Schritt zur Gewinnung dieser Resultate besteht in einer Reihe
von Koordinatentransformationen, die das Ausgangssystem (1 .2),n=3inein
System von m = 6 Differentialgleichungen erster Ordnung
@a3.1) % =f,(¢) «=1,...,m)

s
iiberfithren, das folgende Eigenschaften hat.

Die fy sind Potenzreihen in den Variablen £, . . ., ¢ mit reellen Koeffi-
zienten, die in einer Umgebung des Nullpunkts £ = (§,, . . ., £m) = 0 konvergieren
und kein konstantes Glied besitzen. Die Eigenwerte der Matrix
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Dabei wird
(33) t—to=e*

gesetzt und t | t, angenommen. Der Fall t 1 t, Li3t sich entsprechend behandeln.
In einem zweiten Schritt ist dann die Gesamtheit der Lésungen von (3.1)

mit der Eigenschaft (3.2) zu bestimmen. Diese Losungen erlauben Reihenent-

wicklungen, die schlieflich zu den obigen irregulidren Potenzreihen fiir die Dreier-

stobahnen fiihren.

Diesen zweiten Schritt werde ich im 9. Abschnitt behandeln zusammen mit wei-

teren Beitrigen Siegels zum Problem der Stabilitit.

Erginzende Literatur:

McGehee, R.: Singularities in Classical Celestial Mechanics. Proc. Int. Congr. Math.
Helsinki 1978, Bd. 2, 827—834

4 Die Bewegung des Mondes

Die Himmelsmechanik entstand aus dem Bemiihen, die Bewegungen der
Planeten und deren Monde zu verstehen und vorauszuberechnen. Besonders die
Schiffahrt war auf genaue Kenntnis dieser Bewegungen angewiesen. Da es sich da-
bei um periodische oder jedenfalls nahezu periodische Bewegungen handelte, stand
das Auffinden von periodischen oder nahezu periodischen Losungen des n-Korper-
problems schon immer im Vordergrund des Interesses. Bei der Bewiltigung dieser
Aufgabe ergaben sich allerdings fiir n = 3 erhebliche Schwierigkeiten, wihrend fiir
n = 2 ja die 10 Integrale ausreichten, um alle Losungen des Zweikodrperproblems
durch Quadraturen und Auflosung von Gleichungen zu erhalten, wie wir im 1. Ab-
schnitt schon bemerkt haben.

Bei der Bewegung eines Planeten um die Sonne liefien sich die Schwierig-
keiten dadurch in Grenzen halten, daff man den Einflufl der anderen Planeten we-
gen der grofBen Masse der Sonne als Stérungen eines Zweikorperproblems auffafite
und nur soweit beriicksichtigte, wie die Rechentechnik dies jeweils erlaubte.

Im Gegensatz dazu ist die Bewegung des Mondes um die Erde viel kompli-
zierter, weil die Sonne trotz ihrer groflen Entfernung aufgrund ihrer iibergrofien
Masse das System Erde — Mond zu sehr stort, als da® das Modell eines Zweikor-
perproblems in erster Niherung gerechtfertigt wire.

N e wton bezeichnete die Bewegung des Mondes als das einzige Problem,
das ihm Kopfzerbrechen bereitet hiatte. E ule r-stellte zwei Mondtheorien auf.
Seiner zweiten aus dem Jahre 1772 legte er das restringierte Dreikdrperproblem
zugrunde, jedoch in einem anderen Koordinatensystem als wir es im 2. Abschnitt
beschrieben haben, so daf in den Differentialgleichungen fiir den Mond im Gegen-
satz zu (2.1) die Zeit t explizit auftrat.

Der Begriinder der modernen Mondtheorie ist G. W. Hill. Seine 1877/78
erschienenen Untersuchungen zur Bewegung des Mondes waren aber nicht nur fiir
die Astronomie von grundlegender Bedeutung, sondern trugen auch entscheidend
zur Entwicklung einer allgemeinen Theorie der periodischen Losungen gewodhnlicher
Differentialgleichungen durch Poincaré in den folgenden Jahren bei. Aufler-
dem standen diese Untersuchungen an der Wiege der Funktionalanalysis. Denn zu
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seiner Konstruktion der Mondbahn mufite Hill unendlich viele Gleichungen mit
unendlich vielen Unbekannten 16sen. Die hierfiir notwendigen allgemeinen Sitze
iber unendliche Determinanten entdeckte Poincaré, und von Koc

1 T,
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(4.1) liegt. Setzt man (4.3) in (4.1) ein, so erhilt man fiir x und y reelle Fourier-
reihen in t, die den Differentialgleichungen (2.1) geniigen.
Diese Losung des Hillschen Problems hat Siegel erstmals wihrend

seiner Gottinger Zeit 1938 bis 1940 in einer Vorlesung vorgetragen und dann 1951

in der Arbeit [57] veréffentlicht. Eine ausfiihrlichere Darlegung findet sich in sei-

nem Buch.

Erginzende Literatur:

[1]Bell, E.T.: Die grofien Mathematiker. Diisseldorf: Econ-Verlag, S. 113

[2]Hill, G. W.: Researches in the Lunar Theory. Amer. J. of Math. 1 (1878) 5-26, 129—-147,
245-260

[3]Hill, G.W.: On the Part of the Motion of the Lunar Perigee which is a Function of the
Mean Motion of the Sun and Moon (1877). Nachdruck Acta Math. 8 (1886) 1-36

[4]Hilbert, D.: Gesammelte Abhandlungen III. Berlin — Heidelberg — New York: Springer
1970, S. 65 und 99

[S]Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste I, Paris: Gauthier
Villars 1892

[6]v. Zeipel, H.: L’oeuvre astronomique d’Henry Poincaré. Acta Math. 38 (1921) 355

[7]Memorial Number George William Hill Amer. J. of Math. 60 (1938)
785-948; mit Beitrigen von E. W. Brown, J. Chazy, E. Holder, M. Morse und G. A. Hedlund,
E. Stromgren, O. Toeplitz, H. Weyl, N. Wiener, A. Wintner

5 Die Losungen von Lagrange

Lagrange fand 1772 periodische Losungen des Dreikérperproblems, bei
denen sich die drei Massenpunkte in einer festen Ebene gleichférmig auf konzen-
trischen Kreisbahnen bewegen und der Schwerpunkt im Zentrum ruht. Dabei gibt
es fiir die zeitunabhingige gegenseitige Lage der Massenpunkte nur zwei mogliche
Konstellationen: Entweder bilden die Massenpunkte ein gleichseitiges Dreieck
oder sie liegen auf einer Geraden. Im gleichseitigen Fall bewegen sich also jeweils
zwei Korper auf einer gleichférmigen Kreisbahn um den dritten mit einer Winkel-
differenz von n/3.

,u= e

A
_

3e PR x o . e
i

mische Bedeutung. Jedoch wurden von 1907 an bis heute 14 Asteroiden entdeckt,
die man als Trojaner bezeichnet und die sich gerade um diejenigen zwei Punkte
auf der Bahn des Jupiters um die Sonne gruppieren, die den Winkelabstand #/3
von Jupiter haben. Die Bahn des Jupiter um die Sonne ist nahezu ein Kreis. In der

Nihe des ejnen, Punktes T (vel Fisur1). der dem Jupiter ym den Winkel #/3 hinter-

A

. PP . « 2 A 4 e e IS TN R MRV DR N 213 M DR , YR RSy o BN DR



Das Werk C. L. Siegels in der Himmelsmechanik 183

Jupiter-

bahn Mars-
bahn / M Jupiter

- -

Fig. 1

Bei der Untersuchung der Bewegung der Trojaner darf man alle Planeten
aufler Jupiter und Saturn wegen zu grofier Entfernung und zu geringer Masse aufier
Betracht lassen. Den Planeten Saturn darf man wenigstens in erster Naherung ver-
nachlissigen. Dann bleibt die Aufgabe iibrig, periodische Losungen in der Nihe der
Lagrangeschen zu konstruieren.

Zur Vereinfachung dieser Aufgabe wird meistens die Masse mj des zu be-
trachtenden Asteroiden, die ja ohnehin im Vergleich zu den Massen m;, m, von
Sonne und Jupiter verschwindend gering ist, gleich Null gesetzt. Dann erhilt man
gerade das im 2. Abschnitt besprochene restringierte Dreikdrperproblem.

Relativ zu dem rotierenden rechtwinkligen kartesischen Koordinaten-
system mit den Koordinaten (0,0) und (1,0) fiir Sonne und Jupiter ergeben sich
fiir den massenlosen Punkt mit den Koordinaten (x, y) die Differentialgleichungen
(2.1), und es ist leicht festzustellen, da die Punkte T, G mit den Koordinaten

1 1

%2 ‘/j)

Gleichgewichtslésungen von (2.1) darstellen. Dies sind die Losungen von
Lagrange fir my=0 im gleichseitigen Fall.

Die Konstruktion periodischer Lésungen in der Ndhe von T und G kann
nun mit Hilfe der Kontinuititsmethode von Poincaré und der Fixpunkt-
methode von Poincaré-Birkho ff erfolgen. Diese Methoden wurden von
Siegel inseinem Buch ausfiihrlich dargestellt und auf das obige Problem ange-
wendet.

Siegel beschritt in seinem Buch aber noch einen anderen Weg, wobei
er die Aufgabe, periodische Losungen in der Nidhe der Lagrange schen zu
finden, ganz allgemein fiir beliebige Massen der drei Korper 1oste. Auf diesem Weg
ergab sich aber die Notwendigkeit, allgemeinere Untersuchungen von Differential-
gleichungen in der Nihe einer Gleichgewichtslosung anzustellen.

Zunichst kann man auch in dem Fall m; > 0 ein rotierendes Koordinaten-
system einfiihren, so da die drei Massenpunkte ruhen, also die Lagrange-
schen Losungen des ebenen Dreikorperproblems (1.2) mit n=3,z,=2z,=23=

x,y)=
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=w; = w, = w3 = 0 als Gleichgewichtslosungen des transformierten Systems von
Differentialgleichungen erscheinen.

Siegel reduzierte dieses System noch mit Hilfe der im 1. Abschnitt er-
wihnten Elimination des Knotens, um schlieBlich ein Hamiltonsches System der
Form

o,
ask+m) k+m ask

mit m = 3 zu erhalten, bei dem die Hamiltonfunktion H in einer Umgebung des

5.1) = &=1,...,m)

Nullpunkts &, =. .. = §&,, =0 in eine konvergente Reihe
2m
(5.2) H= Y Hygebiet...
K2=1

entwickelt werden kann, die reelle Koeffizienten hat und mit Gliedern zweiter
Ordnung beginnt. Der Nullpunkt ist eine Gleichgewichtslosung, die der Lagrange-
schen Kreisbewegung entspricht.

Die Eigenwerte A = £ A, £ \,, * A5 des linearisierten Systems (5.1)’, bei
dem H durch seinen homogenen Bestandteil 2. Ordnung H, = T H, &, &, ersetzt
wird, berechnen sich aus der Gleichung

(53) A2+1DHA*+N?+9)=0
27 m;m, + mym; + mym,

it _2 ,
m 7Ty (m; + m, + my)?

wie Siegel mitderihm eigenen Eleganz zeigte. Ubrigens treten bei jedem
System (5.1) die Eigenwerte paarweise mit entgegengesetztem Vorzeichen auf:
A=%A, .., 2 A,

Nun gilt der Satz, da} zu jedem Paar rein imaginirer Eigenwerte
(54) N,—N=N#0,
fiir das zusitzlich die Bedingung
(5.5 MN/NEZ, kFj

1t jst. eipne e tri
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Diese Scharen periodischer Losungen hat fiir m; > 0 erstmals Siegel
1956 in seinem Buch konstruiert. Er hat in entsprechender Weise auch periodische
Losungen in der Nihe derjenigen anfangs erwihnten Losungenvon Lagrange
angegeben, bei denen die drei Korper auf einer Geraden liegen. Darauf soll hier
aber nicht weiter eingegangen werden, zumal die Konstruktion in diesem gerad-
linigen Fall ganz analog zu dem oben dargelegten gleichseitigen Fall verliuft.

Zum Schluf sei noch bemerkt, dal die in diesem Abschnitt besprochenen
Losungen natiirlich nur relativ zu dem rotierenden Koordinatensystem periodisch
sind. Von einem raumfesten Koordinatensystem aus betrachtet ist eine solche Lo-
sung genau dann periodisch, wenn ihre Frequenz mit der Frequenz der Rotation
kommensurabel ist, andernfalls ist sie quasiperiodisch mit zwei Basisfrequenzen.
Erginzende Literatur:

[1]Chebotarev, G.A.: Analytical and Numerical Methods of Celestial Mechanics.

Amsterdam: Elsevier 1967, Kap. 3
[2]Szebehely, V.: Theory of Orbits. New York: Academic Press 1967, Kap. 5

6 Das Verhalten gewohnlicher Differentialgleichungen in der Niihe einer
Gleichgewichtslosung

Nachdem wir bisher Sie gels Beitrige zu konkreten Problemen der
Himmelsmechanik beschrieben haben, wenden wir uns nunmehr den grundsitz-
lichen Fragen in der Theorie der gewohnlichen Differentialgleichungen zu, auf
die Siegel beim Studium jener Probleme gestofien war und mit denen er sich
dann sein weiteres forscherisches Leben hindurch beschiftigte. Es handelt sich
dabei um Fragen des qualitativen Verhaltens der Losungen von autonomen ge-

wohnlichen Differentialgleichupeen in der Nahe einer GleichgewichtslGsung —

) ————

—= - .
“ 1
=

.or

L ‘

der Form
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II1. Die Frage nach der Gesamtheit aller Losungen, die fiir alle t = 0 in
einer gegebenen, geniigend kleinen Umgebung von x = 0 bleiben bzw. nach x =0
streben. In dieses Problem miindete schliefflich Sie gels Untersuchung des
Dreierstofies beim Dreikorperproblem, wie wir im 3. Abschnitt gesehen haben.
Siegel behandelte diese Frage auferdem in seinem Buch und griff sie dann noch
einmal in der Arbeit [98] auf. Alle diesbeziiglichen Beitrige Siegels werden
im 9. Abschnitt zusammengefafit.

Im folgenden behandeln wir Sie g els Beitrag zu Frage 1. Dazu ist eine
kurze formale Vorbetrachtung notwendig, die sich auch fiir die Erorterung der
Frage 1I als unerldflich erweisen wird. Wir entnehmen sie den Arbeiten [94] und
[98] in teilweise leicht verdnderter Form.

Zunichst stellen wir an die Eigenwerte A, . . ., A, die Bedingungen

63) M=A=—MF0, As/Ap...A/\ €2

Dann miissen zwei formale Potenzreihen «, § folgendermafien konstruiert
werden:
Es sei u ein zu dem Eigenwert A\, gehoriger Eigenvektor der Matrix A, es gelte also
Au =\, u, At = \,1 wegen (6.3).
Man wihle reelle n-reihige Spalten u,, . . ., u,, so dal die Spaltenu, 4, us, ..., u,
iber den reellen Zahlen linear unabhingig sind. Dann kann die Gleichung

ok 3p +B 3 =100

durch formale Potenzreihen

(6.4) x=fu+tnui+ Y Enix,,
k+%>2

(6.5) a=\+ ¥ oEm), B=N+ X BEm)*
k=1 k=1

in den Variablen &, n mit komplexen Zahlen oy, 8 und komplexen n-reihigen
Spalten x, als Koeffizienten gelost werden, wobei sich diese Koeffizienten re-
kursiv eindeutig bestimmen lassen, wenn man verlangt, da} in der Darstellung

n
(6.6) x=8u+eui+ Y &,

i=3
die aus (6.4) durch Zerlegung der x;o nach den linear unabhéngigen Spalten
u, U, us, ..., u, entsteht, die Reihe § = + . . . keine Glieder der Form & (¢§7)° und
die Reihe € =q + . . . keine Glieder der Form n(¢n),s =1, 2, . . . enthilt. Die Ein-

deutigkeit filhrt dann zu den Realititsbedingungen xyo = Xqy, Bx = & fiir die Koef-
fizienten, was die Bedingungen

6.7) xX(¢,m=x@8, BEn)=alEn)

fiir die Reihen zur Folge hat.
Aufgrund von (6.7) hat die Reihe a + § reelle Koeffizienten. Entweder sind
diese alle gleich Null, es ist also
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(6.8) a+p=0,
oder es gilt

(6.9) a+f=cEn)f+ca Gyt +..., c#0

fiir eine natiirliche Zahl r. Im letzteren Fall hingt das Verhalten der Lésungen
wesentlich vom Vorzeichen von c, ab, wie sich im 9. Abschnitt herausstellen wird.
Es gilt nun der

Satz 6.1 Unter den Voraussetzungen (6.3) und (6.8) sind die Reihen (6.4),
(6.5) fiir geniigend kleine Werte von ||, In| konvergent, und durch

(6.10) E=pe*t, n=pe ®, fn=p2, a=afn)=-a

wird eine Schar periodischer Losungen von (6.1) geliefert, die von dem hinreichend
klein zu wdhlenden positiven Parameter p abhdngt.

Dieser Satz, den Siegel erstmals in seinem Buch 1956 und spiter noch
einmal in [94] bewiesen hat, liefert mehr als nur periodische Losungen. Er zeigt,
daf diese Schar periodischer Losungen auf einer (durch (6.4) gegebenen) invarian-
ten zweidimensionalen reellen analytischen Mannigfaltigkeit liegt. Schliefilich las-
sen sich die Fourierkoeffizienten der periodischen Lésungen auf einfachste Art aus
den Koeffizienten der gegebenen Potenzreihen fy, . . ., f; in (6.1) berechnen, wo-
bei die durch die Verwendung komplexer Variabler ¢, n notwendig werdende Uber-
prifung der Realititsverhiltnisse in {ibersichtlicher Weise mit Hilfe von (6.7), (6.8)
und (6.10) geschehen kann.

Der Satz 6.1 muf} natiirlich um eine Aussage erginzt werden, die es erlaubt,
das Erfiilltsein der Bedingung (6.8) an dem System (6.1) abzulesen.

Diese Aussage besteht in der Aquivalenz der Bedingung (6.8) mit der Exi-
stenz eines formalen zeitfreien Integrals, d. h. einer formalen Potenzreihe ¢ in den
Verinderlichen x,, . . ., X, mit reellen Koeffizienten ohne konstante und lineare
Glieder, die der Differentialgleichung

f£+ +f—QiI)—
Vax, 7 Max,

geniigt, wobei fy, . . ., f, die Komponenten von f in (6.1) bedeuten. Dieses Integral
mufB, nachdem man gemif (6.4) die Variablen x,, . . ., X, durch die Potenzreihen
in £, n ersetzt hat, als Potenzreihe in &, n das Glied zweiten Grades £n wirklich ent-
halten.

In dem Fall, daf} (6.1) ein Hamiltonsches System (5.1) ist mit n = 2m,
£c=Xxy, k=1,..., n, hat man in der Hamiltonfunktion (5.2) ein sogar konvergen-
tes Integral mit der verlangten Eigenschaft. Daher liefert Satz 6.1 unter der Be-
dingung (6.3), die nach eventueller Umnumerierung der Eigenwerte mit den Rela-
tionen (5.4), (5.5) identisch ist, eine Schar periodischer Losungen fiir das System
(5.1), wie es im 5. Abschnitt behauptet worden ist.

Die oben dargelegte Theorie iiber die Existenz von periodischen Lésungen
stammt im Falln =2 von Poincaré (1885, Théorie des Centres, Oeuvres I,
S.95). Siegel vollendete Poincarés Ausfilhrungen in formaler Hinsicht
und verallgemeinerte sie auf n Dimensionen.

=0
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Der erste, der Poincarés Existenzbeweis fiir periodische Losungen
von 2 auf n Dimensionen verallgemeinerte, war Ljapunow. Seine grofie Ar-
beit liber Stabilitatstheorie, in der sich dieser Existenzsatz befindet, erschien 1892
in Charkow und dann in franzésischer Ubersetzung in den Ann. Fac. Sci. Toulouse
1907. Ljapunow konstruierte jedoch nur die Schar periodischer Lésungen,
nicht die invariante analytische Mannigfaltigkeit, auf der diese Schar liegt.

Den frithesten Hinweis in der Himmelsmechanik auf Ljapunows
Konstruktion periodischer Losungen, der mir erreichbar war, fand ich als Zusatz
bei der Korrektur in einer Abhandlung von Wintner iiber das restringierte
Dreikérperproblem (MZ 32 (1930) 643).

Wintner benitzt bei der Konstruktion periodischer Losungen in der
Néhe der Lagrangeschen Kreislosungen (vgl. 5. Abschnitt) im Fall m3 = 0 nicht
Ljapunows Resultat, sondern eine Arbeit von Ho rn aus dem Jahre 1903,
in der ebenfalls Poincarés Théorie des Centres verallgemeinert wird.

In der Arbeit von Wintner finden sich auch Ausfithrungen iiber die
Schwierigkeiten bei der Verwendung komplexer Verianderlicher in nichtlinearen
Problemen der Himmelsmechanik. Es ist ein Verdienst Siegels, eine iiber-
sichtliche Realitdtsdiskussion bei Systemen (6.1) in der Nihe der Gleichgewichts-
16sung x = 0 ermoglicht zu haben. Sie gel war stets bemiiht, die Vorteile bei
der Anwendung komplexer Variabler mit der dann notwendigen Beriicksichtigung
der Realitatsverhiltnisse in optimaler Weise zu verbinden.

7 Kleine Nenner

In der Himmelsmechanik sind kleine Nenner seit langem bekannt. Sie tra-
ten auf bei der Darstellung von Losungen des n-Kérperproblems mit Hilfe trigono-
metrischer Reihen. Die Frage der Konvergenz dieser Reihen erwies sich als beson-
ders schwierig, weil das n-Korperproblem nicht linear ist.

Siegel war der erste, der ein nichtlineares durch kleine Nenner verursach-
tes Konvergenzproblem l6ste. Es handelte sich dabei um das funktionentheore-
tische Zentrumproblem, dessen Losung er erstmals 1942 in der Arbeit [39] und
dann 1956 in seinem Buch (§§ 23, 24) veroffentlichte.

Gegeben sei in der komplexen z-Ebene eine Abbildung
(7.1) zz;=f@)=Az+f,22+1323+..

3]

wobei f eine Potenzreihe mit komplexen Koeffizienten ohne konstantes Glied ist,
die in einer Umgebung von z = 0 konvergiert. Ferner werde

A=e2™ g reell und irrational
gesetzt. In diesem Fall ist die Abbildung (7.1) formal dquivalent der Drehung
(7.2) wh w;=2Aw.
Es gibt namlich dann eine eindeutig bestimmte formale Potenzreihen-Transforma-
tion

z=h(w)=w+h,w?+hyw3+. .,

die sog. Schrodersche Reihe, so dafd die Abbildung (7.1) in der neuen Variablen w
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die Form (7.2) erhilt, daf also die ,,Schrédersche Funktionalgleichung**
h(Aw) =f(h(w))

erfiillt ist. Diese kann zu der Gleichung

Y Ak=Mhwk= Y foh(w)
k=2 =2

umgeformt werden, aus der unmittelbar hervorgeht, daf sich die Koeffizienten
von h rekursiv eindeutig bestimmen lassen und daf die kleinen Nenner A" — 1,
n=1,2,...auftreten. Es lassen sich Beispiele von Abbildungen (7.1) mit Liou-
villeschen Zahlen a angeben, fiir welche die Schrodersche Reihe infolge dieser dann
zu kleinen Nenner divergiert.

Siegel konnte jedoch zeigen, daf} die Schrodersche Reihe h stets in
einer Umgebung von w = 0 konvergiert, wenn « keine Liouvillesche Zahl ist, also

Indc —m|>cn™? (m=0,t1,£2,..;n=1,2,..))

gilt fiir zwei positive Zahlen c und ».

Der Beweis dieses Satzes beruht auf einem genialen Gedanken, der die
Trennung des Problems in einen funktionentheoretischen und in einen zahlen-
theoretischen Teil ermdglicht, wobei die kleinen Nenner dann nur noch in letzte-
rem erscheinen.

Ich vermute, da® Siegel nach der Entdeckung dieses Satzes grof’e An-
strengungen unternahm, nun auch den kleinen Nennern in den (Fourier-) Reihen
der Himmelsmechanik beizukommen. Drei Jahre spiter veréffentlichte er jeden-
falls eine Note iiber Differentialgleichungen auf dem Torus [52], in der er den Be-
weis eines bekannten Satzes von Denjoy vereinfachte. Die Note entsprang sei-
nen eigenen Angaben nach dem erfolglosen Versuch, Denjoys Resultat zu ver-
allgemeinern.

Ubrigens gehoren die den Beweis Denjoy s vereinfachenden Gedanken
Siegels heute zum Standardrepertoir bei Untersuchungen von dynamischen
Systemen auf dem Torus.

Aufgrund der Analogie zwischen dem Verhalten von analytischen Abbil-
dungen in der Nihe eines Fixpunkts und dem Verhalten analytischer Differential-
gleichungen in der Nihe einer Gleichgewichtsldsung gelanges Siegel 1952 in
der Arbeit [61], die obige Konvergenzaussage fiir Abbildungen (7.1) auf analoge
Differentialgleichungen zu iibertragen. Er betrachtete ein System gewdhnlicher
Differentialgleichungen der Form

(73) %=ANx+Fo(x) (k=1,..., n),

wobei die Fy konvergente Potenzreihen in x,, . . ., X, mit komplexen Koeffizien-
ten sind, ohne konstante und lineare Glieder. Unter der Voraussetzung, daf die
komplexen Zahlen A,, . . ., A, fiir eine geeignete positive Konstante v den Unglei-
chungen

n
Y Ao — A

L=1

>2ng™? k=1,...,n)
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geniigen, wobei g, . . ., g, alle nicht-negativen ganzen Zahlen mitg =g, +...+

+ g, > 1 durchlaufen, bewies Siegel die Konvergenz der eindeutig bestimm-
ten formalen Potenzreihen-Substitution x, =y +...(k =1, ..., n)in den neuen
Variablen yy, . . ., yo mit komplexen Koeffizienten, welche (7.3) in das linearisierte
System

Ve=hye  (k=1,...,n)

uberfiihrt.
Diese Konvergenzaussage erweiterte ganz wesentlich einen entsprechenden
Satzvon Poincaré, beidem die Zahlen ,, . . ., \, auf eine offene komplexe

Halbebene beschrinkt werden miissen. Aufgrund dieser Sitze von Poincaré
und Siegel istesin der englischsprachigen Literatur iiblich geworden, einen
Punkt A = (A, ..., A\y) € C" als zur Siegel domain gehorig zu bezeichnen, wenn

0 € C in der konvexen Hiille von A,, . . ., A, liegt. Andernfalls geh6rt A zur Poincaré
domain.

1954 fand Kol mo gorov eine Methode, um mit den kleinen Nennern
in der Himmelsmechanik fertig zu werden. Diese Methode wurde von Arnold
und Mo ser ausgebaut und auf eine Reihe von Problemen angewendet.

Moser hattejabei Siegel in dessen Vorlesung im Wintersemester
1951/52 Himmelsmechanik gelernt und sich seitdem auf diesem Gebiet forsche-
risch betitigt. Seine erste bedeutende Arbeit zum Thema kleine Nenner, in der er
die Existenz invarianter Kurven von inhaltstreuen Abbildungen eines Kreisrings
bewies, schickte er Siegel, dersie am 16. 2. 1962 der Akademie der Wissen-
schaften in Gottingen vorlegte. Sie gel sagte in jenen Tagen einmal, er hitte
sich sein ganzes Leben vergeblich um dieses Problem bemiiht.

Ich schickte meine Arbeit, in derich M o s e rs Resultat verbessern konnte,
ebenfallsan Siegel. der mir am 26. 4. 1970 u. a. schrieb: ..Jhre Arbeit habe

ich nun durchgesehen und alles in Ordnung gefunden, aufier mehreren Schreib-
fehlern in den Formeln, die ich korrigiert habe.*

Hieraus geht hervor, dafd Sie gel von Anfang an mit der neuen Technik
wohl vertraut war. Er wollte sich aber an dieser Entwicklung nicht mehr beteiligen.
In seinem Alterswerk [94], [98] kam er noch einmal auf seine eigene Methode zu
sprechen und bemerkte in bezug auf die Untersuchungen von Arnold und
Moser: ,Diesen tiefliegenden Ergebnissen vermag ich nichts Entsprechendes
hinzuzufiigen; . . .. Bei der Neufassung seines Buches, die in englischer Uberset-
zung 1971 herauskam, iiberliet er M o s e r das Kapitel iiber die Stabilitét, in dem
das Problem der kleinen Nenner abgehandelt wird.

Die Lectures on Celestial Mechanics von Siegel und Moser sind zu
einem Standardwerk in der Himmelsmechanik geworden.

8 Die Birkhoffsche Normalform

Aus der Storungstheorie der Himmelsmechanik entwickelte sich eine Inte-
grationsmethode fiir analytische Hamiltonsche Differentialgleichungen in der Nidhe
einer Gleichgewichtslosung mit Hilfe formaler Potenzreihen, die 1927 von G. D.
Birkho ff in eine endgiltige Form gebracht wurde. Birk h o f f betrachtete
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auch analoge Reihen, die bei der Transformation inhaltstreuer Abbildungen in eine
Normalform in der Nihe eines Fixpunktes entstehen. Sie gel untersuchte die
Konvergenz solcher Reihen in den Arbeiten [37],[63], [71].

Gegeben sei ein Hamiltonsches System

8.1 X = X =- EE k=1 )
( . ) Xk = axm+k’ Xm+k an 5 o0 ey M),
wobei die Hamiltonfunktion
2m
(8.2) H=Hx)= Y  |hyxgxe+...
k2=1
eine in einer Umgebung von X, =. . . = X,y = 0 konvergente Potenzreihe in den

Variablen Xy, . . ., X, mit reellen Koeffizienten ist, die mit Gliedern zweiten Gra-
des beginnt. Fiir die Eigenwerte A, . . ., Ao, der Matrix der linearen Glieder in
(8.1) gilt bekanntlich

)\k+)\m+k=0 (k=1,...,m).
Wir setzen noch

giMt. g FO0 (81, - 8m) € Z™\{0}),

B3) )\ +X.=0 &k=1,...m)

voraus, so daf’ insbesondere alle Eigenwerte rein imagindr und voneinander ver-
schieden sind.
Es gibt nun eine formale Potenzreihen-Transformation

2m
84) x=Xe(¥)= Y cxeyet... (k=1,...,2m;det (cx)#0)

L=1
mit reellen Koeffizienten, die kanonisch ist (deren Funktionalmatrix (9X,/dyg)
also symplektisch ist) und die das System (8.1), (8.2), (8.3) in die Birkhoffsche
Normalform

Yk =Pk¥Ym+k>  Ym+k =" Px¥xk»

oK

®5) 1 =3,

K=HX@y)=KWw)=iAjw; +...+tiA\pwp +..

1
Wk=_2'(yﬁ+y|2n+k) (k=19'°-’m)s

iiberfiihrt, wobei die reellen Koeffizienten der Potenzreihe K in den Variablen
Wy, . . ., Wn eindeutig bestimmt sind, unabhingig von der gewihlten kanonischen
Transformation (8.4).

Die Funktioneny = wy, (k =1, .. ., m) und folglich die py sind Integrale
von (8.5), weshalb die allgemeine Losung dieses Systems sofort in der Form

Vit iYmek = 7P (g + inm4x),
(8.6) k=1,...,m)

1
Pk =Pk(W), wg= 5’(72% +nkak)
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gefunden werden kann mit 2m reellen Integrationskonstanten N1s -+ + »» Nam. Das
Einsetzen von (8.6) in (8.4) liefert im Falle der Konvergenz der Reihen (8.4) fir
hinreichend kleine |n|, . . ., |7, | simtliche Losungen von (8.1) in einer Umge-
bung von x; =...= X, Diese Lésungen sind quasiperiodisch, wobei der von den
Integrationskonstanten abhingige Modul der Frequenzen von p,, . . ., Pm €rzeugt
wird.

In der Arbeit [37] konstruierte Siegel nun aber Beispiele von Systemen
(8.1), (8.2), (8.3), die gar keine konvergente Transformation (8.5) in die Normal-
form (8.6) besitzen. Spater bewies er in [63], daB dies sogar die Regel ist.

Siegel betrachtete genauer den Fall m = 2 und nahm an, da} die Hamil-
tonfunktion (8.2) bereits die Normalform bis zu den Gliedern vom Grad < 2s fiir
eine ganze Zahl s = 2 besitzt, also die Gestalt

(87) H=F+G

hat, wobei
= ; 2,2 L o2, .2
F=i\z +iNz, + > Fo e,211232, Ze=5 (X ¥ Xmer),  k=1,2
22, +2,<s
und G= X Gex®, x=x.x8s, 0=(,...,8%), I01=%+...+%
121> 2s+1

Zu setzen ist.

Die reellen Koeffizienten des Polynoms F in z,, z, werden nun fest gewihlt,
derart daf} (8.3) und

oF oF

2621 BT 9z, #0

gilt, wihrend die Koeffizienten von G als reelle Variable mit
8.8) IG<1l (9=2s+1)
betrachtet werden. Dann gilt der

Satz 8.1 Es gibt abzdhlbar unendlich viele analy tisch unabhingige Potenz-
reihen ®,, ®,, . . . in den unendlich vielen Variablen Gq, welche in (8.8) absolut
konvergieren, derart, daf$ eine konvergente kanonische Transformation (8.4) von
(8.1), (8.7) in die Normalform (8.5) nur existiert, wenn ®; = 0 ist fiir unendlich
viele j.

Dieser Satz zeigt, da Divergenz der Transformationen in die Birkhoffsche
Normalform die Regel ist. Erstaunlich ist, da} diese Divergenzaussage unabhingig
von der arithmetischen Beschaffenheit der Eigenwerte ist.

Arnold und Moser haben bewiesen, daf} trotzdem die meisten L&-
sungen von nicht-degenerierten Systemen (8.1), (8.2), (8.3) in der Nihe von
X1 =...= Xpm = 0 quasiperiodisch sind. Man vergleiche hierzu neben dem Buch
von Siegel und Moser auchJ. Moser, Stable and Random Motions
in Dynamical Systems, Ann. of Math. Studies 77 (1973).
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Birkho ff betrachtete auch inhaltstreue Abbildungen
(x) x,) (f) (ax+by+...)
> = =
y \ 21 g cx+dy+...)

8.9)

in der Nihe des Fixpunkts x =y = 0, wobei f und g Potenzreihen in x, y mit reellen
Koeffizienten sind, die in einer Umgebung von x =y = 0 konvergieren. Solche Ab-
bildungen treten auf beim Studium des Stabilitdtsverhaltens von periodischen Lo-
sungen bei Hamiltonschen Systemen mit 2 Freiheitsgraden.

Es gibt eine inhaltstreue Koordinaten-Transformation

x=X(E,n)=at+pfn+..., 09X Y 09X 3Y

_]’
y=Y(¢,n)=1E+6n+..., 0f 0n On o¢

wobei X und Y formale Potenzreihen in &, n mit reellen Koeffizienten sind, wel-
che die Abbildung (8.9) in die Normalform

(8.11) [ (f})»(fl):(cosw —sinw

n sin w cos W

(8.10)

L
n k=0

iiberfiihrt, falls fiir die Eigenwerte A\, A~! der Matrix (2 3) die Relationen

A=e%o,  O0<wo<m, woF2mk, k=3,4,...

gelten, und in die Normalform

(5]

falls X = £ e¥0, wy > 0 gilt. In beiden Fillen sind die Birkhoff-Konstanten w,, w,, . . .
reell und eindeutig bestimmt. Diese Dinge werden ausfithrlichin Siegels Buch,
§ 21, abgehandelt. .

Im ersten, dem elliptischen Fall sind konzentrische Kreise um den Null-
punkt invariant unter der Abbildung (8.11). Daher hat die Abbildung (8.9) in einer
Umgebung des Nullpunkts eine Schar von invarianten, den Nullpunkt umschliefien-
den Jordankurven, wenn eine konvergente Transformation (8.10) in die Normal-
form (8.11) existiert. Nun ist aber auch hier wie oben bei den Hamiltonschen Dif-
ferentialgleichungen Divergenz der Transformationen in die Normalform die Regel.
Einen entsprechenden Satz habe ich in meiner bei Siegel angefertigten Disser-
tation bewiesen. Trotzdem existieren solche invarianten Kurven in beliebiger Nihe
des Nullpunkts, wenn nicht alle Birkhoff-Konstanten w,, w,, . . . verschwinden
(vgl. § 32 des Buchesvon Siegel und Moser).

Im zweiten, dem hyperbolischen Fall sind die Koordinatenachsen £ =0
und n = 0 invariant unter der Abbildung (8.12). Man bekommt also zwei invariante
Kurven der Abbildung (8.9) durch den Nullpunkt, wenn eine konvergente Trans-
formation (8.10) in die Normalform (8.12) existiert. Diese invarianten Kurven, die
als die stabile und die instabile Mannigfaltigkeit bezeichnet werden, kénnen aber

o0

o e (] W T we

n k=0

(8.12)
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9 Siegels Beitrag zum Problem der Stabilitit

Wir hetrachten wieder das analvtische Svstem von Differentialgleichungen
(6.1) in der Nihe der Gleichgewichtslosung x = 0 und kommen nun zu der 1in An-

schluf an die Definition dieses Systems formulierten Frage III nach der Gesamt-
heit aller Losungen, die fiir alle t > 0 in einer gegebenen, geniigend kleinen Um-
gebung von x = 0 bleiben bzw. nach Null streben.

Die Schwierigkeiten beim Versuch einer vollstindigen Beantwortung dieser
Frage nehmen mit der Anzahl der rein imaginiren Eigenwerte der Matrix (6.2) zu,
u. a. infolge des Auftretens von kleinen Nennern. In den drei einfachsten Fillen
lieRen sich diese Schwierigkeiten in Grenzen halten. Es handelt sich dabei um den
Fall, in dem keine imaginiren Eigenwerte vorhanden sind, den Fall eines verschwin-
denden Eigenwerts und den Fall zweier nicht verschwindender, rein imaginérer
Eigenwerte.

Diese Fille wurden hauptsichlichvon Bohl, Cotton, Ljapunow,
Perron und Poincaré untersucht. Dabei wurden auch topologische Metho-
den verwendet. wobegid ag@jq rechte Seite des Svstems (6.1) nur als differenzier-

’ e

B =

—
- __________________________________________________________________
J‘ o~

_—

Siegel setzte sich mit diesen Autoren auseinander und fand, daB ins-
besondere fiir analytische Differentialgleichungen noch einiges zu tun iibrig geblie-
ben war. Er war der Meinung, bei einem analytischen Problem miisse man das
Schicksal der Koeffizienten der gegebenen Potenzreihen bis zur Losung in iiber-
sichtlicher Weise verfolgen kénnen. Zu mir sagte er einmal, er habe sich in der
Himmelsmechanik immer bemiiht, alles moglichst algebraisch darzustellen.

In den spiten Arbeiten [94], [98] schopfte Siegel alle Moglichkeiten
in dieser Hinsicht aus und beantwortete die oben aufgeworfene Frage III in den
drei genannten Fillen vollstindig. Einen Teil der Resultate hatte er schon frither
in der Arbeit [34] iiber den Dreierstof® und in seinem Buch erhalten.

Siegel bewies seine Resultate immer zuerst unter der Annahme ein-
facher Eigenwerte der Matrix (6.2) und diskutierte dann die Ausartungen in mehr-
fache Eigenwerte und andere rationale Abhingigkeiten der Eigenwerte.

Wihrend er in [34] diese Diskussion noch vollstindig durchfiihrte, be-
schrinkte er sich spiter auf die Bemerkung, seine Sitze konnte man ohne eigent-
liche Schwierigkeiten auf den Fall mehrfacher Eigenwerte ausdehnen, wobei nur
in den Beweisen manche Formeln umstéindlicher sein wiirden. In [98] schliefilich
wurde die Einfachheit aller Eigenwerte vorausgesetzt, ,,da sonst der Text blof
durch naheliegende Ergidnzungen zu verlingern wire‘.

Im folgenden beziehe ich mehrfache Eigenwerte in die Betrachtung ein
und formuliere Sie gels Resultate so, daf eine Fallunterscheidung iiberfliissig
wird. Dadurch ergeben sich natiirlich Abweichungen von Siegels Bezeich-
nungen.

Nach einer vorbereitenden reellen linearen Koordinaten-Transformation
konnen wir die Matrix (6.2) in der Form

| a o~ ~ \
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sungen von (9.1) auf diesen Mannigfaltigkeiten geniigen den Differentialgleichungen
94) x=Ax+F(x,0,0)

bzw.

9.5) y=A'y+F*QO,y,0).

Siegel konstruierte nun nicht nur diese Mannigfaltigkeiten, sondern
filhrte auf ihnen in demselben Arbeitsgang auch gewisse Normalkoordinaten ein,
derart daf sich die aus (9.4), (9.5) durch Transformation auf die Normalkoordi-
naten hervorgegangenen Systeme sofort in geschlossener Form integrieren lieflen.

Wir holen diesen Ubergang zu Normalkoordinaten nach. Da die Eigenwerte
von A~ und A* jeweils in einer offenen Hilfte der komplexen Ebene liegen, gibt
es konvergente Potenzreihen-Transformationen

m )
Xj= Y CpUkt..., Yi= Y divet;;;
k=1 2=1
(9.6) . .
G=1,...,m) G=1,...,p)

in den neuen Variablenu,, . . ., uy, vy, . . ., v, mit komplexen Koeffizienten, so
daB die transformierten Systeme die Normalform

N k kj—1 .
Uj—kjllj"' Z C,-kl‘_,kmull ...Uj.l_l (]—l,...,m)

.7 ) . .
Vi =AmsiVit T Djo,oVit .. Wit G=1,...,p)

bekommen, wobei die Summe in der j-ten Gleichung sich iiber alle nicht-negativen
ganzen Zahlen k,, .. ., kj_; bzw. &, . . ., &_, erstreckt, fiir die

7\j=k1)\l+...+kj_l)\,~,1 (j=l,...,m)
bzw. Am+j={Amart. .t G Amejoy G=1,...,p)

gilt, und die Eigenwerte Ay, . . ., A\, von A~ bzw. A4y, - - -, Am+p VON A* der
Grofde ihrer Realteile nach zu ordnen sind:

ReAp <...<Red; <O<ReAys <...<ReApyp.
Es haben dann alle Losungen von (9.7) die Gestalt
(9.8) u;=eMpi(t) G=1,...,m)
(9.9) vj=etm+itQut) (=1,...p)

mit Polynomen P;, Q; in t, deren Koeffizienten m bzw. p Integrationskonstanten
enthalten. Setzt man (9.8), (9.9) in (9.6) ein, so ergeben sich Reihenentwicklungen
fir saimtliche Losungen auf der stabilen bzw. instabilen Mannigfaltigkeit, und diese
Losungen streben exponentiell nach Null fiir t = oo bzw. t > — oo,

Wenn q = 0 ist, also in (9.1) die Gleichung fiir z fehlt, gibt es keine anderen
Losungen als die eben beschriebenen, die fiir t = oo bzw. t = — o0 in einer geniigend
kleinen Umgebung von x = 0, y = 0 bleiben. Damit ist in diesem Fall das Verhalten
der Losungen von 9.1 in der Nihe des Nullpunkts vollstindig geklirt, und zwar in der
Art und Weise, wieesin Sie gels Arbeit[34]iiber den Dreierstod geschehen ist.
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Der Bezug zu den Ausfithrungen am Ende des 3. Abschnitts ergibt sich durch Iden-
tifikation von (3.1) mit (9.1),q=0,sodaf also §;, = x,, .. ., {m = Yp, t = s Zu set-
zen ist. SchlieBlich ist in (9.8) dann s durch t — t, gemif (3.3) zu ersetzen.

In dem Fall q 2 1, bei dem in (9.1) die Gleichung fiir z wirklich vorhanden
ist, gibt es moglicherweise noch weitere Losungen, die sich fiir t = oo bzw. t > — oo
in einer geniigend kleinen Umgebung des Nullpunkts x =0,y =0, z = 0 aufhalten.

Diese Frage wurde in den Fillen
0 —v
v O
von Siegel in[94] und [98] volistindig beantwortet. Ljap unow hatte
diese Fille zwar auch schon behandelt, aber p = 0 vorausgesetzt, d. h. die zweite
Gleichung in (9.1) fiir y fehlte bei ihm.

Bevor wir uns diesen Untersuchungen Sie gels zuwenden,ist es aus Griin-
den besserer Formulierbarkeit der Resultate niitzlich, die heute allgemein iiblichen
Begriffe der stabilen und der instabilen Zentrumsmannigfaltigkeit von vorneherein
einzufiihren. Man kann sie in der Form

q=1,A°=0 und q=2,A°=( ), v>0

9.10) y=Y5(x,2), x=Y5(y,2)

als Losung partieller Differentialgleichungen definieren, die wieder wie bei (9.2)
einfach dadurch entstehen, dafs man (9.10) formal nach t differenziert und dann
X, ¥, 2 mit Hilfe von (9.1) eliminiert. Es gibt C* -Funktionen Yg , X§, die diese
Differentialgleichungen erfiillen und firr x =0,z =0 bzw. y = 0, z = 0 mitsamt
ihren partiellen Ableitungen verschwinden. Die Koeffizienten der mit Gliedern
zweiten Grades beginnenden formalen Taylorreihe von Yg bzw. X§ inx=0,z=0
bzw.y =0, z = 0 lassen sich aus den entsprechenden Differentialgleichungen re-
kursiv eindeutig berechnen, wihrend die C”-Funktionen Yy , X; selbst im allge-
meinen nicht eindeutig sind.

Wie wir oben gesehen haben, diirfen wir 0. B. d. A. fiir (9.1) noch die
Gleichungen (9.3) voraussetzen, die

Yo(x,0)=0, 0(y,0)=0

zur Folge haben. Das bedeutet, da® derjenige Teil der stabilen (instabilen) Zen-
trumsmannigfaltigkeit, der nicht auf der stabilen (instabilen) Mannigfaltigkeit
liegt, durch z # 0 gegeben ist. Diese Aussage bezieht sich wie alles andere in die-
sem Abschnitt auf eine hinreichend kleine Umgebung des Nullpunkts x =0,y =0,
z=0.

Fiir Siegel existierte die stabile bzw. instabile Zentrumsmannigfaltigkeit
nur, soweit sich auf ihr wirklich Losungen des Systems (9.1) befanden.

Um zu genaueren Aussagen zu gelangen, setzen wir jetzt
0 -
v 0
voraus. Nach Umnumerierung der Eigenwerte ist dann die Bedingung (6.3) erfiillt,
und nach Identifikation von (6.1) mit (9.1) kann der im Anschluf} an (6.3) dar-
gestellte Proze durchgefiihrt werden, der entweder die Gleichung (6.8) oder die

(9.11) q=2,A°= ), v>0
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Relationen (6.9) ergibt. Wenn wir den Fall (6.8) mit r = oo bezeichnen, haben wir
die drei Moglichkeiten

9.12) r=o0; 1<o0,¢,<0; r<oo,c >0.

Die Resultate von [98] lassen sich nun im wesentlichen zusammenfassen
in dem

Satz 9.1 Gegeben sei das System von Differentialgleichungen (9.1) mit
den Eigenschaften (9.3) und (9.11). Der oben bezeichnete Prozeg fiihre zu dem
Fall r <o, ¢, < 0 unter den drei Moglichkeiten (9.12). Dann gilt:

(a) Zu einer beliebig vorgegebenen Umgebung Vvon x=0,y =0,2=0
existiert eine Umgebung Uvon x =0, z = 0, so dafi die stabile Zentrumsmannig-
faltigkeit y = Yg (X, z) in U eindeutig bestimmt und auferdem fiir z # 0 analytisch
ist. Ferner gibt es zu jedem Punkt (Xo, Zo) von U genau eine Losung x = x(t),

y = y(t), z = z(t) von (9.1), die fiir alle t = 0 in V liegt und fiir die x(0) = X,,
2(0) = z, gilt. Diese Losung liegt auf der stabilen Zentrumsmannigfaltigkeit, d. h.
es ist

y(t) = Yo (x(t),2(t)) (t=0),

und es gilt
lim x(t) =0, lim y(t) =0, lim z(t) =0.
t—>o0 t~>oo t—> oo

(b) Es gibt eine Umgebung V von x =0,y =0,z =0, so dag fiir jede Lo-
sung x = x(t), y = y(t), z = z(t) von (9.1), die fiir t <0 in V bleibt, y(t) = 0,
z(t) = 0 gilt. Jede dieser Losungen liegt also auf der instabilen Mannigfaltigkeit
und strebt exponentiell gegen Null fiir t = — oo,

Den entsprechenden Satz fiir den Fall r < oo, ¢, > 0 erhdlt man, wenn man
t durch —t ersetzt.

Nun kommen wir zum Fall r = oo, der nach den Ausfilhrungen im 6. Ab-
schnitt vorliegt, wenn das System (9.1) ein Integral in Form einer mit gewissen
Gliedern zweiten Grades beginnenden Potenzreihe in den Variablen x,, . . ., Z4
besitzt.

Die Zusammenfassung der in [94] enthaltenen Resultate fiihrt zu dem

Satz 9.2 Gegeben sei das System von Differentialgleichungen (9.1) mit
den Eigenschaften (9.3) und (9.11). Der oben bezeichnete Prozef fiihre zu dem
Fall r = co unter den drei Moglichkeiten (9.12). Dann gilt:

(a) Die formale Taylorreihe von Yg bzw. X§ ist konvergent in einer Um-
gebung von x =0,z =0bzw. vony =0,z =0, so daB also die stabile und die in-
stabile Zentrumsmannigfaltigkeit y = Yq (x, z), x = X§(y, z) eindeutig bestimmt
und analy tisch sind. Der Durchschnitt dieser beiden Mannigfaltigkeiten ist in einer
geniigend kleinen Umgebung V des Nullpunkts x =0,y =0, z = 0 eine zweidimen-
sionale analy tische Mannigfaltigkeit, die ausgefiillt wird mit einer Schar periodi-
scher Losungen. Es handelt sich dabei um die durch Satz 6.1 gegebenen periodi-
schen Losungen. Andere fiir alle Zeiten in V liegenden Lésungen von (9.1) gibt
es nicht.
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(b) Jede Losung von (9.1), die fiir t =0 bzw. t <0 in einer geniigend klei-
nen Umgebung von x =0,y = 0, z = 0 liegt, mug auf der stabilen bzw. instabilen
— Zentrumsmanuigfaltickeit liegen

(¢) Zu jeder Umgebung V von x =0,y =0, z = 0 gibt es eine Umgebung
Uvon x=0,y =0,z =0, so daf jede Losung von (9.1), die fiir t =0in U und auf
der stabilen bzw. instabilen Zentrumsmannigfaltigkeit liegt, fiir alle t = 0 bzw.
t < 0in V bleibt und sich asymptotisch an eine periodische Lésung heranwindet.

Siegel behandelte in [94],[98] auch den Fall eines Systems (9.1) mit 9.3)
und q = 1, A® = 0 statt (9.11), der zu ganz dhnlichen Ergebnissen fiihrt, wobei
Gleichgewichtslosungen an die Stelle der periodischen Losungen treten.

Zum Schluf sei noch die kleine Arbeit [38] erwihnt,inder Siegel ohne
Beweis einen Satz fiir Abbildungen formulierte, der auf das System (9.1) iibertra-
gen, so lautet:

Jede gegeniiber dem System (9.1) invariante Menge liegt auf einer g-dimen-
sionalen irreduziblen analytischen Mannigfaltigkeit.

Diese Aussage ist jedenfalls richtigin den von Sie gel untersuchten Fillen.

Prof. Dr. Helmut RiiBmann

Fachbereich Mathematik

Johannes-Gutenberg-Universitit

Saarstr, 21

6500 Mainz (Eingegangen 30. 5. 1983)
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91. Einige Erlduterungen zu Thues Untersuchungen iiber Anniherungswerte algebraischer Zah-
len und diophantische Gleichungen. Nachrichten der Akademie der Wissenschaften in Got-
tingen, Mathematisch-physikalische Klasse, 1970, Nr. 8, 169—195

92. Algebraische Abhingigkeit von Wurzeln. Acta Arithmetica 21 (1972) 59—64

93. Uber Moduln Abelscher Funktionen. Nachrichten der Akademie der Wissenschaften in Got-
tingen, Mathematisch-physikalische Klasse, 1971, Nr. 4, 79-96
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94. Periodische Losungen von Differentialgleichungen. Nachrichten der Akademie der Wissen-
schaften in Gottingen, Mathematisch-physikalische Klasse, 1971, Nr. 13, 261—283

95. Wurzeln Heckescher Zetafunktionen. Nachrichten der Akademie der Wissenschaften in
Gottingen, Mathematisch-physikalische Klasse, 1972, Nr. 2, 11—20

96. Zur Theorie der quadratischen Formen. Nachrichten der Akademie der Wissenschaften in
Gottingen, Mathematisch-physikalische Klasse, 1972, Nr. 3, 2146

97. Normen algebraischer Zahlen. Nachrichten der Akademie der Wissenschaften in Gottingen,
Mathematisch-physikalische Klasse, 1973, Nr. 11, 197215

98. Beitrag zum Problem der Stabilitidt. Nachrichten der Akademie der Wissenschaften in Got-
tingen, Mathematisch-physikalische Klasse, 1974, Nr. 3, 23—58

99. Zur Summation von L-Reihen. Nachrichten der Akademie der Wissenschaften in Gottingen,
Mathematisch-physikalische Klasse, 1975, Nr. 18, 269—292

Nachtrag

100. Zur Einfihrung. In: Selected Mathematical Papers of Axel Thue. Oslo: Universitetsforlaget
1977, XXVII-XXXII

Biicher und Vorlesungsausarbeitungen

In der folgenden Liste werden alle von Siegel publizierten Biicher, Monographien
und vervielfiltigten Ausarbeitungen Sie g e 1 scher Vorlesungen erfat. Die Namen der Bear-
beiter erscheinen in Klammern hinter dem Titel.

Biicher
Transcendental Numbers. Ann. of Math. Studies 16, Princeton 1949

Transzendente Zahlen. Mannheim: Bibliographisches Institut 1967 (aus dem Englischen iiber-
setztvon B. Fuchssteiner undD. Laugwitz)

Symplectic Geometry. New York: Academic Press 1964 (auch Siegel, Ges. Abh. Bd. II,
S. 274-359)
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Doktoranden

(erstes Datum: Tag der miindlichen Priifung; zweites Datum: Ausstellung der Urkunde)

In Frankfurt (1922 bis 1937):

1. Wilhelm Maier: Potenzreihen irrationalen Grenzwertes
22.6.1925/7.2.1927

2. Fritz Gotzky: Uber eine zahlentheoretische Anwendung von Modulfunktionen zweier Ver-
anderlicher
27.2.1928/5.11.1928

3. Karl Bohle: Uber die Transzendenz von Potenzen mit algebraischen Exponenten (Verallge-
meinerung eines Satzes von A. Gelfond)
28.7.1932/11.3.1933

4. Berthold SteBmann: Periodische Minimalflichen
19.6.1933/4.4.1934

5. Theodor Schneider: Transzendenzuntersuchungen periodischer Funktionen
12.11.1934/5.12. 1934

6. Walter Wagner: Uber die Grundlagen der projektiven Geometrie und allgemeiner Zahlsysteme
27.6.1936 /6.11.1937

7. Helene Braun: Uber die Zerlegung quadratischer Formen in Quadrate
28.6.1937/10. 11. 1937

8. Gertrud Meyer: Allgemeine Jupiterstorungen des Planeten 27 Euterpe (Boda und Siegel)
28.6.1937 /27.8.1938

In Gottingen (1920 bis 1921, 1938 bis 1940, 1946 bis 1947, ab 1951):

9. Giinter Meinardus: Uber das Partitionenproblem eines reellquadratischen Zahlkérpers
13.2.1953/19.11. 1953

10. Helmut Klingen: Diskontinuierliche Gruppen in symmetrischen Riumen
19.11. 1954 / 31. 1. 1955

11. Ulrich Christian: Zur Theorie der Modulfunktionen n-ten Grades
16.11.1956 / 27. 11. 1956

12. Ernst Wienholtz: Halbbeschrinkte partielle Differentialoperatoren zweiter Ordnung vom
elliptischen Typ
26.7.1957/3.12.1957

13. Helmut Riimann: Uber die Existenz einer Normalform inhaltstreuer elliptischer Transfor-
mationen
27.6.1958/17.7. 1958

14. Giinter Kauthold: Dirichletsche Reihen mit Funktionalgleichung in der Theorie der Modul-
funktionen 2. Grades
12.12. 1958 / 20. 1. 1959
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15.

16.

17.

18.

19.

Erhard Gottschling: Explizite Bestimmung der Randflichen des Fundamentalbereiches der
Modulgruppe zweiten Grades

25.2.1959/19. 3.1959

Christian Pommerenke: Uber die Gleichverteilung von Gitterpunkten auf m-dimensionalen
Ellipsoiden

25.2.1959/4.5.1959

Otto Komer: Ubertragung des Goldbach-Vinogradovschen Satzes auf reellquadratische
Zahlkorper

20.5.1960/ 19. 12. 1960

Werner Schaal: Ubertragung des Kreisproblems auf reell-quadratische Zahlkorper
21.7.1961/ 10. 3. 1962

Giinter Kohler: Ein Trennungssatz fiir Eisensteinsche Reihen zweiten und dritten Grades
der Stufe I

10.11. 1966 / 18. 11. 1966




Ehrungen

11. April 1947: Det Kongelige Danske Videnskabernes Selskab (Kopenhagen), Mitglied

4. Mirz 1949: Akademie der Wissenschaften in G6ttingen, korrespondierendes Mitglied

22. Juni 1951: Akademie der Wissenschaften in Géttingen, ordentliches Mitglied

28. Mirz 1952: Det Norske Videnskaps-Akademi (Oslo), Mitglied

20. Mirz 1953: The University of Chicago, Doctor of Science honoris causa

18. Dez. 1953: Indian Mathematical Society, Honorary Member

14. Nov. 1954: Université de Nancy, Docteur honoris causa

25. April 1956: Koniglich Schwedische Akademie der Wissenschaften, auswirtiges Mitglied
14. Mai 1956: Académie des Sciences de I'Institut de France, Correspondant pour la section de
géometrie

29. Nov. 1956: Akademie Lincei (Rom), auswirtiges Mitglied

22. Dez. 1956: London Mathematical Society, Honorary Member

21. Febr. 1958: Bayerische Akademie der Wissenschaften (Miinchen), korrespondierendes Mit-
glied

24. Juni 1958: Deutsche Akademie der Naturforscher Leopoldina (Halle), Mitglied

7. Jan. 1959: Tata Institute of Fundamental Research (Bombay), Honorary Fellow

2. Juli 1960: Universitit Basel, Doctor honoris causa

28. Juni 1963: Orden Pour le mérite fir Wissenschaften und Kiinste (Bonn), Mitglied

10. Juni 1964: Universitit Frankfurt, Doctor honoris causa

14. Dez. 1964: Bundesrepublik Deutschland, Das Grofe Verdienstkreuz mit Stern

11. Mai 1965: Universitit Wien, Doctor honoris causa

10. April 1967: New York University, Doctor of Science honoris causa

11. Nov. 1967: Eidgenéssische Technische Hochschule (Ziirich), Doktor der Mathematik ehren-
halber

23. April 1968: National Academy of Sciences of the United States of America, Foreign As-
sociate Member

31. Aug. 1968: Académie Internationale d’Histoire des Sciences (Paris), Membre d’honneur

16. Aug. 1971: Mathematisch-Naturwissenschaftliche Fakultit (Gottingen), Erneuerung der
am 16. 08. 21 verlichenen Wiirde eines Doktors der Philosophie

19. Mirz 1973: Académie des Sciences de I'Institut de France, Associé étranger

14. Mai 1974: Osterreichische Akademie der Wissenschaften (Wien), Ehrenmitglied der Math.-
Nat. Klasse

10. April 1978: The Wolf Foundation, Israel, The Wolf Prize

9. Mai 1979: American Academy of Arts and Sciences (Boston, Massachusetts), Foreign
Honorary Member
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Juni 1970: Bayerische Akademie der Wissenschaften (Miinchen), Gratulation zum Doktorjubi-
lium

31. Dez. 1976: Osterreichische Akademie der Wissenschaften (Wien), Gratulation zum 80. Ge-
burtstag

31. Dez. 1976: Bayerische Akademie der Wissenschaften (Miinchen), Gratulation zum 80. Ge-
burtstag




Wolf D. Beiglbock

Lineare
Algebra

Eine anwendungsorientierte Einfilhrung in die Geometrie,
die Gleichungs- und Ungleichungstheorie, sowie die Pro-
portionalititsgesetze zum Gebrauch neben Vorlesungen

1983. XXV, 328 Seiten
DM 39,50; approx. US$15.70. ISBN 3-540-12477-2

7064/5/1

Inhaltsverzeichnis: Einleitung. — Motivation. — Lineare
Riume. — Die lineare Abbildung. — Die linearen Glei-
chungen. — Die affine Geometrie. — Die linearen Funktio-
nale. — Die metrischen Strukturen. — Die Rolle der kom-
plexen Zahlen. — Die Reduktionstheorie. — Anhénge. —
Literaturverzeichnis. — Sachverzeichnis.

Die vorliegende Einfithrung in die Lineare Algebra wen-
det sich an Studierende der Mathematik, Naturwissen-
schaften, Technik und Wirtschaftswissenschaften. Die Dar-
stellung ist mathematisch exakt, ohne dabei den informel-
len Aspekt der Theorie aufzugeben. Im Vergleich mit
Konkurrenzwerken seien die folgenden Punkte erwahnt
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Springer-Verlag
Berlin
Heidelberg
New York
Tokyo

Tiergartenstr. 17, D-6900 Heidelberg 1
175 Fifth Ave., New York, NY 10010, USA

37-3, Hongo 3-chome, Bunkyo-ku, Tokyo 113,

Japan

wendungen aus vielen Wissensbereichen, Zuriickdringen
des Formalen zugunsten von auf natiirliche Einsicht ge-
grindeten Beweisen, tabellenartiges Zusammenfassen zu-
sammengehdrender Aussagen in einen Lehrsatz und das
Wiederaufgreifen von Gedanken auf neuerreichten Argu-
mentationsebenen fiir neue Beweise bereits bekannter Sit-
ze. Wenn immer moglich, ist die Darstellung anwendungs-
orientiert und konkret. Wichtige Motivation wird durch ei-
nen Vorspann zur Geschichte der Linearen Algebra gelie-
fert. Weiterhin seien die friilhe Behandlung der Matrizen-
rechnung erwihnt, die Einfilhrung der affinen Geometrie
iiber das Konzept des Tangentenraums, die Betonung des
»»Erlanger Programms*, die Motivation der Eigenwerttheo-
rie mit Hilfe geometrischer Betrachtungen und durch Sta-
bilitdtsprobleme sowie die Behandlung numerischer Fragen
durch die Ableitung und Diskussion wichtiger Algorith-
men. Zahlreiche, oft sehr anwendungsnahe Ubungen sind
in den Text eingearbeitet und vertiefen ihn.

Lineare Algebra prisentiert das in Anfingervorlesungen
iibliche Programm in mathematisch solider und ein einer
den Studierenden motivierenden und intellektuell anspre-
chenden Weise.
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Neuauflagen

G. Eigenthaler u. a.

Contributions to General
Algebra 2

Proceedings of the Klagenfurt
Conference, June 10—13, 1982

1983. 404 pages.

Paper DM 56,— ISBN 3-519-02761-5
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Numerik mit
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1983. 251 Seiten mit 51 Algorithmen
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Kart. DM 26,80 |ISBN 3-519-02512-4
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H. Heuser

Lehrbuch der Analysis

Teil 2: 2., durchgesehene Auflage. 1983.
736 Seiten mit 100 Bildern und 576
Aufgaben, zum Teil mit Lésungen.

Kart. DM 58,— ISBN 3-519-12222-7
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rung fiir Ingenieure

1983. 232 Seiten mit 25 Bildern.
Kart. DM 34,— ISBN 3-519-02952-9
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Randwertaufgaben

der Funktionentheorie

Mit Anwendungen auf singulire
Integralgleichungen und Schwingungs-
probleme der mathematischen Physik

1983. 320 Seiten mit 67 Bildern.

Geb. DM 44,— ISBN 3-519-02361-X
(Leitfaden der angewandten Mathematik
und Mechanik, Bd. 59)

H. Weber

Einfiihrung in die Wahr-
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1983. 288 Seiten mit 78 Bildern, zahlrei-
chen Tabellen sowie 146 Beispielen und
Ubungen mit Lésungen.

Kart. DM 17,80 |ISBN 3-519-00097-0
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W. Winkler
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1983. 276 Seiten mit 6 Bildern.
Kart. DM 26,80 ISBN 3-519-02066-1
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1983. 207 Seiten mit 111 Bildern, 13 Ta-
bellen, 88 Beispielen und 91 Aufgaben.
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