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Wie schon im letzten Heft angekiindigt erlauben uns die druckfertig vorliegenden
Manuskripte auch dieses Mal wieder die Gestaltung eines Themenheftes, nun mit
dem Schwerpunkt ,,Stochastik®.

Juri Hinz erldutert in seinem Ubersichtsartikel ,,Quantitative Modeling of Emis-
sion Markets® zundchst ganz allgemein verstidndlich die Grundlagen und Ziele des
Handels mit Emissionszertifikaten. Er geht dabei auch auf problematische Aspek-
te der Marktmechanismen wie z. B. ,,windfall profits* (Mitnahmeeffekte) ein. Schritt
fiir Schritt an Komplexitéit zunehmend und unter Verzicht auf technische Details fiihrt
Juri Hinz dann in die stochastische Modellierung des Handels mit Emissionszertifi-
katen ein.

Nicole Biuerle und Ulrich Rieder stellen in ihrem Ubersichtsartikel ,,Markov De-
cision Processes* eine Theorie vor, mit deren Hilfe man optimale Entscheidungs-
strategien fiir Markovketten (zufillige Prozesse ohne Gedichtnis) finden kann. Die
Autoren geben zunichst eine Einfithrung in die mathematischen Grundlagen dieser
Theorie und wenden sich dann konkreten Anwendungen und Losungsalgorithmen
zu.

Wie auch im letzten Heft bilden die Buchbesprechungen einen inhaltlichen Kon-
trapunkt zu den Ubersichtsartikeln. Hier liegt der Akzent auf der ,,Topologie* und
insbesondere auf Nachbeben zu den Perelmanschen Durchbriichen.

In der Regel erhalte ich — leider — nur wenige Reaktionen von Ihnen, den Lese-
rinnen und Lesern des Jahresberichts, auf unsere Beitrdge. Anders ist das bei dem
Artikel von Roman Duda tiiber ,,Die Lemberger Mathematikerschule®, der im ersten
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Heft dieses Jahres erschienen ist und der offenbar manche von IThnen ebenso be-
rithrt hat wie mich. Dieses war natiirlich nicht der erste Beitrag zu der bis zu deren
brutalem Ende mathematisch so einflussreichen Gruppe um Banach und Steinhaus.
Besonders interessant ist vielleicht der Hinweis eines Lesers auf ,,Banach und die
Lemberger Schule der Funktionsanalysis* von Gottfried Kothe, erschienen in den
Mathematischen Semesterberichten 36 (1989), 145-158. Roman Duda hat zu dersel-
ben Thematik eine andere Perspektive gewihlt, und so ergidnzen sich beide Aufsitze
sehr gut.
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Abstract The introduction of marketable pollution rights is considered as an appro-
priate way to combat environmental problems on a global scale. According to theo-
retical arguments, a properly designed emission trading system should help reaching
pollution reduction at low social costs. Nowadays, environmental markets are being
established around the world. Their practice provides a stress test for the underlying
economic theory and raises a lively discussion about advantages and shortcomings of
emission trading. In this work, we highlight some core principles underlying quan-
titative understanding of emission markets and elaborate on mathematical problems
and applications, arising in this context.
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1 Introduction

During the last decades, market-based environmental instruments have attracted at-
tention of policy makers all over the world. The role of these regulations is to in-
stitutionalize the creation of incentives for the use of cleaner technologies by the
introduction of appropriate market mechanisms. In a generic design, a cap-and-trade
mechanism works as follows: A central authority sets the quantity of emissions it will
allow (the so-called cap) within a pre-determined compliance period and then allo-
cates the corresponding amount of fully tradable pollution rights to businesses. Each
source of emissions participating in the scheme must have sufficient permits to cover
all its emissions by the end of the compliance period to avoid penalty which applies
for each unit of pollutant not covered by permits.

Under the regulatory framework of a cap-and-trade system, the potential penalty
payment creates a demand for allowances, which determines their price. Effectively,
the buyer of certificates is charged for pollution, whereas the seller is rewarded for
emission reduction. Based on this observation, economists argue that due to emission
trading, the market price of emission certificates helps to identify and to exercise the
cheapest reduction sources, ensuring so that the global pollution reduction can be
reached at the lowest possible costs. Let us illustrate the underlying philosophy by
the following example.

Example Consider two producers with the following characteristics

emissions/reductions producer A producer B
nominal emission p.a. 10,000 tonnes of CO; 10,000 tonnes of CO,
reduction costs 40 EURO per tonne of CO, 10 EURO per tonne of CO»

Suppose that the regulator decides to reduce the total emissions by 10%. To reach
this goal, the central authority allocates allowances covering 9,000 tonnes of CO;
to each of the producer and sets a penalty of 100 EURO for each tonne of pollutant
not covered by allowances. To highlight the effect of cost reduction triggered by al-
lowance trading, we compare the scheme with non-transferable emission rights to that
with marketable permits. In the first case, both producers realize that it is cheaper to
save 1,000 tonnes of carbon dioxide (fulfilling the compliance) than to pay penalties.
Hence the emission reduction scheme with non-transferable pollution rights yields
the following result

emissions/reductions producer A producer B

realized emission p.a. 9,000 tonnes of CO> 9,000 tonnes of CO,
total reduction costs 40,000 EURO 10,0000 EURO

Thus, the overall reduction with non-transferable rights costs 50,000 EURO. How-
ever, if the pollution rights are marketable, then the same overall reduction is cheaper,
since the agents behave differently. For the producer A, it is cheaper to buy allowances
at any price below 40 EURO than to reduce emissions. At the same time, the agent
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B is willing to sell allowances at any price above 10 EURO facing the opportunity
to reduce the own emission at 10 EURO per tonne. Although the price, at which the
agents trade certificates can not be determined within this simple framework, the ef-
fect of marketable pollution rights is clear: The agent A buys certificates from the
agent B instead of reducing own emissions. This gives the following result:

emissions/reductions producer A producer B

realized emission p.a. 10,000 tonnes of CO; 8,000 tonnes of CO;
total reduction costs 0 EURO 20,0000 EURO

That is, marketable emission rights yield overall reduction costs of 20,000 EURO
instead of 50,000 EURO in the previous case. In this example, the marketability of
permits ensures remarkable savings. As we see, emission trading forces the agent B
who owns the cheapest reduction sources to exercise the own abatement potential
beyond the individual targets. In other words, the market rules help identifying and
using the cheapest way to fulfill the overall reduction target.

Despite problems with existing emission trading schemes, a widely accepted eco-
nomic viewpoint considers market mechanism as an appropriate way to optimally
allocate emission abatement potential within the entire economy. The hope is that a
properly designed cap-and-trade system should help reaching pollution reduction at
the lowest social costs. Furthermore, due to the success of the U.S. Acid Rain Pro-
gram, emission trading is now widely considered as one of the most promising policy
instruments to combat environmental pollution on a large scale.

Still, emissions trading is subject of a lively discussion: Proponents of the lib-
eralized markets argue in favor of market mechanisms emphasizing the role of price
signals which should help identifying efficient pollution reduction measures, whereas
opponents advise against the introduction of marketable pollution permits and prefer
emission taxation, believing that the certificate price fluctuations may disturb indi-
vidual firms in the implementation of correct abatement strategies.

To date, the important examples of reduction mechanisms include the emissions
trading under the U.S. Acid Rain Program and EU ETS (European Union Emission
Trading Scheme), which is the largest among the existing emission markets. The EU
ETS covers more than 10,000 installations in 25 countries, responsible for nearly
half of the European Union’s emissions. Currently, this market operates in the second
phase (2008-2012), this time frame coincides with the Kyoto period.

2 New Problems and Challenges
After emission trading became reality, new problems have occurred.

Financial Risk The major point here is that each emissions market participant is
exposed to a risk resulting from the fluctuations of the allowance prices. The need
for appropriate risk management leads to the creation of an accompanying market for
derivative contracts. Before we explain the nature of the emission-related financial
products listed to date, let us elaborate on the very philosophy of risk reduction.
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Market players trade financial instruments to reduce their exposure from potential
price changes. Say, to secure a future production, the owner of a fuel-consuming
business (airline company) needs to buy the fuel in advance. To avoid storage and
transportation problems, most of the market participants prefer trading on the so-
called forward basis.

Let us put aside a relatively complex exact definition of a forward contract. We
only point out that in this agreement, the delivery and the price are negotiated at the
moment the contract is signed, whereas the physical delivery and payment is sched-
uled for a future date. Thus, the owner of the forward contract is protected against the
price increase of the fuel in the following way: if the fuel becomes expensive at the
delivery date, then the market price of the forward contract also increases. A futures
contract is very similar to a forward contract but is more standardized and provides
a slightly different cash flow. Beyond forwards and futures, options are popular in
the area of risk management. The simplest option type is the so-called European Call
with a pre-specified strike price K € ]0, oo[ and maturity date T € [0, T']. This in-
strument works as follows: if the price of the underlying security (say, fuel) at date t
exceeds the strike price K, then the owner of the Call receives the difference between
underlying’s price and the strike price K. Such contract may be issued on an arbitrary
security. For instance, it can be written on a futures price rather than on the physi-
cal fuel price. In any case, the underlying asset (forward, future) of the Call must be
pre-determined in the contract specification.

The major idea of risk management by financial instruments is that agents buy
complex financial products which provide in particular market situations appropriate
payments, giving so a certain protection. However, this type of risk handling requires
a detailed understanding of derivatives price evolution. Although its principles are
based on sound mathematical cornerstones, their adaptation to specific situations is
involving. Thus, to determine the so-called fair prices of emission-linked derivatives,
one needs to develop appropriate mathematical models. This is a challenging task,
since market participants already now face a notable sophistication due to a signifi-
cant regulatory complexity inherent to the real-world emission markets.

Before we proceed with quantitative modeling, let us list some of the most impor-
tant financial agreements, traded to date:

EUAs (European Union Allowances) are certificates which cover the emission of
one tonne of carbon dioxide (or an equivalent greenhouse gas) within EU ETS. This
is the prime asset of the European Emission Tranding Scheme. Physically, EUAs
are realized by entries in appropriate electronic registries.

CERs (Certified Emission Reductions) are certificates issued by bodies of the UN
Framework Convention on Climate Change and the Kyoto Protocol. They are given
upon a successful completion of the climate protection projects (in the sense of the
so-called Clean Development Mechanism, specified in the Kyoto protocol). In this
sense, CERs can be considered as international environmental assets. The European
market EU ETS is linked to the international market since in the second phase of
the EU ETS, market players are allowed to cover their emissions not only by EUAs
but also by CERs, subject to certain restrictions. On this account, EUAs and CERs
are traded at a similar price level.
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Fig. 1 Future prices on EUA with maturity Dec. 2012

Futures on EUAs and CERs are traded on several exchanges. For instance, the Euro-
pean Climate Exchange (ECX) lists EUA and CER futures with expiry date on the
first Monday of March, June, September and December.

Options such as Standard European Calls whose underlying assets are EUA and CER
futures, are listed, too. At the ECX, these options are available with maturity date
three business days before the expiry date of the underlying future. The strikes are
ranging from 1 to 55 EURO with an interval of 0.5 EURO. The traded volume is
quoted in tonnes of carbon dioxide and is approximatively 450,000 tonnes per day.

The Fig. 1 shows the historical price evolution of EUA and CER futures listed at
ECX.

Windfall Profits This is a problem of a notable gravity, addressing possible short-
comings of the current market design and its potential improvements. Let us highlight
the main point, avoiding again formal arguments.

The key notion in this context is the so-called opportunity costs. In the economic
literature, it stands for the forgone benefit from using a certain strategy compared to
the next best alternative. For example, the opportunity costs of farming own land is
the amount which could be obtained by renting the land to someone else.

When facing electricity generation, producers consider a profit, which could be
potentially realized when instead of production, unused emission allowances were
sold to the market. For instance, if the price of the emission certificate is 12 EURO
per tonne of CO» and the production of one Megawatt-hour emits two tonnes of CO;,
(say, using a coal-fired steam turbine), then the producer must decide between two
strategies which are equivalent in terms of their emission certificate balance:

e produce and sell one MWh to the market,
e not produce this MWh and sell allowances covering two tonnes of CO».

In this situation, the opportunity costs of producing one Megawatt-hour is 24 =
2 x 12 EURO. Obviously, the agent produces energy only if the first strategy is at
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least as profitable that the second. Thereby, both, the production and the opportunity
costs must be considered in the formation of the electricity market price. Clearly, if
the production costs of electricity are 30 EURO per MWh, then the energy will be
produced only if its price covers both, the production and the opportunity costs. Thus,
electricity can only be delivered at the price exceeding 54 = 30+ 2 x 12 EURO. That
is, in order to trigger the electricity production, the opportunity costs must be added
to the production costs giving the lowest possible wholesales price. In the scientific
community, this phenomena is well-known under the name of cost-pass-through. An
empirical analysis [19], confirms that the strategy of cost-pass-through is currently
followed by the European energy producers. Furthermore, the detailed investigation
of mathematical market models shows that the cost-pass-through is the only possi-
ble strategy in the so-called equilibrium state of the market. This can be interpreted
as follows: When behaving optimally, the energy producers must pass the allowance
price on the consumers. We can not blame the energy producers for this, even if the
emission credits are allocated free of charge.

More importantly, it turns out that the cost-pass-through is nothing but the core
mechanism, responsible for the emission savings. Namely, due to the opportunity
costs, clean technologies appear cheaper than emission-intense production strategies.
For instance, an alternative generation (gas turbine) which yields energy at the price
of 40 EURO and emits only one tonne of carbon dioxide, hardly competes with coal-
fired steam turbine under generic regime (without emissions regulation). Namely, if
there is no regulatory framework, then the coal-fired steam turbine is scheduled first
and the gas turbine has to wait until the energy demand can not be covered by coal-
fired steam technology. However, given emission regulation, the opposite is true: Say,
if the allowance price equals to 12 EURO as above, then the gas technology appears
cheaper, operating at full costs of 52 =40 + 1 x 12 EURO. Thus, the gas turbine
is scheduled first, followed by the coal-fired steam turbine which runs only if the
installed gas turbine capacity does not cover the energy demand.

That is, we obtain the following picture: The opportunity costs is equal to the al-
lowance price times the specific emission rate. This costs must be added to the orig-
inal electricity production costs, which changes the merit order of technologies. The
emission savings are triggered automatically, making clean technologies cheaper than
those which are emission-intense. The electricity price increases through the costs-
pass through. The burden to the consumers is partially justified, since the energy
production becomes cleaner, hence its production more expensive.

A surprising and disappointing fact here is that the consumer’s burden can be
justified only partially! Analyzing a typical energy market, one realizes that the con-
sumers have usually to pay far more than what is spent due to emission reduction.
The difference yields additional revenues to the energy producers and is frequently
referred to as the so-called windfall profit. Quantitatively, it depends on the available
technologies, their capacities and demand fluctuation, so let us highlight the effect of
windfall profit by considering an artificially simple market example.

Example Suppose that the energy consumption does not depend on its price. In this
market, high electricity price triggers no demand reduction and so there will be no
emission savings because of high energy price. In addition, we assume that the entire
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market consists of a single electricity production technology (say, coal-fired steam
turbines, as above). In such a market, any emissions regulation does not yield a de-
crease of pollution. Indeed, there is no reaction on the production side due to the lack
of alternative technologies, and there is also no response on the consumption side,
since there is no demand reduction. In this market, the energy producers pass certifi-
cates costs on the consumer and just pocket the windfall profits without any emission
reduction!

Of course, real markets do have different technologies and the energy demand
reacts to its price. However, the ability to re-schedule the energy production may be
limited, particularly during high load, when all production capacities become busy.
Furthermore, the short-term price dependence of the electricity demand on its price
is known to be very low. This explains why energy producers within EU ETS realize
significant additional revenues, exclusively due to the emissions trading.

Fortunately, the problem of windfall profits may have a sound solution in terms of
a correction to the existing market rules. Following ideas of proportional allowance
allocation, the work [5] investigates in detail an emission market model where the
amount of allocated allowances is linked to the production activity. To clarify the ba-
sic idea, consider in the above example a market rule which subsidizes each produced
MWh by an additional allocation of allowances covering 1/2 tonnes of pollutant. If
the allowance price is 12 EURO per tonne of CO», then the opportunity costs are re-
duced by 6 EURO for each Megawatt-hour and the electricity may become cheaper.
However, within this scheme, another difficult problem occurs. A priori, it is not clear
how to adjust the upfront allowance allocation such that the market following a sub-
sidized scheme reaches the same performance in emission reduction. The work [5]
addresses this and related questions and develops a mathematical methodology for
the quantitative analysis, comparison, and optimization of emission market rules with
respect to a wide range of criteria.

In this paper, we let aside the market design questions and refer the interested
reader to [5] and to the literature cited therein. The goal of the present work is to
illustrate how the mathematical analysis of stochastic models may help understanding
the mechanics of allowance price formation to tackle diverse questions in the area of
risk management, which arise from the viewpoint of the individual market player.

3 A Toy Model of Emission Market

To explain the emission price mechanism, we present a toy market model where a
finite set I of the agents are confronted with abatement of pollution. The key as-
sumptions are:

e We consider a trading scheme in isolation, without credit transfer from and to other
markets. That is, unused emission allowances expire worthless.

e There is no strategy adjustment within the compliance period [0, 7']. This means
that the agents schedule their production plans and trade allowances only at the
beginning. At the compliance date T, they trade certificates one last time before
emission reports are surrendered to the regulator.
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e For the sake of simplicity, we set the interest rate to zero.

To describe uncertainties, we realize this model on a probability space (€2, F, P) by
introducing the following ingredients.

Emission dynamics. For each agent i € I, consider the quantity E6 € [0, oo[ which
describes the total pollution of agent i emitted within the entire compliance period
[0, T'] in the case of the so-called ‘business-as-usual’ scenario (where no abatement
measures are applied).

Abatement. Consider the opportunity to reduce emissions. Each agent i can decide
at the beginning ¢ = 0 of the compliance period to reduce its emissions by éé € [0, Eé]
pollutant units.

Abatement costs. We assume that the costs of abatement is a function of the re-
duced volume. Thus, if the agent i decides reducing own emissions by x € [0, oo[
units, then this causes costs of C’ (x) currency units. This dependence is described by
a strictly convex and continuous function x Ci(x) on 10, ool.

Allowance trading. Suppose that at any time ¢ € {0, T'}, credits can be exchanged
between agents by trading at the price A, at time = 0, T. Denote by ¥/ the change
at time ¢ in allowance number, held by agent i. That is, given the allowance prices
(Ap)refo,), the allowance trading (z?,i )refo,1) yields total costs of

98 Ag + 0% Ar. ¢))
Penalty payment. The total pollution of the agent i can be expressed as a difference
Ey— &

of the ‘business-as-usual’ emission Eé less the entire reduction Sé. As mentioned
above, a penalty m € ]0, oo[ is being paid at maturity 7 for each unit of pollutant
which is not covered by allowances. Considering the total change in the allowance
position 15‘(") + z?} effected by trading, the loss of the agent i resulting from potential
penalty payment is

T(EY— &) — 05 —y' —oi)T 2)
where

yi,i €I is the initial allowance allocation of the agent i € I. 3)

Uncertainty. We need to take into account that due to uncertainty in the emis-
sion control, the actual emission realized at the end of the period [0, 7] may slightly
differ from Eé. It is convenient to subtract this deviation from the initial allocation.
Hence, we interpret y' as the credits allocated to the agent i less emissions which
become known with certainty only at time 7. With this interpretation, ' stands for
allowances effectively available for compliance and is modeled by a random variable.

Individual wealth. In view of (1) and (2), the revenue of the agent i following
trading strategy (ﬂf)te{O,T } and abatement policy gé equals

LA ), 0% ) = —0 Ao — CH (&) — 0h A — m(E) — &) —9f —y' =0T, (4)
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Note that the quantities Eé, 196, Ao, Eé, carrying the subscript t = 0 are observed at
the beginning and are modeled by deterministic quantities whereas é;, z?%, v, Ar
are observable at the end t = T and are thus described by random variables.

Risk aversion. To face risk preferences, suppose that risk attitudes of the agents
i € I are described by utility functions U’ : R — R, which are continuous, strictly
increasing and concave. Consider the utility functional u'(X) = E(U (X)), which
is assumed to be defined for each random variable X where the expectation is finite
or +oo. Given an allowance price process A = (A;)/e0,7}, €ach agent i behaves
rationally, maximizing (19"‘, 19;7 £5) > ut (LA (9], 0%, ) by an appropriate choice
of the own policy (", 97", £;*). This approach is common in financial modeling,
where the risk averse behavior is described by the attempt to maximize a certain non-
linear functional applied to the random variable which describes the agent’s wealth,
rather than to maximize the expectation of the wealth.

Market equilibrium. In the economic literature, a steady market state in a real
situation is frequently represented by the so-called equilibrium within a mathematical
market model. Basically, such an equilibrium describes a situation where the price is
determined by the rules of supply and demand with a price given such that each of the
market participants is satisfied with the own production and trading. The equilibrium
modeling of financial markets is a widespread area, which combines diverse research
approaches and yields numerous application. The question whether it is reasonable to
describe a realistic market operation by an equilibrium state requires a case-by-case
discussion. In the situation of an emission market, we may assume that after a certain
period, all market participants have adjusted their behavior to the new regulatory
environment. Doing so, they determine own production and emissions trading and
dynamically respond to the allowance prices in order to maximize the own revenue.

Let us agree that in our framework, a realistic steady market state is given by the
following dynamic Nash-type equilibrium:

Definition 1 The price evolution A* = (A});c0,7} describes an equilibrium of emis-
sion market if for each i € I, there exist an emission trading strategy (¢;);¢0,7} and
an abatement policy £}, such that u' (LA™ (g, 93, £x")) is finite and

(i) the cumulative changes in positions are in zero net supply, that is,
> 9 =0, forallt=0,T, 5)
iel
(i1) each agenti € [ is satisfied by the own action in the sense that
ul (LA g o7 g5 ) =l (LA 04, 0. 6))) ©
if i (LA*J‘ 0,01, g(g)) exists.
Note that (ii) states that each participant does not have any incentive to change the
own strategy, whereas (i) represents the restriction that the total number of allowances
in the market remains the same (as issued at the beginning).
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The following folk principle
the equilibrium allowance price equals to the marginal abatement costs  (7)

is considered as crucial in the economic analysis of emissions markets. This principle
means that in a realistic market state, the certificates are traded at a price which co-
incides with the costs of reduction of an additional unit of pollutant. More precisely,
it states an important intrinsic connection between the price of certificates and the
abatement activity applied in the market. Let us illustrate this idea by an example.

Example Assume that emission allowances are traded at a price of 12 EURO. Ac-
cording to (7), this means that all abatement sources with reduction price less than
12 EURO per tonne of pollutant are already active. That is, if one additional tonne of
pollutant needs to be saved, then this would cost 12 EURO or more, since all mea-
sures giving a cheaper reduction are already exhausted. More importantly, (7) shows
that in a steady market state, the individual abatement looks like it was externally
driven by allowance price. Namely, for an individual market player, the correct be-
havior is determined by the recent allowance price, traded at the market, as follows:
Having noticed that the allowances are traded at 12 EURO per tonne of pollutant,
this agent derives the own optimal strategy: The best individual action is to apply all
abatement measures whose reduction price is lower than 12 EURO per pollutant unit
and not to use any other abatement activity. This decision is very intuitive since the
corresponding profit is obvious: Having saved emission at a price less than 12 EURO,
the corresponding amount of allowances can be sold at the market price of 12 EURO
which leaves the same emission balance in the books but gives a real profit.

It turns out that the principle (7) holds in the above equilibrium. To see this, let us
transform (7) in mathematical terms.

Abatement volume. First, we determine the volume of abatement measures avail-
able to the agent i at a price a. Remember the strictly convex and continuous func-
tion x — C’(x) which describes agent’s i costs of diminishing own emission by
x € [0, oo[ pollutant units. For simplicity, assume for the moment that C’ is contin-
uously differentiable, with derivative C?(x) interpreted as the costs (per unit of pol-
lutant) of an infinitesimally small reduction of beyond x. This quantity is referred to
as the marginal reduction costs. The marginal reduction costs x +— C! (x) is increas-
ing in the reduction volume x. The intuition behind this is that the more reduction
is applied, the more measures are exercised and become unavailable. Thus, the more
expansive it will be to further increase pollution abatement. In particular, given re-
duction costs a € [0, oo[, the point x* at which the minimum of x — C’(x) — ax is
reached, stands exactly for the abatement volume x*, where the marginal abatement
costs are equal to a, this point x* is uniquely determined by Cl(x*) =a. Denoting
by argmin the point where the minimum is reached, the definition

¢! (a) := argmin{C’ (x) — ax : x € [0, E}]} )

stands for cumulative abatement volume of the agent i, available at price a. Note that
this point exists and is uniquely defined due to strict convexity of x — C'(x) — ax



Quantitative Modeling of Emission Markets 205

considered as a function on the compact interval [0, Eé]. (Note that we have assumed
the differentiability of C' for explanation only, the smoothness of C’ is not required
in (8)). Using (8), the principle (7) is reflected in the following

Proposition 1 Suppose that (Af):cio,1) is an equilibrium allowance price and that
&)* for i € I are the corresponding equilibrium abatement policies, then

£ =c'(A})  holds for eachi e 1. ©)

The connection between abatement activity and emission allowance price is an
important piece of the puzzle. It can be considered as a feedback relation: The higher
is the allowance price, the more abatement measures are active, the more emission
savings is triggered. The increasing price of emission certificates lowers the chance
that at the end of period, the market will need all issued allowances to cover the
emission. Some agents may expect an oversupply of allowances at the end and face
the chance to buy them later, at time ¢ = T, at a cheaper price. Such market partici-
pants tend to sell allowances in advance, with the intention to repurchase them later.
The market recognizes this trend and the inial allowance price tends to lower agian.
This explains the mechanism driving the price to an equilibrium level by a feedback
between certificate price and abatement activity.

To face this mechanism in quantitative form, our model follows the following
insights:

(a) No arbitrage. The major ingredient of the rational action is the anticipation of the
future price change. This natural behavior is already covered by model assump-
tions. It turns out that in the above equilibrium framework, there is no arbitrage
opportunity. On the mathematical level, it means that there is no riskless gain
from trading. A central result from financial mathematics states that this property
is equivalent to the assumption that (A;);¢(0,7) follows a martingale with respect
to a measure Q which is equivalent to the given probability measure P.

(b) Price triggers abatement. As explained above, the marginal abatement costs co-
incide with the allowance price. Thus, the allowance price triggers all abatement
measures whose costs are below the allowance price. If we summarize the total
volume of abatement measures available in the market at a price a € [0, oo[ as

cla) = Zc"(a), a €0, ool (10)

iel

then the total abatement in the market equals to c(Ag), given allowance price
(AP)iefo, 13-

(c) Terminal price is digital. The idea is that at maturity, the price must fall to zero if
there is an excess in allowances, whereas in the case of their shortage, the price
will rise, reaching penalty. Under the mild mathematical assumption

distribution of Z y; possesses no point masses an

1
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an exact coincidence of allowance demand and supply occurs with zero proba-
bility and can be neglected. In this case, defining the overall allowance shortage
by

Er=Y (E;—v"), (12)

iel

the non-compliance event is written as
Er —c(Ap) > 0.
Let us put the insights (a), (b) and (c) together to close the circle.

Proposition 2 Suppose that (11) holds. Given an equilibrium allowance price
(A)ieq0,1), there exists a measure Q which is equivalent to P such that (A}):c0,1)
follows a Q-martingale whose terminal value is given by

A =7 ligr —c(ap)=0) (13)

Although individual market attributes and actions of all agents seem to be irrel-
evant in the above statement, the reader should notice that this picture appears only
from the risk-neutral viewpoint. In line with standard aggregation theorems, the equi-
librium market state heavily depends on and is determined by market architecture,
rules, risk attitudes and uncertainty. However, once equilibrium is reached and all
arbitrage opportunities are exhausted, asset dynamics can be considered under a risk
neutral measure. With respect to this measure, market evolution appears as it was
driven by cumulative quantities only.

According to the core principles of financial mathematics, any realistic model-
ing of asset price dynamics must exclude arbitrage. In practice, this is achieved by
proposing stochastic models equipped with a built-in measure Q such that all relevant
price processes follow martingales with respect to Q. This approach is frequently re-
ferred to as martingale modeling. In view of our equilibrium analysis, the martingale
modeling of emission allowance prices can be stated as the following stand-alone
problem

given measure Q ~ IP, random variable &7,

and market abatement volume functions c,

determine a Q-martingale (A});c0,7y With
AT =Tl (gr—c(ap)=0)-

(14)

Essentially, this problem addresses the calculation of the fixed point Az; € [0, 00[ to

Ap=E® (ﬂ 1{5ch(A;;)zo}) =71Q(Er = c(Ap)).

Note that the function on the right Ag > T Q(Er > ¢(Ap)) is non-increasing, since
the market abatement volume Ag — c(Ao) is non-decreasing in the allowance price
Ag. Under the mild assumption (11) this function is continuous. By the intermediate
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Fig. 2 Solid graph Ay +— 7 Q(ET > c(Ay)) intersects dashed graph Ag — Ag (we assume 7 = 100)

value theorem, its graph possesses a unique intersection point Aj with the graph of
the identical function Ag — Ag, as shown in the Fig. 2.

With this approach, the solution (Af);c(0,7} of (14) suggests an evolution of al-
lowance price dynamics which responds to the no-arbitrage principle and inherits
important properties from equilibrium. Note that the market abatement volume func-
tion ¢ can be reasonably estimated from analysis of real-world data (from available
production technologies and installed production capacities). In difference to this, the
random variable &7 must be interpreted as an exogenous ingredient of the risk-neural
model. The point here is that although the total business-as-usual emission ) ;, EE)
and total allowance allocation Zi cl yi can be reasonably modeled from market data,
the distribution of their difference £ needs to be described from the risk-neutral per-
spective, thus it is not directly accessible. In any case, the random variable &7 should
be chosen appropriately, such that the solution (A;});¢(o,7) to the martingale modeling
problem (14) shows desirable properties of allowance price evolution. For instance,
the distribution of &7 with respect to Q should be adjusted such that Aj matches
the observed initial allowance prices. Further restrictions may be stated, if practition-
ers require that the listed initial prices of important emission-linked derivatives must
also be matched. Such techniques are well-accepted in the financial industry and are
known as implied model calibration.

4 Dynamic Risk Neutral Modeling

Let us now extend the above model to a finite number {0, 1,2, ..., T} of discrete
time points at which the agents apply abatements and trade allowances. As above,
we re-state the martingale modeling problem and address its solution. Although it
is less obvious, the idea is the same and the existence proof is based on a recursive
application of the intermediate value theorem starting with the last point 7 — 1 prior
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to the compliance date 7. In this setting, all distributions are conditional and one also
needs to take into account abatement, applied in the past.

Consider a market with a finite number [ of the agents confronted with emission
reduction. Assume that (2, F, P, (]:t)szo) is a filtered probability space and agree to
consider only stochastic processes adapted to (]:l)tT:0~ For each agenti € I, introduce
(Et")th_Ol which describes the dynamics of the so-called ‘business-as-usual’ emission
with the interpretation that E! stands for the total pollution of agent i which is emitted
within the time interval [z, ¢ 4+ 1] if no abatement is applied. Suppose that each agent i
can decide at any time t =0, ..., T — 1 to reduce its emissions within [¢, # + 1] by
g/ pollutant units and to buy and to sell credits at price A,. Denote by ¥/ the change
at time ¢ in allowance number, held by agent i. Similarly to the one-period model,
the revenue of the agent i following allowance trading ¥/ = (195)th0 and abatement

policy &/ = (Sf)tT:_O1 equals

T—1 T—1 +

LA g =— Z(ﬁ;A,+c"<s;'))—z9;AT—n<Z(E;'—é}—ﬂ,")—y"—ﬁ%) :
=0 =0

(15)

In a complete analogy to (14) one defines the overall allowance shortage
T-1
-y (T
iel \t=0

and shows that an analysis of the equilibrium situation in the framework of this dy-
namical model leads to the feedback relation

given measure Q ~ IP, random variable &7,
and market abatement volume functions c,
determine a Q-martingale (A;")IT:O with

A

(16)

ko
T=Tle, Tt an=0)

To discuss a solution (A} tho to this problem, introduce the martingale (&)[T:O and

consider its increments (&;) zT=1
&=E2¢&r | F), t=0,....T, &=&—&-, t=1,...,T.

It turns out that under the standing assumption (11), the problem (16) possesses a
solution, which can be written as

t—1
Aj:a,(f),—Za(Aj)), weQ, 1=0,...,T. (17)

s=0

The natural interpretation of this form is that the emission allowance price depends
on
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o the present time ¢
e the global situation w
o the market position G; = & — Z;;%) c(A})

through appropriate functionals
o Rx Q—[0,7], B(R)® F;-measurable, fort =0,...T (18)

whose recursive calculation is discussed in [11]. The work [11] demonstrates the
advantages and the importance of the ‘Markovian’ case, where (18) are actually path-
independent, being true functions «; : R — [0, r]. This situation occurs if for each
t=0,..., T, the martingale increment &, is independent of F;.

Given (18), the price process (Af)tho is well-defined by an application of the
following recursion

set Go:=€&), thenfort=0,..., T define (19)
Af (w) := o (G () (w), (20)
Gi11(0) == G () — c(A] () (@) + & 41(w). (21)

The resulting risk-neutral dynamics (20)—(21) is examined in [11], where valuation
of emission-related derivatives is investigated in the framework of the Monte Carlo
methodology, for the Markovian case. Although this work demonstrates computa-
tional tractability of discrete time models, they are hardly suitable for real-world ap-
plications in the present form. However, the gained understanding helps to generalize
the martingale approach to modeling of emission allowance prices in continuous time.

5 Continuous Time Models

The formulation (16) provides a natural passage to

On the probability space (2, F, P, (Fi)ie[0,7])

given measure Q ~ IP, random variable &7,
and market abatement volume function c, (22)
determine a Q-martingale (A});¢[0,7] With
A} =ml

[Er—Jy c(ADdr=0)"

Although this problem has not yet been addressed in a sufficient generality, reason-
able solutions can be constructed by an ad-hoc analogy. Following insights from the
discrete time, the continuous-time counterpart can be addressed in terms of partial
differential equations. Namely, the results of the discrete-time analysis given in [11]
suggest that, if the increments of the martingale

& =EEr | F)iero.r (23)

are independent, then one can reasonably expect that a solution to (22) can have the
functional form

Al=a(t9 Gl‘)r te[()’ T]»
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with an appropriate deterministic function
a:[0,T]IxR—R (24)

and state process (G;);c[0,7] given by
t

G, =& — / c(Ayds. 1€[0.T]. (25)
0

The work [2] follows this approach in the framework of jump-diffusion processes.
For simplicity, let us illustrate their results in the pure diffusion settings.

Given the process (W;, F;):c(o0,7] of a standard Brownian motion, suppose that the
martingale (23) is modeled as

dgt = UtdWl‘

where (0;):¢[0,7] is deterministic. Further, assume that we are given a continuous
non-decreasing abatement volume function c. To ensure the martingale property of
the allowance price process (A; = a(f, G;))sef0,7], We use 1td’s formula and (25) to
write the stochastic differential of this process as

1
dA; =da(t, G;) = 9,0)0e(t, Gy)dt 4 0,1y (t, G;)dG; + 53(0,2)0l(t, Gd[E];

1
= da,0a(t, Gdt — 9o, na(t, Gyc(a(t, Gy))dt + 53(0,2)060, Go*(t)dt
+ 00, nee(t, Gy)o (t)dW;.

Here [£]; stands for the quadratic variation of the martingale (&;);¢[0,7] and 9 j) de-
notes the respective partial derivatives. Now, we observe that to ensure the martingale
property of (A;)se[o,7] it is necessary that the function « solves the partial differential
equation

1
a0 (t, x) — c(a(t, x))oo,nalt, x) + 502(03(0,2)060, x)=0 (26)
in ]0, T[xR with the boundary condition
a(T,x) =nlpeo(x), x€R, 27

justified by the digital terminal allowance price. (Note that the boundary value is
given at the final time t = T. The change of variable T — ¢ transforms this backward
initial value problem to the standard form.) The following summarizes the above-
presented approach.

1. Given a continuous non-decreasing function ¢ : R — R and a deterministic
(01)tef0,1], determine a solution « to the boundary value problem (26), (27).
2. Verify that there is a unique strong solution to

dG; =d& — c(a(t, Gy))dt, Go = &o. (28)

3. Introduce the allowance price by (A; := a(t, G;))refo.7]-
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Having constructed the allowance price process (A;):c[o,7] in this way, one obtains a
standard procedure for the valuation of European options. Indeed, observe that, due to
the Markov property of the strong solution to (28), the fair time ¢ price of a European
Call option written on the allowance price at (maturity) date t €]¢, T'] is given in
terms of an appropriate function of the state variable:

C=E%[(4; - K)T | /] =E%(a(r. Go) — K)T | B ] = f7(t, G).

To ensure that (C; = f*(t, G;)):c[0,7] is a martingale, the function f7 : [0, T[xR —
R is to be taken as a solution to the linear partial differential equation

1
91,00 /7 (1) = @t Do, (00 + S0 16,007 =0,  (29)
in ]0, 7[xR. However, the boundary condition in this case will be
ff(r,x)=(a(r,x) —K)*, xeR. (30)

Summarizing, we obtain the following description for the procedure.

1. Find the function « as above.

2. Given the strike price K > 0 and maturity time 7 € [0, T] of a European Call,
calculate f7 as the solution to the backward initial value problem (29), (30).

3. Given the allowance price a € [0, ] at recent time ¢ € [0, t], obtain x as the
solution to «(t, x) = a.

4. Substitute ¢ and the thus obtained x into the function f7 to obtain the time ¢ price
of the European Call as f7 (¢, x).

6 Reduced-form Models

Instead of characterizing the non-compliance event N by

T
N = {ST —/ c(Ay)ds > O}
0

in terms of the exogenously specified random variable £7 and function c, the reduced
form approach focuses on a direct modeling

Specify the non-complance event N C €2 and
model the allowance prices by a Q-martingale 3D
(A¢)reo,71 With terminal value A7 = ly.

Although there are many candidates for such a process, it is not obvious how to satisfy
the requirements from the practical side. For a practitioner trying to calibrate a model
at time 7 € [0, T'], the minimum requirement is to match the price observed at time
7, as well as the observed price fluctuation intensity up to this time 7. Further desired
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properties include the existence of closed-form formulas or at least fast valuation
schemes for European options, a small number of parameters providing sufficient
model flexibility, and reliable and fast parameter identification from historical data.

One natural way to describe the non-compliance in the emission market can be
formulated in terms of the process of geometric Brownian motion

dl'y =T;0dW;, To,0 €]0,oo[, with standard Brownian motion (W;);c[0.7]-
A first attempt to model the non-compliance is to set
N={Tr>1}.
However, in this case, the martingale
ar :=EQ(lr, 1y |F), 1€[0,T]
follows

da; = @' (@~ (ar)) W, (32)

1
VT — td
independently on the choice of o. Such approach lacks calibration capability, since it
is not possible to fit the fluctuation intensity of emission certificates (A; = wa;):e[0,7]
to the actual situation observed in the market. From this viewpoint, one needs to
introduce additional degrees of freedom to (32). In [3], it is suggested to consider
instead of (32) the dynamics

da; = ' (® Y a)V/B(T —t)=4dW,, t€[0,T] (33)

with two additional parameters o € R and 8 € ]0, col.

This approach is a particular case of the following general construction. Given a
Brownian motion (W,, ]:',) 1€[0,00[ consider the standard normal distribution function
@ in order to define

t
Yt=<l><e%<xo+/ e_%dWS)) t €0, o0[.
0

Further, transform this process to
ar=Yyp, te€[0,T],

by time change

t
w(t) :f zgds <+oo, tel0,T[ (34)
0

which is defined in terms of a pre-specified positive-valued deterministic function
(z1)tefo,77- It turns out that the time-changed process possesses a stochastic differen-
tial

da; = ®' (" (a))yzidW;, t€[0,T[ (35)
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with respect to another Brownian motion (W;, F;):¢[0,7[ given by
1 ~ -
dw; = ﬁdWW(,), Fi =.7:w([), tel[0,T].

Such construction yields a sufficiently rich class of martingales (a;);<[0, 7] With values
in [0, 1]. This martingale family is parameterized via positive-valued deterministic
functions (z;)se[0,71 Which must satisfy (34). It turns out that the terminal value is
digital ar € {0, 1} if and only if lim;47 ¥ () = +00. In the parameterization (33),
this is the case if o > 1.

The main advantage of the present modeling is that the allowance price appears
as a function of a Gaussian process. Due to this form, the parameters « and 8 can
be efficiently estimated from historical data. Furthermore, the European Call options
can be calculated via simple numerical integration. Namely, under the assumption
that the interest rate r € ]0, oo[ is deterministic, the price of a European Call option
with strike price K > 0 and maturity date 7, € [0, T'] written on allowance futures
price maturing at Ty € [1,, T'], is given at time ¢ € [0, 7,] by

Cp = e / T ®@e T — K) NG vio)dx)  (36)
R

where the parameters of the normal distribution are given for § > 0, = 1 by

2
Ity = <1>_1<At(—ff)€_r(rtf)) ( = >ﬁ/

T T—-1,

T—t\* X
v = —
I T—-r1,

and for 8 > 0, € R\ {1} by

— Ai(ty) _por— p(T—tg) ¢t —(r—p—ot!
/,L,’I‘):(D 1<—je r(T—ty) e B 2(—at])

)

T

—ﬂ (T710)—a+1 7(T7t)’°‘+l
—a+1

Ut’f{) =e — 1
Here A;(ty) denotes the market price at time ¢ of the emission allowance future with
maturity date 7.

7 Outlook and Conclusion

So far, we focused on a generic cap and trade scheme modeled after the first phase
of the EU ETS, namely limited to one compliance period and without banking in the
sense that unused allowances become worthless at the end of the period. This is a
strong simplification since as already mentioned above, real-world markets are op-
erating in a multi-period framework. Furthermore, subsequent periods are connected
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by market specific regulations. Presently, there are three regulatory mechanisms con-
necting successive compliance periods in a cap-and-trade scheme. Their rules go un-
der the names of borrowing, banking and withdrawal.

e Borrowing allows for the transfer of a (limited) number of allowances from the
next period into the present one;

e Banking allows for the transfer of a (limited) number of (unused) allowances from
the present period into the next;

e Withdrawal penalizes firms which fail to comply in two ways: by penalty payment
for each unit of pollutant which is not covered by credits and by withdrawal of the
missing allowances from their allocation for the next period.

From the nature of the existing markets and the designs touted for possible imple-
mentation, it seems that policy makers tend to favor unlimited banking and forbid
borrowing. Furthermore, the withdrawal rule is most likely to be included. Banking
and withdrawal seem to be reasonable rules to reach an emission target within a fixed
number of periods, because each success (resp. failure) in the previous period re-
sults in stronger (resp. weaker) abatement in the subsequent periods. The pricing of
allowance options within multi-period reduced-form models is addressed in [3].

The introduction of mandatory emission trading schemes all over the world opens
up perspectives for environmental protection but rises also difficile questions in the
area of quantitative financial modeling. These problems encompass diverse aspects
of market design, game theoretic market modeling, econometric and statistical tech-
niques. Nowadays, numerous financial places trade a large volume of emission al-
lowances and allowance-linked derivatives. The trading activity is increasing, al-
though market participants seem to lack theoretical principles for pricing of these
contracts. In this situation, practitioners require reliable and sound solutions. That is,
there is an insisting need for adaptation of methodologies, developed within finan-
cial mathematics, to the new asset class of environmental financial instruments. With
this work, we intend to highlight some of the recent questions in this area and to
encourage a further research.

Appendix: Literature Overview

The publications on quantitative aspects of emission trading are rather extensive, and
we refer the interested reader to [21] which provides a valuable guide to publications,
however far from being complete. The economic theory of allowance trading goes
back to [9] and [14], where the public good ‘environment’ was proposed by means of
transferable permits. Important results in dynamic allowance trading were obtained
in[8, 12, 13, 16, 17, 20, 22] and in the literature cited therein. Recently, after the intro-
duction of the real-world emission market EU ETS, empirical evidence has become
available. The experience gained from market operation is discussed in [10], and a de-
tailed analysis of allowance prices from this market is given in [23] and [24]. The con-
tributions [1] and [15] are devoted to econometric modeling of emission allowance
prices. The modeling of dynamic price equilibrium is addressed in [4] and [5], which
provide a mathematical analysis of the market equilibrium and use optimal stochas-
tic control theory to show social optimality of emission trading schemes. A recent
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work [11] considers equilibrium of risk averse market players and elaborates on risk
neutral dynamics. The problems of derivative valuation in emission markets are also
addressed. The paper [7] discusses an endogenous emission permit price dynamics
within an equilibrium setting and elaborates on the valuation of European options
on emission allowances. The dissertation [25] and the paper [18] deal with the risk-
neutral allowance price formation within the EU ETS. The work [6] is also devoted
to option pricing within EU ETS. Finally, the recent work [3] presents an approach
where emission certificate futures are modeled in terms of a deterministic time change
applied to a certain class of interval-valued diffusion processes.
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1 Introduction

Do you want to play a card game? Yes? Then I will tell you how it works. We have
a well-shuffled standard 32-card deck which is also known as a piquet deck. 16 cards
are red and 16 cards are black. Initially the card deck lies on the table face down.
Then I start to remove the cards and you are able to see its faces. Once you have to
say “stop”. If the next card is black you win 10 Euro, if it is red you loose 10 Euro.
If you do not say “stop” at all, the color of the last card is deciding. Which stopping
rule maximizes your expected reward?

Obviously, when you say “stop” before a card is turned over, your expected reward
is

1 1
7 10 Euro + 3 (=10) Euro = 0 Euro.

The same applies when you wait until the last card due to symmetry reasons. But of
course you are able to see the cards’ faces when turned over and thus always know
how many red and how many black cards are still in the deck. So there may be a
clever strategy which gives a higher expected reward than zero. How does it look
like?

There are now various methods to tackle this problem. We will solve it with the
theory of Markov Decision Processes. Loosely speaking this is the theory of con-
trolled Markov chains. In the general theory a system is given which can be controlled
by sequential decisions. The state transitions are random and we assume that the sys-
tem state process is Markovian which means that previous states have no influence on
future states. In the card game the state of the system is the number of red and black
cards which are still in the deck. Given the current state of the system, the controller
or decision maker has to choose an admissible action (in the card game say “stop” or
“go ahead”). Once an action is chosen there is a random system transition according
to a stochastic law (removing of next card which either is black or red) which leads
to a new state and the controller receives a reward. The task is to control the process
such that the expected total (discounted) rewards are maximized.

We will see that problems like this can be solved recursively. When we return to
the card game for example it is quite easy to figure out the optimal strategy when
there are only 2 cards left in the stack. Knowing the value of the game with 2 cards it
can be computed for 3 cards just by considering the two possible actions “stop” and
“go ahead” for the next decision. We will see how this formally works in Sect. 2.3.1.

First books on Markov Decision Processes are [5] and [25]. The term ‘Markov
Decision Process’ has been coined by [4]. Shapley [37] was the first study of Markov
Decision Processes in the context of stochastic games. For more information on the
origins of this research area see [32]. Mathematical rigorous treatments of this opti-
mization theory appeared in [9, 11, 13, 24, 38] and [14]. More recent textbooks on
this topic are [7, 8, 16, 22, 31, 32, 34] and [3].

This article is organized as follows: In the next section we introduce Markov
Decision Processes with finite time horizon. We show how they can be solved and
consider as an example so-called stochastic linear-quadratic control problems. The
solution of the card game is also presented. In Sect. 3 we investigate Markov Deci-
sion Processes with infinite time horizon. These models are on the one hand more
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complicated than the problems with finite time horizon since additional convergence
assumptions have to be satisfied, on the other hand the solution is often simpler be-
cause the optimal strategy is stationary and the value function can be characterized as
the largest 7-subharmonic function or as the unique fixed point of the maximal reward
operator. Here we will restrict the presentation to the so-called (generalized) negative
case. Besides some main theorems which characterize the optimal solution we will
also formulate two solution techniques, namely Howard’s policy improvement and
linear programming. As applications we consider a dividend pay-out problem and
bandit problems. Further topics on Markov Decision Processes are discussed in the
last section. For proofs we refer the reader to the forthcoming book of Biuerle and
Rieder [3].

2 Markov Decision Processes with Finite Time Horizon

In this section we consider Markov Decision Models with a finite time horizon. These
models are given by a state space for the system, an action space where the actions
can be taken from, a stochastic transition law and reward functions (for a general
evolution see Fig. 1). Hence a (non-stationary) Markov Decision Model with horizon
N € N consists of a set of data (E, A, Dy, Oy, rn, gn) with the following meaning
forn=0,1,..., N —1:

e E is the state space, endowed with a o-algebra €. The elements (states) are de-
noted by x € E.

e A is the action space, endowed with a o-algebra 2. The elements (actions) are
denoted by a € A.

e D, C E x A is a measurable subset of E x A and denotes the set of admissible
state-action pairs at time n. In order to have a well-defined problem we assume
that D,, contains the graph of a measurable mapping f,, : E — A, i.e. (x, f,(x)) €
D, for all x € E. For x € E, the set D,(x) ={a € A| (x,a) € D,} is the set of
admissible actions in state x at time n.

e (), is a stochastic transition kernel from D,, to E, i.e. for any fixed pair (x,a) €
D,,, the mapping B — Q,(B|x,a) is a probability measure on & and (x,a) —
0, (B|x, a) is measurable for all B € €. The quantity Q,(B|x, a) gives the prob-
ability that the next state at time n + 1 is in B if the current state is x and action
a is taken at time n. Q, describes the transition law. If E is discrete we write

gn(x'|x, @) == Qn({x}Ix, a).

random

state at state at

stage n: ";':iti"“ W\ stage ntl:
W
X

xn+1

n reward at
stage n:

Tu(Xns%n) Qu(-[%ns2p)

distribution

Fig. 1 General evolution of a Markov Decision Model
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e 1, : D, = R is a measurable function. r,(x, a) gives the (discounted) one-stage
reward of the system at time # if the current state is x and action a is taken.

e gy : E — R is a measurable mapping. gy (x) gives the (discounted) ferminal re-
ward of the system at time N if the state is x.

Next we introduce the notion of a strategy. Since the system is stochastic, a strat-
egy has to determine actions for every possible state of the system and for every
time point. A measurable mapping f, : E — A with the property f,(x) € D,(x)
for all x € E, is called decision rule at time n. We denote by F;, the set of all de-
cision rules at time n. A sequence of decision rules m = (fo, f1,..., fn—1) with
Jfn € Fp, is called N-stage policy or N-stage strategy. If a decision maker follows
a policy = = (fo, f1,..., fn—1) and observes at time n the state x of the system,
then the action she chooses is f;,(x). This means in particular that the decision at
time n depends only on the system state at time ». Indeed the decision maker could
also base her decision on the whole history (x¢, ag, X1 ..., an—1, X,). But due to the
Markovian character of the problem it can be shown that the optimal policy (which
is defined below) is among the smaller class of so called Markovian policies we use
here.

We consider a Markov Decision Model as an N-stage random experiment. The
underlying probability space is given by the canonical construction as follows. Define
a measurable space (2, F) by

Q=ENT! F=¢Q --Q¢.

We denote w = (xg, X1, ..., xn) € Q. The random variables Xg, X, ..., Xy are de-
fined on the measurable space (€2, F) by

Xp(w) = X, ((x0, X1, ..., XN)) = Xp,

being the n-th projection of w. The random variable X,, represents the state of the
system at time n and (X,) is called Markov Decision Process. Suppose now that
7 = (fo, f1,-.., fn—1) is a fixed policy and x € E is a fixed initial state. There ex-
ists a unique probability measure P7 on (2, F) with

PT(Xoe€ B)=¢,(B) forall Be€,
IPZ(XH—H € B|X1, sy Xn) =P§(Xn+1 € B|Xn) = Qn(B|Xn, fn(Xn))y

where ¢, is the one-point measure concentrated in x. The second equation is the so-
called Markov property, i.e. the sequence of random variables X¢, X1,..., X, is a
non-stationary Markov process with respect to P7. By ET we denote the expectation
with respect to PT. Moreover we denote by P/ the conditional probability P7 () :=
P*(- | X, = x). ET, is the corresponding expectation operator.

We have to impose an assumption which guarantees that all appearing expectations
are well-defined. By x* = max{0, x} we denote the positive part of x.



Markov Decision Processes 221

Integrability Assumption (Ay) Forn=0,1,..., N

N-1

8N (x) :=supET, [Z i Xk, fio(X) + g;(XN):| <00, x€E.
4 k=n

We assume that (A y) holds for the N-stage Markov Decision Problems through-
out this section. Obviously Assumption (A y) is satisfied if all r, and g are bounded
from above. We can now introduce the expected discounted reward of a policy and the
N -stage optimization problem. Forn =0, 1, ..., N and a policy = = (fo, ..., fn—1)
let V, (x) be defined by

N-—1
Vir (x) :=Ej, [Z i (Xes fiu(X0) + 8N(XN):| , x€E.

k=n

The function V,,; (x) is the expected total reward at time n over the remaining stages
n to N if we use policy  and start in state x € E at time n. The value function V,, is
defined by

Va(x) :=sup V,r (x), x€E, 2.1
T
and gives the maximal expected total reward at time n over the remaining stages n

to N if we start in state x € E at time n. The functions V,, and V, are well-defined
since

Var () < Vu(x) <80 (x) <00, x€E.

Note that Vi, (x) = Vy(x) = gy (x) and that V,, depends only on (fy, ..., fn—1)-
Moreover, it is in general not true that V,, is measurable. This causes (measure) the-
oretic inconveniences. Some further assumptions are needed to imply this. A policy
mwe Fyx--- x Fy_ is called optimal for the N-stage Markov Decision Model if
Vor (x) = Vp(x) forall x € E.

2.1 The Bellman Equation

For a fixed policy m € Fy x --- x Fy_1 we can compute the expected discounted
rewards recursively by the so-called reward iteration. First we introduce some im-
portant operators which simplify the notation. In what follows let us denote

M(E) :={v: E — [—00, 00) | v is measurable}.

Due to our assumptions we have V,,; € M(E) for all & and n.
We define the following operators forn =0, 1,..., N — 1 and v € MI(E):

(L,v)(x,a) := rn(x,a)—l—/v(x’)Qn(dx’pc,a), (x,a) € D,

(Tnfv)(x) := (Lav)(x, f(x)), x€E, feF,,

(Thv)(x) == sup (Lpv)(x,a), x€E
aceDy(x)
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whenever the integrals exist. 7, is called the maximal reward operator at time n. The
operators 7, can now be used to compute the value of a policy recursively.

Theorem 2.1 (Reward Iteration) Let w = (fo, ..., fn—1) be an N-stage policy. For
n=0,1,..., N — 1it holds:

(@) Vg =g~ and Vyp = Tnf,, Viti,z-
) Var =Tuf, ... TN—1fy_18N-

For the solution of Markov Decision Problems the following notion will be impor-
tant.

Definition 2.2 Let v € M(E). A decision rule f € F,, is called a maximizer of v at
time n if T,rv = T,v, ie. for all x € E, f(x) is a maximum point of the mapping
ar> (Lyv)(x,a), a € Dy(x).

Below we will see that Markov Decision Problems can be solved by successive
application of the 7,-operators. As mentioned earlier it is in general not true that
T,v € M(E) for v € MI((E). However, it can be shown that V,, is analytically measur-
able and the sequence (V,,) satisfies the so-called Bellman equation

VN =gn,
Vo=TyVpit, n=0,1,....N—1,

see e.g. [9]. Here we use a different approach and state at first the following verifica-
tion theorem. The proof is by recursion.

Theorem 2.3 (Verification Theorem) Let (v,) C M(E) be a solution of the Bellman
equation. Then it holds:

(@ v, >V, forn=0,1,...,N.
(b) If f,¥ is a maximizer of vy41 forn=0,1,..., N — 1, then v, = V,, and the policy
(f f15 s fa_)) is optimal for the N-stage Markov Decision Problem.

Theorem 2.3 states that whenever we have a solution of the Bellman equation,
together with the maximizers, then we have found a solution of the Markov Deci-
sion Problem. Next we consider a general approach to Markov Decision Problems
under the following structure assumption. An important case where this assumption
is satisfied is given in Sect. 2.2.

Structure Assumption (SA ) There exist sets M,, C MI(E) of measurable functions
and sets A, C F,, of decision rules such that for alln =0,1,...,N — 1:

(i) gn € My.
(ii) Ifv € M, 41 then T,v is well-defined and T,v € M.
(iii) For all v € M, there exists a maximizer f, of v with f, € A,.
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Often M], is independent of n and it is possible to choose A, = F,, N A for a set
A C{f : E — A measurable}, i.e all value functions and all maximizers have the
same structural properties. The next theorem shows how Markov Decision Problems
can be solved recursively by solving N (one-stage) optimization problems.

Theorem 2.4 (Structure Theorem) Let (SAy) be satisfied. Then it holds:
(a) V, e M, and the value functions satisfy the Bellman equation, i.e. for n =
0,1,...,N—1
Vn(x) = gn(x),

Va(x) = sup {rn(x,aH-/Vn+1(x')Qn(dX'|x,a)}, x€eE.
aeD,(x)

®) Va=TThy1... ITn-18N-

(¢) For n =0,1,...,N — 1 there exists a maximizer f, of V,41 with f, € A,
and every sequence of maximizers f,\ of Vn41 defines an optimal policy
(f5s 5 ooy fa_y) for the N-stage Markov Decision Problem.

Proof Since (b) follows directly from (a) it suffices to prove (a) and (c). We show by
inductiononn =N —1,...,0 that V,, € M, and that

VmT* = 7;lVI1+1 = Vn

where 7% = ( f(;*, o f ;\’;71) is the policy generated by the maximizers of Vi, ..., Vy
and f € A,. We know Vy = gn € My by (SAx) (i). Now suppose that the state-
ment is true for N —1,...,n + 1. Since V;, € M, for k = N, ...,n + 1, the maxi-
mizers f,, ..., fy_, exist and we obtain with the reward iteration and the induction
hypothesis (note that £, ..., f_, are not relevant for the following equation)

Vi = nfk Vn+1,71* = infyx Vn+1 = ,Tnvn+l~
Hence V,, > 7,,V,+1. On the other hand we have for an arbitrary policy 7
Var = 7;;f,, Vn+l,7‘r = /];lfn Vn+1 = 7;1Vn+1

where we use the fact that 7, is order preserving, i.e. v < w implies 7,7, v < T 7, w.
Taking the supremum over all policies yields V,, < 7, V, 1. Altogether it follows that

Vars = Zan-H =V
and in view of (SAy), V,, € M. O
2.2 Semicontinuous Markov Decision Processes

In this section we give sufficient conditions under which assumptions (Ay) and
(SAy) are satisfied and thus imply the validity of the Bellman equation and the ex-
istence of optimal policies. The simplest case arises when state and action spaces
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are finite in which case (Ay) is obviously satisfied and (SAy) is satisfied with M,
and A, being the set of all functions v : E — [—00, 00) and f : § — A respectively.
We assume now that £ and A are Borel spaces, i.e. Borel subsets of Polish spaces
(i.e. complete, separable, metric spaces). Also D, is assumed to be a Borel subset of
E x A. Let us first consider the Integrability Assumption (Ay). It is fulfilled when
the Markov Decision Model has a so-called upper bounding function.

Definition 2.5 A measurable function b : E — R is called an upper bounding func-
tion for the Markov Decision Model if there exist ¢, ¢g, ap € Ry such that for all
n=0,1,...,N—1:

@) r,j'(x,a) <c¢,b(x) forall (x,a) € D,,
(i) g;(x) <cgb(x) forall x € E,
(iii) [b(x")Q,(dx'|x,a) < apb(x) forall (x,a) € Dy,.

When an upper bounding function exists we denote in the sequel

_ Jb(x")Qdx'|x, a)
sup

ap =
(x,a)eD b(x)

(with the convention g :=0). If r, and gy are bounded from above, then obviously
b = 11is an upper bounding function. For v € M(E) we define the weighted supremum
norm by

Ivllp = sup 2!
xeE b(x)

and introduce the set
By :={v e M(E) | [lv]lp < o0}
The next result is fundamental for many applications.

Proposition 2.6 If the Markov Decision Model has an upper bounding function b,
then 8,],\/ € By, and the Integrability Assumption (Ay) is satisfied.

In order to satisfy (SAy) we consider so-called semicontinuous models. In the
next definition M is supposed to be a Borel space.

Definition 2.7

(a) A function v : M — R is called upper semicontinuous if for all sequences (x,) C
M with lim,,_, 5o X, = x € M it holds

limsupv(x,) < v(x).
n—o0
(b) The set-valued mapping x — D(x) is called upper semicontinuous if it has the
following property for all x € E: If x, — x and a, € D(x,) for all n € N, then
(a,) has an accumulation point in D(x).
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The next theorem presents easy to check conditions which imply (SAy).

Theorem 2.8 Suppose a Markov Decision Model with an upper bounding function
b is given and for alln =0, 1,..., N — 1 it holds:

(1) Dy (x) is compact for all x € E and x — D, (x) is upper semicontinuous,
(i) (x,a)+—~ f v(x")Q,(dx’|x,a) is upper semicontinuous for all upper semicon-
tinuous v with vt € By,
(i) (x,a) > ry(x,a) is upper semicontinuous,
(iv) x — gn(x) is upper semicontinuous.

Then the sets M, := {v € M(E) | v* € By, v is upper semicontinuous} and
A, = F, satisfy the Structure Assumption (SAy).

Of course, it is possible to give further conditions which imply (SAy), e.g. other
continuity and compactness conditions, monotonicity conditions, concavity or con-
vexity conditions (see [3], Chap. 2).

2.3 Applications of Finite-Stage Markov Decision Processes

In this section we present the solution of the card game and investigate stochastic
linear-quadratic control problems. Both examples illustrate the solution method for
finite-stage Markov Decision Processes.

2.3.1 Red-and-Black Card-Game

Let us first reconsider the card game of the introduction. The state of the system is
the number of cards which are still uncovered, thus

E:={x=(b,r) €N} |b<bo,r<rp)

and N = rg + bg where rg and bg are the total number of red and black cards in the
deck. The state (0, 0) will be absorbing. For x € E and x ¢ {(0, 1), (1,0)} we have
D, (x) = A = {0, 1} with the interpretation that ¢ = 0 means “go ahead” and a = 1
means ‘“stop”. Since the player has to take the last card if she had not stopped before
we have Dy_1((0, 1)) = Dy—1((1,0)) = {1}. The transition probabilities are given
by

(. = 1) | (b.7),0) := ﬁ, r>1,b>0,

r>0,b>1,

4 (b= 1.0 (b:1),0) = —
42 ((0,0) | (b,r),1):=1, (b,r) €E,

gn((0,0)[(0,0),a) :=1, a€A.

The one-stage reward is given by the expected reward

ra((b,r) 1) = Z—;: for (b, r) € E \ {(0,0)},
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and the reward is zero otherwise. Finally we define
b—r
gn(b,r):=-—— for (b,r) € E\{(0,0)}
b+r

and gn ((0,0)) = 0. Since E and A are finite, (A ) and also the Structure Assumption
(SAy) is clearly satisfied with

M, =M:={v:E—-R|v(0,00=0} and A:=F.

In particular we immediately know that an optimal policy exists. The maximal reward
operator is given by

b—r r
(Tyv)(b, 1) = max{m, r+bv(r—1,b)+ r+bv(r,b— 1)}
forb+r>2,

(Iy-1v)(1,0) :=1,
(In-1v)(0,1) := —1,
(T,v)(0,0) :=0.

It is not difficult to see that gy = T,gny forn =0,1,...,N — 1. Forx = (b,r) € E
with » + b > 2 the computation is as follows:

b—r r b
7 b,r) = , —— -1,b)+ —— b—1
(Tngn) (b, r) = max bTr r+bgzv(r )+r+bg1v(r )}

b—r r b—r+1 b b—r—l}

= max , . + .
b+r r+b r+b—-1 r+b r+b-1
b—r b-—r b.r)

= max , = 7).
b+r brr| &Y

Since both expressions for a = 0 and a = 1 are identical, every f € F is a maximizer
of gn. Applying Theorem 2.4 we obtain that V,, = 7,,...7y_1gn = g~ and we can
formulate the solution of the card game.

Theorem 2.9 The maximal value of the card game is given by

by — o
b()—l-r()’

Vo(bo, ro) = gn (bo, ro) =
and every strategy is optimal.

Thus, there is no strategy which yields a higher expected reward than the trivial
ones discussed in the introduction. The game is fair (i.e. Vy(bo, r9) = 0) if and only
if ro = by. Note that the card game is a stopping problem. The theory of optimal
stopping problems can be found e.g. in [30]. For more gambling problems see [33].
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2.3.2 Stochastic Linear-Quadratic Control Problems

A famous class of control problems with different applications are linear-quadratic
problems (LQ-problems). The name stems from the linear state transition function
and the quadratic cost function. In what follows we suppose that £ := R is the state
space of the underlying system and D, (x) := A :=R?, i.e. all actions are admissible.
The state transition is linear in state and action with random coefficient matrices
Ay, By, ..., Ay, By with suitable dimensions, i.e. the system transition is given by

Xny1:=Anp1 Xn + By fu(Xy).

We suppose that the random matrices (A1, B1), (A2, B2), ... are independent but not
necessarily identically distributed and have finite expectation and covariance. Thus,
the law of X4 is given by the kernel

Qn(Blx,a) :=P((Apt1x + Byt1a) € B), B eBR™).

Moreover, we assume that IE[BI;r +1RBu+1] s positive definite for all symmetric pos-
itive definite matrices R. The one-stage reward is a negative cost function

ra(x,a):= —xTR,,x
and the terminal reward is
gn(x,a):= —xTRNx
with deterministic, symmetric and positive definite matrices Ro, R1, ..., Ry. There

is no discounting. The aim is to minimize

N

ET [Z bel Rka}
k=0

over all N-stage policies . Thus, the aim is to minimize the expected quadratic

distance of the state process to the benchmark zero.

We have r, <0 and b = 1 is an upper bounding function, thus (Ay) is satisfied.
We will treat this problem as a cost minimization problem, i.e. we suppose that V,, is
the minimal cost in the period [n, N]. For the calculation below we assume that all
expectations exist. The minimal cost operator is given by

T,v(x) = inf {xTRnx + Ev(An+1x + Bn+1a)} .

acRd

We will next check the Structure Assumption (SAy). It is reasonable to assume that
M, is given by

M, := {v:R™ - R, | v(x) = x| Rx with R symmetric, positive definite}.

It will also turn out that the sets A, := A N F,, can be chosen as the set of all linear
functions, i.e.

A:={f:E— A| f(x) =Cx for some C e R@™}.
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Let us start with assumption (SAy) (i): Obviously x" Ryx € My. Now let v(x) =
x T Rx € M, 1. We try to solve the following optimization problem

T,v(x) = inf {xTRnx + EU(A,,+1x + Bn_Ha)}

acR4

= inf {xTRox +xTE[A], RAw1 ]x + 24 E[A ], RB, i1 a

aeR4
+a BB, RByii]a).

Since R is positive definite, we have by assumption that E[B,;'— +1RBpy1] is also pos-

itive definite and thus regular and the function in brackets is convex in a (for fixed
x € E). Differentiating with respect to a and setting the derivative equal to zero, we
obtain that the unique minimum point is given by

£ = —(IE[BHTHRBHH])_IIE[BIHRA,,H])C.
Inserting the minimum point into the equation for 7, v yields
Too) =x" (R +E[A], RA, 1]
- ]E[ALIRB"H](E[BJH RBnH])_l
— E[B,IHRA,,H]))C =x'Rx

where R is defined as the expression in the brackets. Note that R is symmetric and
since x'Rx = T,v(x) > x | Rpx, it is also positive definite. Thus 7v € M, and the
Structure Assumption (SAy) is satisfied for M, and A, = A N F,,. Now we can
apply Theorem 2.4 to solve the stochastic linear-quadratic control problem.

Theorem 2.10
(a) Let the matrices R, be recursively defined by

EN = RN

- T =

Ry =Ry +E[A,  Rut1An41]

~ ~ -1 ~
_E[A:IHR"HBn+1](E[BnT+1Rn+1Bn+1]) E[B;j+1Rr1+1An+1]~
Then I%,, are symmetric, positive semidefinite and V,, (x) = xTﬁnx, xekE.

(b) The optimal policy (f, ..., fy_,) is given by

B ~1 .
fii(x) = _<E[B;—+1Rn+13n+l]) E[BJ+1Rn+lAn+l]x~

Note that the optimal decision rule is a linear function of the state and the coeffi-
cient matrix can be computed off-line. The minimal cost function is quadratic. If the
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state of the system cannot be observed completely the decision rule is still linear in
the state but here the coefficient matrix has to be estimated recursively. This follows
from the principle of estimation and control.

Our formulation of the stochastic LQ-problem can be generalized in different ways
without leaving the LQ-framework (see e.g. [7, 8]). For example the cost function can
be extended to

N N—-1
BT | Xk —bo) " Re(Xx —bi) + Y fuXi) " R fr(Xp)
k=0 k=0

where I%k are deterministic, symmetric positive semidefinite matrices and by are de-
terministic vectors. In this formulation the control itself is penalized and the expected
distance of the state process to the benchmarks by has to be kept small.

2.3.3 Further Applications

Applications of Markov Decision Processes can be found in stochastic operations
research, engineering, computer science, logistics and economics (see e.g. [3, 7, 8,
28, 39, 40]). Prominent examples are inventory-production control, control of queues
(controls can be routing, scheduling), portfolio optimization (utility maximization,
index-tracking, indifference pricing, Mean-Variance problems), pricing of American
options and resource allocation problems (resources could be manpower, computer
capacity, energy, money, water etc.). Recent practical applications are e.g. given in
[19] (Logistics), [15] (Energy systems) and [21] (Health care). Research areas which
are closely related to Markov Decision Processes are optimal stopping and multistage
(dynamic) game theory.

Markov Decision Problems also arise when continuous-time stochastic control
problems are discretized. This numerical procedure is known under the name ap-
proximating Markov chain approach and is discussed e.g. in [26]. Stochastic control
problems in continuous-time are similar to the theory explained here, however require
a quite different mathematical background. There the Bellman equation is replaced
by the so-called Hamilton-Jacobi-Bellman equation and tools from stochastic analy-
sis are necessary. Continuous-time Markov Decision Processes are treated in [20].

3 Markov Decision Processes with Infinite Time Horizon

In this chapter we consider Markov Decision Models with an infinite time horizon.
There are situations where problems with infinite time horizon arise in a natural way,
e.g. when the random lifetime of a stochastic system is considered. However more
important is the fact that Markov Decision Models with finite but large horizon can
be approximated by models with infinite time horizon. In what follows we always
assume that a stationary Markov Decision Model with infinite horizon is given, i.e.
the data does not depend on the time parameter » and we thus have a state space
E, an action space A, a set of admissible state-action pairs D, a transition kernel Q,
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a one-stage reward r and a discount factor 8 € (0, 1]. By F we denote the set of all
decision rules, i.e. measurable functions f : E — A with f(x) € D(x) forallx € E.

Let 7w = (fo, f1,...) € F° be a policy for the infinite-stage Markov Decision
Model. Then we define

Joor (x) 1= EF |:Z,3kr(Xk, fk(Xk))} , x€E
k=0

which gives the expected discounted reward under policy m (over an infinite time
horizon) when we start in state x. The performance criterion is then

Joo(x) :=supJoor (x), x €E. (3.1

The function Jo(x) gives the maximal expected discounted reward (over an infi-
nite time horizon) when we start in state x. A policy n* € F* is called optimal if
Joor*(x) = Jo(x) for all x € E. In order to have a well-defined problem we assume

Integrability Assumption (A)
o
8(x) :=supET [Z Brrt(Xe, fk(Xk))] <00, x€E.
T k=0

In this stationary setting the operators of the previous section read

(Lv)(x, a) :=r(x,a)+,3/v(x’)Q(dx’|x,a), (x,a) e D,

(Trv)(x) == (Lv)(x, f(x)), x€E, feF,

(Tv)(x) := sup (Lv)(x,a), x€E.
aeD(x)

When we now define for n € Ny
Jr(x) = Tfo .. .Tfnfl()(x), meF®,
Jn(x) :=T"0(x),

then the interpretation of J,(x) is the maximal expected discounted reward over n
stages when we start in state x and the terminal reward function is zero, i.e. it holds

n—1
Jum (x) = B} [Z BEr (X, fk(Xk))],

k=0
Jo(x) =sup Juz(x), x€E.
s

Moreover, it is convenient to introduce the set

B:={veM(E)|v(x) <) forall x € E}.
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Obviously, we have Js, € B for all policies 7. In order to guarantee that the in-
finite horizon problem is an approximation of the finite horizon model, we use the
following convergence assumption.

Convergence Assumption (C)

lim supE” [Zﬂkr+(xk, fk(Xk))] =0, x€E.

n—00
k=n

When assumptions (A) and (C) are satisfied we speak of the so-called (general-
ized) negative case. It is fulfilled e.g. if there exists an upper bounding function b and
Bay < 1. In particular if » <0 or r is bounded from above and g8 € (0, 1). The Con-
vergence Assumption (C) implies that lim,,_, », J,, and lim,_, », J,, exist. Moreover,
for m € F°° we obtain

Joor = lim Jyr.
n—oo
Next we define the limit value function by

J(x):= nlin;o Jo(x) <é(x), xeE.

By definition it obviously holds that J,,, < J, for all n € N, hence Jyo, < J for all
policies 7. Taking the supremum over all & implies

Joo(x) < J(x), x€E.
The next example shows that in general J # J.

Example 3.1 We consider the following Markov Decision Model: Suppose that the
state space is E := N and the action space is A := N. Further let D(1) :={3,4, ...}
and D(x) := A for x > 2 be the admissible actions. The transition probabilities are
given by

q(al|l,a) =1,
q2212,a) =1,
qg(x —1lx,a):=1 forx >3.

All other transition probabilities are zero (cf. Fig. 2). Note that state 2 is an absorb-
ing state. The discount factor is 8 = 1 and the one-stage reward function is given
by

r(x,a):=—06x3, ((x,a)eD.

Since the reward is non-positive, assumptions (A) and (C) are satisfied.
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m r(3,a)=-1

action a

Fig. 2 Transition diagram of Example 3.1

We will compute now J and J. Since state 2 is absorbing, we obviously have
Joo(2) =0 and Jx(x) = —1 for x # 2. On the other hand we obtain for n € N
that

0, forx=1,2,
Jo(x)=14—-1, for3<x<n-+2,
0, forx >n+2.

Thus, Jeo (1) = —1 £ 0 = J(1) = limy_ 00 Ju (1).

As in the finite horizon model the following reward iteration holds where J :=
Joo(, 1,..) for a stationary policy (f, f,...).

Theorem 3.2 (Reward Iteration) Assume (C) and let w1 = (f,0) € F x F*°. Then it
holds:

(@) Joor = ,Tfjoocr
(b) JreBand J; = 'TfJf.

The functions J,,J and J are in general not in B. However, Jo, and J are
analytically measurable and satisfy

Joo=TJsx and J>TJ,

see e.g. [9]. As in Sect. 2 we formulate here a verification theorem in order to avoid
the general measurability problems.

Theorem 3.3 (Verification Theorem) Assume (C) and let v € B be a fixed point of T
such that v > Joo. If f* is a maximizer of v, then v = J, and the stationary policy
(f*, f*,...) is optimal for the infinite-stage Markov Decision Problem.

Natural candidates for a fixed point of 7 are the functions Jo and J. In what
follows we want to solve the optimization problem (3.1) and at the same time we
would like to have Jo, = J. In order to obtain this statement we require the following
structure assumption.

Structure Assumption (SA) There exists a set Ml C MI(E) of measurable functions
and a set A C F of decision rules such that:
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(1) 0e M.
(i) If v e M then

(Tv)(x):= sup {r(x,a)+,3/v(x')Q(dx’|x,a)}, xekE

aeD(x)

is well-defined and Tv € M.
(iii) For all v € M there exists a maximizer f € A of v.
@iv) JeMand J=TJ.

Note that conditions (i)—(iii) together constitute the Structure Assumption of
Sect. 2 in a stationary model with gy = 0. Condition (iv) imposes additional proper-
ties on the limit value function.

Theorem 3.4 (Structure Theorem) Let (C) and (SA) be satisfied. Then it holds:

@) Joo €M, Joo =T Jso and Joo = J =1limy o J),.

(b) Jxo is the largest r-subharmonic function v in MN B, i.e J is the largest func-
tionvinMwithv<7vandv <§$.

(¢) There exists a maximizer f € A of Joo, and every maximizer f* of Jo defines
an optimal stationary policy (f*, f*,...) for the infinite-stage Markov Decision
Model.

The equation Jo, = 7 Jo is called Bellman equation for the infinite-stage Markov
Decision Model. Often this fixed point equation is also called optimality equation.

Part (a) of the preceding theorem shows that J, is approximated by J, for n
large, i.e. the value of the infinite horizon Markov Decision Problem can be obtained
by iterating the 7 -operator. This procedure is called value iteration. Part (c) shows
that an optimal policy can be found among the stationary ones.

As in the case of a finite horizon it is possible to give conditions on the model data
under which (SA) and (C) are satisfied. We restrict here to one set of continuity and
compactness conditions.

In what follows let E and A be Borel spaces, let D be a Borel subset of £ x A
and define

Dj(x) :={a € D(x) | a is a maximum point of a + LJ,_1(x,a)}
forn e NU {oo} and x € E and

LsD;(x) := {a € A | ais an accumulation point of a sequence (a,,) with
an € D} (x) forn € N},

the so-called upper limit of the set sequence (D};(x)).

Theorem 3.5 Suppose there exists an upper bounding function b with Boy < 1 and
it holds:

(1) D(x) is compact for all x € E and x — D(x) is upper semicontinuous,
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(i) (x,a) > f v(x") Q(dx'|x, a) is upper semicontinuous for all upper semicontin-
uous v with vt e By,
(i) (x,a) > r(x,a) is upper semicontinuous.

Then it holds:

(@) Joo =T Jo and Joo =1im,,_, o J;, (Value Iteration).

(b) If b is upper semicontinuous then Joo is upper semicontinuous.

(¢) 9 # LsD;(x) C D} (x) for all x € E (Policy Iteration).

(d) There exists an f* € F with f*(x) € LsD}(x) for all x € E, and the stationary
policy (f*, f*,...) is optimal.

Suppose the assumptions of Theorem 3.5 are satisfied and the optimal stationary
policy f°° is unique, i.e. we obtain D} (x) = {f(x)}. Now suppose (f,) is a se-
quence of decision rules where f,* is a maximizer of J,,_;. According to part c) we
must have lim,_, f,7 = f. This means that we can approximate the optimal policy
for the infinite horizon Markov Decision Problem by a sequence of optimal policies
for the finite-stage problems. This property is called policy iteration.

Remark 3.6 If we define

en(x) :=supET [Z ﬂkr_(Xk, fk(Xk))]a x€E,

k=n

where x~ = max{0, —x} denotes the negative part of x, then instead of (A) and (C)
one could require gp(x) < oo and lim,_, » €, (x) = 0 for all x € E. In this case we
speak of a (generalized) positive Markov Decision Model. This type of optimiza-
tion problem is not dual to the problems we have discussed so far. In particular, the
identification of optimal policies is completely different (see e.g. [9, 34]).

3.1 Contracting Markov Decision Processes

An advantageous and important situation arises when the operator 7 is contracting.
To explain this we assume that the Markov Decision Model has a so-called bounding
function (instead of an upper bounding function which we have considered so far).

Definition 3.7 A measurable function b : E — R is called a bounding function for
the Markov Decision Model if there exist constants c,, a; € R, such that

1) |r(x,a)| <cb(x) for all (x,a) € D.
(i) [b(x")Qdx'|x,a) <apb(x) forall (x,a) € D.

Markov Decision Models with a bounding function b and B, < 1 are called con-
tracting. We will see in Lemma 3.8 that Bay is the module of the operator 7 .

If r is bounded, then b = 1 is a bounding function. If moreover 8 < 1, then the
Markov Decision Model is contracting (the classical discounted case). For any con-
tracting Markov Decision Model the assumptions (A) and (C) are satisfied, since
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& € B and there exists a constant ¢ > 0 with

hm supE” |:Zﬂ Xk fk(Xk)):| Scnl_i)ngo(ﬂab)"b(x) =0

k=n

Lemma 3.8 Suppose the Markov Decision Model has a bounding function b and let
fEeF.

(a) Forv,w € By, it holds:

17rv —Trwlly < Bapllv—wlls,
1Tv=Twlly < Bapllv—wllp.

(b) Let Bap < 1. Then Jy =lim,_, ’T v for all v € By, and Jy is the unique fixed
point of Ty in By.

Theorem 3.9 (Verification Theorem) Let b be a bounding function, Bayp < 1 and let
v € By, be a fixed point of T : Bp — Byp. If f* is a maximizer of v, then v = Joo = J
and (f*, f*,...) is an optimal stationary policy.

The next theorem is the main result for contracting Markov Decision Processes. It
is a conclusion from Banach’s fixed point theorem. Recall that (By, || - ||5) is a Banach
space.

Theorem 3.10 (Structure Theorem) Let b be a bounding function and Bayp < 1. If
there exists a closed subset Ml C By, and a set A C F such that

(1) 0eM,
(i) 7:M— M,
(iii) for all v € M there exists a maximizer f € A of v,

then it holds:

@) Joo EM, Joo =T Joo and Joo =lim;, 6 J;.

(b) Joo is the unique fixed point of T in M.

(¢) Jo is the smallest r-superharmonic function v € M, i.e. J is the smallest func-
tionv e M withv > Tv.

(d) Let v e M. Then

o= T"oll < 120

(e) There exists a maximizer f € A of Joo, and every maximizer f* of Joo defines
an optimal stationary policy (f*, f*,...).

I7v —vllp.

3.2 Applications of Infinite-Stage Markov Decision Processes

In this subsection we consider bandit problems and dividend pay-out problems. Ap-
plications to finance are investigated in [3]. In particular, optimization problems with
random horizon can be solved via infinite-stage Markov Decision Processes.
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3.2.1 Bandit Problems

An important application of Markov Decision Problems are so-called bandit prob-
lems. We will restrict here to Bernoulli bandits with two-arms. The game is as
follows: Imagine we have two slot machines with unknown success probability 6;
and 6,. The success probabilities are chosen independently from two prior Beta-
distributions. At each stage we have to choose one of the arms. We receive one Euro
if the arm wins, else no cash flow appears. The aim is to maximize the expected
discounted reward over an infinite number of trials. One of the first (and more se-
rious) applications is to medical trials of a new drug. In the beginning the cure rate
of the new drug is not known and may be in competition to well-established drugs
with known cure rate (this corresponds to one bandit with known success probabil-
ity). The problem is not trivial since it is not necessarily optimal to choose the arm
with the higher expected success probability. Instead one has to incorporate ‘learn-
ing effects’ which means that sometimes one has to pull one arm just to get some
information about its success probability. It is possible to prove the optimality of a
so-called index-policy, a result which has been generalized further for multi-armed
bandits.

The bandit problem can be formulated as a Markov Decision Model as follows.
The state is given by the number of successes m, and failures n, atboth armsa = 1, 2
which have appeared so far. Hence x = (m,ny,mo,n2) € E = Ng X N% gives the
state. The action space is A := {1,2} where a is the number of the arm which is
chosen next. Obviously D(x) = A. The transition law is given by

q( | )——71 =: pa(x)
X+ exy_ilx,a : X),
2a 1 B 2 a

q(x +e2a|x1a) =1- pa(-x)s

where ¢, is the a-th unit vector. The one-stage reward at arm a is r(x, a) := p,(x)
which is the expected reward when we win one Euro in case of success and nothing
else, given the information x = (m1, n1, mo, ny) of successes and failures. We assume
that 8 € (0, 1).

It is convenient to introduce the following notation, where v : E — R:

(Qav)(x) := pa(X)v(x +e2-1) + (I = pa(x))v(x +€2), x€E.

Observe that since r is bounded (i.e. we can choose b = 1) and 8 < 1 we have
a contracting Markov Decision Model. Moreover, the assumptions of Theorem 3.10
are satisfied and we obtain that the value function J,, of the infinite horizon Markov
Decision Model is the unique solution of

Joo) =max { p1(¥) + B (1), p2(x) +BQ2J(¥)]. x € NG x I}

and a maximizer f* of J, defines an optimal stationary policy (f*, f*,...).

A very helpful tool in the solution of the infinite horizon bandit are the so-called
K -stopping problems. In a K -stopping problem only one arm of the bandit is con-
sidered and the decision maker can decide whether she pulls the arm and continues
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the game or whether she takes the reward K and quits. The maximal expected reward
J(m, n; K) of the K-stopping problem is then the unique solution of

v(m, n) = max {K p(m, n) +,3(p(m, nyv(m +1,n) + (1= p(m, n)v(m, n+ 1))}

for (m,n) € Ng where p(m,n) = m"l:lz Obviously it holds that J(-; K) > K and if

K is very large it will be optimal to quit the game, thus J(m, n; K) = K for large K.
Definition 3.11 For (m,n) € Ng we define the function

I(m,n):=min{fK e R | J(m,n; K) =K}
which is called Gittins-index.

The main result for the bandit problem is the optimality of the Gittins-index policy.

Theorem 3.12 The stationary Index-policy (f*, f*,...) is optimal for the infinite
horizon bandit problem where for x = (m1,n1,ma, ny)

. 2 ifI(my,np) > I(my,ny),
Jro) = :
L ifI(my,n2) < I(my,ny).

Remarkable about this policy is that we compute for each arm separately its own
index (which depends only on the model data of this arm) and choose the arm with
the higher index. This reduces the numerical effort enormous since the state space of
the separate problems is much smaller. A small state space is crucial because of the
curse of dimensionality for the value iteration.

The Bernoulli bandit with infinite horizon is a special case of the multiproject ban-
dit. In a multiproject bandit problem m projects are available which are all in some
states. One project has to be selected to work on or one chooses to retire. The project
which is selected then changes its state whereas the other projects remain unchanged.
Gittins [18] was the first to show that multiproject bandits can be solved by con-
sidering single-projects and that the optimal policy is an index-policy, see also [6].
Various different proofs have been given in the last decades. Further extensions are
restless bandits where the other projects can change their state too and bandits in
continuous-time. Bandit models with applications in finance are e.g. treated in [2].

3.2.2 Dividend Pay-out Problems

Dividend pay-out problems are classical problems in risk theory. There are many
different variants of it in discrete and continuous time. Here we consider a completely
discrete setting which has the advantage that the structure of the optimal policy can
be identified.

Imagine we have an insurance company which earns some premia on the one
hand but has to pay out possible claims on the other hand. We denote by Z, the
difference between premia and claim sizes in the n-th time interval and assume that



238 N. Biuerle, U. Rieder

Z1,Z,, ... are independent and identically distributed with distribution (g, k € Z),
i.e. P(Z, =k) = g for k € Z. At the beginning of each time interval the insurer can
decide upon paying a dividend. Of course this can only be done if the risk reserve
at that time point is positive. Once the risk reserve got negative (this happens when
the claims are larger than the reserve plus premia in that time interval) we say that
the company is ruined and has to stop its business. The aim now is to maximize the
expected discounted dividend pay out until ruin. In the economic literature this value
is sometimes interpreted as the value of the company.

We formulate this problem as a stationary Markov Decision Problem with infinite
horizon. The state space is E := Z where x € E is the current risk reserve. At the
beginning of each period we have to decide upon a possible dividend pay out a €
A :=Njy. Of course we have the restriction thata € D(x) :={0, 1,...,x} whenx >0
and we set D(x) := {0} if x < 0. The transition probabilities are given by

qx'|x,a) i==qy—xya, x>0, aeDx), x' €Z.

In order to make sure that the risk reserve cannot recover from ruin and no further
dividend can be paid we have to freeze the risk reserve after ruin. This is done by
setting

qx|x,0):=1, x<0O.

The dividend pay-out is rewarded by r (x, a) := a and the discount factoris 8 € (0, 1).
When we define the ruin time by

T:=inf{n e Ny | X, <0}

then for a policy = = (fo, f1,...) € F° we obtain

7—1
Joor (x) = BT [Z ﬂkfk<xk)] :

k=0

Obviously Joor (x) = 0if x < 0. In order to have a well-defined and non-trivial model
we assume that

P(Z; <0)>0 and IEZ?' < 00.

Then the function b(x) := 1+ x, x >0 and b(x) :=0, x < 0 is a bounding func-
tion with sup, ET[b(X,)] < b(x) + nEZ7, n € N. Moreover, for x > 0 we obtain

I
S(x) <x+ ﬁFi Zﬁl , and hence § € Bj. Thus, the Integrability Assumption (A) and

the Convergence Assumption (C) are satisfied and M := B, fulfills (SA). Moreover,
Theorem 3.4 yields that lim,,_, 5, J,, = Joo and

o0
Joo() = (TU)(x) = max ja+p Y Jolx—a+kgif. x>0

k=a—x
Obviously, Jso(x) = 0 for x < 0. Further, every maximizer of J, (which obviously
exists) defines an optimal stationary policy (f*, f*,...). In what follows, let f* be
the largest maximizer of J.
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Definition 3.13 A stationary policy f° is called a band-policy, if there exist n € Ny
and numbers ay, ...ay, by, ...b, € Ng such that by —ay_1 >2fork=1,...,n and
O<ay<bi<ar<by<---<b, <a, and

0, if x <ay,
x —ag, ifax <x <by,
0, if by <x <ay,

fx) =

x—a,, ifx>a,.
A stationary policy f°° is called a barrier-policy if there exists b € Ny such that

0. ifx <b
A T

Theorem 3.14

(a) The stationary policy (f*, f*,...) is optimal and is a band-policy.
(b) If P(Z, = —1) =1 then the stationary policy (f*, f*,...) is a barrier-policy.

The dividend payout problem has first been considered in the case Z, € {—1, 1} by
de Finetti [17]. Miyasawa [29] proved the existence of optimal band-policies under
the assumption that the profit Z,, takes only a finite number of negative values. Other
popular models in insurance consider the reinsurance and/or investment policies and
ruin probabilities, see e.g. [27, 35, 36].

4 Solution Algorithms

From Theorem 3.4 we know that the value function and an optimal policy of the infi-
nite horizon Markov Decision Model can be obtained as limits from the finite horizon
problem. The value and policy iteration already yield first computational methods to
obtain a solution for the infinite horizon optimization problem. The use of simula-
tion will become increasingly important in evaluating good policies. Much of the
burden of finding an optimal policy surrounds the solution of the Bellman equation,
for which now there are several simulation based algorithms such as approximate dy-
namic programming, see e.g. [31]. There are also simulation based versions of both
value and policy iteration. In this section we present two other solution methods.

4.1 Howard’s Policy Improvement Algorithm

We next formulate Howard’s policy improvement algorithm which is another tool to
compute the value function and an optimal policy. It goes back to [25] and works well
in Markov Decision Models with finite state and action spaces.

Theorem 4.1 Let (C) and (SA) be satisfied. Let f,h € F be two decision rules with
Jr, Jn € M and denote

D(x, f):={aeDXx)|LJs(x,a) > Jr(x)}, x€ek.
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Then it holds:
(a) If for some subset Eg C E

h(x) € D(x, f) forx € Ey,
h(x) = f(x) forx ¢ Ey,

then J, > Jy and Jp(x) > Jy(x) for x € Eq. In this case the decision rule h is
called an improvement of f.

(b) If D(x, f) =@ forall x € E and Jy > 0, then Jy = Joo, i.e. the stationary policy
(f, f,...) € F* is optimal.

(c) Let the Markov Decision Model be contracting. If D(x, f) = for all x € E,
then the stationary policy (f, f,...) € F* is optimal.

If F is finite then an optimal stationary policy can be obtained in a finite number
of steps. Obviously it holds that f € F defines an optimal stationary policy (f, f,...)
if and only if f cannot be improved by the algorithm.

4.2 Linear Programming

Markov Decision Problems can also be solved by linear programming. We restrict
here to the contracting case i.e. B < 1 and assume that state and action space are
finite. We consider the following linear programs:

Y vep V(x) — min,
P) vx) =B qOlx,a)v(y) = r(x,a), (x,a)eD,
vix)eR, x e E.

Z(x,a)eD r(x,a)u(x,a) — max,
(D) Z(x,a) (gxy - ﬂq(ny, (l)),u,(x, a) — 1’ y € E,
p(x,a)>0,(x,a)eD.

Note that (D) is the dual program of (P). Then we obtain the following result.

Theorem 4.2 Suppose the Markov Decision Model is contracting and has finite state
and action spaces. Then it holds:

(a) (P) has an optimal solution v* and v* = Jo.

(b) (D) has an optimal solution *. Let u* be an optimal vertex. Then for all x € E,
there exists a unique ay € D(x) such that u*(x, a,) > 0 and the stationary policy
(f*, f*,..) with f*(x) :=ay, x € E, is optimal.

Using so-called occupation measures general Markov Decision Problems with
Borel state and action spaces can be solved by infinite dimensional linear programs,
seee.g. [1, 23].
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5 Further Topics on Markov Decision Processes

So far we have assumed that the decision maker has full knowledge about the distri-
butional laws of the system. However, there might be cases where the decision maker
has only partial information and cannot observe all driving factors of the model. Then
the system is called a Partially Observable Markov Decision Process. Special cases
are Hidden Markov models. Using results from filtering theory such models can be
solved by a Markov Decision model (in the sense of Sects. 2 and 3) with an enlarged
state space. This approach can be found in [3]. Also the control of Piecewise De-
terministic Markov Processes can be investigated via discrete-time Markov Decision
Processes.

The presentation of the infinite horizon Markov Decision Processes is here re-
stricted to the total reward criterion. However, there are many other optimality crite-
ria like e.g. average-reward and risk-sensitive criteria. Average-reward criteria can be
defined in various ways, a standard one is to maximize

n—1

1iminf11E§ > o r(Xe. flX0) |-

n—oo n
k=0

This problem can be solved via the ergodic Bellman equation (sometimes also called
Poisson equation). Under some conditions this equation can be derived from the dis-
counted Bellman equation when we let 8 — 1 (see e.g. [22]). This approach is called
vanishing discount approach. The risk sensitive criterion is given by

1 n—1
liminf —log( EY | exp y];)r(xk,fk(Xk))

where the “risk factor” y is assumed to be a small positive number in the risk-averse
case. This optimization problem has attracted more recent attention because of the
interesting connections between risk-sensitive control and game theory and has also
important applications in financial optimization (see e.g. [10, 12]).
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