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Am 3. Juni 2010, neun Tage vor seinem 73. Geburtstag, verstarb in Paris Vladimir
Igorevich Arnold. Begraben wurde er in Moskau, der Stadt, in der er die meiste Zeit
gelebt und gearbeitet hat; seit 1993 war er allerdings zugleich auch an der Dauphine
in Paris tätig. Lassen sich – nicht zuletzt bedingt durch Reisebeschränkungen seitens
der sowjetischen Behörden – die Aufenthaltsorte Arnolds relativ genau eingrenzen,
so gelingt dieses hinsichtlich seines Schaffens und seiner Wirksamkeit nun überhaupt
nicht. Zwar konzentrieren sich Leonid Polterovich und Inna Scherbak – langjährige
Teilnehmer an Arnolds Seminaren – im vorliegenden Nachruf auf Hamiltonsche Dy-
namik, symplektische Topologie und Singularitätentheorie, beigetragen hat er aber in
mehr als 20 Büchern (die teilweise in mehreren Auflagen erschienen und in verschie-
dene Sprachen übersetzt wurden) und mehr als 300 Arbeiten zu zahlreichen Gebie-
ten der Mathematik von der Algebraischen Geometrie über Differentialgleichungen,
globale Analysis, Hydromechanik und statistische Mechanik hin zur Zahlentheorie,
um nur einige zu nennen. Den größten Anteil an Arnolds Bekanntheit haben viel-
leicht seine Durchbrüche in der KAM-Theorie, einem grundlegenden Resultat aus
der Theorie Hamiltonscher Systeme zur Existenz quasiperiodischer Lösungen, das
nach Kolmogorov, ihm selbst und Moser benannt ist. Im Nachruf findet sich auch
eine lange Liste der Arnold zuerkannten Preise, eine Nominierung für die Fields-
medaille 1974 wurde offenbar nach Intervention der Sowjetunion nicht weiter ver-
folgt.

Die Buchbesprechungen diskutieren Neuerscheinungen zu der zeitabhängigen von
Kármánschen Differentialgleichung für dünne elastische Platten sowie aus dem Be-
reich der mathematischen Statistik und hier insbesondere zur Fehleranalyse statisti-
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scher Schätzverfahren. Schließlich wird ein Buch zum Wechselspiel zwischen zel-
lulären Automaten, Gruppen- und Ringtheorie vorgestellt, grundlegende Konzepte
gehen hier auf das Werk John von Neumanns zurück.
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Abstract This article is devoted to V.I. Arnold, a famous mathematician who passed
away in June 2010. We discuss life and times of Arnold, and review some of his
seminal contributions to symplectic geometry and singularities theory which were
among Arnold’s favorite subjects.

Keywords Symplectic manifold · Lagrangian submanifold · Hamiltonian system ·
Isolated singularity · Reflection group
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1 Life and Times of V.I. Arnold

Those who know the material will not learn anything new, and those who do
not know it will not understand anything.

V.I. Arnold about a badly written introduction

Vladimir Igorevich Arnold was born on June 12, 1937, in Odessa, USSR (now
Ukraine), where his mother’s family was living at that time. The family name, Arnold,
apparently, comes from an 18th Century Prussian army officer who fled to Russia
after killing his friend in a duel.

Arnold considered himself as a fourth-generation mathematician. His paternal
great-grandfather was S.B. Zhitkov, who wrote a textbook on mathematics although
he worked in a bank. His grandfather, V.F. Arnold, was a mathematical economist. His
father, I.V. Arnold, was first a student and later a professor at the Moscow Lomonosov
University. One of his students was a famous Russian nuclear physicist, dissident and
human rights activist Andrei D. Sakharov who highly appreciated him as a teacher.
I.V. Arnold passed away when Vladimir was eleven.

Vladimir I. Arnold grew up in Moscow in an intellectual atmosphere. Among
his family’s close friends and relatives where mathematicians, physicists, chemists
and biologists. He recalled [20] “Probably the main result of my frequent childhood
conversations with various outstanding scholars was a sense of the deep unity of all
the sciences. . . ”

Early on in his life, Vladimir took part in the activities of the Children’s Scientific
Society organized by “the father of Soviet cybernetics”, A.A. Lyapunov, for the chil-
dren of his friends. The weekly meetings of the Society, held at Lyapunov’s place,
were devoted to diverse subjects. The first talk the young Arnold ever presented was
on wave interference. He was ten years old at the time. Arnold recollected [20] that
among the young members of the society there were future members of the Soviet
Academy of Sciences and a prominent cardiologist.

The participants also were fond of cross-country skiing. It became Arnold’s fa-
vorite winter sport which he enjoyed his entire life. “When I get stuck with a problem
I put on my cross-country skis, and when I get back after 30 or 50 kilometers of
skiing, I have a new idea. If the idea does not work, I use the same method again”.
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Arnold first experienced “a joy of discovery” in 1949 when his “first genuine math
teacher”, an elementary school teacher I.V. Morozkin, posed a problem about two el-
derly ladies walking towards each other.1 The 12 years old boy thought about this
problem all the day, and then “suddenly the solution came as a revelation”. “It was
the desire to experience this joy of discovery again and again that made me a mathe-
matician”, Arnold told.

In 1954 he was admitted to the Moscow Lomonosov State University, despite the
fact that his mother was Jewish, and that his maternal grandfather A.S. Isakovich was
arrested in 1938. Arnold explained his admission by a combination of two factors:
Stalin’s death and the personal intervention of I.G. Petrovsky, a prominent mathe-
matician, who at that time became a rector of the University.

Those were the “golden years” of the Mechmat (Department of Mechanics and
Mathematics at Moscow University). Famous professors such as P.S. Aleksan-
drov, I.M. Gelfand, L.A. Lusternik, A.Ya. Khinchin, A.N. Kolmogorov, I.G. Petro-
vsky, L.S. Pontryagin were teaching exceptional students such as V.M. Alexeev,
D.V. Anosov, V.I. Arnold, A.A. Kirillov, Yu.I. Manin, S.P. Novikov, Ya.G. Sinai.

Arnold became a student of A.N. Kolmogorov whom he admired all his life. As the
first project, Kolmogorov suggested Arnold to work on Hilbert’s thirteenth problem.
Vladimir solved it in 1957 by using earlier results of Kolmogorov. He showed that
any continuous function of several variables can be represented as a composition of
a finite number of functions of two variables. This work became the subject of his
Ph.D. (Candidate of Sciences) thesis which was defended in 1961. Two years before
that he was awarded his M.Sc. degree for a thesis “On mappings of a circle to itself”.
In 1963 Arnold became a Doctor of Sciences (an analogue of Habilitation) for his
seminal work on small denominators and stability problems in classical and celestial
mechanics.

In 1961, Arnold became a Mechmat faculty member, and in 1965 he was pro-
moted to Full Professor. In 1986 he moved to the Steklov Institute of Mathematics
in Moscow (still keeping ties to the Mechmat until 1994). He worked there until his
death in June 2010. From 1993 to 2005 he also held the position of Professor at
Université Paris-Dauphine, spending Spring semesters in Paris and Falls in Moscow.

Arnold spent 1965 in Paris as a postdoctorate at the Sorbonne. At the request
of his supervisor, J. Leray, Arnold delivered a one-semester course on dynamical
systems. The audience included many renowned mathematicians (Cartan, Douady,
Fréchet, Godement, Leray, Schwarz, Serre, Thom). One of the participants, Andre
Avez, recorded the lectures and then published them as a book [22]. That year, Arnold
also attended Thom’s seminar on singularities at the IHES. He later admitted, “The
meeting with R. Thom has greatly changed my mathematical world”. “I learned sin-
gularity theory during my four-hour long conversation with B. Morin, after his re-
markable talk on Whitney and Morin singularities at the Thom Seminar”. Arnold
considered R. Thom one of his mentors in Mathematics (along with Kolmogorov and
Gelfand).

1Two elderly ladies left their home towns at sunrise heading towards each other. Each of them was walking
at a constant speed. After meeting at noon they kept walking in the same directions, and reached the other
ladies’ home town at 4 p.m. and at 9 p.m. respectively. When did the sun come up that morning?
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After returning to Moscow, Arnold started his own seminar mostly devoted to sin-
gularity theory. Every Tuesday, from October to December and from March to May,
for more than 40 years, at 4 pm participants gathered in room 14–14 on the 14th floor
of the main building of Moscow University. Participants included both undergrad-
uate and graduate students as well as mature mathematicians. Interestingly enough,
many of them had no formal connection to the mathematical establishment. Let us
clarify this point. Moscow mathematical life2 had the following structure: The offi-
cial layer included the Moscow State University and the Steklov Institute, both with
strong anti-Semitic leanings and strictly controlled by the Communist Party and the
KGB. Numerous scientists with “Jewish roots” were doing mathematics as a hobby,
in addition to their full time jobs as engineers and researchers in obscure industrial
research institutes. Fortunately, there was also an unofficial layer, a kind of mathemat-
ical oasis, where these “outsiders” enjoyed the luxury of being supervised by several
world-acclaimed gurus (Arnold, Gelfand, Manin, Novikov, Sinai). Arnold made the
effort to turn his seminar into a great show. Seemingly speakers were the props, while
Arnold was the star. But usually the speakers benefited from this arrangement because
Arnold explained their own results to them, so that they could finally understand what
they have proved. Each semester, at the first meeting of the Seminar, Arnold discussed
and commented on some open problems.3 Arnold’s seminar became an alma mater
for several generations of his students (A. Khovansky, A. Givental, A. Varchenko,
V. Vassiliev among many others) which nowadays form Arnold’s School.

Arnold had been denied permission to travel abroad since 1968, after he (along
with 99 Soviet mathematicians) had signed a letter addressed to the Soviet authori-
ties, protesting the psychiatric confinement of a notable dissident and mathematician
Esenin-Volpin.4 Arnold did not leave the Soviet Union until the beginning of the
perestroika in the late 1980s.

Since 1993 some sessions of Arnold’s Seminar were held in Paris, at the Jussieu
Mathematical Institute, in addition to the usual Moscow Seminars. When Arnold was
out of Russia, the Seminar’s sessions would be organized by his former students
S. Gussein-Zade, V. Zakalukin, and A. Khovansky. Sometimes Arnold sent letters
to the Moscow branch containing problems and comments. In Moscow, Arnold’s
Seminar met until December 2010.

The breadth of Arnold’s mathematical interests is breathtaking. He was among
the founders of modern Hamiltonian dynamics (Kolmogorov–Arnold–Moser theory,
Liouville–Arnold theorem, Arnold’s diffusion), symplectic topology (Arnold’s con-
jectures) and singularity theory. This will be discussed in more details in the next
sections.

Arnold wrote a very influential paper [9] on real algebraic geometry, where he
found new restrictions on ovals of plane algebraic curves by using methods of four-
dimensional topology. He considered real algebraic geometry as a very important

2To be precise, we refer here to the 1980s.
3In 2000, the problems supplied with up-to-date comments from Arnold and some participants of the
Seminar, were collected in the book “Arnold’s Problems” Phasis, Moscow. (English translation: Springer-
Verlag & Phasis, 2005).
4As a result of this letter, the story became public, and after the Voice of America gave a broadcast on the
topic, Esenin-Volpin was soon released.
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subject which is still far from being understood: “Unfortunately, algebraic geometers
are unable to solve the real problems”.

He discovered [5, 26] a profound link between hydrodynamics and geometry of
(infinite-dimensional) diffeomorphism groups. Being undoubtedly aware of the ma-
jor significance of his discovery, Arnold joked in [12]: “The formulas . . . for the
curvatures [of diffeomorphism groups] can be used even for rough estimates of the
time over which a long-term dynamical prediction of the weather is impossible, if we
agree to a few simplifying assumptions. . . : The earth has the shape of the torus.”

Arnold pioneered the study of cohomology of braid groups [8] and wrote an im-
portant paper “Modes and quasimodes” [10] on quasi-classical approximation.

He had a very distinctive style both as a researcher and a writer. His trademark was
to explain main ideas and to show simple examples relating the issue to real world
problems. He considered mathematics as an experimental science [19]: “Mathemat-
ics is a part of physics. Physics is an experimental science, a part of natural science.
Mathematics is the part of physics where experiments are cheap.” Arnold used to run
various mathematical experiments and, from time to time, he proudly showed to his
students thick notebooks with calculations written in artistic handwriting. He hated
formal axiomatically based exposition and always looked for a more intuitive geo-
metric explanations. His texts often contained beautiful illuminating pictures. Some
of them, such as Arnold’s famous cat illustrating a mixing automorphism of the two-
dimensional torus became a logo of the mathematical subject. At the same time (in
contrast to physicists!) Arnold mastered a coordinate-free language which enabled
him to highlight the role of abstract mathematical structures involved.

Arnold was a mathematical time-traveler: in his studies he often went back to the
classics, discovering there new insights and using them as a basis for new profound
problems for future generations. For instance, Arnold’s famous conjectures on fixed
points of symplectic diffeomorphisms appeared as a far-reaching generalization of
Poincaré’s “last geometric theorem”. Arnold had a vivid interest in the history of
mathematical ideas which manifested itself in his masterpiece “Huygens and Barrow,
Newton and Hooke” [17].

He was one of the organizers of the Moscow Center for Continuous Mathematical
Education. Since 2001, this center, in cooperation with the mathematical section of
the Russian Academy of Sciences, has been organizing an annual summer school on
contemporary mathematics in Dubna, a small town near Moscow, for about a hundred
high school and undergraduate students. Arnold lectured there almost every year.

Arnold was very concerned about the state of mathematical education in primary
and high schools. He criticized “the de-geometrization of mathematical education
and the divorce from physics” taking place in Western countries, and did everything
he could to prevent disastrous reforms of mathematical education in Russia.

According to Arnold, his first encounter with the axiomatic method was when he
was eleven years old and tried to understand the multiplication of negative numbers
[20]. Ever since then, he hated the axiomatic approach to teaching math based on
“unmotivated definitions.” “It is only possible to understand the commutativity of
multiplication by counting and re-counting soldiers by ranks and files or by calculat-
ing the area of a rectangle in the two ways. Any attempt to do without this interference
by physics and reality in mathematics is sectarianism and isolationism which will de-
stroy the image of mathematics as a useful human activity in the eyes of all sensible
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people.” It is ridiculous to teach “addition of fractions to children who have never
cut (at least mentally) a cake or an apple into equal parts. No wonder the children
will prefer to add a numerator to a numerator and a denominator to a denominator”.
“The main goal of the mathematical education should be to cultivate the ability to
mathematically investigate the phenomena of the real world” [19].

In 2004, Arnold wrote a booklet, “Problems for children from 5 to 15 years old”,
where he collected 79 problems intended “to develop a culture of thinking”.

Arnold received various prestigious awards including the Lenin Prize (1965, with
Kolmogorov) which was the highest award in the USSR, the Crafoord Prize (1982,
with L. Nirenberg),5 the Harvey Prize (1994), the Heineman Prize for Mathematical
Physics (2001), the Wolf Prize in Mathematics (2001), the State Prize of the Russian
Federation (2007) and the Shaw Prize in Mathematical Sciences (2008). However,
he did not have the chance to compete for the Fields medal even though he was
nominated for it in 1974: the Soviet authorities succeeded in their efforts to have his
name withdrawn from the list of nominees.

Arnold became a member of the national academies of the USA and France, as
well as of the Royal Society (UK). Later on, shortly before the collapse of the Soviet
Union, he was at last elected to the Soviet Academy of Sciences.

In Spring 1999, while riding a bicycle (yet another favorite sport of his) in a forest
near Paris, Arnold had an accident which resulted in a traumatic brain injury. In spite
of the doctors’ fears, he made a good recovery and returned to his mathematical and
non-mathematical activity. Arnold died on June 3rd, 2010, in Paris, nine days before
his 73rd birthday. He was buried in Moscow, in the Novodevichy cemetery.

Because of the enormous scope of Arnold’s mathematical heritage, we could not
deem to discuss all of his major achievements. Rather we focus on some of Arnold’s
contributions to symplectic topology and to singularity theory. The selection reflects
our personal tastes. We have attempted to restrict references to textbooks and surveys
where possible, with the exception for Arnold’s original works.

In the past year a number of excellent memorial articles on Vladimir I. Arnold
have appeared (see e.g. [38]). To some extent we are influenced by them and there
are inevitable overlaps. We wave any claim to originality.

For reflections on various facets of Arnold’s personality we refer the reader to the
personal accounts [37, 48, 54]. But perhaps the most authentic source is Arnold’s
book [20] containing various recollections and stories which he used to tell.

In Sect. 2 we review some of Arnold’s contributions to symplectic topology and
Hamiltonian dynamics. In Sect. 3 we take a route of singularity theory: it leads,
through algebraic and topological invariants of singularities, to a beautiful link be-
tween singularities, reflection groups and root systems discovered by Arnold in the
early 1970’s. We complete the paper with a discussion on interrelations between sym-
plectic geometry and singularities.

5The Soviet authorities did not allow him to travel to Stockholm to receive it.
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2 Symplectic Topology and Hamiltonian Dynamics

By symplectic topology I mean the discipline having the same relation to or-
dinary topology as the theory of Hamiltonian dynamical systems has to the
general theory of dynamical systems.

V.I. Arnold, First steps in symplectic topology

2.1 Mathematical Model of Classical Mechanics

Let us start with a brief description of the mathematical model of classical mechan-
ics. The reader is invited to consult Arnold’s textbook [12] for further details. This
ground-breaking book (which appeared in Russian in 1974) was among the very first
ones worldwide which systematically presented classical mechanics in the language
of symplectic geometry.

Consider the motion of a mass m particle in the configuration space R
n (equipped

with the coordinate q) in the field of a potential force F = − ∂U
∂q

. The dynamics of
the particle is governed by Newton’s 2nd law mq̈ = F . (Here and below q̇ stands for
the velocity of the particle and q̈ for its acceleration.) This second order ODE turns
out to be quite complicated and with rare exceptions it cannot be solved explicitly.
Therefore a qualitative theory is needed. First of all let us make a little trick and
introduce the auxiliary momentum variable p = mq̇ . Let H(p,q) be the full energy
of the particle,

H(p,q) = 1

2
m|p|2 + U(q),

where the first term on the right-hand side stands for the kinetic energy and the second
one for the potential energy. With this notation Newton’s second law can be rewritten
as a Hamiltonian system of first order ODE’s{

q̇ = ∂H
∂p

ṗ = − ∂H
∂q

(1)

in the phase space R
2n equipped with the coordinates p and q . The evolution of the

particle is given by a family of diffeomorphisms ht : R
2n → R

2n which send an initial
condition (p(0), q(0)) to the solution (p(t), q(t)) at time t .

This reformulation paves a way for a qualitative analysis of the particle mo-
tion which in fact is applicable to any energy function H(p,q, t), in general time-
depending and with a “nice” behavior at infinity. We refer to H as to a Hamiltonian
function, and we call {ht } the Hamiltonian flow generated by H . When H does not
depend on time, the system (1) readily yields the energy conservation law: the Hamil-
tonian H is constant along the trajectories.

A basic feature of Hamiltonian flows is that they preserve the volume form σ =
dp1 ∧dq1 ∧· · ·∧dpn∧dqn in the phase space. This statement, known as the Liouville
theorem, gave rise to a powerful mathematical abstraction of a mechanical system,
namely to the notion of an automorphism of a measure space. The dynamics of such
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automorphisms is studied within ergodic theory, nowadays a well-established branch
of mathematics.

Now comes a crucial point: it turns out that Hamiltonian flows preserve a finer
invariant, a symplectic form

ω =
n∑

i=1

dpi ∧ dqi (2)

on R
2n. Note that the top wedge power ωn = ω ∧ · · · ∧ ω coincides with n!σ and

hence h∗
t ω = ω yields the Liouville theorem.

Invariance of the symplectic form under Hamiltonian flows gave rise to a new
mathematical discipline, symplectic topology. It deals with symplectic manifolds and
their morphisms. Given a (necessarily even-dimensional) manifold M2n, a symplectic
form on M is a closed differential 2-form ω whose top power ωn does not vanish and
hence defines a volume form on M . At the first glance the symplectic form is yet
another tensor field on M which should be studied along the lines of the standard
differential (say, Riemannian) geometry. However, this is not the case: the classical
Darboux theorem states that in appropriate local coordinates (p, q) near every point
of M the form ω is given by (2). Thus local symplectic geometry does not exist:
for instance there is no symplectic analogue of Riemannian curvature. The hunt for
global invariants of subsets of symplectic manifolds became one of the central themes
of modern symplectic topology. We shall return to this subject at the end of Sect. 2.4.
Let us list some important examples of symplectic manifolds.

Example 2.1 A two-dimensional surface equipped with an area form is a symplectic
manifold.

Example 2.2 Consider the cotangent bundle T ∗X of a manifold X. Choose local co-
ordinates q1, . . . , qn on X. Let p1, . . . , pn be the coordinates on the cotangent fibers
T ∗

q X associated with the basis dq1, . . . , dqn. The 2-form ω given by formula (2) is
symplectic. It does not depend on the specific choice of coordinates q and is called
the standard symplectic form on T ∗X.

Given a function H : M × R → R, the system (1) (understood in the Darboux co-
ordinates (p, q)) gives rise to the Hamiltonian flow ht : M → M which preserves the
symplectic form ω. Individual diffeomorphisms ht ’s obtained in this way are called
Hamiltonian diffeomorphisms. They form a group denoted by Ham (M,ω). Accord-
ing to the ideology going back to Klein’s program, in order to understand a geometric
structure on a manifold, one should study its group of isometries. In our case this
is the group Symp(M,ω) consisting of all symplectomorphisms, that is diffeomor-
phisms of M preserving the symplectic form M . In the case when the symplectic
manifold M is closed and its first de Rham cohomology group vanishes, the identity
component Symp0(M,ω) coincides with Ham (M,ω). For general closed manifolds
Ham is the commutator subgroup of Symp0 and the quotient Symp0/Ham is “small”.
In this way the group of Hamiltonian diffeomorphisms appears as a central object of
interest on the borderline between topology, geometry and dynamics (see [45]).
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2.2 From Quasi-periodic Motion to Diffusion

The simplest (in terms of dynamical behavior) class of Hamiltonian flows on sym-
plectic manifolds is given by integrable systems. In order to introduce this notion,
recall that the Poisson bracket {F,G} of functions F and G on a symplectic mani-
fold M is given by the Lie derivative of F along the Hamiltonian flow generated by
G. This operation is bilinear (over the reals) and anti-symmetric. In fact, it defines
a natural Lie bracket on the space C∞(M)/{constants} which can be canonically
identified with the Lie algebra of the group Ham (M,ω).

We say that a Hamiltonian system associated with a time-independent Hamiltonian
H : M → R is integrable if there exist functions H1, . . . ,Hn on M with H1 := H so
that {Hi,Hj } = 0 for all i, j , and the union of the regular level sets of the moment
map

H : M → R
n, x �→ (H1(x), . . . ,Hn(x))

have full measure in M . Behavior of integrable systems is described by the Liouville-
Arnold theorem (see [1, 12]). It states, in particular, that every compact connected
regular level of the moment map, H−1(c), is an n-dimensional torus, say L, which
is invariant under the flow ht and which carries a (quasi)-periodic motion. The latter
means that in certain angular coordinates θ on L = R

n/Z
n the dynamics looks like

the shift htθ = θ + tv for some v ∈ R
n. The dynamics crucially depends on the arith-

metic properties of the coordinates v1, . . . , vn of the rotation vector v: For instance,
if all of them are rational numbers, every trajectory on L is periodic, and if they are
independent over Q, every trajectory is uniformly distributed in L. In the latter case
we shall call the vector v incommensurable.

Example 2.3 Let M = T ∗
T

n be the cotangent bundle of the n-dimensional torus
equipped with coordinates (p, q mod Z

n). In these coordinates the standard sym-
plectic form is written as ω = ∑n

i=1 dpi ∧ dqi (see Example 2.2 above). In the lan-
guage of classical mechanics this is the phase space of a system of pendulums con-
secutively connected to one another (see Wikipedia article “Double pendulum” for
pictures and animations in the case n = 2). The Hamiltonian H = H(p), which de-
pends on the momenta variables only, is integrable near every regular energy level
{H = const}: Indeed, {H,pi} = 0 and {pi,pj } = 0 for all i, j = 1, . . . , n. Invariant
tori carrying quasi-periodic motion are given by {p = p0}, and the rotation vector on
such a torus is ∂H

∂p
(p0). The significance of this example is due to a more advanced

version of the Liouville-Arnold theorem: Near any invariant torus of a general in-
tegrable system one can choose coordinates (p, q) as above (called in this case the
action-angle coordinates) so that in these coordinates the original Hamiltonian has
the form H = H(p).

Next, we address the question about the behavior of an integrable system under
small perturbations of the Hamiltonian function. The Kolmogorov–Arnold–Moser
(KAM) theory [2, 27, 42, 47] guarantees that (under certain non-degeneracy assump-
tions) the invariant n-dimensional tori carrying quasi-periodic motion persist pro-
vided the rotation vector v is “strongly” incommensurable, that is its coordinates {vi}
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do not admit anomalously small linear combinations with integer coefficients. Since
incommensurable v’s form a set of full measure, most of the tori persist. By persis-
tence we mean that a torus becomes slightly deformed, it remains invariant under the
perturbed Hamiltonian flow and carries the quasi-periodic motion with the same rota-
tion vector v. This result was outlined by Kolmogorov in a short note of 1954, while
the complete proofs were obtained by Arnold and Moser under various assumptions
on the Hamiltonian. The KAM theory remains one of the finest analytical pieces of
mathematical formalism of classical mechanics. From the viewpoint of functional
analysis, the KAM-theorem lies in the framework of the Nash–Moser implicit func-
tion theorem in graded Fréchet spaces [55].

Suppose now that the symplectic manifold in question is four-dimensional (that
is, in physicists’ slang, our mechanical system has two degrees of freedom). By the
energy conservation law, the motion of the system takes place in a three-dimensional
energy level. Two-dimensional invariant tori described above divide the energy level
into small invariant annuli of the form T

2 × [0;1]. These annuli serve as traps for
the particle and, in particular, provide an obstruction to ergodicity of the system. This
topological obstruction disappears for systems with n ≥ 3 degrees of freedom. In
his 1966 ICM talk [7] Arnold conjectured that in this case generic arbitrarily small
perturbations H(p,q, ε) = H(p) + εH1(p, q, ε) of an integrable Hamiltonian H =
H(p) (in the notation of Example 2.3 above) admit trajectories (p(t), q(t)) which
make long excursions through the gaps between KAM-tori: More precisely, there
exists T > 0 so that |p(T ) − p(0)| > A for some positive constant A independent of
the size of the perturbation. This phenomenon is called Arnold diffusion. It turnes out
that even exhibiting specific (let alone generic) examples of this kind is a very hard
problem. The first one was discovered by Arnold himself [4, 22]. The study of Arnold
diffusion remains a popular theme in Hamiltonian dynamics. We refer to a beautiful
paper by Kaloshin and Levi [41] for a more detailed survey.

2.3 Topology of Lagrangian Submanifolds

Invariant tori of integrable and near-integrable systems carrying quasi-periodic mo-
tion have a remarkable topological property: they are Lagrangian with respect to
the symplectic structure. By definition, an n-dimensional submanifold L of a 2n-
dimensional symplectic manifold (M,ω) is Lagrangian if ω vanishes on each tangent
space TxL. In addition to the above-mentioned appearance in classical mechanics,
Lagrangian submanifolds arise on various occasions in topology, algebraic geometry
and the calculus of variations (see Sect. 4 for an example arising in the theory of wave
propagation). The following basic examples will be important for the purposes of our
exposition.

Example 2.4 A curve on a surface equipped with an area form is Lagrangian.

Example 2.5 Let f be a symplectomorphism of a symplectic manifold (M,ω). Then
graph(f ) ⊂ M × M is Lagrangian with respect to the symplectic form ω ⊕ −ω.

Example 2.6 Consider the cotangent bundle T ∗X of a manifold X equipped with the
standard symplectic form. A section of T ∗X is Lagrangian if and only if it is the
graph of a closed 1-form on X.
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In the light of Example 2.4, multi-dimensional Lagrangian submanifolds can be
considered as generalizations of curves on surfaces. Recall that given a closed im-
mersed plane curve γ : S1 → R

2, one can associate to it a topological invariant, the
turning number. It is defined as the degree of the Gauss map S1 → RP 1 which sends
the point t ∈ S1 to the tangent line R · γ̇ (t) at the point γ (t). Arnold discovered [6]
that this construction admits a far-reaching generalization to Lagrangian immersions
of the standard symplectic vector space (R2n,ω = dp ∧ dq) and that the Lagrangian
analogue of the turning number is in fact an index introduced in Maslov’s earlier
work on quasi-classical approximation (see [44] and references therein).

Let us sketch Arnold’s very elegant construction. Denote by �n the Grassmannian
of all linear Lagrangian subspaces of R

2n = C
n. The unitary group acts transitively

on �n, and the stabilizer of any given Lagrangian subspace coincides with the or-
thogonal group O(n). Thus �n = U(n)/O(n), and hence we have a well-defined
map

φ : �n → S1 ⊂ C, [A] �→ (detA)2.

Here A stands for a matrix from U(n) and [A] for its equivalence class representing
a Lagrangian subspace from �n.

Write θ for the polar angle on the circle S1. The cohomology class

μ := 1

2π
φ∗[dθ ] ∈ H 1(�n;Z)

is called the universal Maslov class. Given a Lagrangian immersion γ : L → R
2n,

consider the Gauss map g : L → �n which takes a point x ∈ L to the Lagrangian
tangent subspace γ∗(TxL). The pull-back μL := g∗μ ∈ H 1(L;Z) of the universal
Maslov class is called the Maslov class of L. It measures the winding number of
tangent planes to γ (L) along 1-cycles in L.

This construction can be generalized, after some elementary topological con-
siderations, to Lagrangian submanifolds in arbitrary symplectic manifolds. Due to
Arnold’s work the Maslov class entered the toolbox of the symplectic geometer. This
notion plays a fundamental role in various modern developments.

Another invariant associated to a Lagrangian submanifold L ⊂ R
2n is the Liouville

class λL ∈ H 1(L;R). Its value on a 1-cycle C ⊂ L equals
∫
C

p dq . When C is a
circle, this is just the symplectic area of any disc in R

2n spanning C. We shall refer
to the Maslov and the Liouville classes of L as the classical invariants of L.

The next definition will be important for our further discussion. A Lagrangian
submanifold L ⊂ R

2n is called monotone if its Maslov and Liouville classes coincide:
μL = λL. An example is given by the split n-dimensional torus

L0 = S1(r) × · · · × S1(r) ⊂ R
2 × · · · × R

2, (3)

where πr2 = 2.
The Maslov class of embedded (as opposed to immersed) Lagrangian submani-

folds inherits certain rigidity properties from the turning number of simple closed
curves in the plane which attains values ±2 only. It was recently proved by Buhovsky
[28] by Floer-homological methods that for every monotone Lagrangian torus L in
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R
2n the image of H1(L;Z) = Z

n under the Maslov class μL equals 2Z. At the same
time certain basic properties of the Maslov class are still far from being understood.
For instance, it is unknown whether there exists a closed Lagrangian submanifold of
R

2n whose Maslov class vanishes.
Let us focus now on the Lagrangian knots problem posed by Arnold in [15].

Nowadays this problem remains a very active research area. It can be informally
formulated as follows: Consider the space of all Lagrangian submanifolds of (M,ω)

with the same classical invariants. What are its connected components? Let us elab-
orate this question for monotone Lagrangian tori where the precise formulation is
especially transparent. Lagrangian knots are simply the connected components of the
space of all monotone Lagrangian tori. The split torus L0 given by (3) plays the role
of the trivial knot. The existence of non-trivial Lagrangian knots in this setting was
discovered by Arnold’s student Chekanov [31]. The complete classification is not yet
understood even in the smallest non-trivial dimension 2n = 4.

2.4 Lagrangian Intersections and Symplectic Fixed Points

Here we discuss Arnold’s famous conjectures [3, 7, 12] which he discovered while
analyzing the proof of Poincaré’s “last geometric theorem” on fixed points of area-
preserving maps of the annulus.

Consider the cotangent bundle T ∗X of a closed manifold X. We equip it with the
standard symplectic form and identify X with the zero section. We start our discus-
sion with the following observation due to Arnold. Let φ be a Hamiltonian diffeomor-
phism of T ∗X which is C1-close to the identity. Then φ(X) is C1-close to X, and
hence is a section of the cotangent bundle. By Example 2.6 above, φ(X) is the graph
of a closed 1-form, say α, on X. Furthermore, the condition that φ is Hamiltonian
(and not just symplectic) translates into the fact that α is exact: α = dF , where F is
a smooth function on X. The critical points of F (that is the zeros of α) are in one-
to-one correspondence with the intersection points φ(X) ∩ X. This consideration led
Arnold to the following conjecture. Denote by c(X) the minimal number of critical
points of a smooth function on X.

Arnold’s Lagrangian Intersection Conjecture The number of intersection points
satisfies |φ(X) ∩ X| ≥ c(X) for every Hamiltonian diffeomorphism φ of T ∗X.

To the best of our knowledge, the conjecture is still open as stated. Various par-
tial results are known. In particular, when φ(X) is transverse to X, the number of
intersection points is not less than the sum of Betti numbers of X [39, 43]. Let us
emphasize that modern proofs are far-reaching generalizations of Arnold’s Morse-
theoretical argument.

The Weinstein normal form theorem [53] states that a tubular neighborhood of
any closed Lagrangian submanifold X of an arbitrary symplectic manifold (M,ω) is
symplectomorphic to a neighborhood of X in the cotangent bundle T ∗X. Thus for
any C1-small Hamiltonian diffeomorphism φ of (M,ω) one has

|φ(X) ∩ X| ≥ c(X). (4)
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For certain classes of Lagrangian submanifolds this inequality (or its weaker version)
extends to all, not necessarily C1-small Hamiltonian diffeomorphisms. Take for in-
stance a two-dimensional sphere S2 equipped with the standard area form. Every
small circle X ⊂ S2 can be displaced by a suitable rotation and hence (4) is obvi-
ously violated. However when X is an equator (that is a simple closed curve dividing
the area of the sphere into two discs of equal areas) (4) holds true by an obvious
area control. This toy example shows that the extension of Arnold’s Lagrangian in-
tersection conjecture to arbitrary Lagrangian submanifolds is a delicate task even on
the conjectural level, let alone proofs. Let us discuss one case of major importance
which was discovered by Arnold himself.

Arnold’s Fixed Points Conjecture Any Hamiltonian diffeomorphism f of a closed
symplectic manifold (M,ω) has at least c(M) fixed points.

Observe that fixed points of f are in one-to-one correspondence with the inter-
section points of graph(f ) with the diagonal 
 ⊂ M × M . Both graph(f ) and 


are Lagrangian submanifolds of (M × M,ω ⊕ −ω) (cf. Example 2.5 above), and
moreover graph(f ) is the image of 
 under the Hamiltonian diffeomorphism 1 × f

of M × M . Thus Arnold’s fixed points conjecture can be reduced to the generalized
Lagrangian intersection conjecture. Its current status is similar to the one of the La-
grangian intersection conjecture: it is open as stated, but numerous weaker statements
are known starting from the pioneering work [32] by Conley and Zehnder (see e.g.
[45, 46] for a more detailed account).

Arnold’s conjectures served as a main motivation for development of some major
techniques in modern symplectic topology such as the theory of generating functions
and Floer theory. Let us discuss the latter very briefly (see [34, 35, 46] for further
details). Let (M,ω) be a closed symplectic manifold. For the sake of simplicity we
assume that π2(M) = 0 (think for instance about the 2-torus). Consider the space
L of free contractible loops x : S1 → M , where S1 = R/Z. Take any time-periodic
Hamiltonian function H : M × S1 → R. Define an action functional

AH : L → R, x �→
∫

S1
H(x(t), t) dt −

∫
D

ω,

where D is any disc spanning x. The topological condition π2(M) = 0 guarantees
that any two such discs are homotopic with fixed boundary and thus

∫
D

ω does not
depend on the particular choice of the disc D. A version of the least action principle
in classical mechanics states that the critical points of the functional AH are in one-
to-one correspondence with contractible 1-periodic orbits of the Hamiltonian flow ht

generated by H . Any such orbit, in turn, corresponds to a fixed point of the time-
one-map φH := h1 of the Hamiltonian flow ht . With this language Floer theory is a
Morse theory (cf. [49]) for the action functional AH on the space L. A systematic
development of such a Morse theory faces many difficulties.

The first difficulty is that the gradient flow of AH is not defined in any reason-
able sense. Fortunately, the trajectories of the gradient flow connecting critical points
correspond to a well-posed Fredholm problem with asymptotic boundary conditions.
Topologically they are cylinders (paths in the loop space L) satisfying, after a suitable
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choice of a metric on L, a version of the Cauchy-Riemann equations (here Floer the-
ory meets Gromov’s pseudo-holomorphic curves in symplectic manifolds). From the
analytic viewpoint, these connecting trajectories solve an elliptic PDE. A Fredholm
nature of this PDE guarantees that generically the spaces of connecting trajectories
are finite-dimensional manifolds with “nice” compactifications.

The second difficulty is that the Morse indices of critical points of the action func-
tional are infinite. Nevertheless, the index difference can be defined. Arnold’s work
on the Maslov index plays a crucial role in this construction.

A Morse-type theory built (starting from a work by Floer) along these lines yields
topological lower bounds on the number of critical points of AH , and hence on the
number of fixed points of the Hamiltonian diffeomorphism φH generated by H .

From the above discussion the reader might get the impression that the interaction
between symplectic topology and Hamiltonian dynamics goes in the direction from
topology to dynamics: a powerful machine of infinite-dimensional Morse theory on
loop spaces solves a purely dynamical question on symplectic fixed points. In fact the
interaction goes the other way round as well in the most fruitful way. In particular, it
leads to new symplectic invariants of open domains in the standard symplectic vector
space R

2n. Given a domain U ⊂ R
2n, denote by Ha , a > 0, the set of all compactly

supported time-independent Hamiltonian functions H : U → [0, a] which attain the
maximal value a on a non-empty open subset of U . A beautiful phenomenon dis-
covered by Hofer and Zehnder [40, 45] by methods of infinite-dimensional calculus
of variations is as follows: there exists A > 0 so that for every H ∈ Ha , a ≥ A the
Hamiltonian flow of H possesses a non-constant closed orbit of period ≤ 1. Observe
that constant closed orbits always exist and correspond to the critical points of H .
By definition, the Hofer–Zehnder capacity cHZ(U) is the infimum of such A. This
capacity is invariant under symplectomorphisms and monotone under inclusions. In
particular, if U admits a symplectic embedding to V one has cHZ(U) ≤ cHZ(V ).

Denote by B2n(r) the standard Euclidean ball of radius r in R
2n. A remarkable

feature of the Hofer–Zehnder capacity is that it equals πr2 both for the ball B2n(r)

and for the cylinder B2(r) × R
2n−2. In particular, the ball B2n(R) with R > r does

not admit a symplectic embedding into the cylinder B2(r) × R
2n−2, even though the

latter has infinite volume while the former has finite volume. This statement, known
as Gromov’s non-squeezing theorem (see [45]) became a logo of modern symplectic
topology. The Hofer–Zehnder approach to its proof highlights the role of periodic
orbits of Hamiltonian flows envisioned by Arnold.

3 Singularity Theory

In the seventies I started most of my papers with the words: ‘there exists an
interesting and unexpected relation between. . . ’ (the continuations being dif-
ferent in the different papers).

Arnold’s speech on 20 June 1994 when receiving the Universidad
Complutense Honoris Causa degree in Sciences, Spain
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We review a part of singularity theory concerned with isolated singularities of
analytic functions. We describe mostly the holomorphic case; the results carry over
to the real analytic case with minor changes which we will indicate.

Our aim is to explain a remarkable discovery of Arnold from the early 1970’s:
simple singularities are classified by the A − D − E Dynkin diagrams, [11]. This
discovery, connecting singularities with Lie algebras, reflection groups and invariant
theory, has put a new face on singularity theory and stimulated extensive and intensive
developments both in the theory and in its applications to variational problems.

For the singularities of maps and of complete intersections, for global singular-
ity theory, the theory of non-isolated singularities, and for a lot of interesting and
important applications (including Legendrian singularities, bifurcations in dynamical
systems, singularities of boundaries of functional domains, asymptotics of oscillating
integrals, etc.) we refer the reader to the two volume edition on singularity theory and
its applications [23, 24].

3.1 Main Notions

3.1.1 Singularities

Singularity theory studies the local behavior of a function near a critical point, i.e.,
a point where the first differential of the function vanishes. The value of a function at
a critical point is called a critical value.

We encounter a baby version of singularity theory already in high school calcu-
lus, in the context of real-valued functions. We learn there that if the first derivative
f ′(x) of a function f vanishes at some point x0, while f ′′(x0) �= 0, the point x0
is either a local minimum or a local maximum. If f ′(x0) = f ′′(x0) = 0, while the
third derivative does not vanish, x0 is an inflection point. In the case of “higher or-
der” singularities and of functions of several variables the story becomes much more
complicated and new tools and ideas are required. This is what singularity theory
is about. In what follows we stick to the case of holomorphic functions of several
complex variables; this case is somewhat simpler and more transparent.

We may and will assume that the critical point under consideration is the origin
O ∈ C

n and that f (O) = 0. Denote by On the ring of the holomorphic function
germs f : C

n → C at the origin O ∈ C
n, and by mn ⊂ On the maximal ideal, i.e., the

subring of germs vanishing at the origin, f (O) = 0. Unless otherwise stated we shall
always deal with germs of functions, manifolds etc. near the origin.

The group Dn of biholomorphic maps g : (Cn,O) → (Cn,O) acts on On as fol-
lows,

g(f ) = f ◦ g−1, ∀f ∈ On, ∀g ∈ Dn.

Two functions f1, f2 ∈ mn are equivalent, f1 ∼ f2, if they belong to the same orbit
of the action; the equivalence class, i.e., the orbit of the action, is a singularity.

By Arnold, singularity theory, like life sciences, is subdivided into zoology,
anatomy and physiology. The “zoology of singularities” is the description of what,
where and how singularities can be encountered; the “anatomy and physiology of
singularities” studies their structure and how they function.
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3.1.2 The Morse Lemma

A critical point is non-degenerate if the second differential of the function at this
point is a non-degenerate quadratic form. The Morse lemma says that a holomorphic
function f ∈ mn near a non-degenerate critical point is equivalent to a non-degenerate
quadratic form,

f ∼ x2
1 + · · · + x2

n.

Any small deformation of a non-degenerate critical point has the same singularity
close to the origin. This is the simplest singularity.6

There is a natural way to define an equivalence relation for critical points of func-
tions of different number of variables. Namely, holomorphic functions f ∈ mn and
h ∈ mm are stably equivalent if they become equivalent after adding the squares of
supplementary variables:

f (x1, . . . , xn) + x2
n+1 + · · · + x2

k ∼ h(y1, . . . , ym) + y2
m+1 + · · · + y2

k .

According to a theorem of A. Weinstein (1971), two functions of the same number
of variables are stably equivalent if and only if they are equivalent; thus one can
simultaneously study the singularities of functions of different number of variables.
In particular, all non-degenerate critical points are stably equivalent to x2. This is
the singularity the classification begins with. It is called the Morse singularity and is
denoted by A1.

3.1.3 Multiplicity

Under a small deformation, a degenerate isolated critical point decomposes into a
finite number of “simpler” ones. If a small deformation is generic, then all the “sim-
pler” singularities are non-degenerate. Their number is called the geometric multi-
plicity of an isolated singularity. As Fig. 1 illustrates, the geometric multiplicity of
x2 is 1, and of x3 is 2.

We use the notation of Sect. 3.1.1. First of all, let us introduce an important alge-
braic invariant of a singularity f : The ideal If ⊂ On generated by the partial deriva-
tives of f ∈ mn is called the gradient ideal of f , and the quotient Qf = On/If is
the local algebra of f .

The dimension of the local algebra over C is the algebraic multiplicity of f .
A classical result (whose complete proof was published by V. Palamodov in 1967)
asserts that the geometric and the algebraic multiplicities of an isolated critical point
coincide.7 That is, under a generic small deformation, an isolated critical point of f

decomposes into μ(f ) = dimC Qf critical points of type A1.

6Over R, we have more possibilities: f ∼ x2
1 ± · · · ± x2

n . The real analytic case always needs such an
adjustment; in what follows we leave it to reader.
7In fact, a critical point of a holomorphic (or real analytic) function is isolated if and only if its multiplicity
is finite, [23, 24].
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Fig. 1 Small deformations of
x2 and of x3

Example 3.1 (1) For A1-singularity, we have (x2)′ = 2x, hence the ideal IA1 is gen-
erated by 2x and the quotient QA1 by 1, that is, QA1

∼= C is one-dimensional, and
(non-surprisingly!) μ(A1) = 1.

(2) The function x3 (as well as x3 + Q(y), where Q(y) is a non-degenerate
quadratic form, e.g., Q(y) = y2

1 + · · ·+ y2
k ) has the simplest degenerate critical point

at 0, denoted by A2. The ideal IA2 is spanned by x2 (by x2, y1, . . . , yk , resp.), the
local algebra QA2 is generated by 1 and x over C, and μ(A2) = 2.

(k) Similarly, Ak-singularity is given by xk+1 and μ(Ak) = k.

According to a theorem of J.-C. Tougeron (1968), any holomorphic function at a
critical point of multiplicity μ is equivalent to its Taylor polynomial of degree μ+ 1;
in particular, every singularity of finite multiplicity has a polynomial representative.

3.1.4 Versal Deformation

According to Example 3.1(2), under a small deformation the singularity A2 decom-
poses into two non-degenerate ones. For instance, one can take as a deformation of x3

(of x3 + Q(y), resp.) the function x3 + εx (or x3 + Q(y) + εx, resp.) which has two
non-degenerate critical points, x1,2 = ±√−ε (and y1 = · · · = yk = 0, resp.) near the
origin, see Fig. 1.

This consideration shows that A2 is a non-generic singularity of a single holomor-
phic function: it is destroyed by a small perturbation.

However, when one investigates a family of holomorphic functions, e.g., ft (x) =
x3 + tx, every nearby family does have the singularity A2 for some value of the pa-
rameter t close to 0. Thus a non-generic singularity of an individual function becomes
a generic singularity of a family.

This discussion leads us to the study of families in which a given singularity ap-
pears as a generic one. In particular, one has to understand bifurcations of the singu-
larity, that is the ways it decomposes into simpler ones under small changes of the
parameters of the family. We shall refer to a family as to a deformation of the singu-
larity. Remarkably, if a singularity is isolated, then it is sufficient to study only one,
so-called versal, deformation of a function f ∈ mn which is transversal to the orbit
of f under the action of Dn: it turns out that every deformation of f can be induced
(in some natural way) from the versal one.

In particular, the family

F(x,λ) = f (x) +
μ∑

j=1

λjφj (x), (5)
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where μ is the multiplicity of f and φj (x)’s are representatives of a basis of the local
ring Qf , provides a versal deformation.

For example, a versal deformation of the Ak-singularity given by xk+1 is

F(x,λ) = xk+1 +
k∑

j=1

λjx
k−j . (6)

3.1.5 Bifurcation Sets

Let us pass to a topological analysis of singularities. An important character of our
story is a hypersurface in the base of a versal deformation called the discriminant (or
the level bifurcation set) of a singularity. Fix f ∈ mn having a critical point at O of
multiplicity μ and its versal deformation F(x,λ). By Sard’s lemma, near the origin
the level set

Vλ = {x : F(x,λ) = 0}
is a smooth manifold for almost all values of the parameter λ. The values of λ for
which Vλ is singular form the discriminant (or level bifurcation set) �f of f . This
hypersurface appears in various applications of singularity theory (we discuss an ex-
ample of this kind in Sect. 4).

Example 3.2 (1) For the function x3 + y2 (the A2-singularity) and its versal defor-
mation F(x, y,λ) = x3 + y2 + λ1x + λ2, the discriminant �A2 ⊂ C

2
λ1,λ2

is formed
by those λ = (λ1, λ2) such that the level curve

Vλ = {(x, y) : F(x, y,λ) = 0} ⊂ C
2
x,y

is singular. That is, there exists a point in Vλ where the gradient of F(x, y,λ) van-
ishes, F ′

x = F ′
y = 0, i.e., the system x3 + y2 + λ1x + λ2 = 3x2 + λ1 = y = 0 has a

solution. We get

�A2 = {λ1 = −3x2, λ2 = 2x3, x ∈ C} = {4λ3
1 + 27λ2

2 = 0} ⊂ C
2
λ1,λ2

.

This curve is called a cusp.
(2) Similarly, for the Ak-singularity given by xk+1 + y2, the discriminant �Ak

is formed by the values of λ’s such that the polynomial F(x, y,λ) = xk+1 + y2 +∑k
j=1 λjx

k−j has a critical point with zero critical value. The surface �Ak
⊂ C

k is
called the (generalized, if k > 3) swallowtail surface.

Real parts of �A2 and �A3 are shown on Figs. 2 and 3.
In some problems one should deal with deformations of an isolated singularity

inside mn, as opposed to On (e.g. in the study of Lagrangian singularities, see Sect. 4
below): In other words we impose a constraint F(O,λ) ≡ 0. In this context the defor-
mation transversal to the orbit of the singularity is called a truncated versal deforma-
tion. It depends on μ − 1 parameters, where μ is the multiplicity of the singularity.
The caustic or the function bifurcation set of an isolated singularity is a hypersurface
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Fig. 2 Typical level sets and the
discriminant of A2-singularity

formed by the parameters of a truncated versal deformation that correspond to the
functions having a degenerate critical point. The caustic can be described also as the
set of the critical values of a projection of the discriminant to the base of the truncated
versal deformation along a generic direction.

Continuation of Example 3.2 One obtains a truncated versal deformation of Ak sin-
gularity from the versal deformation (6) by setting λk = 0. A generic direction in the
space of versal deformation is transversal to the swallowtail surface �k at the origin.
An easy exercise shows that the function bifurcation set of Ak is diffeomorphic to
�Ak−1 .

3.1.6 Digression on the Real Case: Perestroikas

In the real case, the discriminant, being a hypersurface in R
μ, divides the base of the

versal deformation into domains. For values of λ in the same domain, the level sets
have the same shape. When λ goes trough the discriminant, the level set changes its
shape, i.e., a metamorphosis, or a perestroika8 occurs.

End of Example 3.2 For the versal deformation of the real function x3, parameters
λ’s inside the cusp give polynomials with three real roots, whereas outside with only
one real root. Parameters on the cusp (not at the vertex) give polynomials with one
multiple root (A1-singularity), and the vertex corresponds to x3 (A2-singularity), see
Fig. 2.

For k = 3, the swallowtail surface9 is shown on Fig. 3, together with its plane
sections.

3.1.7 Monodromy Group

We keep notation of Sects. 3.1.4 and 3.1.5. Let f (x) have an isolated critical point of
multiplicity μ at O ∈ C

n, and let F(x,λ) be its versal deformation, e.g. as in (5). The

8Arnold was proud he had introduced this Russian word—it was extremely popular in the Soviet Union of
the late 80’s—in the international mathematical terminology.
9The swallowtail is one of the protagonists in singularity theory. It appears in different problems and in dif-
ferent contexts. The second named author, who attended Arnold’s Seminar during almost 20 years starting
from 1975, does not remember a single seminar with no swallowtail surface drawn on the blackboard. . .
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Fig. 3 The level bifurcation set
of A3-singularity and its plane
sections

discriminant �f ⊂ C
μ, as a complex hypersurface, has real codimension 2 and does

not divide the base of a versal deformation. Therefore near the origin the non-singular
level sets Vλ’s all have the same topological type. By a theorem of Milnor (1968) they
are homotopy equivalent to a wedge (bouquet) of μ spheres of real dimension n − 1.

Fix a non-singular parameter value λ∗ and abbreviate V∗ := Vλ∗ . The only non-
trivial integer homology is Hn−1(V∗) = Z

μ.
Consider the union of the level sets Vλ for all λ’s near the origin. This is a hyper-

surface, V� = {F(x,λ) = 0} ⊂ C
n+μ.

Denote by �̂ ⊂ C
μ the complement of the discriminant �f , and by V̂� the preim-

age of �̂ under the canonical projection (x,λ) �→ λ. We get a locally trivial fibration
V̂� → �̂ which is called the Milnor fibration of f . The homology bundle associated
with this fibration defines in a natural way a representation of the fundamental group
π1(�̂, λ∗) in the integer homology of a non-singular level set,

� : π1(�̂, λ∗) → Aut (Hn−1(V∗)) .

The image of this representation is the monodromy group of f . The monodromy
group does not depend on a choice of a versal deformation, and is determined only
by the type of the singularity.

3.1.8 Basis of Vanishing Cycles

In order to construct a basis in Hn−1(V∗), we first consider the case μ = 1, when the
basis consists of one cycle only.

Example 3.3 If the critical point of f is non-degenerate, then in some local coordi-
nate system we have

f (x) = x2
1 + · · · + x2

n, F (x,λ) = x2
1 + · · · + x2

n − λ.

A non-singular level set V∗ is diffeomorphic to the tangent bundle T∗Sn−1, where

Sn−1 = {x ∈ C
n : x2

1 + · · · + x2
n = 1, Imxj = 0, j = 1, . . . , n}

is the standard (n − 1)-dimensional unit sphere.
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Fig. 4 Vanishing cycle, μ = 1

Take the path φ(t) = 1 − t in the parameter space, where t ∈ [0;1] is real, from
the non-singular λ∗ = φ(0) = 1 to the singular λ1 = φ(1) = 0. In the non-singular
level sets Vφ(t), 0 ≤ t < 1, the spheres St = √

1 − tSn−1 appear. If an orientation of
Sn−1 is chosen, then the St ’s are oriented as well. The integer homology Hn−1(V∗)
is generated by the homology class [S0] = 
 ∈ Hn−1(V∗), called a vanishing cycle,
as St vanishes (degenerates to a point) at t = 1. The case n = 2 is shown on Fig. 4.

For a singularity f of multiplicity μ we select μ vanishing cycles in the following
way. Take a generic complex line C

1 in C
μ through a fixed non-singular value λ∗.

This complex line intersects �f at μ different points, say, λ(1), . . . , λ(μ). Each of λ(j)

corresponds to a non-degenerate critical point. In the language of deformations, we
choose a generic one-parameter deformation of f . Then for each of μ different val-
ues of the parameter, λ(1), . . . , λ(μ), the corresponding level set has a non-degenerate
singular point.

Let the points λ∗ and λ(j) are located on the complex line C
1 as shown on Fig. 5.

Exactly as in Example 3.3, the fiber V∗ contains an (n−1)-dimensional sphere which
vanishes along the segment [λ∗;λ(j)]. Denote by 
j ∈ Hn−1(V∗) its homology class.
The μ loops of Fig. 5, originating at λ∗, generate π1(C

1 \ (C1 ∩ �f ),λ∗). Hence by
a theorem of Zariski they generate also π1(�̂, λ∗).

Example 3.4 For the A2-singularity x3, take a one-parametric deformation F(x,λ) =
x3 − 3x − λ. Any non-singular level consists of three points, V∗ = {x1, x2, x3}.
Assume that these points are real and x1 < x2 < x3. Take λ∗ = 0. Then
V∗ = V0 = {−√

3,0,
√

3}. Exactly two values, λ = ±2, lie on the discriminant:
V±2 = {∓1,±2}. The points x = ∓1 ∈ V±2 are non-degenerate critical points,
x3 − 3x ∓ 2 = (x ± 1)2(x ∓ 2). The cycle 
1 = [x2] − [x1] (resp. 
2 = [x3] − [x2])
vanishes along the segment [0;2] (resp. [0;−2]). These two cycles form a basis in
H0(V∗) ∼= Z

2 (in the case n = 1 the homology are assumed to be reduced modulo a
point). The monodromy along the loop going around λ = 2 permutes x2 and x1, and
going around λ = −2 permutes x3 and x2, see Fig. 6.
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Fig. 5 Construction of a vanishing cycles basis

3.1.9 Intersection Matrix and Picard–Lefschetz Formula

The non-singular level set V∗ ⊂ C
n is an oriented manifold of real dimension

(2n − 2), therefore the intersection index (· ◦ ·) in the integer homology Hn−1(V∗) ∼=
Z

μ is a well-defined Z-bilinear form. The matrix (
i ◦ 
j)1≤i,j≤μ is called the in-
tersection matrix of a singularity.

In particular, the self-intersection index of every vanishing cycle 
j is

(
j ◦ 
j) = (−1)(n−1)(n−2)/2(1 + (−1)n−1). (7)

It depends on n: it vanishes for even n, and it equals ±2 for odd n.
The intersection matrix of a singularity changes under stabilization, however it

changes in a predictable way. Namely, let f̃ be obtained from f by adding the squares
of m additional variables. The loops γj ’s of Sect. 3.1.8 define also the vanishing
cycles 
̃j for f̃ , up to orientation. By a theorem of S. Gussein–Zade (1977), for a
suitable choice of orientation,

(
̃i ◦ 
̃j ) = (sign(j − i))m(−1)mn+m(m−1)/2(
i ◦ 
j).

Therefore a class of stably equivalent singularities has exactly four distinct intersec-
tion matrices which can be reconstructed from one another. Two of them are sym-
metric, and two are skew-symmetric, differing by sign.

Continuation of Example 3.4 For the singularity A2, it is easy to write down the
four intersection matrices corresponding to the vanishing cycles 
1,
2 and to n ≡
1,2,3,0 (mod 4), respectively:(

2 −1
−1 2

)
,

(
0 1

−1 0

)
,

(−2 1
1 −2

)
,

(
0 −1
1 0

)
.
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Fig. 6 Construction of a basis
of vanishing cycles for
A2-singularity

The case of the Ak-singularity is similar. There are k vanishing cycles 
1, . . . ,
k .
The intersection matrix for n ≡ 3 (mod 4) has (−2)’s on the diagonal, 1’s on sub-
and superdiagonals, while all other matrix elements vanish.

For a singularity of multiplicity μ, the monodromy group is generated by μ

Picard–Lefschetz operators,

hj : Hn−1(V∗) → Hn−1(V∗), 1 ≤ j ≤ μ,

where hj corresponds to the loop γj (or to the vanishing cycle 
j ) described in
Sect. 3.1.8. In terms of the intersection index,

hj (σ ) = σ + (−1)n(n+1)/2(σ ◦ 
j)
j , ∀σ ∈ Hn−1(V∗). (8)

End of Example 3.4 For the A2 singularity, we easily calculate the matrices of the
operators h1 and h2 in the basis 
1,
2,

[h1] =
(−1 0

1 1

)
, [h2] =

(
1 1
0 −1

)
.

3.1.10 Dynkin Diagram of a Singularity

The intersection matrix of a class of stably equivalent singularities, in a chosen ba-
sis of vanishing cycles, can be described by a graph called the Dynkin diagram of a
singularity. Take n ≡ 3 (mod 4), so that the intersection matrix is symmetric, with
(−2) on the diagonal. The vertices of the graph correspond to the vanishing cycles

1, . . . ,
μ; the edge between 
i and 
j has multiplicity |(
i ◦ 
j)|; if the inter-
section index is negative, the corresponding edge is dotted.

The intersection matrix and the matrices of Picard–Lefschetz operators are easily
reconstructed from the Dynkin diagram.
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Fig. 7 Dynkin diagrams of reflection groups

In the case A2 we get • •. For the singularity Ak , the diagram contains k vertices:

Ak • • · · · • • . (9)

3.2 Simple Singularities and Reflection Groups

3.2.1 Simple Singularities

We use the notation of Sect. 3.1.1.
A holomorphic function f ∈ mn has a simple singularity at O , if a neighborhood

of f in On is covered by a finite number of orbits. In other words, small deformations
of a simple singularity give only a finite number of singularities.

The simple critical points of holomorphic functions are as follows

Ak, k ≥ 1 Dk, k ≥ 4 E6 E7 E8

xk+1 + y2 x2y + yk−1 x3 + y4 x3 + xy3 x3 + y5 (10)

The multiplicity is given by the subscript. If the number of variables is greater than
two, one should add a non-degenerate quadratic form of the missing variables. It is
an easy exercise to write down versal deformations. Dynkin diagrams of the simple
singularities are presented on Fig. 7.

The interaction between the simple singularities of holomorphic functions and ir-
reducible finite reflection groups goes in both directions. Starting with a reflection
group, one can get a singularity, together with its versal deformation and the discrim-
inant.
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Fig. 8 Reflection group A2

3.2.2 Arnold’s First Example

We reproduce here Arnold’s explanation of how the singularity A2 appears in the
study of the corresponding reflection group, [17, pages 60–61]. This was one of his
favorite examples.

In the Euclidean plane R
2, take three lines passing through the origin so that the

angle between each pair of these lines equals 2π/3. The group A2 is generated by
the reflections in these lines. It contains six elements, and a regular (generic) orbit
consists of six distinct points, see Fig. 8.

Identify R
2 with the plane � = {x1 + x2 + x3 = 0} lying in the Euclidean space

R
3 equipped with coordinates x1, x2, x3. The group A2 acts on R

3 by permutation
of the coordinates. This action is generated by reflections in the mirrors xi = xj ,
1 ≤ i �= j ≤ 3. Its restriction to the invariant plane � coincides with the original
action of A2. The orbits in � are unordered triples of real numbers with zero sum.
The regular orbits are the triples of different numbers, and the irregular ones are the
triples where two or three numbers coincide.

Now complexify the picture: the 3-dimensional space, the plane �, the mirrors, the
reflections and the group action. In other words, assume that x1, x2, x3 ∈ C and keep
all the formulas. The complexified orbit space consists of the unordered triples of
complex numbers with zero sum. Treating an unordered triple as the roots of a cubic
monic polynomial, x3 + λ1x + λ2, (λ1, λ2) ∈ C

2 (the coefficient of x2 vanishes, by
the Vieta Theorem), we get a set of complex polynomials {x3 + λ1x + λ2} ∼= C

2
λ1,λ2

.
The map (x1, x2, x3) �→ (λ1, λ2) from � to the orbit space is the Vieta map. The

orbit defined by (λ1, λ2) ∈ C
2 is regular if and only if x3 +λ1x +λ2 has three distinct

roots. The image of the mirrors under the Vieta map is the IO (irregular orbits) variety
of the group.10

We see that the complexified orbit space is exactly the base of a versal deformation
of the singularity A2, and the IO variety is exactly the discriminant of the singularity
A2, cf. Example 3.2(1). The real part of the Vieta map is shown on Fig. 8.

10It is also called the discriminant of a reflection group; we follow Arnold’s initial terminology (see
e.g. [14]), in order not to confuse with the discriminant of a singularity.
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Similarly, the group Ak acts on the hyperplane

�k = {x1 + · · · + xk+1 = 0} ⊂ R
k+1

and is generated by reflections in the mirrors xi = xj , 1 ≤ i �= j ≤ k. After the com-
plexification, the orbit space is identified with complex polynomials

{xk+1 + λ1x
k−1 + · · · + λk−1x + λk} ∼= C

k

which is the base of a versal deformation of the holomorphic singularity xk+1, and
the image of mirrors is the (generalized) swallowtail surface, i.e., the discriminant of
the singularity Ak , cf. Example 3.2(2).

3.2.3 Root Systems

The group Ak is known as the Weyl group of the root system of the simple Lie algebra
sl(k + 1). Recall some preliminaries [29].

A root system R is a finite system of non-zero vectors, called roots, in a finite
dimensional Euclidean space (E, (·, ·)) satisfying the following properties:

• the roots span E;
• if �v ∈ R, then −�v ∈ R is the only11 scalar multiple of �v in R;
• for every two roots �v, �u ∈ R, the reflection of �u in the hyperplane orthogonal to �v,

is also a root:

�u − 2(�v, �u)

(�v, �v)
�v ∈ R.

The reflections in the hyperplanes orthogonal to the roots generate the reflection
group called the Coxeter group of the root system.

If in addition 2(�v, �u)/(�v, �v) ∈ Z for every two roots �v, �u ∈ R, then the root system
is called crystallographic. The corresponding reflection group preserves the integer
lattice generated by the roots.

Any crystallographic root system has a set of simple roots: they form a basis in E,
and each root with respect to this basis has either all non-negative or all non-positive
integer coordinates.

Moreover, any pair of non-orthogonal simple roots �v, �u is in one of the following
positions:12

(1) they are of the same length and form an angle 2
3π ;

(2) the ratio of their lengths is
√

2, and they form an angle 3
4π ;

(3) the ratio of their lengths is
√

3, and they form an angle 5
6π .

11This condition means that R is reduced; however, we do not consider non-reduced root systems. Also,
we consider only irreducible root systems (that is, they can not be decomposed into a sum of root systems
of smaller-dimensional spaces).
12This follows from the condition 2(�v, �u)/(�v, �v) ∈ Z and the fact that the angle between two non-
orthogonal simple roots should be obtuse.
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There is a one-to-one correspondence between the irreducible crystallographic
root systems and the simple Lie algebras; the corresponding reflection groups are
the Weyl groups of the simple Lie algebras, [29].

Initially, Dynkin diagrams were introduced to describe root systems. The vertices
of the Dynkin diagram correspond to the simple roots, and the edge between two ver-
tices has multiplicity 1, 2, or 3, according to the three possibilities (no edge between
orthogonal roots). Edges of multiplicity 2 and 3 are oriented from the longer root to
the shorter one.

Example 3.5 Root System Ak The roots of Ak are ei − ej , 1 ≤ i �= j ≤ k + 1,
where {e1, e2, . . . , ek+1} is an orthonormal basis in R

k+1; all the roots have the same
length

√
2; the simple roots are ej+1 − ej , 1 ≤ j ≤ k; simple roots ej+1 − ej and

ei+1 −ei are orthogonal for |i −j | > 1. Thus the root system Ak has the same Dynkin
diagram as the singularity Ak , see (9).

In particular, for A2 the are two simple roots: e2 −e1 and e3 −e2. They correspond
to the vanishing cycles 
1,
2 of Example 3.4, see Fig. 6.

The irreducible crystallographic root systems, the corresponding Weyl groups, and
the simple Lie algebras are classified by the Dynkin diagrams of Fig. 7. Those hav-
ing the roots of the same length (simply laced) are Ak,Dk,E6,E7,E8. In fact, this
was the reason why Arnold had chosen the notation for the simple singularities, see
Sect. 3.2.1.

The root systems Ak and Dk correspond to the Lie algebras sl(k + 1) and so(2k),
respectively. The Weyl group Ak acts by permutations of coordinates in �k ⊂ R

k+1,
see the end of Sect. 3.2.2. The Weyl group Dk acts on R

k by permuting the coordi-
nates and changing an even number of their signs. The root systems Ek , k = 6,7,8,
are exceptional and have no simple description. The root system E6 consists of 72
roots, E7 of 126 roots, and E8 of 240 roots that span R

6, R
7, and R

8, resp.13 These
root systems define the corresponding simple Lie algebras and the Weyl groups, [29].

3.2.4 From Simple Singularities to Reflection Groups

Let f ∈ mn and n ≡ 3 (mod 4). The intersection index in the integer homology of a
non-singular level V∗ defines a symmetric bilinear form, see Sect. 3.1.9.

Theorem 3.6 [11] The simple singularities (10) are exactly the singularities possess-
ing the non-degenerate sign-definite bilinear forms.

The bilinear forms are negative definite. Therefore if a simple singularity f has
multiplicity μ, then the minus intersection index defines a canonical Euclidean scalar
product (·, ·) = −(·◦ ·) on the homology Hn−1(V∗;R) ∼= R

μ (with coefficients in R!).
The real monodromy group acting on Hn−1(V∗;R) is generated by the Picard–
Lefschetz operators (8) which appear to be the reflections in the hyperplanes orthog-
onal to the corresponding vanishing cycles. Clearly monodromy does not change the

13At http://en.wikipedia.org/wiki/Root_system#E8.2C_E7.2C_E6 the roots systems
are nicely pictured.

http://en.wikipedia.org/wiki/Root_system#E8.2C_E7.2C_E6
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intersection index. Thus the real monodromy group becomes a finite reflection group
keeping the integer lattice Hn−1(V∗) ⊂ Hn−1(V∗;R), i.e., it is a crystallographic re-
flection group.

Theorem 3.7 [11] For each of the simple singularities (10), the basis of vanishing
cycles in the homology of a non-singular level coincides with the set of simple roots
of the root system of the same name, and the monodromy group is the Weyl group of
this root system.

By (7), all vanishing cycles have the same length,
√

2, hence for a simple singu-
larity the root system is one of Ak,Dk,E6,E7,E8. All the possibilities are realized,
as the comparison of the lists shows.

Moreover for any simple singularity, the complex homology Hn−1(V∗;C) =
Hn−1(V∗;R)⊗C C ∼= C

μ is the complexification of the Euclidean Hn−1(V∗;R) ∼= R
μ,

together with the roots, the mirrors and the monodromy group action, exactly as in
Arnold’s example of Sect. 3.2.2. The orbit space is biholomorphically diffeomorphic
to C

μ, and the image of mirrors under the Vieta map is the variety of irregular orbits
(IO variety).

Theorem 3.8 [11] For each of the simple singularities (10), the pair {the base of a
versal deformation, the discriminant} is diffeomorphic to the pair {the orbit space,
the IO variety} of the complexified action of the Weyl group of the same name.

3.2.5 Hunting for Other Reflection Groups

In Arnold’s paper [13] of 1978, the Weyl groups whose Dynkin diagrams have a
double edge, Bk,Ck,F4 of Fig. 7, came up in connection with the simple boundary
singularities, in a quite similar to the A − D − E case way.

Arnold’s “complexification of a manifold with boundary”, that is, the double cov-
ering ramified along the boundary, provides a direct relation between the boundary
singularities and the Z2-symmetric singularities. The only lacking Weyl group G2
appears in connection with the only simple Z3-symmetric singularity.

In 1979, Arnold published a paper [14] where the relation between the simple
singularities and the Weyl groups was made more deep and explicit. In particular,
the local algebra Qf of a simple singularity f of multiplicity μ was identified with
the cotangent space at the origin, T ∗

OB , to the orbit space B = C
μ/W ∼= C

μ of the
complexified action of the corresponding reflection group W .

The Weyl groups are the irreducible finite reflection groups keeping a lattice.
A wider class is provided by the Coxeter groups, i.e., the finite groups generated
by Euclidean reflections. The additional, non-crystallographic, irreducible Coxeter
groups are described by the Dynkin diagrams H3, H4 and I2(p),p ≥ 5, see Fig. 7.
The groups I2(p) are the symmetry groups of p-gons14 in R

2, H3 is the symmetry
group of the icosahedron in R

3, and H4 is the symmetry group of the ‘hypericosahe-
dron’, a regular polytope in R

4 with 120 vertices and 600 faces.

14The group I2(5) is denoted also by H2.
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The question arose: What singularities correspond to these Coxeter groups?
Arnold wrote about that fascinating period, [16, Introduction]:

“The search of other reflection groups (H2,H3,H4; I2(p)) started immediately.
During the fall 1982 the joint efforts of O.V. Ljashko, A.B. Givental, O.P. Shcherbak
and the author [V. Arnold] led to the discovery of the icosahedron symmetry
group H3; it controls the singularities of the ray system and the fronts in the vari-
ational problem of fastest bypassing of a plane obstacle bounded by a generic curve
with an inflection point. . . O.P. Shcherbak has found in 1984 the most complicated
‘hypericosahedron’ H4, related to a singularity in the obstacle problem in 3-space”.
See [51] for details.

4 Lagrangian Singularities

In order to understand the unexpected cancelation of many terms in dull and
long computations, the strange similarity of bifurcation diagrams in apparently
unrelated problems and the mysterious appearance of the regular polyhedra
in problems of applied mathematics, one has to replace the straightforward
computations in differential geometry by the simple and general approach of
symplectic and contact geometry.

V.I. Arnold, Singularities of caustics and wave fronts

Now, after a brief tour of singularity theory, let us return to Lagrangian submani-
folds of a symplectic manifold (M2n,ω) introduced in Sect. 2.

A fibration M2n � Bn is called Lagrangian if it has Lagrangian fibers. For fixed n,
all Lagrangian fibrations are locally equivalent to the standard example

T ∗
R

n ∼= R
2n � R

n, (p, q) �→ q,

where q is the coordinate on R
n, and T ∗

R
n is the cotangent bundle with the Darboux

coordinates (p, q), see (2).
Let L ↪→ M2n be an immersed Lagrangian submanifold in the space of La-

grangian fibration M2n � Bn. The projection of L to B is called a Lagrangian map.
The critical values of a Lagrangian map form its caustic.

A Lagrangian equivalence between two Lagrangian maps L1 ↪→ M1 � B1 and
L2 ↪→ M2 � B2 is a symplectomorphism M1 → M2 taking the fibers of M1 � B1
to the fibers of M2 � B2 and taking L1 to L2. A Lagrangian singularity is a germ of
a Lagrangian map considered up to a Lagrangian equivalence. The caustic is deter-
mined by a Lagrangian singularity, up to a diffeomorphism of the base Bn.

The classification of Lagrangian singularities was reduced in [11] to that of fami-
lies of functions. The key role here is played by the notion of a generating function.
Namely, any Lagrangian submanifold L ↪→ T ∗

R
n � R

n is given locally by a gener-
ating function F(x, q) in the following way:

L = {(p, q)|∃x : ∂F/∂x = 0,p = ∂F/∂q}. (11)

Note that F(x, q) is defined up to an additive constant, and therefore it can be treated
as a deformation of F(x,0) in mn, cf. the end of Sect. 3.1.5.
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Fig. 9 Fronts and the caustic of an ellipse

Theorem 4.1 ([11, 12]) Generating functions of generic Lagrangian singularities
are truncated versal deformations of isolated singularities. In particular, any generic
caustic at any point is diffeomorphic to the function bifurcation set of an isolated
singularity.

In particular, for n ≤ 5 all Lagrangian singularities correspond to the truncated
versal deformations of simple singularities. For n = 2, the caustic is a plane curve,
and the only stable singularities are self-intersections and cusps.

Arnold’s Second Example In yet another favorite example of Arnold, Lagrangian
singularities appear in a wave propagation problem ([18, Introduction]).

Consider a velocity 1 wave propagation inside an ellipse E in the Euclidean plane
R

2. By definition, the wave front �s is formed by the points q + sν(q) where q ∈ E

and ν(q) is the inward normal to E at q . For small s the wave front is simply an
equidistant of the ellipse. It is clearly smooth. When s increases, the front acquires
self-intersection points and cusps, see Fig. 9. Later on, propagating beyond the el-
lipse, the wave front becomes smooth again. The cusps of the propagating front fill a
curve called the caustic.15 In the example the caustic is an astroid and has 4 cusps.

The “distance function” s is a multivalued function on the plane R
2 whose level

sets are the wave fronts. Consider its graph in the 3-dimensional space R
2
q × Rs . It

is obtained by lifting each wave front �s to height s. Comparing Figs. 3 and 9 we
observe that in a neighborhood of the focus of the ellipse, the graph is diffeomorphic
to the swallowtail surface near the vertex, that is to the discriminant of A3! This
singularity is stable: after a slight perturbation of the ellipse, the graph of the distance
function will have the same singularity at a nearby point. The caustic near the focal
point is diffeomorphic to the bifurcation set of A2 singularity, cf. Fig. 2.

We conclude that the surface formed by polynomials with a real multiple root
in the 3-dimensional space of polynomials {x4 + λ1x

2 + λ2x + λ3}, near the point
corresponding to x4, governs the wave front propagation: when the wave front passes
through the focus it changes the shape (bifurcates) in the same way as the sections
of the swallowtail surface by planes λ1 = const change when λ1 passes through 0
(Fig. 3).

15Geometrically, the caustic is the envelope of the normal lines to the ellipse. The self-intersection points
of a propagating front fill another curve called the Maxwell stratum which is also studied in singularity
theory, [18, Chap. 2], [23, 24, vol. II, Chap. 2, Sect. 3].
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Fig. 10 Stable singularities of fronts and caustics in R
3

In fact, the generic singularities of both fronts and caustics in R
3 all are diffeo-

morphic to irregular orbit varieties of the Euclidean reflection groups,16 including
possible transversal intersections of these surfaces, as is shown on Fig. 10.

Now let us describe the wave propagation process above in symplectic terms.
Again, at each point q ∈ E of the ellipse consider its inward unit normal ν(q). Define
a co-vector ν̂(q) ∈ T ∗

q R
2 by 〈ν̂(q), ξ 〉 := (ν(q), ξ) for all ξ ∈ TqR

2 (recall that (·, ·)
is the scalar product). The curve Ê := {(ν̂(q), q), q ∈ E} is a lift of the ellipse E to
T ∗

R
2. Let

gs : T ∗
R

2 → T ∗
R

2, (p, q) → (p, q + sp)

be the Euclidean geodesic flow (recall that the wave propagation velocity is 1, so the
distance s may be identified with the time). Under the action of the flow, the curve Ê

sweeps out a Lagrangian submanifold L := ⋃
s gs(Ê) in T ∗

R
2.

The wave front �s is given by π(gs(Ê)), where π : T ∗
R

2 → R
2 is the natural

projection (p, q) �→ q . The caustic is the set of critical values of the projection π |L.
Let us describe the Lagrangian singularity L ↪→ T ∗

R
2 � R

2 near the focus z

of the ellipse E. Choose a parameterization E(x), x ∈ (−ε, ε), of an arch of the
ellipse E so that E(0) = q0 is the endpoint of the major semi-axis containing z, see
Fig. 8. Then the distance function F(x, q) := |q − E(x)| is a generating function of
L, cf. (11). We conclude that the partial derivatives ∂kF/∂xk for k = 1,2,3 vanish
at (0, z), while the fourth derivative does not vanish.17 Thus (cf. Theorem 4.1) the
Lagrangian submanifold L near the preimage (π |L)−1(z) of the focus z is equivalent
to the one defined by the truncated versal deformation G(x,λ) := x4 + λ1x

2 + λ2x

of the A3-singularity. The caustic near the focus z is diffeomorphic to the function

16Here we deal with real analytic germs. Some complex singularities have non-equivalent real forms, e.g.

the germs D±
4 are given by x2

1x2 ± x3
2 , cf. a footnote in Sect. 3.1.2.

17The argument is as follows: the osculating circle centered at a generic point of the plane has tangency
of order 2 with the ellipse; the centers of the osculating circles having tangency of order 3 form a line (the
caustic); finally, some isolated points on this line are the centers of the osculating circles having tangency
of order 4. In the example, there are four such points on the caustic, two of them are focuses of the ellipse.
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bifurcation set of A3. The latter is just the discriminant of the A2-singularity, that is,
a semi-cubical parabola, see the end of Sect. 3.1.5.

Further, given a point q near the focus and a value of the parameter x near 0 so
that ∂F/∂x(x, q) = 0, we have

q = E(x) + F(x, q) · ν((E(x)),

so (non-surprisingly!) the wave originating at E(x) reaches q when s = F(x, q). In
other words, q ∈ �s , where s = F(x, q).

Thus the set

W = {(s, q)|∃x ∈ (−ε, ε) : ∂F/∂x(x, q) = 0, s = F(x, q)} ⊂ R × R
2

is the graph of the (multivalued) distance function. In view of the discussion above,
this set is locally diffeomorphic to the discriminant of the A3-singularity, that is, to a
swallowtail surface.

Interestingly enough, generating functions of Lagrangian submanifolds in cotan-
gent bundles serve as a powerful tool in global symplectic topology (see e.g. [33]).

Let Xn be a closed manifold and L ⊂ T ∗X be a closed Lagrangian submanifold.
We say that F : Xn × R

N → R is a generating function of L if (under certain addi-
tional regularity conditions on F )

L = {(p, q)|∃x : ∂F/∂x(x, q) = 0, p = ∂F/∂q(x, q)}.
It turns out [30, 52] that if L is the image of the zero section X of T ∗X under a

Hamiltonian diffeomorphism, then L admits a generating function F(x, q) = Fq(x)

which is quadratic at infinity in x: outside a compact set, Fq(x) is a non-degenerate
quadratic form. Note that the critical points of Fq(x) are in one-to-one correspon-
dence with the intersection points L ∩ X. Therefore, when L is transversal to X, an
easy Morse-theoretical argument shows that the number of intersection points does
not exceed the sum of Betti numbers of X.

The appearance of generating functions both in singularity theory and in symplec-
tic topology manifests a fruitful interaction between these fields. In conclusion, let us
mention two more examples of such an interaction. Symplectic features of the mon-
odromy group of a singularity, highlighted in Arnold’s paper [25], stimulated a dis-
covery by Seidel [50] of a new class of symplectically knotted Lagrangian spheres in
symplectic four-manifolds. Furthermore, there exists a profound interaction between
singularity theory and mirror symmetry, for which we refer to Givental’s article [36].

Acknowledgements We thank Hansjörg Geiges and Maxim Kazarian for valuable comments on the
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1. This book is devoted to a mathematical presentation
of a simplified version of the so-called “von Karman”
equations, which model the dynamics of the vertical
oscillations of an elastic two-dimensional plate, due
to various types of forces. The general form of these
equations is as follows. Let � be a bounded domain
of R

2 and denote its points by x = (x1, x2). Given two
functions v, w : � → R, define a third function for-
mally by

[v,w] := v11w22 + v22w11 − 2v12w12 (1)

where vij := ∂i∂j v, and note that, if w = v,

[v, v] = 2det

(
v11 v12
v21 v22

)
; (2)

that is, [v, v] is twice the determinant of the Hessian matrix of v. In addition,
denote by � := ∂2

1 + ∂2
2 the Laplace operator in �. Given a non-negative pa-

rameter α ∈ R≥0, two functions F0 = F0(t, x) and p = p(t, x) defined on Q :=
R≥0 × �, and a first order differential operator L with smooth coefficients in Q,
one tries to determine a function u = u(t, x) satisfying the system of partial dif-
ferential equations (PDEs)

utt − α�utt + �2u − [u,v + F0] + Lu = p, (3)

�2v + [u,u] = 0. (4)
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In this system, the unknown u represents the vertical displacement of the plate;
v represents the so-called “Airy stress function”, which is related to the internal
elastic forces acting on the plate, and depends on the deformation u of the plate,
as described by (4). The four terms α�utt , [u,F0], Lu and p of (3) are related
to different types of forces acting on the plate; specifically to rotational inertial
forces, internal forces, non-conservative feed-back forces, and transverse forces,
respectively. Note that the model (3) + (4) does not take into consideration the
accelerations due to horizontal displacement of the plate. Equation (4) is supple-
mented by the boundary conditions

v|∂� = 0, ∇v|∂� = 0, (5)

while u satisfies one of three different types of boundary conditions (BC); namely,
either the CLAMPED BC

u|∂� = 0, ∇u|∂� = 0 (6)

(as in (5)), which require that the plate be fixed and remain horizontal at the bound-
ary; or the HINGED BC

u|∂� = 0, �u|∂� = 0, (7)

which require that the plate be fixed, but allowed to pivot at the boundary (the term
�u in (7) represents the so-called “bending moment” of the plate); or the FREE

BC

(�u + (1 − μ)B1u)|∂� = 0,

(n · ∇(�u − αutt ) + (1 − μ)B2u − νu)|∂� = 0,
(8)

where μ ∈ [0,1] and ν ≥ 0 are constants with a specific physical meaning; B1 and
B2 are second-order boundary differential operators, naturally arising from inte-
gration by parts, and n denotes the outward normal to ∂�. Numerous variations
of these BC are also considered, including nonlinear ones. The BC may also be
mixed, in the sense that u should satisfy different BC on different parts of ∂�.
Finally, u is subject to the initial conditions

u(0, x) = u0(x), ut (0, x) = u1(x), (9)

where u0 and u1 are given functions on �.
2. The resulting initial-boundary value problems (IBVPs) are first reformulated in

abstract form in a suitable frame of Banach spaces, and solved by means of either
non-linear semigroup theory or Galerkin approximation schemes. Depending on
the assumptions on the data, the solutions obtained are strong, weak, or general-
ized; however, they are global in time, at least in the sense that they are defined
on finite, but arbitrary time intervals [0, T ]. More precisely, strong (respectively,
weak) solutions of (3) + (4), are pairs (u, v) such that

(u, v) ∈ C0([0, T ];X1 × X2) ∩ C1([0, T ];Y1 × Y2) (10)
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(respectively,

(u, v) ∈ W 0,∞(0, T ;X1 × X2) ∩ W 1,∞(0, T ;Y1 × Y2)), (11)

where, for i = 1,2, Xi and Yi are Banach spaces of functions on �, with Xi ↪→ Yi ;
generalized solutions are generally defined as limits, in a suitable topology, of
sequences of strong solutions. An analogous representation holds for solutions of
systems of more than two unknowns. In general, the spaces Xi and Yi are closed
subspaces of suitable Sobolev spaces on �, whose degree of regularity is also part
of the distinction between weak and strong solutions. The challenge is, of course,
to determine the spaces Xi and Yi in such a way as to conveniently describe the
various types of boundary conditions; for example, for strong solutions of the
IBVP with the hinged BC (7) for u, and the clamped BC (5) for v, it is natural to
choose {

X1 = {u ∈ H 3(�) ∩ H 1
0 (�) | �u ∈ H 1

0 (�)},
Y1 = H 2(�) ∩ H 1

0 (�),
(12)

X2 = H 2
0 (�), Y2 = H 1

0 (�). (13)

In the a priori estimates that are required to implement these methods, a fun-
damental role is played by the properties of the bracket [v,w]; more precisely, to
estimate the products appearing in (1), the usual Sobolev product estimates need to
be supplemented by more refined estimates in appropriate Besov-Lizorkin-Hardy
spaces. This solution theory is presented in the first half of the book, together with
a number of extensions, such as, for example, thermo-elastic plates, when the de-
formation of the plate is caused also by heat (in the corresponding model, (3) is
coupled with a linear heat equation describing the evolution of the temperature
of the plate), or plates immersed in a gas, in which the pressure p in (3) depends
in various way on the velocity potential of the flowing gas, which in turn also
depends on the displacement u and its first order derivatives.

3. Since the solutions of the IBVPs are defined for all t ≥ 0, each IBVP defines a
semiflow S = (S(t))t≥0 of operators (in general, nonlinear) S(t) : Z → Z, where
Z is a suitable Banach space, called the “phase space” of the semiflow. This means
that: (i) S(0) = I ; (ii) S(t1 + t2) = S(t1)S(t2) = S(t2)S(t1); (iii) For each z0 ∈ Z,
the map t �→ S(t)z0 is continuous from [0,+∞[ into Z; (iv) For each t ≥ 0, the
map S(t) is continuous from Z into itself. The set (S(t)z0)t≥0 is called the forward
trajectory starting at z0. For example, system (3)+ (4) can be rewritten as a single
equation, replacing into (3) the functional dependence v = �(u) defined by (4). In
this case, Z = X1 × Y1, and if u is the strong solution of this equation, with initial
values u0 and u1 as in (9), and the hinged BC (7), the corresponding semiflow is
defined by

S(t)(u0, u1) = (u(t), ut (t)). (14)

Indeed, condition (i) is trivial; condition (ii) holds because the equations are au-
tonomous; condition (iii) holds, because the solution is differentiable in t , and
condition (iv) is a consequence of the continuity of the solution with respect to its
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initial values. Of course, these conditions (in particular, the last one), have to be
checked in each example. The second part of the book is devoted to the asymptotic
properties, as t → +∞, of the solutions of each IBVP, which are studied in terms
of the long-time behavior of the trajectories, considered as subsets of the phase
space Z. In the context of semiflow theory, this is usually achieved by showing
the existence of some subset of Z which attracts the orbits (in a suitable sense).
The three most important attracting sets, which are also the sets considered in this
book, are the global attractors, the exponential attractors, and the inertial mani-
folds. Roughly speaking, the global attractor is a compact set A ⊂ Z, invariant
under S (that is, S(t)A = A for all t ≥ 0), which has finite fractal dimension and
attracts all orbits; an exponential attractor is a compact set E , positively invariant
under S (that is, S(t)E ⊆ E for all t ≥ 0), which has finite fractal dimension and
attracts all bounded sets with an exponential rate; an inertial manifold is a finite-
dimensional Lipschitz submanifold of Z, which is positively invariant and attracts
all trajectories exponentially. The fact that an attractor has a finite dimension al-
lows for “reducing” the study of the asymptotic behavior of an infinite dimensional
dynamical system, such as those generated by PDEs, to finite-dimensional ones,
that is, essentially, to a system of ODEs (this is, in essence, the spirit of Mañé’s
theorem). A necessary condition for the existence of all these attracting sets is the
existence of a bounded, positively invariant attracting set; this property is usually
known as “dissipativity” of the semiflow, and generally follows from some sort
of damping term, present in the PDEs, or in the BC. The first two chapters of the
second part of the book present the main properties of semiflows, and a number
of sufficient conditions on a dissipative semiflow, that guarantee the existence of
some of these attracting sets. In the remaining chapters, it is shown that the dissi-
pative semiflows generated by the dynamical systems corresponding to the IBVPs
studied in the first part of the book do satisfy some or all of these conditions,
and therefore admit one or all of the corresponding attracting sets. Included are
many results on the estimate of the dimension of the global and the exponential
attractors.

4. In conclusion, this book is a comprehensive presentation of virtually all that is
presently known on the von Karman evolution equations in two space dimen-
sions, together with the necessary theoretical background on semiflows. As such,
it requires a somewhat demanding effort from the reader, whose tenacity, how-
ever, will be rewarded by the wealth of information that this book supplies and
provides.
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Mathematische Resultate werden gewöhnlich mit einer
Beschreibung der Rahmenbedingungen in Form von „Ge-
geben sei . . . “ eröffnet. Man möge sich einmal vorstellen,
was geschähe, wenn diese Art von Selbstbedienung nicht
greift und Studierenden bzw. Anwendern relevante Infor-
mationen vorenthalten würden. Eine absurde Vorstellung?
Nicht ganz, sondern im Gegenteil Alltag des Statistikers.
Statt präziser Vorgaben liegt die Information in der Regel
lediglich in Form von diskreten Daten vor, und das Ziel
könnte darin bestehen, daraus möglichst fehlerfrei inter-
essierende Funktionen zurückzugewinnen. Die vorliegen-
de Monographie beschäftigt sich in 15 Kapiteln eingehend
mit der Fehleranalyse von statistischen Schätzverfahren in

unterschiedlichen Szenarien. Testprobleme werden (in Kapitel 16) nur am Rande be-
handelt. Teil 1 diskutiert in 7 Kapiteln Schätzverfahren in parametrischen Modellen,
Teil 2 konzentriert sich auf Fragestellungen im Rahmen der Nichtparametrischen Re-
gression (Kapitel 8–12), während in Teil 3 spezielle Probleme bei der Nichtparame-
trischen Modellierung angesprochen werden.

Parametrische Modelle zeichnen sich dadurch aus, dass zu schätzende Funktionen
bis auf einen unbekannten endlich-dimensionalen Parameter vollständig festgelegt
sind. Die Autoren beschränken sich grundsätzlich auf den Fall eindimensionaler Pa-
rameter, was man didaktisch begründen kann. Letztendlich ist man damit jedoch nicht
in der Lage, einfachste Normalverteilungsmodelle adäquat zu behandeln. Ausgangs-
punkt der Untersuchungen ist die Cramér-Rao-Ungleichung, die eine untere Schranke

W. Stute (�)
Gießen, Deutschland
e-mail: Winfried.Stute@math.uni-giessen.de

mailto:Winfried.Stute@math.uni-giessen.de


226 W. Stute

für den Mean Square Error (MSE) eines Schätzers (im regulären Fall) darstellt. Wird
diese Schranke angenommen, kann man sich sicher sein, dass man damit das Opti-
mum erreicht hat. In vielen Fällen hängt diese Schranke vom Parameter ab, so dass
die Frage auftaucht, ob anstelle eines punktuellen Vergleichs nicht integrierte Fehler
(Bayes Risiko) oder maximale Fehler zu betrachten seien. Will man den maximal
zu erwartenden Schaden minimieren, führt dies zu Fragestellungen, die der Mono-
graphie ihren Namen geben (Minimaxity). Kapitel 2 behandelt den Zusammenhang
zwischen Bayes und Minimax Schätzern, und Kapitel 3 diskutiert die asymptotische
Variante. Die im Detail diskutierten Beispiele bzw. Modelle sind klassisch und ent-
stammen speziellen Exponentialfamilien. Kapitel 4–7 behandeln eher ausgewählte
Fragestellungen. So gehen die Autoren in Kapitel 4 an einigen Beispielen (wie z. B.
den Gleichverteilungen) auf irreguläre Modelle ein, während Kapitel 5 sich mit dem
Aufdecken von sogenannten Change Points beschäftigt. Dies sind unbekannte Zeit-
punkte, zu denen Verteilungsfunktionen, Dichten oder Parameter sich verändern. In
der Regel werden wieder einfache parametrische Modelle (mit eindimensionalen Pa-
rametern) betrachtet. Kapitel 6 spricht im Rahmen der Minimax Theorie sequentielle
Schätzungen an, wo also der Stichprobenumfang zu Beginn nicht geplant ist und
z. B. das Ziel darin besteht, ein zu frühes Stoppen (d. h. Anzeigen eines Wechsels)
in Form einer False Alarm Probability zu kontrollieren. Kapitel 7 diskutiert einige
klassische Aussagen zum Kleinst-Quadrate-Schätzer im Linearen Regressionsmo-
dell. Insgesamt hat man den Eindruck, dass die einzelnen Themen nur einführend
in einfachen analytisch handhabbaren Situationen behandelt werden.

Der weitaus größte Teil der Monographie ist den Teilen 2 und 3 gewidmet. Wurden
in Teil 1 ausschließlich parametrische Modelle diskutiert, so sind es nun nichtpara-
metrische. Schwerpunkt dabei bildet die nichtparametrische Regressionsschätzung,
also die Rekonstruktion einer unbekannten Funktion aus einem Scatterplot. Mathe-
matisch gesehen handelt es sich dabei um ein schlecht gestelltes Problem. Minimax
Theorie in diesem Zusammenhang bedeutet, Schätzer zu finden, die hinsichtlich ei-
nes nichtparametrischen Modells, welches sich in der Regel nur durch Annahmen
wie Lipschitz-Stetigkeit, Differenzierbarkeit etc. auszeichnet, den größten anzuneh-
menden Fehler zu minimieren. Die Untersuchungen haben das Ziel, optimale Konver-
genzraten zu bestimmen. Durch Fokussierung auf den schlimmsten anzunehmenden
Fehler geraten andere Größen wie optimale Konstanten, die von unbekannten Größen
abhängen und die Komplexität eines schlecht gestellten Problems mit ausmachen, in
den Hintergrund. Dies mag man bedauern. Ansonsten werden einige klassische Glät-
tungsverfahren diskutiert, wie Kernschätzer, Splines oder Orthogonalreihen-Schätzer.
Darüber hinaus werden sowohl Resultate für festes Design als auch für zufälliges
Design präsentiert. Als Fehlergrößen kommen lokale Abweichungen sowie globale
(z. B. L2-Abstände) zur Sprache.

Teil 3 schließlich spricht kurz einige semiparametrische Modelle (wie die additive
Regression oder das Single-Index-Modell) an.

Insgesamt gesehen bleibt nach Lesen dieser Monographie ein zwiespältiges Ge-
fühl zurück. Durchgängig überwiegt der Eindruck, nur aus einer speziellen Perspek-
tive und nicht einmal halbwegs vollständig über relevante Fragen informiert worden
zu sein. Viele Kapitel sind kurz und tippen die jeweiligen Themen nur an, häufig in
einem Szenario, was auf den kritischen Betrachter sehr speziell wirkt. Zum Schluss
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bleibt die Frage zu beantworten, ob es sich bei dieser Monographie um ein Werk
handelt, das beiden Komponenten im Titel (Mathematik und Statistik) einigerma-
ßen gerecht wird. Die Antwort ist eindeutig, wenn man weiß, dass es die Autoren
nicht einmal schaffen, ihre mathematischen Ergebnisse anhand einer Simulation, ge-
schweige denn an einem realen Datensatz, zu illustrieren.
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This in-depth book describes connections between appar-
ently unrelated topics: cellular automata, group theory, and
ring theory. I will focus on some striking results therein;
remarkably, three of the four are all related to work of John
von Neumann.

1 Cellular Automata

In his attempts at understanding life and intelligence, John von Neumann devised cel-
lular automata as complex organisms made of simple components. In biology, they
would be corals (class anthozoa); in mathematics, they consist of a graph (vertices
called cells, and edges), a finite set of states in which each cell may be, and an evolu-
tion rule specifying in which state a cell should become, dependent on its current state
and the states of its neighbours in the graph. The graph is assumed to have enough
regularity that all neighbourhoods look the same; moreover, the evolution rule is the

L. Bartholdi (�)
Göttingen, Deutschland
e-mail: laurent.bartholdi@gmail.com

mailto:laurent.bartholdi@gmail.com


230 L. Bartholdi

same at each vertex. The metaphor holds because every vertex is thought to hold a
microorganism, which may only interact with its immediate neighbours.

Von Neumann wanted the graph to be a three-dimensional lattice, so as to better
describe the physical world. It was soon understood that a two-dimensional lattice
could already give rise to extremely complex cellular automata.

One of the simplest, yet most fascinating examples is the game of life, due to John
H. Conway. In this Manichean setting, each cell may be alive or dead. The graph is
the usual square grid, with diagonals added, so that each cell has eight neighbours. A
cell resuscitates if exactly three of its neighbours are alive, and survives if two or three
of them are alive; otherwise, it dies from loneliness or overcrowding. For example,

•
• •
• •

•
↔ • • •

• • •

Cellular automata may be used to implement complex computations using simple
constituents. In fact, Conway’s game of life is Turing-complete: any calculation that
may be performed on a computer may be readily encoded into an initial configuration
of the grid, in such a way that the result of the calculation may be reread from the
grid at a later time.

This implies that most questions one may want to ask about the long-term be-
haviour of a cellular automaton do not have algorithmically-obtainable answers: “will
all cells eventually die?”; “will the organism keep growing indefinitely?”; “will two
given organisms eventually evolve to the same?”; etc.

2 Groups

The book under review advocates a more algebraic approach to cellular automata.
Let G be a finitely generated group, and fix a generating set S for G. As underlying
graph of the cellular automaton, consider the Cayley graph of G, that is, the graph
with vertex set G, and an edge from g to gs for all g ∈ G and all s ∈ S.

If A be the set of states of a cell in the automaton, the global state of the cellular
automaton is described by a function G → A. The evolution of the automaton is
described by a map AS∪{1} → A; by left-translation in G, it gives a map on functions
AG → AG. For example, the game of life of the previous section corresponds to
G = Z

2, generated by S = {(0,±1), (±1,0), (±1,±1)}. So as to obtain the proper
combination of global complexity and local simplicity, we wish G to be infinite, but
S to be finite.

The universe of infinite, finitely generated groups is split in two classes: amenable
and non-amenable groups. This notion, also due to von Neumann, is defined as fol-
lows: a group G is amenable if it admits a mean, that is, if a number μ(X) may
be assigned to every subset X of G in such a way that μ(G) = 1, μ(X � Y) =
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μ(X) + μ(Y ), and μ(gX) = μ(X) for all g ∈ G. There are sundry equivalent def-
initions of amenability, and one of the most useful ones is the fixed-point property:
every affine action of G on a non-empty convex compact set admits a fixed point.

Finite groups are amenable (set μ(X) = #X/#G); so are Abelian groups. On the
other hand, it is difficult to describe explicitly means on infinite groups. One may
define a mean on Z by μ(X) = limω #(X∩{1, . . . , n})/n, but it requires the existence
of a non-principal ultrafilter ω so as to make every bounded sequence converge (the
ordinary limit need not converge). The class of amenable groups is closed under
taking subgroups, extensions, quotients, and limits.

Non-amenable groups, on the other hand, admit paradoxical decompositions: if G

is not amenable, then there exists a partition G = A1 � · · · � Am � B1 � · · · � Bn such
that, using left translations, G = g1A1 � · · · � gmAm and G = h1B1 � · · · � hnBn. In
other words, G can be cut into finitely many pieces in such a manner that the pieces
can be rearranged using left translations, giving two copies of the original group. This
is at the heart of the Hausdorff-Banach-Tarski paradox, that claims that a ball (say,
made of solid gold) may be cut into finitely many pieces that, after rotation, may be
fit into two copies of the original ball, thus doubling the amount of gold. Indeed, the
free group F2 is non-amenable, and acts by rotations on the ball, with essentially free
orbits.

3 Gardens of Eden

Two properties of cellular automata have been singled out as being of particular in-
terest. On the one hand, the evolution map of the automaton may fail to be injective,
in which case there exist two distinct configurations of the automaton that differ in
finitely many places, and that evolve in one step to the same configuration. These
configurations, or rather their restrictions to where they differ, are called mutually
erasable patterns.

On the other hand, the evolution map may fail to be surjective; in this case, there
exists a pattern (restriction of a configuration to a finite subset of the group) that can-
not appear through evolution. Such a pattern is called a garden of Eden, in reference
to a paradisaical state of the universe that can never be reached again.

For example, it is clear that the game of life has mutually erasable patterns: a 3×3
dead grid and a 3 × 3 grid with a lone live cell in the middle have the same evolution.
Existence of gardens of Eden is harder to ascertain.

It is nevertheless a theorem of Moore and Myhill that, if G = Z
2, then a cellular

automaton admits gardens of Eden if and only if it admits mutually erasable patterns.
The authors explain how this result is in fact related to amenability: if G is

amenable, then a cellular automaton admits gardens of Eden if and only if it ad-
mits mutually erasable patterns. Conversely, if G is non-amenable, then there exist
cellular automata which admit mutually erasable patterns but no gardens of Eden.

4 Surjunctive and Sofic Groups

Call a group G surjunctive if, for every cellular automaton on G, its evolution map
is surjective as soon as it is injective. Obviously, this holds for finite G, since every



232 L. Bartholdi

injective self-map on a finite set is bijective. Injective maps have no mutually erasable
patterns, so the results from the previous paragraph imply that amenable groups are
surjunctive.

A group is residually finite if its elements can be distinguished in finite quotients;
that is, if g �= h ∈ G, then there exists a finite quotient π : G → Q such that π(g) �=
π(h). For example, free groups are residually finite, while Q is not (it doesn’t even
have a non-trivial finite quotient). The authors show that residually finite groups are
surjunctive, and give descriptions of that class of groups.

Given a class C of groups (say, finite groups), a group G is locally embeddable in
C if, for every finite subset K ⊂ G, there exists a group C ∈ C and an injective map
φ : K → C satisfying φ(k1k2) = φ(k1)φ(k2) whenever k1, k2, k1k2 ∈ K . In other
words, arbitrarily large finite parts of G can be approximated by groups in C .

The authors consider next the following important relaxation of local embeddabil-
ity. Let F be a finite set. Endow the symmetric group SF with the Hamming metric:
d(α,β) = #{f ∈F |α(f )�=β(f )}

#F
. A group G is sofic if for every finite subset K ⊂ G and

every ε > 0 there exists a map φ : K → SF satisfying d(φ(k1k2),φ(k1)φ(k2)) ≤ ε

whenever k1, k2, k1k2 ∈ K and d(φ(k1),φ(k2)) ≥ 1 − ε whenever k1 �= k2 ∈ K . (The
terminology comes from the Hebrew ‰”…‘, meaning ‘finite’.) In other words, arbitrar-
ily large finite parts of sofic groups can be approximated, with arbitrarily small error,
by symmetric groups with their Hamming distance.

The class of sofic groups is closed under various operations (sums, limits, sub-
groups, . . . ). Groups locally embeddable in amenable groups are sofic. One of the
major open questions in geometric group theory is whether all groups are sofic.

This question is intimately related to cellular automata, because sofic groups are
surjunctive. The panorama is:

finite res. finite loc. embed. finite

amenable res. amenable loc. embed. amenable sofic

surjunctive.

5 Group Rings

Assume finally that the state set A of each cell in the cellular automaton is a finite-
dimensional k-vector space. Then the space of configurations AG is also a k-vector
space; the evolution is required to be k-linear. Assuming S is finite, this means the
evolution map is given by convolution with a finitely-supported matrix-valued func-
tion on G, that is, a matrix over the group ring kG.

In the last chapter, the authors explain how classical notions in ring theory translate
to properties of cellular automata. Consider for example the following notion, also
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due to von Neumann: a ring R is directly finite if, whenever a, b ∈ R satisfy ab = 1,
we also have ba = 1. It is stably finite if all matrix rings over R are directly finite.

This notion is connected to linear cellular automata in the following manner: the
group ring kG is stably finite if and only if, for every linear cellular automaton over
G, the evolution map is surjective as soon as it is injective.

6 Conclusion

This remarkable book combines three, at first sight unrelated, concepts all due to
von Neumann: cellular automata, amenability, and direct finiteness. The notions are
explained in great detail, with numerous examples and historical remarks. The text
is supplemented by ten appendices, recalling and detailing classical mathematical
concepts (from abstract topology, group theory, functional analysis) that may equally
serve as a reference as for “hands-on” learning.
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