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Riemann und das ,,WeierstraBische‘* Prinzip der
analytischen Fortsetzung durch Potenzreihen*)

E. Neuenschwander, Ziirich

Einleitung

In fast allen neueren Arbeiten und Lehrbiichern zur Geschichte der Funk-
tionentheorie werden drei verschiedene Ansitze und Methoden zum Aufbau der
Funktionentheorie nach ihren drei Hauptbegriindern unterschieden: Cauchy (Inte-
gralformeln, Reihenentwicklung), Riemann (Potentialtheorie, Riemannsche Fliche,
konforme Abbildung), Weierstra (Potenzreihen, Prinzip der analytischen Fortset-
zung). Dabei wird hiufig behauptet, daB diese Ansitze wihrend lingerer Zeit ohne
Wechselwirkung blieben und-erst zu Beginn des 20. Jahrhunderts u. a. durch Gour-
sat ([7], Vorwort) vereinigt wurden!).

Diese Darstellung mag zwar fiir die Zeit nach Riemann einigermafen zu-
treffen?), Riemann selbst wird sie jedoch keineswegs gerecht, wie die Nachschrif-
ten von Riemanns Vorlesungen zeigen. Sie konnte sich erst verbreiten, nachdem
die nicht publizierten Teile dieser Nachschriften allmihlich in Vergessenheit
gerieten und man sich einzig auf Riemanns Schriften [22] und die verdffentlichten
Teile seines Nachlasses [22], [23] zu stiitzen begann. Es scheint uns daher ange-
bracht, an dieser Stelle einen kurzen Uberblick von Riemanns Vorlesungen zu
geben und einige Bemerkungen iiber die gegenseitigen Beziehungen zwischen den
drei genannten Mathematikern hinzuzufiigen.

*) Die vorliegenden Forschungsresultate wurden wihrend eines Studienaufenthaltes an
der Harvard University erarbeitet und erstmals am 28. Oktober 1978 auf der J ahresversammlung
der History of Science Society in Madison (USA) vorgetragen und danach in der Form eines
Preprints verdffentlicht. Wir danken dem History of Science Department der Harvard University
fir die erwiesene Gastfreundschaft, dem Kanton Ziirich fiir den gewihrten Reisekostenbeitrag
und Herrn Dr. Haenel von der Handschriftenabteilung der Niedersichsischen Staats- und Uni-
versitdtsbibliothek Gottingen fiir seine entgegenkommende Hilfe bei der Handschriftenbeschaf-
fung. Angaben iiber weitere, nicht in Gottingen befindliche Riemanniana werden jederzeit dank-
bar entgegengenommen.

;) Vgl z. B. [11], S. 669;[12], S. 194 und [13], S. 358f.

) Fiir die Zeit nach Riemann siehe z. B. [8], S. 92ff. und [1], S. 27 ff. WeierstraB hat
Riemanns Methoden nach dessen Tode mehrmals, zum Teil sogar 6ffentlich kritisiert (vgl.
Weierstraf}’ Kritik am Dirichletschen Prinzip [40] oder auch [41], S. 235).
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2 E. Neuenschwander

Riemanns Vorlesungen zur allgemeinen Funktionentheorie

Nach der Zusammenstellung von M. Noether und W. Wirtinger ([23], S. 114)
kiindigte Riemann mehrmals einfilhrende Vorlesungen zur Funktionentheorie an,
und zwar fiir die Semester: WS 1855/56, WS 1856/57, WS 1858/59 und SS 1861.
Von allen diesen Vorlesungen existieren in der Universitatsbibliothek Gottingen
meist Nachschriften verschiedener Horer, so da wir sein Vorgehen recht gut ken-
nen. Riemanns Vorlesungen aus dem Wintersemester 1855/56 decken sich noch am
chesten mit seinen publizierten Arbeiten3). In den folgenden Jahren hat Riemann
die sogenannten ,,Cauchyschen‘‘ und ,,Weierstrafdsschen‘ Methoden vermehrt be-
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tionentheorie zu vermitteln, wollen wir hier kurz den Inhalt des einfilhrenden Tei-
les der Vorlesung ,,Uber Funktionen einer veranderlichen komplexen Grofe, ins-
besondere elliptische und Abelsche‘ aus dem Sommersemester 1861 zusammenfas-
sen*).

Riemann beginnt seine Vorlesung mit einigen Vorbemerkungen iiber die
komplexen Zahlen (Gaufsche Zahlenebene, Rechenoperationen). Ausgehend von
der komplexen Differentiation und den sogenannten Cauchy-Riemannschen Dif-
ferentialgleichungen definiert er sodann, dhnlich wie in seinen publizierten Arbei-
ten ([24], [25]), die analytische Funktion. Nach einer Betrachtung des Integral-
begriffes leitet er anschliefend den Cauchyschen Integralsatz her und geht danach
zum Logarithmus und der Cauchyschen Integralformel iiber. In den nichsten Kapi-
teln formuliert er einige Sitze iiber die Konvergenz von unendlichen Reihen, be-
spricht die Laurentsche Entwicklung und den Identititssatz fiir analytische Funk-
tionen. Alsdann wendet er sich der Darstellung eindeutiger analytischer Funktio-
nen mittels Potenzreihen zu, beweist die Formel fiir die Differenz der Anzahl der
Nullstellen und Pole einer in einem gegebenen Gebiete meromorphen Funktion,
bringt eine Darstellung fiir eine ganze Funktion mit unendlich vielen vorgeschrie-
benen Nullstellen und beniitzt den Residuensatz fiir die Berechnung von reellen
bestimmten Integralen. Sodann folgen Ausfilhrungen zu den mehrdeutigen Funk-
tionen, der konformen Abbildung, den doppelt-periodischen Funktionen, den
Riemannschen Flichen und dem Dirichletschen Prinzip, die sich wiederum starker
an seine publizierten Schriften anschliefen. Danach wendet sich Riemann dem

BY v~ s e e e e xrtr ATAT O 1O0) L AT Lt 2 2 L



Riemann und das ,,WeierstraBsche Prinzip* 3

Hauptteil seiner damaligen Vorlesungen zu, der Theorie der Abelschen und ellip-
tischen Funktionen?).

Aus der obenstehenden Zusammenfassung ergibt sich, daf Riemann im ein-
leitenden Teil seiner Vorlesungen, entgegen der heute vorherrschenden Meinung,
bereits eine gewisse Verschmelzung der sogenannten ,,Cauchyschen®, ,,Riemann-
schen* und ,,Weierstrafschen* Methoden vollzogen hat. Riemanns diesbeziigliche
Haltung wurde wohl am zutreffendsten von Klein geschildert, der schrieb ([10],

S. 254): ,,Uberhaupt liegt Riemann jede starre Einseitigkeit ginzlich fern; er macht
fur sich nutzbar, was er vorfindet und zieht die verschiedensten Methoden heran,
wenn er durch sie sein Problem zu férdern und zu kliren vermag*‘.

Riemanns Darstellung der analytischen Fortsetzung durch Potenzreihen

Leider reicht der Platz hier nicht aus, um Riemanns gesamten Aufbau der
Funktionentheorie anhand der iiberlieferten Vorlesungsnachschriften ausfiihrlich

P R o P Aa Al 2ol Calna Qs —..F _,.:1H

lytischen Fortsetzung durch Potenzreihen. Riemann hat dieses Verfahren seit dem
Wintersemester 1856/57 jeweils beim Beweis des Identititssatzes fiir analytische
Funktionen benutzt. Da wir grof3ere Teile der 186 1er Vorlesung in einer nachfol-
genden Arbeit zu behandeln gedenken, wiirdigen wir hier vor allem Riemanns frii-
hen Standpunkt aufgrund der Vorlesung ,,Die Funktionen einer verinderlichen
komplexen Grofle, insbesondere hypergeometrische Reihen und verwandte Trans-
cendenten‘ vom Wintersemester 1856/57. Von dieser Vorlesung existieren in Got-
tingen Nachschriften von Dedekind [27] und Schering [ 28]. Scherings Nachschrift
ist leider in den Beweisen und Dedekinds Nachschrift hinsichtlich der Formulierung
der Sitze oft unvollstindig®). Kombiniert man jedoch beide und zieht noch eine
analoge Stelle aus Riemanns Theorie der Abelschen Funktionen ([25], S. 88f.) hin-
zu, so kann man sich iiber Riemanns Vorgehen ein recht gutes Bild machen.

Nach Schering ([28], S. 199) umreifst Riemann den zu beweisenden Satz
mit folgenden Worten:

Lehrsatz. Ist eine Function gegeben lings einer endlichen Linie, und soll sie
in einem endlichen Gebiete welches jene Linie einschlieft, stetig und ein-
dnderig [monodrom] sein, so sind ihre simmtlichen Derivirten fiir jeden
Punct der Curve gegeben, weil die Derivirten unabhingig von dz sind

(Seite 6). ’

Hieraus ergiebt sich dann nach dem Maclaurinschen Satze, daf} die Reihen-
entwickelung der Function gegeben ist. Da diese Entwickelung successive
immer erweitert werden kann, dadurch, dafd man neue Ausgangspuncte a
wihlt, so folgt, dafl die Function in dem ganzen Gebiete innerhalb dessen
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Beim Beweis stiitzt sich Riemann auf die unmittelbar vorher behandelte Entwick-
lung einer analytischen Funktion in eine Potenzreihe (vgl. z. B. [27], S. 17ff.) und
zeigt zundchst die Giltigkeit des Identititssatzes fiir Potenzreihen. Nach Dedekind
([27], S. 21f.) geht er hierzu von zwei Funktionen f({) und g(%) aus, die lings
einer endlichen, von a ausgehenden Linie iibereinstimmen und in einem diese Linie
umfassenden Gebiete regulir sind. Somit gilt”):

ﬁ0=%m6—®"
g(5)= % b, (¢ — )"
£(6) — ()= %(ap “ b)) (€ — )

=%—byu§—m§my—mxt—w“t

Da nun f({) und g(¢) langs der Linie iibereinstimmen, folgt, indem man ¢ > a
gehen 1aBt, ay = by. (Fiir den Beweis vgl. die Ausfilhrungen des Originaltextes
anhand der Reproduktion auf S. 5 oben.) Wendet man dieselbe Schlufiweise auf

£ —g@) _
t—a

an, so ergibt sich a, = b, und so fortfahrend a, = b, fiir simtliche Koeffizienten.
Folglich ist f($) = g({) innerhalb desjenigen Gebietes, wo sich die Funktionen in
die obigen Potenzreihen entwickeln lassen.

Danach zeigt Riemann mit Hilfe des Kreiskettenverfahrens, daf sich die Funk-
tion iiber dieses Gebiet hinaus, ,,wenn iiberhaupt, nur auf eine Weise stetig fort-
setzen 1aB3t*. Er entwickelt hierzu zunichst die Funktion in einem Gebiete um a.
Danach entwickelt er sie in einem Gebiete um a,, wobei a, innerhalb des Kreises
um a liegen soll. Alsdann entwickelt er die Funktion um a,, wobei a, innerhalb
des Kreises um a, liegen soll (vgl. hierzu den auf S. 5 reproduzierten Originaltext
mit der dazugehorigen Abbildung). So fortfahrend ergibt sich, dafd die Fortsetzung
der Funktion eine vollig bestimmte ist, womit der Identitdtssatz fiir analytische
Funktionen nach Riemann bewiesen ist.

Zum Abschlu® weist Riemann noch darauf hin, daf} je nach der Beschaffen-
heit der fortzusetzenden Funktion diese entweder fiir denselben Wert von z immer
wieder denselben Wert annehmen wird, auf welchem Weg auch die Fortsetzung ge-
schehen sein moge oder nicht. Den letzteren Fall illustriert er anhand der mehr-
deutigen Funktionen y/z und log z, wobei er die Begriffe ,,Zweig* und ,,Verzwei-
gungsstelle einer Funktion einfiihrt (vgl. hierzu die auf S. 6 wiedergegebene Ab-
bildung aus [31]). Es ergibt sich somit, daf} die bereits frither erwdhnte Stelle aus

%—brﬂf—ﬂéwr—mﬂf~®“‘

7) Die nachfolgenden Ausfihrungen geben den Dedekindschen Text moglichst wortge-
treu wieder. An einigen Stellen haben wir uns jedoch kleine Anderungen erlaubt, um dem
modernen Leser das Verstindnis zu erleichtern.
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Riemann und das ,,Weierstrafsche Prinzip“ 7

Riemanns Theorie der Abelschen Funktionen ([25], S. 88f.) unter Zuhilfenahme
der analytischen Fortsetzung durch Potenzreihen zu interpretieren ist. Die von
Brill und Noether ([2], S. 250f.) gegebene Interpretation ist daher nur bedingt
richtig, und es zeigt sich, daf Riemann auch beim obigen Beweis zu einer gewissen
Verschmelzung von ,,Cauchyschen, ,,Riemannschen‘ und ,,Weierstraschen
Methoden fortgeschritten ist.

Zu den Wechselwirkungen zwischen der franzésischen Schule, den Berliner
Mathematikern und Riemann

Fir den Mathematikhistoriker stellt sich nun die interessante Frage, ob
Riemann seine Methode der analytischen Fortsetzung durch Potenzreihen relativ
unabhingig entwickelte oder sie vielleicht einfach von einem fritheren Mathemati-
ker iibernahm. Im letzteren Fall wire natiirlich zunichst an Weierstra3 zu denken,
der ja die analytische Fortsetzung durch Potenzreihen bereits in Arbeiten ([37] bis
[39]) aus den Jahren 1841/42 darlegte®), die jedoch erst 50 Jahre spiter in seinen
gesammelten Werken publiziert wurden. Betrachtet man den Nachlaf} von Rie-
mann, so sieht man, daf sich Riemann jedenfalls seit 1856 fir die Arbeiten von
Weierstraf interessierte und schon im Erscheinungsjahr von dessen publizierter
Abhandlung [36] zur Theorie der Abelschen Funktionen Kenntnis hatte?). Ob
jedoch Riemann auch in dem uns interessierenden Punkte von Weierstra® abhingt,
ist eine andere, bedeutend schwerer zu entscheidende Frage, da Riemann die dies-
beziiglichen Anregungen durchaus auch auf einem anderen, von der mathematik-
historischen Forschung bisher nur wenig beachteten Wege erhalten haben konnte.

In einer vorangegangenen Arbeit [16] wurde gezeigt, wie Cauchys und Liou-
villes Entdeckungen zur Funktionentheorie von Puiseux sowie Briot und Bouquet
ausgearbeitet und in Lehrbuchform zusammengefafit und wie verschiedene Mathe-
matiker in Italien (z. B. Casorati) und in Deutschland (z. B. Durége) dadurch
beeinflufit wurden. Aus den obenzitierten Vorlesungsnachschriften ergibt sich
nun, daf auch Riemann die Arbeiten der betreffenden franzosischen Mathematiker
kannte und schitzte. In seinen Vorlesungen erwihnte er neben Cauchy unter ande-
rem auch Lagrange, Poisson, Liouville, Puiseux sowie Briot und Bouquet. Von
Briot und Bouquet kannte er nicht nur das spitere, zusammenfassende Buch
,» Théorie des fonctions doublement périodiques . .. ([4], 1859)*, sondern auch
den vorangegangenen Teilartikel ,,Etude des fonctions d’une variable imaginaire
([3], 1856)*, der sich in den Nachschriften von Bezold ([29], S. 28) und Nigels-
bach ([30], BL. 7) aus dem Jahre 1858/59 zitiert findet und etwa das erste ,,Buch*
des Werkes [4] umfafit. Anlidflich seiner Pariser Reise im Jahre 1860 besuchte
Riemann zudem Briot und bemerkt hieriiber in einem Brief an seine Schwester
Ida ([32], Brief Nr. 79 vom 27. April 1860): ,,Einen Tag habe ich auf dem Lande,

8) Vor allem in [39], S. 83f. Eine mathematikgeschichtliche Wiirdigung der obenerwihn-
ten friihen Arbeiten von WeierstraB findet man bei Manning [13].

%) Die Arbeiten ([351-[36]) von Weierstrafs werden sowohl in [28], S. 213;[27],
S. 29f. und [25], S. 101f. als auch in einem Brief von Riemann an seinen Bruder vom
2. Nov. 1856 (vgl. [22], S. 552) erwihnt.



8  E. Neuenschwander

ein paar Eisenbahnstationen von Paris, in Chatenay bei Briot’s recht angenehm ver-
lebt. Ich kannte und schitzte Briot lingst seiner guten Arbeiten wegen . . . . In
den obenerwihnten Arbeiten von Puiseux sowie Briot und Bouquet findet sich
nun bereits der Identititssatz fiir Potenzreihen und das Kreiskettenverfahren
(vgl. z. B. [3],S. 116 = [4], S. 35 sowie [21], S. 379f. und Fig. 7). Es diirfte des-
halb fiir Riemann, der die Probleme der Fortsetzung analytischer Funktionen
bereits frither mit anderen Mitteln studiert hatte, ein leichtes gewesen sein, die obi-
gen Resultate hiermit in Beziehung zu setzen, wie dies zum Beispiel spiter auch
Méray [15] tat. Somit wire es durchaus denkbar, da® Riemanns Verfahren der
analytischen Fortsetzung durch Potenzreihen unter dem Einfluf der franzésischen
Schule um Cauchy entstand und nicht unter demjenigen von Weierstraf.
Riemanns Beitrige zur Theorie der analytischen Fortsetzung wurden in
Berlin relativ frith diskutiert, wie man aus Aufzeichnungen von Gesprichen ent-
nehmen kann, die Casorati im Jahre 1864 in Berlin mit Kronecker und Weierstraf}
filhrte. Nach Casoratis Notizen duflerte sich Kronecker zu den diesbeziiglichen Be-
mithungen von Riemann und der franzésischen Schule wie folgt ([17], S. 7):

Er [Kronecker] sagte, dal man immer annimmt, da} eine Funktion immer
fortgesetzt werden konne, welches auch immer der Teil der Ebene sei,
wohin die Variable gehen soll (Briot et Bouquet, Cauchy . . . ), das heifdt,
da man diese immer einen solchen Weg durchlaufen lassen konne, daf} die
gefiahrlichen Punkte vermieden werden, als ob die derartigen Punkte die
Verbindung zwischen den Teilen der Ebene nicht ginzlich hindern kénnten.
Riemann ist ein wenig genauer, aber er schweigt zu viel uber diese Dmge

i 5 -
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ecker] nehme zum Beispiel die Funktion
Op(@=1+2q+2q*+[2q°]+...

die nur fiir mod q < 1 existiert, das heifit fiir q innerhalb eines Kreises vom
Radius 1. Um die Funktion auflerhalb dieses Kreises zu kennen, mufs man
zu anderen Mitteln greifen und nicht zu demjenigen, dad man q einen g mit
b verbindenden Weg!?) durchlaufen l4#3t. Wenn man die Differentialglei-
chung heranzieht, erreicht man das Ziel (Ubersetzung aus dem Italienischen).

Daf} das hier erwihnte Beispiel einer Funktion mit natiirlicher Grenze aus der
Theorie der elliptischen Modulfunktionen tatsichlich auf Kronecker zuriickgeht,
wird durch Angaben von Schwarz ([33], S. 318) in einem Artikel aus dem Jahre
1872 bestiitigt. Daf} sich auch Riemann mit d4hnlichen Fragen beschiftigte, ergibt
sich aus dessen NachlaB (vgl. z. B. [20], S. 36 sowie [23], S. 69ff.) !!). Weierstrafy
([39], S. 84) hat zwar bereits im Jahre 1842 in seinen seinerzeit nicht publizierten
Arbeiten auf die Moglichkeit von Funktionen mit natiirlicher Grenze hingewiesen;

10) Aus der hier weggelassenen Figur ergibt sich, dal @ innerhalb und b auflerhalb des
Kreises llegen soll Fur die Figur siehe [17] S 7.

 om mem g . e 29 2% 2  BME S & .av wm?_. %



Riemann und das ,,WeierstraBsche Prinzip* 9

nach den Angaben von Schwarz ([33], S. 318) und Casorati ([17], S. 15f. = [18],
S. 791.) scheint ihm jedoch sein spiterer Widersacher Kronecker bei der Angabe
eines konkreten Beispieles zuvorgekommen zu sein.

Nachtrag: Die oben skizzierten Beziehungen fanden anliBlich der systematischen Durch-
sicht des Riemannschen Nachlasses eine weitere Bestitigung. Es zeigt sich, da Riemann die
entscheidenden Arbeiten der franzésischen Mathematiker bereits im Jahre 1851 kannte. In einem
nicht publizierten Entwurf zur Verteidigung seiner Doktordissertation vom 16. Dezember 1851
(Niedersichsische Staats- und Universititsbibliothek, Handschrift Riemann 13, Bl. 100f.) be-
merkt Riemann unter anderem: ,,Diese Ansicht ist von Cauchy, welcher sich unter den Franzo-
sen zuerst und am meisten mit der Theorie der complexen GroBen beschiftigt hat, in der Sitzung
der Par[iser] Ak[ademie] v[om] 31. Mirz dieses Jahres bei Gelegenheit eines Berichts iiber eine
Arbeit von Puiseux ausgesprochen worden und in mehreren folgenden Vortrigen weiter ausge-
fihrt*.
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Kategorizitit
U. Felgner, Tiibingen*)

§1  Einleitung

Die Axiomen-Systeme, die man in den verschiedensten Gebieten der Mathe-
matik antrifft, werden aufgestellt, entweder mit dem Ziel, die Eigenschaften genau
einer Struktur zu erfassen, oder mit dem Ziel, diejenigen Eigenschaften zu erfassen,
die vielen gleichartigen Strukturen zukommen. So hat man beispielsweise fiir die
Bereiche der natiirlichen Zahlen N, der reellen Zahlen R und der Euklidischen
Ebene E Axiomen-Systeme, die nur jeweils diese Strukturen selbst als einzige Mo-
delle haben. Andererseits sollen Axiomatisierungen etwa des Gruppen-Begriffes,
des Korper-Begriffes etc. moglichst viele Modelle besitzen. Ein Axiomen-System,
welches bis auf Isomorphie nur genau ein Modell besitzt, nennt man kategorisch
oder monomorph. Die Bezeichnung ,kategorisch® fir derartige Axiomen-Systeme
hat O. Veblen im Jahre 1904 in die mathematische Literatur eingefiihrt. Veblen[50]
berichtet, dafl ihm dieses Wort von dem Philosophen John Dewey vorgeschlagen
worden sel Unter Verwendung anderer Bezelchnungen hatten berelts fruher G. Can-

{;Fi - A i T T L
2.

Wort ,,Kategorizitat* ist aus dem griechischen xareyopew (aussagen, behaupten)
abgeleitet.

Will man das Phinomen der Kategorizitit eines Axiomen-Systems untersu-
chen, so ist es geboten, die sprachliche (also: grammatikalische oder syntaktische)
Struktur der auftretenden Axiome zu untersuchen. Eine mathematische Disziplin,
die dazu von Nutzen ist, ist die mathematische Logik. Ein wichtiger Gesichtspunkt
in der Logik ist die Unterscheidung von Sprachen nach ihrer Stufe. Formale Spra-
chen, welche Quantifikationen iiber Elemente (= Individuen) erlauben, in denen
aber nicht iiber Teilmengen, Familien von Teilmengen etc. quantifiziert werden
kann, nennt man Sprachen erster Stufe. Formale Sprachen, in denen Quantifika-
tionen iiber Elemente und Quantifikationen iiber Teilmengen maoglich ist, Quanti-
fikationen iiber Familien von Teilmengen etc. jedoch nicht zur Verfiigung stehen,
heiflen Sprachen zweiter Stufe. Einer der iltesten Siatze der mathematischen Logik
iiberhaupt, der sogenannte Satz von Lowenheim-Skolem, besagt, daf} ein in einer
Sprache erster Stufe formuliertes Axiomen-System, welches unendliche Modelle
besitzt, grundsitzlich nicht kategorisch sein kann. Es ist daher kein Zufall, daf} die
kategorischen Axiomen-Systeme fiir die Arithmetik der natiirlichen Zahlen

*) Hauptvortrag, gehalten am 5. 10. 1978 auf der Jahrestagung der Deutschen Mathe-
matiker-Vereinigung in Aachen.
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(G. Peano [33]), die Arithmetik der reellen Zahlen (Huntington [22]) und die
Euklidische Geometrie (Veblen [50]) alle in Sprachen der zweiten Stufe formuliert
sind.

Im folgenden wollen wir einen etwas schwicheren Kategorizitits-Begriff
diskutieren. Falls m eine (endliche oder unendliche) Kardinalzahl ist, dann nennen
wir ein Axiomen-System m-kategorisch, falls es bis auf Isomorphie nur héchstens
ein Modell der Michtigkeit m hat.

Die Bedeutung dieses abgeschwichten Kategorizitits-Begriffes 1df3t sich
leicht durch eine Vielzahl interessanter und wichtiger Beispiele belegen. Das wohl
ilteste Beispiel stammt von G. Cantor (1895):

Satz 1.1 (G. Cantor [7], p. 304) Das Axiomen-System fiir dicht-geord-
nete linear-geordnete Mengen ohne erstes und ohne letztes Element ist ¥, -katego-
risch. Es ist in keiner iiberabzihlbaren Mdchtigkeit kategorisch.

Ein anderes klassisches Beispiel stammt von E. Steinitz (1910). Das Spek-
trum der Kardinalzahlen m , fiir diem-Kategorizitit vorliegt, ist hier komplementir
zum Spektrum des Cantorschen Beispieles.

Satz 1.2 (E. Steinitz [47], p. 125) Das Axiomen-System fiir algebra-
isch abgeschlossene Korper fest vorgegebener-Charakteristik ist in allen iiberabzdhl-
baren Kardinalzahlen kategorisch. Es ist jedoch nicht R,-kategorisch.

Satz 1.3 Sei p eine Primzahl. Das Axiomen-System fiir elementar-abelsche
p-Gruppen ist in allen endlichen und allen unendlichen Kardinalzahlen kategorisch.

Wir erwdhnen noch das folgende Beispiel: Das Axiomen-System fiir Boole-
sche Algebren ist in allen endlichen, aber in keiner unendlichen Kardinalzahl kate-
gorisch. Die Liste derartiger Beispiele liefe sich noch beliebig lang fortsetzen. Zwei
Dinge fallen bei all diesen Beispielen unmittelbar auf:

(1) Diese Axiomen-Systeme kdnnen innerhalb von Sprachen erster Stufe
formuliert werden. Wir werden daher keines dieser wichtigen Beispiele auslassen,
wenn wir uns von nun an stets auf Sprachen 1. Stufe beschrinken werden.

(2) Wir konnen kein in einer Sprache 1. Stufe formuliertes Axiomen-System
finden, welches beispielsweise N,,-kategorisch, aber nicht &,g-kategorisch ist. Die-
ses merkwiirdige Phinomen war zuerst J. £o§ 1955 aufgefallen (cf. £o§ [26], p. 62).
Den tieferen Grund dafiir hat aber erst M. Morley 1965 gefunden. Er bewies den
folgenden Satz, der zu den schonsten Ergebnissen der mathematischen Logik ge-
hort:

Satz 1.4 (M. Morley[31]) Fiir jedes Axiomen-System X , das in einer
abzdihlbaren Sprache erster Stufe formuliert ist, sind die folgenden Eigenschaften
untereinander dquivalent:

(i) Z ist in allen iiberabzihlbaren Kardinalzahlen kategorisch;

(ii) Z ist in einer iiberabzihlbaren Kardinalzahl kategorisch;

(iii) Z ist N -kategorisch.

Einige Aspekte des Beweises werden wir in § 2 diskutieren. Weitere Beweise des
Satzes von Morley haben spiter F. Rowbottom (1967), H. J. Keisler [24] und
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J. T. Baldwin — A. Lachlan [3] gegeben. Aufgrund des Satzes von Morley werden
wir uns im folgenden nur noch mit 8 -kategorischen und N,-kategorischen Axio-
men-Systemen befassen.

Ein weiteres Phinomen, das uns nicht nur am Beispiel der algebraisch abge-
schlossenen Korper fester Charakteristik, sondern auch etwa am Beispiel der
N,-kategorischen Theorie der torsionsfreien teilbaren abelschen Gruppen auffillt,
findet seine Erklirung in dem folgenden

Satz1.5 (J.T. Baldwin — A. Lachlan [3]) Jedes 8,-kategori-
sche Axiomen-System, das in einer abzdihlbaren Sprache 1. Stufe formuliert ist,
ist entweder Ny-kategorisch oder besitzt genau X, nicht isomorphe abzihlbare
Modelle.

In diesem Zusammenhang dringt es sich auf, Axiomen-Systeme zu betrach-
ten, die in irgendeiner unendlichen Machtigkeit X, bis auf Isomorphie nur endlich
viele Modelle besitzen. Ein klassisches Beispiel ist das Axiomen-System Z°, dessen
Modelle gerade die Strukturen U = (A, R) sind, wo R eine Aquivalenz-Relation auf
A ist, welche genau zwei Aquivalenz-Klassen besitzt, die beide unendlich sind. Z°
ist offenbar R,-kategorisch, und Z° besitzt bis auf Isomorphie genau zwei Modelle
der Kardinalitat N ;. Hinter diesem Beispiel verbirgt sich ein sehr viel allgemeinerer
Sachverhalt, den A. Lachlan 1975 aufgedeckt hat.

Satz 1.6 (A. Lachlan [25]) Jedes volistindige Axiomen-System, das in
einer abzihlbaren Sprache 1. Stufe formuliert ist, welches in einer iiberabzihlbaren
Michtigkeit bis auf Isomorphie nur endlich viele Modelle besitzt, ist entweder
No-kategorisch oder §,-kategorisch.

Dabei heifit ein Axiomen-System X, welches in der Sprache .~ formuliert
ist, volistindig, falls fir jede < -Aussage ® gilt: Entweder ist ® oder die Negation
von ® in T beweisbar.

Wir sollten an dieser Stelle noch das folgende iiberraschende Ergebnis von
R. L. Vaught [49] erwihnen: Es gibt kein in einer abzdhlbaren Sprache 1. Stufe
formuliertes vollstindiges Axiomen-System, das bis auf Isomorphie genau zwei
abzihlbare Modelle hat. Das Axiomen-System fiir dichte lineare Ordnungen mit
erstem Element hat (bis auf Isomorphie) genau zwei abzihlbare Modelle — dieses
Axiomen-System ist jedoch nicht vollstindig!

§ 2  Syntaktische Probleme

Kategorizitiit ist eine semantische Eigenschaft, d. h. eine Eigenschaft von
Mo dellen eines Axiomen-Systems. Wir fragen, ob diese semantische Eigenschaft
mit einer syntaktischen Eigenschaft dquivalent ist.

Sei & eine formale Sprache 1. Stufe. Jede widerspruchsfreie Menge von
% -Aussagen bezeichnen wir als in der Sprache .~ formuliertes Axiomen-System.
Jede widerspruchsfreie, deduktiv abgeschlossene Menge von < -Aussagen bezeich-
nen wir als & -Theorie. Falls T eine ¥ -Theorie ist und £ ST derart, daf} der
deduktive Abschlufd von X ganz T ist, dann nennen wir £ ein Axiomen-System fiir
T(Z und T haben dann dieselben Modelle). Bei den in § 1 diskutierten Fragen hit-
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ten wir uns statt auf Axiomen-Systeme genausogut auf Theorien beziehen konnen.
Die jetzt zu diskutierenden Fragen beziehen sich jedoch mehr auf Theorien T als
auf Axiomen-Systeme fiir T. Wir diskutieren die Frage, ob und wie sich die seman-
tische Eigenschaft der 8,-Kategorizitit einer Theorie T durch eine syntaktische
Eigenschaft von T charakterisieren 1if3t.

Als Prototyp einer ¥ -kategorischen Theorie kann Cantors Theorie der
dicht-geordneten, linear-geordneten Mengen ohne Endpunkte dienen. Diese Theorie
sei mit Th(DLO) bezeichnet. Die 8,-Kategorizitit von Th(DLO) hat Cantor unter
Verwendung seines sogenannten Zick-Zack-Verfahrens bewiesen. Wenn U;= (A |, <)
und A, = (A,, <) abzihlbare dichte lineare Ordnungen ohne Endpunkte sind,
dann wird ein Isomorphismus ¢ von U, auf A, durch Rekursion konstruiert,
indem man abwechselnd dem n-ten Element x,, der einen Struktur ein Element y,
in der anderen Struktur zuordnet, welches sich in bezug auf die bereits gefundenen
Elemente y,, y;,...,Y¥n-; in derselben Lage befindet wie x, in bezug auf
Xg> X155 Xn_1-

Um dieses Verfahren auch fiir andere Arten von Strukturen fruchtbar zu ma-
chen, miissen wir den Begriff ,,in derselben Lage ‘' adiquat verallgemeinern. Dazu
fihrt man den Begriff des Typs eines Elementes ein. Wir machen eine Vorbemer-
kung.

Sei A =(A, ... ein Modell der &~ -Theorie T. Mit dieser Notation wird
angedeutet, dad A der Individuen-Bereich der Struktur U ist und daf} an der Stelle
der Piinktchen die Interpretationen in U der Funktions-Zeichen, Relations-Zeichen,
und Individuen-Konstanten (die im Alphabet von & vorkommen) aufgefiihrt sind.
Im folgenden wird es niitzlich sein zu erlauben, daf} einzelne Elemente aus U in den
Ausdriicken aus ¥ vorkommen diirfen. Wenn B € A, dann sei & (B) die Menge
aller & -Formeln, in denen Elemente aus B als Parameter vorkommen diirfen.

Definition Sei A=(A,...) eine & -Struktur und B € A. Fiir jedes geord-
nete n-tupel (a,, . .., a,) von Elementen a; € A setzen wir

Prag,...,a,)={®(V,,...,va) E ¥ (B); ®[ay,...,a,] giltin¥}
undnennenp%(al,...,a“) den Typ von (a;,...,a,) inU iber B.

Die Menge p%’ (a;,...,a,) sammelt also alle " (B)-Formeln, welche hoch-
stens vy, ..., v, als freie Variable enthalten, die eine in U giiltige Eigenschaft des
n-tupels (a,, ..., a,) ausdriicken!). Im Falle n=1 gibt p%’ (a) also Auskunft iiber
die Lage von a in A in bezug auf die Elemente von B. Insbesondere konnen wir sa-
gen, daf zwei Elemente a und a’ von U sich in derselben Lage beziiglich B befinden,
wenn py(a) = p¥(a’) gilt. Damit ist klar geworden, welche Begriffsbildungen zu
verwenden sind, wenn wir das Cantorsche Zick-Zack-Verfahren im Falle beliebiger
Strukturen A anwenden wollen. Unklar ist aber noch, unter welchen Bedingungen
das Zick-Zack-Verfahren erfolgreich durchfiihrbar ist.

Definition Wenn T eine < -Theorie ist, dann heift eine Menge p von
< -Formelnein n-Typ von T, falls es ein Modell A =(A, ...) von T und

1) Falls B = ¢, dann schreiben wir pm(a,, ..., ag) statt pg (ag,...,ap).
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Elemente a,,...,a, €A mitp=p¥a,,...,a,) gibt. Einn-Typ p von T heifit
Haupt-Typ fallseine & -Formel ¥(v,,...,v,) existiert so, dag fiir alle
®(vy,..., Vi) EDP

Vv, o VYV [P(vy, ..o, Va) > P(vy, ..., V)]
in T beweisbar und 3v, ... 3v, ¥(v,,...,v,) mit T konsistent ist.

Sei S,=SI die Menge aller n-Typen von T. Man kann ST als Stone-Raum
einer gewissen Booleschen Algebra B, (T) deuten (cf. [8], Exercise 2.3.14*). Die
n-Typen von T sind gerade die Ultrafilter von B, (T) und die Haupt-Typen sind
genau die Haupt-Ultrafilter von B,(T). Daraus ergibt sich iibrigens sofort, da® ST
genau dann endlich ist, wenn jeder n-Typ von T ein Haupt-Typ ist.

Eine Charakterisierung R,-kategorischer Theorien kénnen wir jetzt formu-
lieren:

Satz2.1 (E. Engeler [16], C. Ryll-Nardzewski[39],
L. Svenonius [48]) Fiirjede volistindige Theorie T, die in einer abzihlbaren
Sprache 1. Stufe formuliert ist, sind dquivalent:

(i) Tist Ry-kategorisch;

(ii) fiir alle n €N: T besitzt nur endlich viele n-Typen;

(iii) fiir alle n € N: jeder n-Typ von T ist ein Haupt-Typ,

(iv) jedes abzdihlbare T-Modell U hat fiir jedes n € N nur endlich viele

n-orbits.

Wenn A ={A, ...) ein T-Modell ist und (a,, . . ., a,) ein n-tupel von Ele-
menten aus A, dann wird

{(p(ay), p(az), ..., ¢(ay); ¢ € Aut(A)}

als n-orbit von (a,, . . ., a,) in A bezeichnet. Dabei ist Aut(A) die Automorphis-
men-Gruppe von U.

Die Implikation (iii) = (i) wird durch Anwendung des Zick-Zack-Verfahrens
bewiesen: wenn A, =(A,,...) und A, =<A,,...) abzihlbare T-Modelle sind,
und wenn ¢ ein partieller Isomorphismus von B = {by,..., b,_;} € A, in A, mit

(f)  p¥i(bg, ..., ba_1)=pU2(p(by), ..., w(bn_1))

ist, dann konnen wir zu jedem b, € A, ein d=d, € A, finden mit
(1) p¥(by,..., ba_1, by) = pA2(p(by), ..., @(ba_y), d).

Dies ist klar, denn wenn etwa ¥ (v, . . ., v,) die erzeugende Formel des Haupt-
Typs p=p¥(by,...,b,) ist, dann gilt ¥(b,,..., b,), also v, ¥(p(by),...,
@ (ba_1)vy) € p¥2(p(by), ..., w(by_,)) nach (). Wir konnen also ein d € A,
finden so, dal W (p(by), ..., w(ba_y), d) in¥Y, gilt; weil ¥ ein Erzeuger ist,
folgt (171). Induktiv kann daher ¢ durch das Zick-Zack-Verfahren zu einem Isomor-
phismus von 9, auf 9[, erweitert werden.

Im Falle &, kategorischer Theorien ist die typen-theoretische Analyse kom-
plizierter. Da man jetzt iiberabzihlbare T-Modelle zu betrachten hat, miissen Typen
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(ndheres dazu in G. Sacks [40], Section 35). Beispielsweise sind in jedem algebra-
isch abgeschlossenen Korper die Elemente einer Transzendenz-Basis ununterscheid-
bar und in jeder torsions-freien teilbaren abelschen Gruppe G (als Q-Vektor-Raum
aufgefafit) die Elemente einer Basis ununterscheidbar.

S. Shelah hat 1969 ein bemerkenswertes Ergebnis iiber das Spektrum der
Kardinalzahlen erzielt, in denen eine abzihlbare Theorie stabil ist.

Satz 2.3 (S.Shelah [45]) Sei T eine volistindige Theorie, die in einer
abzdhlbaren Sprache 1. Stufe formuliert ist, und sei

Spec(T)={A; A= 8, und T ist A-stabil} .

Dann gilt entweder Spec(T) = ¢ oder Spec(T)={\; A“ =7} oder
Spec(T) = {\; A= 2« } oder Spec(T) = {M; A= B, ).

Die hier auftretenden vier Moglichkeiten bezeichnet man der Reihe nach als Unsta-
bilitat, Stabilitit, Super-stabilitit und w-Stabilitit. Ein typisches Beispiel fiir eine
unstabile Theorie ist Cantors Theorie der dichten linearen Ordnungen ohne End-
punkte, Th(DLO). In der Tat bestimmt jeder Dedekindsche Schnitt in einer dich-
ten linearen Ordnung 9 = (A, <) einen Typ p € S, (A). Wenn beispielsweise

A= (A, <) eine n,-Menge der Kardinalitit X, ist, dann gilt | S,(A)|> &,. Allge-
meiner gilt: Die Theorie Th() einer linearen Ordnung U = (A, <) ist dann und
nur dann stabil, wenn A endlich ist. In der Tat, wenn D = 8 !/ # Ultrapotenz
eines Modelles B von Th(9[) ist, wo .# ein guter Ultrafilter auf I ist, dann besitzt
D eine in sich dichte Teilmenge X der Kardinalitit 8!, und es gibt ¢ mit [Cl=| X |
und X € € < D. Daf} die Unstabilitit der Theorien unendlicher linearer Ordnungen
geradezu der Ur-Grund aller Unstabilitit ist, hat S. Shelah 1971 gezeigt:

Satz 2.4 (S. Shelah [42]) SeiT eine volistindige Theorie, die in einer
abzihlbaren Sprache 1. Stufe & formuliert ist. Aquivalent sind:
(1) T ist unstabil;

(ii) es gibt eine &« -Eormel Py, ..., Uy, vy, ..., Vs, ein T-Modell
A=A(A,...) ﬂzd n-tupel a; = (3;;, 3jz, . . ., 2jp) EA" ( €EN), s0 daf
i<je(d[ad,a]giltind).

Aus Satz 2.2 und Satz 2.4 ergibt sich, dafd in Modellen X,-kategorischer
Theorien keine unendlichen linearen Ordnungen definierbar sind. Wie niitzlich dies
in Anwendungen ist, werden wir an spiterer Stelle sehen. Sehr niitzlich ist auch
noch der folgende Satz von J. Baldwin und A. Lachlan 1971. Dabei nennen wir ein
T-Modell U ein zwei-Kardinalzahl-Modell, falls es eine parametrisch-definierbare
unendliche Teilmenge gibt, deren Kardinalitit echt kleiner als die Kardinalitdt von
A ist.

Satz2.5 (J. Baldwin — A. Lachlan [3]) SeiT eine volistindige
Theorie, die in einer abzihlbaren Sprache 1. Stufe formuliert ist. Aquivalent sind:

(i) T ist N,-kategorisch,
(i) T ist w-stabil und besitzt kein zwei-Kardinalzahl-Modell.
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§ 3 Kategorische algebraische Theorien

In den §&1 und 2 hatten wir eine Reihe von_Beisnielen N.-kategorischer

Theorien diskutiert. Diese Beispiele entstammen der Algebra und der Theorie der
geordneten Mengen. Wir wenden uns jetzt dem Problem zu, beispielsweise alle
N, -kategorischen Theorien linearer Ordnungen, alle ¥, -kategorischen Theorien

YOr ;Kﬁrﬂﬂm—m i |

T =Th(A). Das Problem, das jetzt diskutiert werden soll, konnen wir daher dqui-
valent wie folgt formulieren: klassifiziere alle linearen Ordnungen, alle Kérper, alle
Gruppen etc., deren Theorien 1. Stufe R, -kategorisch sind. Ganz konkret:

(1) Gibt es neben dem von E. Steinitz angegebenen Beispiel eines alge-
braisch abgeschlossenen Korpers (cf. Satz 1.2) noch andere Kérper & fiir die
Th(8&) R,-kategorisch ist?

(2) Gibt es neben dem von G. Cantor angegebenen Beispiel (Q, <) noch
andere lineare Ordnungen mit X,-kategorischer Theorie und bei positiver Antwort,
welche?

Ahnliche Fragen stellen sich im Falle von Gruppen, Ringen, Booleschen Algebren,
Graphen, Schiefkorpern etc. Die Frage (1) hat A. Macintyre in [28] beantwortet.
Er bewies, daf es aufier endlichen und algebraisch abgeschlossenen Korpern keine
anderen Korper gibt, deren Theorie N,-kategorisch ist. Die Antwort auf (2) hat

J. G. Rosenstein gegeben; in [37] hat er alle linearen Ordnungen mit No-kategori
scher Theorie bestimmt. Diese und viele weitere Resultate sollen jetzt besprochen
werden. Die folgende abkiirzende Sprechweise ist bequem und iiblich: wir werden
eine Struktur A X, -kategorisch nennen, wenn die Theorie 1. Stufe von ¥, Th(A)
N,-kategorisch ist (analog bei Stabilitit).

Wir stellen noch einmal klar, daf eine Struktur U der Kardinalitit N,
N,-kategorisch genannt wird, wenn A unter allen gleichartigen Strukturen gleicher
Michtigkeit bis auf Isomorphie eindeutig durch die Menge Th(%) aller in U giilti-
gen Aussagen 1. Stufe bestimmt ist. Zwar wird dabei auf formale Sprache 1. Stufe
Bezug genommen, aber das soll nicht dazu verleiten, die gestellten Fragen allein
der Logik zuzurechnen. Es ist iiblich, daf ein Mathematiker nicht auf die syntakti-
sche Struktur seiner Aussagsen achtet Gelesentlich tut er ec dach ca afwa

E}
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ten 1. Stufe gekennzeichnet sind, lassen einen groflen Vorrat schéner algebraischer
Eigenschaften erwarten. Daf dies tatsichlich der Fall ist, soll im folgenden gezeigt
werden.

A) Abelsche Gruppen

Die Bestimmung aller R -kategorischen abelschen Gruppen ist leicht und
wurde von vielen unabhingig durchgefiihrt.

Satz 3.1 Eine abelsche Gruppe ist genau dann R -kategorisch, wenn sie
einen endlichen Exponent hat.

Als Exponent einer Gruppe G bezeichnet man dabei die kleinste natiirliche Zahl
n=1 firdie g" =1 fiiralle g €G gilt, falls eine solche Zahl n existiert. Der
Beweis ergibt sich leicht aus Satz 2.1: Betrachte den 2-Typ des geordneten Paares
(g, g™). Auf (g,g™) trifft die Eigenschaft ®(u, v): =(u™ =v) zu. Wenn G R,-ka-
tegorisch ist, dann folgt aus Satz 2.1 (ii) sofort, dal G einen endlichen Exponenten
hat. Abelsche Gruppen von endlichem Exponent sind nach einem Satz von Priifer
direkte Summen endlicher zyklischer Gruppen, so daf sich aus Satz 2.1 (iv) sofort
die R -kategorizitit ergibt.

Um die 8,-kategorischen abelschen Gruppen zu bestimmen, ist es nach
Satz 2.2 ratsam, zuerst alle stabilen und alle w-stabilen abelschen Gruppen zu
bestimmen.

Satz3.2 (i) (D. Berthier) Jede abelsche Gruppe ist stabil.

(ii)) (A. Macintyre [27]) Eine abelsche Gruppe G ist genau dann
w-stabil, wenn sie die Form G =D ® H hat, wobei D divisibel ist und H einen
endlichen Exponent hat.

Um (i) zu beweisen, wihle man eine Kardinalzahl A mit A¥ =A>|G| und
bette G zunichst elementar in eine rein-injektive abelsche Gruppe A ein mit
Al <X, und sei B eine \* -saturierte elementare Erweiterung von A der Michtig-
keit <2*. Esist B = A o C fiir ein geeignetes C und B hat daher nur hochstens
v i ——— - :
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Korollar 3.10 Fiir jeden Ring R ¥ 0 ohne nilpotente Elemente sind die
folgenden Eigenschaften dquivalent:

(i) Rist super-stabil,
(i) R ist w-stabil,

(iii) R ist die direkte Summe von endlich vielen kommutativen Kérpern,
die entweder endlich oder algebraisch-abgeschlossen sind.

Aus der Super-Stabilitdt (bzw. w-Stabilitit) eines Ringes R # 0 ohne nil-
potente Elemente folgt also nicht nur die Kommutativitit, sondern auch die Exi-
stenz eines Eins-Elementes.

Die endlichen oder algebraisch abgeschlossenen Kérper lassen sich auch in
der Klasse der Integritits-Bereiche (= nullteiler-freie kommutative Ringe mit Eins)
wie folgt charakterisieren:

Satz 3.11 Fiir jeden Integritits-Bereich & = (R, +, —, -, 0,1) sind die fol-
genden Eigenschaften dquivalent:

(i) 8 ist ein endlicher oder algebraisch abgeschlossener Korper,

(ii)) K ist W,-kategorisch,

(iii) & ist w-stabil,

(iv) & ist super-stabil,

(v) Th(R) erlaubt Quantoren-Elimination.

Dabei wurde die Implikation (v) = (i) von L. van den Dries [15] und
B. Rose [36] bewiesen, (i) = (v) gilt nach A. Tarski, (i) = (ii) gilt nach E. Steinitz
und die iibrigen Implikationen ergeben sich aus Cherlin-Shelah [14], Felgner [17]
und Reineke [34].

In den bisher bekannten R, -kategorischen unendlichen Ringen R ist immer
ein algebraisch abgeschlossener Korper involviert, der die Struktur von R mehr
oder weniger bestimmt?). Im Falle ¥,-kategorischer Ringe ist die Situation ginz-
lich anders.

Satz 3.12 (A. Macintyre — J.R. Rosenstein [30]). SeiR ein
abzihlbarer Ring mit Eins, der keine nilpotenten Elemente # 0 enthdlt. Dann sind
dquivalent:

(i) R ist Ry-kategorisch,
(ii) R st die direkte Summe von endlich vielen Ringen der Form C(X, F;
X;, F;, i <n), wobei X ein Boolescher Raum ist, F ein endlicher Korper, F; ein

Unterkérper von F (fiir jedes i < n) und X, eine abgeschlossene Teilmenge von X,
so dap (B(X), X, i <n) R,-kategorisch ist.

Dabei ist C(X, F; X;, F;, i <n) der Ring aller stetigen Funktionen f von X
in den diskreten Raum F, so da f(X); € F; firr alle i <n (wobei n € N). Dabei
wird angenommen, daf die Zuordnung X; - F; ordnungserhaltend ist. B(X) ist die

3) B. L. Zilber und G. Cherlin haben kiirzlich gezeigt, dafl in jeder auflosbaren, nicht-
nilpotenten w-stabilen zusammenhingenden Gruppe von endlichem Morley-Rang ein algebra-
isch-abgeschlossener K&rper interpretierbar ist.
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zu kommen. 8, -kategorische stabile Gruppen sind in vieler Hinsicht endlichen Grup-
pen dhnlich; in der Tat erfiillen diese Gruppen eine Reihe von sogenanngen Endlich-
keits-Bedingungen:

Lemma 3.14 (i) 8,-kategorische Gruppen sind lokal-endlich in einem star-
ken Sinne: Es gibt eine Funktion f: N > N so, daf} n Elemente eine Untergruppe
von hochstens f(n) Elementen erzeugen.

(ii) w-stabile Gruppen erfiillen die Minimal-Bedingung fiir parametrisch
definierbare Untergruppen.

(iii) (U. Felgner [20]) Fiirjede RX,-kategorische stabile Gruppe G
existiert eine Funktion f: N = N so, dafl jede Kette von n-definierbaren Unter-
gruppen von G hochstens die Linge f(n) hat.

(iv) (J.T. Baldwin) Stabile Gruppen G erfiillen die Minimal-Bedingung
fiir Zentralisatoren in einem starken Sinne: Es gibt eine nur von G abhdngige Zahl
m € N so, dag fiir alle X € G eine hochstens m-elementige Teilmenge Y C X mit
Cg (X) = Cg (Y) existiert.

Gruppen mit der in (i) genannten Eigenschaft nennt man uniform-lokal-
endlich. (i) folgt leicht aus Satz 2.1; (ii) wird beispielsweise in [19] bewiesen und
Beweise fur (iii) und (iv) sind in [20]. Eine parametrisch definierbare Teilmenge
(cf. § 2) heidt n-definierbar, falls die definierende Formel nur héchstens n Parame-
ter enthalt.

Um die Aussage (iii) aus Lemma 3.14 ausnutzen zu kénnen, mufd man wis-
sen, daf} ,,viele* Untergruppen in R ;-kategorischen stabilen Gruppen definierbar
sind. Es wird in [19], [20] gezeigt, daf tatsichlich die ,,wichtigsten** Untergruppen
definierbar sind, so beispielsweise jede endlich erzeugte Untergruppe, die Kommu-
tator-Untergruppe, das Hirsch-Plotkin-Radikal und der maximale lokal-aufldsbare
Normalteiler. Besonders erwihnenswert ist dabei das folgende Resultat, das eine
Briicke zwischen Algebra und Modell-Theorie herstellt.

Lemma 3.15 (U. Felgner [19],[20]) (i) In einer abzdhlbaren uniform-
lokal-endlichen Gruppe G sind die maximalen p-Untergruppen genau dann alle un-
tereinander konjugiert, wenn sie alle definierbar sind.

(ii) In einer abzihlbaren N ,-kategorischen Gruppe ist eine Untergruppe
genau dann charakteristisch, wenn sie O-definierbar ist.

Satz 3.16 (W.Baur — G.Cherlin — A.Macintyre [6],
U. Felgner [20])

(i) Einfache Y,-kategorische stabile Gruppen sind endlich.

(ii) Ro-kategorische stabile Gruppen sind fast-nilpotent (d. h., das Hirsch-
Plotkin Radikal ist nilpotent und hat endlichen Index).

Die Aussagen (i) und (ii) dieses Satzes werden simultan durch eine nicht
leicht zu beschreibende Induktion bewiesen. Der in [20] gegebene Beweis orientiert
sich in manchen Punkten an H. Fittings Programm der Klassifikation aller endlichen
Gruppen. Die begrifflich wichtigsten Hilfsmittel sind demzufolge das Hirsch-Plotkin-
Radikal p(G) (die Fitting-Untergruppe im Falle endlicher Gruppen), das lokal-auf-
l6sbare Radikal o(G) und der Sockel Soc(G/o(G)) von G/o(G). Damit der in der
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Theorie der endlichen Gruppen so fundamentale Satz von Sylow auch in der hier
vorliegenden Situation zur Verfigung steht, wird zunichst gezeigt, dafl fiir jede
Primzahl p jede maximale p-Untergruppe definierbar ist. Nach Lemma 3.15 folgt
daraus die Konjugiertheit aller p-Sylow-Gruppen. Die Definierbarkeit impliziert
auch, daf sich die N,-Kategorizitit und Stabilitit der ganzen Gruppe G auf alle
p-Sylow-Untergruppen vererbt. Daraus folgt, da} diese nicht nur lokal-nilpotent,
sondern sogar nilpotent sind. Auch p(G) ist daher nilpotent. Da G uniform lokal
endlich ist und Sylow-Untergruppen konjugiert sind, folgt nach B. Hartley die End-
lichkeit von ¢(G)/p(G). Wie bei H. Fitting folgt, da® G=G/a(G) bis auf Isomor-
phie in der Automorphismen-Gruppe des Sockels von G enthalten ist,

G C Aut(Soc(G)). Um Satz 3.16 zu beweisen, mufd man also noch zeigen, daf®
Soc(G) endlich ist. Hier ist im wesentlichen nur zu zeigen, daf} die einfachen Grup-
pen, die in Soc(G) liegen, endlich sind. Gibe es in Soc(G) eine unendliche einfache
Gruppe H, dann darf man annehmen (dies wird durch Induktion bewiesen), dafy
alle lokalen Untergruppen von H fast-nilpotent sind. Als lokale Untergruppe wird
hier in Anlehnung an Alperin jeder Normalisator Ny (A) einer definierbaren nil-
potenten Untergruppe A von H bezeichnet. Unter Verwendung von Lemma

3.14 (iii) und des Begriffs der zusammenhdingenden Untergruppe 1ifit sich dann in
H eine Familie # von abelschen Untergruppen konstruieren, deren Eigenschaften
nach einem tiefliegenden Satz von Kegel-Wehrfritz die Isomorphie H= PSL(2,K)
nach sich ziehen. Weil K dabei ein unendlicher, lokal-endlicher Korper ist, haben
wir den gesuchten Widerspruch gefunden: H hitte keinen endlichen Exponenten.
Jetzt sind wir fertig, denn wenn Soc(G/o(G)) endlich ist, dann ist wegen

G/o(G) c Aut(Soc(G/a(G)) und der Endlichkeit von ¢(G)/p(G) auch G/p(G)
endlich.

Wie nilpotente X ,-kategorische stabile Gruppen aussehen, ist bisher unbe-
kannt. Mit der stirkeren Voraussetzung der c-Stabilitit 143t sich jedoch einiges
sagen:

Satz 3.17 (W. Baur, G. Cherlin, A. Macintyre [6])
No-kategorische w-stabile Gruppen besitzen einen abelschen Normalteiler von end-
lichem Index (dieser ist definierbar).

Satz 3.18 (W. Baur, G. Cherlin, A. Macintyre[6]) Die fol-
genden Eigenschaften einer Gruppe G sind dquivalent:

(i) Gist zugleich 8 ,-kategorisch und 8 ,-kategorisch,

(ii) Es gibt endliche Untergruppen F und H so, dafl Cg (F) ein abelscher
Normalteiler von G ist, G =H - Cg (F), und Cg (F) ist die direkte Summe von
zwei Normalteilern M und B, wo B endlich ist und M die direkte Summe paarweise
isomorpher endlicher direkt unzerlegbarer H-Moduln.

Eine Klassifikation aller Gruppen, die lediglich 8,-kategorisch sind, ist bis-
her unbekannt und ist wohl auch in den nichsten Jahren nicht zu erwarten. In der
Tat treten hier vor allem bei der Behandlung nilpotenter Gruppen einerseits und
unendlicher einfacher Gruppen andererseits erhebliche kombinatorische Probleme
auf. R -kategorische einfache Gruppen sind vermutlich endlich. Die Existenz einer
unendlichen 8 -kategorischen einfachen Gruppe wiirde jedenfalls die Existenz un-
endlich vieler bis heute unbekannter endlicher einfacher Gruppen nach sich ziehen
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(cf. [19], § 6). Eine Reihe singulirer Ergebnisse iiber ¥ ,-kategorische Gruppen tei-
len wir noch mit:

Satz 3.19 (i) (J. Wilson) N,-kategorische einfache Gruppen sind abso-
lut-einfach.

(ii) (J.G. Rosenstein [38]) Jede Gruppe G, welche einen abelschen
Normalteiler A mit endlichem quadratfreien Exponent enthilt so, daf G/A zyklisch
von Primzahl-Ordnung ist, ist ¥ y-kategorisch.

(iii) (U. Felgner) Ry-kategorische CA-Gruppen G sind fast-nilpotent;
das Hirsch-Plotkin-Radikal p(G) ist eine 2-stufig auflésbare nilpotente Gruppe der
Form A ©B mit A abelsch und B eine p-Gruppe.

Dabei heifit G eine CA-Gruppe, falls fiir alle g ¢ Z(G), Cg (g) abelsch ist.
Absolut-einfache Gruppen sind in Kegel-Wehrfritz ([23], p. 5) definiert. 8 ,-kate-
gorische Gruppen mit abelschen Normalteilern von endlichem Index werden in
Rosenstein [38] und Cherlin-Rosenstein [13] diskutiert. Derartige Gruppen sind
stets stabil. ¥,-kategorische Gruppen haben jedoch nicht notwendig einen abel-
schen Normalteiler von endlichem Index. In der Tat ist jede unendliche extra-
spezielle p-Gruppe G ¥,-kategorisch und besitzt keinen abelschen Normalteiler
von endlichem Index.

§4 Epilog

Nachdem wir in den §§ 1 und 2 die logische Analyse des Kategorizitits-
Begriffes dargestellt haben und in § 3 konkrete algebraische Theorien auf Kate-
gorizitdt hin untersucht haben, so wollen wir jetzt noch kurz auf die weitergehen-
de Bedeutung des Kategorizitits-Begriffes eingehen.

Wir beginnen mit der folgenden einfachen, aber niitzlichen Bemerkung, daf}
die Vollstindigkeit eines Axiomen-Systems hiufig sehr elegant dadurch bewiesen
werden kann, dafd man die Kategorizitit feststellt:

Lemma 4.1 (J. Los, R.L. Vaught) Jede Theorie 1. Stufe, welche
keine endlichen Modelle hat und in einer unendlichen Kardinalzahl kategorisch ist,
ist volistindig.

Daf} ein Zusammenhang zwischen Entscheidbarkeit, Quantoren-Elimination
und Kategorizitit von Theorien besteht, kann aufgrund der bisher bekannten Bei-
spiele und Resultate vermutet werden. A. Grzegorczyk [21] hatte 1970 vermutet,
daf jede N,-kategorische Theorie T, die in einer Sprache mit nur endlich vielen
aufder-logischen Zeichen formuliert ist, entscheidbar sei. Diese Vermutung wurde
1971 von C. J. Ash, A. Ehrenfeucht, W. Glassmire und C. W. Henson widerlegt:
Fiir jeden Turing-Grad d gibt es eine 8,-kategorische Theorie, die in einer Sprache
1. Stufe mit nur einem zweistelligen Relations-Zeichen formuliert ist, welche den
Unlosbarkeits-Grad d hat. Die folgende Vermutung von J. H. Schmerl [41] (1977)
ist aber bisher unentscheiden: Endlich axiomatisierbare 8 -kategorische Theorien
sind voll entscheidbar?

Uber die Bedeutung der N,-Kategorizitit bei Fragen iiber Quantoren-Elimi-
nation gibt das folgende Lemma etwas Auskunft (cf. Schmerl [41]):
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Wir hatten dies schon in § 3 angedeutet. Was das Leben mit unendlichen Gruppen,
Ringen, etc. im allgemeinen schwer macht, ist bekanntlich das Fehlen der Moglich-
keit, Beweise durch Induktion tiber die Kardinalitit zu fithren. Es ist hier zu erwih-
nen, dafd neben den Ketten-Bedingungen auch Rang-Begriffe vorliegen, welche
induktiv gefiilhrte Beweise ermoglichen.

Satz 4.5 (i) (M. Morley) Eine Struktur U ist genau dann w-stabil, wenn
der Morley-Rang auf U total definiert ist (d. h., wenn alle definierbaren Teilmengen
von U einen Morley-Rang haben).

(ii) (S. Shelah) Eine Struktur U ist genau dann super-stabil, wenn der
Shelah-Grad auf U total definiert ist.

J. T. Baldwin bewies, dafd X ,-kategorische Theorien einen endlichen Morley-
Rang besitzen. J. Reineke [35] bewies, dafd Gruppen vom Morley-Rang 1 und
Shelah-Grad 1 abelsch sind. Gruppen vom Morley-Rang <3 hat G. Cherlin [10]
untersucht.

Es darf angenommen werden, daf, iiber reine Kategorizitdts-Untersuchungen
hinausgehend, das geschilderte Instrumentarium in den kommenden Jahren noch
viele weitere Einsichten ermoglichen wird, die sowohl unter modell-theoretischen
als auch unter algebraischen Gesichtspunkten bedeutungsvoll sind.
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Einleitung

Als an mich die Einladung erging, vor dem Auditorium einer Jahrestagung
der Deutschen Mathematiker-Vereinigung iiber mein Arbeitsgebiet zu berichten,
dachte ich zunichst an ein Thema wie ,,Ordnungsstrukturen in der Funktional-
analysis*. Tatsichlich bin ich im Laufe der letzten 25 Jahre in mehr oder weniger
enge Berithrung mit fast allen Teilgebieten der Funktionalanalysis gekommen, in
denen Ordnungsstrukturen eine wesentliche Rolle spielen — eingeschlossen Teile
der nichtlinearen Theorie. Jedoch zeigte schon der Versuch einer ersten Ubersicht,
daf ein solches Vorhaben den gesetzten und angemessenen Rahmen vollig ge-
sprengt hétte. So habe ich mich fiir ,,Ordnungsstrukturen in der Operatorentheorie*
entschieden.

Auch in diesem engeren Bereich mufte eine Auswahl getroffen werden
(s. Inhaltsiibersicht). Der im 1. Abschnitt diskutierte Zusammenhang ordnungs-
beschrinkter Operatoren mit der Theorie der Operatorenideale, vor allem den

*) Hauptvortrag auf der Tagung der Deutschen Mathematiker-Vereinigung in Hamburg
1979.
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Grothendieckschen integralen Abbildungen, ist fiir den Anschlul der Ordnungs-
theorie an die allgemeine Operatorentheorie fundamental. Die Spektraltheorie
positiver linearer Operatoren auf Banachverbinden (2. Abschnitt), eine — wie mir
scheint, schéne — Theorie mit vielfidltigen Anwendungen, habe ich auch deshalb
ausgewihlt, weil ihre Hauptresultate und Methoden fiir die Theorie der Erzeugen-
den positiver Halbgruppen (3. Abschnitt) mutatis mutandis giiltig bleiben. Dies ist
um so erstaunlicher, als diese Erzeugenden (im allgemeinen unbeschrinkt und in
den Anwendungen meist Differentialoperatoren) auf den ersten Blick mit positi-
ven Operatoren nichts gemein haben. Wihrend tiber den Gegenstand der ersten
beiden Abschnitte samt zugehorigen Anwendungen die Monographie [38] des Ver-
fassers ausfithrlich Auskunft gibt, sind die Resultate des 3. Abschnitts noch durch-
weg unverdffentlicht. Es sei deshalb hier noch ein Wort tiber positive Halbgruppen
angefiigt.

Die Hiufigkeit einparametriger Halbgruppen in verschiedenen Gebieten der
Analysis und ihre Bedeutung fiir die Anwendungen sind wohlbekannt. Viele dieser
Halbgruppen sind Halbgruppen positiver Operatoren auf Banachverbinden; indes-
sen bemerkt schon E. Hille in seiner grundlegenden Monographie [6]: ,,The task of
developing an adequate theory of transformation semi-groups operating in partially
ordered spaces is left to more competent hands* (l. c., Foreword). Riickschauend
erkennt man nun, daf die in der Theorie positiver Operatoren auf Banachverbin-
den langjahrig entwickelten Methoden und Techniken fiir ein fruchtbares Studium
positiver Operatorenhalbgruppen unerlidlliche Voraussetzung sind. Vor diesem
Hintergrund ist eine Bemerkung S. Karlins [9], daf’ sich viele Aussagen iiber zykli-
sche Halbgruppen (T"),e n positiver Operatoren auf kontinuierliche {ibertragen
lieRen, nur von heuristischem Wert; auch sind die diesbeziiglichen Resultate von
[9] teilweise liicken- oder fehlerhaft.

Der vorliegende Bericht muf, schon aus Raumgriinden, auf Beweise oder
Beweisskizzen verzichten; auch soll der interessierte Leser zunichst einen Eindruck
von den gewonnenen Ergebnissen erhalten, ohne mit den héufig sehr technischen
Beweisen belastet zu werden. Fiir die der Theorie positiver Operatoren auf Banach-
verbinden eigenen Techniken sowie fir Anwendungen auf Ergodentheorie, Appro-
ximationstheorie, normierte Tensorprodukte, Kernoperatoren und anderes sei
erneut auf [38] verwiesen. Dariiber hinaus muf} der grofe Kreis von Ergebnissen
unerwihnt bleiben, die positive Operatoren auf geordneten Banachrdumen betref-
fen, welche keine Banachverbinde sind; hierzu gehdren nichtkommutative C*-Al-
gebren (vgl. [5] und die dort angegebene Literatur).

1 Operatorenideale

Im folgenden wird unter einem Operator stets eine beschrinkte lineare Ab-
bildung zwischen Banachriumen verstanden. Ein (Links-, Rechts-, zweiseitiges)
Operatorenideal ist eine Klasse von Operatoren, die beziiglich der (Links-, Rechts-,
zweiseitigen) Komposition mit beliebigen Operatoren invariant ist; in dem speziel-
len Fall, wo alle betrachteten Definitions- und Bildriume mit einem festen Banach-
raum E identisch sind, handelt es sich um gewohnliche Ideale der Operatorenalgebra
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gegeben ist; die Operatornorm von | T| definiert nun eine neue (grofiere) Norm

|| Tll, , beziiglich deren die ordnungsbeschrinkten Operatoren E = F einen o-voll-
stindigen Banachverband ~* (E, F) bilden. Der angedeutete Ausnahmetfall (jeder
Operator E - F ist ordnungsbeschrinkt) wird nun durch folgenden Satz beschrie-
ben (vgl. [38],1V.1.5und IV.1.8):

Satz 1.A Seien E, F Banachverbinde, F geniige (P). Ist E ein AL-Raum oder
F ein AM-Raum, so gilt < (E,F) = <" (E,F) mit Identitit der Normen. Der Raum
der kompakten Operatoren E - F bildet jeweils einen abgeschlossenen Unterver-
band.

Die Bedeutung dieses Satzes liegt wesentlich darin, daf} er optimal ist; in der
Tat lassen sich AL-Riume E und o-vollstindige AM-Riume (mit Einheit) F durch
die Aussage von Satz 1.A charakterisieren [14], [18].

Andererseits sind Operatoren endlichen Ranges E — F stets ordnungsbe-
schrinkt, aber schon im Falle E = F = €2 gibt es kompakte Operatoren, die diese
Eigenschaft nicht mehr besitzen (fiir ein illustratives Beispiel vgl. [38], p. 231). Es
stellt sich also die Aufgabe, gewissermaflen den Minimalumfang von & (E, F) in
Z(E, F) zu kliren; auf welche Weise dies geschehen kann, ist Gegenstand des
niachsten Unterabschnitts.

1.3 Kegelabsolutsummierende und majorisierende Operatoren

Wir erinnern an zwei klassische Begriffe: Eine Folge (x,) in einem Banach-

raum E heifdt summierbar, falls die Familie der (endlichen) Summen x,= Z x,
neo

lings des durch Inklusion gerichteten Systems aller endlichen Teilmengen o C N
konvergiert (man sagt auch, die Reihe X, x, sei unbedingt konvergent in E); (x,,)
heifdt absolut summierbar, falls X, || X, || konvergiert. So ist eine orthogonale Folge
(x,) eines Hilbertraumes summierbar, genau wenn X,|| x,||?> konvergiert; daraus
erhellt, daB es in jedem unendlichdimensionalen Hilbertraum summierbare Folgen
gibt, die nicht absolut summierbar sind, und allgemeiner trifft dies fiir jeden unend-
lichdimensionalen Banachraum zu (Theorem von Dvoretzky-Rogers, vgl. [11],

p. 16).

U. Schlotterbeck [41] konnte nun zeigen, dad die AL-Rdume (also nach
dem Kakutanischen Satz die Rdume L1 (u)) unter den Banachverbinden bis auf
Normaéiquivalenz schon dadurch charakterisiert sind, daf in ihnen jede positive
summierbare Folge absolutsummierbar ist. Als duales Resultat ergibt sich eine
Charakterisierung der AM-Ridume (nicht notwendig mit Einheit) unter den Banach-
verbinden durch die Eigenschaft, da in ihnen jede Nullfolge ordnungsbeschrinkt
ist. Diese neuartige Charakterisierung der AL- und AM-Riume ermoglichte es ihm,
interessante (und in gewissem Sinne maximale) Ideale ordnungsbeschrinkter Ope-
ratoren zu entdecken (s. auch [38]).

Die genannte Charakterisierung der AL-Rdume E 143t sich wegen Satz 1.A
niamlich auch dadurch ausdriicken, daf} jeder Operator T: E — E positive summier-
bare Folgen in absolut summierbare transformiert: T ist kegelabsolutsummierend
(k.a.s.). Macht man dies nun zur definierenden Eigenschaft einer Operatorenklasse
zwischen beliebigen Banachverbinden E, F, so erhilt man offenbar ein Operatoren-
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linksideal. Die Operatoren dieses Ideals lassen sich durch Faktorisierungseigenschaf-
ten charakterisieren: T: E - F ist k.a.s., genau wenn T eine Zerlegung

T=T,oT,: E~>L —F gestattet, wo L ein geeigneter AL-Raum und T, 2 0 sind.
Besitzt F die Eigenschaft (P), so ist der Raum <(E, F) aller k.a.s. Operatoren

T: E = F, versehen mit einer geeigneten Norm!) und der natiirlichen Ordnung der
Operatoren, ein o-vollstindiger Banachverband. Fiir einen AL-Raum E ist nun in
der Tat ¥Y(E,F) = <" (E,F) = Z(E, F), wihrend man fiir Banachverbinde E, F
vom Typ L?(u) gerade die Hilbert-Schmidt-Operatoren mit der zugehérigen Norm
erhilt.

Der andere Teil der Aussage von Satz 1.A wird durch einen dualen Ansatz
ausgeschopft: Seien wieder E, F Banachverbinde. Diejenigen Operatoren T: E - F R
welche jede Nullfolge auf eine ordnungsbeschrinkte (d. h. absolut majorisierte)
Nullfolge abbilden, heilen majorisierend; sie sind durch Zerlegungen T=T,oT,
gekennzeichnet: E—+M - F, wo jetzt M ein geeigneter AM-Raum und T, 2 0 sind.
Man erhilt so ein Operatorenrechtsideal; bei festen E, F (F mit Eigenschaft (P))
bilden die majorisierenden Operatoren, mit einer geeigneten Norm?) versehen, wie-
der einen o-vollstindigen Banachverband <™ (E, F). Fiir einen AM-Raum F mit
Eigenschaft (P) (oder gleichwertig: fiir F = C(K), K Stonesch) ergibt sich analog
zum Obigen ™ (E,F) = ¥"(E, F) = Z(E, F) bei beliebigem E; fiir E, F vom
Typ L2 (u) ergeben sich erneut die Hilbert-Schmidt-Operatoren.

Verschiedenartige Charakterisierungen der k.a.s. und der majorisierenden
Operatoren finden sich bereits in [41] (vgl. [38], IV.3); insbesondere sind diese
Klassen beziiglich der Adjungiertenbildung zueinander dual. Ihre Hauptbedeutung
fir die allgemeine Operatorentheorie liegt jedoch in der engen Beziehung zu den
integralen Operatoren, die seit Grothendiecks Memoire [7] eine wichtige Rolle
spielen.

1.4 Integrale Operatoren

Die Bedeutung der von Grothendieck [7] eingefiihrten integralen Operato-
ren beruht auf deren Zusammenhang mit der Theorie topologischer Tensorpro-
dukte, der nuklearen Abbildungen und Riume, sowie allgemein dem Umstand, daf
ihre Definition und Eigenschaften sie mafitheoretischen Methoden zuginglich ma-
chen. (Eine knappe, unabhiingig lesbare Einfithrung in die Theorie der integralen
Operatoren findet sich in [38], Kap. IV.) Es sei jedoch darauf hingewiesen, daf} die
‘integralen Operatoren Grothendiecks mit den durch mefbare Kerne definierten
sog. Kernoperatoren zwischen Funktionenriumen (etwa den »,Integraloperatoren*
im Sinne von J6rgens [8]) nur sehr mittelbar zu tun haben und nicht mit diesen
verwechselt werden diirfen.

Vielmehr enthilt die Definition Grothendiecks keinerlei ordnungstheoreti-
schen Ansatz. Eine dquivalente, fiir unsere Zwecke bequemere Definition ist diese:
Seien G, H Banachriume, q: H— H” die Auswertungsabbildung. Ein Operator
T: G »> H heift integral, wenn qo T eine Faktorisierung

G->L"(u) > L' (u) > H"

! Das Infimum von || Tall Il T4l iiber alle Zerlegungen der genannten Art.
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gestattet, wo u ein endliches MaB und i die kanonische Einbettung bezeichnen.
(Ist Q(H) Wertebereich einer kontraktiven Projektion von H”, so kdnnen in dieser
Definition qo T durch T und H” durch H ersetzt werden.) Mit einer geeigneten
Norm ist der Raum der integralen Operatoren G - H ein Banachraum LG, H).
Die Einbettung L= (u) > L!(u) (u endlich) ist also der Prototyp aller integralen
Operatoren. In der Tat sind unter den Operatoren L* (u) = L!(») (jetzt brauchen
&, v nicht mehr endlich zu sein) genau die ordnungsbeschrinkten integral, und in
der obigen Definition kann i durch einen beliebigen ordnungsbeschriankten Opera-
tor ersetzt werden; es gilt Z1 (L=, L!) = (L, L!) mit Identitit der Normen.
Im Falle allgemeiner Banachverbinde E, F wird der Zusammenhang zwi-
schen ordnungsbeschrinkten und integralen Operatoren durch ein Theorem gege-
ben, das ebenfalls auf [41] zuriickgeht und das sich folgende Konstruktionen zu-
nutze macht. Das von einem beliebigen x € E, x 2 0, erzeugte Verbandshauptideal

E, =V r? [—x, x], mit dem Ordnungsintervall [—x, x] als abgeschlossener Einheits-
ne

kugel, ist nach Kakutani-Krein ein AM-Raum mit Einheit x; ist andererseits
y'€F', y' =0, so definiert p(y) =(lyl, y" eine Halbnorm auf F, fiir welche der
assoziierte, komplettierte Hausdorffraum (F,y’) ein AL-Raum wird. Fiir jeden
Operator T: E— F kann man nun bei beliebigen x=>0, y'>0 die drei Komposi-
tionen T,: E,>E—-F, T,: E->F~>(F,y") und T,,: E,>E~>F-(F,y’) bil-
den; hierbei bezeichnen E —-E und F—(F,y") die naturllchen Verbandshomo-
mmnmwmummmm Vereinigung

k- 0

—
[
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.
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(F, y') ansehen kann.)

Theorem 1.B Es seien E, F Banachverbdinde, F besitze (P). Fiir einen belie-
bigen Operator T: E = F gelten die Aquivalenzen:
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Hierbei sind die iibereinanderstehenden Begriffe hinsichtlich der Adjungiertenbil-
dung zueinander dual.

Die oben erwihnten Kernoperatoren (vgl. [38], IV.9) lassen sich fiir
E=LP (u), F=L1L9(») (1 <p, q<+ o) durch die Eigenschaft kennzeichnen,
dem von Eg x F in &7 (E, F) erzeugten Band (=supremumsabgeschlossenem
Verbandsideal) anzugehéren. (E( bezeichnet das Band der ordnungsstetigen Line-
arformen.) Fir allgemeine Banachverbinde E, F (F o-vollstiindig) bezeichnet man
daher die diesem Band zugehorigen Operatoren als (abstrakte) Kernoperatoren;
sie lassen sich durch folgendes Theorem [19] charakterisieren, das wegen Theo-
rem 1.B ihre Beziehung zu beliebigen ordnungsbeschrinkten Operatoren deutlich
macht.

Theorem 1.C Es seien E, F Banachverbinde; F sei o-vollstindig und werde
von seinen ordnungsstetigen Linearformen separiert. Ein Operator T € Z*(E, F)
ist Kernoperator, genau wenn T ordnungsstetig und simtliche Bikompositionen
T,y (x=0, y' =0 ordnungsstetig) nuklear sind.

So sind die Kernoperatoren L™ (u) — L! (v) genau die ordnungsstetigen
nuklearen, wihrend jeder Operator L! (u) - L™ (») bereits ein Kernoperator ist.

Im Falle E=L%(u), F = L?(») sind, wie oben bemerkt, die k.a.s., absolutsummie-
renden und majorisierenden Operatoren unter Einschluf der entsprechenden Nor-
men mit den Hilbert-Schmidt-Operatoren identisch, wihrend (wegen der Reflexivi-
tit von L2 (u)) die integralen Operatoren mit den nuklearen zusammenfallen; Kern-
operatoren sind hingegen nicht notwendig vom Hilbert-Schmidtschen Typ und bei
rein atomaren Maflen u, v sogar mit den ordnungsbeschrinkten identisch.

Zum Schluf sei bemerkt, daf sich AL-Riaume, AM-Riume und Hilbertriu-
me (die letzteren aufgefafit als Banachverbinde L?(u)) durch das Zusammenfallen
gewisser der im obigen Diagramm aufgefithrten Operatorenklassen charakterisieren
lassen, wenn geeignete Typen von Banachriumen oder -verbinden als Definitions-
bzw. Bildriume zugelassen werden (vgl. [38], Kap. IV, Exerc. 15—17).

2 Spektraltheorie

Wir wenden uns nun der Spektraltheorie positiver Operatoren auf Banach-
verbinden zu. Die verwendete Terminologie (Spektrum, Spektralradius, Resolvente
usf.) ist die iibliche, wie sie etwa in Dunford-Schwarz [2] fiir lineare Operatoren auf
komplexen Banachraumen erklirt und gebraucht wird.

2.1 Hilfsbegriffe

Fiir eine verniinftige Spektraltheorie ist es erforderlich, Banachriume iiber
dem komplexen Skalarkérper zu betrachten. Fiir Operatoren auf (reellen) Banach-
verbinden E geniigt es hierbei im Prinzip, die Komplexifizierung E + iE, versehen
mit einer geeigneten Norm (d. h. einer Norm, fiir deren Topologie E +iE zu E x E
reell-isomorph ist), zugrundezulegen. Jedoch hat es sich aus mehreren Griinden
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(Dualbildung, Operatoren, u. a.) als vorteilhaft erwiesen, die Betragsfunktion
x = x|l von E vermége des Ansatzes

[x+iyl= supl cos 9 - x+sin 9 -yl
S€R

auf E + iE fortzusetzen, wobei wesentliche Eigenschaften der Betragsfunktion
(z. B. Dreiecksungleichung, absolute Homogenitit) erhalten bleiben; die kanoni-
sche Norm von x +iy (x, y € E) ist sodann die Norm von |x + iyl € E. Die so
definierte Verbandskomplexifizierung stimmt beispielsweise fiir die komplexen
Riume C(K), M(K), L?(u) mit den natiirlichen Norm- und Betragsdefinitionen
iiberein. Eine ausfihrliche Darstellung dieser Zusammenhinge findet sich in [38],
II. 11; im folgenden werden wir stets komplexe Banachverbinde im Sinne dieser
Definition betrachten.

Des weiteren benotigen wir unten den Begriff des Zentrums Z(E) eines
Banachverbandes E. Hierunter versteht man die Menge aller Operatoren T € < (E),
die fiir alle x € E einer Beziehung | Tx| < clx| (mit von T abhiingiger Konstantenc)
geniigen. Z(E) ist ein linearer Teilraum von % (E) mit den wesentlichen Eigenschaf-
ten:

(a) Z(E) ist eine volle (d. h. Inverse enthaltende), kommutative Teilalgebra
von <L (E), die in der starken Operatortopologie abgeschlossen ist.

(b) In der von Z(E) induzierten Norm, Ordnung und algebraischen Struk-
tur ist Z(E) isometrisch isomorph zu C(Kg) fiir einen geeigneten kompakten
Raum Kg.

Insbesondere ist jedes T € Z(E) ordnungsbeschrinkt und der Betrag | T| ein Ver-
bandshomomorphismus mit reellem Spektrum. Fiir E = C(K) ist Kz zu K, fiir
E=LP(u) (1 <p<+oo, ug-endlich)ist Kg zum Stoneraum der Maflalgebra von
# homdomorph. Von den zahlreichen Untersuchungen iiber das Zentrum reeller
Vektorverbinde sei hier auf [3], [17] verwiesen.

2.2 Symmetrie des Randspektrums

Unter dem Randspektrum (peripheren Spektrum) eines Operators T auf
dem (komplexen) Banachraum E verstehen wir die Menge {A € o(T): AI=1(T)},
wobei wie iiblich r(T) = sup {|Al: X\ € 6(T)} den Spektralradius von T bezeichnet.
Schon fiir positive Operatoren auf wesentlich allgemeiner geordneten Banachrau-
men als Banachverbinden (z. B. nichtkommutativen C*-Algebren) kann man der
vektoriellen Form [30] des funktionentheoretischen Satzes von Pringsheim ent-
nehmen, dafd r(T) zu o(T) gehort. Fiir Banachverbinde indes ist diese Aussage eine
unmittelbare Folge der Abschidtzung

IA=T)'xl < Z IAN-@+0 T x|=(IAl-T)!Ixl,
n=0
die auf der C. Neumannschen Reihe der Resolvente (giiltig fiir | A|> r(T)) beruht

und besagt, daf fiir wenigstens ein x €E die Familie (A —T)"!Ix] (A >1(T))
unbeschrinkt sein mufd; hieraus folgt bekanntlich r(T) € o(T).
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Wesentlich an die Verbandsstruktur gebunden sind hingegen die Symmetrie-
aussagen fiir das Randspektrum positiver Operatoren (vgl. [32]), wie sie fiir nicht
negative Matrizen sich leicht aus den bekannten Sitzen von Perron und Frobenius
ergeben: Fiir eine n x n-Matrix A >0, r(A) =1, ist das Randspektrum eine Ver-
einigung von Gruppen komplexer Einheitswurzeln. Einer angemessenen Verallge-
meinerung dieser Aussage stellt sich eine Reihe von Schwierigkeiten entgegen.
Nach lingeren Vorarbeiten durch verschiedene Autoren (vgl. die bibliographischen
Notizen in [38], Kap. V) gelang es Lotz [13], durch Benutzung von Ultraproduk-
ten den Fall beliebiger peripherer Spektralwerte auf den Fall peripherer Eigen-
werte zuriickzufiihren und so den folgenden Satz zu beweisen.

Theorem 2.A Es sei T ein positiver, (W)-auflosbarer Operator auf einem
beliebigen Banachverband, und es werde r(T) = | vorausgesetzt. Dann ist das Rand-
spektrum von T Vereinigung zyklischer Untergruppen der Kreisgruppe.

Die Bedingung der (W)-Auflosbarkeit bedeutet folgendes: Ein (positiver)
Operator T auf dem Banachverband E geniigt der (Wachstums-) Bedingung (W),
wenn (A — r(T)) (A — T)~! fiir A { r(T) beschrinkt bleibt. Allgemeiner heifit T
(W)-auflésbar, wenn es eine endliche Kette {0} =E, C... CE, =E abgeschlos-
sener Verbandsideale von E gibt, die T-invariant sind und fiir welche jeder der auf
den n Quotienten Ey,,/Ex (k=0,1,..., n—1) von T induzierten Operatoren

Nadimesronm (VI acwaiiatr NI A FlAahawlcnld Kand v D cbnbe vvma ccvaan O I ds o

ein Pol der Resolvente ist (etwa wenn T oder eine seiner Potenzen kompakt ist)
und natiirlich auch dann, wenn r(T) = 1 und die Potenzen von T gleichmifig be-
schrinkt sind. Es erscheint schwierig, sich von der Bedingung der (W)-Aufldsbar-
keit zu befreien oder einen positiven Operator anzugeben, der 2. A nicht geniigt.

Eine Ausnahme bilden die sogenannten Verbandshomomorphismen, das
sind (notwendigerweise positive) Operatoren T, fiir die stets | Tx|=Tlx| (x €E)
gilt. Eine Teilmenge A C C heifde zyklisch, wenn aus z € A folgt |zl (arg z)¥ € A
fiir beliebige k €Z. Nach Vorarbeiten von Wolff [45], [46], der insbesondere den
Fall E = C(K) vollstindig analysiert hatte, konnte Scheffold [40] den allgemeinen
Satz beweisen: '

Theorem 2.B Das Spektrum a(T) jedes Verbandshomomorphismus (auf
einem beliebigen Banachverband) ist zyklisch.

Scheffold (1.c.) konnte dariiber hinaus zeigen, daf jede kompakte zyklische
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endlichdimensionale Banachverbinde wesentliche Fassung des Begriffes Unzerleg-
barkeit oder Irreduzibilitit indessen scheint erstmalig in [32] gegeben zu werden:
Ein Operator T auf einem Banachverband E heift irreduzibel, wenn {0} und E die
einzigen abgeschlossenen, T-invarianten Verbandsideale sind. Interessante Beispiele
irreduzibler Operatoren auf C(K) sind die Operatoren, die durch die ergodischen
Fliisse der topologischen Dynamik induziert werden, und eine analoge Situation
liegt fiir die Operatoren auf LP(u) (1 <p <+ o) vor, die ergodische Transforma-
tionen des Grundraumes beschreiben.

Eine inhaltsreiche Verallgemeinerung der Frobeniusschen Theorie wird not-
wendigerweise auf das periphere Punktspektrum Bezug nehmen miissen. In der Tat
gilt folgender Satz, der vom Verfasser [32] zunichst fiir Operatoren auf C(K) be-
wiesen und sodann von Lotz [13] auf beliebige Banachverbinde ausgedehnt werden
konnte.

Theorem 2.C Sei T ein positiver, irreduzibler Operator auf E mit r(T) = 1;
das periphere Punktspektrum sei nicht leer, und es existiere eine Linearform
¢=T ¢>0. Esgilt:

(i) Der Fixraum von T ist eindimensional und wird von einer topologischen
Ordnungseinheit von E aufgespannt.

(ii) Das periphere Punktspektrum ist Untergruppe der Kreisgruppe.
(iii) Jeder periphere Eigenwert o ist einfach, und man hat o(T) = a o(T).
(iv) 1 ist einziger Eigenwert mit einem positiven Eigenvektor.

0 <u €E heifit topologische Ordnungseinheit von E, wenn das von u er-
zeugte Hauptideal E, in E dicht ist. Hinsichtlich der ,,Normierung* r(T) = 1 sowie
der Existenz der Linearform ¢ sei auf den Unterschied zum Fall dim E = n €N auf-
merksam gemacht. Fiir n > 2 ist stets r(T) > 0, wenn T irreduzibel ist; dies gilt
noch fiir beliebiges E = C(K), aber schon nicht mehr fiir alle Riume L' (u) [37].
Die Existenz einer positiven, invarianten Linearform p= T’ p ist (bei r(T) = 1) im
Fall E = C(K) gewihrleistet und folgt bei nichtleerem peripheren Punktspektrum
allgemein aus der Bedingung (W) (s. 0.) [32]; in allgemeineren Fillen muf sie postu-
liert werden.

Anscheinend gibt es nur wenige Ergebnisse iiber das allgemeine (d. h. nicht
notwendig aus Eigenwerten bestehende) Randspektrum irreduzibler Operatoren;
so konnte Verf. zeigen [36], daB fiir irreduzible Markov-Operatoren auf C(K) das
periphere Spektrum stets eine Untergruppe der Kreisgruppe ist.

Andererseits sind Pole der Resolvente stets Eigenwerte, und es fragt sich,
inwieweit fiir positive Operatoren das Verhalten der Resolvente an der Stelle
A = 1(T) schon ihr singulires Verhalten auf dem gesamten Spektralkreis I\l =r(T)
bestimmt. Nehmen wir wieder r(T) =1 an, und sei A = 1 ein Pol von
R(N) = (A — T)~!. Esist dann leicht einzusehen [30], daf 1 ein Pol maximaler Ord-
nung auf dem Spektralkreis sein muf, und fiir irreduzibles positives T kann es dort
nur Pole 1. Ordnung geben. Aber kénnen unimodulare Spektralwerte vorhanden
sein, die nicht Pole sind? Diese Frage erwies sich als schwierig; sie konnte von
Niiro [23] zunéchst fiir die Folgenrdume 2P (und spiter fiir LP (u)), | <p <+ oo,
negativ beantwortet werden. Dem Verfasser gelang dann der entsprechende Nach-
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weis fiir beliebige Riume C(K) und L' (u) [34], und schlieflich 16sten Niiro und
Sawashima [24] das Problem allgemein.

Theorem 2.D Sei T ein positiver, irreduzibler Operator auf einem beliebi-
gen Banachverband. Ist der Spektralradius 1(T) ein Pol der Resolvente R()\), so
besteht das periphere Spektrum nur aus Polen 1. Ordnung von R(M).

Es kann hinzugefiigt werden, daf (fiir dim E > 2) stets r(T) > 0 ist und
folglich r(T) = 1 angenommen werden kann; das periphere Spektrum von T be-
steht dann nach Theorem 2.C aus einer Gruppe von Einheitswurzeln, die simtlich
einfache Eigenwerte sind (insbesondere ist T quasi-kompakt). Ein relativ einfacher
Beweis von 2.D, der auf Lotz und den Verfasser [16] zuriickgeht, ist in [38], V.5
reproduziert. Das gleiche gilt fiir die folgende Verallgemeinerung von 2.D.

Korollar 2.E Sei T positiver Operator auf einem beliebigen Banachverband.
Ist 1(T) Pol der Ordnung k der Resolvente R(\), und ist das zugehorige Residuum
von endlichem Rang, so besteht das periphere Spektrum nur aus Polen der Ord-
nung <k.

Anhand einfacher Gegenbeispiele 143t sich zeigen [38], daf die Voraus-
setzungen nicht weiter abgeschwicht werden kénnen.

2.4 Gruppen positiver Operatoren

Eine durch die Anwendungen gegebene Motivation zum Studium von Grup-
pen positiver Operatoren auf Banachverbianden entstammt der Ergodentheorie und
topologischen Dynamik. Seien etwa (X, Z, p) ein g-endlicher Mafiraum, & eine
Ol e ﬁ,\_ — e nhl e man wrman v

G, (P) positiver Isometrien auf LP (1) (1 <p <+ o). Welche Gruppen positiver
Operatoren auf einem Banachverband sind nun von dieser oder dhnlicher Gestalt,
und was lift sich allgemeiner iiber solche Gruppen aussagen? Wir wollen nachfol-
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dap j, und j, injektive Verbandshomomorphismen sind und (vermége j,) die Ope-
ratorengruppe G auf E von der Gruppe aller Translationsoperatoren auf L! (G, m)
induziert wird.

Ein spezieller Fall liegt vor, wenn T > 0 ein irreduzibler Operator mit
gleichmifig beschrinkten Potenzen auf E ist, dessen zu unimodularen Eigenwer-
ten gehorige Eigenvektoren in E total sind; hier ist die Abschliefung der Halbgrup-
pe (T"), >, eine (monothetische) kompakte irreduzible Gruppe G. (Fiir den Fall
eines ergodischen dynamischen Systems ist das Resultat als Satz von Halmos-von
Neumann bekannt; vgl. [38], III. 10.5 Cor.) Ein bekanntes, aber illustratives Bei-
spiel wird durch den Operator T,f(z) = f(az) gegeben («, z €T), wo I die Kreis-
gruppe bezeichnet und o/ irrational ist; hier kann E beispielsweise ein beliebiger
der Banachverbiande C(I") oder LP(I", m) (1 <p <+ o) sein.

Das zweite der oben erwihnten Resultate bezieht sich auf beliebige Gruppen
positiver Operatoren und ergab sich in Verfolgung der Frage, ob ein Verbandsho-
morphismus T von E mit ¢(T) = {1} notwendig die identische Abbildung I sein
muf. Fir Automorphismen von C*-Algebren oder von kommutativen halbeinfa-
chen Banachalgebren trifft dies zu (vgl. die in [20] zitierte Literatur), nicht jedoch
fur Kontraktionen eines Hilbertschen Raumes. Die Antwort fiir Verbandshomo-
morphismen ist positiv und in dem folgenden Satz enthalten [39].

Theorem 2.G Fiir einen Verbandsisomorphismus T eines Banachverbandes
E sind dquivalent:

(@) Tist im Zentrum Z(E) enthalten.

() a(T) C(0, +o0).

Da ein invertierbarer Verbandshomomorphismus T, wie man leicht sieht,
ein Verbandsisomorphismus sein muf, folgt nun in der Tat aus o(T) = { 1 } die Be-
ziehung T € Z(E) = C(Ky); weeen der oben in 2.1 genanpten Eigenschaften van

Z(E) folgt hieraus sofort T =1I. Weitere Information iiber positive Operatorengrup-
pen gibt das vorstehende Theorem unter wesentlicher Verwendung des Satzes von
Scheffold (Theorem 2.B):

Theorem 2.H Jede nichtzentrale (d. h. G N Z(E) = {1} geniigende) Gruppe
G positiver Operatoren auf E ist in der Normtopologie diskret; genauer gilt

1 <IIS =TIl min (IS~YI, 1T
firalle S, TEG, S#+T.

Den Beweis und Verschirfungen dieser Abschidtzung findet man in [39]; als
Kuriosum sei erwihnt, daB fiir jede torsionsfreie Gruppe G positiver Isometrien
eines beliebigen Banachverbandes E aus S, TE€G, S#T stets ||S — T| =2 folgt.

3 Einparametrige Halbgruppen

Wir wenden uns in diesem Abschnitt einparametrigen Halbgruppen positi-
ver Operatoren auf Banachverbanden zu, und zwar vor allem den Spektraleigen-
schaften der Erzeugenden, die fiir das asymptotische Verhalten der Halbgruppe
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wesentlich sind; hierin liegt das Hauptinteresse der Theorie bei den Anwendungen.
Bei aller Analogie der berichteten Ergebnisse, die noch durchweg unversffentlicht
sind, mit den Resultaten von Abschnitt 2 kann von einer routinehaften Ubertra-
gung keine Rede sein.

3.1 Hilfsbegriffe

Fiir die Grundlagen der Theorie stark stetiger Halbgruppen auf Banachriu-
men verweisen wir auf Hille [6] (oder die spitere Fassung von Hille-Phillips). Wie
iiblich verstehen wir unter einer einparametrigen Operatorenhalbgruppe einen
stetigen Homomorphismus H: t - T (t) der additiven Halbgruppe R, in die mul-
tiplikative Halbgruppe % (E), wo E einen Banachraum und ,,s** die starke Opera-
tortopologie bezeichnen; es wird ferner stets T(0) = I (= id E) angenommen. Die
durch den Ansatz

Ax = lim t~!1(T(t) — Dx
t—= 0

gegebene lineare Abbildung D(A) = E, deren Definitionsbereich D(A) der Exi-
stenzbereich des Limes in E und stets ein dichter linearer Teilraum von E ist, ist
abgeschlossen und heifit Erzeugende (oder Generator) von H. A'ist beschrinkt
(und folglich D(A) = E), genau wenn H normstetig ist; in diesem Falle hat man
notwendig T(t) =exp tA (t €R.). Eine stark stetige Halbgruppe H nennen wir
positiv (bzw. Verbandshalbgruppe), wenn E ein (komplexer, s. 2.1) Banachverband
und alle T(t) positive Operatoren auf E (bzw. Verbandshomomorphismen von E)
sind.

3.2 Die Resolvente der Erzeugenden A
Jede stark stetige Halbgruppe H geniigt Abschitzungen der Gestalt
I T <Me«t (tER,)

fir gewisse w € R und M = M(w). Aus der Definition der Erzeugenden A ergibt
sich nach einiger Rechnung, dal die Resolvente R(A\) = R(A, A) = (A — A)~! jeden-
falls fir Re A > w existiert und die Darstellung

*) RMx=[eMT()xdt (x€EE)
0

gestattet, wobei das Integral im Bochnerschen Sinne zu verstehen (also insbeson-
dere absolut konvergent) ist. Das Infimum w, der in der obigen Abschitzung von
| T(t)|l zuldssigen Werte w kann daher auch als A bszisse absoluter Konvergenz der
Darstellung (*) bezeichnet werden. (Diese Darstellung verhilt sich zur C. Neu-
mannschen Reihe der Operatorentheorie dhnlich wie gewdhnliche Dirichletreihen
zu Potenzreihen.) Aus der Darstellung (*) entnimmt man sofort, da® das (mogli-
cherweise leere) Spektrum o (A) jedenfalls in der Halbebene {A€C: ReA < wy}
liegt. Die Zahl s(A) =sup {Re A\: A €0 (A)} nennt man Spektralschranke von A;
im allgemeinen ist (wie bei Dirichletreihen) s (A) < w,.

Wie verhilt es sich bei positiven Halbgruppen? Ist E = C(K) oder
E = L!(u), so gilt stets s(A) = wo; hingegen hat M. Wolff kiirzlich an einem Bei-
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spiel gezeigt, dafd selbst fiir positive Halbgruppen auf reflexiven Banachverbinden
s(A) < w, sein kann. Greiner [4] konnte jedoch zeigen:

Lemma 3.A Sei H eine positive Halbgruppe auf dem Banachverband E.
Fiir alle x €E und alle \ €C, Re A\ >s(A) gilt

RO)x= lim [ e MT(t) x dt
0

§— +oo
in der Normtopologie von E.

Man kann also bei positiven Halbgruppen fiir alle A, Re A > s(A), iiber die Darstel-
lung (*) im Sinne eines ,,uneigentlichen Riemannschen Integrals‘ verfiigen, das
freilich i. allg. nicht absolut konvergiert.

3.3 Das Spektrum von A

Fiir allgemeine Halbgruppen ist das Spektrum der Erzeugenden, wie man
an einfachen Beispielen sieht, so gut wie keiner Beschrinkung unterworfen: Jede
abgeschlossene, in einer linken Halbebene enthaltene Teilmenge von C ist gleich
o(A) fir die Erzeugende A einer geeignet gewahlten, stark stetigen Halbgruppe.
Fiir positive Halbgruppen hingegen hat o(A) sehr viel weitergehende
Eigenschaften, als sich zunichst vermuten laf3t. Es ist hier anzumerken,
daf’ die fiir beschrianktes A giiltige Relation exp to(A) = o(T(t)) (t €Ry)
sowie die stets giiltige Beziehung

et Cg(T(t)) (tE€ER,)

aufler der Tatsache, dafd 6 (A) in einer linken Halbebene enthalten sein muf}, weder
fur allgemeine noch fiir positive Halbgruppen niitzliche Informationen enthalten.
Hingegen gestattet Lemma 3.A fiir positives H die Abschitzung

400
IR xI< f e ReMt T(t)|x|dt
)

der Resolvente, sobald Re A > s(A) ist; hieraus ergibt sich sofort, daf im Falle
0(A) # ¢ die Spektralschranke s(A) stets zu o gehort. Aufgrund der Resultate

von Abschnitt 2 und der Abbildungseigenschaften der komplexen Exponential-
funktion kann man nun hoffen, dafd — unter geeigneten Voraussetzungen — das
Spektrum o(A) Periodizititseigenschaften in Richtung der imaginidren Achse auf-
weist. Eine Teilmenge B C C werde daher imaginir additiv zyklisch genannt, wenn
aus a+ifE€B (o, BER) fiiralle k €Z die Relation a+ikf €B folgt. In Ana-
logie zu Theorem 2.B konnte Derndinger [1] den folgenden Satz beweisen.

Theorem 3.B Sei H eine Verbandshalbgruppe, mit Erzeugender A, auf einem
beliebigen Banachverband. Dann sind o(A) sowie das Punktspektrum von A imagi-
ndr additiv zyklisch.

Als unmittelbare Folgerung ergibt sich, daf} die (beschrinkte) Erzeugende A
einer normstetigen Verbandshalbgruppe nur reelles Spektrum besitzen kann. Fer-
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ner konnte Derndinger zeigen (1.c.), da unter Voraussetzung einer Wachstumsbe-
dingung (W) fiir die Resolvente von A auch das periphere Punktspektrum von A
imagindr additiv zyklisch ist. Hier versteht man unter dem peripheren Spektrum
(Randspektrum) von A natiirlich das auf der Spektralgeraden {A €C: Re A =s(A)}
gelegene Spektrum von A; entsprechend wird unter (W) jetzt eine Bedingung

IR(A)I <const(X —s(A)~!  (A>s(A))

verstanden. Auch der Begriff der (W)-Auflésbarkeit iibertrigt sich unmittelbar auf
Halbgruppen (vgl. 2.2); so konnte Greiner [4] die volle Analogie zu Theorem 2.A
herstellen.

Theorem 3.C Sei H eine positive, (W)-auflosbare Halbgruppe mit Erzeugen-
der A, und es werde (0.B.d.A.) s(A) = 0 vorausgesetzt. Dann ist das Randspektrum
von A Vereinigung additiver Untergruppen der imagindren Achse.

Neben der Verwendung von Ultraprodukten, wie dies in [38], Kap. V.1,
niher beschrieben ist, spielen beim Beweis ordnungstheoretische Abschitzungen
der Resolvente eine Rolle, die sich wesentlich auf Lemma 3.A stiitzen. Mit Hilfe die-
ser Methoden gelang es Greiner [4] nun auch, die Aussagen 2.C bis 2.E vollstindig
auf positive Halbgruppen auszudehnen; wir fassen das Ergebnis in folgendem Theo-
rem zusammen.

Theorem 3.D Sei H eine positive, irreduzible Halbgruppe, deren Erzeugende
A(o.B.d.A.) der Bedingung s (A) = 0 geniige und fiir welche eine positive Linearform
@ € ker A* existiert. Dann gelten fiir A sinngemdp die Sitze 2.C und 2.D, in denen
T durch A, 1(T) durch s(A) und die Kreisgruppe durch die additive Gruppe der
Spektralgeraden {\ € C: Re A =s(A) = 0} zu ersetzen sind.

Es sei angemerkt, dafd — im Gegensatz zu zyklischen Halbgruppen (T"),en —
eine kontinuierliche Halbgruppe irreduzibel sein kann, ohne daf ein einziger der
Operatoren T(t) es ist. Wie im Fall von Satz 2.C kann im vorstehenden Theorem
die Existenz einer Linearform 0 < ¢ € ker A* durch die hier stirkere Bedingung (W) er-
setzt werden, und auch Korollar 2.E gilt sinngemif fiir positive Halbgruppen.

Beispiele fiir irreduzible positive Halbgruppen, die den Voraussetzungen von
Theorem 3.D geniigen, sind solche mit kompakter Resolvente wie etwa die vom
Laplaceschen Operator A erzeugte Halbgruppe auf LP (2) (1 <p<+o0, Q CR"
beschrinkt).

3.4 Charakterisierung von A

Die erstaunlichen Spektraleigenschaften der Erzeugenden positiver Halbgrup-
pen riicken die Frage nach einer Charakterisierung dieser Abbildungen (unabhingig
von ihrer definierenden Eigenschaft) in ein neues Licht. Vor lingerer Zeit gaben
Phillips [26] sowie spiter Sato [27], [28] Charakterisierungen der Erzeugenden po-
sitiver Kontraktionshalbgruppen mit Hilfe des Begriffes der Dispersivitit. Ohne die
Kontraktionsbedingung sind voll befriedigende Ergebnisse zunichst nur fiir Verbands-
halbgruppen auf Banachverbinden mit ordnungsstetiger Norm (z.B. den Riumen
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Buchbesprechungen

Chern, S.s., Selected Papers, New York — Heidelberg — Berlin: Springer-Verlag 1978,
XXXI + 476 pp., cloth, DM 52,—

Anliglich seiner Emeritierung wurde diese Auswahl der Schriften des bedeutenden
Geometers S.-s. Chern herausgegeben. Eine dhnliche Auszeichnung wurde vor einigen Jahren
H. Hopf zuteil, und wie A. Weil in seinem sehr lesenswerten Beitrag ,,S.-s. Chern as Geometer
and as Friend* schreibt, steht Chern in einer Linie mit den anderen groen Geometern unseres
Jahrhunderts, wie E. Cartan und H. Hopf. Ich zitiere:

“The psychological aspects of true geometric intuition will perhaps never be cleared up.
At one time it implied primarily the power of visualization in three-dimensional space. Now that
higher-dimensional spaces have mostly driven out the more elementary problems, visualization
can at best be partial or symbolic. Some degree of tactile imagination seems also to be involved.
Whatever the truth of the matter, mathematics in our century would not have made such impres-
sive progress without the geometric sense of Elie Cartan, Heinz Hopf, Chern and a very few more.
It seems safe to predict that such men will always be needed if mathematics is to go on as before.’

Hinzufiigen zu dieser Umschreibung dessen was geometrische Intuition ausmacht, mochte
ich noch ihre Fiahigkeit, apriori gegebene Strukturen aus Anschauung und Empirie herauszuschi-
len. Hier wird nicht in erster Linie ein vorgegebener mathematischer Apparat genutzt, sondern
— wie es die Theoretischen Physiker oft tun miissen — es werden Zusammenhinge aufgezeigt, fir
deren Beschreibung die geeignete mathematische Maschinerie oft noch gar nicht vorliegt. Die
Mathematik erfihrt dann fruchtbare neue Anregungen aus der Forderung, einen geeigneten
mathematischen Uberbau zu schaffen.

Bei der Auswahl wurden die kiirzeren und schwerer zuginglichen Arbeiten bevorzugt. Wie
ieder Mathematiker weifl. beruht_die Wirkuoe von Cherns Schaffen auch auf seiner 1.ehrtitiokeit

’

——

Geometry‘, Princeton 1951. Die deutschen Geometer schlieBlich werden mit Stolz und Befrie-
digung erneut zur Kenntnis nehmen, da Chern entscheidende Anregungen wihrend seiner Ham-
burger Zeit (1934—36) bei Blaschke und Kihler empfangen hat. Es bleibt nur zu wiinschen, daf
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Courant’s outlook was formed in the Géttingen of Runge, Hilbert and Klein (Reid quotes

K. O. Friedrichs to the effect that Courant always considered himself the son of Hilbert, but in
s me ~LJ1-ia) Tle idsaltle sm-c1rmnar né mravnsa one riolimndi~u Bt an mun-n—r(ﬁﬁ

4

applied mathematics. Courant played a leading part in realizing this ideal through his research,
lectures, books (particularly the “Methoden der mathematischen Physik™), through his personal
involvement with students and readiness to help, and through his role in securing Rockefeller
Foundation funds for a new mathematics building in G6ttingen.

The political events of 1933 swept away the orderly academic world of which Courant
had become an integral part. He had to start anew with a modest job at New York University,
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Details zu verstricken, die oft von der Lektiire einfihrender Logiklehrbiicher abschrecken. Es
werden dann die grundlegenden Satze wie Vollstindigkeits- und Kompaktheitssatz bewiesen und
ein Ausblick auf héhere Sprachen gegeben. Nach der Lektiire dieses Artikels sollte auch der Nicht-
logiker in der Lage sein, eine Reihe weiterer Artikel mit Gewinn zu lesen. Der Appetit dazu wird
sich sicher beim Durchblittern des Buches ganz von selbst einstellen. Da hier natiirlich nicht

e i TR

A. Modell Theory: A 1. J. Barwise: An introduction to first order logic. 42. H. J. Keisler:
Fundamentals of model theory. A3. P. C. Eklof: Ultraproducts for algebraists. 44. A. Macintyre:
Model completeness. 45. M. Morley: Homogenous sets. A6. K. D. Stroyan: Infinitesimal analysis
of curves on surfaces (Eine Anwendung der Nonstandard Analysis). 4 7. M. Makkai: Admissible
sets and infinitary logic. 48. A. Kock and G. E. Reyes: Doctrines in categorical logic. B. Set
Theory: Bl. J. R. Shoenfield: Axioms of set theory. B2, T. J. Jech: About the axiom of choice,
B3. K. Kunen: Combinatorics. B4. J. P. Burgess: Forcing. BS. K. J. Devlin: Constructibility.

B6. M. E. Rudin: Martin’s axiom. B7. I. Juhasz: Consistency results in topology. C. Recursion
Theory. C1. H. B. Enderton: Elements of recursion theory. C2. M. Davis: Unsolvable problems.
C3. M. O. Rabin: Decidable theories. C4. S. G. Simpson: Degrees of unsolvability. C5. R. A. Shore:
a-recursion theory. C6. A. Kechris and N. Moschovakis: Recursion in higher types. C7. P. Aczel:
An introduction to inductive definitions. C8. D. A. Martin: Descriptive set theory: Projective
sets. D. Proof Theory: D1. C. Smorynski: The incompleteness theorems. D2. H. Schwichten-
berg: Some applications of cut-elimination. D3. R. Statman: Herbrand’s theorem and Gentzen’s
notion of a direct proof. D4. S. Feferman: Theories of finite type related to mathematical prac-
tice. D3. A. S. Troelstra: Aspects of constructive mathematics. D6. M. P. Fourman: The logic

of topoi. D7. H. Barendregt: The type free lambda calculus. D8. J. Paris and L. Harrington: A
mathematical incomoleteness in Peanao Arithmetic
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Gebietes, die aus der Chemie erwachsen, anzuregen. Dabei entfillt das Schwergewicht allerdings
auf die erste Aufgabe: Wihrend die Graphentheorie mehr von ihren Grundlagen her entwickelt
wird, werden aus der Chemie sehr viel mehr Kenntnisse vorausgesetzt. Insgesamt bildet das Buch
ein beeindruckendes Beispiel interdisziplindrer Zusammenarbeit zwischen Wissenschaftlern sehr
verschiedener Fachrichtungen.

Die Artikel seien noch im einzelnen aufgefiihrt (die Namen der Verfasser stehen in Klam-
mern): Early history of the interplay between graph theory and chemistry (Balaban, Harary). An
exposition of graph theory (Harary). Pélya’s contributions to chemical theory (Harary, Palmer,
Robinson, Read). The enumeration of acyclic chemical compounds (Read). Enumeration of
cyclic graphs (Balaban). Metric spaces and graphs representing the logical structure of chemistry
(Dugundji, Gillespie, Marquarding, Ugi, Ramirez). The topological matrix in quantum chemistry
(Rouvray). Some aspects of graph theory for intermolecular interactions in chemical physics
(Brocas). Applications of graph theory to organometallic chemistry (Gielen). The graph-like
state of matter and polymer science (Gordon, Temple). Ordered chromatic graph and limited
environment concepts (Dubois).

Hamburg R. Halin

Noltemeier, H., Graphentheorie mit Algorithmen und Anwendungen, (de Gruyter Lehr-
buch), Berlin — New York: Walter de Gruyter 1976, 239 S., gebd., DM 48,—

Das Buch gibt eine Einfiihrung in die Graphentheorie, die hauptsichlich fiir Praktiker
gedacht ist. Theoretische Uberlegungen und Beweise treten in den Hintergrund; dafiir werden
ausfithrliche Programme fiir die jeweils behandelten Probleme angegeben, was beim Leser eine
gewisse Vertrautheit mit formalen Sprachen voraussetzt. Im iibrigen sind die geforderten mathe-
matischen Vorkenntnisse bescheiden. Die Darstellung ist im allgemeinen gut lesbar und klar,
wenn auch der Leser gelegentlich undefinierte Begriffe ,,erraten* muf (so z. B. auf S. 19 die
Begriffe ,,Zentrum*, ,,Durchmesser*, ,,bipartit*‘) und manchmal die klare Linie durch eine Fiille
eingestreuter Hinweise ein wenig leidet.

In den ersten Kapiteln werden einige der wichtigsten Grundbegriffe aus der Theorie der
(gerichteten bzw. bewerteten) Graphen definiert und an Beispielen aus der Praxis, hauptsichlich
an 6konomischen Problemen, diskutiert. Hier sind u. a. behandelt das Problem der Speicherung
von Graphen, Erreichbarkeit und Zusammenhang, Baume und Geriiste mit dem Kruskal-Algo-
rithmus zur Gewinnung eines Minimalgeriistes, Labyrinthe sowie Ringe, Kreise, Zyklen. Sodann
nehmen Algorithmen zur Auffindung kiirzester Entfernungen und Wege einen breiten Raum ein.
Das Kapitel iiber Stromungen (in Netzwerken) bringt u. a. das Min Cut — Max Flow Theorem
von Ford-Fulkerson (mit zugehorigem Algorithmus). Es folgt ein Kapitel iiber ,,matching‘-
Probleme mit dem Heiratssatz und verwandten Fragestellungen, sodann werden Rundreisepro-
bleme (traveling salesman problem, Eulersche Linien) behandelt. Den Beschluf bildet ein Kapi-
tel iiber Netzplantechnik (Planung von Projekten).

Es ist gewif ein verdienstvolles Unterfangen, die Liicke zwischen Theorie und Praxis
schlieBen zu wollen, die auch in einem so wirklichkeitsnahen Gebiet wie der Graphentheorie
schmerzlich tief ist. Jedoch bietet das vorliegende Buch an reiner Graphentheorie zu wenig, um
den theoretisch Interessierten fiir die Anwendungen wirklich begeistern zu konnen. Viele grund-
legende Sitze und Probleme werden gar nicht erwihnt (wie die Sitze von Menger und Petersen,
Extremalprobleme, Fragen hoheren Zusammenhangs, Ramseyprobleme) bzw. nur ganz kurz an-
gesprochen (wie Hamiltonkreise, Firbungsprobleme, der Satz von Kuratowski, der dem Leser
unverstindlich bleiben muB, weil in der Formulierung der Begriff ,.kontrahierbar* ohne Defini-
tion benutzt wird). So hinterlifit das Buch beim Referenten einen zwiespiltigen Eindruck: Einer-
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seits ist es wichtig und wertvoll, daf} auf die umfangreiche Anwendbarkeit der Graphentheorie
hingewiesen wird, andererseits ist es bedauerlich, da} die tieferen Sitze der Theorie und fast alle
in den letzten Jahren erreichten bedeutenden Fortschritte in dem Buche nicht zur Sprache kom-
men.

Hamburg R. Halin

Marcus, D. A., Number fields (Universitext), Berlin — Heidelberg — New York: Springer-
Verlag 1977, VIII + 279 S., kart., DM 26,10

Der Autor gibt eine Einfithrung in die klassischen Methoden und Sitze der algebraischen
Zahlentheorie. Die Vorkenntnisse fiir das Verstindnis des Buches werden moglichst gering gehal-
ten; im wesentlichen werden nur die Anfangsgriinde der Algebra benétigt. Lediglich in den beiden
letzten Kapiteln wird von den Grundbegriffen der Funktionentheorie Gebrauch gemacht. Auf
die Einfiihrung lokaler Methoden verzichtet der Autor vollig.

Das Buch beginnt mit dem Kummerschen Ansatz fiir die Behandlung der Fermatschen
Vermutung, um damit die Einfihrung der algebraischen Zahlen zu motivieren. Auch an spéteren
Stellen wird dieser Faden wieder aufgenommen. Das zweite Kapitel bringt die Sitze iiber die
additive Struktur des Ringes der ganzen Zahlen eines algebraischen Zahlkérpers, d. h. es behan-
delt Ganzheitsbasen und die Diskriminante. Das dritte Kapitel entwickelt die Idealstruktur die-
ser Ringe. Die Hilbertsche Theorie von Zerlegungsgruppen, Trigheitsgruppen und hoheren Ver-
zweigungsgruppen wird im vierten Kapitel abgehandelt. Es folgen dann die Sitze iiber Diskrimi-
nanten-Abschétzungen, Endlichkeit der Klassenzahl und Struktur der Einheitengruppe mittels
der Minkowskischen geometrischen Methode. In den Kapiteln 6 und 7 wird die Dedekindsche
Zetafunktion eingefiihrt und zur Herleitung der analytischen Klassenzahlformel herangezogen.
Ausgehend von der Verteilung der Primideale gibt das letzte Kapitel einen Ausblick auf einige
Aspekte der Klassenkorpertheorie.

Das Buch ist sehr klar geschrieben und besonders fiir einen Anfinger fiir die Einarbeitung
in das Gebiet der algebraischen Zahlen bestens zu empfehlen. Zu iiber einem Drittel besteht der
Text aus Ubungsaufgaben. In diesen werden teils numerische Beispiele behandelt (z. B. quadrati-
sche, kubische und biquadratische Zahlkorper, Bestimmung ihrer Diskriminanten, Einheitengrup-
pen, Klassenzahlen usw.), teils auch Erginzungen der Theorie, wie etwa der Satz von Kronecker
und Weber in einer Folge von Aufgaben zum Kapitel 4.

Durch diese zahlreichen Ubungsaufgaben ist eine wirkliche Erarbeitung des Stoffes mog-
lich. Der Autor verzichtet bewufit auf viele Abstraktionen und legt Wert auf eine gute Begriin-
dung der eingefiihrten Begriffe.

Erlangen J. Kohn

Moishezon, B., Complex Surfaces and Connected Sums of Complex Projective Planes
(Lecture Notes in Mathematics 603), Berlin — Heidelberg — New York: Springer Verlag 1977,
10 Figs. 111 + 234 pp, DM 25,—

Fiir die topologische Untersuchung singularititenfreier einfach zusammenhingender
kompakter komplexer Flichen X stehen ein Homotopie- und ein h-Kobordismus-Klassifikations-
satz zur Verfligung: Zwei solche Flichen X und X' sind genau dann vom gleichen orientierten
Homotopietyp, wenn die durch die Schnittformen S(X) bzw. S(X’) auf der zweiten ganzzahli-
gen Homologie H,(X, Z) bzw. H,(X', Z) definierten Strukturen von inneren Produktriumen
isomorph sind (Milnor-Whitehead); dies ist genau dann der Fall, wenn X und X’ h-kobordant
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sind (Wall). Da fiir die reelle Dimension vier das h-Kobordismus Theorem von Smale nicht be-
wiesen ist, kann man damit nicht weiterschlieBen, da X und X' dann bereits beziiglich der
zugrunde liegenden &~ -Strukturen diffeomorph sind. Immerhin hat Wall gezeigt, daB X und
X' in folgendem Sinne ,,stabil“ diffeomorph sind (dabei bezeichnet # die zusammenhiingende
Summe und kS: = S# ... #S): ,,Fiir hinreichend grofe k sind X #k (P, x P;) und

X' #k (P, x P,) diffeomorph.* Daraus folgt die Existenz eines Diffeomorphismus

(*) X#kP2 #QFzEmpz #HF2

mit geeignet gewihlten k, 2, m, n € N (dabei bezeichnet P, die komplex projektive Ebene mit
der nicht kanonischen Orientierung).

Wesentliches Ziel der vorliegenden Lecture Notes ist es, eine Diffeomorphie (*) mit
moéglichst kleinen k und £ zu finden. Dazu wird folgendes allgemeine Resultat gezeigt (Theorem A):
Ist b, bzw. b_ die Zahl der (mit Vielfachheiten gezihlten) positiven bzw. negativen Eigenwerte
der symmetrischen Bilinearform S(X), so existieren Polynome P, P, € Z[T], so da} (*) fiir
k =P,(b,) und £ = max (O, P,(b,)—b_) gilt. Dieses Ergebnis wird folgendermafen verschirft:
Aus der Kodaira Klassifikation der Bimeromorphieklassen von Flichen folgt, da8 X zu einer
rationalen, einer elliptischen oder einer algebraischen Fliche von allgemeinem Typ diffeomorph
ist. Rationale Flichen sind diffeomorph zu P, x P, oder zu P, # mP, (d. h. zu einer in m Punk-
ten aufgeblasenen projektiven Ebene). Fiir elliptisches X ist k = 1 und £ = 0 wihlbar (dann gilt
m=b;(X) + 1 und n = b_(X)). Fiir projektiv algebraisches X - P; mit ] =5, das nicht in einem

P, enthalten ist, sind ebenfalls k = 1 und £ = 0 wihlbar (dann gilt m = —- (d2 —6d+11)-by(X)
undn=—— (2 d? —4d +3) — b_(X)). — Das letzte Resultat wird allgememer fiir den Fall be-

wiesen, daﬁ X als Singularititen hochstens rationale Doppelpunkte hat. — Der umfangreiche Be-
weis beruht wesentlich auf einer subtilen Anwendung differentialtopologischer Schneide- und
Klebetechniken sowie auf einer genauen Analyse von Faserungen. Fiir die Untersuchung von
Projektionen projektiv algebraischer Flichen in den P3 wird ein klassischer Satz von Severi auf
irreduzible Flichen im P mit isolierten Singularititen iibertragen. — Der Text schlieBt mit einem
algebraischen Anhang von R. Livne, der sich aus der Untersuchung der globalen Monodromie
motiviert.

Konstanz L. Kaup

Anderson, F. W., Fuller, K. R., Rings and Categories of Modules (Graduate Texts in
Mathematics 13), Berlin — Heidelberg — New York: Springer-Verlag 1974, VIII + 339 pp.,

DM 46,—

Faith, C., Algebra II Ring Theory (Grundlehren der Mathematischen Wissenschaften
191), Berlin — Heidelberg — New York: Springer-Verlag 1976, XVI + 302 pp., cloth, DM 98,—

Lehrbiicher iiber Ringe und Moduln erscheinen in jingster Zeit zahlreich, und das ist gut
so. Homologische und kategorielle Methoden haben das Bild der Algebra veréndert. Der Springer-
Verlag legt zu dem Thema zwei Werke vor, die sich entsprechend der unterschiedlichen Ziel-
setzung der beiden Reihen (s. 0.) unterscheiden.

Anderson und Fuller geben eine moderne Einfithrung in die Grundbegriffe der Ringe
und Moduln. Kategorien werden gerade so weit benutzt, wie sie zu einer durchsichtigen Be-
schreibung forderlich sind. Mit Gewinn bedienen sich die Verfasser des Dualitdtsprinzips und
erhalten eine groRe Symmetrie in der Darstellung vieler fundamentaler Begriffspaare: direkte
Summe — direktes Produkt, Generator — Cogenerator, Sockel — Radikal, projektiver Modul —
injektiver Modul usw. Der Leser versteht bei so viel Symmetrie am Ende nicht, warum es zwar
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stets eine injektive Hiille, aber nur manchmal eine projektive cover gibt. Metaphysik aber ist ver-
pont.

Faith liefert in dem 2. Band seiner Algebra: ,,Ring Theory‘ eine zum Teil sehr ins ein-
zelne gehende Beschreibung einiger Klassen von Ringen, meist ,,kleiner Ringe wie semilokale,
perfekte, Quasi-Frobenius, uniserielle Ringe. Die Kategorien, die in Bd. I eine so beherrschende
Rolle spielen, sind nahezu wieder verschwunden. Triumphierend wird der Kategoriengegner
feststellen: ,,Wenn es um konkrete Ringe geht, braucht man die Kategorien nicht. Das beriihrt
den entscheidenden Punkt: Trigt das Buch den Titel ,,Ring Theory* mit Recht oder miifite es
nicht ,,Theories of some types of rings heifien? Man vergleiche unter diesem Gesichtspunkt
N. Jacobsons Buch ,,Structure of Rings*. Ist es ein Zufall, daB Jacobsons Buch da anfingt, wo
Faith aufhort? Es ist nimlich grundsitzlich fraglich, ob man mit der Methode: beschreibe alle
Ringe mit der Eigenschaft E! eine Theorie der Ringe erhilt; schon deshalb, weil es vermutlich
unendlich viele Eigenschaften E gibt. Die ,,Symbiose zwischen Ringen und Moduln*, auf die
der Autor vollig zu Recht hinweist, ist tiefgriindiger als es in dem Buch sichtbar wird, zumindest
gebote die Partnerschaft dieser Symbiose, das Problem auch so zu stellen: Kennzeichne die
Klasse derjenigen Ringe, die Endomorphismenringe eines Moduls der Eigenschaft E sind! Ein
Beispiel: Einen relativ breiten Raum nehmen in beiden Biichern die semiperfekten Ringe sowie
direkte Zerlegungen von Moduln ein, insbesondere von Azumaya-Moduln M, (d.h. M = _21 M;

1
und End M; ist lokaler Ring fiir jedes i € I). Ein Ring ist semiperfekt genau dann, wenn er Endo-
morphismenring eines Azumayamoduls mit endlichem I ist — ein schones Beispiel fiir die oben
zitierte Symbiose, das auch gebiihrend gewiirdigt wird (S. 38). Aber es ist der Stand der Dinge,
bevor Azumaya sie untersucht hat; die Ehrung (Faith sagt ,,M hat ein Azumaya-Diagramm® statt
,Azumaya-Modul**) wird zur Blasphemie. wenn Azumavas Theorie seiner ..semjnrimiren Ringe*,

die gerade die Untersuchung des Endomorphismenringes End M fiir beliebiges I zum Gegenstand
hat, mit keinem Wort erwihnt wird. Auch wird verschwiegen, dal Azumaya als erster gefragt
hat: Ist jeder direkte Sumand eines Azumayamoduls (mit endlich erzeugten M;) ein Azumaya-
modul (Matlis spezifiziert diese Frage fiir injektive M;), und daB diese Frage positiv beantwortet
wird von Warfield (Proc. Amer. Math. Soc. 22, 460—465 (1969)) und Elliger (Math. Z. 115,
227-230 (1970)). Es ist klar, da8 der Struktursatz fiir projektive Moduln iiber semiperfekten
Ringen (der bei Faith unvollstindig ist, S. 161) in diesem Ergebnis enthalten ist (wie Anderson
und Fuller richtig bemerken, S. 307). Aber der Leser beider Biicher fragt: Warum ist Azumayas
Frage positiv fiir so unterschiedliche Moduln wie projektive Azumayamoduln und injektive
Azumayamoduln? und erwartet — wie im klassischen Fall — eine Antwort: weil der Endomor-
phismenring die Eigenschaft??? hat. Spitestens hier richt es sich, Azumayas Ergebnisse vernach-
lassigt zu haben.

Anderson und Fuller mogen einwenden: das fiihrte zu weit. Und sie hitten vielleicht
- recht. Zielsetzung und Raum ihres Buches waren begrenzt. Es meidet Tiefsinn, Hintergriindig-

keit und jede Art Ballast: das ideale Arbeitsbuch fiir jeden, der die Grundgedanken und -begriffe
iiber Ringe und Moduln lernen will. Ich habe keinen Fehler gefunden, nicht einmal einen Druck-
fehler.

C. Faith stellt hohere Anspriiche, er wendet sich an den Experten und diirfte fiir ihn ein
unverzichtbares Buch geschrieben haben. Die Organisation des Werkes ist eher enzyklopidisch
als didaktisch. Die Reihenfolge ist nicht so wichtig, nicht einmal die der Binde. Wiederholungen
sind beabsichtigt. Im iibrigen — das Werk ist noch nicht abgeschlossen. Erst nach dem Finale darf
applaudiert werden.

Bochum S. Elliger
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Magnus, K., Schwingungen (Leitfaden der angewandten Mathematik und Mechanik,

Bd. 3 — Teubner Studienbiicher), Stuttgart: B. G. Teubner 1976 (3. Auflage), 197 Abb., 251 S.,
kart., DM 24,80

Die in der dritten Auflage vorliegende Einfiihrung in die theoretische Schwingungslehre
wendet sich an Ingenieure, Physiker und Mathematiker (in dieser Reihenfolge), und ist daher
auch induktiv (problemorientiert) aufgebaut. Viele Aufgaben erméglichen die Selbstkontrolle
und erweitern das Blickfeld fiir weitere Anwendungen.

In mathematischer Hinsicht liefern die Differentialgleichungen der Schwingungslehre ein
besonders interessantes Anwendungsgebiet mit vielfiltigen Strukturen. Wahrend sich im akade-
mischen Unterricht der Mathematiker vielfach eine Neigung feststellen Lift, die Theorie der ge-
wohnlichen Differentialgleichungen auf einen Hauptsatz zu reduzieren, der zur Rechtfertigung
der Funktionalanalysis dient, vermittelt diese Einfiihrung dem Mathematiker einen Einblick in
die Vielfalt der mathematischen Methoden und Verfahren auf dem Gebiet der Differentialglei-
chungen.

Da alle hier vorgetragenen Probleme einen direkten technischen Ursprung haben, kann

. das Buch iedem Mathematijker hestens emnfohlen werden. der eine Einfiihruoe in die Resriffe
o —— e P e —

Die Grundtendenz der Darstellung kommt dem Mathematiker sehr entgegen und liefert
ihm auch viele Beispiele, die das Lesen reizvoll machen.

Aachen C. Miiller

Triebel, H., Fourier Analysis and Function Spaces (Teubner Texte zur Mathematik),
Leipzig: BSB B. G. Teubner Verlagsgesellschaft 1977, 168 S. mit 2 Abb., kart., M 17,50

. a - . iy 1 ™
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Eisenack, G., Fenske, C., Fixpunkttheorie, Mannheim — Wien — Ziirich: Bibliographi-
sches Institut 1978, 258 S., kart., DM 38,—

In dem vorliegenden Lehrbuch werden die topologischen Ergebnisse iiber das Auflosen
von Gleichungen, oder wenn man es so sehen will, iiber Fixpunkte von Abbildungen dargestellt,
welche aus den Eigenschaften des Abbildungsgrades und der Fixpunktformel von Lefschetz fol-
gen.

Das Buch beginnt mit einer ausfiihrlichen Diskussion des Kontraktionslemmas (,,Banach-
scher Fixpunktsatz*), und es folgen Kapitel iiber:

L= "

satz von Lefschetz, den Abbildungsgrad, Verzweigungstheorie, den Fixpunktindex (was einer
genaueren Deutung der Lefschetzschen Formel durch Abbildungsgrade lokal um die Fixpunkte
dient), Fixpunktsitze fiir die Iterierten einer Abbildung und etwas iiber Fixpunkte mengenwerti-
ger Abbildungen.

Es handelt sich hi in it fleii 1 hemil getragenes Lehrbuct

zum Gebrauch fiir Studenten, die auf dem Gebiet der topologischen Linearen Algebra (,,Funk-
tionalanalysis‘) geschult sind und Vorkenntnisse besitzen, die durch ein diesbeziigliches deutsch-
sprachiges Lehrbuch genau beschrieben werden. Auch gehen die Autoren davon aus, daf ihre
Leser von den topologischen Methoden, um die es geht, weder Kenntnisse besitzen, noch mehr
davon lernen mogen, als fiir den eben angestrebten Zweck unmittelbar notwendig ist.

Diese vielleicht allzu realistische Einschitzung fiihrt dazu, da der Leser im dritten Kapi-
tel eine klassische Version der Lefschetzschen Fixpunktformel erlernen soll, und dazu erst einmal
die Definition der Homologie (singulidr und simplizial) zur Kenntnis nehmen muf}. Allerdings wird
der Unterricht in Homologietheorie erst im Anhang zum Abschluf gebracht, mit einem Beweis
der Aquivalenz von singulirer und simplizialer Homologie fiir simpliziale Komplexe. Dabei wird
dem Leser aber vorenthalten, daf} es fir die Homologie eine exakte Sequenz gibt — und das muf}
die Freiheit im Benutzen des Erlernten doch einigermafen beschrinken. Wenn man die Scheu
der Autoren, die relative Homologie von Raumpaaren zu erkliren teilte, so kann man die Homo-
logie doch durch die faflliche Forderung der Existenz einer exakten Mayer-Vietoris-Folge sehr
elegant und vollstindig charakterisieren, und mehr wird fiir den Beweis der Aquivalenz von singu-
lirer und zellulirer Homologie, den man in den Biichern von Dold und Greenberg findet, in Wahr-
heit nicht gebraucht. So wiirden wir empfehlen, da der Leser die notwendigen Kenntnisse iiber
Homologietheorie lieber vorweg aus einem diesem Thema gewidmeten Buch erwirbt und sich
auch die ungliicklichen Bezeichnungen des vorliegenden Buches nicht angewohnt.

Der analytische Zugang zu homologischen Sitzen scheint zu wenig bekannt und beliebt
zu sein. z. B, der Brouwersche Fixnunktsatz 15t %’ch.sehr einfach aus dem Satz vop Stokes ber-
. —
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Autors zitiert wird. Das Schulméfig-Technische iiberwuchert auch bei der Erklirung der zentra-
len Begriffe. Der schone und fast mochte man sagen naive geometrische Gehalt des Abbildungs-
grades geht verloren, wenn man aufnehmen soll, da} ,,df(x) zu der im Anhang A.1.10 beschrie-
benen Menge F(X) von stetigen linearen Operatoren‘* gehért.

Jedoch ist es verdienstlich, mit welcher Mithe und Sorgfalt die Autoren eine wichtige
Technik der Analysis dargestellt haben, die nicht einfach zu gewinnen ist, und das etwas Schwer-
fallige kommt auch aus dem redlichen Bestreben, alles genau zu beweisen.

Das eigentliche Ziel in dem Buch ist die Anwendung der starken topologischen Metho-
den auf Probleme der Analysis. Eine Fiille von Beispielen, vornehmlich aus der Theorie der Dif-
ferential- und Integralgleichungen, dient diesem Ziele. Das reiche Literaturverzeichnis von
248 Titeln ist nicht etwa zur Verzierung angehingt, sondern es legt Zeugnis fiir die Arbeit der
Autoren ab, eine niitzliche Arbeit, der wir einen fruchtbaren Boden bei den angesprochenen
Lesern wiinschen.

Regensburg Th. Brocker

Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I: Sequence Spaces (Ergebnisse
der Mathematik und ihrer Grenzgebiete 92), Berlin — Heidelberg — New York: Springer-Verlag
1977, XIII + 188 pp., cloth, DM 54,60

Das vorliegende Buch, erster Teil eines auf vier Binde konzipierten Gesamtwerkes, ist
auf dem Gebiet der Banachriume — vor allem ihrer ,,geometrischen* Theorie — ohne Frage die
wichtigste Neuerscheinung seit langer Zeit. Es enthilt eine Fiille neuer und neuester Resultate
in ausgezeichneter (wenngleich anspruchsvoller) Darstellung und macht so den immensen Fort-
schritt deutlich, der in Ergebnissen und Methoden seit dem Erscheinen der beriihmten Banach-
schen Monographie (Théorie des Opérations Linéaires, Warschau 1932) erzielt worden ist. Dieser
Fortschritt besteht vor allem in der Beantwortung von Strukturfragen, etwa: Einbettbarkeit,
Charakterisierung komplementierter Teilriume, Existenz und Eindeutigkeit verschiedener Typen
von (Schauder-)Basen. (Die Theorie der sogenannten lokalen Struktur ist Band IV vorbehalten.)
Das Buch enthilt iiberdies zahlreiche zur Zeit der Drucklegung noch offene Probleme.

Als Verdeutlichung fir Stil und Anspruch des Buches kann bereits das 1. Kapitel dienen.
Neben allen wichtigen Ergebnissen iiber (Schauder-)Basen und unbedingte Basen samt zugehéri-
gen Beispielen finden sich hier der Satz von Dvoretzky-Rogers (in seiner starken Form mit voll-
stindigem Beweis), eine ausfihrliche Diskussion der Approximationseigenschaft und ihrer metri-
schen Varianten (das Enflosche Gegenbeispiel, vereinfacht nach Davie, folgt in Kap. 2), sowie das
klassische Jamessche Beispiel eines Banachraumes J, der zu seinem Bidual J** isometrisch-iso-
morph ist, aber in J** ein kanonisches Bild der Kodimension 1 besitzt. Das 2. Kapitel beschiftigt
sich niher mit dem zentralen Thema, den Riumen ¢ und 1, (1 = p = ). Als Beispiel eines tief-
liegenden Resultates sei erwihnt, dad diese Banachrdume prim sind; sie sind z. Z. die einzigen
bekannten Beispiele solcher Raume. (Ein B-Raum X heifit prim, wenn jeder seiner unendlich-
dimensionalen komplementierten Teilrdume zu X isomorph ist). Des weiteren sind die Rdume
cgs 11, 15 durch die Eindeutigkeit (bis auf Aquivalenz) von unbedingten Basen charakterisiert. Die
Theorie der Operatorenideale in allgemeinen Banachriumen wird soweit entwickelt, dafl sie zum
Strukturstudium der klassischen Folgenrdume herangezogen werden kann. Das 3. Kapitel beschif-
tigt sich mit symmetrischen Basen und deren Zusammenhang mit unbedingten Basen (erstere bil-
den eine Unterklasse der letzteren), wihrend das 4. Kapitel die Orliczschen Folgenrdume einge-
hend behandelt; es zeigt sich, daf diese Rdume im allgemeinen eine wesentlich kompliziertere
Struktur besitzen als die Spezialfille co und 1,,.

Den Autoren, die neben anderen (etwa W. B. Johnson, A. Pelczynski, H. P. Rosenthal,
um nur einige wenige zu nennen) entscheidend zu Fortschritt und Reife dieser Theorie beigetra-
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gen haben, darf und mufl man zu dem wohlgelungenen Werk gratulieren. Es verbindet die Voll-
standigkeit eines Ergebnisberichtes mit der Eleganz eines anspruchsvollen Lehrbuches und diirfte
fiir jeden fortgeschrittenen Studenten der Funktionalanalysis, erst recht aber fiir jeden Funktio-
nalanalytiker, unentbehrlich sein.

Tiibingen H. H. Schaefer

Bergh, J., Lofstrom, J., Interpolation Spaces, An Introduction. (Grundlehren der math.
Wiss., Bd. 223), Berlin — Heidelberg — New York: Springer 1976, 5 figs. X, 207 p., DM 60,—;
US $ 24.60.

Die Theorie der Interpolation in abstrakten Banach-Rdumen, quasi Banach-Riumen und
allgemeineren Strukturen hat in der Funkt10na1analys1s und ihren Anwendungen wah:end der

P. L. Butzer, H. Berens, ,,Semi-Groups of Operators and Approximation*. Springer, Berlin 1967)
bis zum Erscheinen des hier zu besprechenden Buches keine in sich geschlossene Darstellung die-
ses Themenkreises in Form eines Lehrbuches.

Das Buch beginnt mit einer kurzen Wiederholung der klassischen Interpolationssitze von
Riesz-Thorin. Marcinkiewicz etc. gefolet von einem Kanitel iiber alleemeine Grundlasen abstrak-
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chene Monographie nicht zuletzt wegen ihrer klaren Gliederung und vielleicht gerade wegen ihrer
etwas gestrafften Darstellungsweise hervorragend geeignet, sich in kurzer Zeit einen umfassenden
Einblick in abstrakte Interpolationsmethoden zu verschaffen.

Aachen ) P. L. Butzer und G. Wilmes

Weidmann, J., Lineare Operatoren in Hilbertriumen (Mathematische Leitfiden), Stutt-
gart: B. G. Teubner 1976, 364 pp., kart., DM 58,—

Ein modernes Buch iiber den Hilbert-Raum sollte sich heute nicht mehr mit dem blofen
Hinweis begniigen, daB diese Theorie auch fiir die moderne Physik von ganz hervorragender Be-
deutung ist, um dann vielleicht noch den Koordinaten- oder Impulsoperator als Beleg dafiir her-
anzuziehen.

Dieses Gebiet ist so stark durch die Bediirfnisse der Physik befruchtet worden, daf8 der
Leser Einblick gewinnen sollte in dieses faszinierende Wechselspiel, indem ihm gezeigt wird, da
die Sdtze der Theorie auch das zu leisten vermégen, was zur Naturbeschreibung nétig ist.

Herr Weidmann hat diesen Gesichtspunkten in hervorragender Weise Rechnung getragen.

Am Anfang stellt er die Begriffe ,,orthogonal“ und ,,selbstadjungiert* in den Mittelpunkt,
die von gleich grofler Bedeutung fiir den Mathematiker wie fir den Physiker sind und jegliches
Abschweifen zu allgemeineren Riumen — wie man es oft in der Lehrbuchliteratur findet — ver-
hindern. Dabei werden konsequent von Beginn an auch unbeschrinkte Operatoren zugelassen,
die fiir die Anwendungen schidliche Zerlegung der Theorie in beschrinkte und unbeschrinkte
Operatoren wird vermieden. Die Spektralzerlegungen fiir selbstadjungierte und normale Opera-
toren sowie der Darstellungssatz von Stone iiber die unitiren Operatoren sind nach ca. 200 Sei-
ten erreicht. Es folgen dann Erginzungen, wie die Theorie der Defektzahlen, die Konstruktion
selbstadjungierter Fortsetzungen symmetrischer Operatoren, die Stérungstheorie selbstadjungier-
ter Operatoren, Fouriertransformation u.a.

Anschliefend wird tief eingedrungen in die Theorie der Schrodinger-Operatoren bis hin
zu genauen Aussagen iiber ihr Spektrum. Hier findet auch der Fachmann zahlreiche neue Beweis-
varianten. Der Autor la3t dabei auch Magnetfelder zu und begniigt sich nicht mit den schon recht
scharfen Aussagen iiber das kontinuierliche Spektrum und der Aussage, daf der negative Teil des
Spektrums aus hochstens abzihlbar vielen Eigenwerten endlicher Vielfachheit besteht, die nach
unten beschrinkt sind und sich hochstens bei Null hdufen konnen, sondern gibt weitreichende
Bedingungen an (Satz 10.31), unter denen solche Eigenwerte tatsichlich vorhanden sind. Eine
Ubertragung auf Dirac-Operatoren schlieft sich an. Ein Kapitel iiber die moderne Streutheorie
bildet den Abschluf.

Ein solches Buch, welches den Leser bis zu den neuesten Resultaten fiihrt, fordert selbst-
verstindlich auch eine harte Mitarbeit von dem Leser. Die Darstellung ist aber so gewahit, dal
die erste Hilfte schon vor dem Vorexamen gut zuginglich ist (zumal ein vollstindiger Abrif} der
Lebesgueschen Integration mit Beweisen im Anhang beigegeben ist), die sehr weitreichenden
Anwendungen auf die Quantenmechanik dagegen werden sich schon von der Fragestellung her
erst nach dem Vorexamen stellen.

Aachen G. Hellwig
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Hinweise fiir Autoren

Fiir den Abdruck vorgesehene Manuskripte sind in einwandfrei leserlicher und véllig satz-
fertiger Form (einseitig beschriebenes Manuskript, Schreibmaschinenschrift 1 1/2-zeilig) und ent-
sprechend den nachstehenden Richtlinien ausgezeichnet einzureichen.

Der Beginn von Absitzen oder neuen Abschnitten sollte deutlich durch Einriicken ge-
kennzeichnet sein. In jedem Fall sollte ein Hinweis fiir den Setzer, in dem alle Besonderheiten
aufgefiihrt sind, beigefiigt werden.

Ferner sollten die Manuskripte entsprechend dem Subject Classification Schemes der
Mathematical Reviews (AMS/MOS) klassifiziert sein. Am Ende der Manuskripte sollte die genaue
Anschrift des oder der Verfasser angegeben werden. Zuschriften sowie die Versendung der Kor-
rekturabziige erfolgen, sofern nicht anders vermerkt, immer an den erstgenannten Autor.

Zeichnungen sollten fortlaufend numeriert werden und auf gesonderten Blittern in Form
von klaren Bleistiftzeichnungen im richtigen mafistiblichen Verhiltnis méglichst in doppelter
Grofle dem Manuskript beigefiigt werden. Am linken Rand des Textes sollte ein Hinweis auf die
jeweils einzufiigende Figur angebracht werden.

Fufinoten sollten auf der jeweiligen Seite, auf die sie Bezug nehmen, angebracht werden
(nicht am Ende des Textes). Literatur sollte in folgender Weise zitiert [1] und dann am Ende des
Textes in alphabetischer Reihenfolge zusammengestellt werden. Verweise sollten in folgender
Form vorgenommen werden:

[1] Neven,J.: Martingale Problems. Jber. d. Dt. Math.-Verein. 79 (1957) 175—180

[2] Wittenburg,J.: Dynamics of Systems of Rigid Bodies. Stuttgart: Teubner 1977. =
Leitfdden der Angewandten Mathematik und Mechanik Bd. 33.

Um eine rasche Veroffentlichung zu erreichen, erhalten die Autoren nur einen Korrek-
turabzug. Die Autoren werden gebeten, nur Druckfehler zu korrigieren. Sollten weitere Korrek-
turen wie Einfiigungen oder Streichungen vorgenommen werden, miissen diese dem Autor be-
rechnet werden. Die von den Autoren durchgesehenen Korrekturabziige sind umgehend an den
Herausgeber zuriickzusenden.

Die Autoren erhalten von ihren Arbeiten nach Veroffentlichung 75, von Buchbesprechun-
gen 2 Sonderdrucke unentgeltlich. Zusitzliche Sonderdrucke kénnen gegen entsprechende Be-
rechnung zum Zeitpunkt der Riickgabe der Korrekturen bestellt werden.
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Auszeichnungen fiir den Satz

Die im Manuskript enthaltenen Formelbuchstaben werden generell steil gesetzt. Beson-
dere Schriftarten sind entsprechend den folgenden Richtlinien farblich auszuzeichnen.

gestrichelte schwarze Unterstreichung —Sperrung

doppelte schwarze Unterstreichung ~ — halbfett (nur im laufenden Text zu verwenden,
nicht in Formeln)

griine Unterstreichung — kursiv (nur im laufenden Text zu verwenden,
nicht in den Formeln)

doppelte griine Unterstreichung — halbfette lateinische Buchstaben (in Formeln)

rote Unterstreichung — griechische Buchstaben

lila Unterstreichung — Groteskbuchstaben

doppelte lila Unterstreichung — halbfette Groteskbuchstaben z. B. fiir
R, N, C usw.

blaue Unterstreichung*) — Fraktur

gelbe Unterstreichung — Grofibuchstabe O (zur Unterscheidung von der
Ziffer Null)

gelb eingekastelt*) — Skript

lila eingekastelt — logische und mengentheoretische Symbole wie

z. B.3,V, v,a 1, sowie Malkreuz x und Ver-
kniipfungszeichen ©

griin eingekastelt — Kleinbuchstabe £ (zur Unterscheidung zur
Ziffer eins (1))

Die Bezeichnungen Theorem, Lemma, Korollar, Proposition, Definition usw. werden
iiblicherweise halbfett gesetzt. Der danach folgende Text (bis auf Formelbuchstaben) wird kur-
siv gesetzt. Die Bezeichnungen Beweis, Bemerkung, Hinweis usw. werden normal gesetzt, jedoch
gesperrt. Der nachfolgende Text wird in normaler Schrift gesetzt.

Mathematische Formeln sollten so deutlich geschrieben werden, daB kein Miflverstind-
nis méoglich ist. Die Autoren werden gebeten, insbesondere deutlich zu unterscheiden zwischen
Grofbuchstaben und Kleinbuchstaben, Null sowie kleinem o und groem O, griechischen Buch-
staben g, @, k, K, 8, ©, Strich (z. B. Ableitungsstrich) und Apostroph. Ferner sollte darauf geach-
tet werden, daB keine Verwechslung zwischen k, K, r, u, v (lateinisch) und , o1, v (griechisch)
sowie € und € (griechisch) moglich ist.

*) Von der Verwendung dieser Schriftarten ist beim Composersatz nach Méglichkeit
abzusehen.

B. G. Teubner, Postfach 801069, D-7000 Stuttgart 80
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