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“Foundations of Discrete Optimization: in transition from linear to non-linear models
and methods.” This is the title of the survey article by Jesus A. De Loera, Raymond
Hemmecke, and Matthias K&ppe in which the authors summarise a number of re-
cent developments in discrete optimisation. These range from improving, extending,
and discussing classical algorithms from linear optimisation to nonlinear transporta-
tion problems. A common feature of most real life optimisation problems is the huge
number of variables and hence, the need for efficient, i.e. fast, algorithms. For a long
time there has been an intimate relation between optimisation and convex geometry
and in this respect it would be particularly interesting to find good bounds for the so
called diameter of polytopes. The related prominent Hirsch conjecture was discussed
in Issue 2-2010 of the Jahresbericht by Edward Kim and Francisco Santos. Although
this particular conjecture was disproved by the latter author while their survey article
was in press, the struggle to find good diameter bounds remains. Jests De Loera, Ray-
mond Hemmecke, and Matthias Koppe explain further how a more refined modelling
changes linear problems into nonlinear ones and how algebraic, geometric, and topo-
logical techniques enter discrete optimisation in order to tackle the new challenges.
For more detailed information and proofs the authors refer to their corresponding
recent monograph.

Anybody, irrespective of the individual fields of interest, who has ever visited the
Oberwolfach institute will know the name of Horst Tietz. The reason is that a former
student of his established a trust named after his advisor to support the institute.
Georg Schumacher reviews not only the mathematical and academic achievements
of Horst Tietz, who died on 28th January 2012, but also focusses on some details
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from his life which are really worth thinking about. Due to his Jewish roots Horst
Tietz was deported in 1943 first to the concentration camp Breitenau and later to
Buchenwald. It is somehow a miracle that Horst Tietz survived the horrible years
of this most degrading captivity. In spite of these traumatic experiences he stayed in
Germany, finished his studies, and started an academic career just after the end of the
Nazi-regime.

Recently released books on p-adic Lie groups, Feynman motives, and modern
classical homotopy theory are extensively discussed and reviewed.
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Abstract Optimization is a vibrant growing area of Applied Mathematics. Its many
successful applications depend on efficient algorithms and this has pushed the devel-
opment of theory and software. In recent years there has been a resurgence of interest
to use “non-standard” techniques to estimate the complexity of computation and to
guide algorithm design. New interactions with fields like algebraic geometry, rep-
resentation theory, number theory, combinatorial topology, algebraic combinatorics,
and convex analysis have contributed non-trivially to the foundations of computa-
tional optimization. In this expository survey we give three example areas of opti-
mization where “algebraic-geometric thinking” has been successful. One key point is
that these new tools are suitable for studying models that use non-linear constraints
together with combinatorial conditions.
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1 Introduction

Recently Germany hosted the International Symposium on Mathematical Program-
ming, the biggest event in mathematical optimization in the world. It is thus timely
to acquaint DMV members with a tiny corner of the advances highlighted in that
remarkable mathematical festival. This survey aims to introduce students and math-
ematicians to some recent developments in discrete optimization. Clearly, the choice
of topics presented here is driven by the authors own research; but we wish to point
out that there are many more interesting facets of mathematical optimization that
cannot be covered in this short survey. For a more thorough overview on recent
developments in discrete optimization we recommend the wonderful survey books
[38, 48].

Discrete Optimization seeks the best answers for problems where the set of solu-
tions is finite or at least enumerable. Given a finite set, each of whose elements has an
assigned cost or price, one aims to find the cheapest or optimal element. This could
mean the shortest path on a network, the optimal assignment of jobs in a company, or
the best distribution of fire stations in a city. Take for example the situation of a com-
pany that builds laptops in n factories in Germany, each with certain supply power
a;. At the same time m cities in Germany have laptop demands, say b; for city j.
There is a cost ¢; ; for transporting a laptop from factory i to city j. What is the best
assignment of transports in order to minimize the cost? Although it makes theoretical
sense, even for moderate values of m, n, running through all possible assignments
of factory-to-city transportation to find the best assignment is a very bad idea. Still
such problems can be solved very efficiently using various techniques. This problem
is called the transportation problem, and we will use it as an example below.

The integer linear transportation problem is a very special example of a discrete
optimization problem. It can be shown that one can drop the integrality requirements
and solve the corresponding continuous linear transportation problem. If that prob-
lem is solvable, there is always an optimal solution that is integral. However, variables
whose restriction to integer values is essential naturally occur in optimization prob-
lems, especially, when on/off- or yes/no-decisions have to be modeled. For example,
a start-up cost may be incurred only if a machine is actually used in a production pro-
cess (and thus, the machine has to be started and thus spends some energy/time/costs).
To model this type of costs, it is necessary to introduce a binary variable encoding
whether the machine is used or not.

Often discrete optimization can be modeled as maximizing or minimizing the
value of a real function under the condition that the solution vector must also sat-
isfy some constraining functions where some or all the variables are integer valued.
In that case we are dealing with a (very general) mixed-integer programming problem.

max/min  f(X)
subjectto g;(x) <0, i=1,2,...,k,
hjx)=0, j=12,...,m,

x e R" x 7™,

ey
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For example, for the transportation problem we can use x; ; as a variable indicating
the number of laptops factory i provides to city j. There are a few constraints to
describe the transportation problem: x; ; can only take non-negative integer values,
thus x; ; > 0. Since factory i produces a; laptops we have Z?:l x;,j =a;, foralli =
1,...,n; and since city j needs b; laptops we have Y i, x; j = b;, forall j =
1,...,m. Finally the objective function to minimize is ) c; jx; ;. In this case only
linear equations and inequalities are used, so this is an example of an integer linear
program.

Discrete optimization has many applications to diverse areas such as bioinfor-
matics, industrial engineering, management, operations planning, finances, etc. The
mathematical foundations of the subject began to develop steadily at the end of
the second world war with contributions of mathematicians like George Dantzig,
Ralph Gomory, John von Neumann, Richard Karp, Egon Balas, Ray Fulkerson,
Alan Hoffman, Harold Kuhn, Jack Edmonds, and other pioneers. Today, after fifty
plus years of development [38], this topic still thrives with fascinating mathe-
matical questions. In this review we wish to recount how the use of new alge-
braic, geometric, and topological techniques have brought new advances to the
theory and help to better understand application models that use non-linear con-
straints.

The late 1980s and early 1990s saw the use of convex geometry and the geom-
etry of numbers for solving some important problems, from the use of the ellipsoid
method, to give an efficient polynomial-time algorithm for linear programming [30],
to the use of lattice reduction and diophantine approximation techniques that have
given efficient algorithms for totally unimodular problems [28]. It was shown in [29]
that many discrete problems with good convex polyhedral characterizations had ef-
ficient algorithmic solutions. Another great reference summarizing many develop-
ments in discrete optimization is [57-59].

But in just the past twenty years, there have been new developments on the under-
standing of the structure of polyhedra, convex sets, and their lattice points that have
produced new algorithmic ideas to solve discrete optimization problems. The new
techniques, from algebraic geometry and commutative algebra, combinatorial topol-
ogy, representation theory, discrete geometry, number theory, and algebraic combina-
torics, come to add a new set of useful tools for discrete optimizers and have already
proved very suitable for the solution of a number of hard problems, specially for
attempts to deal with non-linear objective functions and constraints in discrete opti-
mization.

This survey is an invitation to researchers and students in mathematics to explore
this interdisciplinary topic. For this purpose we present three case studies that hope-
fully capture the energy of the field and will attract others to propose new ideas. The
reader can read all or just a few of the case studies independently to get a feeling of
some of the algebraic, geometric, and topological methods used in optimization. We
omit proofs entirely but most of the missing details and much more information can
be found in the recent book [16].
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2 Case Study: Abstractions in the Theory of Linear Optimization

For years the most common version of the mixed integer programming problem in-
volved only linear constraints. One typical strategy to solve or approximate solutions
for general problems of the form (1) is to reduce them to subproblems where all
constraints are linear and all variables are continuous. This is the so called linear
programming problem. Linear programming is a workhorse of optimization, the set
of feasible solutions for given linear constraints defines a convex polyhedron (see [56,
65]). One can already find useful new algebraic, geometric and topological insights
in the theory of linear optimization and we begin by mentioning two recent ones.

Starting at an initial vertex the simplex method searches along the graph of
the polytope, each time moving to a better-cost adjacent vertex using a shared
1-dimensional face or edge (the right edge to follow is selected according to a pivot-
ing rule, which assures improvement). Although extremely powerful in practice, to-
day many questions remain about the theoretical performance of the simplex method.
The vertices and edges of the polyhedron define a graph, the one-skeleton of the
polyhedron or graph of the polyhedron, which is composed of the zero- and one-
dimensional faces of the feasible region (called vertices and edges). The distance
between any pair of vertices is the length of the shortest path between that pair. The
diameter of the graph of the polyhedron is simply the largest distance between any
pair of nodes. Clearly the performance of the simplex method depends on the diam-
eter. The primary question is whether there is a polynomial bound of the diameter in
terms of the number of facets and the dimension?

The best general bounds known are exponential (see the wonderful Jahresbericht
survey [45]), but for over fifty years the conjecture that the diameter is no more than
the number of facets minus the dimension was the leading proposal for the true bound
(there are indeed many examples that reach this bound). In 2010, a historic break-
through was made by the Spanish mathematician Francisco Santos who constructed
counterexamples for this conjecture [55]. Still, those counterexamples which are fully
understood have again linear diameter; also in experiments and in many special cases
we know linear bounds for the diameter (e.g., transportation problems). So, could the
correct diameter bound be linear? Linear diameter for all polyhedra is certainly still
a possibility but only very recently one avenue of attack was finally closed.

The combinatorial-topological approach to the diameter problem has a history
(see e.g., [51]); Adler, Dantzig, and Murty [1, 2] and Kalai [39], Billera and Provan
[9], and Klee and Kleinschmidt [42] to name a few. Recently the use of abstrac-
tions of the simplex method continues with the exciting paper of Eisenbrand, Hihnle,
Razborov, and Rothvoss [26]. A key idea of Eisenbrand et al. is working with new
topological abstractions called base abstraction and connected layer families. Eisen-
brand et al. were also able to prove that their abstraction is a reasonable general-
ization because it satisfies some of the best known upper bounds on the diameter
of polytopes. Larman proved in [46] that for a d-dimensional polytope P with n
facets the diameter is no more than 2¢=3n (this bound was improved by Barnette [4]).
This bound shows that in fixed dimension the diameter must be linear in the number
of facets. The best general bound of O(n'*1°2¢) was obtained by Kalai and Kleit-
man [43]. The authors of [26] proved that the Larman bound and the Kalai-Kleitman
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bounds hold again for their abstractions. But a great novelty in Eisenbrand et al.’s
results is that there are abstraction graphs with diameter greater than £2(n?/logn)
(although they are far from being polyhedra). Thus, instead of thinking of polyhe-
dra all these propose thinking of simplicial complexes. There is a direct translation
of non-degenerate linear optimization problems (known to have the largest diameters
anyway) to simplicial complexes by using the polarity operations (as illustrated in the
following picture for a cube), where facets turn into vertices and vertices into facets.

-

Now, the distance between two facets of the simplicial complex, Fi, F>, is the
length s of the shortest simplicial path F| = fo, fi1,..., fs = F2. The diameter of
a simplicial complex is the maximum over all distances between all pairs of facets.
Scott Provan and Louis Billera [9] conceived a way to prove the linearity bound on
the diameter which relies on decomposition properties of polyhedra and complexes.
They introduced the notion of weakly k-decomposable complex. A d-dimensional
simplicial complex A is weakly k-decomposable if:

1. All the maximal-dimension simplices are of the same dimension, and
2. either A is a d-simplex, or there exists a face T of A (called a shedding face) such
that dim(z) <k and A \ 7 is d-dimensional and weakly k-decomposable.

So one recursively “peels off” the simplicial complex using a sequence of faces so
that finally we arrive at a (full-dimensional) simplex. In the next picture we show an
example of a weakly O-decomposable complex through a possible shedding order of

vertices.
2 3 3 3
5 \2 5 ; \1 54
D _—
1 4 1 4 4

2-simplex!

The reason this concept is so interesting for bounding diameters is the following
theorem:

Theorem 2.1 (Billera, Provan, 1980) If A is a weakly k-decomposable simplicial
complex, 0 <k <d, then

diam(A) <2 fi(A),
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where fi(A) is the number of k-faces A. In the case of weakly 0-decomposable, we
have the following linear bound (n = fy(A)):

diam(A) < 2 fo(A) = 2n.

Note that, if all simplicial polytopes are weakly 0-decomposable, then the diame-
ter is linear, being no more than twice the number of facets of the polar simple poly-
tope. One should also note that all simplicial d-dimensional polytopes are weakly
d-decomposable because they are shellable (see e.g., [67] for an introduction). The
question is then which simplicial polytopes are weakly 0-decomposable? More im-
portantly, is there a fixed constant k < d for which all simplicial polytopes are weakly
k-decomposable? If this was true for k = 0 (weakly 0-decomposable), then the de-
sired linear bound would be achieved.

Very recently these challenges have been settled. In [18] the authors construct the
first ever examples of simplicial polytopes which are not weakly 0-decomposable
disproving this method as an approach for a linear bound. For all m > 2, let Aj,
be the simplicial polytope polar to the 2 x (2m + 1) transportation polytope P(a, b)
with margins a= 2m + 1,2m + 1) and b= (2,2, ...,2). Then A,,, is not weakly
0-decomposable. Shortly after, Hihnle, Klee, Pilaud have announced that the same
family of complexes shows that there is no constant O < k < d such that every sim-
plicial polytope is weakly k-decomposable.

Let us talk about another non-traditional analysis of a well-known method in lin-
ear optimization. Interior-point methods are also popular to solve linear optimiza-
tion problems [54, 65]. Already in the early the 1980s, during the early excitement
generated by Karmarkar’s interior point methods, Bayer and Lagarias pioneered an
algebraic analysis of the method [7, 8]. To explain this let us assume the linear pro-
gram is given to us in the standard form Maximizexcpn c¢'x s.t. Ax=Db and x > 0.
The objective function is replaced by Maximizexcgr f3 (X) s.t. AXx=b, where A € Ry
and f(x) := c'x + AZ?:] log|x;|. The maximum of the concave function f; is
attained by a unique point x*(A) in the open polytope {x € (R~¢)" : Ax = b}. As
we let A change from oo to 0 we trace a curve, the central path, that traces a
piece of a curve ending at the optimal solution (at infinity starts at the analytic cen-
ter).

Bayer and Lagarias observed that the central path is actually a portion of an alge-
braic curve. They raised the question of finding explicit equations for the real alge-
braic curve containing the central path. In [19] the authors computed these equations
and the degree of the algebraic curve. Surprisingly these invariants are expressed in
terms of the matroid of the input matrix A. The relation with matroids and the simplex
method is well documented (see, e.g., [6]), but this seems to be another evidence of
the strong relation between linear programming and matroids. What happens is that
(under some natural non-degeneracy assumption) the equations of the central curve
can be read off from the circuits of the linear matroid associated to the matrix (? )

Given a matrix B, whose columns are the vectors X', i = 1, ..., n, the circuits of the
matroid of B are the subsets of the index set that label subsets of the columns that
are minimally linear dependent (i.e., removing one vector gives a linear independent
set).



Foundations of Discrete Optimization: In Transition from Linear 195

In practical computations, interior point methods follow only a piecewise-linear
approximation to the central path. One way to estimate the number of Newton steps
needed to reach the optimal solution is to bound the total curvature of the exact cen-
tral path. The intuition is that curves with small curvature are easier to approximate
with fewer line segments. This idea has been investigated by various authors (see,
e.g., [50, 62, 66, 68]), and has yielded interesting results. In earlier work [19, 20] the
authors obtained bounds for the total curvature in terms of the degree of the Gauss
maps of the (algebraic) central curve. The paper [19] also improves on the given
bound for the curvature and once again the bound is read from the matroid, this time
from the broken circuit complex of the same matroid.

For practical applications the more relevant quantity is not the total curvature of
the entire curve (a real algebraic curve extends beyond the LP feasible polyhedron)
but rather the curvature in a specific feasible region. This has been investigated by
A. Deza, T. Terlaky and Yu. Zinchenko in a series of papers [22-24]. They conjec-
tured that the curvature of a polytope, defined as the largest possible total curvature
of the associated central path with respect to the various cost vectors, is no more
than 2rm, where m is the number of facets of the polytope. They name their conjec-
ture the continuous Hirsch conjecture to suggest the similarity with the well-known
problem for the simplex method. Although the average value for the curvature for
bounded cells is known to be linear, we still do not have a polynomial bound for the
total curvature in a single cell.

3 Case Study: The Evolution of Integer Optimization in Fixed Dimension

The classical integer linear optimization problem (ILP) asks to find the solution of
the following task:

Given A € Z"™*", b e Z™, and c € Z", find x € Z" that solves
min{ch :Ax<b,xe€Z"} (ILP)

or report INFEASIBLE or UNBOUNDED.

It is well-known that this problem is in general NP-hard, but when the dimension is
fixed, the integer linear optimization problem can be solved efficiently using Hendrik
Lenstra’s famous algorithm (see [47] and the excellent recent survey by F. Eisenbrand
in [38]).

We want to stress that several geometric operations were necessary for this his-
toric result. It was needed to approximate the shortest vector problem in a lattice £,
originally done using the LLL-reduced basis of £ [49]. Lenstra’s algorithm also re-
lied on the possibility of decomposing the problem into a “small” family of lattice
hyperplanes that pass through the feasible polyhedral region P. Khinchin’s flatness
theorem [41] guarantees there is a primitive lattice vector direction d € Z" such that
there are “very few” lattice hyperplanes of the form d" x = y (with y € Z) that have
a nonempty intersection with P. Finally, it is also a key idea to transform the feasi-
ble polyhedral region P to a more “rounded” shape (this requires finding concentric,
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inscribed and circumscribed ellipsoids to P that differ by some dilation factor B that
only depends on the dimension ).

But one can ask, what happens if one aims to optimize a non-linear objective func-
tion? In the last seven years, Lenstra’s result has been extended in several non-linear
ways, allowing the objective function to be much more complicated with various lev-
els of non-linearity. Again non-standard techniques in algebraic combinatorics played
a central role in the proofs of these new algorithms. Consider first the problem

max/min  f(x,...,X,)
subjectto Ax<b 2)
X=(x1,...,x,) €Z".

Here A is a rational matrix, b is a rational vector. The set of feasible integer solutions
is a convex polyhedron, which we denote by P. The function f is a polynomial
function of maximum total degree D with rational coefficients. We are interested in
general polynomial objective functions f without any convexity assumptions.

It turns out that optimizing polynomials of degree 4 over problems with two in-
teger variables is already an NP-hard problem (see [17]). Thus, even when we fix
the dimension, we cannot expect to get a polynomial-time algorithm for solving the
optimization problem. The best we can hope for as a generalization of Lenstra’s al-
gorithm, even when the number integer variables is fixed, is an approximation algo-
rithm. This is precisely what new techniques (to be seen later) provide.

We say an algorithm A is an €-approximation algorithm for a maximization prob-
lem with optimal cost fmax, if .4 runs in polynomial time in the encoding length and
returns a feasible solution with cost f 4, such that

fa =1 =€) fmax-

A family {A¢}¢ of e-approximation algorithms is a fully polynomial time approxima-
tion scheme (or for short an FPTAS) if the running time of .4, is polynomial in the
encoding length and 1/¢. The polynomial dependence of the running time in 1/€ is a
very strong requirement, and for many NP-hard problems, efficient approximation al-
gorithms of this type do not exist, unless P = NP. It was proved in the paper [17] that
there is an FPTAS for the optimization problems generalizing Lenstra’s result: There
exists a fully polynomial time approximation scheme (FPTAS) for the maximization
problem (2) for all polynomial functions f(xy, ..., x,) with rational coefficients that
are non-negative on the feasible polyhedral region P:

Theorem 3.1 Let the dimension d be fixed. There exists an algorithm whose input
data are

e a polytope P C RY, given by rational linear inequalities, and
e a polynomial f € Z[x1,...,xq] with integer coefficients and maximum total de-
gree D that is non-negative on P N 74

with the following properties.
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1. For a given k, it computes in running time polynomial in k, the encoding size of P
and f, and D lower and upper bounds Ly < f(x™®) < Uy, satisfying

U — L < ({|PNZ4 = 1) - f(x™).
2. Fork= (14 1/¢)log(|P NZ%)), the bounds satisfy
Ux — Ly < ef (x™),

and they can be computed in time polynomial in the input size, the total degree D,
and 1/e.
3. By iterated bisection of P NZ4, it constructs a feasible solution x¢ € P N Z¢ with

|f(Xe) _ f(xmax)i Sef(xmax).

A key technique of the algorithm is to consider the formal sum of all lattice points
inside the feasible polyhedral set ) .74~ p X". What happens is that properties of f
evaluated at the lattice points of P can be compactly encoded in a generating function.

But before we explain the method let us state another generalization of Lenstra’s
theorem, this time dealing with multi-objective optimization problems where we have
more than one linear objective function to be optimized. For general information
about multi-objective discrete optimization problems we refer to the survey [25].

When more than one objective function is optimized, there is a different natural no-
tion of optimum that we need to introduce. Let A = (a;;) be an integral m x n-matrix
and b € Z™ such that the convex polyhedron P = {u € R" : Au < b} is bounded.
Given k linear functionals f1, f2, ..., fr € Z", we consider the multi-objective inte-
ger linear programming problem

Pareto-min  (fi(w), f2(w), ..., fr(w)
subjectto  Au<b, 3)

ue?Z",

where Pareto-min is defined as the problem of finding all Pareto optima and a corre-
sponding Pareto strategy: For a lattice point u the vector f(u) = (fi(u), ..., fir(w))
is called an outcome vector. Such an outcome vector is a Pareto optimum for the
above problem if and only if there is no other point u in the feasible set such that
fiw) < fi(u) for all i and f; (W) < f;(u) for at least one index j. The correspond-
ing feasible point u is called a Pareto strategy. Thus a feasible vector is a Pareto
strategy if no feasible vector can decrease some objective function without causing a
simultaneous increase in at least one other objective function.

In general the number of Pareto optimal solutions may be infinite, but in our sit-
uation the number of Pareto optima and strategies is finite. There are several well-
known techniques to generate Pareto optima. Some popular methods used to solve
such problems include weighting the objectives or using a so-called global criterion
approach (see [25]). In particularly nice situations, such as multi-objective linear pro-
grams [37], one knows a way to generate all Pareto optima, but most techniques reach
only some of the Pareto optima.
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It turns out that, for fixed dimension, one can compute the sets of all Pareto optima
and strategies of a multi-criterion integer linear program. Once more the math behind
it involves the algebraic combinatorics of rational generating functions. The set of
Pareto points can be described as the formal sum of monomials

Z{zv cue PNZ"and v="f() € Z" is a Pareto optimum}. 4)

Under the assumption that the number of variables is fixed, we can compute in poly-
nomial time a short expression for the huge polynomial above, thus all its Pareto
optima can in fact be counted exactly. The same can be done for the corresponding
Pareto strategies when written as a formal sum or generating function:

Z{x“ :ue PNZ" and f(u) is a Pareto optimum}. (@)

Theorem 3.2 Let A € Z™*", an m-vector b, and linear functions fi, ..., fr € Z" be
given. There are algorithms to perform the following tasks:

(1) Compute the generating function (4) of all the Pareto optima as a sum of rational
functions. In particular, we can count how many Pareto optima are there. If we
assume k and n are fixed, the algorithm runs in time polynomial in the size of
the input data.

(i) Compute the generating function (5) of all the Pareto strategies as a sum of
rational functions. In particular, we can count how many Pareto strategies are
there in P. If we assume k and n are fixed, the algorithm runs in time that is
bounded polynomially by the size of the input data.

(iii) Generate the full sequence of Pareto optima ordered lexicographically. If we
assume k and n are fixed, the algorithm runs in polynomial time on the input
size and the number of Pareto optima.

In contrast, it is known that for non-fixed dimension it is #P-hard to count Pareto
optima and NP-hard to find them [27, 60].

So what is the mathematics behind the above algorithms for optimization with
non-linear objective functions? Essentially one encodes lattice points in a special,
compact data structure provided by a generating function which has been rewritten as
a “short” sum of multivariate rational functions. The rational functions are recovered
from the rays and vertices of unimodular cones associated to the polyhedral region.
Given a convex polyhedron P (not necessarily a polytope anymore!), we compute
the formal multivariate generating function

f(Pimy= ) 2

acPnzd

where z% = z‘flzgz...zzd. This is an infinite formal Laurent series if P is not

bounded, but if P is a polytope it is a (Laurent) polynomial with one monomial
per lattice point. For example, if we consider a rectangle with vertices V; = (0, 0),
V> = (5000, 0), V3 = (0, 5000), and V4 = (5000, 5000) the generating function f(P)
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has over 25,000,000 monomials,

fPizi, ) =1+ +n+uk+8z+-+23005%.

The representation of f(P;z1,z2) as monomials is clearly way too long to be of
practical use. But Barvinok’s method [5, 10] instead rewrites it as a compact sum of
rational functions. For instance, only four rational functions suffice to represent the
over 25 million monomials. Indeed f (P, z1, z2) equals

1 z z Z z

l5000
I-(-2) -2 nl-2) (-2hld-) (d-ahl_uh

25000 1 5000 2500()

Note that if we wish to know the number of lattice points in P, and we knew
f(P;z), we could compute it as the limit when the vector (z1,...,z,) goes to
(1,1,...,1). Similarly the maximum of a linear functional over the lattice points
equals the highest degree of the univariate polynomial one gets after doing a mono-
mial substitution z; — t (See [12]). These two calculations can be difficult because
of the poles of the rational functions. One uses complex analysis (residue calcula-
tions) to find the answer.

The first remarkable application of this representation was done by A. Barvinok
who crafted an algorithm to count integer points inside polyhedra that runs in poly-
nomial time for fixed dimension (see [5, 10]). Shortly after Barvinok’s breakthrough,
Dyer and Kannan [15] modified the original algorithm of Barvinok, which originally
relied on Lenstra’s result, giving a new proof that integer programming problems with
a fixed number of variables can be solved in polynomial time. This gives a brand new
proof of Lenstra’s theorem (see Chap. 7 of [16]).

A beautiful theorem of M. Brion [11] says that to compute the rational function
representation of f(P;z) it is enough to do it for tangent cones at each vertex of
P. Let P be a convex polytope and let V(P) be the vertex set of P. Let Ky be the
tangent cone at v € V(P). This is the (possibly translated) cone defined by the facets
touching vertex v (see Fig. 1). Then the following nice formula holds:

f(Piny= )" f(Ky;2).

veV(P)

Since it is enough to compute everything for cones, we first explain how to com-
pute the rational function for the “smallest” cones, simple cones. A cone is said to be
simple if its rays are linearly independent vectors. For instance all the tangent cones
of the pentagon of Fig. 1 are simple. Obtaining the rational function representation
of the lattice points of a simple cone K C R, is easy (see for example Chap. IV of
[63]; another exposition is given in Chaps. 5, 6, and 7 of [16], where also recently
developed speedups are discussed). Here is the formula, which one can write directly
from the coordinates of the rays of the cone and the lattice points in its fundamental
parallelepiped IT:

Zue]‘[ﬂZd z"
(1—z)(1 —2z%2)...(1 —z%)"

f(Kiz) =
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Fig. 1 The tangent cone at
vertex v /

Fig. 2 A two dimensional cone
(its vertex at the origin) and its
fundamental parallelepiped

Here IT is the half open parallelepiped {x: x = «1¢1+- - +aog4¢q,0 < a; < 1}. We
can do a two-dimensional example shown in Fig. 2: we have d =2 and ¢; = (1, 2),
¢y = (4, —1) and the vertex of the cone is the origin. We have:

z‘l‘zz+zfzz+z%zz+21zz+z‘1‘+z? —i—z%—lrzl +1

K;z)=
i (- -5

But what to do if the cone K is not simple? Break it into simple cones! The won-
derful idea of A. Barvinok was noting that, although triangulating the cone K may be
an inefficient way to subdivide the cone (i.e., exponentially many pieces may arise),
if one is willing to add and substract cones, for fixed dimension d, there exists a
polynomial time algorithm which decomposes a rational polyhedral cone K C R¢
into simple unimodular cones K;. A simple cone is unimodular if in its fundamental
parallelepiped there is a single lattice point. See Fig. 3. In fact, via the decomposition,
with numbers ¢; € {—1, 1}, we can write an expression

f(Kin)=) ef(Kiiz), |I]<oo.
iel

The index set [ is of size polynomial in the input data as long as we work in fixed
dimension.
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Fig. 3 The signed
decomposition of a cone into
unimodular cones. Two general
steps

RSty
e

LEKRRRRRRRRRRR,

‘We have showcased the evolution of one famous result, Lenstra’s theorem, from its
linear version to some non-linear versions. In this particular case study, we have seen
a new proof of the original Lenstra’s result, as well as two non-linear generalizations,
that were developed on top of the theory of rational generating functions, a topic
traditionally used in algebraic and enumerative combinatorics and number theory.

The best complexity of a Lenstra-type algorithm today appears in [21]. In this
paper, an “any-norm” shortest vector algorithm is developed. Other results in fixed
dimension that generalize Lenstra’s results include the first Lenstra-type algorithm for
convex integer minimization, which was announced by Khachiyan [40]. The variant
due to Khachiyan and Porkolab [44] is quite notable due to its generality, which
includes the case of convex domains and arbitrary quantifier sequences. The case of
quasi-convex polynomial functions appeared in [31] and was later improved by [32].
New related results appear in [53].

In the rest of this survey we outline another technique for problems in non-fixed
arbitrary dimension.

4 Case Study Three: Non-linear Transportation Problems

In the previous case study the dimension of the problem was assumed to be fixed.
Alas, we know that most of the interesting practical problems do not have this prop-
erty and the curse of high-dimensionality comes to play a role. Can we still prove
nice theoretical results in non-fixed dimension? The answer is yes, but we need to
make assumptions about the structure of the problems. Some advances, originating
in commutative algebra, have helped to approach well-structured discrete optimiza-
tion problems.
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We will use the transportation problem to explain the method. In the traditional
transportation problem cost at an edge is a constant, thus we optimize a linear func-
tion. But there are natural situations when one may want to optimize a non-linear
function. For instance, due to congestion or heavy traffic or heavy communication
load the transportation cost on an edge is a non-linear function of the flow at each
edge. For example, say the cost at each edge is f;;(x;;) = c¢;jlx;;|* for a suitable
constant g;;. This results in a non-linear function ) fi;(x;;), which is much harder
to minimize. This problem is hard, but under some assumptions one can create an
efficient algebraic algorithm to optimize a convex separable function over the set
{x € Z" : Ax =D, x> 0}. For the transportation problem A is the node-edge inci-
dence matrix of the complete bipartite graph.

For this, consider the lattice L(A) = {x € Z" : Ax = 0} and introduce a natural
partial order on the lattice vectors as follows. For u, v € Z". We say that the vector
u is conformally smaller than v, denoted u C v, if |u;| < |v;| and u;v; > 0 for i =
1,...,n. For instance (3, —2, —8,0,8) C (4, —3, —9,0,9), but it is incomparable to
(—4,-3,9, 1, —8). Equivalently, for u to be conformally smaller than v, they must
lie in the same orthant of R” and each component of u must be bounded by the
corresponding component of v in absolute value.

The Graver basis of an integer matrix A is the set of all conformally-minimal
nonzero integer linear dependences on A. One can check, for example, that if the
matrix A = (1 2 1), then its Graver basis is given by the following vectors and their
negatives: (2, —1,0), (0, —1,2), (1,0, —1), (1, —1, 1). For a fixed cost vector ¢, we
can visualize a Graver basis of an integer program by creating a graph over the lat-
tice points {x € Z" : Ax = b, x > 0}. The nodes are then L(b) := {x: Ax =b,
x > 0, x € Z"} and we use the elements of the Graver basis as directed edges depart-
ing from each lattice point u € L(b) when they connect to another member of L(b).

Graver bases are interesting for integer optimization because they can be used as
test sets, that is, as a finite collection of integral vectors with the property that every
non-optimal feasible solution of an integer program can be improved by adding some
suitable vector from the Graver basis. In the 1970s, Jack Graver showed that they
can be used for linear integer optimization because they can solve the augmentation
problem: Given A € Z™*", x € N" and ¢ € Z", either find an improving direction g €
7", namely one with x — g € {y € N : Ay = Ax} and ¢'g > 0, or assert that no such
g exists. More recently, stronger augmentation regimes are possible for solving some
convex optimization problems (both minimization or maximization), with respect to
a convex function composed with linear functions, or convex separable functions. See
Chaps. 3 and 4 of [16] and [34].

The main obstacle for using Graver bases was that they can be exponentially large
even in fixed dimension and very hard to compute. In fact, for general matrices it
is an NP-complete problem to decide whether a list of vectors is a complete Graver
basis. The good news is that Graver bases do become very manageable and efficient
for highly structured matrices, with regular block decompositions. This theory was
developed by S. Onn and collaborators in a series of papers (see [52] or the references
therein). The first example of such good structure came from n-fold matrices. Fix any
pair of integer matrices A and D with the same number of columns, of dimensions
r x g and s x q, respectively. The n-fold matrix of the ordered pair A, D is the
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(s + nr) x nqg matrix constructed by stacking copies of A, D as shown below,

D D ... D
A0 -.- 0
A, D" =1, D)@, ®4) = |0 A - 0
o o0 --- A

Naturally, n-fold matrices do appear in applications, our main example being the
transportation problems with fixed number of factories on suppliers! For these kind
of matrices there is a polynomial time algorithm that, given n, computes the Graver
basis G([A, D]™) of the n-fold matrix [A, D]"™. In particular, the cardinality and
the bit size of G([A, D]?™) are bounded by a polynomial function of n (implying that
separable convex integer minimization problems over n-fold matrices can be solved
in polynomial time). The key idea to prove this goes back to work in combinatorial
commutative algebra. A result by Santos and Sturmfels [61], and Hosten and Sullivant
[35] says that for every pair of fixed integer matrices A € Z"*9 and D € Z°*1, there
exists a constant g(A, D) such that for all n, the Graver basis of [A, D](") consists
of vectors with at most g(A, D) nonzero components. In [33], n-fold matrices were
generalized to n-fold 4-block decomposable matrices, which are of the form

¢ D D --- D
B A 0 --- O
B 0 A --- O
B 0 O --- A

Although, for fixed matrices A, B, C, and D, the Graver bases increase exponen-
tially in size (with respect to n), the structure of the matrices implies structure of the
Graver bases, which then can be exploited to find a best augmenting Graver basis di-
rection for a non-optimal feasible solution efficiently. This implies that also separable
convex integer minimization problems over n-fold 4-block matrices can be solved in
polynomial time (see [33] and Chap. 4 of [16]).

It should be noted that Graver bases are special cases of Grobner bases, which are
quite popular in algebraic geometry. A Gréobner basis for an ideal I of the ring of
polynomials is a set of generators with additional computational properties (see [3,
13]). Monomials can be naturally associated to lattice points and thus it was born a
nice connection to integer optimization, where we care to optimize a function over
the set of lattice points of a polyhedron (see the pioneering work of [14, 36, 64] and
the exposition in Chap. 11 of [16]).

To conclude let us say that this is just a taste of the strong activity of research in
the interaction between optimization and algebra and geometry. Much more is sure
to come! We hope that you will be attracted to learn more in [16, 48].

Acknowledgements J.A. De Loera was partially supported by NSF grant DMS-0914107. M. Koppe
was partially supported by NSF grant DMS-0914873. The authors are grateful to Prof. Jorg Rambau for
his suggestions and support while writing this paper. The authors also wish to thank an anonymous referee
for his or her useful comments.



204 J.A. De Loera et al.

References

1. Adler, I., Dantzig, G.B.: Maximum diameter of abstract polytopes. Math. Program. Stud. 1, 20-40
(1974). Pivoting and extensions

2. Adler, L., Dantzig, G.B., Murty, K.: Existence of A-avoiding paths in abstract polytopes. Math. Pro-
gram. Stud. 1, 41-42 (1974). Pivoting and extensions

3. Adams, W.W., Loustaunau, Ph.: An Introduction to Grobner Bases. Graduate Studies in Mathematics,
vol. 3. American Mathematical Society, Providence (1994)

4. Barnette, D.: An upper bound for the diameter of a polytope. Discrete Math. 10, 9—13 (1974)

5. Barvinok, A.IL: Polynomial time algorithm for counting integral points in polyhedra when the dimen-
sion is fixed. Math. Oper. Res. 19, 769-779 (1994)

6. Bachem, A., Kern, W.: Linear Programming Duality: An Introduction to Oriented Matroids (Univer-
sitext). Springer, Berlin (1992)

7. Bayer, D.A., Lagarias, J.C.: The nonlinear geometry of linear programming. I. Affine and projective
scaling trajectories. Trans. Am. Math. Soc. 314(2), 499-526 (1989)

8. Bayer, D.A., Lagarias, J.C.: The nonlinear geometry of linear programming. II. Legendre transform
coordinates and central trajectories. Trans. Am. Math. Soc. 314(2), 527-581 (1989)

9. Billera, L., Provan, S.: Decompositions of simplicial complexes related to diameters of convex poly-
hedra. Math. Oper. Res. 5(4), 576-594 (1980)

10. Barvinok, A.l,, Pommersheim, J.E.: An algorithmic theory of lattice points in polyhedra. In: New
Perspectives in Algebraic Combinatorics, Berkeley, CA, 1996-97. Math. Sci. Res. Inst. Publ., vol. 38,
pp- 91-147. Cambridge University Press, Cambridge (1999)

11. Brion, M.: Points entiers dans les polyédres convexes. Ann. Sci. Ec. Norm. Super. 21(4), 653-663
(1988)

12. Barvinok, A.L, Woods, K.: Short rational generating functions for lattice point problems. J. Am. Math.
Soc. 16(4), 957-979 (2003) (electronic)

13. Cox, D.A,, Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computa-
tional Algebraic Geometry and Commutative Algebra. Springer, New York (1992)

14. Conti, P., Traverso, C.: Buchberger algorithm and integer programming. In: Applied Algebra, Alge-
braic Algorithms and Error-Correcting Codes, New Orleans, LA, 1991. LNCS, vol. 539, pp. 130-139.
Springer, Berlin (1991)

15. Dyer, M., Kannan, R.: On Barvinok’s algorithm for counting lattice points in fixed dimension. Math.
Oper. Res. 22(3), 545-549 (1997)

16. De Loera, J.A., Hemmecke, R., Koppe, M.: Algebraic and Geometric Ideas in the Theory of Discrete
Optimization. SIAM-MOS Series on Optimization, vol. 14. SIAM, Philadelphia (2012, to appear),
ISBN 9781611972436

17. De Loera, J.A., Hemmecke, R., Koppe, M., Weismantel, R.: Integer polynomial optimization in fixed
dimension. Math. Oper. Res. 31(1), 147-153 (2006)

18. De Loera, J.A., Klee, S.: Transportation problems and simplicial polytopes that are not weakly vertex-
decomposable. Math. Oper. Res. (2012, to appear)

19. De Loera, J.A., Sturmfels, B., Vinzant, C.: The central curve in linear programming. Found. Comput.
Math. (2012, to appear)

20. Dedieu, J.-P., Malajovich, G., Shub, M.: On the curvature of the central path of linear programming
theory. Found. Comput. Math. 5(2), 145-171 (2005)

21. Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via M-ellipsoid
coverings. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS),
Oct. 2011, pp. 580-589 (2011)

22. Deza, A., Terlaky, T., Zinchenko, Y.: Polytopes and arrangements: diameter and curvature. Oper. Res.
Lett. 36(2), 215-222 (2008)

23. Deza, A., Terlaky, T., Zinchenko, Y.: Central path curvature and iteration-complexity for redundant
Klee-Minty cubes. In: Advances in Applied Mathematics and Global Optimization. Advances in Me-
chanics and Mathematics, vol. 17, pp. 223-256. Springer, New York (2009)

24. Deza, A., Terlaky, T., Zinchenko, Y.: A continuous d-step conjecture for polytopes. Discrete Comput.
Geom. 41(2), 318-327 (2009)

25. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial
optimization. OR Spektrum 22, 425-460 (2000)

26. Eisenbrand, F., Hdhnle, N., Razborov, A., RothvoB, T.: Diameter of polyhedra: limits of abstraction.
Math. Oper. Res. 35(4), 786-794 (2010)



Foundations of Discrete Optimization: In Transition from Linear 205

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.
47.

48.

49.

50.

S1.

52.

53.

Emelichev, V.A., Perepelitsa, V.A.: On the cardinality of the set of alternatives in discrete many-
criterion problems. Discrete Math. Appl. 2, 461471 (1992)

Frank, A., Tardos, E.: An application of simultaneous Diophantine approximation in combinatorial
optimization. Combinatorica 7(1), 49-65 (1987)

Grotschel, M., Lovdsz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.
Algorithms and Combinatorics, vol. 2. Springer, Berlin (1988)

Hacijan, L.G.: A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244(5),
1093-1096 (1979)

Heinz, S.: Complexity of integer quasiconvex polynomial optimization. J. Complex. 21(4), 543-556
(2005)

Hildebrand, R., Koppe, M.: A new Lenstra-type algorithm for quasiconvex polynomial integer mini-
mization with complexity 20 (108%) Discrete Optim. (2012, to appear). arXiv:1006.4661 [math.OC]
Hemmecke, R., Koppe, M., Weismantel, R.: A polynomial-time algorithm for optimizing over n-fold
4-block decomposable integer programs. In: Proceedings of 15th Integer Programming and Combi-
natorial Optimization (IPCO 2010). LNCS, vol. 6080, pp. 219-229. Springer, Berlin (2010)
Hemmecke, R., Onn, S., Weismantel, R.: A polynomial oracle-time algorithm for convex integer
minimization. Math. Program. 126(1, Ser. A), 97-117 (2011)

Hosten, S., Sullivant, S.: A finiteness theorem for Markov bases of hierarchical models. J. Comb.
Theory, Ser. A 114(2), 311-321 (2007)

Hosten, S., Thomas, R.R.: Grobner bases and integer programming. In: Grébner Bases and Applica-
tions, Linz, 1998. London Mathematical Society Lecture Note Series, vol. 251, pp. 144-158. Cam-
bridge University Press, Cambridge (1998)

Isermann, H.: Proper efficiency and the linear vector maximum problem. Oper. Res. 22, 189-191
(1974)

Jinger, M., Liebling, Th.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi,
G., Wolsey, L.A. (eds.): 50 Years of Integer Programming 1958-2008. From the Early Years to the
State-of-the-Art. Springer, Berlin (2010)

Kalai, G.: Upper bounds for the diameter and height of graphs of convex polyhedra. Discrete Comput.
Geom. 8(4), 363-372 (1992)

Khachiyan, L.G.: Convexity and complexity in polynomial programming. In: Ciesielski, Z., Olech, C.
(eds.) Proceedings of the International Congress of Mathematicians, Warszawa, 16-24 August 1983,
pp. 1569-1577. North-Holland, New York (1984)

Khinchin, A.: A quantitative formulation of Kronecker’s theory of approximation. Izv. Akad. Nauk
SSSR, Math 12, 113-122 (1948) (in Russian)

Klee, V., Kleinschmidt, P.: The d-step conjecture and its relatives. Math. Oper. Res. 12(4), 718-755
(1987)

Kalai, G., Kleitman, D.J.: A quasi-polynomial bound for the diameter of graphs of polyhedra. Bull.,
New Ser., Am. Math. Soc. 26(2), 315-316 (1992)

Khachiyan, L., Porkolab, L.: Integer optimization on convex semialgebraic sets. Discrete Comput.
Geom. 23(2), 207-224 (2000)

Kim, E.D., Santos, F.: An update on the Hirsch conjecture. Jahresber. Dtsch. Math.-Ver. 112(2), 73-98
(2010)

Larman, D.G.: Paths of polytopes. Proc. Lond. Math. Soc. 3(20), 161-178 (1970)

Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538—
548 (1983)

Lee, J., Leyffer, S. (eds.): Non Linear Mixed Integer Optimization. The IMA Volumes in Mathematics
and Its Applications, vol. 154. Springer, Berlin (2012)

Lenstra, A.K., Lenstra, H.-W., Jr., Lovdsz, L.: Factoring polynomials with rational coefficients. Math.
Ann. 261(4), 515-534 (1982)

Monteiro, R.D.C., Tsuchiya, T.: A strong bound on the integral of the central path curvature and its re-
lationship with the iteration-complexity of primal-dual path-following LP algorithms. Math. Program.
115(1, Ser. A), 105-149 (2008)

Mani, P., Walkup, D.W.: A 3-sphere counterexample to the Wy-path conjecture. Math. Oper. Res.
5(4), 595-598 (1980)

Onn, S.: Nonlinear discrete optimization. In: An Algorithmic Theory. Zurich Lectures in Advanced
Mathematics. European Mathematical Society (EMS), Zurich (2010)

Oertel, T., Wagner, C., Weismantel, R.: Convex integer minimization in fixed dimension (2012, sub-
mitted). http://arxiv.org/abs/1203.4175


http://arxiv.org/abs/arXiv:1006.4661
http://arxiv.org/abs/1203.4175

206 J.A. De Loera et al.

54. Roos, C., Terlaky, T., Vial, J.-P.: Interior Point Methods for Linear Optimization. Springer, New
York (2006). Second Edition of 1t Theory and Algorithms for Linear Optimization. Wiley, Chichester
(1997). MR 1450094

55. Santos, F.: On a counterexample to the Hirsch conjecture. Preprint (2010, to appear) Ann. Math. 27 p.
Available as arXiv:1006.2814

56. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

57. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Vol. A: Paths, Flows, Match-
ings. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003). Chaps. 1-38

58. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Vol. B: Matroids, Trees, Stable
Sets. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003). Chaps. 39-69

59. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Vol. C: Disjoint Paths, Hyper-
graphs. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003). Chaps. 70-83

60. Sergienko, I.V., Perepelitsa, V.A.: Finding the set of alternatives in discrete multi-criterion problems.
Cybernetics 3, 673-683 (1991)

61. Santos, F., Sturmfels, B.: Higher Lawrence configurations. J. Comb. Theory, Ser. A 10, 151-164
(2003)

62. Sonnevend, G., Stoer, J., Zhao, G.: On the complexity of following the central path of linear pro-
grams by linear extrapolation. II. Math. Program. 52(3, Ser. B), 527-553 (1992). 1991. Interior point
methods for linear programming: theory and practice (Scheveningen, 1990)

63. Stanley, R.P.: Enumerative Combinatorics, Vol. 1. Cambridge University Press, Cambridge (1997)

64. Thomas, R.R.: A geometric Buchberger algorithm for integer programming. Math. Oper. Res. 20,
864-884 (1995)

65. Vanderbei, R.J.: Linear Programming: Foundations and Extensions, 3rd edn. International Series in
Operations Research & Management Science, vol. 114. Springer, New York (2008)

66. Vavasis, S.A., Ye, Y.: A primal-dual interior point method whose running time depends only on the
constraint matrix. Math. Program. 74(1, Ser. A), 79-120 (1996)

67. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York
(1995)

68. Zhao, G., Stoer, J.: Estimating the complexity of a class of path-following methods for solving linear
programs by curvature integrals. Appl. Math. Optim. 27(1), 85-103 (1993)

Jesiis A. De Loera received his B.S. degree in Mathematics from the
National University of Mexico in 1989, a M.A. in Mathematics from
Western Michigan in 1990, and his Ph.D. in Applied Mathematics from
Cornell University in 1995. An expert in the field of Discrete Mathe-
matics, his work approaches difficult computational problems in Ap-
plied Combinatorics and Optimization using tools from Algebra and
Convex Geometry. He has held visiting positions at the University
of Minnesota, the Swiss Federal Technology Institute (ETH Ziirich),
the Mathematical Science Institute at Berkeley (MSRI), Universitit
Magdeburg (Germany), and the Institute for Pure and Applied Math-
ematics at UCLA (IPAM). He arrived at UC Davis in 1999, where he is
now a professor of Mathematics as well as a member of the Graduate
groups in Computer Science and Applied Mathematics. His research
has been recognized by an Alexander von Humboldt Fellowship, the
2010 INFORMS Computing Society prize, and a John von Neumann
professorship at the Technical University of Munich. He is associate editor of the journals “SIAM Journal
of Discrete Mathematics” and “Discrete Optimization”. For his dedication to outstanding mentoring and
teaching he received the 2003 UC Davis Chancellor’s fellow award, the 2006 UC Davis award for diver-
sity, and the 2007 Award for excellence in Service to Graduate students by the UC Davis graduate student
association. He has supervised eight Ph.D. students, six postdocs, and over 20 undergraduate theses.

| .l H .I\‘.Il\‘il“lzhl


http://arxiv.org/abs/arXiv:1006.2814

Foundations of Discrete Optimization: In Transition from Linear 207

Raymond Hemmecke received his diploma in mathematics in 1997
from the University of Leipzig and his Dr. rer. nat. in 2001 from the
Gerhard-Mercator-Universitdt Duisburg. He was a postdoc at the Uni-
versity of California, Davis (2001-2003) and at the Otto-von-Guericke-
Universitit Magdeburg (2004-2008), where he received his habilitation
degree in 2006. Thereafter, he stayed as a guest professor at the Tech-
nische Universitidt Darmstadt (2008-2009) and since 2009 he works as
professor for Combinatorial Optimization at the Technische Universitét
Miinchen. Besides mixed-integer linear and nonlinear optimization, his
research interests include computational algebra, machine learning and
algebraic statistics.

Matthias Koppe received his diploma in mathematics in 1999 and
his Dr. rer. nat. in 2002, both from the Otto-von-Guericke-Universitit
Magdeburg. His thesis work on primal methods in integer linear op-
timization was recognized by the GOR Dissertation Award 2003 of
the German Operations Research Society. In 2006 and 2007, he vis-
ited the University of California, Davis, as a Feodor Lynen research
fellow of the Alexander von Humboldt Foundation. In 2008, he joined
the faculty of UC Davis as an assistant professor, where he is now a
full professor of mathematics and a member of the Graduate Groups
in Computer Science and Applied Mathematics. His research interests
include mixed-integer linear and nonlinear optimization and computa-
tional discrete mathematics. He is an associate editor of the journals
Mathematical Programming, Series A, and Asia-Pacific Journal of Op-
erational Research. (The photos of the authors were taken by Michael
Joswig during the International Symposium on Mathematical Program-
ming 2012 in Berlin.)




Jahresber Dtsch Math-Ver (2012) 114:209-213
DOI 10.1365/s13291-012-0053-z

@ CrossMark

HISTORICAL ARTICLE

3 bmv

In Memoriam Horst Tietz (1921-2012)

Georg Schumacher

Online publiziert: 9. November 2012

© Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2012

Zusammenfassung Am 28. Januar 2012 starb Horst Tietz. In diesem Nachruf soll
auf sein Leben und Werk und den historischen Zusammenhang eingegangen werden.

Schliisselworter Funktionentheorie - Riemannsche Flachen - Geometrie -

Angewandte Mathematik

Mathematics Subject Classification 01A70 - 30B10 - 30F10 - 30F20 - 51A05 -

6500

Horst Tietz im Jahre 2004
(Foto Bildarchiv des Mathematischen For-

schungsinstituts Oberwolfach, mit frdl. Ge-

nehmigung)

G. Schumacher ()
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Leistungen von Horst Tietz spiegeln sich in seiner Ernennung zum ,,Chevalier dans
I’Ordre des Palmes Académiques‘ und zum ,,Chevalier de la Légion d’Honneur* wi-
der.

1 Leben und Werk

Horst Tietz wurde am 11. Mérz 1921 in Hamburg geboren. Nach seinem Abitur 1939
studierte er zundchst Chemie in Berlin und von 1940 an Mathematik in Hamburg. Im
Jahre 1950 wurde er in Marburg mit einer Dissertation iiber das Thema: ,,Fabersche
Entwicklungen auf Riemannschen Flichen® promoviert. Der Hauptgutachter Profes-
sor Maximilian Krafft vergleicht in seinem Gutachten die Arbeit mit einem fritheren
Ansatz und kommt zu dem Schluss, dass ,,die Methoden von Behnke und Stein sehr
viel komplizierter und weniger durchschlagskriftig sind. ... Mangel der Arbeit ist,
daf3 sie dem Auffassungsvermogen des Lesers sehr viel zumutet.” Und abschlief3end
heifit es ,,Die Beweise sind von einer vorbildlichen Eleganz und Knappheit.*

Der Promotion vorausgegangen war das Staatsexamen in Marburg im Jahre 1947,
und die erste Stelle am Physikalischen Institut bei Prof. Hiickel und Prof. Walcher.
Diese Zusammenarbeit mit Wissenschaftlern, die Mathematik anwenden, war viel-
leicht langfristig priagend. Horst Tietz bemerkte im Hinblick darauf einmal, dass ihm
die ,,soziale Aufgabe der Mathematik* bewusst wurde, ndmlich Mathematik Nicht-
mathematikern nahezubringen. Umgekehrt beeinflusste sie auch deutlich seine wis-
senschaftlichen Interessen, in dieser Zeit entstanden seine Arbeiten zur klassischen
Mechanik und Transformationstheorie.

Nach dem endgiiltigen Abschluss des Promotionsverfahrens ging Horst Tietz auf
eine Assistentenstelle nach Braunschweig. Trotz seiner Hinwendung zu anwendungs-
orientierter Mathematik blieb er Funktionentheoretiker.

Die Existenz nicht konstanter meromorpher Funktionen auf Riemannschen Fla-
chen ist bekanntlich eine zentrale Aussage fiir die allgemeine Theorie bis hin zum
Satz von Riemann-Roch — im Falle berandeter Riemannscher Fldchen besitzt diese
eine andere, ebenso grundsitzliche Qualitdt, namlich die ,,Realisierbarkeit® beran-
deter Riemannscher Flichen als verzweigte Uberlagerungen. Der Tietzsche Abbil-
dungssatz klarte in diesem Sinne die Struktur: Jede berandete Riemannsche Fliche
kann realisiert werden durch eine solche, die aus einer gewissen Zahl von Vollebe-
nen besteht und aus ebensovielen und kongruenten Kreisscheiben, wie die Anzahl
der Randkontinuen betrdigt; es konnen ebensoviele Nullstellen der Abbildungsfunkti-
on vorgeschrieben werden. Die Randkreise verlaufen schlicht. Weitere entscheidende
Resultate beruhten auf Anwendungen von Faber-Polynomen.

Wohl auch unter dem Einfluss der Braunschweiger Umgebung widmete sich Horst
Tietz weiterhin anwendungsbezogenen Problemen der reellen Analysis. Dazu ge-
horten Untersuchungen iiber verallgemeinerte vollstindige elliptische Integrale. Eine
Methode von Bartky wird aufgegriffen, ausgebaut und auf Konvergenzeigenschaften
hin untersucht. Hervorzuheben ist der Erfolg mit durchaus anwendungsorientierten
Methoden in einer eher theoretischen Disziplin. Die Ergebnisse von Horst Tietz auf
einem Gebiet, welches er mit Ahlfors, Bergmann, Bochner und anderen teilte, hat-
ten Behnke in Miinster aufmerksam gemacht. Im Jahre 1956 wurde er dort Dozent.
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Das Arbeitsgebiet war die Komplexe Analysis, und es entstanden hier wesentliche
Arbeiten. In einem von Nevanlinna den Annales Academiae Scientiarum Fennicae
vorgelegten Beitrag widmete er sich der Frage nach Funktionen mit Integraldarstel-
lung auf nichtkompakten Gebieten Riemannscher Fliachen. Hier ging es im einzelnen
um den Zusammenhang von Laurent-Trennungen und Elementar-Differentialen. Es
folgte eine groBere Arbeit ,,Zur Klassifizierung meromorpher Funktionen auf Rie-
mannschen Flidchen* in den Mathematischen Annalen.

Auch in Miinster blieb Horst Tietz seinen anwendungsbezogenen Forschungsin-
teressen treu und arbeitete auf dem Gebiet der nichtpositiven Integralfunktionen und
Anwendungen in der Theorie der Differentialgleichungen.

Ebenso besaB3en Fragen der Geometrie fiir Horst Tietz stets einen Anwendungsbe-
zug. In diesem Zusammenhang ist das Handbuch der Physik aus der Braunschweiger
Zeit zu erwihnen. Aus der Miinsteraner Zeit stammen Arbeiten iiber die Grundlagen
der Geometrie und ein Lehrbuch tiber die Grundlagen der Linearen Geometrie, fer-
ner Arbeiten aus dem Gebiet der Linearen und Differentialgeometrie. Einem grofe-
ren Leserkreis wurde er bekannt durch die beiden Bénde des Fischer Taschenbuches
Mathematik.

Im Jahre 1962 erhielt Horst Tietz einen Ruf auf eine ordentliche Professur in Han-
nover, die er bis zu seiner Emeritierung im Jahre 1990 innehatte. Seine Ausstrahlung
als akademischer Lehrer wurde noch einmal sichtbar, als 700 Horer zu seiner Ab-
schiedsvorlesung kamen — wer keine Gelegenheit teilzunehmen hatte, konnte sein
Manuskript in der Frankfurter Allgemeinen Zeitung nachlesen.

2 Verfolgung im Dritten Reich, spitere Ehrungen

Horst Tietz hat Marburg einmal als seine Schicksalsstadt bezeichnet. Bereits im Jah-
re 1933 hatte dieses Land den Kreis der zivilisierten Volker verlassen. Drei Wochen
nach dem Reichstagsbrand, der Ende Januar gelegt worden war, hatte man in Dach-
au das erste Konzentrationslager errichtet und schlieBlich im Oktober den formalen
Schritt mit dem Austritt aus dem Volkerbund getan. Nachdem Horst Tietz sein Studi-
um in seiner Heimatstadt Hamburg (nach einem Trimester in Berlin) begonnen hatte,
wurden die Studienbedingungen fiir ihn aufgrund seiner jiidischen Wurzeln immer
schwieriger. Es erfolgte seine Zwangsexmatrikulation. Mit Zustimmung und Unter-
stiitzung seiner Lehrer Erich Hecke und Hans Zassenhaus wurde er zum Schwarzho-
rer, dies fiir eineinhalb Jahre, in denen er sich auch im Gebidude der Universitit vor
der Geheimen Staatspolizei verbergen musste. Diese Umstinde, die in seinem Arti-
kel im Jahrbuch der Philipps-Universitidt Marburg und den Beitrdgen iiber seine aka-
demischen Lehrer aus den Mitteilungen der Deutschen Mathematiker-Vereinigung
und dem Mathematical Intelligencer beschrieben werden, sind unfassbar. Im Jahre
1943 drohte Denunziation, Hans Zassenhaus warnte ihn und lud ihn zu gemeinsa-
mer Arbeit zu sich nach Hause ein. Schlieflich wurden Horst Tietz und seine Eltern
nach einem Bombenangriff obdachlos. Auf Empfehlung von Erich Hecke ging er
nach Marburg zu dessen Schiiler Kurt Reidemeister. Am Heiligen Abend 1943 wur-
de Horst Tietz zusammen mit seinen Eltern verhaftet und in das Konzentrationslager
Breitenau und er selbst spiter nach Buchenwald gebracht. Seine Eltern kehrten nicht
wieder zuriick, Horst Tietz wurde aus Buchenwald befreit. Er nahm seine Studien in
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Hamburg wieder auf, Hecke starb, und Zassenhaus wanderte aus, so dass Tietz im
Sommersemester 1946 nach Marburg ging. Wesentlichen Einfluss in Marburg hatten
Herbert Grétzsch und Maximilian Krafft, sein spiterer Doktorvater.

Aufgrund seiner Verdienste um die Gruppe der franzosischen Mithiftlinge in Bu-
chenwald wurde er spiter in den Orden der franzosischen Ehrenlegion aufgenom-
men, mit allen zustehenden Privilegien. Es wird berichtet, dass der franzosische Staat
Dank und Anerkennung bei jeder Reise nach Frankreich durch seinen Vertreter an
der Grenze Ausdruck verlieh.

Die Hamburgische Mathematische Gesellschaft ernannte Horst Tietz zaum Ehren-
mitglied. Ebenso wurde er in die Braunschweigische Mathematische Gesellschaft
aufgenommen und war drei Jahre lang Vorsitzender der Mathematisch-Naturwissen-
schaftlichen Klasse.

3 Der Akademiker Horst Tietz

Von Anfang an waren akademische Belange fiir ihn wichtig: In Marburg war er Mit-
begriinder des ASTA, nachdem er bereits in Hamburg die Studentenschaft mitorgani-
siert hatte.

Die Verdienste des Akademikers Horst Tietz sind bedeutend. Bereits in Miinster
als Dozent in der Nihe von Heinrich Behnke hatte er sich besonders fiir die Aus-
bildung der Lehrer und Naturwissenschaftler engagiert. Achtzehn Jahre lang war er
der Vorsitzende des Wissenschaftlichen Priifungsamtes in Hannover, der Vertreter der
Niedersichsischen Hochschulen im Landesschulbeirat und Mitglied des Ausschusses
,»Schule-Hochschule* in der Westdeutschen Rektorenkonferenz, dem Verhandlungs-
partner des Schulausschusses der Kultusministerkonferenz.

Seine Stimme wurde gehort. So konnten er als federfithrender Herausgeber der
Denkschrift der DMV zum ,,Mathematik-Unterricht der Schulen* schlieBlich das En-
de eines unsinnigen Mengenlehre-Unterrichts an Schulen herbeifiihren.

Sehr frith war Horst Tietz als einer der Neubegriinder der Deutschen Technion-
Gesellschaft hervorgetreten. Einstmals war diese Hilfsorganisation fiir die Technische
Universitit in Haifa von Albert Einstein ins Leben gerufen worden. Schon am Anfang
war er Mitglied des ,,Stindigen Biiro GE-TH* fiir die Verbindungen zwischen den
franzosischen Grandes Ecoles und den Deutschen Technischen Hochschulen und war
dessen langjdhriger Prisident, zuletzt Ehrenprisident. Dieser Einsatz fiir die deutsch-
franzdsische Zusammenarbeit wurde von franzosischer Seite mit der Aufnahme in
den Orden ,,Palmes académiques* honoriert.

Horst Tietz hat durch sein vielfdltiges Wirken als Akademiker und Wissenschaftler
bleibende Spuren hinterlassen.

Marburg im Oktober 2012, Georg Schumacher
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Mit diesem Text legt Peter Schneider das erste echte Lehr-
buch iiber die Grundlagen der Theorie der p-adischen Lie-
Gruppen und ihrer Lie-Algebren vor. Es fiillt eine schmerz-
= liche Liicke in der Literatur zu einem wichtigen Gegenstand,

p-Adic der bereits seit 50 Jahren studiert und intensiv benutzt wird.

Lie GTOUpS Zu jeder Primzahl p gibt es auf Q einen Absolutbetrag.

Er ordnet einer rationalen Zahl ap’ mit a teilerfremd zu p
den Wert p~" zu. Zahlen sind also klein, wenn sie durch ho-
he Potenzen von p teilbar sind. Zahlentheoretische Fragen
nach Teilbarkeit werden so in analytische Sprache gefasst.

£) Springer So wie R durch die Komplettierung von Q beziiglich des

gewohnlichen Absolutbetrages entsteht, so definiert man die

p-adischen Zahlen Q, als Komplettierung von Q beziiglich des p-adischen Betrags.

Da der p-adische Betrag genau das ist, was der Name sagt — ein Absolutbetrag —

lassen sich viele Konzepte und Resultate aus der Analysis auch in dieser Situation
anwenden.

Im Fall des vorliegenden Buches sind es Lie-Gruppen, d.h. Gruppen wie G1,(Q)),
die gleichzeitig die Struktur einer Mannigfaltigkeit tiber Q, (oder einer seiner Ver-
allgemeinerungen) tragen. Sie sind von immenser Wichtigkeit in der Zahlentheorie,
spielen aber z.B. auch in der algebraischen Topologie eine grofie Rolle. Zum einen ist
ihre Darstellungstheorie Mitspieler im Langlands-Programm, einer weitreichenden
vermuteten Verallgemeinerung der Klassenkorpertheorie. Eine andere Anwendung,
die sich in der letzten Dekade entwickelte, ist nichtkommutative Iwasawa-Theorie,
in der p-adische Lie-Gruppen als Galoisgruppen von algebraischen Erweiterungen

Peter Schneider

A. Huber (X))
Freiburg, Deutschland
e-mail: annette.huber @math.uni-freiburg.de
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von Q auftauchen. In der Topologie wird z.B. stetige Kohomologie von gewissen p-
adischen Lie-Gruppen in Berechnungen der stabilen Homotopiegruppen von Sphéren
benutzt.

Das Buch behandelt in zwei Teilen zwei Aspekte der Theorie: Im ersten Teil der
analytische Zugang mit Begriffen wie Mannigfaltigkeit und Tangentialbiindel paral-
lel zur reellen Analysis. Die Lie-Algebra zu einer Lie-Gruppe ist dann wie iiblich
der Tangentialraum am neutralen Element. Der erste entscheidende Unterschied zur
reellen Situation ist topologischer Natur: QQ,, ist total unzusammenhingend. Statt der
differenzierbaren Funktionen benutzt man daher die Klasse der analytischen Funk-
tionen, also derjenigen, die sich lokal als konvergente Potenzreihen schreiben lassen.

Der zweite Teil des Textes hat ein viel algebraischeres Flair, das zentrale Objekt
ist der komplettierte Gruppenring. Auch dieser Zugang, der von Lazard in seiner
groBen Monographie [3] von 1965 entwickelt wurde, erlaubt die Definition einer
Lie-Algebra. Lazards Arbeit ist ob des schieren Umfangs notorisch schwer zu le-
sen. Schneiders Darstellung konzentriert sich auf Gruppenringe und ihre Rolle in der
Konstruktion der Lie-Algebra und auf den zentralen Fall von p-bewerteten pro-p-
Gruppen. Er legt damit die erste Behandlung in Lehrbuchform vor.

Die beiden Teile stehen etwas unvermittelt nebeneinander. Ein Ergénzungsvor-
schlag fiir Folgeauflagen wire der Vergleich der beiden Definitionen der Lie-Algebra,
der mit den bereitgestellten Mitteln leicht zu fiihren ist.

Das Buch richtet sich an fortgeschrittene Studierende. Bei geniigend Engagement
kann diese Gruppe tatsdchlich mit Gewinn mit dem Buch arbeiten. Seine Hauptle-
serschaft wird es unter dankbaren Doktoranden finden, sowie als verldssliche Re-
ferenz in der Forschung. Alle Grundlagen, beginnend bei den ersten Eigenschaften
von ultrametrischen Betrigen werden sorgfiltig und vollstindig entwickelt. Nur ge-
legentlich wird auf die Lehrbuchliteratur verwiesen, dann aber mit vollstdndiger und
sauberer Referenz. Beispiele treten bei der hier gegebenen Entwicklung der Theorie
eher in den Hintergrund. Einzelne Ubungsaufgaben sind eingestreut.

Im Folgenden soll der Inhalt des Buches etwas genauer beschrieben werden.

Die erste Hilfte ist wie bereits erwéhnt analytischer Natur und setzt hierbei kon-
sequent auf den p-adischen oder allgemeiner ultrametrischen Standpunkt. Es setzt
sich hiermit klar ab von [1], das den klassischen und den ultrametischen Fall parallel
entwickelt. Kenntnisse der reellen Analysis sind hilfreich beim Lesen, jedoch keine
Voraussetzung. Kapitel I beginnt mit recht allgemein gehaltenen Grundlagen iiber
Topologie, Differenzierbarkeit und Potenzreihen in ultrametrischen Rdumen. Beson-
dere Aufmerksamkeit wird jeweils den zugehorigen Vektorrdumen von Funktionen
geschenkt. Schneider stellt damit den Zusammenhang zu seinem Buch [4] iiber nicht-
archimedische Funktionalanalysis her.

Kapitel II fithrt den Mannigfaltigkeitsbegriff und zugehorige Konzepte ein. Ne-
ben Standardaussagen, die aus der reellen Analysis wohlbekannt sind, finden sich
auch ein harter Satz iiber die Darstellbarkeit von Derivationen durch Vektorfelder.
Das Kapitel endet mit der Topologisierung des Raums C*"(M, E) der analytischen
Funktionen auf einer parakompakten Mannigfaltigkeit mit Werten in einem ultra-
metrischen Banachraum E. Hier folgt Schneider der Doktorarbeit [2] von Féaux de
Lacroix.

In Kapitel III treten dann die Hauptakteure, die Lie-Gruppen auf. Es wird die as-
soziierte Lie-Algebra und deren universell einhiillende Algebra eingefiihrt. Die Dis-
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kussion von formalen Gruppengesetzen wird benutzt, um zu zeigen, dass jede Lie-
Gruppe parakompakt ist.

Mit Kapitel IV beginnt der eher algebraische zweite Teil des Buches. Die Konzep-
te stammen weitgehend aus Lazards Arbeit [3]. Schneiders klar strukturierte Darstel-
lung konzentriert sich auf einen besonders wichtigen Spezialfall und eliminiert einige
Begriffe wie den der Bewertung einer Lie-Algebra. Damit werden die Inhalte besser
zugénglich. Leichte Kost ist es aber auch in dieser Fassung nicht.

Kapitel IV selbst ist eine schnelle — und dennoch vollstindige — Einfithrung in
die Theorie der komplettierten Gruppenringe von pro-endlichen Gruppen und deren
topologische und algebraische Eigenschaften.

In Kapitel V wird der zentrale Begriff einer p-bewerteten (p-valué bei Lazard,
p-valued in der englisch-sprachigen Literatur) Pro- p-Gruppe eingefiihrt. Die Bewer-
tung induziert eine Filtrierung. Zentrales Werkzeug beim Studium dieser Gruppen
ist das zugehorige graduierte Objekt in Charakteristik p. Der Zusammenhang zum
ersten Teil wird dadurch hergestellt, dass jede Lie-Gruppe iiber Q, eine offene Un-
tergruppe enthilt, die mit einer p-Bewertung versehen werden kann.

Kapitel VI bringt die beiden Konzepte zusammen. Aus der p-Bewertung der
Gruppe wird eine p-Bewertung des komplettierten Gruppenrings. Hauptergebnis ist
die Aussage, dass jede p-bewertete Pro-p-Gruppe eine natiirliche Struktur als p-
adische Lie-Gruppe tréigt. Diese Struktur ist sogar unabhingig von der Wahl der Be-
wertung. Die zugrunde liegende Mannigfaltigkeit ist einfach Zz.

Im letzten Kapitel VII wird Lazards Definition der Lie-Algebra einer p-bewerte-
ten Gruppe erklédrt. Man findet sie als die Menge der primitiven Elemente im kom-
plettierten Gruppenring. Exponential- und Logarithmus-Abbildung verbinden wie in
der reellen Situation Lie-Gruppe und Lie-Algebra.

Die Hauptergebnisse Lazards neben der Definition der Lie-Algebra betreffen die
Kohomologie der betrachteten p-adischen Lie-Gruppen. Im vorliegenden Buch wer-
den diese Aspekte nicht angesprochen. Die Referentin hofft auf einen Fortsetzungs-
band.

Insgesamt fiillt der von Schneider vorgelegte Band die eingangs erwihnte Liicke
in der Lehrbuchliteratur in hervorragender Weise. Es ist jedem zu empfehlen, der
einen Einstieg in die Theorie der p-adischen Lie-Gruppen sucht.
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The study of fundamental interactions in physics is to a
FEYNMAN large extent based on the computation and study of Feyn-
MOTIVES man graphs. By now, there is more than half a century of ex-

; e perience behind these computations. Amazingly, it is only
in the last 15-20 years that the mathematical structure be-
hind Feynman graphs started to reveal itself.

It turns out to relate to modern mathematical research in
unexpected ways, which has promise for both disciplines,
mathematics as well as physics.

To give an idea in which way such physics computations
relate to mathematics, let us look at a probability amplitude
describing a scattering experiment in physics. In very rough
terms, one decides what the incoming particle flux is, and one wants to know what
the probability is for a certain final state to be measured in an experiment. The deter-
mination of such probabilities, in accordance with the rules of special relativity and
quantum physics, is the realm of quantum field theory (QFT).

Physicists have disentangled this problem in a graphical expansion, graded by the
loop number (the first Betti number) of the graphs. In each graph, internal edges or
vertices are to be integrated over all unobserved values, say momentum or position,
in accordance with the rules of quantum physics.

Such a Feynman graph describes pointlike interactions of particles, which then
freely propagate between spacetime points at which they interact. Those spacetime
points are represented as vertices, the intermediate propagation as edges in a graph.

Matilde Marcolli
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The position of the vertices, or equivalently the momenta of internal propagation, are
to be integrated out.

To each such Feynman graph I” an integral @ (I") is thus assigned.

These integrals are only well-defined though when the map @ is replaced by its
renormalized counterpart @&, a transition which can be formulated using a Hopf
algebra structure H on such graphs.

The most prominent map to define such a structure is a co-product

AH— HQ®H,

a map which is dual to the product in an algebra. For Feynman graphs, it reads

A=) y®TI/y,

yer

which uses a set-theoretic decomposition of graphs I” into subgraphs y and co-graphs
r'/y.

The ‘renormalized contribution’—which is the contribution eventually measured
in an experiment—

R =me(S§ @ ®)A) 6))
is obtained using a ‘counterterm’
SR—=_Ro )
defined through ‘Bogoliubov’s preparation map’
@ =mc(S§ @ ®P) A, )

where R is a map specifying renormalization conditions on Feynman graphs, and P
projects into the augmentation ideal.
@R is a polynomial when applied to a Feynman graph:

X cor(I") - S
ok = Z cf ({@})111/5—0.

Jj=1

One finds that @R evaluates graphs to periods ¢ j (for suitably fixed angles in the
scattering amplitude) or functions of such angles more generally.

It is here where connections to modern mathematics and algebraic and arithmetic
geometry emerge: the periods are at sufficiently low loop order periods of mixed Tate
motives, the functions polylogarithmic at least at first loop order.

This appearance of periods, a countable set of numbers which organize our under-
standing of nature at its purest, is a most fascinating research topic.

The questions then are: what are the periods, and hence motives, assigned to a
Feynman graph? Is there a dedicated class of periods for a chosen renormalizable
QFT, or is the situation generic? And what happens when we sum over graphs?

Answers as of today are sparse, we just list a few striking facts:

e At rather low loop order, periods are periods of mixed Tate motives, but not in
general. There are well-defined graph-theoretic criteria though to decide when a
Feynman graph is Tate. The general case is open [4].
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e The transcendental weight |p| of a period p provided by a graph I" never exceeds
|pl <2|I'| — 3, where |I"| is the loop number of the graph [3, 5, 7].

e Theories with internal symmetries like gauge symmetry and/or super-symmetry
provide—by computational evidence, hence conjecturally only—for ‘weight drop’
[2]: summing over all graphs contributing to a given scattering amplitude at a given
loop number 7, the total answer only involves periods such that |p| <2n — 4. The
question how restrictive internal symmetries are in confining the space of periods
is one of the most-debated research topics in QFT these days.

This book reviews these questions and the underlying physics and mathematics in a
rather superficial manner, aiming at no more than a first and short introduction to the
subject.

As such, it is useful, but the reader will have to consult the original literature for
precise and up-to-date information.

Let us review the book in question now chapter by chapter.

Chapter 1 gives a short introduction to pQFT and Feyman graphs. For the new-
comer, this will be the most useful chapter, as it transpires the fascination of the
author with the nexus of questions described above most clearly. As a first point of
contact of a mathematician with the relevant physics notion this is quite useful.

Already here, a bias of Marcolli for the technique of dimensional regularization,
invented by physicists, is prominent. This should be taken with a grain of salt by the
reader: QFT often becomes most clear upon analysing Feynman graphs in the sober
light of configuration polynomials and parametric representations.

Chapter 2 reviews, on 27 pages, the theory of motives and periods. The experts
will clearly find that this chapter does no justice to the topic, as the author herself
indeed happily admits. For the non-expert, the whole chapter is yet another baffling
account of the notion of motives in the literature.

The reader can take away a superficial idea of pure motives, with some motivation
for mixed Tate motives. Here, an account of the recent work of Brown, Schnetz,
Yeats and others [4, 5], emerging at the time when the book was written, would be
a wonderful addition. By now, Brown and Schnetz showed in particular that mixed
Tate motives are too narrow a universe in which to frame Feynman graphs.

Similarly missing is an account of the fundamental methods based on point-
counting over I, developed recently, which provide for many detailed results of the
nature of periods in the expansion above [5]. In this respect, the book in review un-
fortunately misses to prepare the reader for the most interesting results obtained in
recent years [4].

Chapter 3 gives an account of QFT when approached through parametric represen-
tations for Feynman graphs. Parametric representations very elegantly combine com-
binatorics and graph theory to turn rather convoluted analytic expressions of physics
into rather well-structured polynomials suitable to be analysed by methods of alge-
braic geometry. This chapter is useful as an introduction to these polynomials, which
are mathematical gems in their own right. The account given here only scratches at
the surface though of a wide ranging analysis of Feynman graphs in such terms which
started in [1] and is still ongoing [5]. What the reviewer misses here is a more detailed
account of Dodgson polynomials which underly almost any of the progress of recent
years.
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Also, a more prominent exhibition of the work of Belkale and Brosnan would have
been welcome here, emphasizing the fact indeed that at higher loop orders, graphs
have no reason to restrict themselves to the mixed Tate universe.

The census by Schnetz on Feynman graphs and periods known so far [7] is unfor-
tunately missing here as well. Given that any relation between algebraic geometry,
periods and motives relies on such computational data, this is really a painful omis-
sion.

Chapter 4 promotes an idea of the author. At this point, it reflects an isolated
viewpoint which is only useful in the rather speculative later parts of the book.

Chapter 5 reviews renormalization from a Hopf algebra viewpoint. This is by now
an active area of study in its own right. The account given is again useful as a first
introduction, explaining Eqgs. (1), (2), (3) in three devoted subsections, but far from
self-contained, and with some lapses in accuracy in the technical details. The original
literature will have to fill this gap [6].

Chapters 6-9 are very speculative, and mix an account of the literature with a
very personal viewpoint which is somewhat disconnected from the progress made
in recent years. These chapters often deviate in directions whose promise is rather
unclear to the reviewer.

In summary, the research covered in this book is rather recent. The non-specialist
literature available to a novice in the area is sparse. If this book has motivated and
enabled the reader to study the original mathematics and physics literature, it has
fulfilled a very useful purpose.

This book will appeal to mathematicians who seek an entry point into this area,
as well as to physicists who enquire about the most basic mathematical notions in-
volved. As always, any serious interest will necessitate a study of the original research
literature in the field.
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Homotopy theory is a very broad subject. The basic idea is
easy to describe: the objects of study are (nicely behaved)
topological spaces but the crucial point is that continuous
maps between spaces are considered up to homotopy, that
is, up to continuous deformation. The concept of homotopy
allows for classifications that are, in general, much coarser
than for instance the classification of spaces up to homeo-
morphism or classifications in differential or complex ge-
ometry.

The subject has a long history starting around 1950
/ (with some important earlier contributions) and homotopy
theory is thriving today. Concepts and constructions from
homotopy theory influence many areas of mathematics, for instance motivic ho-
motopy theory plays an important role in algebraic geometry, Hopkins’ spectrum
of topological modular forms has connections with the classical theory of modular
forms, with elliptic curves and with conformal field theories, and algebraic K-theory
connects homotopy theory and algebraic number theory. In the foundations of mathe-
matics, homotopy theory is used in homotopy type theory and in geometric topology
methods and results from homotopy theory are used to gain genuine geometric in-
formation. Simplicial methods and Quillen model category structures by now belong
to the standard toolkit of many mathematicians. An important recent result is the so-
lution of the Kervaire invariant problem by Hill, Hopkins and Ravenel. The original
problem is a question about smooth framed manifolds but the solution is given in
terms of stable homotopy theory.
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Homotopy theory is a very diverse subject. The Mathematics Subject Classifi-
cation mentions topics such as cofibrations and fibrations, homotopy equivalences,
classification of homotopy types, Eilenberg-MacLane spaces, Spanier-Whitehead and
Eckman-Hilton duality, (infinite) loop spaces and suspensions, stable homotopy the-
ory and spectra, spectra with extra structure, operads, localization and completion,
string topology, rational homotopy theory, shape theory and proper homotopy theory
and equivariant homotopy theory. This list is not complete at all and it does not in-
clude technical tools, such as spectral sequences or cohomology operations, or calcu-
lational aspects. One of the features of homotopy theory is a mix of methods, ranging
from genuinely homotopy theoretic ones to geometric and algebraic methods.

The long list of topics above indicates that even a book on homotopy theory like
Jeffrey Strom’s with more than 800 pages cannot give a comprehensive introduction
into the subject. Any author of such a volume has to choose which topics to discuss
and of course this choice depends on personal taste: Strom focuses on the concept of
homotopy limits and homotopy colimits and the model category of topological spaces
with a thorough discussion of cofibrations and fibrations. Most of the standard topics
of unstable homotopy theory are covered by the book.

The book starts with a short introduction to category theoretical concepts, in par-
ticular it contains a chapter on limits and colimits. Part two contains the basic con-
cepts of homotopy theory, starting with a discussion what properties a nice cate-
gory of topological spaces should have, introducing the concept of homotopy, the
notions of (co)fibrations, introducing homotopy (co)limits, discussing (co-)H-spaces
and Lusternik-Schnirelmann category and finally treating Quillen model category
structures. Connectivity, n-equivalences, the Seifert-van-Kampen theorem and cel-
lular approximation are dealt with in the part three. In this part Strom also explains
what one can say about pullbacks of cofibrations. As cofibrations behave well with
respect to colimits, but in general not with respect to limits, this is a non-standard
topic. The result, namely that cofibrations are preserved under pullbacks along fi-
brations, is useful to know. Notions like coverings and bundles, Serre fibrations and
quasifibrations are subsumed under the chapter “Related Topics”; this does not quite
reflect their importance.

Part four features some of the main results in classical homotopy theory: This
part starts with skeleta of spaces, Postnikov towers and classifying spaces, and
then deals with loop spaces and suspensions. The Freudenthal suspension theorem
and the Blakers-Massey theorem are proven and some consequences for homotopy
groups and Eilenberg-MacLane and Moore spaces are discussed. Part four closes
with a chapter on “Further Topics” which collects themes ranging from Lusternik-
Schnirelmann category to infinite symmetric products.

Cohomology and homology show up in Part five. Strom introduces cohomology
in the represented form, then gives the general definition of a cohomology theory
before discussing concrete examples. He states Brown representability and then de-
scribes basic properties of homology theories. Cohomology operations, the structure
of the Steenrod algebra and cohomology and homology via the cellular and singular
(co)chain complexes are other topics of this part.

Spectral sequences are the main topic of Part six. An extensive discussion of filtra-
tions is the starting point and the spectral sequence associated to a filtration and the
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Leray-Serre spectral sequence are described in some detail with applications, ranging
from some classical cohomology calculations to Bott periodicity.

The book closes with Part seven, which is called ’Vistas’. Four main topics are
presented: Localizations and completions of spaces, exponents for homotopy groups,
classes of spaces and a theme and variations on Miller’s theorem of the triviality of
the space of pointed maps from the classifying space of a cyclic group of prime order
to a finite-dimensional CW complex.

Strom clearly states his preferences in the introduction: “I have generally used
topological or homotopy-theoretical arguments rather than algebraic ones.” If readers
think that this preference results in a plenitude of geometrical arguments, they will
be disappointed. There are a lot of diagrams in the book, but the only figures are of
a schematic nature, explaining homotopy extensions, for instance. Homotopy theory
often transfers topological questions into algebraic ones, thus a certain amount of
algebraic arguments is intrinsic to the subject and cannot be avoided. Cohomological
methods and spectral sequences appear rather late in the book (in Chapters 21 and
30 out of a total of 37 chapters). Many theorems that are typically proved using
these methods are treated in the chapters before Chapter 21, and are proved using
homotopy-theoretic arguments on space level.

The book is not a classical textbook whose content is structured as a sequence of
results followed by proofs with some remarks and examples. Rather it encourages
learning-by-doing. Strom says that “theorems are followed by multi-part problems
that guide the readers to find the proofs for themselves”. In these problems, proofs
are broken down into smaller portions. Only a reader who works on the problems and
exercises will gain something from this book.

Having no outright proofs at all in a book might have its drawbacks: Some things
are difficult to learn if you never see them done. For instance, finding cartoon proofs
in homotopy theory that you might translate to a full proof later (or you don’t because
you are happy with them as they are), is something you learn from role models;
otherwise this aspect of homotopy theory might just be lost on you. As Strom does
not provide detailed references to the literature, a reader who does not manage to
solve the problems might find it hard to fill in gaps.

According to Strom, the intended readership of the book consists of people who
had an introductory course in topology, but have not necessarily seen the fundamen-
tal group. While no knowledge in topology is required that goes beyond that, some
experience with arguments and proofs in topology is necessary, in order to solve the
problems and do the exercises.

Strom’s book is certainly different from the existing literature on homotopy theory.
His book is not suited for someone who just wants to apply homotopy theory, get a
quick impression what the subject is about and how the proofs work. But for someone
with a serious interest in the deeper aspects of those topics in homotopy theory that
are presented in the book, the book can help to learn them in an active way.
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