Jahresber Dtsch Math-Ver (2012) 114:117-118
DOI 10.1365/s13291-012-0050-2

PREFACE

«4 bmv

Preface Issue 3-2012

Hans-Christoph Grunau

Published online: 24 July 2012
© Deutsche Mathematiker-Vereinigung and Springer-Verlag 2012

Although the problem of finding periodic solutions of Hamiltonian systems is easily
explained, it is in many cases quite difficult to solve and in most cases still open.
This question—among others—gave rise to the development of symplectic geome-
try. In this context, Alan Weinstein conjectured in 1978 that every hypersurface of
the standard symplectic R?* of so called contact type admits a closed orbit. Being
of contact type generalises the notion of an object being star-shaped. The survey ar-
ticle of Frederica Pasquotto provides “A short history of the Weinstein conjecture”.
Some cases of this conjecture have been solved while in its full generality, it is still
open.

Herbert von Kaven from Detmold in North Rhine-Westphalia established the
eponymous foundation which awards usually every year the von Kaven prize to a
young and promising mathematician. The decision is made by the German Research
Foundation’s (DFG) mathematics review board. During the 2011 annual meeting of
“Deutsche Mathematiker-Vereinigung”, that year’s von Kaven prize was awarded to
the DFG-Heisenberg-fellow Christian Sevenheck. His field of research is complex al-
gebraic geometry and in particular mirror symmetry. Sometimes it is possible to find
correspondences between two seemingly completely different situations, the so called
A-model and the B-model, which may arise e.g. in algebraic geometry and string the-
ory respectively. It may be possible to use results from the B-model to obtain results
in the A-model, once these connections have been better understood. Details can be
found in Christian Sevenheck’s survey article “Mirror symmetry, singularity theory
and non-commutative Hodge structures”.
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One year ago, in Issue 3-2011, one could find the survey article by Simon Brendle
on “Sphere Theorems in Riemannian Geometry”, which was dedicated to Wilhelm
Klingenberg who had died on the 14th October 2010. One of the main achievements
of Wilhelm Klingenberg was his contribution to proving the topological sphere the-
orem: If the sectional curvatures of a compact simply connected n-dimensional Rie-
mannian manifold are contained in the interval (%, 1], then the manifold is homeo-
morphic to a sphere. In the current issue, Jost-Hinrich Eschenburg gives a personal
view and a number of remarks on further fundamental scientific achievements of Wil-
helm Klingenberg, his Ph.D. advisor.

The book reviews section is concerned with new publications on toric varieties,
nonabelian algebraic topology and the nonlinear theory of water waves.
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Abstract A very natural and fundamental question (both from a historical and a
mathematical point of view) is that of existence of periodic orbits of Hamiltonian
flows on a fixed energy hypersurface. In 1978 Alan Weinstein conjectured that a geo-
metric property of the hypersurface under consideration would provide a sufficient
condition for the existence of such orbits. He called hypersurfaces with this property
hypersurfaces of contact type. This article briefly describes the history of the Wein-
stein Conjecture, which has been one of the major driving forces behind the develop-
ment of symplectic geometry at the end of the twentieth century, leading to some of
the most fruitful interactions between analysis, geometry and topology. Weinstein’s
Conjecture has been proved in a number of significant cases but remains, in its most
general form, an extremely interesting and challenging open problem.

Keywords Hamiltonian system - Periodic orbit - Symplectic form - Contact form -
Reeb flow - Almost complex structure
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Many interesting physical phenomena are described by the solutions of a system of
Hamiltonian differential equations. In their most familiar form, the Hamilton equa-

This article is an extended and translated version of Een korte geschiedenis van het vermoeden van
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tions look as follows:

) oH . 0H
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where H is the energy function and p and g are vectors: in the case of the motion of a
planet or a particle, these vectors represent velocity (momentum) and position of the
moving object, respectively. Due to an energy conservation principle, solutions lie on
a given energy surface, that is, a level set of the energy function. Among the first con-
servative systems to receive a lot of attention and to be thoroughly investigated were
the systems describing the motions of planets, stars and other astronomical objects.
It is therefore not surprising that the question of existence of periodic solutions (or
orbits) of such systems should arise so naturally and within a short time should come
to play a prominent role in Hamiltonian mechanics. Solutions displaying a recurrent
behavior are very important from a mathematical point of view, since it is precisely
these solutions which correspond to the critical points of the action functional.

Symplectic geometry provides the right mathematical formalism to study these
kind of systems and for this reason it plays an important role in the search for pe-
riodic orbits. Symplectic structures made their first appearance in connection with
classical mechanical systems, but they make it possible to extend the study of Hamil-
tonian systems from the classical setting of Euclidean space to spaces with non-trivial
geometry and topology (for example, with curvature and holes). The Weinstein Con-
jecture introduces a sufficient condition that leads to existence of periodic orbits on
a fixed energy hypersurface: this condition is expressed in terms of the geometry of
the energy hypersurface and makes use of the symplectic structure with which the
ambient phase space is endowed. This conjecture has reinforced the relation between
Hamiltonian dynamics and symplectic geometry and has contributed enormously to
the development of symplectic geometry in the last thirty years.

The techniques and results which are currently available (and which I will discuss
below) apply to bounded (compact) energy level sets. In practice, unbounded energy
hypersurfaces arise very naturally. A good example of this is the following partial
differential equation (Fisher-Kolmogorov equation):

du N 3*u P

—=——+a— — F(u).

ot ax* ax2
For different choices of o and F, it describes physical phenomena as diverse as:
water waves in shallow water, pulse propagation in optical fibers, geological folding
of stone layers. Time-independent solutions of this equation satisfy

1

u —au”—i—F(u):O.

This equation also admits a Hamiltonian formulation, leading to a system with un-
bounded energy level sets. The existence of periodic orbits on unbounded energy
level sets has scarcely been studied so far, while it does pose some very interesting
geometric and topological problems.
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Fig. 1 The 2-dimensional R
sphere with the Hamiltonian
vector field X g associated to
the function ‘height’ by the
standard area form. The level
sets of H are meridians on the
sphere

Fig. 2 A 2n-dimensional ball
can be squeezed inside a
cylinder of smaller radius in a
volume-preserving way, but this
cannot be done symplectically

1 Symplectic Geometry

Suppose we consider a manifold M (think of spheres or hypersurfaces). At first we
are interested in the fopology of the manifold, that is, properties which are invariant
under continuous deformations. At some point we may also want to introduce some
additional structure: a Riemannian structure (or metric) g, for example, prescribes at
every point an inner product, which gives us the notions of distance, length, and an-
gles. If we are considering a system of Hamiltonian differential equations as above,
with the energy function H we can associate a vector field X g, called the Hamilto-
nian vector field, which prescribes direction and speed at each point for the solutions
of the system of equations. In dimension 2 an area form suffices for this purpose, in
higher dimension we need a two-form @ which is closed (dw = 0) and nondegener-
ate. The latter means that the n-fold exterior product v is a volume form. We call w
a symplectic form and the integral of the corresponding volume form symplectic vol-
ume. A symplectic form on M sets up an isomorphism between vector fields and 1-
forms: the vector field X g is uniquely defined by the identity w (X gy, —) = —d H(—).
Finally, it is interesting to notice that a symplectic form w defines an anti-symmetric
product of vectors: this necessarily vanishes on all 1-dimensional subspaces, so in-
stead of 1-dimensional measurements we have 2-dimensional measurements (Fig. 1).

While every compact orientable surface admits an area form, in higher dimension
not every manifold is symplectic. The dimension of the manifold needs to be even,
but this condition is far from being sufficient: spheres of dimension greater than two
are not symplectic. Not every volume-preserving diffeomorphism or embedding also
preserves the symplectic form: it was Gromov who clarified this point with his Non-
Squeezing Theorem' [8]. This theorem states that a standard ball in R?" cannot be
symplectically embedded into a cylinder of the form B2(r) x R?*~2 (where B2(r) is
the 2-disc with radius r) if r is smaller than the radius of the ball. This is of course
in contrast with the situation we encounter if we consider volume-preserving embed-
dings, see also Fig. 2.

I This result is sometimes referred to as the principle of the symplectic camel.
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Fig. 3 The tangent space at the
point p consists of vectors
representing the velocity of
some curve lying on the surface
and going through p. Using g, @
and J we can speak of lengths,
angles, areas, complex
multiplication

Basic examples of symplectic manifolds are:

e Euclidean space R2", with coordinates (p1s+-s Pusq1,---,qn) and the standard
symplectic form

n
wy = dei Ndg;.
i=1

This example is also universal, in the sense that up to a choice of suitable local
coordinates, it provides a local model for any other 2n-dimensional symplectic
manifold;

e cotangent bundles over Riemannian manifolds are symplectic manifolds: we can
think of them as phase spaces of Hamiltonian dynamical systems, with the base
manifold playing the role of the configuration space. In this case the symplectic
form is w = —dX, where A is the canonical 1-form defined, in local cotangent
bundle coordinates (x, &), by X' & dx;.

Symplectic geometry can also be thought of as a more flexible version of com-
plex geometry.” In order to further clarify some concepts, we can look at surfaces,
which always admit both a metric and a symplectic structure: for a pair of tangent
vectors v and w the metric g measures the length of the vectors and the angle be-
tween them. The symplectic form w measures the area of the parallelogram spanned
by v and w. We can introduce another operation, denoted by J, which rotates tangent
vectors counterclockwise by /2, giving us a notion of complex multiplication (see
Fig. 3). Such a rotation leaves all angle, length and area measurements invariant, so
we say that it is compatible with the metric and the symplectic structure. The relation
expressing the compatibility of g, w and J is

o, Jw) =g, w).

We call J a tamed almost complex structure if w (v, Jv) > 0 for all v #£ 0.
In higher dimension, every symplectic manifold still admits a complex structure
on its tangent bundle (we call this an almost complex structure on the manifold),

2According to the Oxford English Dictionary, the word symplectic was introduced by Weyl, who proposed
to substitute the name ‘complex group’ by the corresponding Greek adjective ‘symplectic’. On a trip to
Asia, Klaus Niederkriiger learned that the Chinese character for symplectic is one whose standard meaning
is ‘hot, spicy’, so that, at least in China, symplectic geometry is ‘hot geometry’!
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which gives a notion of complex multiplication for tangent vectors. In particular, one
can always find almost complex structures which are compatible with the symplectic
structure, meaning that the two can be combined as above to produce a Riemannian
metric. A complex structure on the manifold, that is, a system of complex local co-
ordinates with holomorphic transition maps, induces an almost complex structure in
a canonical way: symplectic manifolds which carry a compatible complex structure
are called Kdhler manifolds. Not every almost complex structure arises in this way:
Kihler manifolds form a proper subclass of symplectic manifolds and are important
objects in algebraic geometry (all smooth projective varieties, for instance, are Kéhler
manifolds).

A great revolution in symplectic geometry was brought about by the realiza-
tion that curves whose differential is complex linear with respect to an almost
complex structure compatible with a symplectic structure (pseudo-holomorphic or
J-holomorphic curves) are almost as good as honest holomorphic curves in a com-
plex manifold. In particular, J-holomorphic curves with respect to a tamed almost
complex structure are minimal surfaces. The basis for this revolution were laid by
Gromov in his 1985 paper [8], and Floer carried it further by using J-holomorphic
curve techniques in his celebrated proof of the Arnold Conjecture [6]. In its origi-
nal formulation, this conjecture reads: a symplectomorphism (i.e., a diffeomorphism
which preserves the symplectic form) that is generated by a time-dependent Hamilto-
nian vector field should have as many fixed points as a function on the manifold must
have critical points.

2 Periodic Orbits of Hamiltonian Systems

Given a symplectic manifold (M,w) and a smooth Hamiltonian function
H : M — R, one is interested in the existence of solutions of the associated Hamil-
tonian system of differential equations

i(0) = X (x(),

where x : I — M is a path in M. In classical mechanics, the symplectic man-
ifold under consideration is the standard symplectic Euclidean space, so we can
write x () = (p(t), g(¢)) and the Hamiltonian vector field has the well-known form
(—%, %). The fundamental remark here is that existence of such solutions on a
given regular energy surface S = H~!(c) is completely determined by the underly-
ing hypersurface and the symplectic structure and does not depend on the function
H. The reason is that, if H and G are two Hamiltonian functions having S as a (reg-
ular) level set, Xy and X coincide up to reparametrization. In other words, these
vector fields are both sections of the so called characteristic line bundle L, which is

defined as the kernel of the restriction of the symplectic form to S,
Ls= {U eTS:wlw,w)=0forall we TS} =ker(w|rs),

and hence have the same integral curves.
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Fig. 4 A starshaped
hypersurface is everywhere
transverse to a radial vector field

The question that has generated some of the most interesting recent developments
in Hamiltonian dynamics and symplectic topology has been that of existence of
closed characteristics of x(t) = Xy (x(t)) on a given energy level S. Independence
of the particular choice of the Hamiltonian H implies that it is meaningful to pose
the question as follows: given (M, ) and S, does S admit closed characteristics?

The first important global existence results were proved by Rabinowitz and Wein-
stein for starlike, respectively convex, hypersurfaces in the standard symplectic Eu-
clidean space R2". Here is the statement of Rabinowitz’s result ([12]):

Theorem 1 (Rabinowitz, 1978) Every starshaped level set of a Hamiltonian function
H in the standard symplectic R*" admits a periodic orbit of X .

Since starshaped is a very special condition, it is natural to try and isolate the
essential geometric properties of this class of hypersurfaces. The following remark
already points in the right direction: if S € (R?", wyp) is starshaped with respect to the
origin, then it is everywhere transverse to the vector field

1 & 9 9
Y =- — 4+ qi— .
2 Z(p, opi ta 3%‘)

i=1

Transversality means that at a given point x on the hypersurface, the vector Y (x) does
not lie in the tangent space to the hypersurface at that point. Notice that Y satisfies
the condition Lywy = wp, where Ly denotes the Lie derivative with respect to Y.
A vector field with this property is called a Liouville field. The flow of a Liouville
vector field preserves the symplectic form up to an exponential term or, in other
words, it expands the symplectic volume (Fig. 4).

3 The Weinstein Conjecture

A similar observation probably inspired Weinstein when he introduced the notion
of a hypersurface of contact type, a generalization of starlike, with the property of
being invariant under symplectic diffeomorphisms. A compact hypersurface S in a
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Fig. 5 The flow of the Liouville
vector field gives a foliation of a
neighborhood of S by smooth
hypersurfaces diffeomorphic

to S: the dynamics is the same
on each hypersurface (almost
existence = existence)

symplectic manifold (M, w) is called of contact type if there exists a Liouville vec-
tor field Y, defined in a neighborhood of §, which is everywhere transverse to the
hypersurface. With this notion, in [16] he could formulate his famous conjecture.

Conjecture 1 (Weinstein, 1978) Every compact hypersurface of contact type in a
symplectic manifold admits at least one closed characteristic.

A remarkable feature of hypersurfaces of contact type—which may serve as an
indication that this condition is indeed a plausible one to guarantee existence of peri-
odic orbits—is that we can always find a one-parameter family of such hypersurfaces
which share the same dynamics. Recall that, thanks to independence of this problem
of the choice of Hamiltonian function, what we mean here by ‘dynamics’ on a hy-
persurface S is the time evolution of the system associated to any function H having
S as a regular level set. More precisely, if S is of contact type in (M, w) and Y is a
transverse Liouville field for S, we can use the flow of Y to define an embedding

UV:Sx(—€,€)> M

such that the hypersurfaces S; := ¥ (S x {t}) are not only diffeomorphic, but their
characteristic line bundles are isomorphic. It follows that if S is of contact type and
one can prove existence of a periodic orbit sufficiently close to S, a periodic orbit
must also exist on S. In other words, almost existence results automatically imply
existence results for periodic orbits on S (Fig. 5).

Viterbo proved the Weinstein Conjecture for compact hypersurfaces in R>* [15].

Theorem 2 (Viterbo, 1986) The Weinstein Conjecture holds for compact hypersur-
faces of contact type in the standard symplectic space R*".

In his proof, he makes use of the freedom to choose a suitable Hamiltonian func-
tion and identifies periodic orbits with critical points of the corresponding Hamilto-
nian action functional, which takes the form

1
Ax) = —/0 (p()q @) dt — H(p(1),q(1)))dr

with respect to the splitting of a loop x(¢) = (p(#),q(t)) € R" x R". While non-
compact hypersurfaces occur very naturally as energy levels (higher order Lagrangian
problems, singular potentials, Lorentzian geodesic problem. . .), Viterbo’s result does
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Fig. 6 On bounded energy level sets, every orbit is almost periodic, while on unbounded levels Poincare
recurrence fails and orbits can ‘run off to infinity’

not hold anymore if we remove the compactness assumption. An easy example of this
failure is the infinite cylinder in R?" defined as the 1-level set of the function 2 pl.2.
It is probably intuitively clear that existence of periodic orbits on non-compact hy-
persurfaces is a harder question than existence on compact hypersurfaces. Poincaré’s
recurrence theorem gives this intuition a precise mathematical formulation, by stat-
ing that on a compact energy surface, every orbit eventually returns very close to its
initial point (i.e., is almost periodic) (Fig. 6).

In [3] we were able to formulate a set of geometric and topological conditions
(implying, in particular, the contact type condition) that led to a proof of the ex-
istence of periodic orbits for the case of non-compact mechanical hypersurfaces in
R, that is, hypersurfaces arising as level sets of Hamiltonian functions of the form
H(p,q)= %| p|? 4+ V(g), consisting of kinetic and potential energy. For these me-
chanical systems, periodic orbits can be detected as critical points of the Lagrangian
action functional

L1
A(q)=—/0 <§Ié(t)|2— V(q(t))> dr,

which is defined on the space of loops ¢(¢) in R” (the configuration space). One
necessary condition for proving existence of a critical point of such a functional is
the so called Palais-Smale condition, which ensures that sequences along which the
functional is bounded and its derivative tends to zero have convergent subsequences.
In the case of compact mechanical hypersurfaces, compactness takes care of this
condition, in the non-compact case we need to require the potential energy V to
satisfy additional asymptotic growth conditions (the result in [3] holds, for instance,
in the case of asymptotically quadratic potential energy). It is interesting to remark
that these growth conditions imply, in particular, that the hypersurfaces must be of
contact type. The other ingredient which goes into the proof of the existence of critical
points of the action functional is a linking argument. In this setup, existence of a
critical (saddle) point of the action functional is proved by producing two subsets of
the function space which link and along which the functional satisfies appropriate
estimates.

4 Contact Manifolds and Reeb Dynamics
A different step in the direction of generalizing the study of existence of periodic

orbits was that of focusing on the properties of a hypersurface of contact type that
could be considered independently of its embedding in a symplectic manifold. Recall
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that a contact structure on a compact, orientable manifold of dimension 2n — 1 is
a maximally non-integrable hyperplane distribution &. In other words, if & = kero
locally, then o A da”~! is a non-vanishing top form. Let S be a hypersurface of
contact type in the symplectic manifold (M, w) and Y a Liouville vector field for
S: then the kernel of the 1-form A defined by A(—) = w(Y, —) is a contact structure
on S. The kernel of dA is one-dimensional, so we can uniquely define a vector field
X (called the Reeb vector field) as a generator of this kernel, normalized so that
A(X;) = 1. If H is a Hamiltonian function having S as a level set, the periodic orbits
of the Hamiltonian vector field Xy on § coincide with the closed trajectories of the
Reeb vector field, so the Weinstein Conjecture for hypersurfaces of contact type can
be restated as a conjecture on the existence of periodic orbits of the Reeb flow on
contact manifolds.

Conjecture 2 (Intrinsic version of the Weinstein conjecture) For every closed odd-
dimensional manifold N with contact form A, the Reeb vector field X ; admits a closed
orbit.

In this more general form, the conjecture was first proved by Hofer in [9] for the
three-sphere.

Theorem 3 (Hofer, 1993) The Weinstein Conjecture holds for the 3-sphere S>.

More recently, the conjecture was proved for closed 3-dimensional manifolds,
a result due to Taubes ([14]).

Theorem 4 (Taubes, 2007) The Weinstein Conjecture holds for any closed
3-dimensional manifold.

In fact, in [9] Hofer also proved that the conjecture holds for any overtwisted con-
tact 3-manifold and for contact 3-manifolds with non-vanishing second fundamental
group. Different generalizations of Hofer’s result to (2n + 1)-dimensional contact
manifolds were achieved by Albers and Hofer in [2] and by Niederkriiger and Recht-
man in [10]. In particular, the authors of [10] generalize the statement about contact
3-manifolds with non-vanishing second fundamental group by proving that one finds
at least one periodic contractible Reeb orbit if there exists an embedded (n + 1)-
dimensional submanifold which represents a non-trivial homology class and such that
the contact structure induces an open book decomposition. A beautiful introduction
to open books and their various applications can be found in [13], in the Appendix
by E. Winkelnkemper.

In recent literature one finds yet another version of the Weinstein Conjecture.
A contact manifold is said to satisfy the strong Weinstein Conjecture if for any form
defining the contact structure there exists a finite collection of closed Reeb orbits x;,
i=1,...,k, representing 1-dimensional homology classes x; such that Z‘ik:l [xi]=0
(such a collection of Reeb orbits is also called a null-homologous Reeb link). The
notion of strong Weinstein Conjecture was introduced in [1], where it is proved for
planar contact structures. A planar contact structure £ is a contact structure supported
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by an open book decomposition whose pages have genus zero. Geiges and Zehmisch
in [7] prove the strong Weinstein Conjecture for various higher-dimensional contact
manifolds, in particular for contact type hypersurfaces in cotangent bundles of the
form T*(Q x S!), where Q is any closed manifold.

The proofs of Hofer’s result and corresponding generalizations and the proofs of
the results on the strong Weinstein Conjecture are based on J-holomorphic curves.

5 J-Holomorphic Curves

Let J be an almost complex structure on a manifold M: this gives us a notion of
complex multiplication for tangent vectors, that is, J>v = —v for any tangent vector
v on M. The local model for such a structure is the standard almost complex structure
Jo= ((1) _01) on R?" (under the identification with C”, this is just multiplication by i.)

Let X be a Riemann surface with holomorphic structure j. Amapu : ¥ — M is
called a J-holomorphic curve if its differential is complex linear: du o j = J o du.
On the level of tangent spaces we have, for each x € X', a commutative diagram

7.y -, 1%

du(x)l la’u(X)

Ju(x)
Tu(x)M _—> TM(X)M

If we decompose du into its complex linear and anti-linear part, we see that u is
J-holomorphic if and only if the anti-linear part

- 1
Bjuzi(du+.l-du~j)

vanishes. After choosing holomorphic coordinates z = s 4 it on X, this condition
takes the form

osu + J(u)o,u =0.

Hence, for C" with almost complex structure given by multiplication by i, we re-
cover the standard Cauchy-Riemann equations for maps u : C — C”". This explains
why the equations defining J-holomorphic curves are often called perturbed Cauchy-
Riemann equations.

Given a contact manifold (N, A), the symplectization of N is the manifold M =
R x N with symplectic form w = d (e’ 1), where 7 is the coordinate on R. The above-
mentioned result by Hofer, proving the Weinstein Conjecture for the 3-sphere, is
based on the following idea: we fix a suitable compatible almost complex structure
J on M and look at J-holomorphic curves in R x N, that is, we consider proper
J-holomorphic maps

F:(X,j)— RxN,J),
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Fig. 7 A holomorphic sphere {+o0} x N
with 3 punctures in the 3
symplectization of the contact
manifold N
F
_—
2 1 72
{—o0} x N

where X~ now denotes a closed Riemann surface with finitely many points removed
(‘punctures’). The energy of such a curve is defined as the integral of dA over its
image. Figure 7 gives an impression of how this image might look like.

Under suitable assumptions, for instance finite energy, the image of F near each
puncture converges asymptotically (at +o00 and —oo) to a cylinder over a closed Reeb
orbit of N. Therefore, from an existence result for solutions of the perturbed Cauchy-
Riemann equations (which is a set of partial differential equations) one can deduce
existence of periodic solutions of an ordinary differential equation. At first this might
not seem the most natural way to approach the problem (studying a PDE rather than
an ODE usually does not make life easier!), but it has proved to be very efficient in
overcoming certain difficulties which make other methods not applicable.

While in Hofer’s work the construction of suitable solutions of the perturbed
Cauchy-Riemann equations was achieved with constructive methods, in more recent
years a homology theory (contact homology) has appeared in the background of this
construction. Taking infinite-dimensional Morse theory as a model, one can associate
with a contact manifold (N, A) an algebraic object (a ring or an algebra) which is
generated by the periodic Reeb orbits, modulo some relations which are obtained by
looking at J-holomorphic curves connecting these orbits in the symplectization of N.
It follows from [5] that these curves form compact, 0-dimensional moduli spaces and
therefore it is possible to “count” them. If the algebraic object defined in this way is
not isomorphic to the coefficient ring, then the Reeb field X, has to have a periodic
orbit (a precise statement is provided by [4, Proposition 3.6]). Very schematically,
thus, we can view this homology theory as combining the geometric and topological
information about some contact manifold (N, A) and its contact structure to obtain an
algebraic object, which in turn can tell us something about the Reeb dynamics on N.

This scheme has been greatly developed in recent years (by Bourgeois, Eliashberg,
and Hofer to name but a few) and it has started to work pretty well in the case of
compact contact manifolds, but it will be a real challenge to make it work in the
case of non-compact energy surfaces, a case which is extremely interesting from a
mathematical point of view, as well as from the point of view of the applications in
dynamics.
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1 Introduction

The aim of this survey is to describe how classical constructions from singularity the-
ory enter into mirror symmetry. The latter subject evolves from string theory, but has
become over the last 20 years one of the main branches of research in pure mathe-
matics, connecting various areas like algebraic, symplectic and differential geometry,
integrable systems, linear differential equations, homological algebra and so on. Due
to the complexity of the subject, we will limit this survey to a particular aspect of the
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mirror symmetry picture, in which linear differential equations with complex coeffi-
cients (also called D-modules) play a central role.

Let us start this introduction with a well-known motivating example which does
not come from physics, but which is a very classical problem in enumerative alge-
braic geometry. Enumerative geometry is concerned with the question of counting
geometric objects of a certain type that satisfy some extra conditions. Here we will
be interested in the number of curves in the plane passing through some prescribed
set of points. To be more precise, we will look at algebraic curves, that is, vanishing
loci of a single polynomial in two variables, second, we will work over the complex
numbers, that is, we take polynomials with complex coefficients to be sure that our
vanishing loci are really 1-dimensional as topological spaces (we do not want things
like {(x, y) € R?|x% 4+ y?> + 1 = 0} = @), and last we will actually look at projective
curves, that is, we consider the zero locus in the projective plane P? of a homogeneous
polynomial in three variables. This is the usual approach in algebraic geometry that
excludes pathological facts like parallel lines with no intersections. The degree of
such a polynomial, henceforth called the degree of the curve, will be a fixed positive
integer denoted by d. The problem will consists in determine the number of such
curves passing through some fixed points. It is easy to see that we need 3d — 1 points
in general position to have a chance that the number of curves through these points
is finite. For small values of d these numbers are known via classical methods of
algebraic geometry:

e d =1 and d = 2: The number of lines through two points as well as the number of
quadrics through 5 general points is known to be one since antiquity.

e The number of cubics (curves of degree three) through 8 general points is 12
(Steiner, 1848).

e For d =4, Zeuthen (1873) computed the number of quartics through 11 points in
general position to be 620.

However, for higher d there is no general method to calculate theses number. It came
as a surprise when Kontsevich produced a formula that allows one to do this calcula-
tion for all d. He used in an essential way ideas from string theory. The precise result
is as follows.

Theorem (Kontsevich, 1994) Denote by N4 the number of rational curves of de-
gree d passing through 3d — 1 points in P2 which lie in general position. Then the
following recursive formula holds.

Ng = Z d12d22 - Ng, Ny,
3dy —2
di+dy=d;dy,dr>1

3. (3d—4
— Z did Adh — 1 Ny, Ny,
dy+dy=d;dy,dr>1 !

The meaning of this theorem is that we only need to know the first two numbers Ny
and then we can calculate all others recursively by the computer. Without giving the
details of the proof, let us just outline the strategy: First one re-interprets the numbers



Mirror Symmetry, Singularity Theory and Non-commutative Hodge 133

Ny as a so-called Gromov-Witten invariant (precise definitions and properties are
below in Sect. 2). These give rise to the quantum product on the cohomology space
of 2. One of the main properties of the latter is its associativity, and Kontsevich’s
proof consists in deriving the above recursive formula from that property.

There is a similar problem in enumerative geometry where classical methods fail
to produces results beyond the easiest cases. Namely, it concerns the number of
curves of fixed degree on special three-dimensional complex manifold, called Calabi-
Yau. Let us give here for future use the precise definition of these and some related
varieties.

Definition 1.1 Let X be a smooth and projective algebraic variety over the complex
numbers. Let n be the dimension of X. Denote by K its canonical bundle, by defi-
nition, Kx := \" £ )1( is the top exterior power of the cotangent bundle, hence, as the
latter is of rank #n, a line bundle. Then we call X

1. Calabi-Yau iff Ky = Oy, that is, if it is the trivial line bundle.

2. Fano iff —Kx is ample, that is, if there in an embedding i : X < PV such that for
some n € N we have K¥" = i*Opn (—1).

3. numerically effective (nef) or sometimes also weak Fano if the intersection of
—Kx with any curve is non-negative (recall that to the line bundle —Kx we can
associate a divisor which have a well defined intersection product with curves).

Notice that both Calabi-Yau varieties and Fano varieties are nef.

The most prominent example of a Calabi-Yau threefold is a hypersurface of de-
gree five in P* (that this satisfies the Calabi-Yau condition is an immediate conse-
quence of the adjunction formula). For those, [3] gave a formula predicting of the
number of curves of fixed degree. This formula is not achieved by direct computation
of Gromov-Witten invariants or by using formal properties of the quantum product.
Rather, a basic principles of mirror symmetry comes into play: one is given a pair
of Calabi-Yau manifolds (or a family thereof), and the quantum cohomology of one
of these varieties (called A-model) can be obtained from much more classical in-
variants (like period integrals) of the other (family of) Calabi-Yau manifold(s), called
B-model. To be more precise, the so-called quantum D-module (see Sect. 3 below) of
the given Calabi-Yau manifold can be reconstructed as a classical variation of Hodge
structures of the mirror family. Let us notice however that in contrast to the case of
curves in P2 discussed above, the enumerative meaning of the Gromov-Witten in-
variants of the quintic is less clear: The corresponding numbers should be seen as the
“virtual number” of curves of fixed degree on X. However, for some degrees they
actually coincide with the true numbers, and even this limited result gives interesting
enumerative information that was not available by classical algebraic geometry.

It soon turned out that this picture can be extended to Fano and nef varieties. One
striking difference to the Calabi-Yau case is that the mirror is no longer a family of
compact varieties, but rather an affine morphism, e.g. a family of Laurent polyno-
mials. These are called Landau-Ginzburg models. One aspect that is central to this
survey is to explain which kind of Hodge-like structures survive in this more gen-
eral correspondence. The objects which generalize usual Hodge structures in the cor-
rect way that is needed for these more general mirror correspondences are nowadays
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called non-commutative Hodge structures. This name stems from a (conjectural) re-
lation to the so-called homological mirror symmetry, which very roughly speaking
expresses the above mentioned correspondence between A- and B-model through
an equivalence of certain categories. However, we are not going to touch upon any
aspects of homological mirror symmetry in this survey. Rather, we emphasize the
fact that non-commutative Hodge structures, in contrast to classical ones, are certain
systems of linear differential equations. For that reason, one may try to express the
mirror correspondence by identifying such differential systems on both sides. This is
possible at least in the case where the variety on the A-side is toric, then the rather
well understood theory of hypergeometric differential equations comes into play.

The structure of this article is as follows: We recall the very basics of quantum co-
homology in Sect. 2, where we restrict to the easiest case of genus zero invariants for
convex manifolds. This is not quite sufficient for all examples that we are interested
in but avoids technical difficulties. Next (Sect. 3) we describe the so-called quantum
D-module which defines the differential system on the A-side. We proceed in Sect. 4
by a detailed description of the mirror of a toric Fano resp. numerically effective va-
riety, and show how to define and calculate its associated Gauf3-Manin-system. The
latter will ultimately be the mirror partner for the quantum D-module, this corre-
spondence is worked out in Sect. 7. The Sect. 6 gives definition and some important
results on non-commutative Hodge structures and describe how they appear in mirror
symmetry.

2 Quantum Cohomology of Smooth Projective Varieties

We recall in this section the definition of the quantum cohomology ring of a smooth
projective variety. As there are many excellent sources available (e.g. [5, 9, 23]), we
mainly fix the notation for the later sections. Throughout the first two sections, we
will denote by X a smooth projective variety having only even-dimensional coho-
mology classes.

Before giving precise definitions, let us point out the main idea of the construc-
tion of Gromov-Witten invariants and of the quantum product. Suppose that we are
interested in an enumerative problem associated to X like those mentioned in the
introduction, that is, counting the number of curves on X of a certain degree satis-
fying some incidence conditions, e.g., passing through some subspaces of X. These
subspaces define homology classes on X, and as X is compact, they correspond via
Poincaré duality to some cohomology classes. Now the idea is to construct a moduli
space of all maps from P! to X of a certain degree (this is the degree of the curves
to be considered). Our P! will also be equipped with some points, called markings,
which are allowed to vary in the moduli space. The markings define maps from the
moduli space to X (one for each marking) and our enumerative invariants will be ob-
tained by pulling back the aforementioned cohomology classes to the moduli space
and then integrating them against the fundamental class of the moduli space. It can
be shown that in favorite situations, this construction (with some technical modifica-
tions, e.g., in order to obtain compact moduli spaces we need to consider also maps
from certain singular curves) can be carried out and the invariants thus defined indeed
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have the enumerative meaning that we are looking for. Let us notice however that the
general construction is very involved, in particular, the ordinary fundamental class of
the moduli space may not be the right one (because the moduli space may have the
“wrong” dimension, i.e., its dimension is higher than the so-called “expected one”).
In order to circumvent this problem, one needs to construct a virtual fundamental
class, and this uses rather advanced techniques like stacks, obstruction theories etc.
However, as already mentioned above, we will concentrate on the simple case of
genus zero Gromov-Witten invariants of convex varieties (see below), where these
sophisticated techniques are unnecessary.

We now start with a precise description of the moduli spaces involved. First we
need to describe what kind of curves on X we are looking at.

Definition 2.1 (Stable map) Let C be a reduced projective curve of genus zero
with at most nodal singularities, i.e., singular points that are locally given by an
equation x - y = 0. Suppose that xq,...,x, € C are distinct smooth points. Let
B € H*(X,Z)/Tors. A stable map f : C — X is a projective morphism such that
f«([C]) = B and such that each smooth component of C that is contracted by f toa
point in X has at least three marked points.

Theorem 2.2 Let X be convex, i.e., for all maps f :P' — X, we have that
H'P', f*(TX)) =0, and B € H%*(X, Z)/Tors. Then there exists a coarse mod-
uli space ﬂ(o,n)(x, B) of stable maps which is a projective variety of dimension
n+dim(X)+ fﬁ c1(X) — 3 with at most orbifold singularities. In particular, it carries

a well-defined fundamental cycle [M(o,n) (X, B)] of degree equal to the dimension of
Mo,n (X, B).

For the definitions and basic results below, we will for simplicity of the exposition
always suppose that X is convex. Notice however that not all examples that are going
to occur later satisfy this assumption, e.g., the Hirzebruch surfaces F; and [, (see
end of Sect. 4) are not convex.

We chose once and for all a basis of the cohomology space H*(X, C) consisting
of homogeneous classes Ty, T1, ..., Ty, Tr+1, ..., Iy such that Tp =1 € HO(X, C)is

the Poicaré dual of the fundamental class and such that 77, ..., T, form a basis of
H2(X, C).
Definition 2.3 (GW-invariant) Let «q, ..., o, be cohomology classes in H*(X, C),

then we define the correlator or Gromov-Witten invariant to be

(a1, ... )0, :=/_ evi(a) U---Uev (o).
Mo,m) (X, B)]

Here fori € {1, ..., n} the map ev; : ﬂ(o,,,)(X, B) — X sends a class of a stable map
(C,[x1,..., %], f: C—=> X) e M,n)(X, B) to f(x;) € X.

Definition 2.4 (Quantum cohomology) Denote by L.g the set of effective ho-
mology classes in H(X, Z)/Tors, i.e., classes represented by curves. Denote by
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g: H*(X,C) x H*(X, C) — C the Poincaré pairing, which is symmetric (recall that
we suppose H*(X,C) = H?*(X, C)) and non-degenerate. For any triple of coho-
mology classes «, y,n € H*(X, C), we define the big quantum product, denoted by
« o, y, by its values under g on any class § € H*(X, C) using the formula

glaoyy,8):= Y %(a, V’Z)’_:ﬂ’&o,wﬁ,ﬂ € H*(X,0) )]
n20; f€lesr n-times

Remark There is a technical obstacle in the definition of the quantum product: For-
mula (1) does not make sense as such, as we are considering an infinite sum over
both n and B. Hence it does not even define a formal sum. This problem is usually
solved by splitting the contributions of the different homology classes S in Lest us-
ing the so-called Novikov ring. However, the above definition makes sense once we
know that there is a domain in the parameter space on which the quantum product
is convergent. Throughout this survey, we will use this assumption without further
mentioning. More precise results on the convergence of the quantum product can be
found, e.g., in [18].

Let us summarize very briefly some of the most important properties of the quan-
tum product.

Proposition 2.5 Consider the big quantum product o as above.

1. o is symmetric, associative with unit 1 € HO(X, ©).
2. Gromov-Witten invariants have a special behavior with respect to degree 2 classes.
More precisely, suppose that oy € H*(X, C), then we have that

(o1, s ok )on,p = (/ 0!1) o2, ..., o) 0n—1.8
B

This implies that we can rewrite the definition of the quantum product, that is,
formula (1) by decomposing a class n € H*(X, C) into a sum n =n" + n” with
n € HX(X,C) and n”" € H*2(X, C). Then we have

. e'l'(ﬁ) " " *
g(O{ On Vs 8) = Z T(av y,n 9-"97749 3>O,Vl+3,,3 €H (X’ (C) (2)
n=0; pElLeit n-times
3. A convenient way to collect all Gromov-Witten invariants is the so-called (genus
zero) potential, this is the formal function on H*(X, C) defined by

1
FO= Yt tong
nz3,peHy(X.Z) n-times
Here t = (1o, 11, ..., 1) are the coordinates on H*(X, C) corresponding to the

choice of a homogeneous basis Ty, T, .. ., Ty from above.
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4. The associativity of the quantum product can be very nicely expressed using the
Gromov-Witten potential. It is equivalent to the following system of partial differ-
ential equations satisfied by F, which are called WDVV-equations (after Witten,
Dijkgraaf, E. Verlinde and H. Verlinde):

D (0i00.F) - g - O F) =Y (k0;0.F) - g - (9700, F)
e, f=0 e, =0

foranyi, j,k,1€{0,...,s}, where (§)e reo,...s) = (g(Te, Ty)) ™\

For many computations, it is sufficient to calculate only a restricted set of Gromov-
Witten invariants, which involve the moduli space of stable maps from curves with
only three marked points (the so-called three point invariants or correlators). A ba-
sic result due to Kontsevich and Manin (see [21]) says that often the (big) quantum
product can be reconstructed from the small one. The precise definition of the small
quantum product is as follows.

Definition 2.6 (The small quantum product) Let, as before, «, y and § be arbitrary
classes in H*(X, C) and take 7 to be in H>(X, C). Then we define

glaxyy.8):= Y "Pla,y,8)03 3)
BeLesr

Remarks The divisor axiom and the formula (2) that it implies show that we can
naturally define the quantum product and the potential on the space H(X,C) &
(H*(X,C)/2ni H*(X, 7)) ® H>*(X, C) (where 27ri H*(X, Z) acts on H*(X, C) by
translation), which is a product of an affine space with a torus. Namely, the Gromov-

Witten invariants resp. the potential depend on the coordinates #1, .. ., . on H(X, C)
only via the exponentials e” ®) so that by putting g, := e’ (a =1, ..., r), we obtain
a function (resp. a tensor) in the variables o, g1, ..., @r, tr41, .-, Is.

At several places below, we will have to use the fact that the quantum prod-
uct (written in the above g-coordinates) carry an inherent grading. More precisely,
consider the first Chern class of X, i.e., the first Chern class of the tangent bun-
dle of X, this is a cohomology class of degree two and hence can be written as
ci(X)=Y"_,d,T,. Write deg(T;) = k iff T; € H**(X, C) and put

deg(qq) =2 -dq
deg(r}) =2 — 2 deg(T})

“

Then the potential F has a certain homogeneity property with respect to this grading
(to be more precise, the quantum part

1
JFauant gy . — —{t,....,Don
@) > (L Donp

n=3,8eHy(X,Z)\{0}

is homogeneous of degree 2(3 — dim(X))).
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Example As a well known and instructive example, we are going to compute here the
small quantum product of the projective spaces. The advantage of this case is that the
mirror correspondence with the Landau-Ginzburg model can be very explicitly writ-
ten down (see Sect. 7 below) and this motivates also the general mirror constructions
for toric varieties, as explained below.

Let P" be the n-dimensional projective space. It is well-known that its ordinary
cohomology ring H*(P", Z) is isomorphic to Z[p]/(p"*!). Here p denotes the de-
gree 2 cohomology class which is Poincaré dual to the class of a hyperplane H C P".
In particular (this is true for any smooth toric variety), the cohomology is generated
as a ring by its degree two classes and hence we have H*(P",Z) = H Zx(P", Z), that
is, only even dimensional cohomology classes do appear.

The small quantum cohomology ring is by definition a finitely generated algebra
over C[¢*]:= Clg, q~'], where ¢ is the coordinate on H>(P", C)/2xi H*(P",Z)
corresponding to the choice of p as generator of H2>(P",Z). It is graded by
deg(p) =2 and deg(g) = 2c1 (P") =2(n + 1). As a C[¢g¥]-module, it is isomorphic
to C[p]l/(p"*") ® Clg*]. The degree preserving property of the quantum product
tells us that for any k € {1, ..., n}, we have

|
! k
—_—

k-times k-times

so that it suffices to compute p*®+1 which equals p*"  p = p” » p. Notice that
here we do not have to put a parameter as index to the small quantum product as
we consider it as a family of algebras (see the remark after Definition 3.1 below
for a more conceptual explanation). We use the definition of the quantum product,
i.e., formula (3), saying that we have to compute for any class y € H*(P", C) the
expression

g(p"*p.y) =D a" D" p.v)ya s
5

=Y gr® (/ evi(p") ®@evi(p) ® ev;‘(y))
B (Mo (P, 8)]

Notice that 8 is always a integer multiple of the class of a line [L] € Hy(P", Z) dual
to p, so that we can rewrite the sum as ) ;.o (p", p, ¥)0,3.4[L] - g“. The correlators
in this sum are nonzero only if the degrees of the classes p”, p and y add up to the
dimension of My 3(P", d[L]), that s, to 3+ dim(P") + fd,[L](n +1)-PD([H]) -3 =
n—+d-(n+1). Hence only classes y of degree deg(y) = (n+ 1)d — 1 can give a non-
zero correlator. Since deg(y) < n, we arrive at the conclusion that d can only take
the value 1 and then deg(y) = n. Hence we are left with (p", p, p")o.3.;], and this is
the number of lines in P? through two generic points meeting a generic hypersurface.
Obviously, there is only one such line, so that we finally arrive at the conclusion that
g(p**tD ) =¢qif y = p” and 0 else, meaning that the relation p***! = g holds in
the small quantum cohomology ring, i.e., we have the isomorphism

SQH(P") = (H*(X,C), ) =C[p,¢*]/(p""" —q) ©)
of (C[qi]—algebras.
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The following rather obvious remark will be of fundamental importance in the
sequel. The above description of the small quantum cohomology of P" shows that it
corresponds to a vector bundle on C* (the coordinate on C* being ¢) of rank n + 1,
equipped with a commutative and associative multiplication. There is a canonical
extension of that bundle to a bundle over C,, i.e., over the limit point ¢ = 0, which
is simply given as the C[g]-algebra C[p, q1/(p"*! — ¢). Even more, the fibre of
this extended bundle on g = 0 is nothing but the restriction of this algebra to ¢ =0,
i.e., the zero-dimensional Gorenstein ring C[p]/p"t! = (H*(P"*, C), U). This limit
behavior is not accidental, the point g = 0 is called the large radius limit, and it is
one of the most prominent features of the quantum product that it degenerates to
the ordinary cup product at this limit point. A basic philosophy in the later sections
of this paper is to express the mirror correspondence by objects defined on partial
compactifications of the parameter spaces which include the large radius limit.

3 Givental’s Approach: Quantum D-Module and J-Function

One of the central ideas in quantum cohomology that we are going to exploit is that
the relations encoded in the WDV V-equation can be rewritten as a system of linear
differential equations. This is usually called the quantum D-module. We will en-
counter some general D-modules below as the so-called Gauf3-Manin systems, how-
ever, the quantum D-module is merely a vector bundle with a connection. We recall
the basic definitions.

Definition 3.1 Let M be a complex manifold M and £ — M be a holomorphic
vector bundle.

1. A connection on E is a C-linear map
V:E—E®RQ),

satisfying the Leibniz rule V(f - s) = f - V(s) + s ® df for any local sections
f€0Op and s € E. It is called flat if moreover the Os-linear map (called cur-
vature) V® o V vanishes, where V? : E ® 21, — E ® 23, is defined by
VO @w) :=VE)Aw—s Qdw.

2. Let D C M be a simple normal crossing divisor (in most cases that we will meet
below, D is simply smooth). Then a meromorphic bundle F is by definition a
locally free sheaf of Oy (xD)-modules, and a meromorphic connection on E resp.
F is a C-linear operator V: E — E ® 22},(+D) resp. V: F — F ® 1 (xD)
satisfying the Leibniz rule as above. Any meromorphic connection on E defines a
meromorphic connection on E(xD) = E ® Oy (D).

3. A meromorphic connection on a holomorpic bundle £ — M is said to have a log-
arithmic pole along D if it takes values in E ® £2' (log D). Here 22! (log D) is the
sheaf of differential forms with logarithmic poles along D. Locally, by choosing
coordinates zi, ..., Zk, tk+1,---,2m On M such that D = {z; - ... - zx = 0}, the
sheaf .Q}VI (log D) is freely generated over Oy by the forms dz;/z1, ..., dzr/zk
and dzkq1,...,dz,.
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4. A connection (E, V) which is logarithmic with respect to a smooth divisor D C M
defines a residue endomorphism @' on the restriction E|p, locally, if z; =0
is the equation of the divisor, it is given by the class of zlvaq € &Endp, (E|p).
However, @™ does not depend on the choice of coordinates. Similarly, but only if
we fix a coordinate system (z1, ..., Z;;) on M such that D = {z; = 0}, the residue
connection V'® can be defined on E|p in the following way: If e = (eq, ..., e,) is
a local basis of E, then V is written as

Vi) =e- (Al(zu-..,zm)@ +2Ai(zl,...,z;n)>

21 i>2

then V™ is defined with respect to e by the matrix A(0, z2, ..., Zm).

Notice that there is a natural generalization of the notion of the residue endomorphism
which applies to meromorphic connections with pole order two (more precisely, with
Poincaré rank one), these are the so-called Higgs fields. We refer to [29, Sect. 0.14c]
for details.

We can now define the small quantum D-module. It corresponds to the small quan-
tum cohomology ring, and will be sufficient for our purpose. Before giving the formal
definition, let us make a remark on the definition of the quantum product (both the
big and the small one). A priori, it is defined as a product of two cohomology classes,
denoted by « and y above, depending on a third class, denoted by 5 (this class has
to be of degree two for the small quantum product). An elegant way to eliminate this
dependence in the notation is to consider a trivial vector bundle with fibre H*(X, C)
on either H*(X, C) (big quantum product) or H2(X, C) (small quantum product).
Then any cohomology class gives a (constant) section of this bundle, and we can
consider the (small/big) quantum product as a commutative and associative multipli-
cation with unit on this vector bundle. On each fibre of this bundle at a base point 7,
this multiplication gives back the product « o, y resp. a %, y from above. Below, we
will always adopt this convention and write the quantum product as a product of two
classes @ oy resp. o x .

Definition 3.2 Let X be smooth projective satisfying H*(X,C) = H>**(X,C).
Choose a homogeneous basis Ty, Ty, ..., Ty, Ty+1, ..., Ty of the cohomology as
above. Let M c H2(X, C) be an open subset (with coordinates 71, . .., #, correspond-
ing to the basis vectors 71, ..., T,-) on which the small quantum product is convergent.
Consider the projection 7 : IE”; x M — M, where we chose z to be a fixed coordinate
on the chart of P! centered at 0. Let G := H*(X,C) x M — M be the trivial vec-
tor bundle on M with fibre H*(X, C). It comes equipped with a flat connection V /!
corresponding to the given trivialization, i.e., such that V/!(s) = 0 for any section
s: M — H*(X,C) x M sending any point in M to a constant value y € H*(X, C).
Put F:=7n*"G — IP’; x M, and define the Givental connection VSV on F as fol-
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lows:
: 1
VOV (s) 1= VI () = Ty s
'k tk Z
. 1/ Exs
Vi (s) o= ;( —+ u(s))

where s € F, u € Autc(H*(X,C)) is the grading operator that takes the value
k -y on any class y € H**(X,C) and the vector field E is defined as E :=
Yool — %)n 0 + > 1 kady,, where > ko T, = c1(X) (see also (4))

It follows from formula (6) that VO has poles along z = {0, co}. Its restriction to
C? x M thus defines a holomorphic connection operator.

By a slight abuse of notation, the object (F, VYY) is called the quantum
D-module.

(6)

The following is one of the main properties of the Givental connection. It is fol-
lows easily from the basic properties of the quantum product. In particular, it implies
the WDVV differential equations for the Gromov-Witten potential and hence the as-
sociativity of the quantum product.

Proposition 3.3 The Givental connection is flat, that is, the linear operator
V2:F - .QHZDl oy ® F vanishes.

Remark By its very definition, the quantum D-module is a vector bundle on P! x M
and the connection has a logarithmic pole along {co} x M and a pole of Poincaré
rank one along {0} x M. Hence we can consider the residue connection V'® and the
residue endomorphism of VO along {00} x M as well as the Higgs field of VS
along {0} x M. It also follows from the definition, i.e., from formula (6) that the
residue connection is nothing but V/! the residue endomorphism is the grading op-
erator u and the Higgs field is given by the quantum multiplication. This observation
is very useful when studying the object corresponding to the Givental connection via
mirror symmetry.

A (rather simple) variant of the Riemann-Hilbert correspondence tells us that the
restriction (F, VGiV) |cxx m defines a local system of flat sections. There is a canonical
way to construct such flat sections, starting from the so-called J-function. This is a
cohomology valued function, defined in terms of the so-called gravitational descen-
dents.

Definition 3.4 (J-function and fundamental solutions)

1. Letay,...,a, € H*(X, C). Define the genus zero gravitational descendant invari-
ants by
k k
<a11ﬁ11, e anlﬁ,f")on pi= /7 v'Uevi(@)U---U lﬁ,]f" Uevi(ay).
” [M,n) (X, 8)]
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where /; are line bundles on ﬂ(o,n) (X, B) defined in such a way that their fibre
at the point [C, (x1,...,x,), f] € M(o,n)(X, B) (here C is the projective curve,
X1, ..., X, its marked points and f : C — X the stable map from C to X) is the
cotangent line T;C . A more precise definition can be found, e.g., in [27, Defini-
tion 4.1].

2. Write n’ =)/ _, 1, T, and define the H*(X 5, C)-valued power series J by

J(n’,zl):e"?l-[w > e”’<ﬁ’<—T" ,1> Tj].
=1 0,2,8

BeEfty 5 \(0)
Jj=0,....s
_ L T;
here the gravitational descendent GW-invariant (ﬁ, 1)0,2, has to be under-
stood as the formal sum k=T k, 1)0.2.5 and 7O, T ... TS is the ba-
k=0 Ag! 2.8

sis of H*(X x, C) which is g-dual to Ty, T1, ..., Ts.

Theorem 3.5 We have
VO3, 1) =0,

that is, the partial derivatives of J form a fundamental system of solutions of the
(relative) Givental connection.

Remark The derivatives of the J-function are not flat with respect to the “vertical
connection” Vg“’. However, one can obtain truly flat sections from the J-function by

an easy twist, taking into account the logarithmic pole of VO on F along z = oo.

Givental has shown how to obtain all interesting Gromov-Witten invariants for nef
toric varieties. In fact, Giventals result is broader, as it concerns the case of complete
intersections in toric varieties. Such a subvariety is not necessarily toric itself. In par-
ticular, it includes the case of the quintic Calabi-Yau hypersurface in P* mentioned
in the introduction. We will restrict to toric varieties in the sequel. A thorough dis-
cussion of the B-model of a complete intersection would require the introduction of
more notions, from which we refrain here.

The next section contains a detailed reminder on toric geometry, however, let
us state Givental’s main result here in order to finish the discussion of the quan-
tum D-module. We need one object from toric geometry, which is the so-called I-
function.

Definition 3.6 Let X5 be a smooth projective toric variety and write Dy, ..., Dy,
for its torus invariant divisors. Define I to be the H*(X 5, C)-valued formal power
series

’ LNy g Di]+
1=y a1 Hlv‘:m([ 9 ¢ i xs, Olzllgis - - ¢ W[z
lelyr  i=1 L lv=—oo([Di] +v2)

Now Givental’s theorem takes the following form.
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Theorem 3.7 ([8, Theorem 0.1]) Let X5 be a smooth projective toric variety with a
numerical effective anticanonical bundle — K x .. There is a formal coordinate change
k € (Cllg1,...,q:1)") called the mirror map, such that

I=(dc. x x)*J

If X5 is Fano, that is, if —Kx . is ample, then « =id.

4 Landau-Ginzburg Models of Toric Fano Varieties

In the sequel of this survey, we will concentrate on the case of a toric variety with
a nef anticanonical divisor. We will describe how to associate a certain family of
Laurent polynomials to such a variety. These are called Landau-Ginzburg models.
Our presentation below follows mainly [19].

Whereas these Landau-Ginzburg models can be obtained very explicitly in a rather
elementary way in the toric case, it is a largely unsolved problem how to construct
them for more general varieties. Most of the known construction somehow come back
to the toric case, like the technique of toric degenerations [2]. In order to orient the
reader, let us give some reminders on basics of toric geometry that are relevant for
the present paper. As a basic reference for the facts discussed below, the reader may
consult [6] or the more recent [4].

Let N = @D;_, Zny be a free abelian group of rank n and ¥ C N ® R be a fan.
This means that X is a collection of cones {0 € X'}, where any o is a strongly convex
(i.e., 0 N (—0o) = {0}) polyhedral cone (i.e., o =Y R>ob; for some b;’s in N). Being
a fan means that for any o € ¥, any face of o is again a cone in X', and that for any
two cones o, T € X, the intersection o Nt is a face of both T and o. The fan X' defines
atoric variety X 5. Recall that X 5 is covered by affine charts X, := Spec C[M No V],
here M :=Homz(N,Z) and 6" :={m e M @ R|m(n) >0 Vn € N ® R}, and that
X 5 is obtained from these affine pieces by gluing X, and X along Xn:.

We will suppose for simplicity that the fan X is smooth and complete, which
means by definition that any cone o € X' can be generated by elements b; which can
be completed to a Z-basis of N and that the support Supp(X) = J, .5 o is all of
N ®R. It is well-known that this translates into X y being smooth and complete. The
smoothness condition can by weakened by requiring X to be only simplicial, which
means that the generators of each cone are linearly independent over Q. In this case
X 5 can have quotient singularities, i.e., it is the underlying topological space of a an
orbifold. The question how to extend the results presented here to the orbifold case
is in the focus of current reasearch on quantum cohomology and mirror symmetry,
however, we will restrict to the smooth case in this survey for simplicity.

We have an exact sequence

0—L—2Z*D_5N—0 (7)

where X' (1) are the one-dimensional cones of X', called rays, the last map sends a
generator e; of Z*) to a primitive integral generator b; € N of a ray, and where the
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lattice LL is the free submodule of ZZ) of relations between the elements b; € N.
Dualizing yields the sequence

0— M —7¥D _ 1V _0.

It is well known (see, e.g., [6, p. 106]) that for a smooth toric manifold X5, we
have H2(Xx,Z) = LV. Inside LY ® R we have the cone K (X 5) of Kdhler classes,
which can be defined by saying that a € K(Xy) iff a(8) > 0 for all effective 1-
cycles in Hy(X 5, R) (The latter set of cycles also forms a cone, called the Mori
cone). We write K%(X x) for the interior of K (X), i.e., for all elements ¢ € LY with
a(B) > 0. Write D; € L.V for the components of the map I < Z* (), then the an-
ticanonical divisor —Kx, is > i, D; € LY. As we already mentioned in Defini-
tion 1.1, X 5 is called a Fano variety iff —Kx, is ample, i.e., if it lies in KO(XE). If
—Kx, € K(Xx), then X 5 is nef . Notice that a Calabi-Yau manifold (i.e., Kx, =0)
is obviously nef, however, it is easy to see that in this case the defining fan can never
be complete.

The projection ZED L N s given by a matrix (ax;)k=1,... n:i=1,....m With respect
to the basis (nx) of N. Moreover, we will chose once and for all a basis (pg)a=1,....r
of LY (with r =m — n and m = | X (1)|) which consists of nef classes (i.e., classes
lying inside of K (X)) and such that the anti-canonical class —Kx . lies in the cone
Zzzl R>0pq. Then the map L — 7EW g given by a matrix (m;q)i=1... m:a=1....r
with respect to the dual basis (p,)).

Applying the functor Homz(—, C*) (where Z acts on C* by exponentiating) to
the exact sequence 7 yields

1 — Homgz (N, C*) = (C*)" =% (€)*V £ Homy (L, C*) = (C*) — 1

®)

where a(yi,...,y) = i = [T ¥ Di=1..m and B(wi, ..., wpn) = (qa =
]_[;":1 w;"i”)azl ,,,,, r» here (gq)a=1,.. r are the coordinates on Homgz (L, C*) corre-
sponding to the basis (p,) of LY, (w;)i=1
(CH*D and (y)r=1
the basis (n)) of M.

.....

.....

Definition 4.1 Let W =" | w;. The Landau-Ginzburg model of X 5 is defined to
be the restriction of W to the fibres of the map 8 : (C*)* (D — (C*)".

Notice that the choice of the basis (p,) of LY and hence the isomorphism
Homgz (L, C*) = (C*)" is part of the data of the Landau-Ginzburg model, as the map
(C** D — Homygz(IL, C*) depend only on X(1), not on ¥ itself.

The following construction allows us to rewrite the restriction of W to the fibres
of B as a family of Laurent polynomials. Chose a section [ : LY — Z*(1 of the
projection [ : Z*1) — 1LV, given, with respect to the above bases, by a matrix ().
This yields a section (denoted abusively by the same letter)
()

1:(C*) — (C¥) )
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which sends (g1, ..., ¢,) to (w; :==[[,_, qf{“). Then putting ¥ : Homgz (N, C*) x
(C*" = (CH¥D where U(y,q) = (w; := nglq(lj“ ey y,f"[)izl ,,,,, - yields a

coordinate change on (C*)™ such that 8 becomes the projection p> : Homz (N, C*) x
(C*)" — (C*)". Then we put

W::WolP:HomZ(N,(C*)x((C*)r — C

m r n
1y Vs Gty -5 qa) > ZHQZ“’H)’;{’""
k=1

i=1a=1

which is a family of Laurent polynomials on Homg(N,C*) parameterized
by (C*)".

Recall [22] that a single Laurent polynomial Wq = VT/(—, q) € O"omv,C*) 1S
called convenient iff O lies in the interior of its Newton polyhedron, and non-
degenerate iff for any proper face t of its Newton polyhedron, the Laurent poly-
nomial (W,); = > bier [ lazt g« . TTr_, y24 does not have any critical point on
Homgz (N, C*). If we consider the whole family W, the following holds

Proposition 4.2

1. Wq is convenient for any q € (C*)".

2. There is an algebraic subvariety Z C (C*)" such that Wq is non-degenerate for

all g ¢ Z. Write M° := (C*)"\ Z.

IfX_; is Fano, then Z = ().

4. If X 5 is weak Fano, then there exists an € > 0, such that for all g € Homz (L, C*)
C C” with |q| < €, we have q ¢ Z. Here the inclusion Homz (L, C*) C C” and the
metric | - | refer to the chosen coordinates (qqa) on Homg (L, C*).

hed

Examples In order to make the above construction more transparent, let us consider
some simple but important examples.

1. The mirror of projective spaces, see Fig. 1.

Fig. 1 The fan of P2 (0,1)

(1,0)

(=1,-1)
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(0,1) (0,1)
A A
>
(1,0) (1,0)
Y Y
(=1,-1) (0,—1) (0,—1)
(=1,-2)

Fig. 2 The fans of '] and

The fan of P” consists of n + 1 rays (see Fig. 1 for the case n = 2), namely,
the standard vectors ¢; fori =1, ..., n in Z" and the additional vector Z?:] —e;.
Hence the exact sequence (7) reads

0 — L=7Z 7 7" —= 0

where we have chosen a basis of LY corresponding to the Poincaré dual of a
hyperplane. Hence by dualizing and tensoring with C* we obtain the Landau-
Ginzburg model given by the restriction of the linear function W = wg + - - +
w, to the fibres of the fibration B : (C*)**t! — C*, which sends (wo, ..., wy) to
wo - - .. - wy. Choosing the section / : Z = LY — 7" I(m) = (m,0,...) € Z" we
obtain that Wpn (y1, ..., Yu, @) =y1 + -+ yn + yl'.(.]uyn'

2. The mirror of the Hirzebruch surfaces F; and [F»:

Recall that for any k € N, the projective bundle P(Op1 (k) @ Op1) is called the
k-th Hirzebruch surface and denoted by Fy. However, these surfaces are Fano only
for k = 0 (this is the rather trivial case P! x P') and k = 1. For k = 2, IF, has a nef
anticanonical divisor, but this is no longer true for the higher Fy’s. Hence we can
construct Landau-Ginzburg models for Fy, F; and F;. Let us concentrate on the
last two cases. These are toric varieties defined by the fans shown in Fig. 2.

The exact sequence (7) takes the following form for 'y

1 0
0 1
1 0
-1 1

0 — L=72 74 72 — 0
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so that the Landau-Ginzburg model is the following two parameter family of Lau-

rent polynomials:
We, =x+y+ L2 2
Xy y

where we have chosen the section of the map Z* — L. given by the matrix

0
0
1
1

(= e )

For I, we have the following exact sequence

1 0 -1 0
01 -2 -1

0 — L=z72 74 72 — 0

and we obtain:

Wr —x+y+q +q_2

xy? Yy
where the section is given by the matrix

O = O O
— N OO

Notice that for g1 = }—w WFz (x,y, }T q2) is degenerate: the Laurent polynomial

X+ y2 + qz has critical points on the torus (C*)2. This reflects the fact that IF,

is nef but not Fano, and can be seen on its fan from the fact that there is a lattice
point on the boundary of the convex hull defined by the rays of the fan of [F, (the
point (1, —1) on the red line).

5 GauB-Manin Systems and Hypergeometric Differential Equations

In this section we describe how to associate a system of differential equations to the
Landau-Ginzburg models defined above. These systems will ultimately be equal to
the quantum D-module, and this is precisely the kind of mirror correspondences we
are interested in. However, the differential equations we are going to consider are in-
teresting in their own right, and have been studied since a long time. They are related
to the classical Gauf3-Manin connection but they are more general in two respects:
First, one has to take into account singularities which occur at the critical points of
the Laurent polynomials. The corresponding object is called Gau-Manin system,



148 C. Sevenheck

and is constructed in a functorial way using the general notion of direct image in the
category of D-modules. Equivalently, and this is the point of view that we are going
to adapt below, it is obtain as a twisted de Rham cohomology group. The second dif-
ference to the classical setup is that in order to match with the quantum D-module,
we have to consider a variant of the Gauf3-Manin system, which is obtained by a
partial Fourier transformation. The solutions of the transformed systems can be ob-
tained as oscillating integrals, whereas the original Gauf3-Manin system consists of
differential equations satisfied by period integrals over vanishing cycles. We will not
explain in detail this more analytic point of view, one can find in [12, Chap. 8] some
explanations for the related case of germs of functions with isolated singularities. No-
tice also that the construction described below is carried out in the analytic category
in [19].

In order to establish the mirror correspondence via differential equations satisfied
by oscillating integrals, one needs to have a concrete description of these D-modules.
Luckily, such a description is available in the toric case, and the systems obtained
are said to have a hypergeometric structure. Hypergeometric functions and hypergeo-
metric differential equations have a long history, starting at least with Gauf}. We will
not review here these developments (one may consult, e.g., [33] for some classical
aspects of the theory). Instead, we start with the following definition of the so-called
GKZ-systems (after Gelfand, Kapranov and Zelevinski) taken from [7] and [10] (see
also the more recent reference [1]). Any system of hypergeometric equation can be
rewritten as a GKZ-system (or a reduction of it). We also discuss the main proper-
ties of these D-modules, and for that purpose we recall some of the most important
notions related to algebraic D-modules.

Definition 5.1 (GKZ- or A-hypergeometric system) Consider a lattice Z" and vec-
tors a,...,a,, € Z" which we also write as a matrix A = (a,, ..., a,). Moreover,
let 8 =(B1,...,PBn) € C". Write L for the module of relations of A and Dcm for the
sheaf of rings of algebraic differential operators on C™ (where we choose x1, ..., X,
as coordinates). Define

M- = Do (@i, + (Zi=1, 1) (10)

where

Op= [T o5" - [] o

i:l,' <0 i:l,' >0

s
Zi=)  biixidy + B

i=1
Mﬁ is called hypergeometric system.

Notice that although the definition of ./\/lﬁ involves infinitely many operators (one
for each [ € IL plus the finite number of operators Z;), the denominator of in formula
(10) is of course generated by a finite number of elements of Dcs. However, and this
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is one important feature of the theory of GKZ-systems, in order to generate the ideal
(Opiew, it is in general not sufficient to take operators [J; where [ runs through a
basis of L.

Next we are going to describe some general properties of GKZ-systems. In order
to do this, we first recall some basic notions from the general theory of algebraic
D-modules. As an example for a reference, the interested reader may consult [17] for
the proofs and many more results.

Definition-Lemma 5.2 Let X be a smooth algebraic variety over C, Dy the sheaf
of algebraic differential operators on X and M be a coherent Dy -module. Consider
the usual filtration Fo on D by orders of operators. The associated graded (sheaf of)
rings gre(D) equals the structure sheaf on the cotangent bundle T*X.

1. A filtration Fe M is good if it is compatible with F D, i.e., if FtD- FIM C FryyM
holds for all k, 1 and if this is an equality for | sufficiently large and if moreover
we have that gre(M) is gre(D) = Or+x-coherent.

2. The characteristic variety char(M) of a M is the reduced support of gre(M) in
T*X. This subvariety does not depend on the choice of the good filtration Fg M.

3. M is holonomic iff char(M) is a Lagrangian subvariety of T*C™ for its natural
symplectic structure, that is, iff the restriction of the symplectic form to all tangent
spaces of smooth points of char(M) vanishes. Equivalently, M is holonomic iff
EXIZ%X (M, Dx)=0forall p#n.

4. Let w : T*X — X be the canonical projection. Let char(M) = | J C; be the de-
composition of char(M) into irreducible components. Suppose that the zero sec-
tion Ty X of T*X is a component of char(M) and that it is equal to Cy. Define
the singular support Sing(M) to be m(char(M)\C1), if Ty X ¢ char(M), then
Sing(M) = Supp(M). The restriction M x\c, is Ox-locally free of rank k (k =0
if Supp(M) C X), and k is called the holonomic rank of M. It is equal to the di-
mension of the space of (say, holomorphic) local solutions of M near a point in
X\Sing(M).

5. M is regular if its restriction to any curve C C X is so, and this last condition can
be reduced to the usual condition of regularity for linear systems of differential
equations in one variable. A precise definition of regularity can be found, e.g., in
[17, Chap. 6].

With all these notions in mind, we can describe the main properties of the GKZ-
systems.

Proposition 5.3 Let A, B and Mi be as above.

1. Mﬁ is holonomic for any A and any B. For generic B, the holonomic rank
of Mﬁ is n!-vol(A(ay,...,a,)), where A(ay,...,a,) denotes the convex hull
of aj,...,a, in R" and vol(—) is the normalized volume, which takes the
value 1 on the hypercube [0,1]1" C R". In particular, if B is generic, then
n!-vol(A(ay,...,a,)) is the dimension of the solution space of the differential
system defined by Mﬁ at a generic point of C™.
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2. ./\/lﬁ is regular ifand only ifa,, ..., a,, is contained in an affine hyperplane of Z.".
3. The singular locus equals the degeneracy locus of the Laurent polynomial

Yo xi - y%, where y%i := [Tiz; y,f“, i.e., is equal fo
{(/\1,...,/\,,,) eC"|vr cdA,.....a,).

Z Ajy% has a critical point in ((C*)"}

Jjajet

The differential systems that will appear in the mirror correspondence that we

are going to explain are variants of special GKZ-systems. First, one starts with a
regular GKZ-system, this is achieved by forcing the columns of the defining matrix
to be contained in an affine hyperplane (see point (2) in the above proposition). Next
there are two modifications to be carried out: A restriction of the parameter space,
this corresponds to the chosen embedding [ from (9), and finally a Fourier-Laplace
transformation which introduces irregular singularities. Let us explain these steps in
some more detail. For the restriction just mentioned, we have to use the inverse image
functor of D-modules, which we do not explain here (see again [17] for details).

Definition-Lemma 5.4

1.

For a given matrix A € M(n x m, Z) with columns a,, ..., a,,, letd, :=(1,a;) €
7" fori=1,...,m and ay = (1,0). Write A for the matrix with columns
dy.dy, - .., d,, and consider the hypergeometric systems ./\/l% for B e CH1,

. Forany C[Ag, ..., Au1{00, - . ., Om)-module M, define FLf\;1 (M)[z] to be the op-

eration of replacing 3y by z~', Lo by z%9, and by inverting z~', i.e., by ten-

soring with C[z, A1, ..., Am] over Clz7V, A1, ..., Am]. Then FLi;l(M)[z] isa
ClzF, A1, ..oy Aml(D2, 01, ..., 3p)-module.

. Consider the chosen section | : Homy (L, C*) = (C*) — (C*)*M = (C*)"

from (9). Define
oMy = ((id:, DFFLE, (ME?)[2])

then QM3 is given as the quotient of Clzt, qli, ey q,i](az, gy, ... 0q,) by the
left ideal generated by

—Li—=1/r
ELZ: 1_[ qf“@ 1_[ l_[ <ZmiaZQaaqa - VZ)

a:pa (>0 i:l;<0 v=0 \a=1

L1/ r
_ l_[ qa—l’a(l) 1_[ H(mezqaaqa —VZ>

a:pqa()<0 i:l;>0v=0 \a=1
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for any |l € L and by the single operator

.
229, — Z Kxy(py)qaz0q,

a=1

4. Denote by ¢ QM7 C QM3 the Clz, qli, gl subalgebra generated by 7%,
and 2449y, where a =1,...,r. Then ¢QMjy is (C[z,q1 RN ]free of rank
n!-vol(A(ay,...,a,)) and it comes equipped with a connection operator with a
pole of Poincaré rank one along z = 0.

There are many results in the literature concerning solutions of hypergeometric
differential equations. In our setup, the /-function introduced above (Definition 3.6)
will yield (cohomology valued) solutions of the GKZ-systems defined by a toric va-
riety.

Proposition 5.5 Put T:= ZKXE " - I (u is the grading operator on cohomology
classes) and write 7= Z, -0 I, Ty, where Ty, Ty, ..., Ty of H*&X;, C) is a homo-
geneous basis of H*(X 5, C) as above. Then the components I, yield solutions of
the differential system QM 3 over a subset of C} x (C*)" on which the I -function is
convergent. For a precise statement, see [27, Proposition 3.12 and Corollary 3.13].

The next step is to explain how we can associate a (version of a) GKZ-system to
the Landau-Ginzburg models defined in Sect. 4. As mentioned in the beginning of this
section, this is done using the so-called twisted de Rham cohomology, which is a ver-
sion of the more general GauB3-Manin system. Here is the corresponding definition,
which is simplified to fit to our purpose.

Definition 5.6 Let U, K be a smooth affine algebraic varieties with dimc(U) =n
and ¢ = (F, pr) : U x K — C x K be an affine morphism, where F € Oy xx and
pr:U x K — K is the projection. Let z be a new variable and consider the following
complex of Oy x g -modules with a O¢ « g -linear differential

(.Q;,[z], zd —doN)

where £27. := 27, ® 0, Ok xu are the differential forms relative to the projection
map pr. Call H" (¢) := H”(.Q;,r [z], zd — dpA) the twisted de Rham cohomology
of ¢ (more precisely, it is the de Rham complex of U with the differential twisted
by ¢). Notice that in the examples we are interested in, all other cohomology groups
H'(¢) for i # 0 will vanish. Moreover, define a connection operator V : H" (¢) —
H" () ® 2,y (+{0} x U) by

V. () := 72 F.w
Vx () :=Liex(w)+z7 " X (Fo

where o € .Qf,r and X € Tx and where the above formulas are extended to the whole
module H"(¢) by the Leibniz rule.
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An appropriate version of the GKZ-system can be used to compute the twisted
de Rham complex of the Landau-Ginzburg models we are interested in. Hence, let
(W, pr) : (C*)" x (C*)" — C x (C*)" be a morphism as in Sect. 4. Then we have
the following.

Theorem 5.7 ([27, Corollary 3.3], [19]) There is an isomorphism of Oc,xc*y-
modules with connections on C, x (C*)”

H"(W, pr) = ¢QM3. (11)

0QM 3 (and hence also H"(W, pr)) is locally free of rank n! - vol(A(ay, ..., a,))
when restricted to the complement of the degeneracy locus Z defined in Proposi-
tion 4.2. In particular, both objects are locally free over the whole of C, x (C*)" if
X5 is Fano.

Examples Using the last theorem, we can give an explicit expression for the twisted
de Rham cohomology for the examples considered in Sect. 4.

1. XZ e Pn: Recall that hZ(IED)’l) = 1 and hence (an’ pr) . ((C*)I’l X (C* N (C x
C* (x1, ... xn, @) > x1+ -+ x,+¢q/(x1 ... x). Then we have

Clz, ¢*1(z%9;, gzd,)
((zq3,)" ! — g, 220, 4+ (n + 1)qdy)

H"(W, pr) = (12)

2. Xy = Fy: We have h2(F)) =2, (Wg,, pr) : (C*)? x (C*? - C x (CH?;
(. y.q1,q2) > x +y + 42 4 L and
H"(W, pr)

- Clz. . 47 . 45 1(z20-. 20, . 42203,
((q1204,)* — q1(g229g, — q1204,), 4220y, - q120g, — G2, 2207 + q1204, + 2¢2204,))

3. Xy =Fy: We have h*(F1) =2, (Wr,, pr) : (C*)? x (C)? — C x (CH%
(x,,q1,q2) > x +y + L + 4 and

H"(W, pr) = Clz, qF. ¢°)(z%0,. 20, , q2234,)/1
where [ is the left ideal generated by

(91299)* — q1(q2234, — 291204,)(q220g, — 2q1234, — 1)
(24204,)(2q20q, — 22q104,) — q2
229, + 2g229y,

6 Non-commutative Hodge Structures

In this section, which can be read almost independently of the other parts of the text,
we will discuss some results on abstract non-commutative Hodge structures (called
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ncHodge structures for short in the sequel). The ultimate aim is to use ncHodge struc-
tures very much like ordinary ones, in particular, one would like to study period maps,
Torelli problems etc. However, for the moment these kind of techniques are available
only for a restricted class of ncHodge-structures (namely, the so-called regular ones).
However, these are in a certain sense the building blocks for more general (irreg-
ular) ncHodge structures, which, as we will see, occur in mirror symmetry. In that
sense any result for the regular case will certainly also be of importance for ncHodge
structures defined by Landau-Ginzburg models.

We start with the very definition of a non-commutative Hodge structure. For
simplicity, we suppress any notion of weights, that is, we consider only ncHodge
structures of weight 0. Such structures almost never exists in (commutative or non-
commutative) geometry, however, they are technically slightly simpler to treat and
the adaption to the general case is not very difficult. We also omit the grading present
in the definition in [20], as we are not going to discuss the (conjectural) construction
of an ncHodge structures from a category, as described in loc.cit.

Definition 6.1 (ncHodge structure, [15, 20, 31]) A real resp. rational non-commuta-
tive Hodge structure (of weight 0) consists of the following data:

1. An algebraic vector bundle H on C; (z being a fixed coordinate on C) of rank .
2. A K-local system £ on C* (with K being either R or Q), together with an isomor-
phism

iso: L @k Ocr — Hc=

such that the connection V induced by iso has a pole of order at most 2 at z =0
and a regular singularity at z = co.

3. A polarizing symmetric form P : L ® j*L — K¢« (where j(z) = —z), which
induces a non-degenerate pairing

P:H®o. j*H— Oc
In particular, we have an induced non-degenerate pairing
[P]:H/zH x H/zH — C.

4. There is an isomorphism

k
H®0, 6@[*{0}] x~ @(Ri, V) ® Qlilz
i=1

where uy, ..., u; € C, where @(c denotes the completion of O¢ at z=0 and
where (R;,V;) are formal meromorphic bundles (i.e., locally free Oc(%{0})-
modules) equipped with a connection with regular singularity at z = 0.
If all u; in this decomposition are equal to zero, then H ® O¢ (x0) is a regular
Dc,-module, and we say that the (M, £, iso, P) is regular in this case.
5. Consider the morphism y : P! — P! given by y(z) = 1/z, and glue the bundle
H on C and the bundle y*H on P!\ {0} via an identification of the local systems
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L ®k C and y*L£ ®k C on C*. Using the flat structure, it suffices to define this
identification on S! only and here it is given by complex conjugation called 7, that
is, by conjugation with respect to K-structure £ in L¢. Call the resulting holomor-
phic bundle H — P!. Then we call H pure iff H=o! i and pure polarized if it is
pure, and if the hermitian form

h:=P(—t—): H'(P', H) x H*(P', H) — C

is positive definite. Notice that T induces an anti-linear involution on the space of
global sections of the trivial bundle H.

The following result gives a partial explanation of the term “ncHodge”: namely, it
shows how ordinary Hodge structures can be seen as ncHodge-structures.

Proposition 6.2 ([20, Lemma 2.9], [15, Sect. 5]) The functor sending a real resp.
rational Hodge structure (Vi, F*Vc, w) to the ncHodge structure given by H :=
Dicr 2 ¥ F*Ve € Ve ®c Clz, z7'] (where £ = Vg C Ve ®c Clz, z71) is fully
faithful. Its image are the ncHodge structures where V has a logarithmic pole (i.e.,
a pole of order 1) on 'H at zero and such that the monodromy of V is trivial.

Remark We will not give any more details on the origins of the name non-
commutative Hodge structures. The basic idea (which is described in [20] but which
is for the moment merely a collection of conjectures) is that one can find such struc-
tures starting from a certain triangulated category. The object which is supposed
to underly a non-commutative Hodge structure is the so-called negative cyclic ho-
mology of this category. In some special cases, one expects to get back ncHodge
structures constructed directly from geometric input data via this general categorical
setup. See, e.g. [32] for the case of isolated hypersurface singularities (the example
from Theorem 6.9 below).

A very important feature of the theory is the study of families of ncHodge struc-
tures, very much similar to the case of ordinary Hodge structures. The classical notion
of Griffiths transversality is expressed as a certain pole order property of a family of
ncHodge structures.

Definition 6.3 A variation of (pure resp. pure polarized) ncHodge structures on a
complex manifold M is a vector H bundle on C, x M, equipped with a connection
operator with poles along {0} x M such that

1. For any vector field X on M, H is invariant under the operator zVy.
2. For any point ¢ € M, the restriction of H to C, x {c} is a (pure resp. pure polarized)
ncHodge structure in the sense of Definition 6.1

One checks that for a variation of ncHodge structures coming from an ordinary
one, that is, such that the restriction to each point in the parameter space lies in the
essential image of the functor considered in Proposition 6.2, the pole order property
(1) in the above definition is equivalent to the Griffiths transversality property of the
variation of Hodge structures we started with.
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A regular ncHodge structure has a set of discrete invariants, the so called spectral
numbers. They will be used below for the construction of classifying spaces. We give
the definition together with some of the main properties.

Definition-Lemma 6.4 Ler (H, L, iso, P) be a regular ncHodge structure and sup-
pose that the monodromy of the local system L is quasi-unipotent, i.e, that the
monodromy operator T on the space of (flat multivalued) sections of L satisfies
(T" — Id)™ = 0 for some non-negative integers m,n. This condition is equivalent
to the fact that the eigenvalues of T are roots of unity, and it is satisfied in virtually
all examples coming from geometry.

1. Define the spectrum (which is actually an invariant of H and V only) by

o

. GryH
Sp(H, V) = Z dlmC(Gr‘ézH) -a € Z[Q],
aeQ

where V*H(xD) is the canonical V -filtration, also called Kashiwara-Malgrange
filtration, on the D¢, -module H(x0) (see, e.g. [11, Sect. 7.2]). It induces a filtra-
tion V*'H on the lattice H C 'H(x0), which is used in the above definition through
its graded parts Gr{, H. Notice that the V -filtration is indexed by Q, which corre-
sponds to the quasi-unipotency of L.
We also write Sp(H,V) as a tuple ay,...,o, of p numbers (with p =

rank(H)), ordered by ay < --- < a,.

2. « is a spectral number, that is, we have dimc(Gr§, (H/zH)) > 0, only if e~ 27l g
an eigenvalue of the monodromy operator T .

3. The spectrum satisfies o; = —o,41—; (more generally, if we allow weights, then
we have a; + oy 11— = w for an ncHodge structure of weight w).

A fundamental tool in the study of Hodge structures is the theory of classifying
spaces and period maps associated to a variation of Hodge structures. A similar result
exists in the non-commutative case, and can be expressed as follows.

Theorem 6.5

1. [16, Theorem 7.3] Fix a quasi-unipotent K-local system L on C* and the polar-
izing form P : L ® j*L — Kc«. Fix also a rational number ay such that e~ i
is an eigenvalue of the monodromy of L. Moreover, suppose that ay < 0 (or, more
generally, that ay < %, where w is a fixed integer that will be the weight of the
ncHodge structures to consider). Put

M :={(H, V) | H — C; vector bundle,V, € Autc (H|cx) connection,
(szz)(H) CH,

Sp(H, V) C a1, —en1]1NQ,Fiso: L ®k.. Ocx 5 Hicx,
P(H,’H) C 2" Oc, non-degenerate}
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Then M is a projective variety which is stratified by locally closed smooth subva-
rieties parameterizing bundles with connection with fixed spectral numbers.
M comes equipped with a universal bundle HM — C, x M with a relative
connection V., and a polarizing form defined by P.
2. [16, Sect. 8] Define

MPP = lx e M| (HM, L, iso, P)I(Cx{x} is a pure polarized ncHodge structure}

(this is an open subvariety of M), then the tangent sheaf @ aqpp of MPP can
be endowed with a positive definite hermitian metric h, which defines a distance
function dj, on MPP.

3. [16, Theorem 8.6] The metric space (MPP, dy) is complete.

The following result describes the period maps which are analogues of the classi-
cal period maps for variations of ordinary Hodge structures.

Proposition 6.6 Ler (H, L, iso, P) be a variation of regular pure polarized ncHodge
structures on a simply connected manifold M, and let a1 be the smallest spectral
number of the restriction of (H, V) to a generic point of M. Then there is a period
map $ncHodge : M — MPP satisfying ¢>;1"CH0dge (HM)=H.

If the spectrum of (H, V) is constant on M, then the holomorphic sectional cur-
vature k of the metric h on O pqpp Will be negative and bounded from above by a
negative number on the image Im(d¢ncHodge) Of the derivative dncHodge : Ty —

¢ITCHOdge@Mpp of the period map.

Using standard tools from complex hyperbolic analysis, we obtain the following
two consequences.

Corollary 6.7

1. [14, Corollary 4.5] Let (H, L, iso, P) be a variation of pure polarized regular
ncHodge-structures on C" with constant spectrum. Then the associated period
map @ncHodge s constant, in other words 'H is stable under V. One says that
(H, L, iso, P) is a trivial variation of ncHodge structures in this case.

2. [16, Theorem 9.5] Let X be a complex manifold, Z C X a complex space of codi-
mension at least two. Suppose that the complement Y := X\ Z is simply connected.
Let (H, L, iso, P) be a variation of pure polarized regular ncHodge-structures on
the complement Y which has constant spectral numbers. Then this variation ex-
tends to the whole of X, with possibly jumping spectral numbers over Z.

Remarks

1. The first statement from the above corollary even extends to the irregular case.
However, if we do not suppose that the connection V is regular along z = 0, then
we need some kind of regularity along the boundary of the parameter space, e.g.
along P"\C". Such a property exists, and is called tameness of the associated
harmonic bundle. See [16, Corollary 6.3] for a precise statement.
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2. The second statement treats extensions of regular ncHodge structures over codi-
mension two subvarieties. The question how to extend a variation over a divisor
is perhaps even more important. In that case, we need the full power of the limit
statements for harmonic bundle, due to Mochizuki (see [25]). We also need to take
care of the possible monodromy along the boundary divisor, this can be done by
adding the structure of a lattice (i.e., a Z-local subsystem of £). A precise formu-
lation of the result for extensions over divisors can be found in [16, Theorem 9.7].

The following fundamental theorem shows how ncHodge structures occur in ge-
ometry. It concerns a certain type of regular functions on smooth affine varieties,
called cohomologically tame. Without giving the precise definition of this notion (see
[28]) let us just mention that such functions have isolated critical points and satisfy
moreover an assumption concerning their behavior at infinity (in the fibres of an
appropriate compactification). In particular, convenient and non-degenerate Laurent
polynomials, like the Landau-Ginzburg model of a toric Fano manifold are cohomo-
logically tame.

Theorem 6.8 ([30]) Let U be a smooth affine manifold and f : U — C a cohomo-
logically tame function. Then the twisted de Rham cohomology H"(f) underlies a
pure polarized non-commutative Hodge structure.

There is another important class of examples where the twisted de Rham coho-
mology can be equipped with an ncHodge structure. These are germs of holomorphic
functions with isolated critical points also called isolated hypersurface singularities.
However, and this is one of the main issues of study in this so-called local case,
the corresponding structure does not necessarily satisfy the condition (5) in Defini-
tion 6.1. Nevertheless, we have the following result.

Theorem 6.9 ([15, Corollary 11.4]) Let f : (C"t!,0) — (C,0) be an isolated hy-
persurface singularity. Then for a sufficiently large real number r, the twisted de
Rham cohomology of an appropriate representative of the germ r - f underlies a pure
polarized ncHodge structure.

7 Mirror Symmetry Statements

Using all the objects introduced above we can now express mirror correspondences
as isomorphisms of systems of differential equations. This identification relies on
Givental’s theorem (Theorem 3.7 above), and yields an isomorphism of vector bundle
with connections on C; x (C*)”. This is the first result of this section. However, from
a physical point of view, we would like to express the mirror correspondence as an
isomorphism of so-called Frobenius manifolds, which appear as moduli spaces of
two dimensional topological field theory in physics. The cohomology of any, say
smooth projective, variety carries a Frobenius structure which is defined precisely
using the quantum multiplication. We introduce this notion here and show briefly
(referring to [27] for more details) how to construct such a manifold from the Landau-
Ginzburg model. The final result then says that there is an isomorphism of Frobenius
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manifolds between the A-model and the B-model, and this can be considered to be
the culminating point of this version of mirror symmetry for smooth toric varieties
with ample or nef anticanonical bundle.

Let us start with the very definition of a Frobenius manifold. For our purpose, we
also need an extended version called logarithmic Frobenius manifold, which takes
into account the degeneration behavior of the quantum multiplication at the large
radius volume limit.

Definition 7.1 Let M be a complex manifold.

1. A Frobenius structure on M is given by two tensors o € (£27)®? ®o, Tu,
g€ (211)®? and two vector fields E, e € Ty subject to the following relations.
(a) o defines a commutative and associative multiplication on 7, with unit e.
(b) g is bilinear, symmetric and non-degenerate.

(c) Forany X,Y,ZeTy,g(XoY,Z)=g(X,Yo Z).

(d) gisflat,i.e., locally there are coordinates t1, ..., t,, on M such that the matrix
of g in the basis (9, . .., 31,) is constant.

(e) Write V for the Levi-Civita connection of g, then the tensor Vo is totally
symmetric.

(f) V(e)=0.

(g) Lieg(o) =o, Lieg(g) = D - g for some D € C

2. Now suppose that dimc (M) > 0 and let D C M be a simple normal crossing divi-
sor. Suppose that (M\D, o, g, e, E) is a Frobenius manifold. Then we say that it
has a logarithmic pole along D (or that (M, D, o, g, e, E) is a logarithmic Frobe-
nius manifold for short) if o € 2}, (log D)®? ® Ty (log D), g € £2},(log D)®2,
E,e € T(log D) and if g is non-degenerate on 7y (log D). Here £2! (log D) resp.
T (log D) are the sheaves of logarithmic differential forms resp. logarithmic vec-
tor fields along D.

The following is the basic result which explains why Frobenius structures enter
into the mirror symmetry picture.

Theorem 7.2 (See, e.g., [24]) Let X be smooth projective and convex (this last
assumption is not essential). Define a multiplication o on the tangent bundle of
the cohomology space H*(X,C) as was done above before Definition 3.2. De-
fine a constant (hence flat) pairing g(—, —) on T H*(X, C) by the non-degenerate
Poincaré metric on H*(X,C). Put e = 1 € H*(X, C) and recall from the definition
of the quantum D-module (6) that E =Y i _,(1 — %)ti 3 + > n_y kadr,, where
2221 kqT, = c1(X). Then the tuple (H*(X, C), o, g, e, E) defines a formal germ of
a Frobenius manifold atty =t =--- =t;, =0.

The fact that we do not know in general whether the quantum product is conver-
gent forces us to restrict to formal germs in the last theorem. However, as explained
above, we do not worry about convergence questions in this paper, so that we simply
assume that there is a certain subspace of H*(X, C) on which we have a holomorphic
Frobenius structure, and we also want this subspace to contain a neighborhood of the
large radius limit. Then the divisor axiom for Gromov-Witten invariants yields
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Lemma 7.3 ([26, Sect. 2.1.2]) Let U ¢ H(X,C) ® (H*(X,C)/2ni H*(X,Z)) ®
H>2%(X, C) be a domain of convergence of the quantum product, and assume that a
point (ty, q, t) is contained in U if it is small enough in the standard hermitian metric

of Cx (C*)" xC*~"=1. Let U C C° be the closure (i.e., including points where g, = 0
for somea=1,...,r). YLhen the Frobenius structure on U extends to a logarithmic
Frobenius structure on (U, D), D = ngl D, with D, ={q, = 0}.

Our next task is to explain how one can construct a Frobenius structure (which
will also acquire logarithmic poles along a normal crossing divisor) starting from a
Landau-Ginzburg model, that is, from a family of Laurent polynomials W (CH" x
(C*)" — C. We use the twisted de Rham cohomology constructed in Sect. 5, and the
isomorphism (11) expressing it by hypergeometric differential equations. The main
step towards the construction of Frobenius manifolds is contained in the following
proposition. In order to keep notations simple, we restrict to the Fano case.

Proposition 7.4 ([27, Proposition 3.10]) Suppose that X 5 is smooth toric and Fano.
There is a Zariski open subset U C C” including the limit point {q =0} € C" and an
extension O/Q/V i ]P’; x U of 0QM g which is a family of trivial P'-bundles and
such that the connection extends with a logarithmic pole along {z = co}UJ.,_{qa =
0}. Moreover, the restriction (()/Q-/\\/( {z=0,¢,=0} is canonically equipped with a mul-
tiplication and is isomorphic as an algebra to the classical cohomology ring of X 5.

Example We give here the simplest example for which the mirror correspondence
can be established directly, namely, that of the projective spaces. For the Hirzebruch
surfaces 1 and I, a similar computation can be carried out. In fact, the represen-
tation of the twisted de Rham cohomology of the Landau-Ginzburg model of P",
i.e., formula (12) already gives the desired extension to z = co. More precisely,
put w; = (zqaq)i for i =0,...,n, then there is an isomorphism H"(VT/]pn, pr) =
P Oc, x(c*y w;, and we have a connection

1 d d
V(Q)=Q'[(Ao—+Aoo>—Z—A0' "] (13)
z Z n-z-q
where w = (wy, ..., w,), where
0 O 0 c-q
-1 0 0 0
Adg=|0or o]
O 0 ... 0 0
O 0 ... =1 0

with ¢ € C* and where Ay, = diag(0, 1, ...,n).

Then we can simply define QM 7 := B!_, Opi w(Cryr i, so that U = (C*)" in
this case and it is easily seen from (13) that the connection V on Q/QM 4 has poles
with the desired properties.
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We now deduce from Givental’s theorem two types of mirror statements. The first
one concerns the small quantum D-module F from Definition 3.2.

Theorem 7.5 ([19, Proposition 4.8], [27, Proposition 4. 10]) Let X 5 be Fano. There
is an isomorphism of bundles with connection on P! x U

0OM7=F.

The second mirror correspondence will be an isomorphism of Frobenius man-
ifolds. There is a general strategy to construct Frobenius manifolds starting from
families of trivial vector bundles on P!. Results of this kind are due to Malgrange,
Dubrovin and Hertling-Manin (see [13] and the references therein). The version that
we need here (taking into account logarithmic poles) can be found in [26], and this
gives the following result.

Theorem 7.6 (Mirror symmetry for smooth toric Fano varieties) Let Xy be smooth
projective and Fano. Let WX; be its Landau-Ginzburg model. There is a germ
(M, 0), (D O)) ofa canomcal logarithmic Frobenius structure associated to WX 5
Here M =U x C* and D = D x Ck, where k = nlvol(A(ay,...,a,)) —r. The
Frobenius structure is defined by a family of P'-bundles on M which restricts to
0QM 5 on U x {0}.

This Frobenius structure is isomorphic to the one from Theorem 7.2 (i.e. to the
quantum cohomology of X x) near the limit point g = 0.

The very last statement can be considered as the final version of the mirror symme-
try for smooth toric Fano varieties. The nef case can also be treated by these methods,
and the result is basically the same, with some small technical modifications.

Finally, let us once again come back to the example of the projective spaces.
Consider the twisted de Rham cohomology (i.e., either formula (12) or formula
(13)), then we easily see (and this is of course a general fact) that the restriction
H" (W[[Dn, Pr)|z=0 is a family of Cl[g*]-algebras. More precisely, write p for the class
of zqd,, then formula (12) gives that

Clp.q*]
(p"*t1—q)

and we see from the isomorphism (5) that this is precisely the small quantum coho-
mology of P". In the same way, it is easy to see that the quantum-D-module of P" is
exactly given by the connection operator in formula (13). Hence, in this simple case
there is an explicit identification of the differential systems on the two sides of the
mirror correspondence.

We finish this survey by mentioning the following corollary, which follows di-
rectly from Theorem 7.5 and Theorem 6.8 above.

H" (Wpn, pr)jz—o =

Corollary 7.7 Let X 5 be Fano. Then the (restriction to C, x (C*)" of the) quantum
D-module F of X 5 underlies a variation of a pure polarized non-commutative Hodge
structures.
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Zusammenfassung Ein von personlichen Erfahrungen geprigter Nachruf auf den
Menschen, Lehrer und Wissenschaftler Wilhelm Klingenberg. Schliisselworte seines
wissenschaftlichen Werkes sind Geometrie, Kriimmung und Topologie, Geoditische
Linien.
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Geometrie
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Wenn der Knabe zu begreifen anfingt, dass einem sichtbaren Punkte ein un-
sichtbarer vorhergehen miisse, dass der ndchste Weg zwischen zwei Punkten
schon als Linie gedacht werde, ehe sie mit dem Bleistift aufs Papier gezogen
wird, so fiihlt er einen gewissen Stolz, ein Behagen. Und nicht mit Unrecht;
denn ihm ist die Quelle alles Denkens aufgeschlossen, Idee und Verwirklichtes,
potentia et actu, ist ihm klar geworden; der Philosoph entdeckt ihm nichts Neu-
es, dem Geometer war von seiner Seite der Grund alles Denkens aufgegangen.
J.W. Goethe: Wilhelm Meisters Wanderjahre, Aus Makariens Archiv Nr. 40

It was Goethe who in the epigram no. 40 ... most clearly gave expression to
the essence of geometry.
W. Klingenberg, Vorwort zu [1]

J.-H. Eschenburg (X))
Institut fiir Mathematik, Universitidt Augsburg, 86135, Augsburg, Deutschland
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Abb. 1 Wilhelm Klingenberg,
anlasslich seiner
Ehrenpromotion 2001 in Leipzig

Wilhelm Klingenberg' hat fiir die Differentialgeometrie in Deutschland nach dem
Zweiten Weltkrieg eine dhnliche Bedeutung wie Marcel Berger fiir Frankreich oder
Manfredo Do Carmo fiir Brasilien: Fast alle, die heute in Deutschland mit diesem
Fach zu tun haben, sind in irgendeiner Weise mit Klingenberg verbunden, als direkte
oder indirekte Schiiler von ihm selbst oder von Kollegen, die mit ihm eng verbunden
waren. Unter den 27 Doktoranden, die in [1] aufgefiihrt werden, finden sich 14 spite-
re Professorinnen und Professoren, die die Differentialgeometrie in Deutschland und
international vertreten. Diese auBerordentliche Leistung war nicht allein sein Ver-
dienst, es hatte auch sehr viel zu tun mit der ungewohnlich anregenden und ambitio-
nierten Atmosphire an seiner hauptsidchlichen Wirkungsstitte, an die er 1966 berufen
wurde, dem Mathematischen Institut der Universitit Bonn. Aber von entscheidender
Bedeutung war seine ganz personliche Art im Umgang mit seinen Schiilern. Diese
war sehr unkompliziert und weit entfernt von altem Ordinariengehabe. Noch bis ins
hohe Alter blieb das Fahrrad in Bonn sein wichtigstes Transportmittel. Als Student
wurde man sehr schnell geduzt und zu den zahlreichen mathematischen Tees und
Partys eingeladen, die nicht selten im Klingenbergschen Haus in Bonn-Réttgen statt-
fanden, voll von ostasiatischer Kunst. Dort traf man informell mit den vielen Gisten
am Institut und am Sonderforschungsbereich zusammen. Als Doktorand von Wil-
helm Klingenberg konnte man von seiner Ermutigung, seinen Anregungen und vor
allem seinen Verbindungen profitieren — er kannte einfach jeden in der Riemannschen
Geometrie. Die Betreuung seiner Doktoranden war unterschiedlich intensiv. Als ich
ihn nach meinem Diplom nach einem moglichen Thema fiir eine Doktorarbeit fragte,
schob er mir einen Stapel neuerer Preprints zu und sagte, ich solle mir daraus etwas
aussuchen. Es blieb nicht dabei; ich habe im Laufe meiner Arbeit viele Anregungen
von ihm bekommen, Hinweise, die es zu iliberpriifen galt, keine fertigen Ideen oder
gar Rezepte. Nur Leute, die schon eine gewisse Selbstidndigkeit in ihrer mathemati-
schen Arbeit erworben hatten, konnten bei ihm Erfolg haben. Manche sind friihzeitig
ausgeschieden, und auch in dieser Auswahl lag vermutlich ein Teil seines grofen
Erfolges als Lehrer.

Wilhelm Klingenberg hat sich in seinen frithen Jahren bei Karl-Heinrich Weise
und Friedrich Bachmann in Kiel mit klassischer Geometrie beschiftigt; das hat seine

1 Klingenbergs selbst verfasster Lebenslauf findet sich in [1]; weitere Biographien: http://de.wikipedia.org/
wiki/Wilhelm_Klingenberg_(Mathematiker), =~ www.gap-system.org/~history/Biographies/Klingenberg.
html.
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Denkweise geprigt. ,,Man darf einen Geometer als einen zur Gestaltwahrnehmung
besonders begabten Menschen ansehen®, schreibt er 1997 in seinem Aufsatz [15]
,,Mathematik und Melancholie* und fihrt fort: ,,Aus der scheinbaren Wirrnis des
Vexierbildes gliedert sich, vielleicht erst nach lingerer Dauer, urplotzlich eine Fi-
gur heraus.” Als Beispiel fiihrt er einen Moment aus seiner Kieler Zeit an, in dem
er blitzartig die Aquivalenz zweier SchlieBungssitze der affinen ebenen Geometrie
erkannte, des Desargues-Satzes (D) und des Schmetterlingssatzes (S). Beide Sitze
behaupten, dass das gestrichelte Geradenpaar parallel ist, wenn die durchgezogenen
Geradenpaare parallel sind.

Es war klar, dass (S) aus (D) folgte, aber die Umkehrung war ein offenes Problem,
mit dem sich bereits Ruth Moufang beschiftigt hatte. Wie Klingenberg in [15] aus-
fiihrt, gelang ihm der Beweis allein durch die Vorstellung einer Figur, die zwei Ver-
sionen von (S) (mit Scheiteln § und S") mit der Kontraposition von (D) vereinigte:
Aus (S) und (S") folgt die Nichtparallelitit der gestrichelten und der Strichpunkt-
Linie und damit (D) in der Kontraposition.2

(D) S

|

%

Die Beschiftigung mit den Grundlagen der Geometrie préagte auch seine Habilitati-
onsschrift an der Universitit Hamburg (1954) mit dem Thema ,,Ebene Geometrien
mit Nachbarelementen®, vgl. [2]. Es ging darin um eine Sorte von Ebenen, wo die
Verbindungsgerade zweier Punkte und der Schnittpunkt zweier Geraden nicht mehr
eindeutig sind, die aber eine geradentreue Projektion auf eine echte projektive Ebene
gestatten; sie wurden spéter mit seinem Namen verbunden und sind bis heute Gegen-
stand zahlreicher mathematischer Arbeiten. In einer Rede anlésslich seiner Emeritie-
rung 1989 in Bonn [14] sagte er dazu: ,,There even seems to be a Klingenberg plane.
But whatever it is, it is not nearly as important as the Poincaré halfplane.*

Unter dem Einfluss vor allem von Marston Morse, den er durch Vermittlung von
Wilhelm Blaschke in Hamburg kennen lernte, wechselte Wilhelm Klingenberg Ende

2Wenn das gestrichelte Geradenpaar nicht parallel ist, dann ist auch eins der durchgezogenen Geradenpaa-
re nicht parallel.
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der fiinfziger Jahre sein Forschungsgebiet in Richtung Riemannsche Geometrie. Sei-
ne in Kiel erworbene Einstellung zur Geometrie lédsst sich aber auch noch in seinen
spiteren Arbeiten erkennen. In [5] schreibt er iiber den Dreiecks-Vergleichssatz von
Alexandrov-Toponogov auf krummen Flachen: ,Ich glaube, dass ich kein Wort zu
verlieren brauche iiber die Schonheit dieses Satzes, die jeder echte Geometer spiiren
wird.” Er bleibt aber nicht bei dieser Feststellung stehen: ,,Alle vielleicht noch ver-
bleibenden Zweifel an der Bedeutung dieses Satzes werden jedoch behoben, wenn
ich nun zwei Beispiele gebe, wie dieser Dreiecksvergleichssatz den Schliissel bildet
fiir eine Reihe von Sitzen der Flichentheorie im Groflen.* Es folgen globale Sitze
iber Fldchen, die danach auf beliebige Dimension erweitert werden und am Ende in
dem beriihmten Sphérensatz gipfeln, eine seiner folgenreichsten wissenschaftlichen
Entdeckungen [4]:

Liegt die Schnittkriimmung einer einfach zusammenhdngenden und vollstdandi-
gen Riemannschen Mannigfaltigkeit zwischen % und 1 (Grenzen ausgeschlos-
sen), dann ist diese zu einer Sphdre homdoomorph.

Der Wert dieser Sitze liegt nicht allein in der Schonheit der Konstruktion, die viel-
leicht nur von einigen Mathematikern (,,echte Geometer*) so empfunden wird, son-
dern letztlich in dem Beitrag, den sie tiber ihren urspriinglichen Bereich hinaus fiir
das Verstindnis zentraler Teile der Mathematik leisten, hier fiir die Theorie der Man-
nigfaltigkeiten und das Verhiltnis von Geometrie und Topologie. Die geometrische
Intuition ist nicht Selbstzweck, sie wird in Dienst genommen zum Verstehen von
tief liegender Mathematik weit jenseits des anschaulich Vorstellbaren. Die Effekti-
vitit dieses Dienstes beschreibt Klingenberg am Ende seines Artikels [5] mit den
Worten: ,,Alle diese Sitze ... leiten ihren Ursprung, ihre Motivation und auch die
wesentlichen Ideen zu ihren Beweisen her aus jener Quelle, die ich nicht besser zu
umschreiben vermag als mit dem mir hier viel zu abstrakten Begriff: Geometrische
Intuition.*

Zum Sphirensatz® gab eine friihe Version von Harry Rauch (1951) mit nicht op-
timalen Kriimmungsschranken, ,,somewhat mysterious and very difficult to under-
stand** [1]. Die optimalen Kriimmungsschranken sind % und 1, denn projektive Riu-
me und Ebenen tiber den Divisionsalgebren C, H, O sind einfach zusammenhzngend,
aber nicht zu einer Sphire homdomorph, und ihre Schnittkriimmung liegt zwischen
}T und 1, wobei beide Grenzen angenommen werden. Klingenberg gelang ein ent-
scheidender Schritt zu den optimalen Schranken: Abstandsbille mit Radius 7 (die
Menge der Punkte, die mit einem Punkt p durch eine Kurve von Lénge < 7 verbun-
den werden konnen), sind wirklich topologische Bille, homéomorph (sogar diffeo-
morph) zum offenen Einheitsball im R”, wie auf der Sphire mit Kriimmung 1, wo
7 der sphérische Abstand von Pol zu Pol ist. Dies konnte Klingenberg 1958 [3] fiir
gerade Dimension und 1961 [4] fiir ungerade Dimension zeigen; der Beweis ist im
letzteren Fall ungleich schwieriger, die Behauptung wird sogar falsch ohne die untere
Kriimmungsschranke. Mit dieser Aussage und dem schon erwihnnten Satz von Alex-
androv und Toponogov zeigte Marcel Berger 1960, dass ein solcher Raum von zwei

3Zur Wirkungsgeschichte dieses Satzes und seiner erst kiirzlich bewiesenen differenzierbaren Version sie-
he den Artikel von Simon Brendle: Der Sphirensatz in der Riemannschen Geometrie, Jahresber. Dtsch.
Math.-Ver. 113 (2011), 123-138.
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topologischen Billen iiberdeckt wird und deshalb hom&omorph zu einer Sphire ist.*
Der Beweis galt zunichst nur fiir gerade Dimensionen; erst Klingenberg [4] konnte
ihn auch auf ungerade Dimensionen erweitern. Er hielt 1961 eine Gastvorlesung in
Bonn iiber seine Ergebnisse. Zwei seiner Horer, Detlef Gromoll und Wolfgang Mey-
er, arbeiteten diese Ideen aus und schufen damit ,,das* Lehrbuch iiber ,,Riemannsche
Geometrie im GroBen® [7]; selbst der Name des Gebietes war neu im Deutschen.
Generationen von Studierenden haben nach diesem Buch Riemannsche Geometrie
gelernt. Anfang der achziger Jahre gab Misha Gromov eine sehr einfache neue Be-
weisidee fiir den topologischen Sphirensatz: Kriimmung misst die lokale Konvexi-
tiat des Komplements von Abstandsbillen; je groBBer die Schnittkriimmung K, desto
,konvexer” die Ball-Komplemente. Wegen K < 1 bilden alle von einem Punkt aus-
gehenden Geoditen der Linge m gemeinsam einen immersierten Ball, wie auf der
stiarker gekriimmten Sphére mit Radius 1. Wegen K > % ist das Komplement die-
ses lokalen Abstandsballs lokal konvex wie auf der schwécher gekriimmten Sphére
vom Radius 2 (Kriimmung %), und wegen der strikten Ungleichung ist die Konvexi-
tat strikt. Weil sich strikt lokal konvexe Mengen bei K > 0 und Dimension > 3 auf
einen Punkt zusammenziehen lassen, wird der Raum von zwei am Rand diffeomorph
zusammengeklebten Billen iiberlagert, also von einer topologischen Sphire.’
Klingenberg liebte die Weite, nicht nur die mathematische, sondern auch die raum-
liche. Schon in den friihen fiinfziger Jahren bewarb er sich in Italien und verbrachte
u.a. ein halbes Jahr in Rom bei Francesco Severi und Beniamino Segre. Bei mehrfa-
chen Aufenthalten in den USA ab 1954 besuchte er Marston Morse in Princeton und
Shiing Shen Chern in Berkeley, 1963 folgte er einer Einladung nach Recife, Brasi-
lien. Nach Professuren in Gottingen und Mainz lehrte er ab 1966 an der Universitit
Bonn. Der dort gegriindete Sonderforschungsbereich 40 ,,Theoretische Mathematik*,
die Keimzelle des spéteren Max-Planck-Instituts, stellte die Mittel fiir ein umfang-
reiches auswirtiges Gésteprogramm zur Verfiigung. Aus aller Welt, von Amerika bis
Japan, kamen Mathematiker nach Bonn. Marcel Berger aus Paris und seine Studen-
ten waren ohnehin oft und gern gesehene Giste. Ich personlich habe erst wihrend
meines Bonner Diplom- und Promotionsstudiums Anfang der siebziger Jahre ein er-
triagliches Englisch gelernt, die einzige Sprache, in der man mit allen Gésten kom-
munizieren konnte. So etwas war damals hochst ungewohnlich; es gab kein zweites
mathematisches Institut in Deutschland mit einem vergleichbaren Programm. Die
japanischen Giste, von denen einige mit Wilhelm Klingenberg eng zusammenarbei-
teten, trugen auch zu seiner Ostasien-Begeisterung bei, die spéter durch seine Biicher
tiber seine Tibet-Wanderungen und die Sammlung chinesischer Bronzen ,,Wilhelm
und Christine Klingenberg® im Museum fiir Ostasiatische Kunst in Berlin-Dahlem
einem groflen Publikum bekannt wurde. Seine Tatigkeit in Bonn war allerdings nicht
frei von Spannungen: ,,The number of students, guests and staff grew, and some of
the intimate charm of a close-knit group went down the drain. Not without some pain
and struggle, I finally accepted the change and concentrated my activities on my own

M. Berger: Les variétés riemanniennes (1/4)-pincées, Annali della Scuola Normale Superiore di Pisa,
Classe di Scienze (3) 14 (1960), 161-170

SInvent. Math. 84 (1986), 507522



168 J.-H. Eschenburg

differential geometry group* [1]. Es gereicht Klingenberg und den anderen Betei-
ligten zur Ehre, dass sie diese Spannungen nur unter sich austrugen; das kollegiale
Verhiltnis zu anderen Mitgliedern des Instituts und die kollegiale Atmosphire am
ganzen Institut blieben davon weitgehend verschont.

Wihrend seines Aufenthaltes in Brasilien 1963 begann Klingenberg, sich mit ei-
nem neuen Thema zu beschiftigen: die Dynamik des geoditischen Flusses und insbe-
sondere die Existenz geschlossener geoditischer Linien; Ausgangspunkt waren Ar-
beiten von A.S. Svarc und S.I. Al’ber iiber die Existenz von periodischen Losungen in
der Variationsrechnung, vgl. [6]. Einerseits kann der geoditische Fluss als ein speziel-
les Hamiltonsches Vektorfeld angesehen werden [9, 10], und es gehort wohl zu Klin-
genbergs Verdiensten, die Fruchtbarkeit dieser Verbindung zwischen Geometrie und
Dynamik erkannt zu haben. Andererseits konnen geschlossene Geoditische als kriti-
sche Punkte des Energiefunktionals auf einem Raum geschlossener Wege betrachtet
und mit Methoden der Morse-Theorie gefunden werden [8, 11, 12]. Wihrend z. B.
in John Milnors Buch iiber Morse-Theorie (1963) der Wegeraum bei beschrinkter
Weglinge durch geoditische Polygone endlich-dimensional approximiert wird, fiihrt
Klingenberg [6] die unendlich-dimensionale Hilbert-Mannigfaltigkeit der geschlos-
senen H!-Kurven (geschlossene Wege mit quadratintegrierbarer Ableitung) ein, den
maximalen Definitionsbereich des Energiefunktionals. Auf diesem Raum wirkt die
Gruppe O (2) durch Transformation der Parameter-Kreislinie, und es lassen sich Me-
thoden der dquivarianten Morsetheorie auf das Energiefunktional auf diesem Raum
anwenden. In seinem Lehrbuch iiber Riemannsche Geometrie [13] hat Klingenberg
daher Riemannsche Mannigfaltigkeiten von Anfang an auf Hilbertriumen modelliert.
Seine Forschungen iiber geschlossene Geodétische gingen in zwei Richtungen: Exis-
tenz von kurzen und Anzahl von (beliebig langen) geschlossenen Geoditischen. Eins
der schonsten von ihm angeregten Resultate stammt von Detlef Gromoll und Wolf-
gang Meyer: Wenn die Folge der Bettizahlen des freien Schleifenraums einer kom-
pakten Mannigfaltigkeit M unbeschrinkt ist, gibt es fiir jede Riemannsche Metrik
auf M unendlich viele geschlossene Geoditische.® Klingenbergs Methoden wurden
vielfach aufgegriffen und spielen sowohl in der Differentialgeometrie (Riemannsche,
Finslersche und Lorentzsche Geometrie) als auch in der symplektischen Geometrie
(Hamiltonsche Fliisse) eine Rolle.

Bei seiner Emeritierung [14] sagte er zu seinen Arbeiten iiber geschlossene Geo-
ditische: ,,While I myself did not get the best results, I can pride myself with my
students who got many important theorems in this long neglected and difficult field.“
In der Tat hat sich ein betridchtlicher Teil seiner Doktoranden mit diesem Fragenkom-
plex beschiftigt, viele von ihnen duflerst erfolgreich.

Nach seiner Emeritierung {ibernahm Wilhelm Klingenberg ab 1990 eine Gastpro-
fessur an der Universitit Leipzig und beteiligte sich an der Neugestaltung des mathe-
matischen Fachbereiches nach der Wiedervereinigung. Am 4. Oktober 2001 verlieh
ihm die Fakultit fiir Mathematik und Informatik der Universitit Leipzig die Ehren-
doktorwiirde (s. Abb. 1)

oD, Gromoll, W. Meyer: Periodic geodesics on compact Riemannian manifolds, J. Diff. Geom. 3 (1969),
493-510.
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in Wiirdigung seines richtungsweisenden wissenschaftlichen Werkes auf den
Gebieten der Globalen Riemannschen Geometrie und der Theorie der Ge-
schlossenen Geoditischen sowie in Anerkennung seines besonderen Engage-
ments als Wissenschaftler und Hochschullehrer fiir die Mathematik in Leipzig.

Trotz dieser Tétigkeit blieb ihm geniigend Zeit fiir zahlreiche Reisen und Wan-

derungen, besonders durch das Land, das fiir ihn ,,ein Stiick Heimat* [16] geworden
war: Tibet. Einem seiner Reiseberichte [16] stellt er einige Verse aus dem ,,Cheru-
binischen Wandersmann® von Angelus Silesius (1657) voran, die mir wie ein Motto

seines ganzen bewegten Lebens erscheinen

7.

Freund, so du etwas bist

so bleib doch ja nicht stehn:
Man muss von einem Licht
fort in das andere gehn.
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1 Why Toric Varieties?

Toric varieties exist since the beginnings of algebraic
geometry: the standard ambient spaces of classical al-

e g gebraic geometry, the affine space C" and the complex

Henry K. Schenck

projective space IP,, are toric varieties. Moreover, many
of the very basic objects and constructions of algebraic
geometry like the Hirzebruch surfaces, the Veronese (d-
uple) embedding, the Segre embedding or blowing up
the origin of C" belong to toric geometry. However, it
took a while until the common principle behind these
objects and constructions got a name. The beginning was Demazure’s work [2] on
the Cremona group in the 1970s, where the concept of a toric variety and its close
relations to combinatorics firstly showed up. It became clear quite rapidly that toric
varieties allow a good and explicit understanding in terms of their describing com-
binatorial data, the so called fans. Meanwhile, toric varieties are established in al-
gebraic geometry as a valuable testing class and they provide a useful, sufficiently
flexible class of ambient spaces. The theory of toric varieties has many connections
to other areas, like polyhedra, combinatorics, commutative algebra and symplectic
geometry. Comparably important is the role of toric varieties in education: toric va-
rieties allow an elementary example-oriented access to various advanced topics of
algebraic geometry.
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2 Toric Geometry: A Micro Course
2.1 Algebraic Tori and Lattices

An n-dimensional algebraic torus is the n-fold product T" = C* x --- x C* of the
multiplicative group C*. Algebraic tori T" and their (algebraic) homomorphisms
T" — T™ are in correspondence with lattices Z" and their linear maps Z" — Z™;
here, lattice means free finitely generated Abelian group. For example, the one-
parameter subgroups C* — T" are in bijection with the linear maps Z — Z": such
a linear map is determined by the image v € Z" of 1 € Z and the corresponding one-
parameter subgroup can be written down explicitly as

Ayt CF = T", te (1.

The identification v <> A, enables us to view the lattice Z" associated to T" as the
lattice of one-parameter subgroups of T". In general, a homomorphism ¢ : T" — T™
of algebraic tori is nothing but a monomial map sending t € T" to (%1, ..., t%) € T™.
The corresponding linear map Z" — Z™ is given by the matrix A with the rows
ai, ..., ay which is, by the way, just the Jacobian J,(1) evaluated at the neutral
element 1 € T . What we have seen so far is, in more sophisticated words, a covariant
equivalence of the category of algebraic tori with the category of lattices.

2.2 Affine Toric Varieties and Polyhedral Cones

An affine variety is the solution set X € C" of a system of polynomial equations,
i.e. the locus V(f1,..., fs) of common zeros of some polynomials fi,..., fs inr
variables. Obviously, C" = V (0) is of this type. Two classical examples are the fol-
lowing quadrics, showing up in algebraic geometry as the “affine cones” over the
images of the simplest non-trivial Veronese and Segre embeddings:

X2:=V(nz22—23) €C’,  X3:=V(z1z2 —2324) SC*.

We say that an affine variety X C C" is foric if it allows an (algebraic) action of a
torus T" such that we can identify T" via the orbit map with some open dense orbit
T" - xo € X. For example, the two Veronese/Segre quadrics just mentioned are toric:

T? acts on X» byt -z= (tlzl, tl_ltzzzz, t2Z3),

T3 acts on X3byt-z= (tlzl, hz2, 1323, t1t2t3_1z4).

Here we find the acting tori T? and T3 embedded into X and X3 as the orbits through
the points x, = (1, 1) and x3 = (1, 1, 1) respectively. Observe that both examples are
defined by binomial equations—this is in fact a general feature: affine toric varieties
are solution sets of systems of binomial equations.

The bridge from affine toric varieties to convex polyhedral cones is given by one-
parameter subgroups. Let us look first at the example X;. Take the one-parameter
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subgroups A,: C* — T2, ¢+ (', "2) and ask for those admitting a limit in the
sense that (¢!, 1V2) = A, () - xo converges when ¢ goes to zero. We obtain

ling)kv(t) - X7 exists <— v1>0, 2vy—v; >0.
t—

The linear inequalities on the right hand side describe a (rational convex) polyhedral
cone o (X3) € Q2. The assignment X — o (X) works without changes in general,
and we call o (X) € Q" the cone of convergent one-parameter subgroups. As one
wants to keep the lattice Z" in mind, one also refers to o (X) as a lattice cone.

o(X2) o(X3)

Using a little algebraic geometry, one can almost reconstruct X from its cone o € Q"
of convergent one parameter subgroups: take the dual cone 0¥ C Q", consider its
additive monoid of integral points § := o¥ N Z" and pass to the monoid algebra
C[S]. Then the spectrum X (o) := Spec C[S] is the normalization of X. If we require
X to be normal, i.e. have not too bad singularities, then X = X (o) holds.

As before let us formulate a sophisticated summary for the observations just made:
the assignments X — o (X) and o — X (o) define essentially inverse covariant func-
tors between the categories of normal affine toric varieties and polyhedral lattice
cones. This correspondence enables toric geometers, for example, to read off im-
mediately properties of the singularities of the Veronese/Segre quadrics X, and X3
from the shape of their cones o (X3) and o (X3).

2.3 Toric Varieties and Fans

An algebraic variety is a space obtained by gluing (finitely many) affine varieties.
A basic non-affine example is the projective plane P». The points of P, are the lines
in C3; in this context one denotes the line through the origin 0 and a point 0 # z € C3
by [z]. The projective plane P, comes with a natural action of the torus T?, given by

t-[z] :==1[z0, 121, 222].

Observe that the torus T? is embedded into P; as the open dense orbit T .[1,1,1].
Thus P, is an example of a foric variety. Let us take a look at one parameter sub-
groups Ay : C — T2, The possible limits of A, (¢) - [1, 1, 1] for t — 0 are of the form

ling)[l, Y, t”z] =[&1, &2,€3], whereg; € {0, 1} but not all zero

t—

and, of course, depend on v. For example vy, vy > 0 gives the limit [1, 0, 0], or v =
vy < 0 gives the limit [0, 1, 1]. Drawing all these possibilities into a plane figure, we
arrive at the following.
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[1,1,0]

[1,0,0]

[0,1,0]
(1,0, 1]

[0,0,1]

(0,1, 1]

This is the lattice fan ¥ describing the toric variety P; as we see, X is a (finite)
collection of lattice cones fitting nicely together. We can directly recover information
on P> from X. For example, the three big lattice cones stand for the three usual affine
charts of P;, each of them isomorphic to C2. In this sense, the fan manages the gluing
procedure and relieves us from—the sometimes cumbersome—taking care about the
transition maps.

The picture just observed extends to the general case. If X is any toric variety,
i.e. comes with a T"-action embedding T" as an open dense orbit T" - x¢, then
a basic result on torus actions ensures that we obtain only finitely many points
lim;_,0 Ay (f) - xo when varying v. If X is normal, then grabbing together the v with
common limits gives rise to a collection of polyhedral cones forming a lattice fan
¥ (X) which now lives in Q", the rational vector space associated to the lattice Z"
of one parameter subgroups of T". From the differential point of view, the fan X (X)
is sort of a linear approximation of X: its cones store the tangent vectors of the one-
parameter subgroups sharing a given limit.

As in the affine case, we can also go the other way round. Given a fan ¥ we obtain
for each of its cones o a normal affine toric variety X (o). The compatibility of the
cones o € X ensures that we may glue the X (o) together to a variety. Again, if X
was the fan of convergent one parameter subgroups of a normal toric variety X, then
this procedure reconstructs X.

The routine sophisticated summary this time says that the assignments X +— % (X)
and ¥ — X (X) define covariant essentially inverse functors between the categories
of normal toric varieties and lattice fans. Toric geometry bases on this observation
and now takes up its job: the big dictionary between algebraic geometry and combi-
natorics.

3 Cox, Little, Schenck: Toric Varieties

The attractive interplay between algebraic geometry and combinatorics, the rich con-
nections to other areas as well as the new, elementary access to advanced questions
in algebraic geometry made toric geometry popular. The number of textbooks, how-
ever, does not entirely reflect the recent parts of this development. The great classical
texts by Danilov [1], Oda [4] and Fulton [3] provide an excellent base for the re-
searcher. The modern book by Cox, Little, Schenck requires by far less background
on algebraic geometry and thus opens in addition the subject to a greater readership.
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The first part of the book starts with a reader-friendly, thorough and detailed in-
troduction to the basic constructions of toric geometry. The toric versions of fun-
damental topics of algebraic geometry follow: divisors and line bundles, projective
and proper morphisms, canonical divisors and sheaf cohomology. Also among this,
we find a chapter on (multi-)homogeneous coordinates. Meanwhile a standard instru-
ment in toric geometry, homogeneous coordinates currently also serve to export toric
techniques to larger classes of varieties.

The second part of the book starts with toric surfaces and the beautiful links to
other subjects as continued fractions, the McKay correspondence and the appearance
of the number twelve in counting integral points of lattice polygons. A chapter on
toric resolutions of (e.g.) singularities follows; this is another topic where toric ge-
ometry plays an important role in the general context by providing ideas as well as
ambient constructions. The topology of toric varieties fills a chapter, starting with
basic subjects like the fundamental group and ending with the Chow ring and in-
tersection cohomology. A subsequent advanced chapter treats the toric Hirzebruch-
Riemann-Roch Theorem with its famous applications to convex polytopes. The last
two chapters concern toric geometric invariant theory and its link to birational geom-
etry; also here, the toric case perfectly illustrates how combinatorial principles show
up in this context.

Besides presenting a very convincing choice of topics in a nice, reader-friendly
style, the authors successfully manage to combine the advantages of an introductory
text with those of a rich source for experts. Moreover, the book offers an enormous
amount of very nice illustrative examples and highest quality exercises. Altogether,
the book is highly recommendable to everybody: to those who want to get in touch
with this beautiful area of Mathematics as well as to those who are already enthusi-
astic about it.
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A result describing the fundamental group of a
union of two connected subcomplexes of a sim-
plicial complex goes back at least to Seifert [14],
in the case when the intersection is connected.

This is an early result on the fundamental group
Nonabelian . . .
Algebraic Topology of the union of two spaces. For Seifert, this result
was a technical tool for describing the fundamen-
tal groups of 3-manifolds he constructed in vari-
ous ways, in particular in terms of a Heegard de-
composition. In modern language, Seifert’s result
yields the fundamental group under discussion in
terms of a pushout diagram of groups. Given an
algebraic curve in the complex projective plane,
using purely algebro-geometric methods, Zariski wrote down a presentation of the
fundamental group of the complement and suggested to van Kampen to confirm the
correctness of the presentation by purely topological methods, which he did in [17].
Thereafter van Kampen established a general theorem on the fundamental group of
certain pathwise connected topological spaces [16]. This result underlies the con-
tents of his previous paper; it is essentially the same as that established by Seifert for
simplicial complexes.

The problem with the connectivity assumption of the intersection prevented the
use of the theorem for deducing the result that the fundamental group of the circle
is free cyclic. In [1], R. Brown could then overcome this obstacle by generalizing
the statement of the theorem from the fundamental group on one base point to the
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fundamental groupoid on a system of base points chosen freely according to a given
geometric situation, a key observation being that the notion of pushout diagram makes
perfect sense for groupoids. The fundamental group of the circle drops out almost
immediately.

In the 1920s, the definition of groupoid arose from Brandt’s attempts to extend
from the binary to the quaternary case Gauss’s work on composition laws of quadratic
forms. Groupoids appear in Reidemeister’s book on topology [12] for handling the
change of generators of the (combinatorially defined) fundamental group of a closed
surface induced by the change of normal form of the surface, and for handling iso-
morphisms of a family of structures.

The book under review gives a newly organised exposition of work done over
many years (since 1965), mainly of the first two authors. This subsumes some tradi-
tional algebraic topology and includes generalizations to higher dimensions of purely
topological theorems of the type described above; such theorems are referred to in the
book as Seifert-Van Kampen theorems.

The book deals with its topics in a thorough yet readable manner. It also touches
on various foundational issues related to the perception and implementation of geo-
metrical ideas, one such issue being the successful usage of the groupoid concept, as
opposed to the mere notion of abstract group that is considered so central a concept
of mathematics.

How do we encounter situations in mathematical nature that call for generalization
of the Seifert-van Kampen theorem, what does such a generalization possibly look
like and what might it signify?

Apart from the above situation where the usage of groupoids yields the solution,
here are a few other such situations: Trying to unveil the structure of a second relative
homotopy group, Whitehead isolated the notion of crossed module and in particular
that of free crossed module [18, 19]. This structure was developed independently by
Reidemeister and his student Peiffer [11]—the manuscript was submitted for publi-
cation in June 1944. Reidemeister and Peiffer explored identities among relations of
a group presentation and thereby discovered free crossed modules. One of their aims
was to develop normal forms for 3-manifolds. In a personal letter sent to me from
R. Peiffer in the late 1970s I learnt that Reidemeister, as one of the founders of knot
theory, was well aware of the apparent relations between the identities for crossed
modules and those for knots and links. Crossed modules are typically nonabelian. For
intelligibility, we recall that a crossed module 9: C — G consists of two G-groups
C and G where G is considered as a G-group via conjugation and a morphism 9 of
G-groups, subject to the rule

aba '=%peC, a,beC. 1)

Any element of C of the kind aba='(?*b)~! or the inverse of such an element is
referred to in the literature as a Peiffer element.

Structural insight into the Cayley graph of a presentation of a group and its cousin,
the geometric realization of the presentation, can be obtained in terms of the associ-
ated free crossed module. This yields, e.g., a description of the structure of the normal
closure N of the relators R in the free group F on the generators as an F-group, rel-
ative to conjugation: The non-trivial identities among relations, that is, the identities
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modulo Peiffer identities (identities of the kind (1) above, independently of the par-
ticular presentation), yield the “correct” relations for N as an F-group generated by
R. There are no non-trivial identities in this sense if and only if the second absolute
homotopy group of the geometric realization is zero and hence N the free crossed F -
module generated by R. A search in the MR database exhibits at present more than
50 papers that deal with “Peiffer commutators”, “Peiffer elements” and the like.

The method of diagrams has become a standard tool in combinatorial group theory
to explore a Cayley graph; an exposition of this theory, with a special emphasis on
identities among relations, can be found in [2]. This concept goes back at least to [15];
a version thereof appears in [11] under the name Randwegaggregat. Such a diagram
represents an element of the associated free crossed module in a geometric manner.

Schreier’s approach to the extension problem for, in general, nonabelian groups,
published in 1926, was reworked, clarified and completely settled by Eilenberg and
Mac Lane [5]; indeed that extension problem was among the impetuses to the devel-
opment of group cohomology. A key observation of Eilenberg and Mac Lane was to
the effect that, given a discrete group G and a G-module A, the elements of H3 (G, A)
correspond to classes of “abstract kernels”. Quoting from the historical note by S.
Mac Lane, appended to [7], “Eilenberg, Mac Lane and Whitehead all knew that the
elements of H3(G, A) were closely connected with Whitehead’s ‘crossed modules’,
but they missed the exact theorem, that there is a natural bijection from H3(G, A) to
equivalence classes of four term crossed sequences starting at A and ending at G”.
The history of what Mac Lane refers to as an “exact theorem”, isolated only in the
late 1970s, is described in that note in detail.

In [3], Brown and Higgins proved a Seifert-van Kampen theorem in dimension 2.
Roughly speaking, the theorem says that, given a pair (X, A) of spaces and, fur-
thermore, subspaces of X whose interiors cover X, under suitable connectivity as-
sumptions, the resulting square of crossed modules is a pushout diagram. This im-
plies Whitehead’s result on free crossed modules as well as the corresponding re-
sult of Reidemeister-Peiffer. The proof uses generalized groupoid techniques (double
groupoids etc.) in an essential way. Also the proof does not assume the existence of
pushouts of crossed modules; instead it verifies directly the required universal prop-
erty for this case, so that the requisite pushout exists. This is an instance of what was
meant above by “various foundational issues”.

The idea of szyzygy, applied to crossed modules, leads in an obvious manner to the
more general notion of crossed complex. The classification problem of homotopy 7-
types was raised by J.H.C. Whitehead [19]. Crossed complexes were used implicitly
by Eilenberg-Mac Lane to determine the n-type (old terminology: (n + 1)-type) of
an n-complex with non-trivial fundamental group 7 and higher homotopy groups
mj zero for 2 < j < n (empty assumption when n = 2) [6]; the requisite additional
invariant developed by Eilenberg-Mac Lane is the k-invariant in H" (7, Tntl),
identified in 1951 by Postnikov as the first of an entire family of invariants which,
together with the homotopy groups, completely characterize the homotopy type of
a CW complex. Crossed complexes yield an interpretation of group cohomology in
arbitrary dimension; again the history thereof is described in Mac Lane’s historical
note in detail. In this interpretation, it is the crossed complex itself which represents
the k-invariant [8].
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We already pointed out that the successful cure to what might be considered an
anomaly prompted the development of what the book is about: a systematic approach
from the abstract topology point of view whose aim is to generalize to all dimensions
the notion of fundamental group, including relaxing the connectivity assumption in
dimension zero. The generalization proceeds in various ways and involves, among
other items, filtered spaces, crossed complexes, w-groupoids, cubical sets, etc. The
idea of a filtered space arises somewhat naturally out of generalizing the idea of fun-
damental groupoid on a system of base points chosen freely according to a given
geometric situation. A filtered space can be seen as an instance of a structured space
in the sense of Sect. 5 of Grothendieck’s Esquisse d’un programme, published in [13].
The idea of structured space was developed further in the work of R. Brown with Lo-
day which involves n-cubes of spaces [4]; this links with classical work in homotopy
theory on the homotopy groups of n-ads.

In Part I (Chapters 1-6), the book covers all the items mentioned so far (except the
algebro-geometric origin of van Kampen’s result). In particular, the 2-dimensional
Seifert-van Kampen theorem is given as Theorem 2.3.1. Part II of the book (Chap-
ters 7—-12) introduces and explores a higher homotopy Seifert-van Kampen theorem.
This theorem includes the 1- and 2-dimensional theorems so far explained and, in a
sense, generalizes them to arbitrary dimension. The method of proof is analogous to
the 2-dimensional theorem but technically more complicated and deferred to Part III
(Chapters 13-16).

The higher homotopy Seifert-van Kampen theorem (Theorem 8.1.5, p. 262) is
phrased as the statement that a certain diagram is the coequalizer in the category
of crossed complexes. This theorem gives a mode of calculation of the fundamental
crossed complex functor 7 from filtered topological spaces to crossed complexes.
This functor is defined homotopically, that is, in terms of suitably defined homo-
topy classes of certain maps. A consequence of the definition is that IT preserves
coproducts; this is one of the advantages of the groupoid approach. More subtle is the
application to gluing spaces, and the authors approach this concept, as for the 1- and
2-dimensional version of the theorem, through the notion of coequalizer; here again,
a connectivity condition in all dimensions is needed.

The authors then show how the higher homotopy Seifert-van Kampen theorem
gives some computations of homotopy groups of pairs of spaces and, as a conse-
quence, some classical results such as the suspension theorem, the Brouwer degree
theorem, and the relative Hurewicz theorem. These are basic theorems in homotopy
theory but are obtained here without homology theory machinery. At the present
stage, the authors’ concern with foundational issues shows up clearly: A major as-
pect of the book is to tie in the fundamental group and higher homotopy groups
without passing to the universal covering space, as is done in the more conventional
approach. It is also unclear how to obtain the 1- and 2-dimensional versions of the
Seifert-van Kampen theorem by covering space methods. The applications culminate
in a homotopy classification theorem (Theorem 11.4.19, p. 391). To describe it, let X
denote a CW complex, C a crossed complex, I71X, the crossed complex associated
with X, and BC the cubical classifying space C. The classification theorem employs
the cubical theory in an essential way to give, in terms of crossed complexes, a de-
scription of the weak homotopy type of the mapping space (BC)X . This description,
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in turn, entails a bijection from the homotopy classes [I1 X, C] of crossed complex
morphisms to the homotopy classes [X, BC] of ordinary maps of spaces. Thereafter
applications to nonabelian cohomology, using fibrations, i.e. model category kind of
structures and arguments, are worked out.

In Part III the topics covered, including w-groupoids, cubical sets, connections
and compositions in cubical sets, etc., are motivated by the need to develop the req-
uisite technology so that the authors can eventually craft a proof of the higher ho-
motopy Seifert-van Kampen theorem and develop the key monoidal closed structures
required for the homotopy classification theorem. Working through this technology
may be seen as a challenge looming over the reader. But, amice lector, if you find
this rather special, keep in mind that the authors need, e.g., an algebra of cubes which
enables them to handle composition in all directions, and the underlying nonabelian
algebra is still in the process of intense development, comparable, perhaps, to the
early stage of what are now standard algebraic topology or algebraic geometry no-
tions.

Groupoids nowadays play a significant role in various areas distinct from topology,
e.g., in the Lie theory of symplectic groupoids and in the related issue of quantization,
in differential Galois theory as what is known as Malgrange groupoid, in algebraic
geometry, see below, etc. Crossed modules and notions related to them arise under
various circumstances where, at first, one would not expect to see them. One such
situation is the positive answer to a question posed by Atiyah whether there is a
finite-dimensional construction of the Chern-Simons function in dimension 3; the
answer in [9] involves identities among relations in an essential way. There is an
intimate relation between braids and crossed modules; this relation is already present
in Whitehead’s original proof of the freeness of the crossed module discussed earlier.
Recently I have reworked and somewhat extended that relationship [10]. Crossed
modules show up in the theory of gerbes and in string theory. There are so many
names attached to this activity that I prefer not to mention any of them. What is
known as the Teichmiiller cocycle in Galois theory admits its natural interpretation in
terms of crossed modules. Lie crossed modules are nowadays studied in differential
geometry.

In classical algebraic geometry, points are characterized in terms of functions, a
point being an algebra map from a coordinate ring to the base field. In topology points
belong to a space which is usually a continuum, and ordinary commutative algebra,
so well suited to algebraic geometry, is not strong enough to recover the nonabelian
phenomena that are attacked in the book. Nonabelian phenomena play as well a ma-
jor role in algebraic geometry (Brauer-Severi varieties, Teichmiiller groupoid, etc.,
to list a few instances). It may well be that, in the future, the ideas presented in the
book contribute to some of the many open questions in these areas. Van Kampen is
well known in algebraic geometry circles for his result on the fundamental group of
the complement of a plane curve but hardly any algebraic geometer is aware of the
more general topological result that underlies it and was proved two years earlier by
Seifert. Likewise hardly any topologist knows that a special case of the Seifert-van
Kampen theorem established, at the time, an important result in algebraic geome-
try. In this sense, the book will, perhaps, also contribute to the unity of mathemat-
ics.
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Die mathematische Stromungsmechanik gehort zwei-

felsohne zu den wichtigsten Triebfedern der weit ge-
Nonlinear Water Waves

with Applications 1o facherten Entwicklung der neueren Angewandten Ma-

Wave-Current Interactions thematik. Zentrale Gebiete der Analysis, wie die Theo-
and Tsunamis

rie der partiellen Differentialgleichungen, die Funktio-
nalanalysis, die harmonische Analysis, die Theorie der
dynamischen Systeme, die topologische Abbildungs-
gradtheorie und die unendlich-dimensionale Differenti-
algeometrie wurden und werden durch das Wechselspiel
zwischen Theorie und stromungsmechanischen Anwen-
dungen befruchtet. In ganz besonderem Mafle gilt dies
fiir Untersuchungen zum klassischen Wasserwellenpro-
blem. Das vorliegende Buch von Adrian Constantin bietet eine Einfiihrung in aktuelle
Entwicklungen auf dem Gebiet der Analysis zur Theorie nichtlinearer Wasserwel-
len. Es ist die ausgearbeitete Version der Vortragsreihe, die der Autor anléBlich der
NSF-CBMS Konferenz Nonlinear Water Waves with Applications to Wave-Current
Interactions and Tsunamis an der Texas-Pan America University, Edinburgh, Texas,
im Mai 2010 gehalten hat.

Dem Autor gelingt es in beeindruckender Weise, wichtige neuere Entwicklungen
auf diesem Gebiet in umfassender Weise aufzuarbeiten. Dabei scheut er sich nicht,
sowohl in der Modellierung als auch in der mathematischen Analyse soweit auszu-
holen, um ein gehaltvolles und in sich stimmiges Werk schaffen zu kénnen.

Zum Inhalt: Das Buch ist neben der Einleitung in sechs Kapitel gegliedert. Das
zweite Kapitel fiihrt in die wesentliche stromungsmechanische Modellierung ein. Es

J. Escher (X))
Hannover, Deutschland
e-mail: escher@ifam.uni-hannover.de
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werden zunichst die Eulerschen Gleichungen samt dynamischer und kinematischer
Randbedingungen hergeleitet. Mit besonders viel Sorgfalt behandelt der Autor da-
nach die Vortizitit und die Helmholtzschen Sétze iiber die Wirbelverteilung in ei-
ner Stromung. Es werden hier die Grundlagen gelegt, die es dem Autor im weiteren
Verlauf der Abhandlung erlauben, die in der Literatur oft verwendete Annahme der
Wirbelfreiheit zu diskutieren und zu beurteilen.

Im darauf folgenden Kapitel werden zentrale Resultate aus aktuellen Studien zu
zweidimensionalen symmetrischen Wanderwellen (engl. travelling waves) mit all-
gemeiner Wirbelverteilung besprochen. Es wird zunichst eine Stromfunktion einge-
fiihrt und dann das klassische Wasserwellenproblem als nichtlineares freies Rand-
wertproblem fiir die Stromfunktion formuliert. Mit Hilfe lokaler und globaler Bifur-
kationstheorie wird die Existenz von Losungen dieses Problems bewiesen, wobei be-
sonderes Augenmerk darauf gelegt wird, die Amplituden der Losungen a priori nicht
zu beschrinken, sondern auch Losungen mit grolen Amplituden zu konstruieren. Da-
zu ist anzumerken, dass lineare Theorien zur Beschreibung von Wellen mit grofen
Amplituden eine zu weit gehende Vereinfachung darstellen, da die entsprechenden
Ergebnisse weder einer experimentellen noch einer numerischen Validierung stand-
halten. Aus diesem Grund bezeichnet man die Beschreibung von Wellen mit grofen
Amplituden auch als nichtlineare Wellentheorie. Neben der Existenz von Wellen mit
groBen Amplituden werden auch qualitative a-priori—Eigenschaften solcher Wellen
studiert. Dazu gehoren Symmetrie- und Regularititseigenschaften sowie die Druck-
verteilung unterhalb einer Welle. Im Appendix zu diesem Kapitel werden die zuvor
verwendeten mathematischen Werkzeuge zusammengestellt: der lokale Bifurkations-
satz von Crandall-Rabinowitz, der Leray-Schaudersche Abbildungsgrad und globale
Bifurkation, analytische globale Bifurkation, Existenztheorie und Maximumsprinzi-
pien fiir nichtlineare elliptische Randwertprobleme in zwei Raumdimensionen.

In Kapitel 4 werden Aspekte der Kinematik von Stokesschen Wellen beleuchtet.
Mit Hilfe Lagrangescher Koordinaten werden qualitative Eigenschaften von Parti-
kelbahnen untersucht. Auch hier legt der Autor grolen Wert darauf, die Ergebnisse
der klassischen linearen Theorie den neueren Erkenntnissen iiber nichtlineare Wellen
gegeniiberzustellen und einzuordnen. Im Appendix zu diesem Kapitel wird die Gers-
tensche Welle aus dem Jahr 1802 vorgestellt. Es handelt sich dabei um die bis heute
einzige bekannte explizite Losung eines Wellenzuges mit nicht-konstanter Oberfli-
che.

Im folgenden Kapitel werden Soliton-Losungen des klassischen Wasserwellen-
problems behandelt. Hierbei handelt es sich um zweidimensionale Wellen mit einem
lokalisierten Profil, welche sich mit konstanter Geschwindigkeit und ohne Form-
dnderung des Profils fortpflanzen. Im Text werden Partikelbahnen und Druckver-
teilung unterhalb eines Solitons untersucht. Im ausfiihrlichen Appendix zu diesem
fiinften Kapitel stellt der Autor am Beispiel der Korteweg-de Vriesschen Gleichung
(KdV) in kompetenter Weise die mannigfaltigen mathematischen Aspekte integrabler
Systeme zusammen. Nach allgemeinen Betrachtungen zu Hamiltonschen Systemen
wird die bi-Hamiltonsche Struktur der KdV-Gleichung dargelegt. Anschliessend wer-
den die direkte und inverse Streutheorie fiir die KdV-Gleichung ausfiihrlich erortert.
SchlieBlich ist wohlbekannt, dass Soliton-Losungen der rdumlich periodischen KdV-
Gleichung durch die Weiersta3sche gp-Funktion ausgedriickt werden konnen. Damit
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stehen Methoden der algebraischen Geometrie zur Verfiigung, um die periodische
KdV-Gleichung zu untersuchen. Ausfiihrungen zu diesem Zugang beschlieBen das
Kapitel 5.

Die KdV-Gleichung ist auf sehr grolen Phasenrdumen global wohlgestellt. Dies
bedeutet, dass die Losungen der KdV-Gleichung keine Singularititen entwickeln,
selbst wenn die Anfangswerte wenig rdumliche Regularitit aufweisen (z.B. nicht
stetig sind) und keinen Kleinheitsbedingungen unterliegen. Andererseits erwartet
man von einem Wasserwellenmodell, dass neben zeitlich global existierenden Wellen
(z.B. Solitonen) auch Losungen beobachtet werden konnen, die in endlicher Zeit ei-
ne Singularitdt in Form einer Wellenbrechung aufweisen. Vor diesem Hintergrund ist
FRS (Fellow of the Royal Society) G.B. Withams Forderung zu verstehen, wenn er
schreibt: Although both breaking and peaking, as well as criteria for the occurrence
of each, are without doubt contained in the equations of the exact potential theory,
it is intriguing to know what kind of simpler mathematical equation could include
all these phenomena." In Kapitel 6 widmet sich der Autor dem Phinomen der Wel-
lenbrechung. Es wird die so genannte Johnson-Gleichung hergeleitet, die die KdV-
und die Camassa-Holm-Gleichung verallgemeinert, und es wird gezeigt, dass diese
Gleichung klassische Losungen besitzt, die in endlicher Zeit Singularititen in Form
von Wellenbrechungen hervorbringen.

Im letzten Kapitel werden Aspekte der Modellierung von Tsunami-Wellen bespro-
chen. Dazu unterscheidet der Autor die drei Bereiche Wellenentstehung, Wellenaus-
breitung auf offener See und Wellenbrechung in Kiistenbereichen. Das Hauptaugen-
merk wird dann auf die Wellenausbreitung gelegt. Es wird verdeutlicht, dass Tsuna-
mis auf offener See (iiber einem als nahezu flach angenommenen Meeresboden) mit
Hilfe linearer Flachwasserwellentheorie beschrieben werden konnen. Aulerdem wird
anhand der verfiigbaren Messdaten argumentiert, dass weder der Tsunami von 2004
im Indischen Ozean noch der Tsunami von 1960 im Pazifischen Ozean vor Chile auf
offener See als Solitonen betrachtet werden konnen: die Messdaten schlieen eine da-
zu notwendige Balance zwischen Dispersion und nichtlinearer Solitoneninteraktion
aus.

Insgesamt hat der Autor ein gehaltvolles Werk vorgelegt und den aktuellen Stand
der Theorie nichtlinearer Wasserwellen und ihre Anwendungen eindrucksvoll do-
kumentiert. Meines Erachtens stellt das Buch somit eine unverzichtbare Quelle dar,
wenn man sich ernsthaft mit diesem Bereich der mathematischen Stromungsmecha-
nik befassen will.

1G.B. Witham, Linear and Nonlinear Waves, J. Wiley and Sons, New York, 1980.
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