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Vorwort

In seinem mathematisch und menschlich sehr bewegenden historischen Beitrag iiber die
Lemberger Mathematikerschule beschreibt Roman Duda, wie sich dort zwischen 1920
und 1940 eine hinsichtlich ihrer Grée, Bedeutung und Wirksamkeit ganz auBerordent-
liche Gruppe von Mathematikern gefunden hat. Insbesondere, aber nicht nur in der
linearen wie nichtlinearen Funktionalanalysis sind viele Wurzeln in Lemberg (damals
Polen, Lwow, heute Ukraine) zu finden. Namen wie Banach, Steinhaus und Schauder
machen das exemplarisch deutlich, allerdings geht die Lemberger Schule ganz wesent-
lich iiber diese drei groBen Vertreter hinaus. In Deutschland muss die Beschiftigung
mit dieser Schule eine besondere Betroffenheit hervorrufen. Nicht so sehr deswegen,
weil mit Steinhaus einer ihrer Kristallisationspunkte in Goéttingen bei Hilbert pro-
moviert hat, sondern vielmehr, weil mit dem zweiten Weltkrieg, dem deutschen Uberfall
auf Polen und die Sowjetunion und 1941 der Eroberung des zundchst sowjetisch besetz-
ten Lemberg diese blithende Mathematikerschule ihr brutales Ende fand. Mehr als die
Hilfte deren Mitglieder hat den zweiten Weltkrieg nicht liberlebt; viele von ihnen wur-
den von Deutschen ermordet. Steinhaus konnte sich gerade noch rechtzeitig verbergen,
hat den Krieg unter falschemm Namen und mit falschen Papieren iiberlebt und war
anschlieBend noch lange Zeit in Breslau aktiv.

Am 25. November 2008 verstarb in Ziirich im Alter von 91 Jahren Beno Eckmann,
ein groBer Vertreter der Algebra und Topologie, dessen Schaffensperiode weit mehr als
ein halbes Jahrhundert umfasst. In ihrem Nachruf stellen Max-Albert Knus, Guido
Mislin und Urs Stammbach Eckmanns Wirken an der und fiir die ETH Ziirich dar und
beleuchten einige von Eckmanns Arbeitsschwerpunkten und wichtigsten Ergebnissen.
Eckmanns Name ist in der ganzen Mathematik bekannt u.a. durch sein Wirken in der
Internationalen Mathematischen Union und seine langjdhrigen Herausgebertitigkeiten
fiir die ,,Grundlehren“-Reihe und — mitbegriindend - fiir die Springer Lecture Notes in
Mathematics.

Berichte aus der Forschung sollen, so wiinscht es sich das Herausgebergremium,
kinftig ein starkeres Gewicht im Jahresbericht erhalten. Stefan Miiller-Stach berichtet
aus der erfolgreichen Arbeit des SFB/Transregio ,,Perioden, Modulrdume und Arithme-
tik algebraischer Varietiten“, der in Bonn, Essen und Mainz (Sprecherhochschule)
beheimatet ist. Seine Reise durch die Mathematik dieses Forschungsverbundes bettet er
ein in eine Darstellung des Férderinstruments SFB/Transregio, das sich offenbar be-
wiihrt hat und daher kiirzlich von der DFG dauerhaft etabliert worden ist. Wihrend
der Drucklegung dieses Heftes verstarb am 30. Januar Eckart Viehweg. Seine Verdiens-
te um die Mathematik sollen in einem spéteren Heft ausfithrlich gewtirdigt werden.

Buchbesprechungen runden in bewihrter Weise dieses Heft ab.

Hans-Christoph Grunau
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The Lvov school of mathematics lasted from 1920 to1940 and the article tells its story in
the light of historical events: Lvov university before 1918, the Polish-Ukrainian war
1918-1919 and the Polish-Soviet war 19191920, origins of the school and two decades
of its full bloom, world war II (first Soviet occupation 1939-1941, German occupation
1941-1944, the return of the Soviets 1944). More than half of the active members of the
school lost their lives during world war 1I and expelling 1945-1946 the Polish popula-
tion by the Soviets brought the ultimate end of the school.

Dieser Beitrag berichtet iiber die Geschichte der Lemberger Schule auf dem Hinter-
grund historischer Ereignisse: Die Lemberger Universitit vor 1918, der polnisch-ukrai-
nische Krieg 19181919, der polnisch-sowjetische Krieg 19191920, die Urspringe der
Lemberger Mathematikerschule und zwei Jahrzehnte ihrer vollen Bliite, der zweite
Weltkrieg (erste sowjetische Besetzung 19391941, deutsche Besetzung 1941-1944,
Riickkehr der Sowjets 1944). Mehr als die Hélfte der aktiven Mitglieder der Schule hat
ihr Leben wahrend des zweiten Weltkriegs verloren. Die Vertreibung der polnischen Be-
volkerung durch die Sowjets brachte 1945-1946 das endgiiltige Ende der Lemberger
Schule.
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1 Die Universitat

Das Hauptgebdude der Lemberger Universitit Als Konig Jan Kasimir 1661 in Lem-
berg (polnisch Lwow) eine Universitét
griindete, war das bereits die dritte auf
dem Territorium des polnisch-litau-
ischen Konigreichs, nach der Krakauer
(1364) und Wilnaer (1578). Osterreich
annektierte im Jahre 1772 Lemberg mit
ganz Galizien (1. polnische Teilung)
und herrschte dort bis 1918. Die Lem-
berger Universitit fithrte als Provinz-
universitdt lange ein untergeordnetes
Dasein, erst nach Erlangung der Auto-
nomie durch Galizien (mit der Haupt-
stadt Lemberg) und nach Einfithrung
von Polnisch als Unterrichtssprache be-
gann ihre erfolgreiche Entwicklung. In
den Jahren 1872-1889 war dort
Wawrzyniec Zmurko (1824-1889) Pro-
fessor fiir Mathematik und nach ihm
Jozef Puzyna (1856-1919). Ersterer
hatte in Wien studiert, sein Nachfolger
war auch sein Schiler, beendete sein
Studium aber in Berlin, u.a. bei Karl Weierstral3. Im Jahre 1908 kam Waclaw Sierpin-
ski°! nach Lemberg, habilitierte sich und wurde auBerordentlicher Professor. Er ver-
sammelte junge Mathematiker um sich wie Zygmunt Janiszewski®, Stefan Mazurkie-
wicz® und Stanistaw Ruziewicz®. Alle drei erzielten in der damals neuen Mengentheorie
und mengentheoretischen Topologie originelle Ergebnisse, die sie in polnischen (aber in
franzosischer Sprache) und franzdsischen Zeitschriften publizierten. Fiir die Lemberger
Universitit war das im wesentlichen eine gute Zeit. Als Professoren lehrten dort damals
u. a. auch der bedeutende Physiker Zygmunt Smoluchowski (1872-1917), der Begriin-
der der Lemberger philosophischen Schule Kazimierz Twardowski (1866—1938)* und
der bekannte Sibirienforscher Benedykt Dybowski (1833—-1930). Es war also eine gute
Universitit, und dort arbeitete eine ehrgeizige Gruppe junger Mathematiker.

Der Ausbruch des 1. Weltkrieges 1914 hatte jedoch den Zerfall der Mathematiker-
gruppe zur Folge. Sierpinski®, der bei Kriegsausbruch in Russland weilte, wurde dort

Plac Halicki mit der Bernhardiner Kirche
im Hintergrund

! Das Zeichen ° weist darauf hin, dass die betreffenden Personen in der am Ende des Beitrages bei-
gefiigten Aufstellung einiger Vertreter der Lemberger Mathematikerschule aufgefiihrt sind. Beim
ersten Auftreten des Namens ist auch der Vorname angegeben.

2 J. Wolenski, Die philosophische Lemberg-Warschauer Schule, Warszawa: PWN, 1985 [Polnisch];
J. Wolenski, Logic and Philosophy in the Lvov-Warsaw School, Synthése Library, Dordrecht: Klu-
ver, 1988.
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interniert. Janiszewski® meldete sich freiwillig zu den polnischen, gegen Russland kdmp-
fenden Legionen, und Mazurkiewicz® kehrte in seine Heimatstadt Warschau zuriick.
Dariiber hinaus brach unmittelbar nach Beendigung des 1. Weitkrieges zunéchst der
polnisch-ukrainische Krieg um Lemberg und Westgalizien aus, und nach seiner fir Po-
len erfolgreichen Beendigung folgte der polnisch-sowjetische Krieg um Polen, der mit
der fiir Polen erfolgreichen Unterbrechung des Marsches der Roten Armee auf Polen
und Westeuropa sein Ende fand®. Nach dem Friedensvertrag mit Sowjetrussland (Riga,
1921) gehorte ganz Galizien einschlieBlich Lemberg zu Polen, wo die alte Universitét
seit 1919 den Namen Jan-Kasimir-Universitat trug (im Folgenden kurz JKU).

2 Das Programm

Dies war der Hintergrund, auf den sich das Phinomen der Lemberger Mathematiker-
schule der Jahre 1919-1939 griindete. Diese Schule war das Werk junger, zu ihrer Zeit
noch unbekannter Menschen. Um das zu verstehen, missen wir uns fiir eine Weile nach
Warschau begeben. Bedenken wir, dass sich seit dem Wiener Kongress 1815 der grofite
Teil des Territoriums des ehemaligen Polens innerhalb der Grenzen des russischen Im-
periums befand. Das um Warschau herum gelegene Gebiet erfreute sich anfangs einer
gewissen Autonomie (unter dem Zepter des Zaren), die ihm jedoch bald wieder entzo-
gen wurde, ndmlich bereits nach der Niederlage im Novemberaufstand des Jahres 1830
gegen Russland. Nun begann eine lange Zeit der schonungslosen Russifizierung; in die-
sem Zusammenhang wurde 1869 die russischsprachige Kaiserliche Universitit in War-
schau gegriindet. Sie erreichte nicht das Niveau der anderen russischen Universitéten,
und fiir polnische Studenten war es leichter, an jene Universitidten zu gelangen als an die
in Warschau. Von 1906 an wurde diese Universitit von der polnischen Jugend bereits
offen boykottiert. Nach Ausbruch des 1. Weltkrieges wurde die kaiserliche Universitét
mit dem gesamten Personal und der Ausstattung nach Rostow am Don evakuiert. Die
Besetzung durch Deutschland fiihrte im Herbst 1915 zur Eréffnung einer polnischen
Universitit, auf deren mathematische Lehrstiihle die uns bereits aus Lemberg bekann-
ten Mathematiker Janiszewski® und Mazurkiewicz® berufen wurden. Die gleichzeitig
entstandene Zeitschrift ,,Nauka Polska“ schrieb einen Wettbewerb iiber die Bediirfnisse
der polnischen Wissenschaft aus, an dem sich u.a. auch die beiden genannten Leiter der
Warschauer mathematischen Lehrstiihle beteiligten. Besonders groBen Einfluss erlang-
te der Beitrag von Janiszewski®, der sich bald zu einem Programm der polnischen Ma-
thematikerschule entwickelte®.

3 Vgl. N. Davies, White Eagle and Red Star. The Polish-Soviet War, 1919-1920, London 1972.

* Z. Janiszewski, Stand und Bediirfnisse der Mathematik in Polen, Nauka Polska. Jej potrzeby, or-
ganizacja i rozwoj 1 (1917), S. 1118 [Polnisch]; Nachdruck: Wiadom. Mat. 7 (1963), S. 3—8. Uber
die Bedeutung von Janiszewskis Ideen haben geschrieben: Sister M.G. Kuzawa, Polish Mathema-
tics. The Genesis of a School in Poland, New Haven 1968; K. Kuratowski, 4 Half Century of Polish
Mathematics. Remembrances and Recollections, Warsaw 1980; K. Kuratowski, The Past and the
Present of the Polish School of Mathematics, in: 1. Stasiewicz-Jasiukowa (Hrsg.), The Founders of
Polish Schools and Scientific Models Write about Their Works, Wroctaw-Warszawa 1989.
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Noch heute i{iberrascht die Tiefe und Originalitidt dieses Programms. Ausgehend
von einer Analyse der bestehenden Situation erkannte Janiszewski die Méglichkeit zur
»Erringung einer eigenstindigen Position fiir die polnische Mathematik“ darin, dass ein
bestimmtes, am besten ein neues Gebiet der Mathematik ausgewihlt wird (der natiirli-
che Kandidat dafiir war die Mengenlehre mit den Bereichen, in denen mengentheoreti-
sche Methoden eine bedeutsame Rolle spielen, wie die Theorie reeller Funktionen und
die Topologie — das Interessensgebiet der schon nicht mehr existierenden Lemberger
Gruppe), dass sich die Arbeit der Mehrzahl der schopferischen polnischen Mathemati-
ker darauf konzentriert, dass sich eine Atmosphire der gemeinschaftlichen Arbeit und
der Obhut fiir junge Mitglieder ausbildet und schlieBlich, dass eine Zeitschrift gegriindet
wird, die sich ausschlie8lich dem gewihlten Bereich widmet und die ausnahmslos in den
internationalen Kongresssprachen publiziert.

Ein solches Programm musste schockieren. Die Auswahl eines einzigen, neuen
Bereichs der Mathematik und die Konzentration der Mehrzahl der schopferischen
Mathematiker darauf trug die Gefahr der Vernachldssigung anderer Bereiche in sich,
darunter solcher klassischer Bereiche, die von grundlegender Bedeutung waren, wie der
Geometrie, der Algebra und der Analysis. Eine nur auf ein und dazu auf ein neues
Gebiet der Mathematik eingegrenzte Zeitschrift erschien von Anfang an auf der Verlie-
rerseite zu stehen, denn solche thematisch eingegrenzten mathematischen Zeitschriften
gab es damals noch nicht. Es gab schwerwiegende Argumente sowohl aus dem Inland
wie auch aus dem Ausland®, und hinzu kam der beleidigte Nationalstolz wegen der
Nichtzulassung der polnischen Sprache.

Die Bedingungen gestalteten sich jedoch giinstig. Eine Stiitze war die wiederentstan-
dene Warschauer Universitit, an der die Mathematiker der jungen Generation (Janis-
zewski®, Mazurkiewicz®) und Studenten (Bronistaw Knaster®, Kazimierz Kuratowski®
und andere) eine enthusiastische Einstellung hatten, voller Glauben an sich und an die
Zukunft. Diese Vision nahm Sierpiniski auf, der damals eben aus Russland zuriick-
gekehrt war und 1918 an der Warschauer Universitdt den dritten Lehrstuhl fiir Mathe-
matik ibernahm:

Als 1919 wir drei, Janiszewski, Mazurkiewicz und ich, uns als Professoren fiir Mathematik der

wiederentstandenen Warschauer Universitit trafen, beschlossen wir, die von Janiszewski ent-

worfene Idee der fremdsprachigen Herausgabe einer der Mengenlehre, der Topologie, der

Theorie der reellen Funktionen und der mathematischen Logik gewidmeten Zeitschrift zu rea-
lisieren. Auf diese Weise entstanden die ,,Fundamenta Mathematicae®®.

5 Vgl. H. Lebesgue, A propos d'une nouvelle revue mathématique ,, Fundamenta Mathematicae",
Bull. Soc. Math. France 46 (1922), S. 35-46; P. Dugac, N. Lusin: Lettres & Arnaud Denjoy avec in-
troduction et notes, Arch. Intern. de 'Histoire des Sciences 27 (1977), S. 179-206 (iibersetzte Aus-
schnitte in: Wiadom. Mat. 25.1 (1983), S. 65-68 [Polnisch]).

S W. Sierpinski, Uber die poische mathematische Schule, in: J. Hurwic (Hrsg.), Der Beitrag der Po-
len zur Wissenschaft. Die exakten Wissenschaften, Biblioteka Problemow 101, Warszawa 1967,
S. 413-434 [Polnisch]. Zur Rolle der Zeitschrift s. auch: Sister M.G. Kuzawa, ,, Fundamenta Ma-
thematicae’ — an examination of its founding and significance, Amer. Math. Monthly 77 (1570),
S. 485-492; R. Duda, ,, Fundamenta Mathematicae" and the Warsaw School of Mathematics, in: C.
Goldstein, J. Gray, J. Ritter (Hrsg.), L’Europe mathématique — Mythes, histories, identités | Mathe-
matical Europe — Myths, History, Identity , Paris 1996, S. 479-498.
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So bildete sich die Warschauer Mathematikerschule, konzentriert auf die ,,Mengen-
theorie und ihre Anwendungen® (Zitat vom Umschlag der Zeitschrift), das heiBit auf die
reine Mengenlehre, die mengentheoretische Topologie, die Theorie der reellen Funktio-
nen und die mathematische Logik. Die Schule konnte schon bald Erfolge verzeichnen,
und nach dem friithen Tod von Janiszewski® (er verstarb im Januar 1920) wurden Sier-
pinski und Mazurkiewicz ihre Leiter, zu denen sich Jiingere hinzu gesellten, wie Alfred
Tarski (1901-1983), Kuratowski®, Stanistaw Saks (1897-1942), Karol Borsuk
(1905—-1982) und weitere.

3 Steinhaus und Banach

In der Zeit des Entstehens der Warschauer Mathematikerschule erwachte auch das ma-
thematische Lemberg wieder zum Leben. Von den aktiven Mathematikern der Vor-
kriegszeit waren lediglich Ruziewicz® und Antoni Lomnicki® geblieben, doch die Wie-
dergeburt der Lemberger Mathematik wurde das Werk neuer Leute. Der erste war Hu-
go Steinhaus®, der in Gottingen studiert hatte, wo er 1911 das Doktorat mit dem
Préadikat summa cum laude und den Unterschriften von David Hilbert, Carl Runge und
P. Hartmann erwarb. 1917 habilitierte er sich an der Lemberger Universitit, und als er
dort 1920 einen mathematischen Lehrstuhl iibernahm, zog er Stefan Banach®” nach.
Banach, der einige Jahre davor an der Lemberger Technischen Hochschule studiert hat-
te und dort ein sogenanntes Halbdiplom errang, weilte wiahrend des Krieges im heimat-
lichen Krakau und beschaftigte sich dort als Amateur mit Mathematik.

Als Steinhaus® einmal durch die Krakauer Griinanlagen spazierte, horte er die Wor-
te ,,Lebesguesches Integral®, was ihn derart Giberraschte, dass er herantrat, sich vorstell-
te und auf diese Weise einige junge Leute kennenlernte, unter denen sich auch Banach®
befand, den er spiter gern scherzhaft als seine ,,gréBte wissenschaftliche Entdeckung*
bezeichnete. Bald fanden sie zu gemeinsamer Arbeit®. In Lemberg unterstiitzte er
Banach 1920 bei der Erringung des Doktorats (was wegen dessen nicht abgeschlossenen
Studiums nicht einfach war), wonach dieser seine Karriere selbststindig erfolgreich
fortsetzte: Nach der Habilition 1922 wurde er fast sofort zum auBerordentlichen Profes-
sor ernannt, und 1927 war er bereits ordentlicher Professor an der JKU.

" R. Kaluza, The Life of Stefan Banach, Transl. and ed. by A. Kostant and W. Woyczynski, Boston
1996. S. auch E. Jakimowicz, A. Miranowicz (Hrsg.), Stefan Banach. Remarkable Life, Brilliant
Mathematics, 11 Aufl., Gdansk-Poznan 2009; R. Duda, Facts and Myths about Stefan Banach,
Newsletter of the EMS, Issue 71 (March 2009).

8 S. Banach, H. Steinhaus, Sur la convergence en moyenne de séries de Fourier, Bull. Intern. Acad.
Sci. Cracovie, Année 1918, Série A: Sci. Math., S. 87-96; Nachdrucke: S. Banach, Euvres I, Wars-
zawa: PWN, 1967, S. 31-39; H. Steinhaus, Collected Papers, Warszawa: PWN, 1985, S. 215-222.
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Noch in Krakau, jedoch bereits in der Zeit der Bekanntschaft mit Banach®, schrieb
Steinhaus® eine Arbeit iiber Funktionalanalysis’. Er erkannte die Bedeutung des damals
neu entstehenden Zweiges der Mathematik und regte Banach® zur Beschiftigung damit
an.

Erinnern wir uns, dass in den letzten Jahrzehnten des 19. Jahrhunderts und zu Be-
ginn des 20. Jahrhunderts in der Mathematik Mengen betrachtet wurden, deren Ele-
mente Folgen, Reihen, Funktionen und diesen dhnliche Objekte waren, z. B. die Menge
[, der Folgen, deren Elemente zum Quadrat erhoben eine konvergente Reihe bildeten,
die Menge C der im Bereich [0,1] definierten und stetigen reellen Funktionen, die Menge
L? der reellen Funktionen, die im Bereich [0,1] definiert und Quadrat-integrierbar sind
u.A. In solchen Mengen konnen algebraische (z. B. Addition), geometrische (z.B.
Abstand) und topologische (z. B. ermoglichte monotone Konvergenz, Grenzwerte zu
definieren) Eigenschaften betrachten werden. Solche Mengen mit ausgezeichneten
Strukturen hatten interessante Eigenschaften und man nannte sie ,,Funktionenrdume®.
Erforscht wurden sie von Vito Volterra, David Hilbert, Friedrich Riesz und anderen,
aber sie erforschten jeden dieser ,,R4ume* fiir sich. Es fehlte eine allgemeine Definition,
die es ermoglichte, alle diese ,,Funktionenrdume* mit einem Begriff zu erfassen und die-
sen einen ,,Raum* anstelle der bisherigen vielen zu erforschen. Und eben diese Aufgabe
{ibernahm Banach®, indem er in seiner Doktorarbeit'® den spater von ihm so bezeichne-
ten ,,Raum vom Typ B untersuchte, der alle bekannten Funktionenrdume umfasste.
Fréchet (1928) und Steinhaus® (1929) machten den Vorschlag fiir den Terminus
»,Banachraum®, und bis heute wird diese Bezeichnung allgemein verwendet.

Banachs Zugang war geometrisch motiviert. Er suchte eine Definition fiir einen all-
gemeinen Funktionenraum, die als Verallgemeinerung fiir den euklidischen Raum gel-
ten konnte und die Anwendung geometrischer Methoden und ihre Erweiterung auf ei-
nen solchen Funktionenraum der klassischen Analysis gestatten wiirde. Er erzielte einen
Erfolg und verdankte diesen der richtigen Verkniipfung der Algebra, Analysis und
Topologie, wobei deren Richtung von der Geometrie gewiesen wurde.

Die Definition eines Raumes des Typs B (d. h. des Banachraumes) war axiomatisch.
Die Axiome teilten sich in drei Gruppen, die den Eigenschaften der Linearitit, der Met-
rik undVollstindigkeit entsprechen. Kurz gesagt ist der Banachraum ein vollstindiger
normierter Vektorraum. Bei dieser Definition fehlt das Axiom iiber die Existenz eines
Skalarproduktes, das die Definition des wichtigen Begriffs der Orthogonalitét und, all-
gemeiner, des Winkels gestatten wiirde. Dies war jedoch eine beabsichtigte Auslassung.

% H. Steinhaus, Additive und stetige Funktionaloperationen, Math. Z. 5 (1919), S. 186-221; Nach-
druck: H. Steinhaus, Selected Papers, Warszawa: PWN, 1985, S. 252-288. An die Arbeit erinnert
J. Dieudonné, History of Functional Analysis, Amsterdam: North-Holland, 1981, S. 128. Der Na-
me ,,Funktionalanalysis“ erschien erst im Jahre 1922, vgl. das Buch P. Lévy, Legons d’analyse
Jfonctonnelle, Paris: Gauthier-Villars, 1922,

105 Banach. Sur les opérations dans les ensembles abstraits et leurs applications aux équations inté-
grales, Fund. Math. 3 (1922), S.133-181; Nachdruck: S. Banach, (Euvres II, Warszawa: PWN,
1979, S. 305-343.
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Sie machte zwar die Geometrie des ,,Raumes vom Typ B“ drmer, sicherte ihr jedoch
eine groBere Allgemeinheit.

Banachs® Beitrag beschrinkte sich nicht auf die Definition und den Hinweis, dass
alle bisher bekannten Funktionenrdume darin enthalten sind (d. h. Banachraume sind),
sondern zeigte ebenfalls, dass diese interessante mathematische Objekte sind. Banach®
bewies hierzu mehrere Lehrsitze, darunter den Satz iiber kontrahierende Abbildungen,
der als Banachscher Fixpunktsatz bekannt ist.

5 Prioritat

In den Jahren 19201922 verfolgten Norbert Wiener und Hans Hahn dhnliche Konzep-
tionen. Bei Wiener war das allerdings ein kompliziertes logisches System, ohne Motiva-
tion und Beispiele'!, bei Hahn ein verbal formuliertes System von Folgenrdumen mit
dem Gedanken der Lésung unendlicher linearer Gleichungssysteme mit unendlich vie-
len Variablen'?. Die Ansitze waren also grundsitzlich verschieden, am durchsichtigsten
und am besten begriindet war Banachs® Konzeption, und sie trug schlieBlich auch den
Sieg davon'®. Wiener selbst erkannte Banachs Prioritit'* an. Banachs und Hahns
Arbeiten kreuzten sich jedoch noch mehrmals, z. B. im Satz von Hahn-Banach iiber die
Fortsetzung linearer Funktionale'”.,

6 Die Anfdnge der Lemberger Schule

Banach® war der Typ eines Wissenschaftlers, der die Gruppenarbeit liebte. Im Milieu
eines Cafés versammelten sich alsbald um ihn herum, zum Teil auch um Steinhaus®, ehr-
geizige und erfolgshungrige junge Menschen. So begann sich die Lemberger mathemati-
sche Schule zu bilden.

"'N. Wiener, On the theory of sets of points in terms of continuous transformations, C.R. du Con-
%rés International des Mathématiciens (Strasbourg, 1920), Toulouse 1921, S. 312-315.

2 H. Hahn, Uber Folgen linearer Operationen, Monatsh. Math. Phys. 32 (1922), S. 3-88.

13 R. Duda, The discovery of Banach spaces, in: W. Wigstaw (Hrsg.), European Mathematics in the
Last Centuries, Proc. Conference Bedlewo (April 2004), Stefan Banach International Mathemati-
cal Center and Institute of Mathematics of Wroctaw University, 2005, S. 37-46.

"4 N. Wiener, 4 note on a paper of S. Banach, Fund. Math, 4 (1923), S. 136 143; siche auch seine
Anmerkungen: N. Wiener, I am a Mathematician, New York: Doubleday, 1958.

1SH. Hahn, Uber lineare Gleichungssysteme in linearen Riumen, J. reine angew. Math. 157 (1927);
S. Banach, Sur les fonctionnelles linéaires, Studia Math. 1 (1929), S.211-216 und 223239, Nach-
druck in: S. Banach, Euvres II, Warszawa: PWN, 1979, S. 375-395. Siehe auch: H. Hochstadt, E.
Helly. Father of the Hahn-Banach Theorem, Math. Intellig. 2 (1980).
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Einer ihrer hervorragenden Vertreter und zugleich einer der nichsten Mitarbeiter
Banachs® wurde Stanistaw Mazur°'®, der nach Jahren die Doktorarbeit seines Meisters
folgendermaBen einschitzte:

Die Entstehung der Funktionalanalysis war wie die Entstehung jeder neuen wissenschaftlichen
Disziplin die Schlussetappe eines langen historischen Prozesses. Umfangreich ist die Liste der
Mathematiker, deren Forschungen zur Entstehung der Funktionalanalysis beitrugen. Sie ent-
hilt solche beriihmten Namen wie Vito Volterra, David Hilbert, Jacques Hadamard, Maurice
Fréchet und Friedrich Riesz. Doch das Jahr 1922, in dem Stefan Banach in der polnischen Zeit-
schrift ,,Fundamenta Mathematicae“ seine Doktorarbeit unter dem Titel Sur les opérations
dans les ensembles abstraits et leurs applications aux équations intégrales publizierte, gilt als das
Jahr des Durchbruchs in der Geschichte der Mathematik des 20. Jahrhunderts. Dieser zahlrei-
che Seiten umfassende Beitrag festigte endgiiltig die Grundlagen der Funktionalanalysis. |[...]
Die Funktionalanalysis ersetzte den fiir die Analysis grundiegenden Begriff der Zahl durch ei-
nen allgemeineren Begriff, den man heute in tausenden mathematischen Beitrigen mit dem Be-
griff ,Punkt des Banachraumes“ bezeichnet. Die damit erreichte Veraligemeinerung der ma-
thematischen Analysis, die als Funktionalanalysis bezeichnet wird, gestattete es, scheinbar un-
terschiedliche Probleme der mathematischen Analysis auf einfache und einheitliche Weise zu
behandeln und unter ihnen viele solche Probleme zu 18sen, mit denen sich die Mathematiker
zuvor vergeblich herumschlugen'”.

7 ,Studia Mathematica“

Im Jahre 1927 kam Steinhaus® auf die Idee, in Lemberg eine sich auf die ,, Theorie der
Operatoren®, d. h. auf die Thematik der Schule konzentrierende Zeitschrift zu griinden
und tliberredete dazu Banach® zur Mitarbeit. Zwei Jahre spéter erschien unter ihrer ge-
meinsamen Redaktion der erste Band der ,,Studia Mathematica®. In jener Zeit war das
nach den ,,Fundamenta Mathematicae“ die zweite mathematische Zeitschrift mit einge-
grenzter Thematik. Die Zeitschrift entwickelte sich gut und wurde zur wichtigsten Stiit-
ze der jungen Schule. In den Jahren 1929—-1940 erschienen 9 Bénde und in ihnen 161 Ar-
beiten, davon 111 aus Lemberg. Zu den am héufigsten publizierenden Autoren gehor-
ten (in der Reihenfolge der Anzahl der Arbeiten; wenn an der Arbeit mehrere Autoren
beteiligt waren, wird jeder gezéhlt): Wradystaw Orlicz® (21), Mazur® (17), Banach® (16),
Stefan Kaczmarz® (12), Steinhaus® (9), Herman Auerbach® (9), Mark Kac® (9), Jozef
Marcinkiewicz (8), Meier Eidelheit® (7), Juliusz Schauder® (7), Jozef Schreier® (6), Anto-
ni Zygmund (6), Whadystaw Nikliborc (5), Zygmunt Wilhelm Birnbaum® (4). Von die-
sen 14 Autoren kamen nur Marcinkiewicz und Zygmund von auBerhalb Lembergs. Die
{ibrigen bildeten den aktivsten Kern der Schule.

16 G. Kothe, Stanistaw Mazur’s contributions to functional analysis, Math. Ann. 277 (1987),
S. 489-528: polnische Ubersetzung: Wiadom. Mat. 30.2 (1994), S. 199-250.

7S, Mazur, Rede in der Feierstunde zum Gedenken Stefan Banachs, Wiadom. Mat. 4.3 (1961), S
249-250 [Polnisch].
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8 Banachs Monographie

Im Jahre 1932 wurde das reiche Ergebnis des ersten Jahrzehnts der Schule in Banachs
Monographie'® zusammengestellt, die ihm internationale Anerkennung einbrachte.

Das Erscheinen von Banachs Abhandlung iiber ,,lineare Operatoren® bedeutet [...] den Beginn
des Erwachsenenalters der Theorie normierter Riume. Alle Ergebnisse [...] werden von zahlrei-
chen frappierenden Beispielen aus unterschiedlichen Bereichen der Analysis begleitet [...]. Die
Arbeit erfreute sich eines bemerkenswerten Erfolgs, und eine ihrer unmittelbaren Auswirkun-
gen war die nahezu allgemeine Annahme der Nomenklatur und der von Banach verwendeten
Bezeichnungen'®.

Es fallt schwer, den Einfluss zu iiberschitzen, den Banachs Buch auf die Entwicklung der
Funktionalanalysis hatte. Indem es einen wesentlich groBeren mathematischen Fragenbereich
umfasst als den, den die Hilbertraumtheorie liefert, stimulierte es wahrscheinlich mehr Arbei-
ten als die Biicher Stones und von Neumanns zusammengenommen?’. Mehr noch, wegen ihrer
groBeren Allgemeinheit behielt die Banachraumtheorie bedeutend mehr vom urspriinglichen
Reiz der Funktionalanalysis [...] als die Theorie der linearen Operatoren in Hilbertriumen?!.

Es ist zweifellos eines der Biicher, die den groBten Einfluss auf die Entwicklung der modernen
Mathematik ausgeiibt haben. Obgleich die in ihm entwickelte Theorie [...] die vorher fiir spe-
ziellere Ziele entwickelten Methoden nutzen konnte [...], war sie doch fast in threr Gesamtheit
von Banach und seinen Mitarbeitern geschaffen worden. Friedrich Riesz driickte sich iiber den
Wert dieses Buches immer mit groBter Hochachtung aus®.

Banach stellte seine Ideen in der beriihmten Monographie in reifer und geschlossener Form
mit auBergewohnlicher Klarheit dar und unterstrich die subtile Wechselbeziehung zwischen al-
gebraischen und topologischen Uberlegungen, indem er die abstrakten und allgemeinen Begrif-
fe, mit denen es die moderne Funktionalanalysis zu tun hatte, wahrhaft ertragreich machte.
Was dazu beitrug, dass der Einfluss von Banachs Arbeit so groB3 wurde, war seine Vereinigung
einer Anzahl unterschiedlicher, vorher entdeckter fragmentarischer und unvollstidndiger Er-
gebnisse aus dem Bereich der Analysis®>.

Im Jahre 1936 wurde Banach zu ecinem Plenarvortrag auf dem Internationalen
Mathematiker-Kongress in Oslo eingeladen®. (Es war dies seine zweite und letzte Aus-
landsreise.)

18 S. Banach, Théorie des opérations linéaires, Monografie Matematyczne 1, Warszawa 1932.

19 N. Bourbaki, Elements d’histoire des mathématiques, Paris: Hermann, 1969.

20 Der Autor denkt sicher an die Biicher: J. von Neumann, Mathematische Grundlagen der Quan-
tenmechanik, Berlin: Springer, 1932; M. Stone, Linear Transformations in Hilbert Spaces and Their
Application to Analysis, New York 1932 — mit denen die schnelle Entwicklung der Theorie der Hil-
bertrdume begann.

21 G. Birkhoff, E. Kreyszig, The establishment of Functional Analysis, Hist. Math. 11 (1984),
S.258-321; Zitat von S. 315.

22 B. Szokefalvi-Nagy, Rede in der Feierstunde zum Gedenken Stefan Banachs, Wiadom. Mat. 4.3
(1961), S. 265—268 [Polnisch].

23 ML.H. Stone, Unsere Schuld gegeniiber Stefan Banach, Wiadom. Mat. 4.3 (1961), S.252-259
Polnisch].

24 S. Banach, Die Theorie der Operationen und ihre Bedeutung fiir die Analysis, C.R. du Congrés In-
ternational des Mathématiciens (Oslo, 1936), S. 261 -268; Nachdruck: S. Banach, GEuvres II, Wars-
zawa: PWN, 1979, S.434-441.
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9 Die Interessen von Steinhaus

Die Lemberger mathematische Schule ist mehr als nur Banach® und seine ,, Theorie der
Operatoren® bzw. die Funktionalanalysis. Ihr Mitbegriinder war Steinhaus®, ein ande-
rer Typ des Wissenschaftlers als Banach®. Nach Ostwalds Klassifikation war Steinhaus®
cher der Typ eines ,,Schmetterlings“, der immer wieder von neuen ,,Blumen* angezogen
wurde, zu deren Erforschung er neue Ideen einbrachte, an deren spéterer Entwicklung
er aber gewohnlich nicht weiter teilnahm. So wandte er sich nach anfanglicher Faszina-
tion von der Theorie der trigonometrischen Reihen und der Funktionalanalysis®® der
MaBtheorie zu und bewies den spiter oft zitierten Satz, dass fiir eine Menge positiven
MaBes die Menge der Abstinde zwischen ihren Punkten das Intervall [0,c] fiir ein
bestimmtes ¢ > 0 enthilt®®. In Folge dessen interessierte man sich in Lemberg fiir die
MaBtheorie, und einige Jahre spéter erschienen gleichzeitig zwei Pionierarbeiten®’, in
denen der Versuch unternommen wurde, die Wahrscheinlichkeitstheorie auf mafBtheo-
retischer Basis zu behandeln®®. Steinhaus® erreichte die vollkommene Mathematisie-
rung des Spiels um Kopf oder Zahl beim Werfen einer Miinze, eines nichtklassischen
probabilistischen Systems. Er fasste ndmlich die unendlichen Folgen der Miinzwiirfe als
Folgen von Nullen und Einsen und damit als Zahlen des Intervalls [0,1] auf. Weiter
betrachtete er die (im Sinne von Lebesgue) messbaren Teilmengen dieses Intervalls als
Zufaliserscheinungen und das Lebesguesche Mab als ihre Wahrscheinlichkeit. Er fasste
also das unendlich oft wiederholte Spiel um Kopf oder Zahl als Tripel ([0,1], L, 1) auf,
worin L die Familie der messbaren Untermengen des Intervalls {0,1] und % das Lebes-
guesche MaB bedeutet. Man konnte dieses als das ,,Halbfinale der Axiomatisierung der
Wahrscheinlichkeitstheorie“? ansehen. In der spiteren Fassung von Kolmogorov war
der Wahrscheinlichkeitsraum ein Tripel (Q, F, p), wobei 2 der Raum der Elementar-

25 Im Bereich der Funktionalanalysis hatte er noch eine gemeinsame und wichtige Arbeit mit S. Ba-
nach, in der sie das allgemeine Prinzip der Verdichtung der Singularitdten formulierten und bewie-
sen: S. Banach, H. Steinhaus, Sur le principe de la condensation de singularités, Fund. Math. 9
(1927), S.50-61; Nachdrucke: S. Banach, (Euvres I, Warszawa: PWN, 1979, S.365-374; H.
Steinhaus, Collected Papers, Warszawa: PWN, 1985, S. 363-372. Auch diese Arbeit ging in die Ge-
schichte der Funktionalanalysis ein, vgl. J. Dieudonné, History of Functional Analysis, Amsterdam
1981, S. 141 -142.

25 H. Steinhaus, Sur les distances des points dans les ensembles de mesure positive, Fund. Math. 1
(1920), S. 93-103; Nachdruck: H. Steinhaus, Selected Papers, Warszawa: PWN, 1985, S. 296-405.
21 Ygl. H.-J. Girlich, Lomnicki-Steinhaus-Kolmogorov: steps to a modern probability theory, in: W.
Wiestaw (Hrsg.), European Mathematics in the Last Centuries, Proc. Conference Bedlewo (April
2004), Stefan Banach International Mathematical Center and Institute of Mathematics of Wroc-
taw University, 2005, S. 47-56.

2 A. Lomnicki, Nouveaux fondements du calcul de probabilités, Fund. Math. 4 (1923), S. 34-71; H.
Steinhaus, Les probabilités dénombrables et leur rapport a la théorie de mesure, Fund. Math. 4
(1923), S.286-310, Nachdruck der zweiten: H. Steinhaus, Selected Papers, Warszawa: PWN,
1985, S. 322-331.

P K. Urbanik, Die Ideen von Hugo Steinhaus in der Warscheinlichkeitstheorie, Wiadom. Mat. 17
(1973), S. 3950 [Polnisch].
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ereignisse, F eine 6-Algebra von Teilmengen von Q und p ein normiertes MaB* ist. Das
bahnbrechende Denken von Lomnicki®, Steinhaus® und ihren Schiilern iiber die Wahr-
scheinlichkeitstheorie wurde spéter, dank William Feller, allgemein anerkannt. Es sei
hinzugefiigt, dass Steinhaus® iiber die Sichtweise Kolmogorovs nicht erfreut war. Er
glaubte ndmlich, dass in ihr die Idee des Zufalls verlorenging, und so entwickelte er ge-
meinsam mit seinem Schiller Kac® die Theorie der ,unabhingigen Funktionen® mit
dem Ziel, auf ihr eine zufriedenstellendere Theorie der Wahrscheinlichkeit®' zu begriin-
den. Aber Kac ist frith emigriert, und der Gedanke wurde nicht verwirklicht. Steinhaus
war auch der Initiator der nichtkommutativen Theorie der Wahrscheinlichkeit*?.

Eine andere Richtung, fiir die sich Steinhaus® interessierte, war die Spieltheorie. In
einer akademischen Broschiire publizierte er eine kurze Arbeit®’, deren Bedeutung er
selbst mit Sicherheit nicht erkannte.

Es ist dies eine Arbeit geringen Umfangs ohne den Charakter einer mathematischen Publikati-
on, es sind gewissermaBen einige Bemerkungen, aber von einer Art, dass sie zu jener Zeit einer
Offenbarung gleichkamen. Es waren Bemerkungen, die die Grundlage der heutigen Spieltheo-
rie bilden. Erstens wurde dort auf exakte Weise der Begriff der Strategie eingefiihrt (allerdings
unter anderer Bezeichnung — Spielweise, aber um den Namen geht es hier nicht). Der zweite we-
sentliche Faktor ist die sogenannte Normalisierung der Spiele, und schlieBlich: der Begriff der
Au3s42ahlung, die jedes Spiel charakterisiert, sowie das Prinzip der Wahl einer Minimaxstrate-

gie™”.

Obgleich die Arbeit von Steinhaus®, nachdem sie nach dem Krieg aufgefunden und ins
Englische iibersetzt wurde, sich als Offenbarung erwies, war sie jedoch nur noch von
historischer Bedeutung.

Ein Ergebnis der langjéhrigen Beschiftigung von Steinhaus® mit trigonometrischen
Reihen und, allgemeiner, mit orthogonalen Reihen (dariiber schrieb er 20 Arbeiten, da-
runter eine gemeinsam mit Kaczmarz®) war die gemeinsame Monographie von
Kaczmarz und Steinhaus®. Bis in die sechziger Jahre des 20. Jahrhunderts hinein war
sie eine Standardreferenz auf dem Gebiet der Orthogonalreihen. (Nebenbei gesagt lasst
sich jedoch feststellen, dass die am héufigsten zitierte Arbeit von S. Kaczmarz nicht jene
groBe Monographie ist, sondern eine kurze Notiz, in der er eine bestimmte Methode der

30 A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin: Springer, 1933.

*! Por. P. Holgate, Independent functions: probability and analysis in Poland between the wars, Bio-
metrika 84 (1980), S. 161-173; M. Kac, Hugo Steinhaus — a reminiscence and tribute, Amer. Math.
Monthly 81 (1974), S. 572—581; M. Kac, Enigmas of Chance. An Autobiography, New York 1985,
32 H. Steinhaus, La théorie et les applications des fonctions indépendantes au sens stochastique, in:
Les fonctions aléatoires, Colloque consacré a la théorie des probabilités, Paris: Hermann, 1938,
S. 57-73; Nachdruck: H. Steinhaus, Selected Papers, Warszawa: PWN, 1985, S. 493—507.

3% H. Steinhaus, Die notwendigen Definitionen zur Spiel- und Verfolgungstheorie, My$]l Akademicka
1 (1925), S.13-14 [Polnisch]; Englische Ubersetzung: Naval Res. Logist. Quater. 7 (1960),
S. 105-107.

34 C. Ryll-Nardzewski, Die Arbeiten von Hugo Steinhaus iiber Konfliktsituationen, Wiadom. Mat.
17 (1973), S. 2938 [Polnisch].

35 §. Kaczmarz, H. Steinhaus, Theorie der Orthogonalreihen, Monografie Matematyczne 6, War-
szawa 1936; tibersetzt ins Englische (1951) und Russische (1959).
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niherungsweisen Losung linearer Gleichungen mit einer groBen Zahl von Variablen
vorstellt*.)

In den dreiBiger Jahren zog es Steinhaus immer mehr in den Bereich der Anwendun-
gen der Mathematik. Eine zusitzliche Frucht seines scharfsinnigen Geistes, der iiberall
mathematische Probleme erkannte, war ein Buch, das 1938 gleichzeitig in Polnisch und
Englisch erschien und bis zur Gegenwart vier Auflagen in jeder dieser Sprachen und da-
zu Ubersetzungen in mehr als zehn andere Weltsprachen®” hatte. Dieses Buch ist eines
der bekanntesten Mathematikbiicher in der Welt.

10 Banach und die MaBtheorie

Die heutige MaBtheorie geht zuriick auf Camille Jordan und Henri Lebesgue, die die
ersten Beispiele fiir MaBe konstruierten: das endlich additive Ma8 (Jordan) und das ab-
zihlbar additive MaB (Lebesgue). Allgemein formulierte Felix Hausdorff in seiner Mo-
nographie®® das Existenzproblem fiir MaBe und bewies darin zur allgemeinen Verwun-
derung, dass in R” fiir n > 2 ein bewegungsinvariantes MaB auf der gesamten Potenz-
menge nicht existieren kann, das gilt sogar fiir nur endlich additive MaBe. Das Problem
der tibrigen Dimensionen # = 1, 2 nahm Banach auf und wies nach, ebenfalls zur groflen
Verwunderung, dass hier das MaBproblem eine positive Losung hat®. Beide, Hausdorff
und Banach, stiitzten sich in ihren Uberlegungen auf das damals kontroverse Auswahl-
axiom, aber keinen von beiden hat das gestort.

Ein hiufiger Gast in Lemberg war Tarski aus Warschau. Er kannte sich in der Men-
gentheorie gut aus. Banach wiederum hatte eine herrliche geometrische Intuitionen und
wandte mutig nichtkonstruktive Methoden an. Zwischen beiden entwickelte sich eine
Zusammenarbeit, deren erstes Ergebnis das sogenannte Banach-Tarskische Parado-
xon®® war, das gewohnlich als die paradoxe Zerlegung einer Kugel formuliert wird: Eine
dreidimensionale Kugel mit dem Radius 1 ldsst sich in endlich viele Teile zerlegen, aus
denen man zwei Kugeln mit dem Radius 1 zusammensetzen kann. Das ist eine der be-
kanntesten paradoxen Konsequenzen des Auswahlaxioms.

3 §. Kaczmarz, Angendiherte Losung von Systemen linearer Gleichungen, Bull. Intern. Acad. Polon.
Sci. Let., cl. sci. math. nat. A (1937), S. 355-357; englische Ubersetzung: Approximate solution of
systems of linear equations, Intern. J. Control 57.6 (1993), S. 1269-1271.

37 H. Steinhaus, Kalejdoskop matematyczny, Lwow: Ksiaznica-Atlas, 1938; englische Ubersetzung:
Mathematical Snapshots, 1938, deutsche Ubersetzung: Kaleidoskop der Mathematik, Berlin: VEB
Deutscher Verlag der Wissenschaften, 1959.

38 F. Hausdorff, Grundziige der Mengenlehre, Leipzig 1914. Nachdrucke: Chelsea sowie F. Haus-
dorff, Gesammelte Werke, Band 2, Springer, 2002.

3°'S. Banach, Sur le probléme de mesure, Fund. Math. 4 (1923), S. 7-33; Nachdruck: S. Banach,
(Euvres I, Warszawa: PWN, 1967, S. 66-89.

40'S. Banach, A. Tarski, Sur lu décomposition des ensembles de points en partie respectivement con-
gruentes, Fund. Math. 6 (1924), S. 244-277; Nachdrucke: A. Banach, (Euvres I, Warszawa: PWN,
1967, S. 118148, A. Tarski, Collected Papers, Basel-Boston-Stuttgart: Birkhauser, 1986, Bd. I,
S.119-154. Vgl. ebenfalls S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, 1985.
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Spiter wurde die MaBproblematik, entsprechend umformuliert, in Lemberg starker
in mengentheoretischer Richtung fiir Mengen verschiedener Machtigkeit entwickelt
(Banach®, Kuratowski®, Tarski, Ulam®). Gegenstand der Untersuchungen waren unter
anderem ,,nichtmessbare Kardinalitdten®.

11 Schauder und andere

Einer der talentiertesten jungen Vertreter der Lemberger Mathematik war Schauder®,
der interessante Ergebnisse im Grenzbereich der Theorie der Banachriume, der Topo-
logie und der Theorie der Differentialgleichungen erzielte. Er setzte sich mit der Proble-
matik auseinander, dass fiir injektive stetige Transformationen des Hilbertschen Rau-
mes ein Offenheitssatz im Allgemeinen nicht mehr giiltig ist. Das bedeutet, dass sich die
Topologie des linearen Raumes unendlicher Dimension so wesentlich von der Topolo-
gie des Euklidischen Raumes unterscheiden muss, dass sogar am Sinn ihrer Berechti-
gung zu zweifeln ist. Schauder® wies jedoch nach, dass bei gewissen zusitzlichen Annah-
men gesichert werden kann, dass (nicht einmal unbedingt lineare) injektive stetige
Transformationen eines solchen Raumes in sich die Offenheit von Mengen erhalten®'.
Auf diese Weise ,rettete er Banachs Topologie des Raumes*?, und zugleich war dies
das erste bedeutsame Ergebnis der nichtlinearen Funktionalanalysis (der Banach® den
zweiten Band seiner Monographie widmen wollte, der jedoch niemals geschrieben wur-
de). Eine schone Anwendung dieses Ergebnisses fand Schauder® in der Theorie der Dif-
ferentialgleichungen®’. Das war der Beginn seiner Beschiftigung mit nichtlinearer
Funktionalanalysis, die ihren Reiz aus der Kraft topologischer Methoden gewinnt.
Kurz danach begann seine Zusammenarbeit mit Jean Leray, der diese Arbeit von
Schauder® schon kannte. Gemeinsam haben sie diese Methoden verallgemeinert und
den Leray-Schauderschen Abbildungsgrad entwickelt. Die Stirke dieser Methoden in
den Anwendungen haben sie gezeigt, indem sie die Existenz der Losung des Dirichlet-
schen Problems fiir elliptische Gleichungen eines bestimmten Typs nachwiesen**. Diese
im Jahre 1938 mit dem Metaxaspreis ausgezeichnete Arbeit war zugleich der Beginn der
algebraischen Topologie in Banachriumen. Im Folgenden widmete Schauder® eine Rei-
he Arbeiten dem linearen Problem, was Leray nach Jahren so einschitzte:

4_1_ J. Schauder, Invarianz des Gebietes in Funktionalraumen, Studia Math. 1 (1929), S. 123-139; -,
Uber die Umkehrung linearer stetiger Funktionaloperationen, Studia Math. 2 (1930), S. 1-6; Nach-
druck beider Beitrage: J. Schauder, Euvres, Warszawa: PWN, 1978, S. 147-162 u. 128-139.
#2ygl. C. Bessaga, A. Pelczynski, Selected Topics in Infinite-Dimensional Topology, Monografie
Matematyczne, Warszawa 1975.

43 3. Schauder, Uber den Zusammenhang zwischen der Eindeutigkeit und Losbarkeit partieller Diffe-
rentialgleichungen zweiter Ordnung von elliptischem Typus, Math. Ann. 106 (1932), S. 661-772;
Nachdruck: J. Schauder, uvres, Warszawa: PWN, 1978, S. 235-297. )

4 J. Leray, J. Schauder, Topologie et équations fonctionnelles, Ann. de I'Ecole Norm. Sup. 51
(1934), S. 45-78; Nachdruck: J. Schauder, Euvres, Warszawa: PWN, 1978, S. 320-348.
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Dann publiziert Schauder [...] die erste Version seiner Methode, nach einem Jahr liefert er [...]
die zweite — ungemein elegant und kurz. Neun Seiten [...] und sechs Seiten des IV. Kapitels [...
bilden die volle Theorie des linearen Dirichletschen Problems. Die Bemerkung ...} gibt ihr eine
wichtige Verallgemeinerung. Die Theorie zeichnet sich durch eine bewundernswiirdige Ein-
fachheit und Eindringlichkeit aus®.

Nach Leray*® beruhten die groBten Verdienste Schauders® darauf, dass es ihm gelang
,»die algebraische Topologie in Banachrdumen zu begriinden und die klassischen Pro-
bleme in der Theorie partieller Differentialgleichungen auf den Beweis zu reduzieren,
dass gewisse lineare Abbildungen von Funktionenridumen eine endliche Norm haben®.

Fast gleichzeitig mit den Arbeiten von Alan Turing erschien die Konzeption der re-
kursiven Funktion auch in Lemberg.

Aber das war in Polen vor dem Weltkrieg, [wo] Banach und Mazur diese Idee in konsequentes-
ter Weise entwickelten. Der zweite Weltkrieg verhinderte die Publikation ihrer Arbeiten aus
dieser Zeit und hinterlieB nur die Zusammenfassung*” %%,

In Lemberg nahmen in den Arbeiten von Eidelheit und Mazur auch die Banachalgebren ihren
Anfang, obgleich sie erst I. M. Gelfand im Jahre 1941 formal einfiihrte*.

Eine breite Popularitit gewann Kazimierz Bartels Monographie iiber die Perspektive in
der Malerei”, der langjihrige Studien des Autors iiber die italienische Malerei voraus-
gingen.

Es ist unméglich, in einem kurzen Artikel den ganzen Reichtum der Lemberger ma-
thematischen Schule wiederzugeben®'. Die angefiihrten Informationen zeugen jedoch
von ihrer grofen Lebendigkeit, thematischen Vielfalt und der Bedeutung der gewonne-
nen Ergebnisse. Zur Illustration der Bedeutung der Schule nenne ich zwei Beispiele. Im
Buch von Jean-Paul Pier*? versuchten einige Mathematiker, ,,guidelines™ der Mathema-
tik far den Zeitraum 1900-1950 zu zeichnen. In den Jahren 19221938 hoben sie 19
Leistungen folgender Lemberger Mathematiker hervor: Banach®, Steinhaus®, Schau-
der®, Kuratowski®, Mazur®, Birnbaum®, Orlicz®, Kaczmarz®. Ein weiteres Beispiel sind
die Beziehungen zu anderen Zentren, darunter hiufige Besuche von Mathematikern aus

43 . Leray, Uber die Leistungen von Juliusz Pawel Schauder, Wiadom. Mat. 23.1 (1959), S.11-19
LPolnisch].

% Vgl. das Vorwort von J. Leray in: J. Schauder, Euvres, Warszawa 1978.
47 8. Banach, S. Mazur, Sur les fonctions calculables, Ann. de la Soc. Polon. de Math. 16 (1937),
S.223.
“8 M. Guillaume, La logique mathématique dans sa jeunesse, in: 1.-P. Pier (Ed.), Development of
Mathematics 1900—- 1950 , Basel: Birkhiduser, 1994, S. 185-367, Zitat von S. 288. Die zitierte Zu-
sammenfassung: S. Banach, S. Mazur, Sur les fonctions calculables, Ann. de la Soc. Polon. de
Math. 16 (1937), S. 223.
“ Vgl. A. Shields, Banach Algebras 1939— 1989, Math. Intellig. 113 (1989), S. 15-17.

S0 K. Bartel, Perspektywa malarska, Bd. I, Lwow: Ksiaznica-Atlas, 1928; deutsche Ubersetzung:
Die Malerperspektive. Grundsitze, geschichtlicher Uberblick, Asthetik, hrsg. von Wolfgang
Haack, Band I, Leipzig-Berlin: Teubner, 1933.

31 Umfassender behandelt das mein Buch: R. Duda, Die Lemberger Mathematikerschule, Wroctaw
2007 [Polnisch].
52 3.-P. Pier (Ed.), Development of Mathematics 1900— 1950, Basel-Boston-Berlin, Birkhiuser, 1994.
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dem In- und Ausland, Unter ihnen waren Emil Borel, Henri Lebesgue, Jean Leray,
Leon Lichtenstein, Paul Montel, John von Neumann, Gordon T. Whyburn und andere.

12 Die Atmosphére

Zermelos Besuch in Lemberg 1929. Sitzend von links: Hugo Steinhaus, Ernst Zermelo, Stefan
Mazurkiewicz. Stehend von links: Kazimierz Kuratowski, Bronistaw Knaster, Stefan Banach,
Wtodzimierz Stozek (im schwarzen Anzug), Eustachy Zylinski, Stanistaw Ruziewicz

Ein charakteristisches Merkmal des Lemberger mathematischen Lebens waren hédufige
wissenschaftliche Sitzungen der Lemberger Sektion der Polnischen Mathematischen
Gesellschaft, auf denen die neuesten Ergebnisse vorgestellt und erértert wurden. Diese
Sitzungen spielten die Rolle der spéteren Spezialseminare (die es damals fast noch nicht
gab) und forderten die Zusammenarbeit des gesamten Milieus. In den Jahren 1928-
1938, als die Berichte von diesen Sitzungen in den ,,Annales de la Société Polonaise de
Mathématiques veroffentlicht wurden, gab es davon 180, und es wurden auf ihnen 360
Berichte erstattet. Oft geschah es, dass ein solcher Bericht die einzige Spur eines Ergeb-
nisses darstellte, denn manche Teilnehmer bemiihten sich chronisch nicht um eine spite-
re Publikation. Zu den ,,widerspenstigsten® gehrte Mazur®, woriiber folgende Anek-
dote berichtet.

Eines Tages im Jahre 1938 horte man, wie Mazur, nachdem er die Zusammenfassun-
gen der Arbeiten deutscher Mathematiker iiber konvexe Funktionen im ,,Zentralblatt
fiilr Mathematik* durchgebléittert hatte, den Kommentar abgab:

,,Hm, meine Ergebnisse sind gar nicht so schlecht, alles wissen sie noch nicht.*
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Turowicz berichtete auch, dass ihm, als er 1938 nach Lemberg kam, Mazur® eine ge-
meinsame Beschéftigung mit Ringtheorie vorschlug. In kurzer Zeit bewiesen sie mehr
als zwanzig Lehrsitze iiber Ringe, von denen einer als spezieller Fall eine Verallgemei-
nerung des Satzes von Weierstral {iber die Approximation stetiger Funktionen durch
Polynome (bei beliebiger Zahl von Variablen). Die Arbeit wurde im April 1939 beendet,
aber Mazur® wollte sie nicht publizieren:

,Ich liebe es nicht so unmittelbar. Vielleicht fallt uns noch etwas Besseres ein.*

Es gab im Jahre 1940 noch eine Chance, aber Mazur® widersetzte sich weiterhin, und so
ist die Arbeit niemals erschienen. Inzwischen hatte Marschall H. Stone diesen wichtigen
Satz bewiesen, und er ist heute als WeierstraB-Stonescher Satz bekannt.

Nach der Sitzung der Gesellschaft, die traditionell am Samstagabend stattfand, be-
gaben sich die Teilnehmer gewdhnlich noch zu einer weiteren Diskussionsrunde ins
Café. Am beliebtesten war das ,Schottische® Café, in dem man sich nahezu téglich traf.
Banach® liebte Diskussionen und die Arbeit im Sprachgewirr. Diese Kaffechaustreffen,
die oftmals viele Stunden dauerten, bei denen tiber verschiedene Dinge gesprochen wur-
de, man Zigaretten rauchte (Banach® war ein leidenschaftlicher Raucher), Kaffee und
Alkohol trank, wurden zur Legende53 . Zu dieser Legende gehort auch das Schottische
Buch, dessen Anfang ein von Banachs Frau gekauftes Heft machte, durch das sie die
Tischplatten im Kaffeehaus vor den iiblicherweise darauf vorgenommenen Notizen
bewahren und wenigstens teilweise auch die dabei erzielten Ergebnisse retten wollte.

Im Schottischen Buch wurden Probleme und ihnen folgende Kommentare eingetra-
gen. Uber seine Bedeutung hat sich Gian-Carlo Rota folgendermaBen geduBert:

,,Fur uns, die wir im goldenen Zeitalter der Funktionalanalysis aufgewachsen sind, war und

bleibt das Schottische Buch die romantische Quelle unserer Mathematik. [... ] Die erstaunlichen
Probleme des Schottischen Buches verkiindeten den Geist der modernen Mathematik*.>*

Ein Zeugnis der in Lemberg herrschenden Atmosphére mége auch das Urteil von Kura-
towski® sein, der dort die Jahre 1927—1933 verbrachte.

Als ich den Lehrstuhl in Lemberg annahm, behielt ich meine Dozentur in Warschau (indem ich
ein Jahr Urlaub als Dozent nahm), denn ich war mir nicht sicher, ob ich irgendwo aulerhalb
meiner Heimatstadt Warschau wiirde leben konnen.

Doch es kam anders: Nach einem Jahr verzichtete ich auf die Dozentur in Warschau und hatte
an Lemberg Gefallen gefunden.

Was war der Grund dafiir? Der ungewohnliche Reiz dieser Stadt, an die ich mich noch jetzt mit
Riihrung erinnere, sowie die Art des Lebens seines wissenschaftlichen Milieus, das mich in
blitzschnellem Tempo absorbiert hatte. Besonders der Teil des wissenschaftlichen Milieus, mit
dem es mir gegeben war, enger zusammenzuarbeiten. Das ist das mathematische Zentrum, das
sich ungewdhnlich attraktiv darstellte. Vor allem Banach und Steinhaus. [...]

33 vgl. K. Ciesielski, Lost legends of Lvov, 1. The Scottish Café, Math. Intelligencer 9.4 (1987),
S.36-37; S. Ulam, Erinnerungen an das Schottische Café, Wiadom. Mat. 12.1 (1969), S.49-58
Polnisch].

L4 R.D. Mauldin (Hrsg.), The Scottish Book. Mathematics from the Scottish Café, Boston: Birk-
hiuser, 1981. Das Zitat stammt vom Umschlag.
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Dieses Lemberger ,,Klima“ war auch fiir
mein Schopfertum férderlich. Es bewirk-
te, dass meine Lemberger Jahre die
fruchtbarsten in meiner wissenschaftli-
chen Laufbahn waren®.

Gegen Ende der dreiBiger Jahre began-
nen sich iiber diesem bliihenden Leben
Wolken zusammenzuziehen, die ein
aufkommendes Gewitter ankiindigten,
dessen katastrophale Dimensionen vo-
rauszusechen niemand imstande war.
Eine geringe Anzahl akademischer Ar-
beitsstellen und der zunehmende Anti-
semitismus bewirkten, dass sich einige
eine bessere Stelle im Ausland suchten.
Aus Lemberg emigrierten damals Birn-
baum® (1937), Kac® (1938) und Ulam®
(1935), aber der Letztere kam jedes Jahr
wihrend der drei Sommermonate nach
Polen und verlieB das Land erst im Au-
gust 1939 endgiiltig. Seinen jiingeren
Bruder Adam nahm er damals mit sich, und aus der groBen Familie der Ulams haben
nur sie beide iiberlebt.

Stanistaw Mazur and Stanistaw Ulam in der
Lemberger Stralle

13 Der Krieg

Am 1. September 1939 wurde Polen von Deutschland iiberfallen und es begann der
2. Weltkrieg. Die Deutschen erreichten das Vorfeld von Lemberg bereits am 12. Sep-
tember, aber die Stadt verteidigte sich. Am 17. September 1939, gemdB einem geheimen
sowjetisch-deutschen Abkommen, iiberfiel auch die Sowjetunion das gegen Deutsch-
land kdmpfende Polen. Die sowjetische Armee {ibernahm von den Deutschen die Bela-
gerung Lembergs, und am 22. September kapitulierte die Stadt. Auf der Grundlage des
Ribbentrop-Molotow-Paktes wurde das Land in zwei nahezu gleichgroBe Gebiete
geteilt, und der ostliche Teil einschlieflich Lemberg fiel den Sowjets zu. Aus diesen
Kampfen im September kehrte Kaczmarz® nicht zuriick (er war Offizier der Reserve
und kam durch bis heute nicht geklirte Ursachen ums Leben). Zahlreiche Fliichtlinge
aus dem von Deutschen besetzten Warschau kamen nach Lemberg, unter ihnen die
Mathematiker Knaster®, Saks und Edward Szpilrajn (Marczewski). Steinhaus schrieb
dariiber:

% K. Kuratowski, Notizen zur Autobiographie, Warszawa: Czytelnik, 1981 [Polnisch]; Zitat von
S.86u. 89.
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,Unter normalen Bedingungen hétten wir in einer solchen Zusammensetzung manches
geschafft >,

Doch die Bedingungen waren nicht normal. Die polnischen Schulen und Lehranstalten
wurden geschlossen, und obgleich nach einigen Monaten ukrainische Lehranstalten
erdffnet wurden, an denen man auch Polen anstellte und Vorlesungen in Polnisch tole-
rierte, dringte man jedoch auf die Durchfiihrung der Vorlesungen auf Russisch oder
Ukrainisch. Es gelang noch, den vor dem Krieg vorbereiteten 9. Band der ,,Studia
Mathematica“ herauszugeben, jedoch mit doppelter Nummerierung 9 (1) und mit einer
Zusammenfassung jedes Beitrags in Ukrainisch. Die Zahl der polnischen Studenten ver-
ringerte sich von 3500 im Jahre 1939 auf 400 im Jahre 1941. Als belastend erwiesen sich
die standigen von Seiten der Besatzer erzwungenen Versammlungen und Umorganisa-
tionen, standig gab es die Furcht vor unerwarteter Verhaftung und Deportation. Nach
Kasachstan deportiert wurde Stanistaw Leja (ein Neffe von Franciszek Leja), Whadys-
taw Hetper® steckte man in ein Lager, wo er nach kurzer Zeit starb. In sowjetischen
Gefingnissen litten Bartel® und Szpilrajn (Marczewski).

,.Mich erfasste ein unwiderstehlicher physischer Ekel gegeniiber aller Art sowjetischer Beam-

ten, Politiker und Kommissare. Ich sah in ihnen stupide, verlogene, dumme Barbaren, denen

wir 517n die Hinde gefallen waren, so wie der Riesenaffe, der Gulliver auf das Dach entfiihrt hat-
te“

Am 22. Juni 1941 iiberfielen die Deutschen die Sowjetunion, und bereits eine Woche da-
rauf marschierten sie in Lemberg ein. Die deutsche Besetzung dauerte 3 Jahre, vom
30. Juni 1941 bis zum 27, Juli 1944. Es war dieses die zweite Etappe der Ausrottung des
Polnischen in Lemberg. Im Juni 1941 wurden nach einer im Voraus vorbereiteten Liste
23 Professoren der Universitit, der Technischen Hochschule und anderer Lehranstalten
der Vorkriegszeit verhaftet und alle (mit Ausnahme von Gréer, den man wegen seiner
deutschen Herkunft freilie$), manche mitsamt den Familienangehorigen, auf den Wule-
cker Hohen erschossen’®. Von den Lemberger Mathematikern starben damals Bartel®,
ELomnicki®, Ruziewicz®, Stozek® (mit zwei S6hnen) und Kaspar Weigel. Die Umstande
dieses Verbrechens sind bis heute nicht aufgeklirt. Es erscheint jedoch als unbezweifel-
bar, dass die Deutschen bei der Zusammenstellung der Listen von ukrainischen Natio-
nalisten unterstiitzt wurden, die ebenfalls eine Ausrottung des Polnischen in Lemberg
anstrebten.

Steinhaus ahnte die drohende Gefahr und verbrannte unverziiglich alle Familien-
fotos und persénlichen Unterlagen, wonach er am 4. Juli 1941 seine Wohnung verlieB,
um niemals mehr dorthin zuriickzukehren. Die ersten Tage kam er mit seiner Frau bei
Bekannten unter, dann wohnten sie bis zum November 1941 heimlich bei Prof. Fulinski
am Rande Lembergs, und als es auch dort gefdhrlich wurde, zogen sie in ein kleines

58 H. Steinhaus, Erinnerungen und Notizen, Zweite Auflage, Wroctaw 2002 [Polnisch]; Zitat von
S.197.

5TH. Steinhaus, Erinnerungen ..., op. cit., S. 191.

8 D. Schenk, Der Lemberger Professorenmord und der Holocaust in Ostgalizien, Dietz-Verlag,
2007.
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Dorf in der Ndhe von Lemberg. Dort erhielt er von der Untergrundbewegung die au-
thentische Geburtsurkunde eines verstorbenen Waldarbeiters, und im Juli 1942 begab
er sich mit seiner Frau in ein abgelegenes Dorf im Gebirge, wo sie dann bis zum Juli
1945 wohnten, er unter dem Namen Grzegorz Krochmalny. Hier engagierte er sich
auch im geheimen Unterricht fiir Jugendliche. Sie iiberlebten den Krieg und siedelten
sich danach in Breslau an.

Die Lemberger Lehranstalten wurden von den Deutschen geschlossen, aber im
Frithjahr 1942 eroffneten sie Staatliche Fachkurse, zu denen vierjahrige polytechnische
(5 Fachrichtungen), medizinische, tierdrztliche und forstwirtschaftliche Lehrgénge ge-
horten. Die Lehrgéinge wurden nach polnischen Lehrprogrammen aus der Vorkriegszeit
durchgefiihrt, jedoch ohne Berechtigung fiir die Teilnehmer, an deutsche Lehranstalten
zu wechseln. Einige Lemberger Mathematiker fanden dort eine Anstellung.

Eine Besonderheit der deutschen Besatzung war das Institut von Prof. Weigel, der
fiir die Wehrmacht Impfstoffe gegen Typhus produzierte. Dieses Institut beschiftigte
zahlreiche Vertreter der Lemberger Intelligenz, unter ihnen auch Banach®, Knaster®,
Orlicz® und einige andere, als Fiitterer von Liusen.

Noch im Juli 1941 begann Edmund Bulanda, der Vorginger des auf den Wulecker
Hohen erschossenen Rektors der JKU, Roman Longchamps de Bérier, mit den Vor-
bereitungen zur Reaktivierung der JKU in konspirativer Form. An dieser Untergrund-
universitit unterrichteten Orlicz®, Zylinski® und andere, und einige Studenten schrieben
sogar ihre Doktorarbeiten (u.a. Andrzej Alexiewicz® bei Orlicz®).

Gleichzeitig nahm die systematische Ausrottung von Juden und der Bevolkerung jii-
discher Abstammung ihren Lauf. Folgende Lemberger Mathematiker fielen ihr zum
Opfer: Auerbach® (erschossen bei der Auflésung des Rapoport-Krankenhauses 1942),
Eidelheit (ermordet 1943), Schauder (ermordet 1943), Marian Jacob (kam unter unbe-
kannten Umstidnden ums Leben, 1944), Schreier (nahm Gift, 1943), Ludwik Sternbach
(kam 1942 ums Leben), Menachem Wojdystawski (kam nach 1942 ums Leben).

Im Juli 1944 war die Einwohnerzahl Lembergs auf 150 000 gefallen (vor dem Krieg
zéhlte die Stadt 300 000 Einwohner und im Juni 1941 sogar iiber 400 000). Die Rote
Armee eroberte die Stadt am 27. Juli 1944 mit starker Unterstiitzung seitens der Lan-
desarmee (Armia Krajowa, eine polnische Untergrundarmee), aber nach einigen Tagen
begannen die Sowjets, polnische Offiziere zu verhaften und zu deportieren und fithrten
ihr Regime ein. Heute ist bekannt, dass bereits am 28. Juli 1944 ein Vertrag (damals ge-
heim) mit dem PKWN>® abgeschlossen worden war, auf dessen Grundlage die Halfte
Polens, die den Sowjets im Ergebnis der Vereinbarung von Ribbentrop und Molotow
(mit Ausnahme von Podlasie, auf das sie verzichteten) zugefallen war, sowjetisch blei-
ben sollte. Danach wurde einen Monat spiter eine weitere Vereinbarung {iber die
Umsiedlung der polnischen Bevolkerung nach Westen geschlossen. Die Konferenz von

*® Das PKWN - Polnisches Komitee der Nationalen Befreiung — war eine von den Kommunisten
gebildete polnische Ersatzregierung, die lange Zeit nur von der Sowjetunion anerkannt war. Nach
der fingierten Vereinigung mit der polnischen Exilregierung in London und gefélschten Wahlen
wurde sie auch von den Westméchten anerkannt.
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Jalta (Januar 1945) bestitigte die vorherigen Festlegungen von Teheran iiber die Ver-
schiebung ,,des Wohnsitzes des Staates und des polnischen Volkes“ nach Westen, aber
die endgiiltige Festlegung der neuen Grenzen erfolgte erst auf der Potsdamer Konferenz
im August 1945. Die Vorbereitungen fiir die Vertreibung der polnischen Bevolkerung
begannen allerdings schon im Herbst 1944, und die ersten Transporte setzten sich im
Frithjahr 1945 in Bewegung, noch vor Beendigung der Kriegshandlungen und vor der
Festlegung der neuen Grenzen. Am 31. August 1945 verstarb Banach®, kurz darauf ver-
lieBen die letzten polnischen Mathematiker Lemberg: Knaster (nach Breslau), Mazur
(nach £6dz), Orlicz® (nach Posen), Nikliborc (nach Warschau), Zylifski® (nach Glei-
witz).
Die Lemberger mathematische Schule horte auf zu existieren.

Einige Vertreter der Lemberger mathematischen Schule

Andrzej ALEXIEWICZ (1917-1995). Geboren in Lemberg, Studium der Physik und Mathematik
an der JKU. Promotion 1944 an der JKU im Untergrund. Ab 1945 als Professor an der Uni-
versitit in Posen.

Herman AUERBACH (1901-1942). Geboren in Tarnopol, Studium an der JKU Mathematik.
Promotion 1930, Habilitation 1935. Ermordet in der Zeit der deutschen Besetzung.

Stefan BANACH (1892-1945). Geboren in Krakau. Studium an der Technischen Hochschule in
Lemberg. Unterbrechung des Studiums infolge des 1. Weltkrieges. Promotion 1920 an der
JKU, Habilitation ebenfalls dort 1922. Wurde danach sofort auBerordentlicher Professor und
1927 ordentlicher Professor. Wahrend der sowjetischen Okkupation war er Dekan an der
ukrainischen Universitdt, wihrend der deutschen Okkupation bestritt er seinen Unterhalt
durch Fiittern von Lausen. Verstarb kurz nach Kriegsende.

Kazimierz BARTEL (1882-1941). Geboren in Lemberg, Studium der Mechanik an der Tech-
nischen Hochschule und der Mathematik an der Universitit. Promotion 1911 an der Tech-
nischen Hochschule, wurde dort 1912 auBerordentlicher Professor. Nach der Habilitation
1914 mit Verzégerung durch Teilnahme am Krieg 1917 ordentlicher Professor. Einer der be-
kanntesten Politiker in der Zeit zwischen den Weltkriegen (mehrmals Regierungschef, Minis-
ter , Abgeordneter des Sejm, Senator). Rektor 1930/31 der Technischen Hochschule. Erschos-
sen von den Deutschen am 26. Juli 1941.

Zygmunt Wilhelm BIRNBAUM (1903-2000). Geboren in Lemberg. Nach dem Jurastudium zog es
ihn zur Mathematik, Promotion an der JKU 1929. Zusatzstudium 1929-1931 in Gottingen,
wo er das Diplom als Aktuar erwarb. Ab 1937 in der Emigration in den USA, wo er Professor
an der Universitit in Seattle wurde.

Leon CHWISTEK (1884 -1944). Geboren in Krakau. Daselbst Studium der Mathematik und Pro-
motion 1906. Im 1. Weltkrieg Dienst in den Polnischen Legionen. Habilitation 1928 an der
Universitdt in Krakau. 1930 Berufung auf den Lehrstuhl fiir Logik an der JKU als aufler-
ordentlicher Professor und 1938 als ordentlicher Professor. Nach Ausbruch des deutsch-sow-
jetischen Krieges emigrierte er nach Georgien. Verstarb 1944 in Moskau (nach Abiehnung
eines Vorschlags zum Eintritt in das PKWN).

Meier EIDELHEIT (1910 1943). Geboren nahe Lemberg. Studium der Mathematik an der JKU.
Promotion 1938. Ermordet durch die Deutschen.

Wtadystaw HETPER (1909-1940 7). Geboren in Krakau. Dort Studium der Mathematik, 1937
an der JKU. Kampfte im September 1939 und gelangte in deutsche Kriegsgefangenschaft, aus
der ihm die Flucht gelang. Auf dem Wege nach Lemberg von den Sowjets aufgegriffen, ange-
klagt wegen Spionage (hatte Manuskripte von Arbeiten zur Logik bei sich, die man fiir codier-
te Nachrichten hielt). Deportiert in ein Lager, wo er verstarb.
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Zygmunt JANISZEWSKI (1888 -1920). Geboren in Warschau. Studium in Ziirich, Géttingen,
Miinchen und Paris. Promotion 1911 an der Sorbonne, Habilitation 1913 in Lemberg.
1. Weltkrieg als Freiwilliger in den Polnischen Legionen. 1919 Berufung an die Warschauer
Universitat. Verstarb 1920 in Lemberg.

Mark KAC (1914-1984). Geboren in Krzemieniec. Studium der Mathematik an der JKU. Pro-
motion 1937 an der JKU. Ab 1938 in den USA, Professor an der Cornell University in Ithaca,
New York.

Stefan KACZMARZ (1895-1939). Geboren in Sambor. Studium der Mathematik an der Univer-
sitdt in Krakau mit einer Unterbrechung wegen seines Dienstes in den Polnischen Legionen
wihrend des 1. Weltkrieges. Ab 1923 an der Technischen Hochschule Lemberg. Promotion
1924 an der JKU, dort auch 1929 Habilitation. Als Offizier der Reserve Teilnahme am Krieg
1939, aus dem er nicht zuriickkehrte.

Bronistaw KNASTER (1893 -1980). Geboren in Warschau. Studium der Medizin in Paris und da-
nach der Mathematik in Warschau. Promotion 1923 und Habilitation 1926 in Warschau.
Haufiger Gast in Lemberg. Verbrachte dort die Jahre 1939-1945. Wihrend der sowjetischen
Okkupation war er Professor an der ukrainischen Universitit, wihrend der deutschen Besat-
zungszeit fiitterte er Lause. Ab 1945 Professor an der Universitit in Breslau.

Kazimierz KURATOWSKI (1896-1980). Geboren in Warschau. Studium der Mathematik
begonnen in Glasgow, beendet an der Universitit in Warschau. Promotion 1921 und gleich
danach Habilitation. In den Jahren 19271933 Professor an der Technischen Hochschule in
Lemberg, ab 1934 Professor an der Universitit in Warschau.

Antoni Marian EOMNICKI (1881-1941). Geboren in Lemberg. Dort Studium der Mathematik
mit Zusatzstudium in Gottingen. Habilitation 1919 an der Technischen Hochschule Lemberg,
ab 1921 dort ordentlicher Professor. Erschossen von Deutschen am 4. Juli 1941.

Stanistaw MAZUR (1905-1981). Geboren in Lemberg. Studium der Mathematik an der JKU.
Obgleich ohne Studienabschluss, Promotion dort 1932. Habilitation 1936 an der Technischen
Hochschule in Lemberg, wo er auch arbeitete. Verliel Lemberg 1946. Ab 1948 Professor an
der Universitat in Warschau.

Stefan MAZURKIEWICZ (1988 -1946). Geboren in Warschau. Studium der Mathematik in Kra-
kau, Lemberg, Miinchen und Géttingen. Promotion 1913 an der Universitit in Lemberg,
Habilitation 1919 an der Universitit in Krakau. Ab 1919 Professor an der Universitit in War-
schau.

Wiadystaw ORLICZ (1903-1990). Geboren in Okocim. Studium der Mechanik an der Tech-
nischen Hochschule und der Mathematik an der Universitit in Lemberg. Promotion 1926 an
der JKU, dort auch 1934 Habilitation. Ab 1937 Professor an der Universitit in Posen. Den
2. Weltkrieg verbrachte er in Lemberg.

Stanistaw RUZIEWICZ (1889-1941). Geboren bei Kotomyja. Studium der Mathematik an der
Universitit in Lemberg. Promotion dort 1912, Danach ein Jahr Aufenthalt in Gottingen. Ha-
bilitation 1918 an der Universitédt in Lemberg. Dort 1920 auBerordentlicher Professor und
1924 ordentlicher Professor. Nach Entzug des Lehrstuhls an der JKU 1934 Umzug an die
Akademie fiir AuBenhandel in Lemberg. Erschossen von Deutschen am 12. Juli 1941.

Juliusz Pawet SCHAUDER (1899-1943). Geboren in Lemberg. Nach Abschluss des Gymnasiums
Einberufung zur osterreichischen Armee und mit ihr an die italienische Front. Nach dem
Krieg Riickkehr mit der polnischen Armee nach Polen. Studium der Mathematik an der JKU,
dort auch 1924 Promotion und 1927 Habilitation. Nach dem Einmarsch der Deutschen ver-
barg er sich in Borystaw, kehrte aber 1943 nach Lemberg zuriick. Er konnte das Verstecken
schwer ertragen. Bei einem Ausgang wurde er von Deutschen aufgegriffen und erschossen.

Jozef SCHREIER (1908-1943). Geboren in Drohobycz. Studium der Mathematik an der JKU.
Promotion in Gattingen. Nach dem Einmarsch der Deutschen musste er sich verbergen. Als
das Versteck pntdeckt wurde, nahm er Gift.

Wactaw SIERPINSKI (1882-1969). Geboren in Warschau. Dort Beginn des Studiums der Ma-
thematik. Beendigung in Krakau. Dort 1906 Promotion. Nach der Promotion Reise nach
Gottingen. Habilitation 1908 an der Universitit in Lemberg, dort 1910 auBerordentlicher
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Professor. Wihrend des 1. Weltkrieges in Russland interniert. Ab 1918 ordentlicher Professor
an der Universitdt in Warschau.

Hugo Dionizy STEINHAUS (1887-1972). Geboren in Jasto. Begann das Studium der Mathema-
tik in Lemberg, nach einem Jahr Wechsel nach Géttingen. Dort 1911 Promotion mit dem Pra-
dikat summa cum laude. Teilnahme an den Kdmpfen um Wolhynien in den Polnischen Legio-
nen. Habilitation 1917 an der Universitét in Lemberg, dort ab 1920 auBerordentlicher Profes-
sor und ab 1923 ordentlicher Professor. Wahrend der deutschen Besatzungszeit Versteck in
einem Dorf bei Lemberg, danach in den Karpaten. Nach Lemberg kehrte er nicht mehr zu-
riick. Ab 1945 Professor an der Universitét in Breslau.

Ludwik STERNBACH (1905-1942). Geboren in Sambor. Studium der Mathematik und Physik
an der JKU. Zusammenarbeit mit Mazur® (gemeinsame Arbeiten), arbeitete aber weiter als
Lehrer und Aktuar. Nach dem Einmarsch der Deutschen musste er sich verstecken. Die Um-
stinde seines Todes sind nicht bekannt.

Wtodzimierz STOZEK (1883-1941). Geboren bei Krakau. Studium der Mathematik an der Uni-
versitdt in Krakau, danach zwei Jahre in Goéttingen. Promotion 1922 in Krakau. Im selben
Jahr auBlerordentlicher Professor und ab 1926 ordentlicher Professor an der Technischen
Hochschule in Lemberg. Erschossen von Deutschen (mit beiden S6hnen) am 4. Juli 1941.

Stanistaw Marcin ULAM (1909-1984). Geboren in Lemberg. Studium der Mathematik an der
Technischen Hochschule in Lemberg. Dort 1933 Promotion. Ab 1935 Aufenthalt in
Princeton, aber jedes Jahr wihrend der drei Sommermonate in Lemberg. Wihrend des
2. Weltkrieges Mitarbeiter am Atomprogramm Manhattan, dann Professor an der Univer-
sit4t in Boulder, Colorado.

Eustachy ZYLINSKI (1889-1954). Geboren bei Winnica in der Ukraine. Studium der Mathema-
tik an der Universitdt in Kiew und Ergdnzung des Studiums in Gottingen, Marburg und Cam-
bridge. Nach der Riickkehr nach Kiew Erlangung des Titels Magister (im russischen System
verlieh er das Recht, an einer Universitét zu unterrichten). Wahrend des 1 .Weltkrieges Dienst
in der russischen Armee, danach in der polnischen Armee. 1919 Berufung als Professor an die
JKU, dort ordentlicher Professor. Nach dem 2. Weltkrieg Wechsel nach £.0dz.

Danksagung: Ich méchte Herrn Prof. Dr. Hans-Christoph Grunau fiir den Vorschlag,
diesen Artikel zu schreiben, und Herrn Alfred MiiBiggang aus Cottbus fiir die Uberset-
zung herzlich danken.
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1 Lebenslauf

Beno Eckmann wurde am 31. Mérz 1917 in Bern als Sohn eines Chemikers und einer
Arztin geboren.! Er besuchte die Schulen in Bern — die hervorragenden Schulzeugnisse
aus jener Zeit sind noch vorhanden — und erhielt 1935 die Matur humanistischer Rich-
tung, also mit Griechisch und Latein. Entgegen dem Wunsch seines Vaters entschloss
sich Beno Eckmann zum Studium der Mathematik, und zwar an der ETH in Ziirich. In
der kleinen damaligen Studentengruppe an der Abteilung fiir Mathematik und Physik
der ETH hatte er von Anfang an guten Kontakt mit Heinz Hopf. Er diplomierte 1939.
Nur zwei Jahre spiter, 1941, schloss er das Doktorat mit der Dissertation Zur Homoto-
pietheorie gefaserter Riume ab; Referent war Heinz Hopf und Korreferent Ferdinand
Gonseth. Unmittelbar danach, 1942, habilitierte er sich an der ETH in Ziirich.

Wiihrend der Zeit seines Studiums geschahen zwei fiir seinen personlichen Lebens-
kreis wichtige Dinge: 1937 wurde er Schweizer Biirger — als solcher hatte er im Zweiten
Weltkrieg viele Wochen Militdrdienst zu leisten — und 1942 heiratete er Doris Wolf. Der
Ehe entsprossen drei Kinder. In seinen spiten Jahren wies er gerne darauf hin, dass er
schon mehr als 60 Jahre mit Doris verheiratet sei. Seine Familie mit den GroBkindern
und UrgroBkindern war ihm immer eine gro3e Freude.

Ab 1942 war Beno Eckmann als Dozent an der Universitidt Lausanne titig, 1944
wurde er dort Professeur extraordinaire. Wahrend dieser Zeit behielt er seine Privatdo-
zententdtigkeit an der ETH in Ziirich bei. Im Jahre 1947 — also kurz nach Ende des
Zweiten Weltkrieges, wihrend dem fast alle wissenschaftlichen Kontakte mit dem Aus-
land unméglich waren - folgte ein langerer Aufenthalt in den USA. Die Reise fithrte im
Januar tber Paris, wo er mehrere Vortrige hielt. Die Zeit von Februar bis Mitte April
verbrachte er als Mitglied am Institute for Advanced Study in Princeton und von Mitte
April bis Anfang Mai schloss sich eine ausgedehnte Vortragsreise an, wihrend der er
zahlreiche der wichtigen Universitdten im Mittleren Westen und an der Ostkiiste der
USA besuchte. Von Juni bis September war er dann wieder am Institute for Advanced
Study in Princeton. Beno Eckmann erhielt in jener Zeit und auch spéter aus den USA
mehrere Angebote, die er aber alle ablehnte. Kurz nach seiner Riickkehr in die Schweiz
erreichte ihn dann der Ruf zum ordentlichen Professor an der ETH in Ziirich. Diese
Stelle trat er im Herbst 1948 an.

Bereits aus der Beschreibung dieses ersten Amerika-Aufenthaltes wird deutlich, dass
sich Beno Eckmann schon friih in seiner Laufbahn bemiihte, ein weltweites Netzwerk
von wissenschaftlichen Kontakten aufzubauen. Davon konnten in der Folge die ETH
und vor allem auch seine vielen Schiiler und Schiilerinnen in hohem Male profitieren.
Wie intensiv sich diese Bemithungen gestalteten, geht aus der nachfolgenden kurzen
Aufzdhlung von Gastaufenthalten hervor, die in den ersten Jahren seiner Professur an
der ETH stattfanden.

! Sein Vater Aron und seine Mutter stammten aus Osteuropa; sie waren beide vor dem Ersten
Weltkrieg in die Schweiz gekommen, um an der Universitdt Bern zu studieren. In der Zeit vor dem
Ersten Weltkrieg war die Universitit Bern ein beliebter Studienort fiir osteuropdische und ins-
besondere russische Studierende.
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Im Herbst 1950 schloss sich ein zweiter Amerikaaufenhalt an. In Cambridge (MA)
fand in jenem Herbst der Internationale Kongress fiir Mathematiker statt. Die Teilnah-
me am Kongress, bei dem Eckmann als Sprecher eingeladen war, kombinierte er mit ei-
nem Gastaufenthalt an der University of Michigan und mit einer Vortragsreise. Ein Jahr
spater fithrte eine dritte Amerikareise an die University of Illinois at Urbana-Cham-
paign und zu einer Vortragsreise quer durch den ganzen Kontinent, sie dauerte von Au-
gust 1951 bis Miarz 1952. Nur wenige Jahre spater reiste er zum vierten Mal in die USA,;
von Juli bis August 1955 besuchte er diesmal vor allem die Universititen an der West-
kiiste, darunter fiir einen ausgedehnten Gastaufenthalt die University of California in
Berkeley. Einladungen aus ganz Europa zu Vortrdgen und lingeren Vorlesungszyklen
fithrten ihn 1956 und 1957 nach Deutschland, England, Belgien und Italien.

In spéiteren Jahren folgten viele weitere wissenschaftliche Reisen und Gastprofessu-
ren, auf die wir nicht in detaillierter Weise eingehen koénnen. Einzig die engen Kontakte
mit dem Technion in Haifa und der Ben Gurion University in Beer-Sheva seien hier spe-
ziell noch erwihnt.

Beno Eckmann widmete sich wiahrend der Tatigkeit an der ETH in Ziirich neben sei-
ner Forschung in ganz besonderem MafBe dem Unterricht, und zwar auf allen Stufen.
Dazu gehdrten in seinen ersten Jahren nach 1948 auch mathematischer Unterricht fiir
Ingenieurstudierende im Fach Darstellende Geometrie. Spéter waren es dann vor allem
Vorlesungen in Algebra und Topologie, die er betreute. Den einfilhrenden Zyklus der
Algebra-Vorlesungen hat er wiahrend mehrerer Jahrzehnte regelméBig gelesen. Dazu
kamen fortgeschrittene Vorlesungen wechselnden Inhalts, die ein weites Feld in den Ge-
bieten Algebra, Topologie und Differentialgeometrie abdeckten. Die Vorlesungen riick-
ten jeweils die wesentlichen Linien und die Zusammenhénge in den Mittelpunkt. Glas-
klar und bis ins Detail nachvollziehbar war die Darstellung des Stoffes. Und die fort-
geschrittenen Vorlesungen fithrten die Zuhorer in aller Regel bis an die Grenzen der
aktuellen Forschung.

Ganz besonders am Herzen lagen ihm auch die Seminare, in denen die Studierenden
iiber fortgeschrittene Themen vorzutragen hatten. Wohl alle seine nachmaligen Dokto-
randen und Doktorandinnen erinnern sich an die Vorbereitungen zu diesen Vortréigen:
Ungefihr eine Woche vor dem Termin hatten die Vortragenden im Biiro von Beno Eck-
mann auf Grund des Vortragsmanuskriptes zu referieren. Da wurden Liicken angespro-
chen, es wurde auf Fehler hingewiesen, es gab Hinweise zu einem effektvollen Vortrags-
stil, und oft horten dann die Vortragenden auch von Weiterungen des Stoffes und von
Zusammenhingen, die in der Literatur nicht zu finden waren.

Es ist nicht verwunderlich, dass sich nach derartigen Erfahrungen viele der Studie-
renden entschlossen, eine Diplomarbeit und eine Dissertation bei Beno Eckmann zu be-
ginnen, Unzihlige Diplomarbeiten und rund 60 Dissertationen hat er wihrend seiner
Tatigkeit an der ETH betreut. Eine groBere Anzahl seiner Doktoranden waren spéter
als Professoren an Hochschulen des In- und Auslandes tétig. Ein eindrucksvoller ,,Dok-
torandenstammbaum®, der aus Anlass des 80. Geburtstages Beno Eckmanns von seinen
Schiilern in Barcelona zusammengestellt wurde, erstreckt sich tiber fiinf Doktoranden-
generationen und seine Aste enthalten Namen von Personen aus allen fiinf Kontinenten.
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Neben seiner wissenschaftlichen Tatigkeit stellte sich Beno Eckmann immer wieder
fiir administrative und wissenschaftspolitische Arbeiten zur Verfiigung: Von 1954 bis
1956 war er Vorsteher der Abteilung fiir Mathematik und Physik an der ETH Ziirich,
von 1956 bis 1960 Sekretir der Internationalen Mathematischen Union, von 1961 bis
1962 Prisident der Schweizerischen Mathematischen Gesellschaft und von 1973 bis
1984 Mitglied des Forschungsrates des Schweizerischen Nationalfonds.

Auch um die Publikation mathematischer Texte hat sich Beno Eckmann verdient
gemacht: Er war wéhrend vieler Jahre Mitherausgeber der beriihmten Grundlehren der
Mathematischen Wissenschaften des Springer-Verlags. Ferner war er Mitbegriinder der
Lecture Notes in Mathematics, welche zu einer Zeit, als es noch kein Internet gab, eine
rasche Verbreitung von neuen Forschungsresultaten in zusammenfassender Form zum
Ziele hatten.

Eckmanns groBte Leistung nichtwissenschaftlicher Art ist aber zweifellos die 1964
erfolgte Griindung des Forschungsinstitutes fiir Mathematik an der ETH, dem Beno
Eckmann bis zu seiner Emeritierung im Jahre 1984 auch als Direktor vorstand. Das In-
stitut diente in den ersten Jahren dazu, den fiir die Mathematik so wichtigen Gésteaus-
tausch zu erleichtern und die internationale Zusammenarbeit der Mitglieder des Depar-
tementes zu fordern. Aus kleinen Anfiingen hat sich das Institut im Laufe der Jahre zu
einem weltweit bekannten Zentrum mathematischer Forschung entwickelt. Es konnte
im Sommer 2004 mit einem glanzvollen, hervorragend besetzten Kolloquium sein
40-jahriges Bestehen feiern.

Viele Ehrungen zeugen von der hohen nationalen und internationalen Wertschit-
zung Beno Eckmanns, darunter sind Ehrendoktorate der Universitidt Fribourg, der
Ecole Polytechnique Fédérale in Lausanne sowie des Technion in Haifa und der Ben
Gurion University in Beer-Sheva. Anlésslich des Internationalen Mathematiker-Kon-
gresses 1994 in Ziirich wurde er zu dessen Ehrenpriésidenten ernannt. Weitere Ehrungen
erhielt er von der Université de Genéve und der Albert Einstein-Gesellschaft in Bern.

Waihrend andere sich nach der Emeritierung ganz dem Ruhestand widmen, blieb Be-
no Eckmann seiner Tétigkeit und der ETH treu. Eine ganze Reihe von Verdffentlichun-
gen entstanden wihrend dieser Zeit, darunter auch zahlreiche Forschungsarbeiten. Er
betreute die Herausgabe der Gesammelten Werke von Heinz Hopf und verdffentlichte
eine umfangreiche Sammlung von Ubersichtsvortrigen, die er wihrend seiner langen
mathematischen Tétigkeit gehalten hatte. Bis Anfang 2008 war Beno Eckmann regel-
maBig in seinem Biiro an der ETH anzutreffen; hier diskutierte er gerne intensiv die vie-
len mathematischen Fragen, die ihn nach wie vor beschiftigten. Hier erzihlte er auch
den Gesprichspartnern von seinen vielen personlichen Erinnerungen und Erfahrungen
aus seiner langen mathematischen Tatigkeit oder unterhielt sich mit ihnen {iber seine in-
tensive Beschiftigung mit Literatur, Theater und Musik. Ganz besonders genoss er hier
den Kontakt mit den vielen Giisten ,,seines“ Forschungsinstitutes.

Geistig nach wie vor aulerordentlich rege, lieBen seine kdrperlichen Krifte nach sei-
nem 90. Geburtstag merklich nach. Seine letzten Monate verbrachte Beno Eckmann
gut betreut zusammen mit seiner Frau Doris im Hugo Mendel-Heim in Ziirich. Er starb
am 25. November 2008.
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2 Wissenschaftliche Arbeiten

Das umfangreiche mathematische Werk Beno Eckmanns besteht aus 120 Beitrdgen in
mathematischen Zeitschriften. Er hat ferner die Selecta Hermann Weyl herausgegeben,
die Gesammelten Werke von Heinz Hopf [Ho01] und eine Sammlung von Essays [E07]
aus seinem reichen mathematischen Leben, die sich an ein allgemeines mathematisches
Publikum wenden. Daneben existiert eine lingere Reihe von vervielfaltigten Ausarbei-
tungen seiner Vorlesungen. Eine Auswahl seiner Arbeiten ist in den Selecta Beno Eck-
mann [E87] zusammengefasst, die zu seinem 70, Geburtstag erschienen sind.

Fiir das Folgende wollen wir aus der Gesamtheit einzelne Gruppen von Arbeiten he-
rausgreifen und sie im Zusammenhang besprechen; es treten dabei Entwicklungslinien
hervor, die Eckmann iiber Jahre in seinem Denken und Forschen verfolgt hat. Aus
Platzgriinden mussten weitere wichtige Arbeiten hier ganz ausgeschlossen bleiben, wie
etwa diejenigen, die sich mit komplexen und fastkomplexen Strukturen beschiftigen. In
unserer Darstellung sollen die speziellen Figenheiten von Eckmanns Werk besonders
hervortreten: Peter Hilton, mit dem Eckmann eine langjdhrige enge und fruchtbare Zu-
sammenarbeit pflegte, sagte einmal, Eckmanns Werk zeichne sich durch unification, cla-
rification und penetration aus (siche [Hi78]). Beispielhaft zeigt sich dies in Eckmanns tie-
fer Uberzeugung, dass Topologie und Algebra in einem echt symbiotischen Verhiltnis
zueinander stehen, und so ist in seinem Werk mehrfach festzustellen, wie neue Begriffs-
bildungen und Ideen parallel oder nacheinander in beiden Gebieten verfolgt werden.
Eine solche Einstellung zur Mathematik als eine Gesamtheit ist heute nicht mehr uniib-
lich, aber damals in der Mitte des 20. Jahrhunderts, als man ,,der Reinheit der Metho-
de“ einen besonderen Stellenwert einrdumte, war das anders.

2.1 Das Resultat von Radon und Vektorfeldern auf Sphéren

Im Jahre 1938 hatte Beno Eckmann in einem von Heinz Hopf geleiteten Seminar iiber
die Resultate von Adolf Hurwitz und Johann K.A. Radon iiber die Komposition qua-
dratischer Formen vorzutragen. Es ging dabei um die folgenden Frage:

Fiir welche ganze Zahlen n und p lassen sich n komplexe bzw. reelle Bilinearformen
21,23, -.-, Zn S0 bestimmen, dass die Identitiit

G4+ + ) =8+ +z

besteht.

Hurwitz hatte den Spezialfall p = n behandelt und Radon den allgemeinen Fall. In
beiden Fillen wurden fiir die Beweise Ad-hoc-Methoden verwendet. Eckmann, der sich
— wie er spiter einmal bemerkte — mit diesen Ad-hoc-Uberlegungen nicht richtig an-
freunden konnte, suchte einen anderen Zugang. Er erkannte den Zusammenhang mit
der Gruppentheorie, und es gelang ihm, mit Hilfe von tiefliegenden Siitzen von Issai
Schur iiber das Zusammenspiel von komplexen und reellen Darstellungen das allgemei-
ne Resultat von Radon zu beweisen. Im reellen Fall lautet dieses wie folgt:
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Genau dann existieren reelle Bilinearformen z\,zy, ..., z,, wenn fiir n = u - 2*°+% mit
u > 0ungeradeund0 < 3 < 4 giltp < 8a + 25

Topologische Konsequenzen lagen unmittelbar auf der Hand: Eine Losung des reel-
len Radon-Problems fiir das Zahlenpaar # und p liefert auf der Sphire S*~! gerade
p — 1 linear unabhéngige Vektorfelder. Dabei sind diese Vektorfelder durch lineare
Operationen der Koordinaten auf der Sphire S”~! gegeben. Die Frage, ob auf den
Sphéren weitere - in diesem Sinn nichtlineare — Systeme von stetigen, linear unabhingi-
gen Vektorfeldern existieren, blieb lange offen, bis sie Frank Adams 1962 ([A62]) im ne-
gativen Sinn entschied.

Beno Eckmann hat bei verschiedenen Gelegenheiten (siehe z.B. [114]) den Wunsch
und die Hoffnung geduBert, auf Grund von analytischen Methoden, vielleicht mittels
Variationsrechnung, einsehen zu kdnnen, dass die Existenz von stetigen Vektorfeldern
auf Sphiren die Existenz von linearen impliziert. Der sehr anspruchsvolle Beweis von
Adams wire dann auf ein relativ elementares Problem der linearen Algebra und Dar-
stellungstheorie der Gruppen reduziert. Doch diese Einsicht ist der Mathematik bis heu-
te verwehrt geblieben.

Wir erwdhnen noch explizit den Spezialfall p = n: Hier besteht ein enger Zusammen-
hang mit der Frage nach der Existenz von Divisionsalgebren iiber den reellen Zahlen.
Wie bereits Hurwitz in der entsprechenden Arbeit feststellte, ergibt sich aus seinem Re-
sultat, dass reelle Algebren, welche die Normproduktregel erfiillen, nur fiir die Dimen-
sionen 1,2, 4, 8 existieren konnen; es sind dies die rellen Zahlen, die komplexen Zahlen,
die Quaternionen und die Oktaven. Aus den Arbeiten von John Milnor [BoM58] und
Michel Kervaire [K 58] ergibt sich etwas allgemeiner, dass nur in diesen Dimensionen
reelle Divisionsalgebren existieren kénnen. Nur wenig spéter erschien die Arbeit von
Frank Adams [A60] mit ihrem tiefliegenden Resultat zur Hopfinvariante. Aus diesem
folgt die noch stirkere Aussage, dass es in IR” nur fiir » = 1,2, 4, 8 eine nullteilerfreie
stetige Multipliplikation mit einem zweiseitigen Einselement geben kann. Alle diese
neueren Resultate bendtigen fiir ihren Beweis trotz aller heute bekannten Vereinfachun-
gen fortgeschrittene Methoden der algebraischen Topologie, wie die sogenannte Bott-
Periodizitit der unendlichen orthogonalen bzw. unitidren Gruppe und die damit im Zu-
sammenhang stehende K-Theorie. Auch in diesem Spezialfall p = » ist also das oben an-
gesprochene Phinomen relevant, dass die Existenz einer stetigen Operation jeweils auch
die Existenz einer (bi)linearen Operation impliziert. Eckmann hat in [105] den engen
Zusammenhang zwischen den Hurwitz-Radon-Matrizen, wie sie sich aus der Losung
des urspriinglichen Problems ergeben, und der Bott-Periodizitiat nachgewiesen und da-
rauf aufmerksam gemacht, wie eine tiefere Einsicht in die Natur des oben beschriebenen
Phidnomens zu einem neuen Verstindnis der Bott-Periodizitit und damit der topologi-
schen K-Theorie fiithren konnte.
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2.2 Gohomologie der Gruppen

In seiner Arbeit [15] schlieBbt Eckmann an frithere Arbeiten seines Mentors Heinz Hopf
[Ho41a, Ho44] an. Dieser hatte fiir eine gegebene diskrete Gruppe G einen abstrakten
algebraischen Komplex definiert, in dem die Homologiebildung die Homologiegruppen
eines asphirischen topologischen Raumes mit Fundamentalgruppe G liefert. Dass die
Homologiegruppen eines derartigen Raumes nur von der Fundamentalgruppe G ab-
hingen, hatte in den dreifliger Jahren Witold Hurewicz [Hu35] bewiesen; nicht klar war
damals aber, ob zu jeder Gruppe G ein derartiger Raum existiert und wie er allenfalls zu
konstruieren wire. Eckmann nahm sich dieses Problems an, arbeitete — abweichend von
Hopf — mit der Cohomologie statt mit der Homologie und konstruierte auf kanonische
Weise zu gegebenem G einen algebraischen Komplex, der dem Cokettenkomplex der
universellen Uberlagerung eines derartigen Raumes nachgebildet ist: Es ist die — spéter
so genannte — homogene Standardauflosung von Z iiber dem Gruppenring ZG, die hier
konstruiert wurde. Mit Hilfe der Coketten beschrieb Eckmann auch explizit die Pro-
duktstruktur der Cohomologie; dies fiihrte zur Definition des Cohomologieringes der
Gruppe G. Die Arbeit geht detailliert auf die Beziehungen ein, die sich zwischen der to-
pologischen und algebraischen Sichtweise ergeben, insbesondere spiegeln sich im algeb-
raischen Vorgehen explizit die Begriffe der universellen Uberlagerung und des Produk-
tes in der Cohomologie eines topologischen Raumes wider.

Es ist mathematikgeschichtlich interessant, dass die (Co)Homologietheorie der
Gruppen praktisch gleichzeitig und unabhéngig von Hopf und Eckmann auch von
Samuel Eilenberg und Saunders MacLane in den USA und von Hans Freudenthal in
den Niederlanden in ganz dhnlicher Weise angegangen wurde. Wahrend des Zweiten
Weltkrieges war die wissenschaftliche Kommunikation zwischen der Schweiz und dem
Ausland fast vollig zum Stillstand gekommen. Von den neuen Entwicklungen hérte
man gegenseitig erst nach Ende des Krieges, als die Kontakte langsam wieder auf-
genommen werden konnten.?

Die Beschiftigung mit der Gruppencohomologie hat Beno Eckmann in [35] fort-
gesetzt. Dabel wurden die Beziehungen zwischen den Cohomologiegruppen von einer
Gruppe G und einer Untergruppe U niher untersucht. Unter anderem ist in dieser Ar-
beit das Resultat zu finden, das spéter unter dem Namen Shapiro-Lemma bekannt ge-
worden ist (siehe [35], Theorem 4, [33], Theorem 3); es driickt die Cohomologie einer
Untergruppe als Cohomologie der ganzen Gruppe mit speziellen Koeftizienten aus. In
heutiger Schreibweise lautet es wie folgt:

H'(U,B) ~ H*(G,Homy (Z(G), B)) . (1)

2 Im Falle von Saunders MacLane lsst sich dies etwas genauer festlegen (siche MacLane [ML78]):
Eine Note von Hopf, die als Beitrag zu einer Topologiekonferenz gedacht war und die inhalts-
méBig ungefihr seiner Arbeit [Ho41a] entsprach, erreichte im Sommer 1941 noch Eilenberg und
MacLane. Diese erkannten deren Wichtigkeit sofort, und es gelang ihnen, zu einer gegebenen
Gruppe G einen algebraischen asphérischen Komplex zu konstruieren, der sich spiter als eine Va-
riante des Eckmannschen Komplexes entpuppte, ndmlich als die inhomogene Standardaufldsung.
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Die allgemeine Theorie in der Cohomologie der Gruppen liefert sofort eine Abbildung
(Restriktion) R : H*(G) — H*(U); sie ist durch die entsprechende Einschrinkung der
Coketten definiert. Nimmt man die Beziehung (1) zur Hilfe, so ldsst sich R auch durch
den Koeffizienten-Homomorphismus

B = Homg(Z(G), B)) — Hom (Z(G), B))

beschreiben. Im Falle einer Untergruppe U von endlichem Index in G ldsst sich durch
Summenbildung ein Modulhomomorphismus

Homy (Z(G), B) — B

definieren. Eckmann beniitzt diesen Homomorphismus, um daraus mit Hilfe der Bezie-
hung (1) eine Abbildung (Transfer) T in der der Restriktion umgekehrten Richtung
H*(U) — H*(G) zu definieren.® Die Namensgebung folgte dabei der Tatsache, dass in
der Dimension 1 die so definierte Abbildung zum ,.klassischen® gruppentheoretischen
Transfer (Verlagerung) dual ist. Die Definition erfolgte zusatzlich auch explizit mit For-
meln in der Standardaufldsung von [15]. Gegeniiber der Arbeit [15] sind hier wichtige
notationelle Neuerungen festzustellen, wie etwa die Verwendung von Pfeilen fiir Abbil-
dungen, von exakten Folgen und von Diagrammen; es sind dies Notationen, wie sie sich
in jener Zeit rasch in der ganzen Mathematik einbiirgerten. Aus den gegebenen Defini-
tionen des Transfers* ergaben sich leicht eine Reihe von Folgerungen, die sich fiir man-
nigfache Anwendungen in der Gruppentheorie als wichtig erweisen sollten, darunter
vielleicht die wohl bekannteste Folgerung, dass die Zusammensetzung 7o R:
H*(G) — H*(G) nichts anderes als die Multiplikation mit dem Index von U in G ist.
Mit der Gruppenhomologie und -cohomologie und ihren Anwendungen in der
Gruppentheorie hat sich Beno Eckmann in seinem Werk mehrfach wieder beschiftigt.
Nach der erfolgreichen Definition der Transferabbildung war Eckmann mehr denn je
davon liberzeugt, dass die (Co)Homologie von Gruppen auch in der klassischen Grup-
pentheorie wichtige Anwendungen besitzen wiirde, die iiber die bereits bekannte Inter-
pretation der zweiten und dritten Cohomologiegruppe durch Gruppenerweiterungen
hinausgehen wiirden. In der Tat hatte sich gezeigt (siehe [StJ65], [StU66]), dass die einer
Gruppenerweiterung zugeordnete, aus der Lyndon-Hochschild-Serre-Spektralreihe
stammende, exakte Fiinf-Term-Sequenz derartige rein gruppentheoretische Anwendun-
gen erlaubte, welche das Rechnen mit Kommutatoren betrafen, wie sie etwa in der Defi-
nition nilpotenter Gruppen auftreten. Aus Sicht der Gruppentheorie bestand deshalb
ein Bediirfnis, diese Sequenz auf einfache Weise, d. h. ohne den involvierten Apparat
der Spektralreihen herzuleiten. Dies wurde in der Arbeit von Eckmann und Stammbach

3 Bereits in der etwas frither fertiggestellten Arbeit [33] hat Eckmann diese Transfer-Abbildung
definiert.

* GemiB einer miindlichen Mitteilung von Beno Eckmann ging seine Definition des Transfers auf
eine Anregung von Emil Artin und John Tate zuriick, welche der Gruppen{(co)homologie erst dann
algebraische Relevanz zusprechen wollten, wenn die klassische gruppentheoretische Konstruktion
des Transfers (der Verlagerung) in diese Theorie eingebettet werden konnte. Artin und Tate haben
in den unmittelbar folgenden Jahren die Gruppencohomologie in der Klassenkérpertheorie ver-
wendet; siche u. a. [T52].
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[68] geleistet. Es schloss sich eine Reihe weiterer Arbeiten mit P. Hilton an ([72], [73],
[74], [76], zum Teil auch gemeinsam mit U. Stammbach), welche die Theorie zentraler
Gruppenerweiterungen betrafen: In dieser Situation ldsst sich die Fiinf-Term-Sequenz
durch einen weiteren Term (siehe auch [Ga68]) verlingern, was eine Reihe von gruppen-
theoretischen Anwendungen auf sogenannte Stammerweiterungen und auf zentrale
Produkte erlaubte.

Die Beschéftigung mit der Cohomologietheorie der Gruppen setzte sich in einer lan-
gen Reihe von Arbeiten zur homologischen Dualitét fort. In seiner Dissertation hatte
sich Robert Bieri [Bi72} mit Gruppen beschéftigt, deren ganzzahlige Cohomologie und
Homologie eine zur Poincaré-Dualitit analoge Dualitat aufweisen (siehe auch [JW72]).
Darunter fallen selbstverstdndlich Gruppen, deren Eilenberg-MacLane-Raum eine ori-
entierbare Mannigfaltigkeit ist, dann aber auch z. B. endlich erzeugte torsionsfreie nil-
potente Gruppen. Unmittelbar daran anschlieBend stellten sich viele Fragen, und eine
Reihe von Verallgemeinerungen boten sich an, insbesondere wenn man sich — wie Beno
Eckmann - von der Topologie leiten lieB. Die Arbeiten [75], [77], [78], [79], [80], [82], [83]
— viele davon gemeinsam mit Robert Bieri — gingen einem Teil dieser Fragen nach.’ Ins-
besondere wurde in diesen Arbeiten der Begriff der Poincaré-Dualitit verallgemeinert,
wobei ein dualisierender Modul auftrat, mit dem man die Koeffizienten auf der Seite
der Cohomologie zu tensorieren hatte, um eine Dualitdt zu erhalten. Der dualisierende
Modul ergab sich dabei jeweils als die hoherdimensionale Endengruppe H"(G,ZG),
wobei n die (Co)Homologiedimension der Gruppe G bezeichnet.® Ein Spezialfall dieser
allgemeineren Dualitdt ergibt sich zum Beispiel dann, wenn der Eilenberg-MacLane-
Raum von G eine nicht orientierbare Mannigfaltigkeit ist. In diesem Fall besteht eine
verallgemeinerte Poincaré-Dualitit, wenn als dualisierender Modul Z verwendet wird,
also die unendlich zyklische abelsche Gruppe mit nichttrivialer G-Operation. Es erga-
ben sich viele weitere Beispiele von Gruppen mit verallgemeinerter Dualitét, wobei auch
weit kompliziertere dualisierende Moduln auftraten.

Besonders interessant ist im Zusammenhang mit der Poincaré-Dualitdt der Fall der
Dimension 2. Offensichtlich liefern hier die Flachengruppen Beispiele. Es stellt sich so-
fort die Frage, ob algebraisch gegebene Poincaré-Dualitatsgruppen stets Flachengrup-
pen sind. In einer Serie von Arbeiten hat Eckmann nach wichtigen Vorarbeiten von Ro-
bert Bieri, Ralph Strebel und Heinz Miiller (siche [BS78], [Mu81]) diese Frage zusam-
men mit Peter Linnell im positiven Sinne kldren kénnen (siehe [88], {90], [91], [92]). Den
Beweis hat Eckmann in [97], [98] zusammenfassend dargestellt.

3 Wie Beno Eckmann in den Selecta [E87], p. 824, angemerkt hat, sind Teile der Arbeiten spiter re-
dundant geworden; Kenneth S. Brown [B75] und Ralph Strebel [StR76] haben (unabhingig von-
einander) gezeigt, dass die Definition der ,,Duality group” die Eigenschaft FP impliziert. Davon
machten Eckmann und Bieri in ihren Beweisen noch keinen Gebrauch.

¢ Die Gruppe der Enden eines topologischen Raumes, die als H'(G,ZG) interpretiert werden
kann, wurde bereits um 1950 von Heinz Hopf, Hans Freudenthal und Ernst Specker untersucht.
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2.3 Eckmann-Hilton-Dualitét

Wohl im Zusammenhang mit dem Aufkommen der Kategorientheorie in den spéten
40er Jahren (siche [EMLA45]) traten in natiirlicher Weise Fragen der Dualitdt von kate-
gorietheoretischen Begriffen auf. Bei den Konstruktionen der Komplexe, und insbeson-
dere beim algebraischen Beweis fiir die Tatsache, dass im Rahmen der (Co)Homologie-
theorie der Gruppen die Homologiebildung nicht von der gewihlten freien Auflosung
abhingt (siche Hopf [Ho44]), erkannte man rasch, dass dies auch galt, wenn an Stelle
der freien G-Moduln projektive G-Moduln zugelassen wurden. So lag es damals nahe,
den kategorietheoretischen Begriff des projektiven Moduls zu dualisieren. Dies fiihrt
auf den Begriff des injektiven Moduls. Reinhold Baer, mit dem Beno Eckmann an der
University of Illinois at Urbana-Champaign bei seinem Aufenthalt 1951/52 engen ma-
thematischen und personlichen Kontakt hatte, hat wohl damals in diesem Zusammen-
hang auf seine frithere Arbeit [B40] hingewiesen. In dieser hatte Baer jeden Modul M in
einen umfassenden Modul einbetten kdnnen, welcher eine zur Eigenschaft injektiv dqui-
valente Figenschaft besitzt. Zusammen mit Andreas Schopf’ gelang es Beno Eckmann
einen neuen einfachen Beweis des Resultates von Baer zu geben, und insbesondere zu ei-
nem gegebenen Modul M einen — in einem gewissen Sinn kleinsten — injektiven Ober-
modul U(M) zu konstruieren, es ist dies die (bis auf Isomorphie eindeutig bestimmte)
injektive Hiille von M. Fiir diesen Nachweis beniitzten Eckmann und Schopf den Be-
griff der wesentlichen Erweiterung von M, indem sie zeigten, dass die injektive Hiille
U(M) gleichzeitig die maximale wesentliche Erweiterung von M ist. Die entsprechende
kurze Arbeit [34] gehort zu den am héufigsten zitierten Arbeiten in der homologischen
Algebra iiberhaupt.

Uber den damaligen Stand der ,,homologischen Algebra“, soweit dies die Gruppen-
cohomologie betrifft, gibt die Arbeit [40] Auskunft. Es ist dies der Text des Vortrages,
den Beno Eckmann am Internationalen Mathematiker-Kongress 1954 in Amsterdam
gehalten hat. Hier werden ganz allgemein die verschiedenen Cohomologietheorien be-
handelt, die sich dadurch definieren lassen, dass die Betrachtung auf verschiedene Arten
von Coketten eingeschriankt werden, seien es Coketten, die zu einer Untergruppe geho-
ren, seien es Coketten, die einer Endlichkeitsbedingung geniigen.

Der Begriff der Dualitdt, wie er sich als heuristisches Prinzip aus der Kategorien-
theorie ergab, spielte in der Folge im Werk Beno Eckmanns eine wichtige Rolle. Dabei
war insbesondere auch der topologische Begriff der Homotopie wichtig. Eine Ubertra-
gung des Begriffes der Homotopie auf die Situation von Moduln fithrte zu zwei dualen
Begriffsbildungen, ndmlich zu einer injektiven und einer projektiven Homotopie (siehe
[41]). Es lassen sich damit Homotopiegruppen fiir Moduln definieren, wie sich auch mit

7 Andreas Schopf hat seine schriftliche Diplomarbeit an der ETH bei Beno Eckmann verfasst. Fiir
sein hervorragendes Diplom und die Diplomarbeit wurde er mit dem Kern-Preis und der Silbernen
Medaille der ETH ausgezeichnet. Die Diplomarbeit bildete den Ausgangspunkt fiir die gemein-
same Arbeit [34]. Nach einer mehrjéhrigen Assistententdtigkeit an der ETH starb er im Herbst
1959 unter tragischen Umstidnden wihrend eines Amerikaaufenthaltes.
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der Homotopie im Zusammenhang stehende topologische Begriffe, wie etwa die Begrif-
fe der Suspension und des Schleifenraumes, in die Modultheorie {ibertragen lassen. Da-
raus ergeben sich dann entsprechende exakte Sequenzen. Im Grunde genommen wurde
in den erwihnten Arbeiten zur Modultheorie eine ,,homologische Algebra® entwickelt,
die anstelle der Funktoren Tor und Ext Funktoren setzt, die durch Homotopiegruppen
definiert werden. In der Folge hat sich die Theorie der Tor und Ext rasch und erfolg-
reich entwickelt — dabei spielte sicher das Buch von Cartan-Eilenberg [CE56] eine wich-
tige Rolle — , wihrend die Homotopiegruppen von Moduln fiir viele Jahre kaum in wei-
ten Kreisen bekannt wurden. Erst in neuester Zeit haben die damals in die Modultheo-
rie eingefithrten Begriffe wieder an Wichtigkeit gewonnen, ndmlich in der modernen
modularen Darstellungstheorie von endlichen Gruppen (siche [He60], [He61], [B91]
[C96]). Dabei gingen die Urspriinge leider oft fast ganz verloren, als auf die alten Arbei-
ten kaum mehr Bezug genommen wurde.

Die entsprechenden Uberlegungen zur Homotopietheorie von Moduln hat Beno
Eckmann zusammen mit Peter Hilton durchgefiihrt — sie stehen am Anfang ihrer langen
und erfolgreichen Zusammenarbeit. Interessanterweise gibt es aber zu diesem Thema
keine gemeinsamen Verdffentlichungen, sondern nur zwei Ubersichtsvortrige, der eine
von Beno Eckmann (siehe [41]), der andere von Peter Hilton (siehe [Hi58]). Diese Tatsa-
che mag mit dazu beigetragen haben, dass die Homotopietheorie von Moduln damals
wenig beachtet wurde. Zu diesem Themenkreis gibt es ferner eine gemeinsame Arbeit
von Eckmann und Kleisli [48]. Im Anschluss an die Dissertation von Heinrich Kleisli
wird hier im Falle einer Frobeniusalgebra, also z. B. fiir den Fall der Gruppenalgebra ei-
ner endlichen Gruppe, die Homotopietheorie und die Beziehung zur Gruppencohomo-
logie ndher untersucht. In diesem speziellen Fall lassen sich die aus der Homotopie ge-
wonnenen exakten Sequenzen mit Hilfe der (gewdhnlichen) Cohomologiegruppen be-
schreiben.

Wie bereits angemerkt, haben Eckmann und Hilton diese algebraische Entwick-
lungsspur nicht intensiv weiterverfolgt. Der Grund mag in der frithen Erkenntnis gele-
gen haben, dass die im Sinne der Kategorientheorie dualen Begriffsbildungen der injek-
tiven und projektiven Homotopie von Moduln eine (wohl als wichtiger erachtete) Dua-
litdt in der Topologie suggeriert. Dieser topologischen Dualitédt sind die unmittelbar
nachfolgenden gemeinsamen Arbeiten ([42]-[46], [48], [50]) von Eckmann und Hilton
gewidmet.? Der wesentliche Gedanke wird bereits in [41] angedeutet. Die Riickiiberset-
zung der algebraischen Uberlegungen in die Topologie liefert eine Dualitiit zwischen
der Homotopietheorie und der Cohomologietheorie (siche dazu weiter unten). Die ent-
sprechenden Grundlagen hat Eckmann 1962 in seinem Vortrag am Internationalen Ma-
thematiker-Kongress in Stockholm (siehe [58]) dargestellt. Dies ist die Eckmann-Hilton-
Dualitit, wie sie als Gebietsbeschreibung in der Mathematics Subject Classification der
Mathematical Reviews vorkommt. In seinem Artikel iiber das Werk von Beno Eckmann

# Uber den interessanten und fiir das Werk von Eckmann charakteristischen Wechsel des Fokus
von der Topologie zur Algebra und wieder zuriick zur Topologie, der sich in diesen gemeinsamen
Arbeiten offenbart, vergleiche man den detaillierten Uberblick in [Hi80].
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(siehe [Hi78]) gibt Peter Hilton an, dass diese sich auf die Homotopie griindende Duali-
tit das Leitmotiv fiir die vielen gemeinsamen Arbeiten war, die sich in den Folgejahren
anschlossen.

Prominent unter diesen Arbeiten ist die — von den damaligen Studierenden so ge-
nannte — , Trilogie“ zum Thema Group-like structures in general categories [52], [56],
[57], wo dieser Gesichtspunkt voll zum Tragen kommt. Der Anfangspunkt war das
wohlbekannte Resultat der algebraischen Topologie, dass die Homotopieklassen von
Abbildungen 7(X, Y) eine Gruppe bilden, wenn Y eine ,,Gruppe bis auf Homotopie*
ist.” Um eine ,,Gruppe® C in einer allgemeinen Kategorie C zu definieren, verlangen
Eckmann und Hilton in analoger Weise einen Morphismus m : C x C — C, welcher
fur jedes X in C die Menge der Morphismen C(X, C) zu einer Gruppe macht, und zwar
(im kategorietheoretischen Sinn) natiirlich in X. Das Dualitdtsprinzip ldsst sich dann
voll ausschopfen. Es suggeriert als Erstes die Definition einer Cogruppe in einer all-
gemeinen Kategorie; ferner wurde die Aufmerksamkeit nun besonders auf diejenigen
Funktoren gerichtet, welche die Gruppen- bzw. Cogruppenstruktur respektierten. Ins-
besondere von einem heuristischen Standunkt aus erwies sich dies im Allgemeinen wie
auch bei speziellen Anwendungen als sehr fruchtbar: In vielen Gebieten wurden auf die-
se Weise neue Resultate suggeriert, die anschlieBend bewiesen werden konnten.

Als ein einfaches Resultat, das sich aus den ganz grundlegenden Uberlegungen in
diesen drei Arbeiten ergibt, mag hier das folgende angefiihrt werden. Wenn X in der
Kategorie C eine Cogruppe ist und Y in C eine Gruppe, so besitzt die Morphismenmen-
ge C(X, Y) zwei Gruppenstrukturen, die eine kommt von X, die andere von Y. Gemil
[52], Theorem 4.17 stimmen diese zwei Gruppenstrukturen aus ganz allgemeinen Griin-
den iiberein. Daraus ergibt sich sofort, dass verschiedene Cogruppenstrukturen in X
bzw. verschiedene Gruppenstrukturen in Y zu ein und derselben Gruppenstruktur in
C(X,Y) fuhren und dass ferner diese Gruppenstruktur abelsch ist. Als eine konkrete
Anwendung dieses allgemeinen und ganz formalen Resultates ergibt sich, dass die Fun-
damentalgruppe einer topologischen Gruppe bzw. eines H-Raumes immer abelsch ist.
In den drei Arbeiten haben die Autoren in einer systematischen Weise sowohl einen
Uberblick iiber viele Begriffe der Kategorientheorie gegeben, wie auch auf viele konkre-
te Anwendungen dieser allgemeinen Theorie hingewiesen. Ganz offensichtlich haben
Eckmann und Hilton bereits zu diesem frithen Zeitpunkt klar die Moglichkeiten er-
kannt, welche die konsequente Verwendung der Kategorientheorie zur Vereinheitli-
chung der Mathematik leisten kann. Dieser Standpunkt ist heute allgemein geworden,
so dass heutige Mathematiker Miihe haben, sich anderes vorzustellen.

Die kategorietheoretischen Uberlegungen waren inspiriert durch die oben erwihnte
topologische Dualitét, wie sie in [53] und [59] beschrieben worden sind: Der Schleifen-
raum §2X eines punktierten topologischen Raumes X ist offensichtlich ein H-Raum, die
Suspension XX ebenso offensichtlich ein coH-Raum. Die resultierenden Gruppen

? Der letztere Begriff war von Hopf in seiner Arbeit [Ho41b] gepriigt worden. Der Vorschlag, sol-
che Rdume H-R4ume zu nennen, geht offenbar auf J. P. Serre zuriick.
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[XX, Y] und [X, QY] sind natiirlich isomorph und mittels Iteration fiihrt dies zu Grup-
pen

I,(X,Y)=[2"X, Y] = [£"'X,QY] = = [X,Q"Y],

die nach obigem fiir # > 2 abelsch sind. Da die Sphire S” als n-te Suspension der Null-
sphére S° angesehen werden kann, erhilt man

Hn[SO7 Y] = [Sn’ Y] = 7Trl(Y) )

also die n-te Homotopiegruppe von Y. Indem man ,,dual® vorgeht und den Eilenberg-
MacLane-Raum K(Z, m) als Schleifenraum ansieht, erhélt man eine Cohomologietheo-
rie

H"X,Z)=[X,K(Z,m)] .

Diese stimmt fiir CW-Komplexe mit der zelluldren (bzw. singuldren) Cohomologie
liberein. Die Riume K(Z,m), bilden das sogenannte Eilenberg-MacLane-Spektrum.
Neben diesem gibt es andere Spektren, die beim analogen Vorgehen zu allgemeineren
Cohomologietheorien fithren, die das ,,Dimensionsaxiom* nicht erfiillen. So erhilt man
zum Beispiel die K-Theorie, indem man das Bott-Spektrum verwendet; es besteht aus
der unendlichen unitiren Gruppe U fiir m ungerade und aus QU fiir m gerade.

2.4 Harmonische Ketten, £,-Gohomologie

Im Jahre 1949 publizierte Beno Eckmann den Artikel Coverings and Betti numbers [19].
Wie sich etwa 30 Jahre spiter zeigte, war diese Arbeit der Anfang einer intensiven Ent-
wicklung, die auf einer systematischen Nutzung von Hilbertraum-Strukturen in Ketten-
gruppen und Cohomologiegruppen beruht und im Rahmen der 4,-Cohomologie auf-
gegriffen wurde (siehe [115]). Eckmann betrachtet ein endliches, simpliziales und zu-
sammenhingendes Polyeder P, welches ein Uberlagerungsraum des Polyeders P, mit
simplizial operierender Decktransformationengruppe G, ist. Er beweist, dass sich die
Betti-Zahlen b,(P) von P aus der Darstellung von G in der Homologie des Uberlage-
rungskomplexes P berechnen lassen und gibt eine explizite Formel fiir diese Betti-
Zahlen.

Sein Beweis ist kurz und elegant und verwendet den Begriff von simplizialen harmo-
nischen Ketten, ein heute geldufiger Begriff im Rahmen der ¢,-Cohomologie. Fiir ein
endliches simpliziales Polyeder haben die reellen Kettengruppen eine natiirliche eukli-
dische Struktur, und es ist deshalb sinnvoll, vom zur Randabbildung & adjungierten
Operator 6 zu sprechen sowie vom sogenannten simplizialen Laplace-Operator
A = 36 + 60, einem Endomorphismus der Kettengruppen. Die Elemente im Kern von
A heiBlen harmonische Ketten. Eckmann beweist, dass die harmonischen Ketten Zykeln
sind und dass jede Homologieklasse genau einen harmonischen Repréasentanten besitzt.
Der Raum der harmonischen n-Ketten ist somit natiirlich isomorph zur #-ten Homolo-
giegruppe. Dies gilt sowohl fiir P wie auch fiir den Bahnenraum P, mit dem Unter-
schied, dass im Falle von P zusitzlich die Decktransformationengruppe G auf den Ket-
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tengruppen operiert. Eckmann beweist, dass der Raum der G-invarianten harmo-
nischen n-Ketten von P isomorph ist zur n-ten Homologiegruppe von P. Indem er den
G-invarianten Teil als Bild eines Projektionsoperators, namlich der Mittelbildung be-
ziiglich der Gruppenoperation auffasst, erhilt er hieraus eine explizite Formel fiir die
Dimension des Raumes der G-invarianten harmonischen #-Ketten, und diese Dimen-
sion ist genau die gesuchte n-te Betti-Zahl b,(P) von P.

In der allgemeineren Situation der #;-(Co)homolgie sind die Definitionen wie folgt
(siche [115]). Der Einfachheit halber skizzieren wir den Fall, wo P — P die universelle
Uberlagerung eines endlichen, zusammenhingenden simplizialen Polyeders P mit
G = m(P) bezeichnet. Die Decktransformationengruppe G operiert dann simplizial, ist
nun aber nicht mehr unbedingt endlich, aber abzihlbar, da der Bahnenraum P/G end-
lich ist. Der G-Vektorraum der reellen simplizialen n-Ketten von P besitzt auch in die-
sem allgemeineren Fall eine natiirliche euklidische Struktur. Eine orthonormale Basis
ist durch die Vektoren gegeben, welche den n-Simplexen entsprechen. Es folgt daraus,
dass die G-Operation auf dem Raum der #-Ketten isometrisch ist. Vervollstdndigt man
diese Kettenrdume beziiglich der £,-Norm, so erhdlt man einen Kettenkomplex von Hil-
bert-G-Raumen. Der adjungierte Operator § zum beschrinkten Randoperator 0 ent-
spricht dem Corandoperator, und A = 69 + 96 ist der Laplace-Operator, dessen Kern
per definitionem aus den harmonischen £-Ketten besteht. Die (reduzierte) /;-Homolo-
giegruppe H,, von P ist definiert als Raum der harmonischen #,-Ketten von P in der Di-
mension . Diese £,-Homologiegruppe H,, ist ein Hilbert-G-Modul und besitzt als sol-
cher eine von Neumann-Dimension 3,(P), die eine Homotopieinvariante von P ist. Die
B.(P) heiBlen £,-Betti-Zahlen von P und sind nicht-negative, reelle Zahlen. Sie sind hiu-
fig gleich 0, aber im Unterschied zu den gewdhnlichen Betti-Zahlen im Allgemeinen
nicht ganzzahlig. Eine fundamentale Eigenschaft der ¢,-Betti-Zahlen von P ist die Tat-
sache, dass, analog wie im Falle der gewohnlichen Betti-Zahlen, die Eulercharakteristik
x(P) durch die alternierende Summe 5" (—1)"3,(P) = x(P) gegeben ist. Beno Eckmann
verwendet dies in [103] um Folgendes zu beweisen:

Ist G amenabel und unendlich und sind die simplizialen Homologiegruppen H;(P, 1)
iir 0 < i< N =dim(P) alle gleich 0, so besteht die Ungleichung (—1)"™ ")y (P) > 0.
0<i< N =dim(P) alle gleich 0, so besteht die Ungleich 1Py (P) > 0

Ferner ist x(P) genau dann gleich 0, wenn zusitzlich die simpliziale Homologiegruppe
Hy (P, Z) verschwindet.

Mit einer Zusatziiberlegung ergibt sich daraus fiir ein Polyeder P der Form K(G, 1)
mit G unendlich und amenabel, dass x(P) = 0 ist. In [107] untersucht Beno Eckmann
die Umkehrung dieses Satzes im Falle, wo P = M eine 4-dimensionale, geschlossene
Mannigfaltigkeit mit unendlicher, amenabler Fundamentalgruppe G ist. Er zeigt, dass
die Bedingung x(M) =0 zusammen mit dem Verschwinden der Endengruppen
H'(G,ZG) fiir i = 1,2 impliziert, dass M ein K(G, 1)-Raum und mithin G eine 4-dimen-
sionale Poincaré-Dualitdtsgruppe ist.

Falls P = M eine geschlossene, nicht unbedingt orientierbare N-dimensionale Man-
nigfaltigkeit ist, so erfiillen die £,-Homologiegruppen von P als Hilbert-G-Moduln ganz
allgemein die Poincaré-Dualitit H, = Hy_,. Somit ist 8,(M) = By_,(M). Ist G un-
endlich, so gilt immer Gy(P) = 0, so dass fiir eine geschlossene Mannigfaltigkeit M der
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Dimension N mit unendlicher Fundamentalgruppe stets folgt Sy (M) = 0. Zum Beispiel
ergibt sich fiir P=F eine geschlossene, nicht unbedingt orientierbare, Fliche mit unend-
licher Fundamentalgruppe:

Bo(F) =0, Bi(F)=—x(F), B(F)=0.

Weitere Anwendungen betreffen den Defekt def(G) einer endlich prasentierbaren Grup-
pe G. Ist P eine endliche Prisentierung von G mit e Erzeugenden und r Relatoren, so ist
def(P) = e — r, und def(G) ist definiert als Maximalwert von def(P), wobei P die end-
lichen Présentierungen von G durchlauft. Es ist eine elementare Tatsache, dass die Un-
gleichung def(G) < b1(G) — b2(G) gilt, wobei b;(G) fiir die i-te Betti-Zahl des Eilen-
berg-MacLane-Raumes K (G, 1) steht. Bezeichnen wir die /,-Betti-Zahlen von K(G, 1)
mit 3;(G), so gilt nach Theorem 4.1.2 von [115]

def(G) < 1= 4(G) + £1(G) = 5(G) .

Die folgenden Beispiele illustrieren den Nutzen dieser zweiten Ungleichung. Ist G eine
endlich prisentierbare amenable Gruppe G, so folgt def(G) < 1, denn in diesem Fall ist
51(G) = 0. Andere Beispiele von Gruppen mit 5; =0 sind die Gruppen mit der
Kazhdan-Eigenschaft T, die Gruppen der Form H x K mit beiden Faktoren unendlich
und die Knotengruppen; alle diese Gruppen haben somit einen Defekt < 1. Eine
PD*-Gruppe ¢ ist nach einem im Abschnitt 2.2 erwihnten Satz von Eckmann-Linnell
[92], [98] isomorph zu einer Flichengruppe. Ein wesentlicher Schritt im Beweis dieses
Satzes besteht darin zu zeigen, dass es eine surjektive Abbildung o — Z gibt, also
bi(o) > 0ist. Dies kann man, wie Beno Eckmann bemerkt hat, mittels der £,-Betti-Zah-
len wie folgt sehen. Aus bekannten allgemeinen Sdtzen schlieBt man, dass eine
PD?-Gruppe o ein endliches CW-Modell K (o, 1) besitzt. Schreiben wir x(o) fiir die Eu-
lercharakteristik von K (o, 1}, so folgt:

x(0) =1 =bi(0) + by(0) = Bo(0) ~ Bi(0) + Ba(0) = =B (o)
und somit
b](O‘) Z 1.

Fiir die Fundamentalgruppe 7 einer Fliche vom Geschlechte g > 0 liefert die Standard-
prasentierung fiilr den Defekt im orientierbaren Fall 2¢ — 1 =1 — x(7) als untere
Schranke und im nicht-orientierbaren Fall g — 1 = 1 — x(=). Zusammen mit der oberen
Schranke 1 4 8;(m) = 1 — x () ergibt sich daraus auf Grund des Satzes von Eckmann-
Linnell, dass der Defekt einer beliebigen PD*-Gruppe o gleich 1 — x(o) ist.

Beno Eckmann hat die /;-Cohomologie in [111] auch auf weitere Situationen in ei-
nem erstaunlich umfangreichen Gebiet der algebraischen Topologie und Algebra ange-
wendet, so auf die Hausmann-Weinberger-Invariante (siehe [HW85]) von endlich pri-
sentierbaren Gruppen, auf die holomorphe Eulercharakteristik einer Kéhler-Mannig-
faltigkeit der komplexen Dimension 2 und (in [118]) auf Gitter in zusammenhéingenden
halbeinfachen Liegruppen.
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2.5 Algebraische K-Theorie

Die Hattori-Stallings-Spur ®p eines endlich erzeugten projektiven ZG-Moduls P ist
eine Z-wertige Funktion, die auf den Konjugationsklassen der Gruppe G definiert ist.
Eine Vermutung von Hyman Bass besagt, dass, wie im Falle eines freien Moduls, hochs-
tens der Wert ®p(e) verschieden von 0 sein kann; ®p(e) = «(P) nennt man die Kaplan-
sky-Spur. Nach einem Satz von Kaplansky ist (P) > 0, und x(P) = 0 gilt genau dann,
wenn P =0 ist. Damit verwandt ist die Augmentierungsspur €(P) = dimg(P ®¢ €),
wobei € als trivialer G-Modul aufzufassen ist. Sie entspricht der Summation der Werte
von ®p liber alle Konjugationsklassen. Ist die Bass-Vermutung erfiillt, so gilt offenbar
k(P) = e(P). Erfullt eine Gruppe G fiir alle endlich erzeugten projektiven ZG-Moduln
die letztere Gleichung, so sagt man G erfiille die schwache Bass-Vermutung. Die Bass-
Vermutung ist zum Beispiel fiir endliche Gruppen erfiillt, denn in diesem Fall zeigt sich,
dass ein endlich erzeugter projektiver ZG-Modul P unter der Skalarerweiterung Z — @
zu einem freien QG-Modul ) ®z P wird. Allgemeiner ist die Bass-Vermutung fiir
amenable Gruppen erfiillt, aber auch fiir freie Gruppen und allgemeiner, nach einem
Resultat von Peter Linnell, fiir alle residuell endlichen Gruppen. Eckmann hat in [99]
bewiesen, dass eine torsionfreie Gruppe G die Bass-Vermutung erfiillt, falls fiir alle Ele-
mente x € G, die rationale Cohomologiedimension von C./(x) endlich ist, wobei C,
den Zentralisator von x in G bezeichnet. Eckmanns Beweis verwendet eine bekannte Be-
rechnung der zyklischen Homologie des Gruppenrings QG. Die oben definierte Klas-
senfunktion ®p kann als Element ®p in der zyklischen Homologie von QG in der Di-
mension 0 aufgefasst werden. Wie Beno Eckmann zeigt, impliziert die Voraussetzung
{iber die cohomologische Dimension der Zentralisatorquotienten, dass ®» in dem der
Konjugationsklasse von ¢ € G entsprechenden Summanden der zyklischen Homologie
liegt und dies entspricht genau der Aussage der Bass-Vermutung.

Unter Verwendung von Resultaten von Robert Bieri und Ralph Strebel (sieche
[Bi76], [StR76]) gelingt es Beno Eckmann, die Bedingung betreffend der cohomologi-
schen Dimension der Zentralisatorquotienten im Falle der Gruppen mit Cohomologie-
dimension 2 nachzuweisen (siehe [99]) und somit die Bass-Vermutung fiir diese Klasse
von Gruppen zu beweisen.

In den Arbeiten {110], [116] untersucht Eckmann endlich erzeugte projektive Mo-
duln M tiber M (G), der komplexen von Neumann-Algebra von G, eine Banach-Algeb-
ra, welche die komplexe Gruppenalgebra €CG umfasst. Ein endlich erzeugter projektiver
N(G)-Modul M besitzt eine von Neumann-Dimension dim(M) € IR. Dabei gilt
dim(M) = 0 genau fiir M = 0. Die von Neumann-Dimension ist wie folgt mit der Ka-
plansky-Spur eines endlich erzeugten projektiven ZG-Moduls P verkniipft: Es gilt x(P)
= dim{N(G) ®g¢ P). Eckmann zeigt, dass fiir einen endlich erzeugten projektiven
ZG-Modul P, der projektive N'(G)-Modul N (G) ®z P frei und damit isomorph zu
N(G)® ist. Erfiillt G die schwache Bass-Vermutung, so ist ferner £(P) = ¢(P), und
mithin NV(G) ®zg P = N(G)"". Dies verwendet Eckmann, um zu zeigen, dass fir
einen endlich dominierten zusammenhéngenden CW-Komplex X die ¢;-Eulercharakte-
ristik von X mit der liblichen Eulercharakteristik ibereinstimmt, falls die Fundamental-
gruppe von X die schwache Bass-Vermutung erfiillt.
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2.6 Charakteristische Klassen von Darstellungen von Gruppen

In den Arbeiten [84], [86], [89], [96] studiert Beno Eckmann (in Zusammenarbeit mit G.
Mislin) charakteristische Klassen von Gruppen-Darstellungen. Im Falle einer reellen
n-dimensionalen Darstellung p mit darstellenden Matrizen von positiver Determinante,
ist die Eulerklasse e,(p) € H"(G,Z) definiert als Eulerklasse des durch p induzierten fla-
chen, orientierten IR"-Biindels iiber dem klassifizierenden Raum von G.

Die Arbeit [84] bezieht sich auf die Situation einer Q-Darstellung einer endlichen
Gruppe G. Fiir die Eulerklasse e,(p) einer solchen Darstellung wird bewiesen, dass ihre
Ordnung durch eine von der endlichen Gruppe G und der spezifischen n-dimensionalen
Darstellung unabhéngigen, optimalen Schranke E, beschrinkt ist, die in liberraschen-
der Weise mit den Bernoulli-Zahlen zusammenhéngt (siehe [84], Theorem 3.2).

Analog sind die Chernklassen c¢;(p) € H* (G, Z) einer komplexen n-dimensionalen
Darstellung p als Chernklassen des durch p induzierten flachen €"-Biindels iiber BG de-
finiert. Es zeigt sich, dass die gleiche optimale Schranke E; fiir die Ordnung von ¢;(p)
auftritt, falls die Darstellung p reell ist und rationale Charakterwerte besitzt (siche [84],
Theorem 4.2). Beispiele zeigen, dass dies fiir nichtreelle Darstellungen im Allgemeinen
nicht richtig bleibt, und zwar auch dann nicht, wenn die Darstellung rationale Charak-
terwerte besitzt.

In der Arbeit [86] werden Darstellungen iiber beliebigen Zahlkdrpern betrachtet. Es
werden universelle Schranken fiir die Eulerklasse von reellen Darstellungen endlicher
Gruppen in Abhéngigkeit vom reellen Zahlkorper, iiber dem sie definiert sind, angege-
ben; entsprechende Schranken gelten fiir die Chernklassen (siehe [89]).

Es ist leicht zu sehen, dass es keine universelle Schranke fir die Ordnung der Chern-
klassen ¢;(p) fiir komplexe Darstellungen von beliebigen, nicht unbedingt endlichen
Gruppen geben kann; insbesondere sind fiir N > j die universellen Chernklassen
¢;/(€) € H¥(GLS,(C),Z) = HY(GL? (), Z) der identischen Darstellung der diskreten
Gruppe GL% (€) von unendlicher Ordung. In [93] wird das Verhalten dieser Chernklas-
sen ¢;(C) unter Koérperautomorphismen von € studiert. In diesem Zusammenhang ist
es zweckmaBig, die sogenannten profiniten Chernklassen zu betrachten. Ist K ein Zahl-
kérper, so ldsst sich die Wirkung der Galois-Automorphismen der Kdrpererweiterung
K C € auf diesen Chernklassen explizit bestimmen. Daraus lassen sich universelle
Schranken fiir die Chernklassen von Darstellungen iiber dem Zahlkorper K fur beliebi-
ge, auch unendliche Gruppen herleiten.

Dank. Die Autoren danken Frau Doris Eckmann herzlich fiir viele miindliche Informa-
tionen sowie fiir die freundliche Erlaubnis, Einsicht in persdnliche Unterlagen zu neh-
men, die Beno Eckmann betreffen. - Ein weiterer Dank geht an den Springer-Verlag fiir
die freundliche Erlaubnis, den Namenszug von Beno Eckmann, die Liste der betreuten
Dissertationen und die Liste der Publikationen aus den Selecta [E87] verwenden zu diir-
fen sowie fiir die Unterstiitzung hinsichtlich der Rechte am Bild von Beno Eckmann,
das in den ,,Mathematical Survey Lectures” [E07] abgedruckt wurde.
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[73] On the homology theory of central group extensions: I — The commutator map and stem ex-
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case (with P. J. Hilton and U. Stammbach), Comment. Math. Helv. 47 (1972), p. 171-178

[75] Groupes a dualité homologique (with R. Bieri), C. R. Acad. Sci. Paris 275 (1972), p. 899-901

[76] On the Schur multiplicator of a central quotient of a direct product of groups (with P. J. Hil-
ton and U. Stammbach), J. Pure Appl. Algebra 3 (1973), p. 73-82

[77] Propriétés de finitude des groupes & dualité (with R. Bieri), C. R. Acad. Sci. Paris 276 (1973),
p- 831-833

[78] Groups with homological duality generalizing Poincaré duality (with R. Bieri), Invent. Math.
20 (1973),p. 103124

[79] Finiteness properties of duality groups (with R. Bieri), Comment. Math. Helv. 49 (1974),
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10 Eingereicht an der Universitit Miinster mit Heinrich Behnke als Referent.
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1 Einfiihrung: Was ist ein Transregio?

Die Deutsche Forschungsgemeinschaft (DFG) gibt es in ihrer heutigen Form seit der
Fusion des ,,Deutschen Forschungsrats“ mit der ,,Notgemeinschaft der deutschen Wis-
senschaft” im August 1951. Die DFG hat neben der Einzelférderung bereits eine lange
Tradition im Bereich der koordinierten Forschungsférderung. Zum Beispiel feierte das
Forderinstrument ,,Sonderforschungsbereiche® im Jahr 2008 sein 40-jihriges Bestehen
[2]. Sonderforschungsbereiche waren zunichst ausschlieBlich an einem Standort ange-
siedelt. In der Mathematik war die dazu erforderliche Konstellation von miteinander
kooperierenden Wissenschaftlern nur an wenigen Instituten gegeben. Meines Wissens
gab es in dieser Zeit etwa 14 Sonderforschungsbereiche, in denen die Mathematik eine
tragende Rolle hatte. Davon hatte die Hélfte einen Schwerpunkt in der theoretischen
Mathematik. Die ersten beiden mathematischen Sonderforschungsbereiche wurden in
Bonn gegriindet: Der SFB 40 (1969-1985) ,,Theoretische Mathematik®, aus dem in ge-
wisser Weise das Max-Planck-Institut hervorgegangen ist, und der SFB 72 (1971-1986)
in der angewandten Mathematik. Innerhalb des Programms Sonderforschungsbereiche
wurde in den 90er Jahren deutlich, dass auch standortiibergreifende Zusammenarbeit
innerhalb von Deutschland immer mehr nachgefragt wurde. Man entschloss sich 1999
dazu, das Programm SFB/Transregio fiir zehn Jahre befristet parallel anzubieten. In
der Mathematik gibt es inzwischen auch mehrere Transregios. Im Jahr 2008 erfolgte ei-
ne externe Evaluation dieser Pilotphase, die seit einigen Monaten vorliegt [1]. Aus dieser
Quelle mochte ich einige Sitze zitieren, die die Intention des Programms Transregio aus
erster Hand wiedergeben:

.»Die Deutsche Forschungsgemeinschaft fordert seit dem Jahr 1999 unter der Bezeich-
nung SFBITransregio Sonderforschungsbereiche, an denen sich mehrere Hochschulen als
Standorte beteiligen kénnen. Dafiir miissen die wissenschaftlichen und strukturellen Vo-
raussetzungen, die fiir die Einrichtung eines Sonderforschungsbereichs gefordert werden,
an allen antragstellenden Hochschulen gegeben sein. Zusdtzlich miissen die Beitrdge der
beteiligten Partner fiir das Forschungsziel essenziell, komplementiir und synergetisch sein.
Es gilt das Prinzip der freien Partnerwahl, das heifit, es wird erwartet, dass in einem SFB/
Transregio jeweils die besten Gruppen in Deutschland zusammenarbeiten.

Im Oktober 2009 wurde beschlossen, das Forderprogramm SFB/Transregio dauer-
haft zu etablieren. Die maximale Anzahl der beteiligten Standorte (Stidte) in einem
Transregio ist prinzipiell auf drei begrenzt. Seit einigen Jahren hat die DFG auch ange-
regt, in die Sonderforschungsbereiche und Transregios Doktorandenschulen zu inte-
grieren [3].

2 Kurzvorstellung des Transregio 45

Der SFB/Transregio 45 wurde im Juli 2007 von der DFG eingerichtet. Im Januar 2008
fand eine feierliche Er6ffnungsveranstaltung statt, bei der Friedrich Hirzebruch und
Shing-Tung Yau Vortrage hielten zu den Themen ,,Examples of Hilbert polynomials in
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simultan erfiillen. Ein bekanntes Beispiel dafiir sind die Fermathyperflichen, die durch
eine homogene Gleichung

xg+x‘{+--~+xf:0

als Teilmenge des projektiven Raumes IP” gegeben sind. Fiir 4 = 3 und # = 2 ergibt sich
dabei eine ebene elliptische Kurve. Die Koeffizienten der Fermathyperfliche sind alle 1,
daher ist diese Varietdt tiber jedem Korper oder Ring definierbar. Dies gilt auch fiir die
Clebsch-Kubik (siehe Abbildung 1)

x8+x‘?+xg+x§+xi =X+ x|+ X3+ x3+ x4 =0,

die das offizielle Logo des Transregio 45 darstellt.

Abbildung 1. Clebsch-Diagonalkubik (Bild: Oliver Labs)

Auf dieser Figur kann man eine Konfiguration von 27 (farbigen) Geraden und ihre dop-
pelten und dreifachen Schnittpunkte sehen. Wahlt man als Koeffizientenring die ganzen
Zahlen Z, so wird solch ein polynomiales Gleichungssystem diophantisch genannt. Der
Name geht auf Diophant zuriick, der bereits in der Antike ganzzahlige Lésungen poly-
nomialer Gleichungen untersucht hat. Die beriihmte Fermatsche Vermutung, die von
Andrew Wiles geldst wurde, lidsst sich — wie viele andere Probleme der Zahlentheorie —
als diophantische Gleichung

a’ + b= !
in drei Variablen g, b, ¢ interpretieren. Eine Umformulierung durch Gerhard Frey fiihr-
te zu ebenen elliptischen (Frey-)Kurven

y? = x(x — a®)(x + b).

Die Losung des Problems durch Wiles bestand darin, die Modularitit jeder (semi-stabi-
len) elliptischen Kurve iiber @ zu zeigen, was der Existenz einer nicht-trivialen Losung
wegen eines Resultats von Ribet widersprach.

Aufgrund solcher Zusammenhinge wird klar, dass Geometrie und Arithmetik eng
verwoben sind. Neuere innermathematische Entwicklungen in den letzten Jahren und
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auch externe Anwendungen in der Kryptographie oder in der mathematischen Physik
haben beide Gebiete noch weiter zusammenwachsen lassen. Ein wichtiges Ziel des
Transregios ist es, Nachwuchswissenschaftlern von Anfang an arithmetische und geo-
metrische Sichtweisen und deren Zusammenspiel zu vermitteln.

In der algebraischen Geometrie sind nicht nur Varietiten der Hauptgegenstand des
Interesses. Auch Objekte wie Vektorbiindel oder allgemeiner kohdrente Garben auf X
werden ausgiebig untersucht. Ein wichtiges Beispiel dafiir ist das Tangentialbiindel Ty
zu einer glatten algebraischen Varietit X, welches die Menge aller Tangentialvektoren
an alle Punkte von X zusammenfasst. Die abelsche Kategorie Coh(X) der kohirenten
Garben und ihre derivierte Kategorie D?(X) sind primire Studienobjekte im Trans-
regio.

Die Gleichungen interessanter Varietiaten enthalten typischerweise noch weitere Pa-
rameter in den Koeffizienten. Ein berithmtes Beispiel ist die Legendrefamilie ebener el-
liptischer Kurven, die durch die Familie von Gleichungen

Fi(x0,x1,X2) = x3%0 — x1(x1 — %0)(x1 — txp) = 0

gegeben ist. Der Parameter ¢ ist dabei frei wéihlbar als Element der projektiven Geraden
IP!(€) = C U co. Bei den Werten ¢ =0, 1,00 passiert der Kurve E, = {F;(xo, x1,X2)
= 0} jedoch etwas ,,Schlimmes*, d. h. sie bekommt eine Singularitdt. Ein solcher Para-
meterraum wird auch Modulraum genannt, wenn er, wie hier der P!, alle durch das ge-
stellte Modulproblem definierten Objekte bis auf Isomorphie gleichzeitig parametri-
siert. Der Parameter ¢ in einem solchen Modulraum héngt eng mit den Perioden zusam-
men: Betrachten wir wieder die Legendrefamilie. Die Differentialform

dx
y
ist holomorph auf den glatten elliptischen Kurven E, der Familie und die Perioden
w0 = [,
v Y

wobei -y ein geschlossener Weg ist, hingen von ¢ ab. Man kann zeigen, dass ®(¢) eine hy-
pergeometrische Differentialgleichung

d*® e 1
(1 —t)ﬁ-k (1-21) 7 4<I> =0
erfiillt und somit eine hypergeometrische Funktion darstellt. Solche Periodenfunktio-
nen existieren in viel allgemeineren Situationen und sind im allgemeinen kein treues Ab-
bild der Modulparameter, d. h. ¢ lisst sich nicht zuriickgewinnen. In vielen Féllen ge-
lingt dies aber doch und es lisst sich manchmal aus den Perioden sogar eine Uniformi-
sierung des Modulraums konstruieren. So ist zum Beispiel im Fall der Legendrefamilie
der Parameterraum X = IP!'\ {0,1,00} vermoge der Perioden ein Quotient X =
T'(2)\IH der oberen Halbebene IH = SL,(IR)/SO(2) nach einer expliziten Kongruenz-
untergruppe I'(2) der SL»(Z). Man nennt X auch Modulkurve oder Shimurakurve. Hau-
fig, aber nicht immer, gelingt die Uniformisierung bei Modulriumen von kompakten
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algebraic geometry and combinatorics® sowie ,,Nonlinear methods in complex and al-
gebraic geometry“.

Die Standorte des Transregios sind Bonn (inkl. MPI), Duisburg-Essen (Campus Es-
sen) sowie Mainz als Sprecherhochschule. Mit Bedacht wurde der detaillierte Titel ,,Pe-
rioden, Modulrdume und Arithmetik algebraischer Varietiten® gewdhlt. Die wesentli-
chen Forschungsgebiete im Grenzbereich zwischen Algebraischer Geometrie und Arith-
metik sind dadurch klar umrissen. Durch die explizite Definition des gemeinsamen
Arbeitsgebietes und die bereits vorhandenen Kooperationen von Wissenschaftlern zwi-
schen den beteiligten Standorten konnte eine dichte Vernetzung sichergestellt werden,
so dass die Voraussetzungen fiir einen SFB/Transregio im Sinne der oben gegebenen
Definition geschaffen waren. Einige andere Themen, die nicht direkt im Titel zum Aus-
druck kommen, wie zum Beispiel Calabi-Yau-Réume, Galoisdarstellungen, Picard-
Fuchs-Gleichungen, Shimuravarietiten, Kohomologietheorien und Motive bilden
Querverbindungen, die weit iiber die einzelnen Teilprojekte hinausgehen und damit
auch zum Zusammenbhalt beitragen.

Genauere Informationen, insbesondere iiber die beteiligten Wissenschaftler, die
Teilprojekte, die Preprints und iiber aktuelle Veranstaltungen finden sich auf den Web-
seiten unter http://www.sfb4b.de. Als vielleicht interessanteste Information mdéchte
ich hier aber auf der folgenden Seite die Liste der 32 geférderten Teilprojekte angeben.

3 Eine Reise durch die Mathematik des Transregio

In diesem Abschnitt mochte ich die Mathematik, die im Transregio untersucht wird,
vorstellen. Dazu gebe ich zunéchst eine elementare Einfithrung in die Grundbegriffe des
Forschungsgebiets. Darauf aufbauend werde ich anschlieBend einige exemplarische
Forschungsprojekte und neuere Ergebnisse erkidren.

Valentina Damerowa von der DFG, den Herausgebern sowie den Kolleg(inn)en
Blickle, Bockle, Esnault, Gortz, Gonska, Huybrechts, Labs, Lehn, Méller, Rapoport,
Schroer, van Straten, Viehweg und Zuo danke ich fiir ihre Unterstiitzung.

3.1 Eine elementare Einfilhrung in das Forschungsgebiet
Eine algebraische Varietdit X ist ein Gebilde, das zumindest lokal durch Nullsetzen poly-

nomialer Gleichungen

Fl(X(),...,x,,) =0

Fan(x0,...,%x,) =0

entsteht, wobei die Koeffizienten der Polynome aus einem Kérper K oder allgemeiner
einem Ring R stammen. Punkte auf X, in einem naiven Sinne, sind Tupel p =
(po, - .. ,pn) im affinen Raum A"™*! oder im projektiven Raum IP", die die Gleichungen
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Liste der 32 geforderten Teilprojekte
Periods of the nilpotent completion of the fundamental group

Tannaka group schemes of certain categories of bundles

Higgs bundles and Higgs cohomology on quasi-projective manifolds

Feynman integrals and motives

Some aspects of limiting mixed Hodge structures

Motivic cycles and regulators

Modular Galois representations and Galois theoretic lifts

Universal deformations, the rigidity method and Galois representations

Arithmetic of Katz modular forms

The cohomology of A-crystals, moduli spaces in positive characteristic and p-adic
¢tale cohomology on schemes over Z,

p-adic cohomology

Congruences for the number of rational points over finite fields

p-adic point counting on Calabi-Yau threefolds

Non-archimedean period domains

Period domains of hyperkahler manifolds

Picard-Fuchs equations, monodromy, and the Mumford-Tate group of special fami-
lies of Calabi-Yau manifolds

Picard-Fuchs equations of Calabi-Yau type

Periods and period domains for abelian varieties

Local models of Shimura varieties

Affine Deligne-Lusztig varieties

SL,(IR)-action on translation surfaces and Teichmiiller curves

Arithmetic cycles on Shimura varieties

Special subvarieties of Shimura varieties

Algebraic Calabi-Yau categories

Derived categories of Calabi-Yau manifolds

Non-liftable Calabi-Yau manifolds in positive characteristics

Lagrangian fibrations on symplectic manifolds

Rozansky-Witten invariants

Symplectic singularities

Vector bundles

Moduli with GIT
Construction of moduli spaces: compactifications and ample sheaves
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Mannigfaltigkeiten, bei denen das kanonische Biindel, d. h., die Determinante des Tan-
gentialbiindels trivial ist. Beispiele dafiir sind elliptische Kurven oder allgemeiner abel-
sche Varietiten, sowie die Calabi-Yau- und Hyperkihler-Mannigfaltigkeiten. Beispiele
fiir die beiden zuletzt genannten Arten von Mannigfaltigkeiten sind die K3-Flichen,
zum Beispiel die Fermatquartik

{x4 4+ x} + x5 + x4 = 0} C PXC).

Sehr schone Parameterrdume mit uniformisierenden Perioden und arithmetischer Rele-
vanz sind die Shimuravarietiten, die Modulkurven verallgemeinern und eine zentrale
Rolle im Transregio spielen. Deren Komponenten sind lokal-symmetrische Rdume
X =T\D, wobei D = G(R)K ein Hermitesch symmetrischer Bereich ist und I' C G(Q)
eine arithmetische Untergruppe, die auf D operiert. Ein prominentes Beispiel ist die
Clebsch-Kubik, die ein birationales Modell einer Hilbertschen Modulfliche T\IH x IH
ist. Modulriume von g-dimensionalen abelschen Varietiten sind Shimuravarietiten fiir
die symplektische Gruppe G(IR) = Sp(2g,IR). Dagegen sind Modulrdume von Calabi-
Yau-Varietiten selten Shimuravarietiten.

In dieser Einfilhrung habe ich oft an die geometrische Anschauung appelliert. Im
Transregio werden auch analoge Situationen betrachtet, die in der Welt der endlichen
Korper IE n oder der p-adischen Zahlen @, vorkommen. So verwenden wir zum Beispiel
auch rigid-analytische Rédume und p-adische Periodengebiete. Dazu ist es notig, viele Be-
griffe der komplexen algebraischen Geometrie einschlieBlich der Hodgetheorie auf diese
Felder hin zu erweitern.

3.2 Das mathematische Spektrum

Im folgenden Abschnitt wird genauer auf einige exemplarische Teilprojekte und neuere
Ergebnisse eingegangen, die von am Transregio beteiligten Wissenschaftlern bearbeitet
wurden. Die Auswahl ist sicherlich nicht vollstindig reprasentativ. Ab jetzt werde ich
etwas mehr mathematisches Vorwissen beim Leser voraussetzen. Weiterfithrende Lite-
ratur ist in den angegebenen Referenzen zu finden.

Ldsung der Gieseker-Vermutung

In diesem Abschnitt geht es um algebraische Vektorbiindel und Zusammenhinge. Unter
einem (algebraischen) Zusammenhang auf einem Vektorbiindel V auf einer komplexen
algebraischen Mannigfaltigkeit X verstehen wir eine €-lineare Abbildung

ViV = QL(V),

die die Leibnizregel V(fs) = fV(s) + df ® s erfiillt, wobei 2}, die algebraischen 1-For-
men sind. Wenn die Kriimmung des Zusammenhangs — eine 2-Form mit Werten in den
Endomorphismen des Biindels — verschwindet, so nennt man (V', V) flach. Flache Vek-
torbiindel auf X, bei denen wir regulire Singularititen im Unendlichen voraussetzen,
falls X nicht eigentlich ist, lassen sich mit Hilfe der Riemann-Hilbert-Korrespondenz mit
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komplexen linearen Darstellungen der topologischen Fundamentalgruppe (X, *)
von X identifizieren. Ist insbesondere 7,"”(X, *) trivial, so sind flache Biindel trivial.
Aber es gilt viel mehr: Nach einem Satz von Malcev und Grothendieck sind komplexe
lineare Darstellungen von m;”P(X, =) trivial, wenn bereits die pro-endliche Komplettie-
rung 71 (X, *) trivial ist. Andererseits, als Konsequenz des Riemannschen Existenzsat-
zes, konnen wir 7T§°P(X ,*) mit Grothendiecks étaler Fundamentalgruppe n$*(X, «) iden-
tifizieren. Also gilt: Ist 7$'(X, *) trivial, so sind flache Biindel trivial. Obwohl beide Sei-
ten des Satzes algebraischer Natur sind, verwendet der Beweis die komplexe Topologie.

Wie sieht nun die Situation aus, wenn wir uns nicht auf einer komplexen Mannigfal-
tigkeit, sondern auf einer glatten, algebraischen Varietat iiber einem perfekten Korper
der Charakteristik p befinden? In diesem Fall benutzt man stattdessen den Pullback F*
unter der Frobeniusabbildung, die Funktionen zur p-ten Potenz erhebt. Die zugrundelie-
genden Objekte sind dann stratifizierte Biindel E = (E,, 0,),c - Dabei ist E, ein Vektor-
biindel auf X und

Oy ! F*EnJrl_i*En

ein Oyx-linearer Isomorphismus. Diese Objekte bilden eine volle Unterkategorie
Strat(X) der kohdrenten Dy-Moduln auf X und stimmen nach einem Theorem von
Katz mit der Unterkategorie der Oy-kohdrenten Objekte Giberein. Im Fall der komple-
xen Biindel gilt ein analoges Resultat, d. h. die flachen Biindel sind genau diejenigen ko-
hirenten Dy-Moduln, die auch Oy-kohirent sind. Wenn man dies fiir den Moment
mal glaubt, so stellt sich sofort die Frage: Was passiert, wenn die Fundamentalgruppe
von X trivial ist? Hier haben wir nur 7 (X, %) zur Verfiigung. David Gieseker hat 1975
vermutet, dass auch in diesem Fall, d. h. bei trivialer étaler Fundamentalgruppe, alle
stratifizierten Biindel trivial sind. In 2009 wurde die Vermutung von Esnault und Mehta
gezeigt:

Theorem 3.1 ([8]) Sei X eine glatte, geometrisch zusammenhdngende projektive Va-

rietdt, die iiber einem perfekten Korper k der Charakteristik p > 0 definiert ist. Wenn
(X ®x k,x) = 1 gilt, dann existieren keine nicht-trivialen stratifizierten Biindel.

Feynmangraphen und Motive

Sei ein einfacher, zusammenhédngender Graph I' gegeben, ohne Orientierung der Kan-
ten oder andere Dekoration. Wir nennen die Kantenmenge E und betrachten fiir jede
Kante e eine Variable x,. Damit kénnen wir ein Graphpolynom (Kirchhoff-Polynom)

‘I’FZZT:er

im Polynomring Z[x;, x3, .. .| definieren. In der Definition durchlduft T alle aufspan-
nenden Biaume von I'. Dieses Polynom ist homogen und linear in jeder Variablen. Zum
Beispiel hat der Graph I', der zum einem regelmiBigen n-Eck gehort, das lineare Graph-
polynom

Ur =x;+x2+ -+ Xp,
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da alle Spannbdume dadurch entstehen, dass man genau eine Kante entfernt. Der Grad
von VUr wird durch die erste Bettizahl ;(T") gegeben.

Die Feynmanregeln aus der physikalischen Stérungstheorie liefern eine komplexe
Periode P(T") im Sinne von Kontsevich und Zagier zu jedem Graphen T, die sich durch
ein Integral aus dem Graphpolynom berechnen lésst.

Die Graphhyperflichen Xr werden als Nullstellengebilde von ¥r im projektiven
Raum IP*)~! definiert. Sie sind meist hochgradig singulir, aber sie bilden andererseits
interessante Motive. Nach einem Resultat von Belkale und Brosnan sind sie sogar all-
gemein innerhalb der Motive im Sinne ihrer Zdhlfunktionen g — |Xr(IF,)|. Es ist noch
nicht ganz geklirt, wann die Periode P(I') ein multipler Zetawert ist, dies ist jedoch bei
allen ,,kleinen“ Graphen der Fall.

In [6]) haben Bloch, Esnault und Kreimer die Periode des ,,Rades mit n Speichen* un-
tersucht (siche Abbildung 2). Es war bekannt, dass dabei bis auf einen universellen Fak-
tor ein ungerader Zetawert herauskommt, aber die Ubersetzung in die Sprache der Mo-
tive und der algebraischen Geometrie gelang erst in [6]. Andere Graphen wurden von
Dzmitry Doryn in seiner Dissertation untersucht. In jlingster Zeit haben Bloch und
Kreimer diesen Ansatz weiter verfolgt und die Renormierung in der Storungstheorie der
Physik in Verbindung mit gemischten Hodgestrukturen im Limes in Verbindung ge-
bracht. Mir scheint die Verbindung zwischen Physik und der Theorie der Motive beson-
ders spannend zu sein, zumal die Periodenintegrale bei zuséitzlich variierenden Impulsen
und Massen interessante transzendente Funktionen darstellen. Eine enge Zusammen-
arbeit mit einigen Physikern beginnt sich zu entwickeln.

\ﬁ.—’

Abbildung 2. Rad mit n Speichen

Endliche Ktirper, Cartier-Moduln und Singularitéten

Der Frobeniushomomorphismus spielt eine fundamentale Rolle beim Studium von Va-
rietiten iiber endlichen Kodrpern. Einige Projekte beschiftigen sich damit, Analoga zu
topologischen und hodgetheoretischen Methoden auch in diesem Gebiet mit Hilfe der
zusdtzlichen Struktur, die der Frobenius liefert, zu etablieren (siche auch den Abschnitt
iiber die Gieseker-Vermutung). Eine solche Analogie ist beispielsweise der Begriff des
Kristalls, der im vorliegenden Funktionenkorperfall die lokalen Systeme, oder etwas all-
gemeiner die perversen Garben nachbildet.
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In einer neueren Arbeit [4] betrachten Blickle und Bockle sogenannte Cartier-Mo-
duln. Dazu sei X eine IF,-Varietdt und M ein kohdrenter Ox-Modul. M ist ein Cartier-
Modul, falls es eine Operation von Frobenius von rechts auf M gibt. Beachte, dass die
Hhormale” Operation, zum Beispiel auf Oy, von links erfolgt, denn es gilt offenbar
F(rs) = riF(s). Allerdings erfolgt die von Cartier eingefithrte wichtige Operation auf
der dualisierenden Garbe wy von rechts, auch Cartier-Operator genannt. Links- und
Rechtsoperation werden durch die Serre-Dualitit ineinander iibergefithrt. Die Autoren
zeigen eine Endlichkeitsaussage iiber solche Cartier-Operatoren:

Theorem 3.2 ([4]) Sei X ein lokal Noethersches Schema iiber IF,, so dass F eine end-
liche Abbildung ist. Dann hat jeder Cartier- Modul M bis auf Nilpotenz endliche Linge.

Dieses Resultat impliziert und erweitert eine Reihe von Endlichkeitsaussagen ande-
rer Autoren, welche einem Einblicke in die Struktur der lokalen Kohomologie singularer
Varietiten und den daraus erwachsenden Invarianten liefern.

Higgshiindel und Elgenschaften von Shimuravarietdten

Higgsbiindel werden in vielen Projekten des Transregio untersucht, sowohl im komple-
xen wie im p-adischen Fall. Ein holomorphes Higgsbiindel (£, ) auf ciner komplexen,
algebraischen Mannigfaltigkeit X ist ein Paar (E,¥) bestehend aus einem Vektorbiindel
E zusammen mit einem Homomorphismus

9:E— E®QY,

der die Regel 9 A ¥ = 0 erfiillt.

Higgsbiindel entstehen auf natiirliche Weise auf Modulrdumen X: Gegeben eine
glatte, eigentliche Familie f : 4 — X von projektiven Mannigfaltigkeiten iiber X, so
tragen die lokal-konstanten Bildgarben R/, oder allgemeiner dirckte Summanden
V C R¥f,C eine zusitzliche Struktur, die man als Variation von Hodge-Strukturen
(VHS) bezeichnet. Insbesondere gibt es auf dem Vektorbiindel ¥ = V¥V ®¢ Oy eine Fil-
trierung ¥ = F® > F' 5 ... durch Vektorbiindel, so dass der kanonische flache Gaup-
Manin-Zusammenhang V auf dem graduierten Objekt

k
E= @Ep,kw’ EPk=p — pp/pr+l
p=0
die Oy-linearen Endomorphismen
opkp pphor o gLkl g Qb
induziert und damit ein Higgsbiindel ( £, 1) mit 1 als Summe dieser Abbildungen. Unter
gewissen Regularititsvoraussetzungen vom Fuchsschen Typ, die bei geometrischen Fa-

milien immer erfiillt sind, 1asst sich dieser Endomorphismus nach Deligne sogar zu ei-
nem logarithmischen Higgsbiindel

9: E — E®Q}(log D)

im Wesentlichen kanonisch fortsetzen. Hierbei ist ¥ = X U D eine algebraische Kom-

60 JB 112, Band (2010), Heft 1



| Stefan Miiller-Stach: Der SFB/Transregio 45 |

paktifizierung von X, D ein Divisor mit normalen Uberkreuzungen und Q} (log D) das
Vektorbiindel der meromorphen Differentialformen mit hdchstens logarithmischen Po-
len entlang D. Innerhalb des Transregio werden die (logarithmischen) Higgsbiindel
mehrfach eingesetzt:

(i) Ahnlich wie bei der DeRham-Kohomologie existiert auch eine Higgs-Version der
L?*-Kohomologie, die von Jost, Yang und Zuo entwickelt wurde. Eine relativ elementare
Definition im Fall einer Kurve X findet man in [5]. Diese Methode wird dort benutzt,
um interessante Hodgezykel auf Familien von Calabi-Yau-Varietiten zu finden. Mit
der gleichen Technik kann man die Kohomologie von automorphen Vektorbiindeln auf
nicht-kompakten Shimuravarietiten effektiv berechnen.

(ii) Higgsbiindel kann man auch in der p-adischen Theorie definieren und man hat
dort eine Simpson-Korrespondenz zwischen ihnen und verallgemeinerten Galoisdarstel-
lungen [9]. Man erhofft sich eine Verfeinerung zu einer Korrespondenz zwischen einer
expliziten Unterkategorie p-adischer Higgsbiindel zu den echten Galoisdarstellungen.

(iii) Fiir Variationen von Hodgestrukturen liefert die Simpson-Korrespondenz nu-
merische Ungleichungen fiir den Slope der Hodgebiindel. So kann man zeigen, dass auf
einer Kurve immer eine Arakelov-Ungleichung gilt:

deg(EX0)  deg(E%*
Fir Familien abelscher Varietiten wihlt man k& =1, und die Gleichheit p(V) =
deg(§2} (log D)) fiir alle nicht-unitéren V impliziert, dass X C A, eine Shimurakurve ist,
oder zumindest in eine solche deformiert werden kann.

Ahnliches bleibt richtig fiir Familien von Calabi-Yau-Mannigfaltigkeiten iiber Kur-
ven, und fiir Familien von abelschen Varietaten iiber hoherdimensionalen Mannigfal-
tigkeiten. Im zweiten Fall braucht man jedoch neben Gleichheit in der Arakelov-Un-
gleichung weitere numerische Bedingungen (siehe [18]), um Shimuravarietiten X C A,
zu charakterisieren oder, etwas allgemeiner, geodiitische Untervarietiten fiir die Hodge-
Metrik auf A,.

Auch eindimensionale Geoditen fiir die Kobayashi- Metrik auf A; kann man nume-
risch charakterisieren:

Theorem 3.3 ([19]) Eine Kurve Yy C A, ist eine Kobayashi-Geodite genau dann,
wenn die kanonische VHS W auf Y, ein irreduzibles, nicht-unitires Untersystem ¥ ent-
halt, das Arakelov-Gleichheit erfiillt.

Insbesondere sind solche Kobayashi-Geoditen iiber ® definiert, cine Aussage, die
von Martin Méller schon im Spezialfall der Teichmiillerkurven bewiesen wurde.

(iv) Die numerischen Charakterisierungen von Shimurakurven in iii) legen es nahe,
eine geometrische Form der André-Qort-Vermutung zu betrachten. Sie wiirde implizie-
ren, dass eine Untervarietit Z C A,, die selbst eine unendliche, Zariski-dichte Menge
von Shimurakurven enthilt, eine Shimuravarietit sein muss. Dies ist fiir g = 2 einfach
nachzuweisen, filr g > 3 offen. In [18] wird diese Frage unter einigen technischen Vo-
raussetzungen, die ich verschweige, fiir eine andere Klasse von Shimuravarietiten be-
handelt. Es zeigt sich, dass ,,geniigend viele“ Divisoren ausreichend sind:
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Theorem 3.4 ([18)) Sei M eine orthogonale Shimuravarietit zur Gruppe
G=380(2,n) und Z C M eine beliebige irreduzible Untervarietdt der Dimension
2 < d < n. Angenommen Z enthdlt geniigend viele paarweise verschiedene Shimuradivi-
soren W; C Z, die jeweils eine numerische Arakelovgleichung erfiillen. Dann ist Z selbst
eine Shimuravarietdt vom orthogonalen Typ oder ein Ballquotient.

Dieser Satz verallgemeinert Proportionalitits(un)gleichungen von Hirzebruch. Fir
die Anzahl der benétigten W; existiert eine effektive Schranke, abhidngig von der Pi-
cardzahl von Z [18].

Lokale Modelle von Shimuravarietdten

Wir haben bisher einige Beispiele von Shimuravarietiten gesehen, allerdings im Kon-
text von (zusammenhéngenden) lokal-symmetrischen Raumen. Bei arithmetischen Un-
tersuchungen werden in der Regel endliche Vereinigungen von solchen Komponenten
betrachtet. Shimuravarietdten sind tiber Zahlkorpern definiert und man kann die Wir-
kung der absoluten Galoisgruppe studieren. Ein iibergeordnetes Ziel ist das Studium ih-
rer L-Funktionen und deren Zusammenhang mit speziellen (d. h. modularen) algebrai-
schen Zykein, die CM-Punkte und Hirzebruch-Zagier Zykeln verallgemeinern. Dazu ist
es nOtig, erst ein Modell itber einem Zahlring, z.B. Z, zu konstruieren und dann die Re-
duktion modulo p zu betrachten. Durch Komplettierung bei Primstellen kommt man zu
Modellen tiber Wittringen W, wie zum Beispiel den p-adischen ganzen Zahlen Z, oder
deren Erweiterungen. Die spezielle Faser (die Reduktion) ist dann iiber einem endlichen
Korper definiert und die allgemeine Faser iiber einem p-adischen lokalen Korper. Wir
verweisen auf einen Ubersichtsartikel von Rapoport [17] fiir eine wesentlich detaillierte-
re Darstellung dieser lokalen Modelle.

In einer neueren Arbeit [15] betrachten Kudla und Rapoport lokale Modelle zu Shi-
muravarietiten der unitdren Liegruppe GU(1,n — 1) mit Signatur (1,n — 1). Ziel des
Projekts ist der Zusammenhang zwischen erzeugenden Funktionen, die aus speziellen
arithmetischen Zykeln konstruiert werden und der speziellen Werte einer Ableitung ei-
ner gewissen Eisensteinreihe zur Liegruppe U(n, n). Bei solchen lokalen Modellen kann
man mit Modulrdumen p-divisibler Gruppen arbeiten und die Methoden von Zink iiber
Displays und deren Windows erfolgreich benutzen. In [15] konstruieren die Autoren zu-
erst einen formalen Modulraum A von p-divisiblen Gruppen X der Dimension » und
Hohe 2n, die Signaturstruktur (1,7 — 1) im Endomorphismenring besitzen, polarisiert
und zu einer festen supersingularen Struktur quasi-isogen sind. Dieser Modulraum N
ist formal glatt von der relativen Dimension » — 1 iiber dem Wittring W und wurde von
Wedhorn und Vollaard studiert. Insbesondere hat die reduzierte (singulire) Faser N yeq
eine Zerlegung in Zusammenhangskomponenten A/;, und diese wiederum besitzen eine
Stratifizierung in lokal-abgeschlossene, irreduzible Teilmengen V°(A), wobei A gewisse
Gitter durchlauft. Analog zur Drinfeldschen oberen Halbebene ergibt sich hier eine kom-
binatorische Beschreibung durch ein Gebdude von Gittern zur unitiren Gruppe. Da-
raufhin konstruieren die Autoren spezielle Zykel, die mit Z; ;(x1, ..., X,,) bezeichnet wer-
den und zeigen:
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Theorem 3.5 ([15]) Die Zykel Z; j(x1, ..., Xm) sind rein-dimensional und Vereinigung
endlich vieler Strata VO(A). Ist der Zykel Z; j(X1, ..., Xm),,q O-dimensional, so besteht er
aus einem Punkt und die Linge des lokalen Rings kann durch die explizite Formel
So_oPt(a+ b+ 1 — 2¢) berechnet werden, deren Parameter a,b sich aus der Definition
des Zykel ergeben.

In der Arbeit wird auch eine Vermutung iiber die Schnittzahlen der speziellen Zykel
angegeben.

Ebenfalls im Zusammenhang mit der Reduktion von Shimuravarietiten stehen die
affinen Deligne-Lusztig-Varietiten X,(b). Durch sie kann die Beziehung des lokalen
Modells, insbesondere der Singularititen der Reduktion, mit der Newton-Stratifizierung
untersucht werden. Deren Definition ist sehr einfach als Teilmenge der affinen Flaggen-
varietdt G(L)/I :

X.(b) = {g € G(L)/I : g 'bo(g) € IxI} C I\G(L)I.

Hierbei ist k = IF, ein endlicher Korper, L = k((¢)) der Laurentreihenkdrper iiber dem
Abschluss von &, G eine zusammenhéngende, reduktive, algebraische Gruppe iiber k, 1
eine wahori-Untergruppe und o der Frobeniusautomorphismus auf k/k bzw. G(L).
Ferner ist b € G(L), und x ist ein Element der erweiterten affinen Weyl-Gruppe, die die
I-Doppelnebenklassen in G(L) parametrisiert.

Man méchte charakterisieren, wann X, (b) nichtleer ist, und wissen, welche Dimen-
sion es besitzt. In der Arbeit [11] von Goértz et al. wird eine prazise Vermutung in algeb-
raischen Termen dariiber gegeben, wann die X, (b) leer sind. In der Abbildung 3 wird
dies anschaulich illustriert, siche [11] fiir eine Erklérung solcher Bilder. Die Autoren zei-
gen auch, dass X, (b) leer ist, falls es die Vermutung vorhersagt. Das Hauptresultat die-
ser Arbeit ist eine Aussage liber Hodge-Newton Zerlegungen, auf die ich aber nicht ein-
gehe. SchlieBlich wird in {11] ein algorithmischer Ansatz zur Berechnung der Dimension
von X,(b) gegeben. Damit ergibt sich unterstiitzendes Datenmaterial fiir die Unter-
suchungen der Autoren. Gortz hat einen einfithrenden Artikel [12] zu diesem For-
schungsgebiet geschrieben.

Derivierte Kategorien und ihre Invarianten

Sei X eine beliebige k-Varietdt. Natiirliche Invarianten von X sind die Kategorie
Coh(X) der kohiirenten Garben auf X sowie ihre derivierte Kategorie D*(X). Man kann
sich fragen, ob sich X oder seine Invarianten aus Coh(X) bzw. D?(X) rekonstruieren
lassen. Nach einem Satz von Gabriel ldsst sich X bis auf Isomorphie aus Coh(X) als
k-lineare Kategorie wiedergewinnen. Fiir D?(X) gilt ein solcher Satz nicht, wie man aus
der Aquivalenz von D”(4) und D"(A") zwischen einer abelschen Varietit 4 und ihrer
dualen 4V sieht. Diese Aquivalenz wird iiber die Fourier-Mukai Transformation [14] ge-
leistet, die man wie folgt verallgemeinern kann. Seien X,Y k-Varietiten und
P € D*(X x Y). Dann definiert man

FTp: DY(X) = DY), E  py(pyE® P).
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Abbildung 3. Wann sind Deligne-Lusztig-Varietiten leer ? (Bild: Ulrich Gortz)

Bondal und Orlov haben gezeigt, dass allerdings im Fall glatter, projektiver Varietiten
X mit amplem oder anti-amplem kanonischen Divisor wy die Varietdt X wieder aus
D?(X) bis auf Isomorphie erhalten werden kann. Beriicksichtigt man zusitzlich die
Tensor-(triangulierte)-Struktur auf D”(X), so zeigt ein Satz von Balmer sogar, dass sich
X immer wiedergewinnen lasst. Es wird vermutet, dass birationale Korrespondenzen
wie flops, die wy erhalten, die derivierte Kategorie ebenfalls nicht dndern.

Derivierte Kategorien von Calabi-Yau-Mannigfaltigkeiten besitzen als zusitzliche
Struktur einen Serre-Funktor, der einer Dimensionsverschiebung entspricht. Katego-
rien mit solchen Eigenschaften werden Calabi- Yau-Kategorien genannt. Sie spielen auch
eine grofe Rolle in anderen Gebieten. Insbesondere in der Darstellungstheorie sind sie
enorm wichtig, denn es gibt eine starke Verbindung mit Clusteralgebren. Zwei Teilpro-
jekte des Transregio beschiftigen sich mit Calabi-Yau-Kategorien, eines davon mit so-
genannter Tilting-Theorie auf diesen Kategorien [10], das andere mit dem Problem, wel-
che Eigenschaften von D?(X) Varietiiten untereinander unterscheiden kénnen.

Man kann sich aber auch fragen, ob andere Invarianten wie zum Beispiel die
K-Gruppen oder Chowgruppen Invarianten der derivierten Kategorie D?(X) sind. Dies
ist etwas schwicher, als nach X selbst bis auf Isomorphie zu fragen. In einem Teilpro-
jekt werden solche Fragen im Kontext von K3-Flachen gestellt. Hintergrund dieser Un-
tersuchungen ist ein Ergebnis von Beauville und Voisin iiber den Chowring
CH*(X) = CH°(X) ® CH'(X) @ CH*(X) einer komplexen, projektiven K3-Fliche X.
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Sie bewiesen, dass die Teilmenge
R(X)=CH'(X)® CH'(X)® cy(X) - Z C CH*(X)

ein Unterring ist und ¢,(X) = 24[P] ist, wobei P ein abgeschlossener Punkt auf einer
(moglicherweise singuldren) rationalen Kurve in X ist. Es stellt sich die Frage, ob R(X)
stabil unter derivierter Aquivalenz, d. h. Fourier-Mukai Transformation ist. Zunichst
gilt:

Theorem 3.6 ([13]) Seien X,X' komplexe, projektive K3-Flichen und FTp,
FTg : D*(X)—D?(X") zwei Fourier-Mukai Aquivalenzen der Jeweiligen derivierten Ka-
tegorien. Sind die induzierten Operationen FTp,FTg : H*(X,L)—H* (X', Z) identisch
als Abbildungen zwischen den Mukai-Gittern, so auch die Wirkung auf den Chowgrup-
pen: FTp = FTy : CH*(X)—CH*(X').

Dieses Resultat von Huybrechts ist motiviert durch eine Vermutung von Bloch, wie
in [13] ausgefithrt wird. Als Anwendung bekommt man, dass der Ring R(X) stabil unter
derivierter Aquivalenz zwischen K3-Flichen mit Picardzahl p > 2 ist. In [13] wird auch
noch diskutiert, wie sich die Situation dndert, wenn man K3-Flichen X iiber Zahlkor-
pern betrachtet. Es zeigt sich, dass dann gewisse (sphdrische) Objekte in D?(X) auch
iiber einem Zahlkorper definiert sind.

Symplektische Singularititen

Die spannende Suche nach einer noch unbekannten Klassifikation symplektischer Sin-
gularititen [16] und der Theorie universeller Poisson-Deformationen wird zur Zeit in ei-
nem Teilprojekt des Transregio von Lehn und van Straten in Kooperation mit Namika-
wa und Sorger verfolgt. Die klassischen 4DE-Graphen schlagen eine Briicke zwischen
den endlichen Untergruppen G C SU(2) und den einfachen Liealgebren: Im ersten Fal-
le beschreibt der Graph die Konfiguration der exzeptionellen Kurven in der Auflosung
der Singularitit des Quotienten €2 /G, im zweiten Falle das Wurzelsystem der zugehori-
gen Liealgebra. Ein direkter geometrischer Zusammenhang zwischen diesen Objekten
wird durch Sitze von Grothendieck, Brieskorn und Slodowy hergestellt. Im Falle eines
Dynkin-Graphen vom Typ A, stellt er sich wie folgt dar: Es sei  : sl, — €' die
durch die Koeffizienten des charakteristischen Polynoms gegebene Abbildung. Die
Nullfaser N = x~'(0) ist der Kegel der nilpotenten Elemente, auf dem die Gruppe Sl,_;
operiert. Eine transversale Scheibe S an ein subregulires Element von N schneidet aus
dem Kegel eine Flichensingularitit genau vom Typ A,_; heraus. AuBerdem ist die Pro-
jektion x : S — @' die universelle Deformation dieser Singularitit.

Erstaunlicherweise kann man diesen Satz auf Strata héherer Kodimension auswei-
ten: Eine transversale Scheibe S an eine beliebige Bahn in N liefert eine symplektische
Singularitit und die Projektion x| ist eine universelle Poisson-Deformation dieser Sin-
gularitit. Bei diesen Untersuchungen sind die Kollegen 2009 auf die ersten symplekti-
schen Hyperflichensingularititen jenseits der ADE-Singularititen gestoBen: Eine sol-
che vierdimensionale Serie ist etwa durch das schone Polynom

a’x + 2aby + b’z + (xz — y*)"
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gegeben. Man erwartet, dass es iiberhaupt nur sehr wenige symplektische Hyperfldchen-
singularititen gibt, fiir den Augenblick sind die Argumente dafiir aber noch nicht zwin-
gend.

Liftungen von Galabi-Yau-Varietdten liber endlichen Ktirpern

Calabi-Yau-3-Faltigkeiten und allgemeiner Varietiten mit Kodairadimension 0 spielen
eine wichtige Rolle in Teilprojekten des Transregio, bei denen es um Perioden oder Mo-
dulrdume geht. Jedoch gibt es auch spannende Fragestellungen arithmetischer Natur,
bei denen sie ebenfalls interessante Eigenschaften besitzen. Seit etwa 10 Jahren ist durch
Arbeiten von Hirokado und Schréer bekannt, dass es Calabi-Yau-3-Faltigkeiten iiber
IF; und IF; gibt, deren Gleichungen sich nicht zu Charakteristik 0 hochliften lassen. Ein
Teilprojekt beschaftigt sich mit diesem Phianomen. Es war nicht klar, ob solche Beispie-
le auch in hoherer Charakteristik existieren kdnnen, zum Beispiel iiber IFs. In [7] zeigen
Cynk und van Straten, dass es nicht-liftbare rigide Beispiele iiber IF;, sowie ein Beispiel
fiber IFs mit einer obstruierten Deformation gibt. Wenn man die Kategorie der algeb-
raischen Varietdten verldsst und (nicht-projektive) algebraische Riume zuldsst, so gibt
es sogar noch viel mehr Beispiele. Eine Konstruktion {iber IFs in loc. cit. entsteht durch
eine Auflosung von Singularititen einer zweifachen Uberlagerung von IP* mit Verzwei-
gungsdivisor D, der aus der Vereinigung der Clebsch-Kubik (siehe oben) und 5 zusitzli-
chen Ebenen besteht, die die Kubik an den Schnittpunkten dreier Geraden, den soge-
nannten Eckardtpunkten, beriihren. Mit dhnlichen Methoden kdnnen die Autoren fol-
genden Satz zeigen:

Theorem 3.7 ([7]) Fiir jede Primzahlp = 3,5,7,11,17,29,41,73,251,919,9001 gibt
es einen nicht-liftbaren 3-dimensionalen Calabi- Yau-Raum iiber IF,,.

Kompaktifizierungen von Modulriumen

Schon vor ldngerer Zeit konstruierte Viehweg quasi-projektive Modulrdume Mj, fiir po-
larisierte, projektive Mannigfaltigkeiten mit festem Hilbertpolynom 4. Kolldr verein-
fachte diesen Ansatz im Falle von vollstindigen Modulproblemen, also in den Fillen,
in denen M, eine Kompaktifizierung besitzt, die selbst ein Moduliproblem 16st. Selbst
im kanonisch polarisierten Fall, und selbst nach den jiingsten Fortschritten im ,, Mini-
malen Modell Programm® gibt es zur Zeit solche Kompaktifizierungen nur fiir Kurven
und Fléchen.

Fiir viele Anwendungen reicht es jedoch, eine Kompaktifizierung zu haben, auf der
ample Garben sich in natiirlicher Weise auf den Rand fortsetzen. Unter Ausnutzung
technisch anspruchsvoller Konstruktionen von Abramovich-Karu und Gabber ist dies
in [20] im kanonisch polarisierten Fall und fiir polarisierte minimale Modelle der Ko-
dairadimension 0 gelungen. In diesen beiden Fillen gibt es eine ample ,,Garbe”
L, € Pic(Mh)Q, die fir eine ,,universelle” Familie /' : X — M mit det(f.w/ / Mh) iiber-
einstimmt.
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Theorem 3.8 Sei M), der Modulraum kanonisch polarisierter, projektiver Mannigfal-
tigkeiten oder der polarisierten minimalen Modelle der Kodairadimension 0, in beiden
Fallen mit festem Hilbertpolynom h. Es sei m >0 so gewdhlt, dass f.u/y /M, £ 0 ist.

Dann gibt es eine projektive Kompaktifizierung M von My, so dass sich Ly, in natiirlicher
Weise zu einer numerisch effektiven invertierbaren Garbe L, fortsetzt, die ample beziig-
lich My, ist.

Diese Aussage wird erst sinnvoll, wenn man den Begriff ,,natiirlich“ erldutert. Hier
wollen wir noch bemerken, dass eine Folgerung des Satzes ist, dass fiir eine semistabile
Ifamilie g: X — C der Grad von g, Ic eine Art Hohenfunktion auf M, definiert.
Ahnlich wie im Abschnitt iii) von 3.2 gibt es obere Abschitzungen fiir diese Hohe.

4 Wie stellt man einen Antrag und was kommt auf einen zu ?

Einige Leser finden es vielleicht interessant, wenn ich aus meiner persénlichen Sicht auf
die Vorgeschichte eines Transregioantrags und die erforderlichen Schritte bei der An-
tragstellung eingehe. Zu Anfang ist es nétig, sich klarzumachen, ob man iiberhaupt in
Erwégung zieht, einen solchen Antrag fiir einen SFB oder Transregio zu stellen, oder
doch lieber auf andere Forderinstrumente zuriickgreift. Dies hdngt vom angestrebten
Personenkreis ab, der diesen Antrag stellen will und auch durchaus von Antragsfristen,
die einzuhalten sind. Neben dem individuellen Normalverfahren und diversen Stipen-
dienprogrammen gibt es bei der DFG weitere Verbundforderung, an der mehrere
Standorte partizipieren kénnen. Dazu gehéren Forschergruppen, Schwerpunkte, Gra-
duiertenkollegs, Exzellenzcluster und Forschungszentren. Hat man die kritische Masse
von etablierten und jungen Wissenschaftlern zusammen und sich zur Beantragung eines
SFB oder Transregio entschieden, so ist von seiten der DFG jede Menge Information in
Form von Merkblattern erhéltlich, siehe [3]. Nachdem man Kontakt mit der DFG auf-
genommen hat, ist ein Konzeptpapier zu erstellen, in dem die Grundstruktur festgelegt
und vorgestellt wird. In diesem Dokument ist, als die conditio sine qua non, der Mehr-
wert herauszuarbeiten, den die ganze Gruppe in ihrer Zusammenarbeit tiber die indivi-
duelle Stirke der einzelnen Wissenschaftler hinaus erbringen kann. Bei einem Trans-
regio wie unserem bedeutet dies eine enge und standortiibergreifende wissenschaftliche
Kooperation zwischen den jeweils beteiligten Arbeitsgruppen in den zentralen Teil-
gebieten des Gesamtvorhabens. Dabei ist die Grundvoraussetzung, dass die beteiligten
Arbeitsgruppen bis dato schon eine hohe internationale Reputation auf dem jeweiligen
Gebiet erworben haben. Die Verzahnung kann zumindest teilweise auf gemeinsamen
Vorarbeiten aufbauen, soll aber ein noch deutlich stirkeres Zusammenwachsen in der
Zukunft vorhersehen lassen. Ein gewisser Anteil an innovativen, d. h. riskanten Projekt-
feldern wird, so scheint mir, ebenfalls erwartet. Es ist auch darzustellen, wie die geplan-
ten Kooperationsstrukturen beziiglich der Ausbildung und Forschungsleistung von
Nachwuchswissenschaftlern Friichte tragen sollen. Dieses Konzeptpapier wird dann
von einer Expertengruppe und der DFG selbst begutachtet und von den Beteiligten in
Bonn vorgestellt. Dabei ist bereits mit konkurrierenden Antragen zu rechnen, obwohl
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sich das aufgrund des Gesamtaufwands und der Voraussetzungen in der Mathematik in
Grenzen hilt. Ist das Konzeptpapier erfolgreich durch die Gremien der DFG gelaufen,
so wird binnen einer Frist von mehreren Monaten ein Vollantrag gefordert. In diesem
wird das wissenschaftliche Gesamtvorhaben, eine Beschreibung jedes Teilprojekts, der
geplante Finanzhaushalt, alle StrukturmaBnahmen, wie Gleichstellung, Doktoranden-
ausbildung und Nachwuchsférderung, das interne Kooperations- und Kursprogramm,
Ideen fiir geplante Tagungen und Workshops, sowie die Lebensldufe und Publikationen
der Teilprojektleiter gesammelt. Insgesamt ergibt dies in der Regel ein stattliches Biich-
lein von mehreren hundert Seiten. Durch etwa 10 Gutachter wird der Antrag an zwei
Tagen unter Teilnahme der Teilprojektleiter, wichtiger Mitarbeiter und Vertretern der
Hochschulen ausfithrlich unter die Lupe genommen. Der Aufwand fiir eine solche Be-
gutachtung ist betrachtlich und dhnelt einer kleinen Konferenz. Am ersten Tag ist dabei
die wissenschaftliche Begutachtung in Form von Kurzvortrigen, Einzelbefragungen
und ggfs. Postervorstellungen vorgesehen, am zweiten Tag sind offene Fragen und
Strukturplanungen in Zusammenarbeit mit den Hochschulen vorgesehen. An diesem
Tag wird dazu eine imposante Runde einberufen, an der Wissenschaftler und Hoch-
schulvertreter teilnehmen, und offene Fragen im Plenum angesprochen werden. Am
Nachmittag kommen die Gutachter mit der DFG im Beisein der Hochschulvertreter zu
einer Empfehlung an den Hauptausschuss der DFG, die sehr differenziert iiber die ein-
zelnen Teilprojekte und den Gesamtantrag urteilt. Das Ergebnis wird in Teilen dem de-
signierten Sprecher mitgeteilt und bei positivem Ausgang kann man dann gespannt der
Entscheidung der DFG entgegensehen, die einige Wochen danach im Hauptausschuss
der DFG getroffen wird.

Die Selbstorganisation eines SFB/Transregio

Die Verwaltung eines SFB ist durchaus sehr aufwindig und wird von der jeweiligen
Sprecherhochschule aus gesteuert. Man hat ein Budget von bis zu 2 Mio. Euro jahrlich
zur Verfugung, das sinnvoll ausgegeben und korrekt verwaltet werden muss. Bei mehre-
ren Standorten sind dazu Vereinbarungen zwischen den Hochschulen zu etablieren. Die
meisten Mittel entfallen auf Personalstellen, die in der Regel von den Teilprojektleitern
besetzt werden. Die restlichen Mittel wie Pauschalmittel oder von der Universitét zu-
rickflieBende Overheadmittel sind vom Sprecher in Abstimmung mit den Kollegen zu
verwalten, und er ist berichtspflichtig. Fiir die gesamte Mittelbewirtschaftung solite
man eine Verwaltungskraft beschiftigen, entweder ein sehr gutes Sekretariat oder einen
hauptamtlichen Administrator. Nicht zu vernachlassigen ist auch der Aufwand fiir den
Webauftritt und eine Datenbank, d. h. fir eine langfristige Speicherung von Informa-
tionen {iber Publikationen, Veranstaltungen und Personal wie Mitarbeiter und Géste.
Nicht zuletzt zum Verfassen der Berichte ist dies niitzlich. Der Sonderforschungsbereich
hat sich auch eine Ordnung zu geben, in der die Organisationsstruktur des Transregio
und der integrierten Doktorandenschule geregelt werden. Insgesamt ist ein SFB also ein
grofles Unterfangen, besonders nach der Genehmigung und erfordert effektive Organi-
sation und Kommunikation.
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Schlussbemerkung

Ich mochte der Deutschen Forschungsgemeinschaft, insbesondere Herrn Frank Kiefer,
ganz herzlich fiir die Realisierung dieses Transregios und den damit verbundenen Mog-
lichkeiten fiir alle beteiligten Wissenschaftler danken.
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Chris A M. Peters
Joseph H. M. Steenbrink
Mixed

Hodge Structures

Springer, Berlin, 2008, 470 Seiten, € 139,05

This book has been awaited for many
years. As the authors explain in the intro-
duction, the first attempt at the beginning
of the 80s by the second named author to
write down the foundations of mixed
Hodge theory came to a standstill when
Morihiko Saito developed his own theory
of mixed Hodge modules. Fortunately, the
authors did not give up, and the book
which is now available will certainly ra-
pidly become one of the standard refer-
ences on the topic.

Hodge theory assigns to a complex vari-
ety data which come from linear algebra.
The linear algebra is a bit subtle, but this is
linear algebra and surely much easier than
the analytic and algebraic geometry con-
tained in a complex variety. Pure Hodge
theory is what comes out of smooth pro-
jective varieties, while one needs the no-
tion of extensions of such pure structures
when the variety is singular, or not projec-
tive, or arises as a limit of such (in a way [
do not describe). The package is coded in
the notion of mixed Hodge theory. Here
“mixed” refers to the extensions with
graded pieces being pure. Mixed Hodge
theory is an absolutely central tool in com-
plex algebraic geometry. Deligne devel-
oped it, as well as an analogous theory of
weights for varieties defined over finite

fields. Later on p-adic Hodge theory has
been developed, notably and among
others by Fontaine. Those parallel the-
ories in different worlds show how deep
the notions are developed in Hodge theory.

Let us describe the different parts of the
volume. In the first part, the authors recall
the basic abstract definitions of Hodge
structures. It includes Deligne’s viewpoint
on a Hodge structure as an algebraic re-
presentation, and the definition of the
Mumford-Tate group of a Hodge struc-
ture. In the second part, the authors link
the theory to geometry. Aside from appli-
cations to singularities, it includes De-
ligne’s fixed part theorem. The third part
summarizes the construction of Hodge
theory on the pronilpotent completion of
the topological fundamental group. (The
reader can consult the third section of De-
ligne, P., Goncharov, A.. Groupes fonda-
mentaux motiviques de Tate mixte, An-
nales de 'ENS (4) 38 (2005), nol, 1-56,
in which it 1s shown that the pronilpotent
completion is the cohomology of a cosim-
plicial scheme, and thus knowledge from
the second part yields a mixed Hodge
structure on it.) This part includes the con-
struction of the minimal model. The
fourth part is tied to the second author’s
own work, in which he defined the mixed
Hodge structure on the limit in a one para-
meter family. The first half of the part cul-
minates at 11.2.7 in which the authors fol-
low Guillén/Navarro Aznar’s presenta-
tion. (The reader can consult Hlusie, L.:
Autour du théoréme de monodromie locale,
in Périodes p-adiques, Astérisque 223
(1994, 9-57 for a viewpoint closer to Ra-
poport-Zink and M. Saito). In the second
half of this part, the authors lay the foun-
dations of M. Saito’s mixed Hodge theory.
This will surely be a very useful source for
this poorly documented theory which
nonetheless plays an important role. Fi-
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nally, the authors gathered in various ap-
pendices the tools of homological algebra,
topology and differential geometry needed
in the course of the volume.

I heartily recommend the book.

Héléne Esnault

Essen

Alexander |. Bobenko
Yuri B. Suris

Discrete Differential
Geometry - Integrable
Structure

Graduate Studies in
Mathematics, Vol. 98,

American Mathematical Society, Pro-
vidence, Rhode Island, 2008, xxiv+404 S.
ISBN 978-0-8218-4700-8, € 66,99

Diskrete Differentialgeometrie hat ihren
Ursprung in dem Bediirfnis nach intelli-
genten Diskretisierungen differentialgeo-
metrischer Begriffe fiir die Zwecke der
Numerik und der geometrischen Daten-
verarbeitung [4,3] und enthélt heute ein
ausgereiftes Theoriegebdude, das als Spe-
zialfall die klassische Differentialgeome-
tric der Koordinatensysteme in Flichen
umfasst und das eng mit der Theorie dis-
kreter integrabler Systeme verkniipft ist.
An dieser Entwicklung sind beide Auto-
ren wesentlich beteiligt. Das Phanomen
der ErschlieBung einer glatten Theorie
durch eine diskrete tritt auch anderswo
auf, zum Beispiel bei der durch W. Thurs-
ton initiierten Approximation von kon-
formen Abbildungen durch Kreispackun-
gen. Es ist vielleicht kein Zufall, dass einer
der grofBten Erfolge des diskreten Zu-
gangs zu glatten Flichen — die effektive

Bestimmung der Formen von Minimalfla-
chen aus der Kombinatorik ihrer Kriim-
mungslinien [1] — sowohl Thurstons Idee
als auch dem integrablen Zugang ver-
pflichtet ist.

Das vorliegende Werk deklariert in sei-
nem Vorwort die Leitideen ,, Diskretisiere
die ganze Theorie, nicht nur die Gleichungen”
und ,, Diskretisiere Gleichungen durch Dis-
kretisieren der Geometrie”. Ich mochte diese
anhand von zwei Beispielen illustrieren.

Das erste betrifft Punktgitter x : Z" —
IR” mit der Eigenschaft, dass die vier
Knoten jeder 2-Facette kozirkular liegen,
also einen Umkereis besitzen. Thre Existenz
und gleichzeitig die Anzahl der Freiheits-
grade ist durch die Konsistenz der definie-
renden Eigenschaft sichergestellt, die fiir
m = 3 wie folgt lautet: Sind in dem kom-
binatorischen Wiirfel x:{0,1}° — R
die vier nicht an x; 1 grenzenden Facet-
ten zirkuldr, so gibt es genau eine Wabhl
von xp 1, sodass alle 6 Facetten zirkuldr
werden (Satz von Miquel). Man sagt, Zir-
kularitit definiert ein 4D-konsistentes,
3-dimensionales System. Durch einen
partiellen Limes kann x in ein (m — 2)-
dimensionales Gitter f:IR® x Z" 2 —
IR? von Kriimmungslinienparametrisie-
rungen glatter Flichen iibergehen; jedes
Slg2y; st dabei die Ribaucour-Transfor-
mierte seiner Nachbarn.

Das zweite Beispiel sind diskrete K-Net-
ze x: 7% — R?, die durch zwei Eigen-
schaften definiert sind: (i) Koplanaritit
jedes Punktes x; ; mit seinen vier direkten
Nachbarn und (ii) die Forderung, dass
l|%i,; — Xir1,41| bZw. ||X;; — X; j41]| nur von
i bzw. j abhingen. Eine als Limes von
K-Netzen entstehende glatte Parametn-
sierung einer Fldche ist eine asymptoti-
sche Parametrisierung einer Fliche kon-
stanter GauB-Kriimmung. Die Existenz
von K-Netzen hoherer Dimension zeigt
Existenz und Eigenschaften von Béck-
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lund-Transformationen fiir solche Fla-
chen. Dieser Zusammenhang war im We-
sentlichen schon in den 1950er Jahren be-
kannt. Eine bemerkenswerte jlingere Ein-
sicht, die eine Verbindung zu diskreten in-
tegrablen Systemen ergibt, ist die Giiltig-
keit der Hirota-Gleichung
sin Pivl, j+1 — ¢i+1,41 — Gijr1+ ij _

Pistjrl + Pir1j + i1 + i
4

fir bestimmte Winkel ¢;;, die in dem
Netz auftreten und aus denen eine Spek-
tralschar x; ;(\) von K-Netzen rekonstru-
ierbar ist [2]. Diese Gleichung stellt ein
diskretes Analogon der von den glatten
K-Flichen bekannten Sinus-Gordon-
Gleichung 3,4 —sin¢) =0 dar. Dass
man aus jeder ihrer Lésungen ¢ eine neue
gewinnen kann (Bicklund-Transformati-
on ¢* von ¢) und dass dafiir ein Permuta-
bilitdtssatz gilt, wurde auf diese Weise als
Folge der 3- und 4-dimensionalen Konsis-
tenz der geometrischen Eigenschaften der
K-Netze erkannt. Eine weitere Analogie
zum glatten Fall ist die Aquivalenz der
Hirota-Gleichung zur Integrabilitits-
bedingung fiir die Differenzengleichung
eines begleitenden Dreibeins Z? — SU,[)]
der Schar x(\) (zero curvature representa-
tion der Hirota-Gleichung).

Das vorliegende Werk besteht aus einer
systematischen Darstellung dieser Zusam-
menhédnge. Kapitel 1 wiederholt die klas-
sischen Ergebnisse betreffend Koordina-
tensysteme auf Flichen und ihrer Trans-
formationen. Der Abschnitt Discretiza-
tion Principles fiihrt die umfangreiche dis-
krete Theorie anhand von 3-dimensiona-
len integrablen Systemen mit 4D-Konsis-
tenz ein. Das erste der beiden obigen Bei-
spiele gehort hierher. Zweidimensionale
integrable Systeme und deren 3D-Konsis-
tenz sind die Grundlage des 4. Kapitels,

C,-Cj'- sin

Special Classes of Discrete Surfaces, wo
die geometrisch sehr interessanten K-Net-
ze, isothermen Netze, und Netze konstan-
ter mittlerer Kriimmung besprochen wer-
den. Auch die s-isothermen Netze von [1]
gehoren hierher. SchlieBlich wird die In-
terpretation der glatten Theorie als
Grenzfall der diskreten im Kapitel Appro-
ximation streng begriindet, indem die
Konvergenz der Ldsungen von gut ge-
stellten diskreten Goursat-Problemen ge-
gen die Ldsungen entsprechender partiel-
ler Differentialgleichungen gezeigt wird.
Der begriffliche Kern des Werkes ist
Kapitel 6, Consistency as integrability.
Wesentlich ist die Erkenntnis, dass die
3D-Konsistenz von Gleichungen auf
zweidimensionalen Gittern fir die Ubli-
cherweise verlangten Attribute integrab-
ler Systeme verantwortlich ist (Bicklund-
Transformationen und zero curvature re-
presentations). Es werden auch Gleichun-
gen auf irreguldren Strukturen (Quad-
Graphen, rhombische Einbettungen) un-
tersucht und die relevanten Typen von
zweidimensionalen integrablen Systemen
vollstindig klassifiziert. Das Kapitel ent-
halt weiteres Material iiber integrable
Systeme mit Daten auf den Kanten eines
Gitters (Yang-Baxter-Abbildungen) und
die weniger zahlreichen dreidimensiona-
len 4D-konsistenten integrablen Systeme.
Kapitel 7 und 8, Discrete Complex Ana-
lysis. Linear Theory!lIntegrable Circle
Patterns studieren integrable Versionen
von diskreten Cauchy-Riemann-Glei-
chungen auf Graphen, und geometrische
Eigenschaften von Kreispackungen (= dis-
krete holomorphe Funktionen). Es stellt
sich heraus, dass das Finden von Kreis-
mustern mit vorgeschrichener Kombina-
torik und konformem Typ (Schnittwin-
keln von Kreisen) auf das Losen von Glei-
chungen auf Quad-Graphen hinauslauft,
die zu frither behandelten Doppelverhilt-
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nis-Systemen und Hirota-Systemen dqui-
valent sind. Das Kapitel schlieBt mit Bei-
spielen fur Kreismuster, Monodromie-
eigenschaften und der Differentiation von
diskreten holomorphen Funktionen. Ein
Hauptresultat ist das Erkennen von Kapi-
tel 7 als Linearisierung von Kapitel 8. Das
letzte Kapitel, Foundations, stellt Grund-
lagen aus der projektiven Geometrie be-
reit.

Dieses Werk richtet sich nicht nur an
Mathematiker, sondern an alle, die im
Zusammenhang mit numerischer Simula-
tion, Datenverarbeitung oder sogar Frei-
formarchitektur mit 3D-Geometriedaten
zu tun haben. Differentialgeometer wer-
den mit grofem Interesse die Verbindun-
gen zu integrablen Systemen zur Kenntnis
nehmen, wihrend Leser, die aus der ma-
thematischen Physik kommen und mit
letzteren vertraut sind, die geometrische
Konsistenz als den eigentlichen Hinter-
grund des schwer exaktifizierbaren Be-
griffs der Integrabilitit erkennen kdnnen.
Der projektiven Geometrie Kundige wer-
den erstaunt sein, an welchen Stellen Inzi-
denz-Sitze und Konfigurationen eine
Rolle spielen. Es ist den Autoren in beein-
druckender Weise gelungen, ein bisher
nur aus Einzelpublikationen zugingliches
Teilgebiet der Mathematik in geschlosse-
ner Form darzustellen; gleichzeitig ent-
hilt dieses Werk neue, bisher noch nicht
erschienene Resultate. Durch die vielen
Ubungsaufgaben ist es sehr gut als
Grundlage fiir Vorlesungen verwendbar;
die Lektire kann uneingeschrinkt emp-
fohlen werden.

Graz Johannes Wallner
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