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In seinem mathematisch und menschlich sehr bewegenden historischen Beitrag uber die
Lemberger Mathematikerschule beschreibt Roman Duda, wie sich dort zwischen 1920
und 1940eine hinsiehtlich ihrer GroBe, Bedeutung und Wirksamkeit ganz aulierordent­
liche Gruppe von Mathematikern gefunden hat. Insbesondere, aber nicht nur in der
linearen wie nichtlinearen Funktionalanalysis sind viele Wurzeln in Lemberg (damals
Polen, Lwow, heute Ukraine) zu finden. Namen wie Banach, Steinhaus und Schauder
machen das exemplarisch deutlich, allerdings geht die Lemberger Schule ganz wesent­
lich uber diese drei groBen Vertreter hinaus. In Deutschland muss die Beschaftigung
mit dieser Schule eine besondere Betroffenheit hervorrufen. Nicht so sehr deswegen,
weil mit Steinhaus einer ihrer Kristallisationspunkte in Gottingen bei Hilbert pro­
moviert hat, sondern vielmehr, weil mit dem zweiten Weltkrieg, dem deutschen Uberfall
auf Polen und die Sowjetunion und 1941 der Eroberung des zunachst sowjetisch besetz­
ten Lemberg diese bliihende Mathematikerschule ihr brutales Ende fand. Mehr als die
Halfte deren Mitglieder hat den zweiten Weltkrieg nieht uberlebt; viele von ihnen wur­
den von Deutschen ermordet. Steinhaus konnte sich gerade noch rechtzeitig verbergen,
hat den Krieg unter falschem Namen und mit falschen Papieren iiberlebt und war
anschlieBend noch lange Zeit in Breslau aktiv.

Am 25. November 2008 verstarb in Zurich im Alter von 91 Jahren Beno Eckmann,
ein groBer Vertreter der Algebra und Topologie, dessen Schaffensperiode weit mehr als
ein halbes Jahrhundert umfasst. In ihrem Nachruf stellen Max-Albert Knus, Guido
Mislin und Urs Stammbach Eckmanns Wirken an der und fur die ETH Zurich dar und
beleuchten einige von Eckmanns Arbeitsschwerpunkten und wichtigsten Ergebnissen.
Eckmanns Name ist in der ganzen Mathematik bekannt u.a. durch sein Wirken in der
Internationalen Mathematischen Union und seine langjahrigen Herausgebertatigkeiten
fur die "Grundlehren"-Reihe und - mitbegriindend - fur die Springer Lecture Notes in
Mathematics.

Berichte aus der Forschung sollen, so wiinscht es sich das Herausgebergremium,
kimftig ein starkeres Gewicht im Jahresbericht erhalten. Stefan Miiller-Stach berichtet
aus der erfolgreichen Arbeit des SFB/Transregio "Perioden, Modulraume und Arithme­
tik algebraischer Varietaten", der in Bonn, Essen und Mainz (Sprecherhochschule)
beheimatet ist. Seine Reise durch die Mathematik dieses Forschungsverbundes bettet er
ein in eine Darstellung des Forderinstruments SFB/Transregio, das sich offenbar be­
wahrt hat und daher kurzlich von der DFG dauerhaft etabliert worden ist. Wahrend
der Drucklegung dieses Heftes verstarb am 30. Januar Eckart Viehweg. Seine Verdiens­
te urn die Mathematik sollen in einem spateren Heft ausfiihrlich gewiirdigt werden.

Buchbesprechungen runden in bewahrter Weise dieses Heft abo

Hans-Christoph Grunau
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The Lvov school of mathematics lasted from 1920tol940 and the article tells its story in
the light of historical events: Lvov university before 1918, the Polish-Ukrainian war
1918-1919 and the Polish-Soviet war 1919-1920, origins of the school and two decades
of its full bloom, world war II (first Soviet occupation 1939-1941, German occupation
1941-1944, the return of the Soviets 1944). More than half of the active members of the
school lost their lives during world war II and expelling 1945-1946 the Polish popula­
tion by the Soviets brought the ultimate end of the school.

Dieser Beitrag berichtet iiber die Geschichte der Lemberger Schule auf dem Hinter­
grund historischer Ereignisse: Die Lemberger Universitat vor 1918, der polnisch-ukrai­
nische Krieg 1918-1919, der polnisch-sowjetische Krieg 1919-1920, die Ursprunge der
Lemberger Mathematikerschule und zwei lahrzehnte ihrer vollen Bliite, der zweite
Weltkrieg (erste sowjetische Besetzung 1939-1941, deutsche Besetzung 1941-1944,
Riickkehr der Sowjets 1944). Mehr als die Halfte der aktiven Mitglieder der Schule hat
ihr Leben wahrend des zweiten Weltkriegs verloren. Die Vertreibung der polnischen Be­
volkerung durch die Sowjets brachte 1945-1946 das endgiiltige Ende der Lemberger
Schule.
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Obersichtsartikel Hlstorische Beilrage Berichte aus der Forschung Buchbesprechungen

1 Die Universltat

JlbBOB

Das Hauptgebaude der LembergerUniversitat

Plac Halickimit der BernhardinerKirche
im Hintergrund

Als Konig Jan Kasimir 1661 in Lem­
berg (polnisch Lw6w) eine Universitat
grimdete, war das bereits die dritte auf
dem Territorium des polnisch-litau­
ischen Konigreichs, nach der Krakauer
(1364) und Wilnaer (1578). Osterreich
annektierte im Jahre 1772 Lemberg mit
ganz Galizien (1. polnische Teilung)
und herrschte dort bis 1918. Die Lem­
berger Universitat fiihrte als Provinz­
universitat lange ein untergeordnetes
Dasein, erst nach Erlangung der Auto­
nomie durch Galizien (mit der Haupt­
stadt Lemberg) und nach Einfuhrung
von Polnisch als Unterrichtssprache be­
gann ihre erfolgreiche Entwicklung. In
den Jahren 1872-1889 war dort
Wawrzyniec Zmurko (1824-1889) Pro­
fessor fur Mathematik und nach ihm
J6zef Puzyna (1856-1919). Ersterer
hatte in Wien studiert, sein Nachfolger
war auch sein Schuler, beendete sein

Studium aber in Berlin, u.a. bei Karl WeierstraJ3. 1m Jahre 1908 kam Waclaw Sierpin­
skio1 nach Lemberg, habilitierte sich und wurde auJ3erordentlicher Professor. Er ver­
sammelte junge Mathematiker urn sich wie Zygmunt Janiszewski", Stefan Mazurkie­
wicz? und Stanislaw Ruziewicz". AIle drei erzielten in der damals neuen Mengentheorie
und mengentheoretischen Topologie originelle Ergebnisse, die sie in polnischen (aber in
franzosischer Sprache) und franzosischen Zeitschriften publizierten. Fur die Lemberger
Universitat war das im wesentlichen eine gute Zeit. Als Professoren lehrten dort damals
u. a. auch der bedeutende Physiker Zygmunt Smoluchowski (1872-1917), der Begrim­
der der Lemberger philosophischen Schule Kazimierz Twardowski (1866-1938)2 und
der bekannte Sibirienforscher Benedykt Dybowski (1833-1930). Es war also eine gute
Universitat, und dort arbeitete eine ehrgeizige Gruppe junger Mathematiker.

Der Ausbruch des 1. Weltkrieges 1914 hatte jedoch den Zerfall der Mathematiker­
gruppe zur Folge. Sierpinski", der bei Kriegsausbruch in Russland weilte, wurde dort

1 Das Zeichen° weistdaraufhin, dass die betreffendenPersonen in der am Ende des Beitrages bei­
gefugten Aufstellungeiniger Vertreter der Lemberger Mathematikerschule aufgefiihrt sind. Beim
ersten Auftreten des Namens ist auch der Vornameangegeben.
2 J. Wolenski, Die philosophische Lemberg-Warschauer Schule, Warszawa: PWN, 1985 [Polnisch];
J. Wolenski, Logic and Philosophy in the Lvov- Warsaw School, Synthese Library, Dordrecht: Klu­
ver, 1988.
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Roman Duda: DieLemberger Mathematikerschule

interniert. Janiszewski" meldete sich freiwillig zu den polnischen, gegen Russland kamp­
fenden Legionen, und Mazurkiewicz" kehrte in seine Heimatstadt Warschau zuriick.
Dariiber hinaus brach unmittelbar nach Beendigung des 1. Weltkrieges zunachst der
polnisch-ukrainische Krieg urn Lemberg und Westgalizien aus, und nach seiner fiir Po­
len erfolgreichen Beendigung folgte der polnisch-sowjetische Krieg urn Polen, der mit
der fur Polen erfolgreichen Unterbrechung des Marsches der Roten Armee auf Polen
und Westeuropa sein Ende fand'. Nach dem Friedensvertrag mit Sowjetrussland (Riga,
1921) gehorte ganz Galizien einschlieBlich Lemberg zu Polen, wo die alte Universitat
seit 1919 den Namen Jan-Kasimir-Universitat trug (im Folgenden kurz JKU).

2 Das Programm

Dies war der Hintergrund, auf den sich das Phanomen der Lemberger Mathematiker­
schule der Jahre 1919-1939 griindete. Diese Schule war das Werkjunger, zu ihrer Zeit
noch unbekannter Menschen. Urn das zu verstehen, miissen wir uns fiir eine Weile nach
Warschau begeben. Bedenken wir, dass sich seit dem Wiener Kongress 1815 der gr6Bte
Teil des Territoriums des ehemaligen Polens innerhalb der Grenzen des russischen Im­
periums befand. Das urn Warschau herum gelegene Gebiet erfreute sich anfangs einer
gewissen Autonomie (unter dem Zepter des Zaren), die ihm jedoch bald wieder entzo­
gen wurde, namlich bereits nach der Niederlage im Novemberaufstand des Jahres 1830
gegen Russland. Nun begann eine lange Zeit der schonungslosen Russifizierung; in die­
sem Zusammenhang wurde 1869 die russischsprachige Kaiserliche Universitat in War­
schau gegriindet. Sie erreiehte nieht das Niveau der anderen russischen Universitaten,
und fiir polnische Studenten war es leichter, anjene Universitaten zu gelangen als an die
in Warschau. Von 1906 an wurde diese Universitat von der polnischen Jugend bereits
offen boykottiert. Nach Ausbruch des 1. Weltkrieges wurde die kaiserliche Universitat
mit dem gesamten Personal und der Ausstattung nach Rostow am Don evakuiert. Die
Besetzung durch Deutschland fiihrte im Herbst 1915 zur Eroffnung einer polnischen
Universitat, auf deren mathematische Lehrstiihle die uns bereits aus Lemberg bekann­
ten Mathematiker Janiszewski" und Mazurkiewicz" berufen wurden. Die gleichzeitig
entstandene Zeitschrift "Nauka Polska" schrieb einen Wettbewerb iiber die Bediirfnisse
der polnischen Wissenschaft aus, an dem sich u.a. auch die beiden genannten Leiter der
Warschauer mathematischen Lehrstiihle beteiligten. Besonders groBen Einfluss erlang­
te der Beitrag von Janiszewski", der sich bald zu einem Programm der polnischen Ma­
thematikerschule entwickelte".

3 Vgl. N. Davies, White Eagle and Red Star. The Polish-Soviet War, 1919-1920, London 1972.
4 Z. Janiszewski, Stand und Bediirfnisse der Mathematik in Polen, Nauka Polska. Jej potrzeby, or­
ganizacja i rozwoj I (1917), S. 11-18 [PolnischJ; Nachdruck: Wiadom. Mat. 7 (1963), S. 3-8. Uber
die Bedeutung von Janiszewskis Ideen haben geschrieben: Sister M.G. Kuzawa, Polish Mathema­
tics. The Genesis ofa School in Poland, New Haven 1968; K. Kuratowski, A Half Century ofPolish
Mathematics. Remembrances and Recollections, Warsaw 1980; K. Kuratowski, The Past and the
Present of the Polish School of Mathematics, in: I. Stasiewicz-Jasiukowa (Hrsg.), The Founders of
Polish Schools and Scientific Models Write about Their Works, Wrodaw-Warszawa 1989.
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Noch heute iiberrascht die Tiefe und Originalitat dieses Programms. Ausgehend
von einer Analyse der bestehenden Situation erkannte Janiszewski die Moglichkeit zur
.Erringung einer eigenstandigen Position fur die polnische Mathematik" darin, dass ein
bestimmtes, am besten ein neues Gebiet der Mathematik ausgewahlt wird (der natiirli­
che Kandidat dafiir war die Mengenlehre mit den Bereichen, in denen mengentheoreti­
sche Methoden eine bedeutsame Rolle spielen, wie die Theorie reeller Funktionen und
die Topologie - das Interessensgebiet der schon nicht mehr existierenden Lemberger
Gruppe), dass sich die Arbeit der Mehrzahl der schopferischen polnischen Mathemati­
ker darauf konzentriert, dass sich eine Atmosphare der gemeinschaftlichen Arbeit und
der Obhut fur junge Mitglieder ausbildet und schlieBlich, dass eine Zeitsehrift gegrimdet
wird, die sich ausschlieBliehdem gewahlten Bereich widmet und die ausnahmslos in den
internationalen Kongresssprachen publiziert.

Ein solches Programm musste schockieren. Die Auswahl eines einzigen, neuen
Bereichs der Mathematik und die Konzentration der Mehrzahl der schopferischen
Mathematiker darauf trug die Gefahr der Vernachlassigung anderer Bereiche in sich,
darunter solcher klassiseher Bereiehe, die von grundlegender Bedeutung waren, wie der
Geometrie, der Algebra und der Analysis. Eine nur auf ein und dazu auf ein neues
Gebiet der Mathematik eingegrenzte Zeitsehrift ersehien von Anfang an auf der Veriie­
rerseite zu stehen, denn solche thematiseh eingegrenzten mathematischen Zeitsehriften
gab es damals noch nieht. Es gab schwerwiegende Argumente sowohl aus dem Inland
wie auch aus dem Ausland', und hinzu kam der beleidigte Nationalstolz wegen der
Nichtzulassung der polnisehen Spraehe.

Die Bedingungen gestalteten sich jedoch gimstig. Eine Stiitze war die wiederentstan­
dene Warschauer Universitat, an der die Mathematiker der jungen Generation (Janis­
zewski", Mazurkiewicz") und Studenten (Bronislaw Knaster", Kazimierz Kuratowski"
und andere) eine enthusiastische Einstellung hatten, voller Glauben an sieh und an die
Zukunft. Diese Vision nahm Sierpinski auf, der damals eben aus Russland zuriick­
gekehrt war und 1918 an der Warschauer Universitat den dritten Lehrstuhl fur Mathe­
matik iibernahm:

Ais 1919 wir drei, Janiszewski, Mazurkiewicz und ich, uns als Professoren fur Mathematik der
wiederentstandenen Warschauer Universitat trafen, beschlossen wir, die von Janiszewski ent­
worfene Idee der fremdsprachigen Herausgabe einer der Mengenlehre, der Topologie, der
Theorie der reellen Funktionen und der mathematischen Logik gewidmeten Zeitschrift zu rea­
lisieren. Auf diese Weise entstanden die "Fundamenta Mathematicae" 6.

5 Vgl. H. Lebesgue, A propos d'une nouvelle revue mathematique .Fundamenta Mathematicae",
Bull. Soc. Math. France 46 (1922), S. 35-46; P. Dugac, N. Lusin: Lettres aArnaud Denjoy avec in­
troduction et notes, Arch. Intern. de I'Histoire des Sciences 27 (1977), S. 179-206 (ubersetzte Aus­
schnitte in: Wiadom. Mat. 25.1 (1983), S. 65-68 [Polnisch]).
6 W. Sierpinski, Uber die polnische mathematische Schule, in: J. Hurwic (Hrsg.), Der Beitrag der Po­
len zur Wissenschaft. Die exakten Wissenschaften, Biblioteka Problemow 101, Warszawa 1967,
S. 413-434 [Polnisch]. Zur Rolle der Zeitschrift s. auch: Sister M.G. Kuzawa, .Fundamenta Ma­
thematicae' - an examination of its founding and significance, Amer. Math. Monthly 77 (1970),
S. 485-492; R. Duda, .Fundamenta Mathematicae" and the Warsaw School ofMathematics, in: C.
Goldstein, J. Gray, J. Ritter (Hrsg.), L'Europe mathematique - Mythes, histories, identites / Mathe­
matical Europe - Myths, History, Identity, Paris 1996, S. 479-498.
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So bi1dete sich die Warschauer Mathematikerschule, konzentriert auf die "Mengen­
theorie und ihre Anwendungen" (Zitat vom Umsch1ag der Zeitschrift), das heiBt auf die
reine Mengen1ehre, die mengentheoretische Topologie, die Theorie der reellen Funktio­
nen und die mathematische Logik. Die Schu1e konnte schon bald Erfo1ge verzeichnen,
und nach dem friihen Tod von Janiszewski" (er verstarb im Januar 1920) wurden Sier­
pinski und Mazurkiewicz ihre Leiter, zu denen sich Jiingere hinzu gesellten, wie Alfred
Tarski (1901-1983), Kuratowski", Stanislaw Saks (1897-1942), Karol Borsuk
(1905-1982) und weitere.

3 Steinhaus und Banach

In der Zeit des Entstehens der Warschauer Mathematikerschu1e erwachte auch das ma­
thematische Lemberg wieder zum Leben. Von den aktiven Mathematikern der Vor­
kriegszeit waren 1ediglich Ruziewicz" und Antoni Lomnicki" geb1ieben, doch die Wie­
dergeburt der Lemberger Mathematik wurde das Werk neuer Leute. Der erste war Hu­
go Steinhaus", der in Gottingen studiert hatte, wo er 1911 das Doktorat mit dem
Pradikat summa cum laude und den Unterschriften von David Hilbert, Carl Runge und
P. Hartmann erwarb. 1917 habi1itierte er sich an der Lemberger Universitat, und als er
dort 1920 einen mathematischen Lehrstuhl iibernahm, zog er Stefan Banach?" nacho
Banach, der einige Jahre davor an der Lemberger Technischen Hochschule studiert hat­
te und dort ein sogenanntes Ha1bdiplom errang, weilte wahrend des Krieges im heimat­
lichen Krakau und beschaftigte sich dort als Amateur mit Mathematik.

A1s Steinhaus? einma1 durch die Krakauer Griinanlagen spazierte, harte er die Wor­
te .Lebesguesches Integral", was ihn derart iiberraschte, dass er herantrat, sich vorstell­
te und auf diese Weise einige junge Leute kennen1ernte, unter denen sich auch Banach"
befand, den er spater gern scherzhaft als seine "gr6Bte wissenschaftliche Entdeckung"
bezeichnete. Bald fanden sie zu gemeinsamer Arbeit", In Lemberg unterstiitzte er
Banach 1920 bei der Erringung des Doktorats (was wegen dessen nicht abgeschlossenen
Studiums nicht einfach war), wonach dieser seine Karriere selbststandig erfolgreich
fortsetzte: Nach der Habilition 1922 wurde er fast sofort zum auBerordentlichen Profes­
sor ernannt, und 1927 war er bereits ordentlicher Professor an der JKU.

7 R. Kaluza, The Life ofStefan Banach, Trans!. and ed. by A. Kostant and W. Woyczynski, Boston
1996. S. auch E. Jakimowicz, A. Miranowicz (Hrsg.), Stefan Banach. Remarkable Life. Brilliant
Mathematics, II Aufl., Gdansk-Poznan 2009; R. Duda, Facts and Myths about Stefan Banach,
Newsletter of the EMS, Issue71 (March2009).
8 S. Banach,H. Steinhaus, Sur la convergence en moyenne de series de Fourier, Bull. Intern. Acad.
Sci. Cracovie, Annee1918, Serie A: Sci. Math., S. 87-96; Nachdrucke: S. Banach, (Euvres I, Wars­
zawa: PWN, 1967,S. 31-39; H. Steinhaus, Collected Papers, Warszawa: PWN, 1985,S.215-222.
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Noch in Krakau, jedoch bereits in der Zeit der Bekanntschaft mit Banach", schrieb
Steinhaus" eine Arbeit tiber Funktionalanalysis", Er erkannte die Bedeutung des damals
neu entstehenden Zweiges der Mathematik und regte Banach" zur Beschaftigung damit
an.

Erinnern wir uns, dass in den letzten Jahrzehnten des 19. Jahrhunderts und zu Be­
ginn des 20. Jahrhunderts in der Mathematik Mengen betrachtet wurden, deren Ele­
mente Folgen, Reihen, Funktionen und diesen ahnliche Objekte waren, z. B. die Menge
12 der Folgen, deren Elemente zum Quadrat erhoben eine konvergente Reihe bildeten,
die Menge C der im Bereich [0,1]definierten und stetigen reellen Funktionen, die Menge
L2 der reellen Funktionen, die im Bereich [0,1] definiert und Quadrat-integrierbar sind
u. A. In solchen Mengen konnen algebraische (z. B. Addition), geometrische (z. B.
Abstand) und topologische (z. B. ermoglichte monotone Konvergenz, Grenzwerte zu
definieren) Eigenschaften betrachten werden. Solche Mengen mit ausgezeichneten
Strukturen hatten interessante Eigenschaften und man nannte sie "Funktionenriiume".
Erforscht wurden sie von Vito Volterra, David Hilbert, Friedrich Riesz und anderen,
aber sie erforschten jeden dieser .Raume" fur sich. Es fehlte eine allgemeine Definition,
die es ermoglichte, aile diese .Funktionenraume" mit einem Begriff zu erfassen und die­
sen einen .Raum" anstelle der bisherigen vielen zu erforschen. Und eben diese Aufgabe
iibernahm Banach", indem er in seiner Doktorarbeit'" den spater von ihm so bezeichne­
ten .Raum vom Typ B" untersuchte, der aile bekannten Funktionenraume umfasste.
Frechet (1928) und Steinhaus" (1929) machten den Vorschlag fur den Terminus
.Banachraum", und bis heute wird diese Bezeichnung allgemein verwendet.

Banachs Zugang war geometrisch motiviert. Er suchte eine Definition fur einen all­
gemeinen Funktionenraum, die als Verallgemeinerung fur den euklidischen Raum gel­
ten konnte und die Anwendung geometrischer Methoden und ihre Erweiterung auf ei­
nen solchen Funktionenraum der klassischen Analysis gestatten wiirde. Er erzielte einen
Erfolg und verdankte diesen der richtigen Verkniipfung der Algebra, Analysis und
Topologie, wobei deren Richtung von der Geometrie gewiesen wurde.

Die Definition eines Raumes des Typs B (d. h. des Banachraumes) war axiomatisch.
Die Axiome teilten sich in drei Gruppen, die den Eigenschaften der Linearitat, der Met­
rik undVollstiindigkeit entsprechen. Kurz gesagt ist der Banachraum ein vollstandiger
normierter Vektorraum. Bei dieser Definition fehlt das Axiom tiber die Existenz eines
Skalarproduktes, das die Definition des wichtigen Begriffs der Orthogonalitat und, all­
gemeiner, des Winkels gestatten wiirde. Dies war jedoch eine beabsichtigte Auslassung.

9 H. Steinhaus, Additive und stetige Funktionaloperationen, Math. Z. 5 (1919), S. 186-221; Nach­
druck: H. Steinhaus, Selected Papers, Warszawa: PWN, 1985, S. 252-288. An die Arbeit erinnert
J. Dieudonne, History of Functional Analysis, Amsterdam: North-Holland, 1981, S. 128. Der Na­
me "Funktiona1ana1ysis" erschien erst im Jahre 1922, vgl. das Buch P. Levy, Lecons d'analyse
fonctonnelle, Paris: Gauthier-Villars, 1922.
10 S. Banach. Sur les operations dans les ensembles abstraits et leurs applications aux equations inte­
grales, Fund. Math. 3 (1922), S.133-181; Nachdruck: S. Banach, tEuvres II, Warszawa: PWN,
1979,S. 305-343.
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Sie machte zwar die Geometrie des .Raumes vom Typ B" armer, sicherte ihr jedoch
eine grolsere Allgemeinheit.

Banachs" Beitrag beschrankte sich nicht auf die Definition und den Hinweis, dass
aIle bisher bekannten Funktionenraume darin enthalten sind (d. h. Banachraume sind),
sondern zeigte ebenfaIls, dass diese interessante mathematische Objekte sind. Banach"
bewies hierzu mehrere Lehrsatze, darunter den Satz iiber kontrahierende Abbildungen,
der als Banachscher Fixpunktsatz bekannt ist.

5 Prioritat

In den 1ahren 1920-1922 verfolgten Norbert Wiener und Hans Hahn ahnliche Konzep­
tionen. Bei Wiener war das allerdings ein kompliziertes logisches System, ohne Motiva­
tion und Beispiele!', bei Hahn ein verbal formuliertes System von Folgenraumen mit
dem Gedanken der Losung unendlicher Iinearer Gleichungssysteme mit unendlich vie­
len Variablen 12. Die Ansatze waren also grundsatzlich verschieden, am durchsichtigsten
und am besten begriindet war Banachs" Konzeption, und sie trug schliel3lich auch den
Sieg davon'r'. Wiener selbst erkannte Banachs Prioritat'" an. Banachs und Hahns
Arbeiten kreuzten sich jedoch noch mehrmals, z. B. im Satz von Hahn-Banach iiber die
Fortsetzung Iinearer Funktionale'",

6 Die Anfange der Lemberger Schule

Banach" war der Typ eines Wissenschaftlers, der die Gruppenarbeit liebte. 1m Milieu
eines Cafes versammelten sich alsbald urn ihn herum, zum Teil auch urn Steinhaus", ehr­
geizige und erfolgshungrige junge Menschen. So begann sich die Lemberger mathemati­
sche Schule zu bilden.

II N. Wiener, On the theory of sets ofpoints in terms of continuous transformations, C.R. du Con­
{IresInternational des Mathematiciens (Strasbourg, 1920), Toulouse 1921, S. 312-315.

2 H. Hahn, Uber Folgen linearer Operationen, Monatsh. Math. Phys. 32 (1922), S. 3-88.
13 R. Duda, The discovery ofBanach spaces, in: W. Wieslaw (Hrsg.), European Mathematics in the
Last Centuries, Proc. Conference Bedlewo (April 2004), Stefan Banach International Mathemati­
cal Center and Institute of Mathematics of'Wroclaw University, 2005, S. 37-46.
14 N. Wiener, A note on a paper of S. Banach, Fund. Math. 4 (1923), S. 136- 143; siehe auch seine
Anmerkungen: N. Wiener, I am a Mathematician, New York: Doubleday, 1958.
15 H. Hahn, Uber lineare Gleichungssysteme in linearen Riiumen, J. reine angew. Math. 157 (1927);
S. Banach, Sur lesfonctionnelles lineaires, Studia Math. 1 (1929), S. 211-216 und 223-239, Nach­
druck in: S. Banach, tEuvres II, Warszawa: PWN, 1979, S. 375-395. Siehe auch: H. Hochstadt, E.
Helly. Father ofthe Hahn-Banach Theorem, Math. Intellig. 2 (1980).
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Einer ihrer hervorragenden Vertreter und zugleich einer der nachsten Mitarbeiter
Banachs" wurde Stanislaw Mazurv'", der nach Jahren die Doktorarbeit seines Meisters
folgendermaBen einschatzte:

Die Entstehung der Funktionalanalysis war wie die Entstehungjeder neuen wissenschaftlichen
Disziplin die Schlussetappe eines langen historischen Prozesses. Umfangreich ist die Liste der
Mathematiker, deren Forschungen zur Entstehung der Funktionalanalysis beitrugen. Sie ent­
halt solche beruhmten Namen wie Vito Volterra, David Hilbert, Jacques Hadamard, Maurice
Frechet und Friedrich Riesz. Doch das Jahr 1922, in dem Stefan Banach in der polnischen Zeit­
schrift "Fundamenta Mathematicae" seine Doktorarbeit unter dem Tite! Sur les operations
dans les ensembles abstraits et leurs applications aux equations integrates publizierte, gilt als das
Jahr des Durchbruchs in der Geschichte der Mathematik des 20. Jahrhunderts. Dieser zahlrei­
che Seiten umfassende Beitrag festigte endgultig die Grundlagen der Funktionalanalysis. [...]
Die Funktionalanalysis ersetzte den fur die Analysis grundlegenden Begriff der Zahl durch ei­
nen allgemeineren Begriff, den man heute in tausenden mathematischen Beitragen mit dem Be­
griff .Punkt des Banachraumes" bezeichnet. Die damit erreichte Verallgemeinerung der ma­
thematischen Analysis, die als Funktionalanalysis bezeichnet wird, gestattete es, scheinbar un­
terschiedliche Probleme der mathematischen Analysis auf einfache und einheitliche Weise zu
behandeln und unter ihnen viele solche Probleme zu losen, mit denen sich die Mathematiker
zuvor vergeblich herumschlugen 17.

7 "Studia Mathematica"

1m Jahre 1927 kam Steinhaus" auf die Idee, in Lemberg eine sich auf die "Theorie der
Operatoren", d. h. auf die Thematik der Schule konzentrierende Zeitschrift zu griinden
und iiberredete dazu Banach" zur Mitarbeit. Zwei Jahre spater erschien unter ihrer ge­
meinsamen Redaktion der erste Band der "Studia Mathematica". Injener Zeit war das
nach den "Fundamenta Mathematicae" die zweite mathematische Zeitschrift mit einge­
grenzter Thematik. Die Zeitschrift entwickelte sich gut und wurde zur wichtigsten Stiit­
ze der jungen Schule. In den Jahren 1929-1940 erschienen 9 Bande und in ihnen 161 Ar­
beiten, davon III aus Lemberg. Zu den am haufigsten publizierenden Autoren gehor­
ten (in der Reihenfolge der Anzahl der Arbeiten; wenn an der Arbeit mehrere Autoren
beteiligt waren, wirdjeder gezahlt): Wladyslaw Orlicz" (21), Mazur? (17), Banach? (16),
Stefan Kaczmarz" (12), Steinhaus" (9), Herman Auerbach" (9), Mark Kac" (9), Jozef
Marcinkiewicz (8), Meier Eidelheit" (7), Juliusz Schauder" (7), Jozef Schreier? (6), Anto­
ni Zygmund (6), Wladyslaw Nikliborc (5), Zygmunt Wilhelm Birnbaum" (4). Von die­
sen 14 Autoren kamen nur Marcinkiewicz und Zygmund von auBerhalb Lembergs. Die
iibrigen bildeten den aktivsten Kern der Schule.

16 G. Kothe, Stanislaw Mazur's contributions to functional analysis, Math. Ann. 277 (1987),
S. 489-528; polnische Ubersetzung: Wiadom. Mat. 30.2 (1994), S. 199-250.
17 S. Mazur, Rede in der Feierstunde zum Gedenken Stefan Banachs, Wiadom. Mat. 4.3 (1961), S.
249-250 [Polnisch].

10 JB 112. Band (2010), Heft 1



Roman Duda DieLemberger Mathematikerschule

8 Banachs Monographie

1m Jahre 1932 wurde das reiche Ergebnis des ersten Jahrzehnts der Schule in Banachs
Monographic" zusammengestellt, die ihm internationale Anerkennung einbrachte.

Das Erscheinen von Banachs Abhandlung iiber .Jineare Operatoren" bedeutet [...] den Beginn
des Erwachsenenalters der Theorie normierter Raume. Aile Ergebnisse [...] werden von zahlrei­
chen frappierenden Beispielen aus unterschiedlichen Bereichen der Analysis begleitet [...]. Die
Arbeit erfreute sich eines bemerkenswerten Erfolgs, und eine ihrer unmittelbaren Auswirkun­
gen war die nahezu allgemeine Annahme der Nomenklatur und der von Banach verwendeten
Bezeichnungen'",

Es fallt schwer, den Einfluss zu iiberschatzen, den Banachs Buch auf die Entwicklung der
Funktionalanalysis hatte. Indem es einen wesentlich grolieren mathematischen Fragenbereich
umfasst als den, den die Hilbertraumtheorie liefert, stimulierte es wahrscheinlich mehr Arbei­
ten als die Biicher Stones und von Neumanns zusammengenommerr'", Mehr noch, wegen ihrer
grofseren Allgemeinheit behielt die Banachraumtheorie bedeutend mehr vom urspriinglichen
Reiz der Funktionalanalysis [...] als die Theorie der linearen Operatoren in Hilbertraumerr",

Es ist zweifellos eines der Biicher, die den grofnen Einfluss auf die Entwicklung der modernen
Mathematik ausgeiibt haben. Obgleich die in ihm entwickelte Theorie [...] die vorher fiir spe­
ziellere Ziele entwickelten Methoden nutzen konnte [...], war sie doch fast in ihrer Gesamtheit
von Banach und seinen Mitarbeitern geschaffen worden. Friedrich Riesz driickte sich iiber den
Wert dieses Buches immer mit grolster Hochachtung aus22

.

Banach stellte seine Ideen in der beriihmten Monographie in reifer und geschlossener Form
mit aullergewohnlicher Klarheit dar und unterstrich die subtile Wechselbeziehung zwischen al­
gebraischen und topologischen Uberlegungen, indem er die abstrakten und allgemeinen Begrif­
fe, mit denen es die moderne Funktionalanalysis zu tun hatte, wahrhaft ertragreich machte.
Was dazu beitrug, dass der Einfluss von Banachs Arbeit so groB wurde, war seine Vereinigung
einer Anzahl unterschiedlicher, vorher entdeckter fragmentarischer und unvollstandiger Er­
gebnisse aus dem Bereich der Analysis".

1m Jahre 1936 wurde Banach zu einem Plenarvortrag auf dem Internationalen
Mathematiker-Kongress in Oslo eingeladerr". (Es war dies seine zweite und letzte Aus­
landsreise.)

18 S. Banach, Theoriedes operationslineaires, Monografie Matematyczne 1, Warszawa 1932.
19 N. Bourbaki, Elements d'histoiredesmathematiques, Paris: Hermann, 1969.
20 Der Autor denkt sicher an die Biicher: J. von Neumann, Mathematische Grundlagen der Quan­
tenmechanik, Berlin: Springer, 1932; M. Stone, Linear Transformations in Hilbert Spaces and Their
Application to Analysis, New York 1932 - mit denen die schnelle Entwicklung der Theorie der Hil­
bertraume begann.
21 G. Birkhoff, E. Kreyszig, The establishment of Functional Analysis, Hist. Math. 11 (1984),
S.258-321;Zitatvon S.315.
22 B. Szokefalvi-Nagy, Rede in der Feierstunde zum Gedenken Stefan Banachs, Wiadom. Mat. 4.3
(1961), S. 265~268 [Polnisch].
23 M.H. Stone, Unsere Schuld gegeniiber Stefan Banach, Wiadom. Mat. 4.3 (1961), S. 252~259
~Po1nisch].

4 S. Banach, Die Theorieder Operationen und ihre Bedeutungfiir die Analysis, C.R. du Congres In­
ternational des Mathematiciens (Oslo, 1936), S. 261-268; Nachdruck: S. Banach, (Euvres II, Wars­
zawa: PWN, 1979, S. 434-441.
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9 Die Interessen von Steinhaus

Die Lemberger mathematische Schule ist mehr als nur Banach" und seine "Theorie der
Operatoren" bzw. die Funktionalanalysis. Ihr Mitbegriinder war Steinhaus", ein ande­
rer Typ des Wissenschaftlers als Banach". Naeh Ostwalds Klassifikation war Steinhaus?
eher der Typ eines "Sehmetterlings", der immer wieder von neuen .Blumen" angezogen
wurde, zu deren Erforschung er neue Ideen einbraehte, an deren spaterer Entwieklung
er aber gewohnlich nieht weiter teilnahm. So wandte er sich nach anfanglicherFaszina­
tion von der Theorie der trigonometrischen Reihen und der Funktionalanalysis" der
MaBtheorie zu und bewies den spater oft zitierten Satz, dass fiir eine Menge positiven
MaBes die Menge der Abstande zwischen ihren Punkten das Intervall [O,e] fur ein
bestimmtes e > °enthalr". In Foige dessen interessierte man sich in Lemberg fiir die
MaBtheorie, und einige Jahre spater erschienen gleiehzeitig zwei Pionierarbeiterr", in
denen der Versueh unternommen wurde, die Wahrscheinlichkeitstheorie auf malitheo­
retiseher Basis zu behandelrr". Steinhaus" erreiehte die vollkommene Mathematisie­
rung des Spiels urn Kopf oder Zahl beim Werfen einer Miinze, eines nichtklassischen
probabilistisehen Systems. Er fasste namlichdie unendlichen Folgen der Miinzwiirfe als
Folgen von Nullen und Einsen und damit als Zahlen des Intervalls [0,1] auf. Weiter
betraehtete er die (im Sinne von Lebesgue) messbaren Teilmengen dieses Intervalls als
Zufallserscheinungen und das Lebesguesche MaB als ihre Wahrseheinlichkeit. Er fasste
also das unendlich oft wiederholte Spiel urn Kopf oder Zahl als Tripe! ([0, I], L, A) auf,
worin L die Familie der messbaren Untermengen des Intervalls [0,1] und Adas Lebes­
guesche MaB bedeutet. Man konnte dieses als das "Halbfinale der Axiomatisierung der
Wahrscheinlichkeitstheorie" 29 ansehen. In der spateren Fassung von Kolmogorov war
der Wahrseheinlichkeitsraum ein Tripel (0, F, p), wobei 0 der Raum der Elementar-

251m Bereich der Funktionalanalysis hatte er noch eine gemeinsame und wichtige Arbeit mit S. Ba­
nach, in der sie das al1gemeine Prinzip der Verdichtung der Singularitaten formulierten und bewie­
sen: S. Banach, H. Steinhaus, Sur Ie principe de la condensation de singularites, Fund. Math. 9
(1927), S. 50-61; Nachdrucke: S. Banach, tEuvres II, Warszawa: PWN, 1979, S.365-374; H.
Steinhaus, Collected Papers, Warszawa: PWN, 1985, S. 363-372. Auch diese Arbeit ging in die Ge­
schichte der Funktionalanalysis ein, vgl. J. Dieudonne, History ofFunctional Analysis, Amsterdam
1981,S. 141-142.
26 H. Steinhaus, Sur les distances des points dans les ensembles de mesure positive, Fund. Math. I
(1920), S. 93-103; Nachdruck: H. Steinhaus, Selected Papers, Warszawa: PWN, 1985,S. 296-405.
27 Vgl. H.-J. Girlich, Eomnicki-Steinhaus-Kolmogorov: steps to a modern probability theory, in: W.
Wieslaw (Hrsg.), European Mathematics in the Last Centuries, Proc. Conference Bedlewo (April
2004), Stefan Banach International Mathematical Center and Institute of Mathematics of Wroc­
law University, 2005, S. 47-56.
28 A. Lomnicki, Nouveauxfondements du calcul de probabilites, Fund. Math. 4 (1923), S. 34-71; H.
Steinhaus, Les probabilites denombrables et leur rapport ii la theorie de mesure, Fund. Math. 4
(1923), S.286-31O, Nachdruck der zweiten: H. Steinhaus, Selected Papers, Warszawa: PWN,
1985,S. 322-331.
29 K. Urbanik, Die Ideen von Hugo Steinhaus in der Warscheinlichkeitstheorie, Wiadom. Mat. 17
(1973), S. 39- 50 [Polnisch].
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ereignisse,F eine a-Algebra von Teilmengen von nund p ein normiertes MaB30 ist. Das
bahnbrechende Denken von Lomnicki", Steinhaus" und ihren Schiilern iiber die Wahr­
scheinlichkeitstheorie wurde spater, dank William Feller, allgemein anerkannt. Es sei
hinzugefiigt, dass Steinhaus? iiber die Sichtweise Kolmogorovs nicht erfreut war. Er
glaubte namlich, dass in ihr die Idee des Zufalls verlorenging, und so entwickelte er ge­
meinsam mit seinem Schiiler Kac? die Theorie der "unabhangigen Funktionen" mit
dem Ziel, aufihr eine zufriedenstellendere Theorie der Wahrscheinlichkeir" zu begriin­
den. Aber Kac ist friih emigriert, und der Gedanke wurde nicht verwirklicht. Steinhaus
war auch der Initiator der nichtkommutativen Theorie der Wahrscheinlichkeir'".

Eine andere Richtung, fiir die sich Steinhaus" interessierte, war die Spieltheorie. In
einer akademischen Broschiire publizierte er eine kurze Arbeir'", deren Bedeutung er
selbst mit Sicherheit nicht erkannte.

Esistdies eine Arbeit geringen Umfangs ohnedenCharakter einer mathematischen Publikati­
on,essind gewissermaBen einige Bemerkungen, abervoneiner Art,dass sie zujenerZeiteiner
Offenbarung gleichkamen. Eswaren Bemerkungen, diedieGrundlage der heutigen Spieltheo­
riebilden. Erstens wurde dort aufexakte Weise derBegriff der Strategieeingefiihrt (allerdings
unteranderer Bezeichnung - Spielweise, aberurn denNamen gehteshiernicht). Derzweite we­
sentliche Faktor ist die sogenannte Normalisierung der Spiele, und schlieBlich: der Begriff der
Auszahlung, diejedes Spiel charakterisiert, sowie das Prinzip der Wahl einer Minimaxstrate­
gie34

.

Obgleich die Arbeit von Steinhaus", nachdem sie nach dem Krieg aufgefunden und ins
Englische iibersetzt wurde, sich als Offenbarung erwies, war sie jedoch nur noch von
historischer Bedeutung.

Ein Ergebnis der langjahrigen Beschaftigung von Steinhaus" mit trigonometrischen
Reihen und, allgemeiner, mit orthogonalen Reihen (dariiber schrieb er 20 Arbeiten, da­
runter eine gemeinsam mit Kaczmarz") war die gemeinsame Monographie von
Kaczmarz und Steinhaus'". Bis in die sechziger Jahre des 20. Jahrhunderts hinein war
sie eine Standardreferenz auf dem Gebiet der Orthogonalreihen. (Nebenbei gesagt lasst
sichjedoch feststellen, dass die am haufigsten zitierte Arbeit von S. Kaczmarz nichtjene
groBeMonographie ist, sondern eine kurze Notiz, in der er eine bestimmte Methode der

30 A.Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin: Springer, 1933.
31 Por.P. Holgate, Independent functions:probabilityand analysisin Polandbetweenthe wars, Bio­
metrika 84 (1980), S. 161-173; M. Kac,Hugo Steinhaus-:a reminiscence and tribute, Amer. Math.
Monthly 81 (1974), S.572-581; M. Kac, EnigmasofChance. An Autobiography, New York1985.
32 H. Steinhaus, La theorieet les applications desfonctions independantes au sens stochastique, in:
Les fonctions aleatoires, Colloque consacre it la theorie des probabilites, Paris: Hermann, 1938,
S.57-73; Nachdruck: H.Steinhaus, Selected Papers, Warszawa: PWN, 1985,S.493-507.
33 H. Steinhaus, Die notwendigen Definitionen zur Spiel-und Verfolgungstheorie, Mysl Akademicka
1 (1925), S. 13-14 [Polnisch]; Englische Ubersetzung: Naval Res. Logist. Quater. 7 (1960),
S.105-107.
34 C. Ryll-Nardzewski, Die Arbeiten von Hugo Steinhaus tiberKonfliktsituationen, Wiadom. Mat.
17 (1973), S.29-38 [Polnisch].
35 S.Kaczmarz, H. Steinhaus, Theorie der Orthogonalreihen, Monografie Matematyczne 6, War­
szawa 1936;ubersetzt insEnglische (1951) undRussische (1959).
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naherungsweisen Losung linearer Gleichungen mit einer groBen Zahl von Variablen
vorstellr'")

In den dreilsiger Jahren 109 es Steinhaus immer mehr in den Bereich der Anwendun­
gen der Mathematik. Eine zusatzliche Frucht seines scharfsinnigen Geistes, der iiberall
mathematische Probleme erkannte, war ein Buch, das 1938 gleichzeitig in Polnisch und
Englisch erschien und bis zur Gegenwart vier Auflagen in jeder dieser Sprachen und da­
zu Ubersetzungen in mehr als zehn andere Weltsprachen'" hatte. Dieses Buch ist eines
der bekanntesten Mathematikbiicher in der Welt.

10 Banach und die Ma8theorie

Die heutige Mabtheorie geht zuriick auf Camille Jordan und Henri Lebesgue, die die
ersten Beispiele fur Malle konstruierten: das endlich additive MaB (Jordan) und das ab­
zahlbar additive MaB (Lebesgue). Allgemein formulierte Felix Hausdorff in seiner Mo­
nographie" das Existenzproblem fur Malle und bewies darin zur allgemeinen Verwun­
derung, dass in Rn fur n > 2 ein bewegungsinvariantes MaB auf der gesamten Potenz­
menge nicht existieren kann, das gilt sogar fur nur endlich additive MaBe. Das Problem
der iibrigen Dimensionen n =1, 2 nahm Banach auf und wies nach, ebenfalls zur grolien
Verwunderung, dass hier das MaBproblem eine positive Losung har'", Beide, Hausdorff
und Banach, stiitzten sich in ihren Uberlegungen auf das damals kontroverse Auswahl­
axiom, aber keinen von beiden hat das gestort,

Ein haufiger Gast in Lemberg war Tarski aus Warschau. Er kannte sich in der Men­
gentheorie gut aus. Banach wiederum hatte eine herrliche geometrische Intuitionen und
wandte mutig nichtkonstruktive Methoden an. Zwischen beiden entwickelte sich eine
Zusammenarbeit, deren erstes Ergebnis das sogenannte Banach-Tarskische Parado­
xon 40 war, das gewohnlich als die paradoxe Zerlegung einer Kugel formuliert wird: Eine
dreidimensionale Kugel mit dem Radius 1 lasst sich in endlich viele Teile zerlegen, aus
denen man zwei Kugeln mit dem Radius 1 zusammensetzen kann. Das ist eine der be­
kanntesten paradoxen Konsequenzen des Auswahlaxioms.

36 S. Kaczmarz, Angeniiherte Losung vonSystemen linearer Gleichungen, Bull. Intern. Acad. Polan.
Sci. Let., d. sci. math. nat. A (1937), S. 355-357; englische Ubersetzung: Approximate solution of
systems oflinearequations, Intern. J. Control 57.6 (1993), S. 1269-1271.
37 H. Steinhaus, Kalejdoskop matematyczny, LWQw: Ksiaznica-Atlas, 1938; englische Ubersetzung:
MathematicalSnapshots, 1938; deutsche Ubersetzung: Kaleidoskop der Mathematik, Berlin: VEB
Deutscher Verlag der Wissenschaften, 1959.
38 F. Hausdorff, Grundziige der Mengenlehre, Leipzig 1914. Nachdrucke: Chelsea sowie F. Haus­
dorff, Gesammelte Werke, Band 2, Springer, 2002.
39 S. Banach, Sur le probleme de mesure, Fund. Math. 4 (1923), S. 7-33; Nachdruck: S. Banach,
(Euvres I, Warszawa: PWN, 1967, S. 66-89.
40 S. Banach, A. Tarski, Sur la decomposition des ensembles depoints en partie respectivement con­
gruentes, Fund. Math. 6 (1924), S. 244-277; Nachdrucke: A. Banach, (Euvres I, Warszawa: PWN,
1967, S.118-148, A. Tarski, Collected Papers, Basel-Boston-Stuttgart: Birkhauser, 1986, Bd. I,
S. 119-154. VgI.ebenfalls S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, 1985.
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Spater wurde die MaJ3problematik, entsprechend umformuliert, in Lemberg starker
in mengentheoretischer Richtung fur Mengen verschiedener Machtigkeit entwickelt
(Banach", Kuratowski", Tarski, Ulam"), Gegenstand der Untersuchungen waren unter
anderem "nichtmessbare Kardinalitaten",

11 Schauder und andere

Einer der talentiertesten jungen Vertreter der Lemberger Mathematik war Schauder",
der interessante Ergebnisse im Grenzbereich der Theorie der Banachraume, der Topo­
logie und der Theorie der Differentialgleichungen erzie1te. Er setzte sich mit der Proble­
matik auseinander, dass fur injektive stetige Transformationen des Hilbertschen Rau­
mes ein Offenheitssatz im Allgemeinen nicht mehr giiltig ist. Das bedeutet, dass sich die
Topologie des linearen Raumes unendlicher Dimension so wesentlich von der Topolo­
gie des Euklidischen Raumes unterscheiden muss, dass sogar am Sinn ihrer Berechti­
gung zu zweifeln ist. Schauder" wiesjedoch nach, dass bei gewissen zusatzlichen Annah­
men gesichert werden kann, dass (nicht einmal unbedingt lineare) injektive stetige
Transformationen eines solchen Raumes in sich die Offenheit von Mengen erhalten'".
Auf diese Weise .rettete" er Banachs Topologie des Raumes'", und zugleich war dies
das erste bedeutsame Ergebnis der nichtlinearen Funktionalanalysis (der Banach? den
zweiten Band seiner Monographie widmen wollte, der jedoch niemals geschrieben wur­
de). Eine schone Anwendung dieses Ergebnisses fand Schauder? in der Theorie der Dif­
ferentialgleichungen'". Das war der Beginn seiner Beschaftigung mit nichtlinearer
Funktionalanalysis, die ihren Reiz aus der Kraft topologischer Methoden gewinnt.
Kurz danach begann seine Zusammenarbeit mit Jean Leray, der diese Arbeit von
Schauder" schon kannte. Gemeinsam haben sie diese Methoden verallgemeinert und
den Leray-Schauderschen Abbildungsgrad entwickelt. Die Starke dieser Methoden in
den Anwendungen haben sie gezeigt, indem sie die Existenz der Losung des Dirichlet­
schen Problems fur elliptische Gleichungen eines bestimmten Typs nachwiesen'". Diese
im Jahre 1938mit dem Metaxaspreis ausgezeichnete Arbeit war zugleich der Beginn der
algebraischen Topologie in Banachraumen. 1m Folgenden widmete Schauder" eine Rei­
he Arbeiten dem linearen Problem, was Leray nach Jahren so einschatzte:

41 J. Schauder, Invarianz des Gebietes in Funktionalraumen, Studia Math. 1 (1929), S. 123-139; -,
Uber die Umkehrung linearer stetiger Funktionaloperationen, Studia Math. 2 (1930), S. 1-6; Nach­
druck beider Beitrage: J. Schauder, tEuvres, Warszawa: PWN, 1978, S. 147-162 u. 128-139.
42 Vgl. C. Bessaga, A. Pelczynski, Selected Topics in Infinite-Dimensional Topology, Monografie
Matematyczne, Warszawa 1975.
43 J. Schauder, Uber den Zusammenhang zwischen der Eindeutigkeit und Losbarkeitpartieller Diffe­
rentialgleichungen zweiter Ordnung von elliptischem Typus, Math. Ann. 106 (1932), S.661-772;
Nachdruck: J. Schauder, (Buvres, Warszawa: PWN, 1978, S. 235-297.
44 J. Leray, J. Schauder, Topologie et equations fonctionnelles, Ann. de I'Ecole Norm. Sup. 51
(1934), S. 45-78; Nachdruck: J. Schauder, (Euvres, Warszawa: PWN, 1978, S. 320-348.
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Dann publiziert Schauder [...] die erste Version seiner Methode, nach einem Jahr liefert er [ ]
die zweite - ungemein elegant und kurz. Neun Seiten [...] und sechs Seiten des IV. Kapitels [ ]
bilden die volle Theorie des linearen Dirichletschen Problems. Die Bemerkung [...] gibt ihr eine
wichtige Verallgemeinerung. Die Theorie zeichnet sich durch eine bewundernswiirdige Ein­
fachheit und Eindringlichkeit aus'".

Nach Leray'" beruhten die grolsten Verdienste Schauders" darauf, dass es ihm gelang
"die algebraische Topologie in Banachraumen zu begrunden und die klassischen Pro­
bleme in der Theorie partieller Differentialgleichungen auf den Beweis zu reduzieren,
dass gewisse lineare Abbildungen von Funktionenraumen eine endliche Norm haben".

Fast gleichzeitig mit den Arbeiten von Alan Turing erschien die Konzeption der re-
kursiven Funktion auch in Lemberg.

Aber das war in Polen vor dem Weltkrieg, two] Banach und Mazur diese Idee in konsequentes­
ter Weise entwickelten. Der zweite Weltkrieg verhinderte die Publikation ihrer Arbeiten aus
dieser Zeit und hinterlieB nur die Zusammenfassung'?: 48.

In Lemberg nahmen in den Arbeiten von Eidelheit und Mazur auch die Banachalgebren ihren
Anfang, obgleich sie erst I. M. Gelfand im Jahre 1941 formal einfuhrte?".

Eine breite Popularitat gewann Kazimierz Bartels Monographie tiber die Perspektive in
der Malerei", der langjahrige Studien des Autors tiber die italienische Malerei voraus­
gingen.

Es ist unmoglich, in einem kurzen Artikel den ganzen Reichtum der Lemberger ma­
thematischen Schule wiederzugeberr". Die angefiihrten Informationen zeugen jedoch
von ihrer groBen Lebendigkeit, thematischen Vielfalt und der Bedeutung der gewonne­
nen Ergebnisse. Zur Illustration der Bedeutung der Schule nenne ich zwei Beispiele. 1m
Buch von Jean-Paul Pier 52 versuchten einige Mathematiker, "guidelines" der Mathema­
tik fur den Zeitraum 1900-1950 zu zeichnen. In den Jahren 1922-1938 hoben sie 19
Leistungen folgender Lemberger Mathematiker hervor: Banach", Steinhaus", Schau­
der", Kuratowski", Mazur", Birnbaum", Orlicz", Kaczmarz", Ein weiteres Beispiel sind
die Beziehungen zu anderen Zentren, darunter haufige Besuche von Mathematikern aus

45 J. Leray, Uber die Leistungen von Juliusz Pawel Schauder, Wiadom. Mat. 23.1 (1959), S. 11-19
~Polnisch].

6 Vgl. das Vorwort von J. Leray in: J. Schauder, (Euvres, Warszawa 1978.
47 S. Banach, S. Mazur, Sur les fonctions calculables, Ann. de la Soc. Polan. de Math. 16 (1937),
S.223.
48 M. Guillaume, La logique mathematique dans sa jeunesse, in: J.-P. Pier (Ed.), Development of
Mathematics 1900-1950, Basel: Birkhauser, 1994, S. 185-367, Zitat von S. 288. Die zitierte Zu­
sammenfassung: S. Banach, S. Mazur, Sur les fonctions calculables, Ann. de Ia Soc. Polan. de
Math. 16 (1937), S. 223.
49 Vgl. A. Shields, Banach Algebras 1939-1989, Math. Intellig. 113 (1989), S. 15-17.
50 K. Bartel, Perspektywa malarska, Bd. I, LWDw: Ksiaznica-Atlas, 1928; deutsche Ubersetzung:
Die Malerperspektive. Grundsatze, geschichtlicher Uberblick, Asthetik, hrsg. von Wolfgang
Haack, Band I, Leipzig-Berlin: Teubner, 1933.
51 Umfassender behandelt das mein Buch: R. Duda, Die Lemberger Mathematikerschule, Wroclaw
2007 [Polnisch].
52 J.-P. Pier (Ed.), Development ofMathematics 1900-1950, Basel-Boston-Berlin, Birkhiiuser, 1994.
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dem In- und Ausland, Unter ihnen waren Emil Borel, Henri Lebesgue, Jean Leray,
Leon Lichtenstein, Paul Montel, John von Neumann, Gordon T. Whybum und andere.

12 Die Atmosphare

Zennelos Besuch in Lemberg 1929. Sitzend von links: Hugo Steinhaus, Ernst Zennelo, Stefan
Mazurkiewicz. Stehend von links: Kazimierz Kuratowski, Bronislaw Knaster, Stefan Banach,
Wlodzimierz Stozek (im schwarzen Anzug), Eustachy Zylinski, Stanislaw Ruziewicz

Ein charakteristisches Merkmal des Lemberger mathematischen Lebens waren haufige
wissenschaftliche Sitzungen der Lemberger Sektion der Polnischen Mathematischen
Gesellschaft, auf denen die neuesten Ergebnisse vorgestellt und erortert wurden. Diese
Sitzungen spielten die Rolle der spateren Spezialseminare (die es damals fast noch nicht
gab) und forderten die Zusammenarbeit des gesamten Milieus. In den Jahren 1928­
1938, als die Berichte von diesen Sitzungen in den .Annales de la Societe Polonaise de
Mathematiques" veroffentlicht wurden, gab es davon 180, und es wurden aufihnen 360
Berichte erstattet. Oft geschah es, dass ein solcher Bericht die einzige Spur eines Ergeb­
nisses darstellte, denn manche Teilnehmer bemiihten sich chronisch nicht urn eine spate­
re Publikation. Zu den .widerspenstigsten'' gehorte Mazur", woriiber folgende Anek­
dote berichtet.

Eines Tages im Jahre 1938 horte man, wie Mazur, nachdem er die Zusammenfassun­
gen der Arbeiten deutscher Mathematiker tiber konvexe Funktionen im "Zentralblatt
fur Mathematik" durchgeblattert hatte, den Kommentar abgab:

"Hm, meine Ergebnisse sind gar nicht so schlecht, alles wissen sie noch nicht."
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Turowicz berichtete auch, dass ihm, als er 1938 nach Lemberg kam, Mazur" eine ge­
meinsame Beschaftigung mit Ringtheorie vorschlug. In kurzer Zeit bewiesen sie mehr
als zwanzig Lehrsatze tiber Ringe, von denen einer als spezieller Fall eine Verallgemei­
nerung des Satzes von WeierstraB tiber die Approximation stetiger Funktionen durch
Polynome (bei beliebiger Zahl von Variablen). Die Arbeit wurde im April 1939 beendet,
aber Mazur" wollte sie nicht publizieren:

.Jch liebe es nicht so unmittelbar. Vielleicht fallt uns noch etwas Besseres ein."

Es gab im Jahre 1940noch eine Chance, aber Mazur" widersetzte sich weiterhin, und so
ist die Arbeit niemals erschienen. Inzwischen hatte Marschall H. Stone diesen wichtigen
Satz bewiesen, und er ist heute als Weierstrali-Stonescher Satz bekannt.

Nach der Sitzung der Gesellschaft, die traditionell am Samstagabend stattfand, be­
gaben sich die Teilnehmer gewohnlich noch zu einer weiteren Diskussionsrunde ins
Cafe. Am beliebtesten war das "Schottische" Cafe, in dem man sich nahezu taglich traf.
Banach" liebte Diskussionen und die Arbeit im Sprachgewirr. Diese Kaffeehaustreffen,
die oftmals viele Stunden dauerten, bei denen tiber verschiedene Dinge gesprochen wur­
de, man Zigaretten rauchte (Banach" war ein leidenschaftlicher Raucher), Kaffee und
Alkohol trank, wurden zur Legende". Zu dieser Legende gehort auch das Schottische
Buch, dessen Anfang ein von Banachs Frau gekauftes Heft machte, durch das sie die
Tischplatten im KafTeehaus vor den ublicherweise darauf vorgenommenen Notizen
bewahren und wenigstens teilweise auch die dabei erzielten Ergebnisse retten wollte.

1m Schottischen Buch wurden Probleme und ihnen folgende Kommentare eingetra-
gen. Uber seine Bedeutung hat sich Gian-Carlo Rota folgendermaJ3engeaulsert:

"Fiir uns, die wir im goldenen Zeitalter der Funktionalanalysis aufgewachsen sind, war und
bleibt das Schottische Buch die romantisehe Quelle unserer Mathematik. [... ] Die erstaunlichen
Probleme des Schottisehen Buches verkiindeten den Geist der modernen Mathematikv.i"

Ein Zeugnis der in Lemberg herrschenden Atmosphare mage auch das Urteil von Kura­
towski? sein, der dort die Jahre 1927-1933 verbrachte.

Ais ieh den Lehrstuhl in Lemberg annahm, behielt ich meine Dozentur in Warsehau (indem ich
ein Jahr Urlaub als Dozent nahm), denn ich war mir nicht sieher, ob ich irgendwo auBerhalb
meiner Heimatstadt Warschau wiirde leben konnen,
Doeh es kam anders: Nach einem Jahr verzichtete ich auf die Dozentur in Warsehau und hatte
an Lemberg Gefallen gefunden.
Was war der Grund dafiir? Der ungewohnliche Reiz dieser Stadt, an die ieh mieh noeh jetzt mit
Riihrung erinnere, sowie die Art des Lebens seines wissenschaftliehen Milieus, das mieh in
blitzsehnellem Tempo absorbiert hatte. Besonders der Teil des wissensehaftliehen Milieus, mit
dem es mir gegeben war, enger zusammenzuarbeiten. Das ist das mathematisehe Zentrum, das
sieh ungewohnlich attraktiv darstellte. Vor allem Banach und Steinhaus. [...]

53 Vgl. K. Ciesielski, Lost legends of Lvov, 1. The Scottish Cafe, Math. Intelligencer 9.4 (1987),
S.36-37; S. Ulam, Erinnerungen an das Schottische Cafe. Wiadom. Mat. 12.1 (1969), S.49-58
~Polnisch].

4 R.D. Mauldin (Hrsg.), The Scottish Book. Mathematics from the Scottish Cafe, Boston: Birk­
hauser, 1981. Das Zitat stammt vom Umschlag.
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Dieses Lemberger "Klima" war auch fur
mein Schopfertum forderlich. Es bewirk­
te, dass meine Lemberger Jahre die
fruchtbarsten in meiner wissenschaftli­
chen Laufbahn waren".

Gegen Ende der dreiBiger Jahre began­
nen sich iiber diesem bliihenden Leben
Wolken zusammenzuziehen, die ein
aufkommendes Gewitter ankiindigten,
dessen katastrophale Dimensionen vo­
rauszusehen niemand imstande war.
Eine geringe Anzahl akademischer Ar­
beitsstellen und der zunehmende Anti­
semitismus bewirkten, dass sich einige
eine bessere Stelle im Ausland suchten.
Aus Lemberg emigrierten damals Birn­
baum" (1937), Kaco (1938) und Ulamo
(1935), aber der Letztere kamjedes Jahr
wahrend der drei Sommermonate nach
Polen und verlieB das Land erst im Au­
gust 1939 endgultig. Seinen jiingeren

Bruder Adam nahm er damals mit sich, und aus der grolsen Familie der Ulams haben
nur sie beide uberlebt.

Stanislaw Mazur and Stanislaw Ulam III der
Lemberger StraBe

13 Der Krieg

Am 1. September 1939 wurde Polen von Deutschland iiberfallen und es begann der
2. Weltkrieg. Die Deutschen erreichten das Vorfeld von Lemberg bereits am 12. Sep­
tember, aber die Stadt verteidigte sich. Am 17. September 1939, gemaf einem geheimen
sowjetisch-deutschen Abkommen, iiberfiel auch die Sowjetunion das gegen Deutsch­
land kampfende Polen. Die sowjetische Armee ubernahm von den Deutschen die Bela­
gerung Lembergs, und am 22. September kapitulierte die Stadt. Auf der Grundlage des
Ribbentrop-Molotow-Paktes wurde das Land in zwei nahezu gleichgroBe Gebiete
geteilt, und der ostliche Teil einschlief31ich Lemberg fie! den Sowjets zu. Aus diesen
Kampfen im September kehrte Kaczmarz" nicht zuriick (er war Offizier der Reserve
und kam durch bis heute nicht geklarte Ursachen urns Leben). Zahlreiche Fliichtlinge
aus dem von Deutschen besetzten Warschau kamen nach Lemberg, unter ihnen die
Mathematiker Knaster", Saks und Edward Szpilrajn (Marczewski). Steinhaus schrieb
dariiber:

55 K. Kuratowski, Notizen zur Autobiographie, Warszawa: Czytelnik, 1981 [Polnisch); Zitat von
S. 86 u. 89.
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"Dnter normalen Bedingungen hatten wir in einer solchen Zusammensetzung manches
geschafft" 56.

Doeh die Bedingungen waren nieht normal. Die polnisehen Sehulen und Lehranstalten
wurden gesehlossen, und obgleieh naeh einigen Monaten ukrainisehe Lehranstalten
eroffnet wurden, an denen man aueh Polen anstellte und Vorlesungen in Polniseh tole­
rierte, drangte man jedoeh auf die Durchfuhrung der Vorlesungen auf Russiseh oder
Ukrainiseh. Es gelang noeh, den vor dem Krieg vorbereiteten 9. Band der "Studia
Mathematiea" herauszugeben, jedoeh mit doppelter Nummerierung 9 (1) und mit einer
Zusammenfassungjedes Beitrags in Ukrainiseh. Die Zahl der polnisehen Studenten ver­
ringerte sieh von 3500im Jahre 1939auf 400 im Jahre 1941.Ais belastend erwiesen sieh
die standigen von Seiten der Besatzer erzwungenen Versammlungen und Umorganisa­
tionen, standig gab es die Fureht vor unerwarteter Verhaftung und Deportation. Naeh
Kasaehstan deportiert wurde Stanislaw Leja (ein Neffe von Franciszek Leja), Wladys­
law Hetper" steekte man in ein Lager, wo er naeh kurzer Zeit starb. In sowjetisehen
Gefangnissen litten Bartel° und Szpilrajn (Marezewski).

"Micherfasste ein unwiderstehlicher physischer Eke! gegeniiber aller Art sowjetischer Beam­
ten, Politiker und Kommissare. lch sah in ihnen stupide, verlogene, dumme Barbaren, denen
wirindieHande gefallen waren, sowie derRiesenaffe, derGulliver aufdasDachentfiihrt hat­
te" 57.

Am 22. Juni 1941 iiberfielen die Deutsehen die Sowjetunion, und bereits eine Woche da­
rauf marsehierten sie in Lemberg ein. Die deutsehe Besetzung dauerte 3 Jahre, vom
30. Juni 1941 bis zum 27. Juli 1944.Es war dieses die zweite Etappe der Ausrottung des
Polnisehen in Lemberg. 1m Juni 1941 wurden naeh einer im Voraus vorbereiteten Liste
23 Professoren der Universitat, der Technischen Hochschule und anderer Lehranstalten
der Vorkriegszeit verhaftet und aile (mit Ausnahme von Greer, den man wegen seiner
deutsehen Herkunft freilieB), manehe mitsamt den Familienangehorigen, auf den Wule­
eker Hohen erschosserr". Von den Lemberger Mathematikern starben damals Barte1°,
Lomnicki", Ruziewicz", Stozek? (mit zwei Sohnen) und Kaspar Weigel. Die Umstande
dieses Verbrechens sind bis heute nieht aufgeklart, Es erscheintjedoch als unbezweifel­
bar, dass die Deutsehen bei der Zusammenstellung der Listen von ukrainisehen Natio­
nalisten unterstiitzt wurden, die ebenfalls eine Ausrottung des Polnischen in Lemberg
anstrebten.

Steinhaus ahnte die drohende Gefahr und verbrannte unverziiglich alle Familien­
fotos und personlichen Unterlagen, wonach er am 4. Juli 1941 seine Wohnung verlieB,
urn niemals mehr dorthin zuriickzukehren. Die ersten Tage kam er mit seiner Frau bei
Bekannten unter, dann wohnten sie bis zum November 1941 heimlieh bei Prof. Fulinski
am Rande Lembergs, und als es aueh dort gefahrlich wurde, zogen sie in ein kleines

56 H. Steinhaus, Erinnerungen und Notizen, Zweite Auflage, Wroclaw 2002 [Polnisch]; Zitat von
S.197.
57 H.Steinhaus, Erinnerungen ... , op.cit., S. 191.
58 D. Schenk, Der Lemberger Professorenmord und der Holocaust in Ostgalizien, Dietz-Verlag,
2007.
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Dorf in der Nahe von Lemberg. Dort erhielt er von der Untergrundbewegung die au­
thentische Geburtsurkunde eines verstorbenen Waldarbeiters, und im Juli 1942 begab
er sich mit seiner Frau in ein abgelegenes Dorf im Gebirge, wo sie dann bis zum Juli
1945 wohnten, er unter dem Namen Grzegorz Krochmalny. Hier engagierte er sich
auch im geheimen Unterricht fur Jugendliche. Sie iiberlebten den Krieg und siedelten
sich danach in Breslau an.

Die Lemberger Lehranstalten wurden von den Deutschen geschlossen, aber im
Friihjahr 1942 eroffneten sie Staatliche Fachkurse, zu denen vierjahrige polytechnische
(5 Fachrichtungen), medizinische, tierarztliche und forstwirtschaftliche Lehrgange ge­
horten. Die Lehrgange wurden nach polnischen Lehrprogrammen aus der Vorkriegszeit
durchgefiihrt, jedoch ohne Berechtigung fur die Teilnehmer, an deutsche Lehranstalten
zu wechseln. Einige Lemberger Mathematiker fanden dort eine Anstellung.

Eine Besonderheit der deutschen Besatzung war das Institut von Prof. Weigel, der
fiir die Wehrmacht Impfstoffe gegen Typhus produzierte. Dieses Institut beschaftigte
zahlreiche Vertreter der Lemberger Intelligenz, unter ihnen auch Banach", Knaster",
Orlicz? und einige andere, als Fiitterer von Lausen.

Noch im Juli 1941 begann Edmund Bulanda, der Vorganger des auf den Wulecker
Hohen erschossenen Rektors der JKU, Roman Longchamps de Berier, mit den Vor­
bereitungen zur Reaktivierung der JKU in konspirativer Form. An dieser Untergrund­
universitat unterrichteten Orlicz", Zylinskio und andere, und einige Studenten schrieben
sogar ihre Doktorarbeiten (u.a. Andrzej Alexiewicz" bei Orlicz").

Gleichzeitig nahm die systematische Ausrottung von Juden und der Bevolkerung ju­
discher Abstammung ihren Lauf. Folgende Lemberger Mathematiker fielen ihr zum
Opfer: Auerbach" (erschossen bei der Auflosung des Rapoport-Krankenhauses 1942),
Eidelheit (ermordet 1943), Schauder (ermordet 1943), Marian Jacob (kam unter unbe­
kannten Umstanden urns Leben, 1944), Schreier (nahm Gift, 1943), Ludwik Sternbach
(kam 1942 urns Leben), Menachem Wojdyslawski (kam nach 1942urns Leben).

1m Juli 1944 war die Einwohnerzahl Lembergs auf 150000 gefallen (vor dem Krieg
zahlte die Stadt 300000 Einwohner und im Juni 1941 sogar iiber 400000). Die Rote
Armee eroberte die Stadt am 27. Juli 1944 mit starker Unterstiitzung seitens der Lan­
desarmee (Armia Krajowa, eine polnische Untergrundarmee), aber nach einigen Tagen
begannen die Sowjets, polnische Offiziere zu verhaften und zu deportieren und fuhrten
ihr Regime ein. Heute ist bekannt, dass bereits am 28. Juli 1944 ein Vertrag (damals ge­
heim) mit dem PKWN59 abgeschlossen worden war, auf dessen Grundlage die Halfte
Polens, die den Sowjets im Ergebnis der Vereinbarung von Ribbentrop und Molotow
(mit Ausnahme von Podlasie, auf das sie verzichteten) zugefallen war, sowjetisch blei­
ben sollte. Danach wurde einen Monat spater eine weitere Vereinbarung iiber die
Umsiedlung der polnischen Bevolkerung nach Westen geschlossen. Die Konferenz von

59 Das PKWN - Polnisches Komitee der Nationalen Befreiung - war eine von den Kommunisten
gebildete polnische Ersatzregierung, die lange Zeit nur von der Sowjetunion anerkannt war. Nach
der fingierten Vereinigung mit der polnischen Exilregierung in London und gefalschten Wahlen
wurde sie auch von den Westrnachten anerkannt.
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Jalta (Januar 1945) bestatigte die vorherigen Festlegungen von Teheran tiber die Ver­
schiebung "des Wohnsitzes des Staates und des polnischen Volkes" nach Westen, aber
die endgiiltige Festlegung der neuen Grenzen erfolgte erst auf der Potsdamer Konferenz
im August 1945. Die Vorbereitungen fur die Vertreibung der polnischen Bevolkerung
begannen allerdings schon im Herbst 1944, und die ersten Transporte setzten sich im
Friihjahr 1945 in Bewegung, noch vor Beendigung der Kriegshandlungen und vor der
Festlegung der neuen Grenzen. Am 31. August 1945verstarb Banach", kurz daraufver­
lieBen die letzten polnischen Mathematiker Lemberg: Knaster (nach Breslau), Mazur
(nach Lodz), Orlicz" (nach Posen), Nikliborc (nach Warschau), Zylinski? (nach Glei­
witz).

Die Lemberger mathematische Schule harte aufzu existieren.

Einige Vertreter der Lemberger mathematischen Schule

Andrzej ALEXIEWICZ (1917-1995). Geboren in Lemberg, Studium der Physik und Mathematik
an der JKU. Promotion 1944 an der JKU im Untergrund. Ab 1945 als Professor an der Uni­
versitat in Posen.

Herman AUERBACH (1901-1942). Geboren in Tarnopol, Studium an der JKU Mathematik.
Promotion 1930, Habilitation 1935. Ermordet in der Zeit der deutschen Besetzung.

Stefan BANACH (1892-1945). Geboren in Krakau. Studium an der Technischen Hochschule in
Lemberg. Unterbrechung des Studiums infolge des I. Weltkrieges. Promotion 1920 an der
JKU, Habilitation ebenfalls dort 1922. Wurde danach sofort auBerordentlicher Professor und
1927 ordentlicher Professor. Wahrend der sowjetischen Okkupation war er Dekan an der
ukrainischen Universitat, wahrend der deutschen Okkupation bestritt er seinen Unterhalt
durch Fiittem von Lausen. Verstarb kurz nach Kriegsende.

Kazimierz BARTEL (1882-1941). Geboren in Lemberg, Studium der Mechanik an der Tech­
nischen Hochschule und der Mathematik an der Universitat, Promotion 1911 an der Tech­
nischen Hochschule, wurde dort 1912 auBerordentlicher Professor. Nach der Habilitation
1914 mit Verzogerung durch Teilnahme am Krieg 1917 ordentlicher Professor. Einer der be­
kanntesten Politiker in der Zeit zwischen den Weltkriegen (mehrmals Regierungschef, Minis­
ter, Abgeordneter des Sejm, Senator). Rektor 1930/31 der Technischen Hochschule. Erschos­
sen von den Deutschen am 26. Juli 1941.

Zygmunt Wilhelm BIRNBAUM (1903-2000). Geboren in Lemberg. Nach dem Jurastudium zog es
ihn zur Mathematik, Promotion an der JKU 1929. Zusatzstudium 1929-1931 in Gottingen,
wo er das Diplom als Aktuar erwarb. Ab 1937 in der Emigration in den USA, wo er Professor
an der Universitat in Seattle wurde.

Leon CHWISTEK (1884-1944). Geboren in Krakau. Daselbst Studium der Mathematik und Pro­
motion 1906. 1m I. Weltkrieg Dienst in den Polnischen Legionen. Habilitation 1928 an der
Universitat in Krakau. 1930 Berufung auf den Lehrstuhl fur Logik an der JKU als auBer­
ordentlicher Professor und 1938 als ordentlicher Professor. Nach Ausbruch des deutsch-sow­
jetischen Krieges emigrierte er nach Georgien. Verstarb 1944 in Moskau (nach Ablehnung
eines Vorschlags zum Eintritt in das PKWN).

Meier EIDELHEIT (1910-1943). Geboren nahe Lemberg. Studium der Mathematik an der JKU.
Promotion 1938. Ermordet durch die Deutschen.

Wladyslaw HETPER (1909-1940 ?). Geboren in Krakau. Dort Studium der Mathematik, 1937
an der JKU. Kampfte im September 1939 und gelangte in deutsche Kriegsgefangenschaft, aus
der ihm die Flucht gelang. Auf dem Wege nach Lemberg von den Sowjets aufgegriffen, ange­
klagt wegen Spionage (hatte Manuskripte von Arbeiten zur Logik bei sich, die man fur codier­
te Nachrichten hielt). Deportiert in ein Lager, wo er verstarb.
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Zygmunt JANISZEWSKI (1888-1920). Geboren in Warschau. Studium in ZUrich, Gottingen,
Miinchen und Paris. Promotion 1911 an der Sorbonne, Habilitation 1913 in Lemberg.
I. Weltkrieg als Freiwilliger in den Polnischen Legionen. 1919 Berufung an die Warschauer
Universitiit. Verstarb 1920in Lemberg.

Mark KAC (1914-1984). Geboren in Krzemieniec. Studium der Mathematik an der JKU. Pro­
motion 1937an der JKU. Ab 1938in den USA, Professor an der Cornell University in Ithaca,
New York.

Stefan KACZMARZ (1895-1939). Geboren in Sambor. Studium der Mathematik an der Univer­
sitar in Krakau mit einer Unterbrechung wegen seines Dienstes in den Polnischen Legionen
wiihrend des 1. Weltkrieges. Ab 1923 an der Technischen Hochschule Lemberg. Promotion
1924an der JKU, dort auch 1929 Habilitation. Ais Offizier der Reserve Tei1nahmeam Krieg
1939,aus dem er nicht zuriickkehrte.

Bronislaw KNASTER (1893-1980). Geboren in Warschau. Studium der Medizin in Paris und da­
nach der Mathematik in Warschau. Promotion 1923 und Habilitation 1926 in Warschau.
Hiiufiger Gast in Lemberg. Verbrachte dort die Jahre 1939-1945. Wiihrend der sowjetischen
Okkupation war er Professor an der ukrainischen Universitat, wiihrend der deutschen Besat­
zungszeit fiitterte er Lause, Ab 1945Professor an der Universitiit in Breslau.

Kazimierz KURATOWSKI (1896-1980). Geboren in Warschau. Studium der Mathematik
begonnen in Glasgow, beendet an der Universitiit in Warschau. Promotion 1921 und gleich
danach Habilitation. In den Jahren 1927-1933 Professor an der Technischen Hochschule in
Lemberg, ab 1934Professor an der Universitiit in Warschau.

Antoni Marian LOMNICKI (1881-1941). Geboren in Lemberg. Dort Studium der Mathematik
mit Zusatzstudium in Gottingen. Habilitation 1919an der Technischen Hochschule Lemberg,
ab 1921 dort ordentlicher Professor. Erschossen von Deutschen am 4. Juli 1941.

Stanislaw MAZUR (1905-1981). Geboren in Lemberg. Studium der Mathematik an der JKU.
Obgleich ohne Studienabschluss, Promotion dort 1932.Habilitation 1936an der Technischen
Hochschu1e in Lemberg, wo er auch arbeitete. Ver1ie13 Lemberg 1946. Ab 1948 Professor an
der Universitiit in Warschau.

Stefan MAZURKIEWICZ (1988-1946). Geboren in Warschau. Studium der Mathematik in Kra­
kau, Lemberg, Mimchen und Gottingen, Promotion 1913 an der Universitat in Lemberg,
Habilitation 1919an der Universitat in Krakau. Ab 1919Professor an der Universitat in War­
schau.

Wladyslaw ORLICZ (1903-1990). Geboren in Okocim. Studium der Mechanik an der Tech­
nischen Hochschu1e und der Mathematik an der Universitat in Lemberg. Promotion 1926an
der JKU, dort auch 1934 Habilitation. Ab 1937 Professor an der Universitat in Posen. Den
2. Weltkrieg verbrachte er in Lemberg.

Stanislaw RUZIEWICZ (1889-1941). Geboren bei Kolomyja, Studium der Mathematik an der
Universitiit in Lemberg. Promotion dort 1912.Danach ein Jahr Aufenthalt in Gottingen. Ha­
bilitation 1918 an der Universitat in Lemberg. Dort 1920 auBerordent1icher Professor und
1924 ordentlicher Professor. Nach Entzug des Lehrstuh1s an der JKU 1934 Umzug an die
Akademie fiir Aul3enhandel in Lemberg. Erschossen von Deutschen am 12. Ju1i 1941.

Juliusz Pawel SCHAUDER (1899-1943). Geboren in Lemberg. Nach Absch1uss des Gymnasiums
Einberufung zur osterreichischen Armee und mit ihr an die italienische Front. Nach dem
Krieg Riickkehr mit der polnischen Armee nach Polen. Studium der Mathematik an der JKU,
dort auch 1924 Promotion und 1927 Habilitation. Nach dem Einmarsch der Deutschen ver­
barg er sich in Boryslaw, kehrte aber 1943 nach Lemberg zuruck, Er konnte das Verstecken
schwer ertragen. Beieinem Ausgang wurde er von Deutschen aufgegriffen und erschossen.

Jozef SCHREIER (1908-1943). Geboren in Drohobycz. Studium der Mathematik an der JKU.
Promotion in Gottingen. Nach dem Einmarsch der Deutschen musste er sich verbergen. A1s
das Versteck entdeckt wurde, nahm er Gift.

Waclaw SIERPINSKI (1882-1969). Geboren in Warschau. Dort Beginn des Studiums der Ma­
thematik. Beendigung in Krakau. Dort 1906 Promotion. Nach der Promotion Reise nach
Gottingen. Habilitation 1908 an der Universitat in Lemberg, dort 1910 aul3erordentlicher
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Professor. Wah rend des 1. We1tkrieges in Russland interniert. Ab 1918 ordentlicher Professor
an der Universitat in Warschau.

Hugo Dionizy STEINHAUS (1887~ 1972). Geboren in Jaslo. Begann das Studium der Mathema­
tik in Lemberg, nach einem Jahr Wechsel nach Gottingen, Dort 1911 Promotion mit dem Pra­
dikat summa cum laude. Teilnahme an den Kampfen urn Wolhynien in den Polnischen Legio­
nen. Habilitation 1917 an der Universitat in Lemberg, dort ab 1920 auBerordentlicher Profes­
sor und ab 1923 ordentlicher Professor. Wahrend der deutschen Besatzungszeit Versteck in
einem Dorf bei Lemberg, danach in den Karpaten. Nach Lemberg kehrte er nicht mehr zu­
ruck. Ab 1945 Professor an der Universitat in Breslau.

Ludwik STERNBACH (1905-1942). Geboren in Sambor. Studium der Mathematik und Physik
an der JKU. Zusammenarbeit mit Mazur" (gemeinsame Arbeiten), arbeitete aber weiter als
Lehrer und Aktuar. Nach dem Einmarsch der Deutschen musste er sich verstecken. Die Urn­
stande seines Todes sind nicht bekannt.

Wlodzimierz STOZEK (1883-1941). Geboren bei Krakau. Studium der Mathematik an der Uni­
versitat in Krakau, danach zwei Jahre in Gottingen, Promotion 1922 in Krakau. 1m selben
Jahr auBerordentlicher Professor und ab 1926 ordentlicher Professor an der Technischen
Hochschule in Lemberg. Erschossen von Deutschen (mit beiden Sohnen) am 4. Juli 1941.

Stanislaw Marcin ULAM (1909-1984). Geboren in Lemberg. Studium der Mathematik an der
Technischen Hochschule in Lemberg. Dort 1933 Promotion. Ab 1935 Aufenthalt in
Princeton, aber jedes Jahr wah rend der drei Sommermonate in Lemberg. Wahrend des
2. Weltkrieges Mitarbeiter am Atomprogramm Manhattan, dann Professor an der Univer­
sitar in Boulder, Colorado.

Eustachy ZYLINSKI (1889-1954). Geboren bei Winnica in der Ukraine. Studium der Mathema­
tik an der Universitat in Kiew und Erganzung des Studiums in Gottingen, Marburg und Cam­
bridge. Nach der Riickkehr nach Kiew Erlangung des Titels Magister (im russischen System
verlieh er das Recht, an einer Universitat zu unterrichten). Wahrend des I .Weltkrieges Dienst
in der russischen Armee, danach in der polnischen Armee. 1919 Berufung als Professor an die
JKU, dort ordentlicher Professor. Nach dem 2. Weltkrieg Wechsel nach Lodz.

Danksagung: Ich mochte Herrn Prof. Dr. Hans-Christoph Grunau fur den Vorschlag,
diesen Artikel zu schreiben, und Herrn Alfred MiiBiggang aus Cottbus fur die Uberset­
zung herzlich danken.
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iJbersichtsartikel

1 Lebenslauf

Historische Beitraqe Berichte aus der Forschung Buchbesprechungen

Beno Eckmann wurde am 31. Marz 1917 in Bern als Sohn eines Chemikers und einer
Arztin geboren. t Er besuchte die Schulen in Bern - die hervorragenden Schulzeugnisse
aus jener Zeit sind noch vorhanden - und erhielt 1935 die Matur humanistischer Rich­
tung, also mit Griechisch und Latein. Entgegen dem Wunsch seines Vaters entschloss
sich Beno Eckmann zum Studium der Mathematik, und zwar an der ETH in Zurich. In
der kleinen damaligen Studentengruppe an der Abteilung fur Mathematik und Physik
der ETH hatte er von Anfang an guten Kontakt mit Heinz Hopf. Er diplomierte 1939.
Nur zwei Jahre spater, 1941, schloss er das Doktorat mit der Dissertation Zur Homoto­
pietheorie gefaserter Riiume ab; Referent war Heinz Hopf und Korreferent Ferdinand
Gonseth. Unmittelbar danach, 1942,habilitierte er sich an der ETH in Zurich.

Wahrend der Zeit seines Studiums geschahen zwei fur seinen personlichen Lebens­
kreis wichtige Dinge: 1937 wurde er Schweizer Burger - als solcher hatte er im Zweiten
Weltkrieg viele Wochen Militardienst zu leisten - und 1942heiratete er Doris Wolf. Der
Ehe entsprossen drei Kinder. In seinen spaten Jahren wies er gerne darauf hin, dass er
schon mehr als 60 Jahre mit Doris verheiratet sei. Seine Familie mit den GroBkindern
und UrgroBkindern war ihm immer eine groBe Freude.

Ab 1942 war Beno Eckmann als Dozent an der Universitat Lausanne tatig, 1944
wurde er dort Professeur extraordinaire. Wahrend dieser Zeit behielt er seine Privatdo­
zententatigkeit an der ETH in Zurich bei. 1m Jahre 1947 - also kurz nach Ende des
Zweiten Weltkrieges, wahrend dem fast alle wissenschaftlichen Kontakte mit dem Aus­
land unmoglich waren - folgte ein langerer Aufenthalt in den USA. Die Reise fuhrte im
Januar iiber Paris, wo er mehrere Vortrage hielt. Die Zeit von Februar bis Mitte April
verbrachte er als Mitglied am Institute for Advanced Study in Princeton und von Mitte
April bis Anfang Mai schloss sich eine ausgedehnte Vortragsreise an, wahrend der er
zahlreiche der wichtigen Universitaten im Mittleren Westen und an der Ostkiiste der
USA besuchte. Von Juni bis September war er dann wieder am Institute for Advanced
Study in Princeton. Beno Eckmann erhielt in jener Zeit und auch spater aus den USA
mehrere Angebote, die er aber alle ablehnte. Kurz nach seiner Riickkehr in die Schweiz
erreichte ihn dann der Ruf zum ordentlichen Professor an der ETH in Zurich. Diese
Stelle trat er im Herbst 1948an.

Bereits aus der Beschreibung dieses ersten Amerika-Aufenthaltes wird deutlich, dass
sich Beno Eckmann schon friih in seiner Laufbahn bemiihte, ein weltweites Netzwerk
von wissenschaftlichen Kontakten aufzubauen. Davon konnten in der Folge die ETH
und vor allem auch seine vielen Schuler und Schiilerinnen in hohem MaBe profitieren.
Wie intensiv sich diese Bemiihungen gestalteten, geht aus der nachfolgenden kurzen
Aufzahlung von Gastaufenthalten hervor, die in den ersten Jahren seiner Professur an
der ETH stattfanden.

1 Sein Vater Aron und seine Mutter stammten aus Osteuropa; sie waren beide vor dem Ersten
Weltkrieg in die Schweizgekommen, urn an der Universitat Bern zu studieren. In der Zeit vor dem
Ersten Weltkrieg war die Universitat Bern ein beliebter Studienort fiir osteuropaische und ins­
besondere russische Studierende.
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© Foto: Freundlicherweise von Heiner H. Schmitt zur Verfiigung gestellt.
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1m Herbst 1950 schloss sich ein zweiter Amerikaaufenhalt an. In Cambridge (MA)
fand injenem Herbst der Internationa1e Kongress fur Mathematiker statt. Die Tei1nah­
me am Kongress, bei dem Eckmann als Sprecher eingeladen war, kombinierte er mit ei­
nem Gastaufenthalt an der University of Michigan und mit einer Vortragsreise. Ein Jahr
spater fiihrte eine dritte Amerikareise an die University of Illinois at Urbana-Cham­
paign und zu einer Vortragsreise quer durch den ganzen Kontinent, sie dauerte von Au­
gust 1951 bis Marz 1952. Nur wenige Jahre spater reiste er zum vierten Mal in die USA;
von Juli bis August 1955 besuchte er diesmal vor allem die Universitaten an der West­
kiiste, darunter fur einen ausgedehnten Gastaufenthalt die University of California in
Berkeley. Einladungen aus ganz Europa zu Vortragen und langeren Vorlesungszyklen
fiihrten ihn 1956 und 1957 nach Deutschland, England, Belgien und Italien.

In spateren Jahren folgten viele weitere wissenschaftliche Reisen und Gastprofessu­
ren, auf die wir nicht in detaillierter Weise eingehen konnen. Einzig die engen Kontakte
mit dem Technion in Haifa und der Ben Gurion University in Beer-Sheva seien hier spe­
ziell noch erwahnt.

Beno Eckmann widmete sich wahrend der Tatigkeit an der ETH in Zurich neben sei­
ner Forschung in ganz besonderem MaBe dem Unterricht, und zwar auf allen Stufen.
Dazu gehorten in seinen ersten Jahren nach 1948 auch mathematischer Unterricht fur
Ingenieurstudierende im Fach Darstellende Geometrie. Spater waren es dann vor allem
Vorlesungen in Algebra und Topologie, die er betreute. Den einfiihrenden Zyklus der
Algebra-Vorlesungen hat er wahrend mehrerer Jahrzehnte regelmiiBig ge1esen. Dazu
kamen fortgeschrittene Vorlesungen wechselnden Inhalts, die ein weites Feld in den Ge­
bieten Algebra, Topologie und Differentialgeometrie abdeckten. Die Vorlesungen ruck­
ten jeweils die wesentlichen Linien und die Zusammenhange in den Mittelpunkt. Glas­
k1ar und bis ins Detail nachvollziehbar war die Darstellung des Stoffes. Und die fort­
geschrittenen Vorlesungen fiihrten die Zuhorer in aller Regel bis an die Grenzen der
aktuellen Forschung.

Ganz besonders am Herzen 1agen ihm auch die Seminare, in denen die Studierenden
uber fortgeschrittene Themen vorzutragen hatten. Woh1 alle seine nachmaligen Dokto­
randen und Doktorandinnen erinnern sich an die Vorbereitungen zu diesen Vortragen:
Ungefahr eine Woche vor dem Termin hatten die Vortragenden im Biiro von Beno Eck­
mann auf Grund des Vortragsmanuskriptes zu referieren. Da wurden Liicken angespro­
chen, es wurde auf Fehler hingewiesen, es gab Hinweise zu einem effektvollen Vortrags­
stil, und oft horten dann die Vortragenden auch von Weiterungen des Stoffes und von
Zusarnmenhangen, die in der Literatur nicht zu finden waren.

Es ist nicht verwunderlich, dass sich nach derartigen Erfahrungen viele der Studie­
renden entschlossen, eine Diplomarbeit und eine Dissertation bei Beno Eckmann zu be­
ginnen. Unzahlige Diplomarbeiten und rund 60 Dissertationen hat er wahrend seiner
Tatigkeit an der ETH betreut. Eine grolsere Anzahl seiner Doktoranden waren spater
als Professoren an Hochschulen des In- und Auslandes tatig, Ein eindrucksvoller .Dok­
torandenstammbaum", der aus An1ass des 80. Geburtstages Beno Eckmanns von seinen
Schiilern in Barcelona zusammengestellt wurde, erstreckt sich uber fimf Doktoranden­
generationen und seine Aste enthalten Namen von Personen aus allen funf Kontinenten.
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Neben seiner wissenschaftlichen Tatigkeit stellte sich Beno Eckmann immer wieder
fur administrative und wissenschaftspolitische Arbeiten zur Verfugung: Von 1954 bis
1956 war er Vorsteher der Abteilung fur Mathematik und Physik an der ETH Zurich,
von 1956 bis 1960 Sekretar der Internationalen Mathematischen Union, von 1961 bis
1962 Prasident der Schweizerischen Mathematischen Gesellschaft und von 1973 bis
1984 Mitglied des Forschungsrates des Schweizerischen Nationalfonds.

Auch urn die Publikation mathematischer Texte hat sich Beno Eckmann verdient
gemacht: Er war wahrend vieler Jahre Mitherausgeber der beriihmten Grundlehren der
Mathematischen Wissenschaften des Springer-Verlags. Ferner war er Mitbegriinder der
Lecture Notes in Mathematics, welche zu einer Zeit, als es noch kein Internet gab, eine
rasche Verbreitung von neuen Forschungsresultaten in zusammenfassender Form zum
Ziele hatten.

Eckmanns grollte Leistung nichtwissenschaftlicher Art ist aber zweifellos die 1964
erfolgte Griindung des Forschungsinstitutes fiir Mathematik an der ETH, dem Beno
Eckmann bis zu seiner Emeritierung im Jahre 1984 auch als Direktor vorstand. Das In­
stitut diente in den ersten Jahren dazu, den fur die Mathematik so wichtigen Gasteaus­
tausch zu erleichtern und die internationale Zusammenarbeit der Mitglieder des Depar­
tementes zu fordern. Aus kleinen Anfangen hat sich das Institut im Laufe der Jahre zu
einem weltweit bekannten Zentrum mathematischer Forschung entwickelt. Es konnte
im Sommer 2004 mit einem glanzvollen, hervorragend besetzten Kolloquium sein
40-jahriges Bestehen feiern.

Viele Ehrungen zeugen von der hohen nationalen und internationalen Wertschat­
zung Beno Eckmanns, darunter sind Ehrendoktorate der Universitat Fribourg, der
Ecole Polytechnique Federale in Lausanne sowie des Technion in Haifa und der Ben
Gurion University in Beer-Sheva. Anlasslich des Internationalen Mathematiker-Kon­
gresses 1994 in Zurich wurde er zu dessen Ehrenprasidenten ernannt. Weitere Ehrungen
erhielt er von der Universite de Geneve und der Albert Einstein-Gesellschaft in Bern.

Wahrend andere sich nach der Emeritierung ganz dem Ruhestand widmen, blieb Be­
no Eckmann seiner Tatigkeit und der ETH treu. Eine ganze Reihe von Veroffentlichun­
gen entstanden wah rend dieser Zeit, darunter auch zahlreiche Forschungsarbeiten. Er
betreute die Herausgabe der Gesammelten Werke von Heinz Hopf und veroffentlichte
eine umfangreiche Sammlung von Ubersichtsvortragen, die er wahrend seiner langen
mathematischen Tatigkeit gehalten hatte. Bis Anfang 2008 war Beno Eckmann regel­
maliig in seinem Buro an der ETH anzutreffen; hier diskutierte er gerne intensiv die vie­
len mathematischen Fragen, die ihn nach wie vor beschaftigten. Hier erzahlte er auch
den Gesprachspartnern von seinen vielen personlichen Erinnerungen und Erfahrungen
aus seiner langen mathematischen Tatigkeit oder unterhielt sich mit ihnen uber seine in­
tensive Beschaftigung mit Literatur, Theater und Musik. Ganz besonders genoss er hier
den Kontakt mit den vielen Gasten "seines" Forschungsinstitutes.

Geistig nach wie vor auBerordentlich rege, lieBen seine korperlichen Krafte nach sei­
nem 90. Geburtstag merklich nacho Seine letzten Monate verbrachte Beno Eckmann
gut betreut zusammen mit seiner Frau Doris im Hugo Mendel-Heim in Zurich. Er starb
am 25. November 2008.
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2 Wissenschaftliche Arbeiten

Das umfangreiche mathematische Werk Beno Eckmanns besteht aus 120 Beitragen in
mathematischen Zeitschriften. Er hat ferner die Selecta Hermann Weyl herausgegeben,
die Gesammelten Werke von Heinz Hopf [HoOl] und eine Sammlung von Essays [E07]
aus seinem reichen mathematischen Leben, die sich an ein allgemeines mathematisches
Publikum wenden. Daneben existiert eine langere Reihe von vervielfaltigten Ausarbei­
tungen seiner Vorlesungen. Eine Auswahl seiner Arbeiten ist in den Selecta Beno Eck­
mann [E87] zusammengefasst, die zu seinem 70. Geburtstag erschienen sind.

Fiir das Folgende wollen wir aus der Gesamtheit einzelne Gruppen von Arbeiten he­
rausgreifen und sie im Zusammenhang besprechen; es treten dabei Entwicklungslinien
hervor, die Eckmann iiber Jahre in seinem Denken und Forschen verfolgt hat. Aus
Platzgriinden mussten weitere wichtige Arbeiten hier ganz ausgeschlossen bleiben, wie
etwa diejenigen, die sich mit komplexen und fastkomplexen Strukturen beschaftigen, In
unserer Darstellung sollen die speziellen Eigenheiten von Eckmanns Werk besonders
hervortreten: Peter Hilton, mit dem Eckmann eine langjahrige enge und fruchtbare Zu­
sammenarbeit pflegte, sagte einmal, Eckmanns Werk zeichne sich durch unification, cla­
rification und penetration aus (siehe [Hi78]). Beispielhaft zeigt sich dies in Eckmanns tie­
fer Uberzeugung, dass Topologie und Algebra in einem echt symbiotischen Verhaltnis
zueinander stehen, und so ist in seinem Werk mehrfach festzustellen, wie neue Begriffs­
bildungen und Ideen parallel oder nacheinander in beiden Gebieten verfolgt werden.
Eine solche Einstellung zur Mathematik als eine Gesamtheit ist heute nicht mehr uniib­
lich, aber damals in der Mitte des 20. Jahrhunderts, als man "der Reinheit der Metho­
de" einen besonderen Stellenwert einraumte, war das anders.

2.1 Das Resultat von Radon und Vektorfeldern auf Sphliren

1m Jahre 1938 hatte Beno Eckmann in einem von Heinz Hopf geleiteten Seminar iiber
die Resultate von Adolf Hurwitz und Johann K.A. Radon iiber die Komposition qua­
dratischer Formen vorzutragen. Es ging dabei urn die folgenden Frage:

Fur welche ganze Zahlen n und p lassen sich n komplexe bzw. reelle Bilinearformen
z\, Z2, ... , Zn so bestimmen, dass die Identitiit

(xi + ... + x;)(yi + ... + y~) = zi + ... + z~

besteht.

Hurwitz hatte den Spezialfall p = n behandelt und Radon den allgemeinen Fall. In
beiden Fallen wurden fur die Beweise Ad-hoc-Methoden verwendet. Eckmann, der sich
- wie er spater einmal bemerkte - mit diesen Ad-hoc-Uberlegungen nicht richtig an­
freunden konnte, suchte einen anderen Zugang. Er erkannte den Zusammenhang mit
der Gruppentheorie, und es gelang ihm, mit Hilfe von tiefliegenden Satzen von Issai
Schur uber das Zusammenspiel von komplexen und reellen Darstellungen das allgemei­
ne Resultat von Radon zu beweisen. 1m reellen Fall lautet dieses wie folgt:
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Genau dann existieren reelle Bilinearformen zj , Z2, ... , Zn, wenn fur n = u . 24<>+11 mit
u > 0 ungerade undO::; f3 < 4 gilt p < 8a + 211 .

Topologische Konsequenzen lagen unmittelbar auf der Hand: Eine Losung des reel­
len Radon-Problems fur das Zahlenpaar n und p liefert auf der Sphare sn-l gerade
p - 1 linear unabhangige Vektorfelder. Dabei sind diese Vektorfelder durch lineare
Operationen der Koordinaten auf der Sphare sn-l gegeben. Die Frage, ob auf den
Spharen weitere - in diesem Sinn nichtlineare - Systeme von stetigen, linear unabhangi­
gen Vektorfeldern existieren, blieb lange offen, bis sie Frank Adams 1962([A62]) im ne­
gativen Sinn entschied.

Beno Eckmann hat bei verschiedenen Gelegenheiten (siehe z.B. [114]) den Wunsch
und die Hoffnung geaubert, auf Grund von analytischen Methoden, vielleicht mittels
Variationsrechnung, einsehen zu konnen, dass die Existenz von stetigen Vektorfeldern
auf Spharen die Existenz von linearen impliziert. Der sehr anspruchsvolle Beweis von
Adams ware dann auf ein relativ elementares Problem der linearen Algebra und Dar­
stellungstheorie der Gruppen reduziert. Doch diese Einsicht ist der Mathematik bis heu­
te verwehrt geblieben.

Wir erwahnen noch explizit den Spezialfall p = n: Hier besteht ein enger Zusammen­
hang mit der Frage nach der Existenz von Divisionsalgebren tiber den reellen Zahlen.
Wie bereits Hurwitz in der entsprechenden Arbeit feststellte, ergibt sich aus seinem Re­
sultat, dass reelle Algebren, welche die Normproduktregel erfiillen, nur fur die Dimen­
sionen 1,2, 4, 8 existieren konnen; es sind dies die rellen Zahlen, die komplexen Zahlen,
die Quaternionen und die Oktaven. Aus den Arbeiten von John Milnor [BoM58] und
Michel Kervaire [K58] ergibt sich etwas allgemeiner, dass nur in diesen Dimensionen
reelle Divisionsalgebren existieren konnen, Nur wenig spater erschien die Arbeit von
Frank Adams [A60] mit ihrem tiefliegenden Resultat zur Hopfinvariante. Aus diesem
folgt die noch starkere Aussage, dass es in lRn nur fur n = 1,2,4, 8 eine nullteilerfreie
stetige Multipliplikation mit einem zweiseitigen Einselement geben kann. Alle diese
neueren Resultate benotigen fur ihren Beweistrotz aller heute bekannten Vereinfachun­
gen fortgeschrittene Methoden der algebraischen Topologie, wie die sogenannte Bott­
Periodizitat der unendlichen orthogonalen bzw. unitaren Gruppe und die damit im Zu­
sammenhang stehende K-Theorie. Auch in diesem Spezialfall p = n ist also das oben an­
gesprochene Phanomen relevant, dass die Existenz einer stetigen Operation jeweils auch
die Existenz einer (bi)linearen Operation impliziert. Eckmann hat in [105] den engen
Zusammenhang zwischen den Hurwitz-Radon-Matrizen, wie sie sich aus der Losung
des urspriinglichen Problems ergeben, und der Bott-Periodizitat nachgewiesen und da­
rauf aufmerksam gemacht, wie eine tiefere Einsicht in die Natur des oben beschriebenen
Phanomens zu einem neuen Verstandnis der Bott-Periodizitat und damit der topologi­
schen K-Theorie fiihren konnte.
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2.2 Cohomologie der Gruppen

In seiner Arbeit [15] schlieBt Eckmann an fruhere Arbeiten seines Mentors Heinz Hopf
[H041a, H044] an. Dieser hatte fur eine gegebene diskrete Gruppe G einen abstrakten
algebraischen Komplex definiert, in dem die Homologiebildung die Homologiegruppen
eines aspharischen topologischen Raumes mit Fundamentalgruppe G liefert. Dass die
Homologiegruppen eines derartigen Raumes nur von der Fundamentalgruppe G ab­
haugen, hatte in den dreiBiger Jahren Witold Hurewicz [Hu35] bewiesen; nicht klar war
damals aber, ob zu jeder Gruppe G ein derartiger Raum existiert und wie er allenfalls zu
konstruieren ware. Eckmann nahm sich dieses Problems an, arbeitete - abweichend von
Hopf - mit der Cohomologie statt mit der Homologie und konstruierte auf kanonische
Weise zu gegebenem G einen algebraischen Komplex, der dem Cokettenkomplex der
universellen Uberlagerung eines derartigen Raumes nachgebildet ist: Es ist die - spater
so genannte - homogene Standardauflosung von 7L tiber dem Gruppenring 7LG, die hier
konstruiert wurde. Mit Hilfe der Coketten beschrieb Eckmann auch explizit die Pro­
duktstruktur der Cohomologie; dies fuhrte zur Definition des Cohomologieringes der
Gruppe G. Die Arbeit geht detailliert auf die Beziehungen ein, die sich zwischen der to­
pologischen und algebraischen Sichtweise ergeben, insbesondere spiegeln sich im algeb­
raischen Vorgehen explizit die Begriffe der universellen Uberlagerung und des Produk­
tes in der Cohomologie eines topologischen Raumes wider.

Es ist mathematikgeschichtlich interessant, dass die (Co)Homologietheorie der
Gruppen praktisch gleichzeitig und unabhangig von Hopf und Eckmann auch von
Samuel Eilenberg und Saunders MacLane in den USA und von Hans Freudenthal in
den Niederlanden in ganz ahnlicher Weise angegangen wurde. Wah rend des Zweiten
Weltkrieges war die wissenschaftliche Kommunikation zwischen der Schweiz und dem
Ausland fast vollig zum Stillstand gekommen. Von den neuen Entwicklungen horte
man gegenseitig erst nach Ende des Krieges, als die Kontakte langsam wieder auf­
genommen werden konnten.'

Die Beschaftigung mit der Gruppencohomologie hat Beno Eckmann in [35] fort­
gesetzt. Dabei wurden die Beziehungen zwischen den Cohomologiegruppen von einer
Gruppe G und einer Untergruppe U naher untersucht. Unter anderem ist in dieser Ar­
beit das Resultat zu finden, das spater unter dem Namen Shapiro-Lemma bekannt ge­
worden ist (siehe [35], Theorem 4, [33], Theorem 3); es druckt die Cohomologie einer
Untergruppe als Cohomologie der ganzen Gruppe mit speziellen Koeffizienten aus. In
heutiger Schreibweise lautet es wie folgt:

H*(U,B) ~ H*(G,Homu(7L(G),B)) . (1)

2 1m Faile von Saunders MacLane lasst sich dies etwas genauer festlegen (siehe MacLane [ML78]):
Eine Note von Hopf, die als Beitrag zu einer Topologiekonferenz gedacht war und die inhalts­
milBig ungefahr seiner Arbeit [Ho4Ia] entsprach, erreichte im Sommer 1941 noch Eilenberg und
MacLane. Diese erkannten deren Wichtigkeit sofort, und es gelang ihnen, zu einer gegebenen
Gruppe G einen algebraischen aspharischen Komplex zu konstruieren, der sich spater als eine Va­
riante des Eckmannschen Komplexes entpuppte, namlich als die inhomogene Standardauflosung.
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Die allgemeineTheorie in der Cohomologie der Gruppen liefert sofort eine Abbildung
(Restriktion) R: H*(G) ---? H*(U); sie ist durch die entsprechende Einschrankung der
Coketten definiert. Nimmt man die Beziehung (I) zur Hilfe, so lasst sich Rauch durch
den Koeffizienten-Homomorphismus

B S:' Hom.,(Z(G),B)) ---? Hom.,(Z(G),B))

beschreiben. 1m Faile einer Untergruppe U von endlichem Index in G lasst sich durch
Summenbildung ein Modulhomomorphismus

Hom.,(Z(G),B) ---? B

definieren. Eckmann beniitzt diesen Homomorphismus, urn daraus mit Hilfe der Bezie­
hung (I) eine Abbildung (Transfer) T in der der Restriktion umgekehrten Richtung
H*( U) ---? H*( G) zu definieren.' Die Namensgebung folgte dabei der Tatsache, dass in
der Dimension 1 die so definierte Abbildung zum "klassischen" gruppentheoretischen
Transfer (Verlagerung) dual ist. Die Definition erfolgte zusatzlich auch explizitmit For­
meln in der Standardauflosung von [15]. Gegeniiber der Arbeit [15] sind hier wichtige
notationelle Neuerungen festzustellen, wie etwa die Verwendung von Pfeilen fur Abbil­
dungen, von exakten Folgen und von Diagrammen; es sind dies Notationen, wie sie sich
in jener Zeit rasch in der ganzen Mathematik einbiirgerten. Aus den gegebenen Defini­
tionen des Transfers" ergaben sich leicht eine Reihe von Folgerungen, die sich fur man­
nigfache Anwendungen in der Gruppentheorie als wichtig erweisen sollten, darunter
vielleicht die wohl bekannteste Folgerung, dass die Zusammensetzung ToR:
H*(G) ---? H*(G) nichts anderes als die Multiplikation mit dem Index von U in Gist.

Mit der Gruppenhomologie und -cohomologie und ihren Anwendungen in der
Gruppentheorie hat sich Beno Eckmann in seinem Werk mehrfach wieder beschaftigt.
Nach der erfolgreichen Definition der Transferabbildung war Eckmann mehr denn je
davon iiberzeugt, dass die (Co)Homologie von Gruppen auch in der klassischen Grup­
pentheorie wichtige Anwendungen besitzen wiirde, die iiber die bereits bekannte Inter­
pretation der zweiten und dritten Cohomologiegruppe durch Gruppenerweiterungen
hinausgehen wiirden. In der Tat hatte sich gezeigt(siehe [StJ65], [StU66]), class die einer
Gruppenerweiterung zugeordnete, aus der Lyndon-Hochschild-Serre-Spektralreihe
stammende, exakte Fiinf-Term-Sequenz derartige rein gruppentheoretische Anwendun­
gen erlaubte, welchedas Rechnen mit Kommutatoren betrafen, wiesieetwa in der Defi­
nition nilpotenter Gruppen auftreten. Aus Sicht der Gruppentheorie bestand deshalb
ein Bediirfnis, diese Sequenz auf einfache Weise, d. h. ohne den involvierten Apparat
der Spektralreihen herzuleiten. Dies wurde in der Arbeit von Eckmann und Stammbach

3 Bereits in der etwas friiher fertiggestellten Arbeit [33] hat Eckmann diese Transfer-Abbildung
definiert.
4 Gemaf einer miindlichen Mitteilung von Beno Eckmann ging seine Definition des Transfers auf
eine Anregung von Emil Artin undJohnTatezuruck, welche derGruppen(co)homologie erstdann
algebraische Relevanz zusprechen wollten, wenn dieklassische gruppentheoretische Konstruktion
des Transfers (derVerlagerung) indiese Theorie eingebettet werden konnte. Artin undTatehaben
in den unmittelbar folgenden Jahren die Gruppencohomologie in der Klassenkorpertheorie ver­
wendet; siehe u.a. [T52].
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[68] geleistet. Es schloss sich eine Reihe weiterer Arbeiten mit P. Hilton an ([72], [73],
[74], [76], zum Teil auch gemeinsam mit U. Stammbach), welche die Theorie zentraler
Gruppenerweiterungen betrafen: In dieser Situation lasst sich die Fiinf-Term-Sequenz
durch einen weiteren Term (siehe auch [Ga68]) verlangern, was eine Reihe von gruppen­
theoretischen Anwendungen auf sogenannte Stammerweiterungen und auf zentrale
Produkte erlaubte.

Die Beschaftigung mit der Cohomologietheorie der Gruppen setzte sich in einer lan­
gen Reihe von Arbeiten zur homologischen Dualitat fort. In seiner Dissertation hatte
sich Robert Bieri [Bi72] mit Gruppen beschaftigt, deren ganzzahlige Cohomologie und
Homologie eine zur Poincare-Dualitat analoge Dualitat aufweisen (siehe auch [JW72]).
Darunter fallen selbstverstandlich Gruppen, deren Eilenberg-Macl.ane-Raum eine ori­
entierbare Mannigfaltigkeit ist, dann aber auch z. B. endlich erzeugte torsionsfreie nil­
potente Gruppen. Unmittelbar daran anschlieJ3end stellten sich viele Fragen, und eine
Reihe von Verallgemeinerungen boten sich an, insbesondere wenn man sich - wie Beno
Eckmann - von der Topologie leiten lieJ3. Die Arbeiten [75], [77], [78], [79], [80], [82], [83]
- viele davon gemeinsam mit Robert Bieri - gingen einem Teil dieser Fragen nach.' Ins­
besondere wurde in diesen Arbeiten der Begriff der Poincare-Dualitat verallgemeinert,
wobei ein dualisierender Modul auftrat, mit dem man die Koeffizienten auf der Seite
der Cohomologie zu tensorieren hatte, urn eine Dualitat zu erhalten. Der dualisierende
Modul ergab sich dabei jeweils als die hoherdimensionale Endengruppe H" (G, 7LG),
wobei n die (Co)Homologiedimension der Gruppe G bezeichnet." Ein Spezialfall dieser
allgemeineren Dualitat ergibt sich zum Beispiel dann, wenn der Eilenberg-MacLane­
Raum von G eine nicht orientierbare Mannigfaltigkeit ist. In diesem Fall besteht eine
verallgemeinerte Poincare-Dualitat, wenn als dualisierender Modul il verwendet wird,
also die unendlich zyklische abelsche Gruppe mit nichttrivialer G-Operation. Es erga­
ben sich viele weitere Beispiele von Gruppen mit verallgemeinerter Dualitat, wobei auch
weit kompliziertere dualisierende Moduln auftraten.

Besonders interessant ist im Zusammenhang mit der Poincare-Dualitat der Fall der
Dimension 2. Offensichtlich liefern hier die Flachengruppen Beispiele. Es stellt sich so­
fort die Frage, ob algebraisch gegebene Poincare-Dualitatsgruppen stets Flachengrup­
pen sind. In einer Serie von Arbeiten hat Eckmann nach wichtigen Vorarbeiten von Ro­
bert Bieri, Ralph Strebel und Heinz Muller (siehe [BS78], [Mu81]) diese Frage zusam­
men mit Peter Linnell im positiven Sinne klaren konnen (siehe [88], [90], [91], [92]). Den
Beweis hat Eckmann in [97], [98] zusammenfassend dargestellt.

5 Wie Beno Eckmann in den Selecta [E87],p. 824, angemerkt hat, sind Teile der Arbeiten spater re­
dundant geworden; Kenneth S. Brown [B75] und Ralph Strebel [StR76] haben (unabhangig von­
einander) gezeigt, dass die Definition der "Duality group" die Eigenschaft FP impliziert. Davon
machten Eckmann und Bieri in ihren Beweisen noch keinen Gebrauch.
6 Die Gruppe der Enden eines topologischen Raumes, die als HI (G,7LG) interpretiert werden
kann, wurde bereits urn 1950von Heinz Hopf, Hans Freudenthal und Ernst Specker untersucht.
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2.3 Eckmann-Hilton-Dualltat

Wohl im Zusammenhang mit dem Aufkommen der Kategorientheorie in den spaten
40er Jahren (siehe [EML45]) traten in natiirlicher Weise Fragen der Dualitat von kate­
gorietheoretischen Begriffen auf. Bei den Konstruktionen der Komplexe, und insbeson­
dere beim algebraischen Beweis fur die Tatsache, dass im Rahmen der (Co)Homologie­
theorie der Gruppen die Homologiebildung nicht von der gewahlten freien Auflosung
abhangt (siehe Hopf [Ho44]), erkannte man rasch, dass dies auch galt, wenn an Stelle
der freien G-Moduln projektive G-Moduln zugelassen wurden. So lag es damals nahe,
den kategorietheoretischen Begriff des projektiven Moduls zu dualisieren. Dies fuhrt
auf den Begriff des injektiven Moduls. Reinhold Baer, mit dem Beno Eckmann an der
University of Illinois at Urbana-Champaign bei seinem Aufenthalt 1951/52 engen ma­
thematischen und personlichen Kontakt hatte, hat wohl damals in diesem Zusammen­
hang auf seine friihere Arbeit [B40] hingewiesen. In dieser hatte Baer jeden Modul M in
einen umfassenden Modul einbetten konnen, welcher eine zur Eigenschaft injektiv aqui­
valente Eigenschaft besitzt. Zusammen mit Andreas Schopf? gelang es Beno Eckmann
einen neuen einfachen Beweis des Resultates von Baer zu geben, und insbesondere zu ei­
nem gegebenen Modul Meinen - in einem gewissen Sinn kleinsten - injektiven Ober­
modul U(M) zu konstruieren, es ist dies die (bis auf Isomorphie eindeutig bestimmte)
injektive Hiille von M. Fur diesen Nachweis beniitzten Eckmann und Schopf den Be­
griff der wesentlichen Erweiterung von M, indem sie zeigten, dass die injektive Hiille
U(M) gleichzeitig die maximaIe wesentliche Erweiterung von Mist. Die entsprechende
kurze Arbeit [34] gehort zu den am haufigsten zitierten Arbeiten in der homologischen
Algebra iiberhaupt.

Uber den damaligen Stand der "homologischen Algebra", soweit dies die Gruppen­
cohomologie betrifft, gibt die Arbeit [40] Auskunft. Es ist dies der Text des Vortrages,
den Beno Eckmann am Internationalen Mathematiker-Kongress 1954 in Amsterdam
gehalten hat. Hier werden ganz allgemein die verschiedenen Cohomologietheorien be­
handelt, die sich dadurch definieren lassen, dass die Betrachtung aufverschiedene Arten
von Coketten eingeschrankt werden, seien es Coketten, die zu einer Untergruppe geho­
ren, seien es Coketten, die einer Endlichkeitsbedingung geniigen.

Der Begriff der Dualitat, wie er sich als heuristisches Prinzip aus der Kategorien­
theorie ergab, spielte in der Foige im Werk Beno Eckmanns eine wichtige Rolle. Dabei
war insbesondere auch der topologische Begriff der Homotopie wichtig. Eine Ubertra­
gung des Begriffes der Homotopie auf die Situation von Moduln fuhrte zu zwei dualen
Begriffsbildungen, namlich zu einer injektiven und einer projektiven Homotopie (siehe
[41]). Es lassen sich damit Homotopiegruppen fur Moduln definieren, wie sich auch mit

7 Andreas Schopf hat seine schriftliche Diplomarbeit an der ETH bei Beno Eckmann verfasst. Fur
sein hervorragendes Diplom und die Diplomarbeit wurde er mit dem Kern-Preis und der Silbernen
Medaille der ETH ausgezeichnet. Die Diplomarbeit bildete den Ausgangspunkt fiir die gemein­
same Arbeit [34]. Nach einer mehrjahrigen Assistententatigkeit an der ETH starb er im Herbst
1959 unter tragischen Umstanden wahrend eines Amerikaaufenthaltes.
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der Homotopie im Zusammenhang stehende topologische Begriffe, wie etwa die Begrif­
fe der Suspension und des Schleifenraumes, in die Modultheorie iibertragen lassen. Da­
raus ergeben sich dann entsprechende exakte Sequenzen. 1m Grunde genommen wurde
in den erwahnten Arbeiten zur Modultheorie eine .Jiomologische Algebra" entwickelt,
die anstelle der Funktoren Tor und Ext Funktoren setzt, die durch Homotopiegruppen
definiert werden. In der Foige hat sich die Theorie der Tor und Ext rasch und erfolg­
reich entwickelt - dabei spielte sicher das Buch von Cartan-Eilenberg [CE56] eine wich­
tige Rolle ~ , wahrend die Homotopiegruppen von Moduln fur viele Jahre kaum in wei­
ten Kreisen bekannt wurden. Erst in neuester Zeit haben die damals in die Modultheo­
rie eingefuhrten Begriffe wieder an Wichtigkeit gewonnen, namlich in der modernen
modularen Darstellungstheorie von endlichen Gruppen (siehe [He60], [He61], [B91]
[C96]). Dabei gingen die Ursprunge leider oft fast ganz verloren, als auf die alten Arbei­
ten kaum mehr Bezug genommen wurde.

Die entsprechenden Uberlegungen zur Homotopietheorie von Moduln hat Beno
Eckmann zusammen mit Peter Hilton durchgefiihrt - sie stehen am Anfang ihrer langen
und erfolgreichen Zusammenarbeit. Interessanterweise gibt es aber zu diesem Thema
keine gemeinsamen Veroffentlichungen, sondern nur zwei Ubersichtsvortrage, der eine
von Beno Eckmann (siehe [41]), der andere von Peter Hilton (siehe [Hi58]). Diese Tatsa­
che mag mit dazu beigetragen haben, dass die Homotopietheorie von Moduln damals
wenig beachtet wurde. Zu diesem Themenkreis gibt es ferner eine gemeinsame Arbeit
von Eckmann und Kleisli [48]. 1m Anschluss an die Dissertation von Heinrich Kleisli
wird hier im Faile einer Frobeniusalgebra, also z. B. fur den Fall der Gruppenalgebra ei­
ner endlichen Gruppe, die Homotopietheorie und die Beziehung zur Gruppencohomo­
logie naher untersucht. In diesem speziellen Fall lassen sich die aus der Homotopie ge­
wonnenen exakten Sequenzen mit Hilfe der (gewohnlichen) Cohomologiegruppen be­
schreiben.

Wie bereits angemerkt, haben Eckmann und Hilton diese algebraische Entwick­
lungsspur nicht intensiv weiterverfolgt. Der Grund mag in der fruhen Erkenntnis gele­
gen haben, dass die im Sinne der Kategorientheorie dual en Begriffsbildungen der injek­
tiven und projektiven Homotopie von Moduln eine (wohl als wichtiger erachtete) Dua­
litat in der Topologie suggeriert. Dieser topologischen Dualitat sind die unmittelbar
nachfolgenden gemeinsamen Arbeiten ([42]-[46], [48], [50]) von Eckmann und Hilton
gewidmet.f Der wesentliche Gedanke wird bereits in [41] angedeutet. Die Riickiiberset­
zung der algebraischen Uberlegungen in die Topologie liefert eine Dualitat zwischen
der Homotopietheorie und der Cohomologietheorie (siehe dazu weiter unten). Die ent­
sprechenden Grundlagen hat Eckmann 1962 in seinem Vortrag am Internationalen Ma­
thematiker-Kongress in Stockholm (siehe [58]) dargestellt. Dies ist die Eckmann-Hilton­
Dualiiiit, wie sie als Gebietsbeschreibung in der Mathematics Subject Classification der
Mathematical Reviews vorkommt. In seinem Artikel iiber das Werk von Beno Eckmann

8 Uber den interessanten und fiir das Werk von Eckmann charakteristischen Wechsel des Fokus
von der Topologie zur Algebra und wieder zuriick zur Topologie, der sich in diesen gemeinsamen
Arbeiten offenbart, vergleiche man den detaillierten Uberblick in [Hi80].
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(siehe [Hi78]) gibt Peter Hilton an, dass diese sich auf die Homotopie griindende Duali­
tat das Leitmotiv fur die vielen gemeinsamen Arbeiten war, die sich in den Folgejahren
anschlossen.

Prominent unter diesen Arbeiten ist die - von den damaligen Studierenden so ge­
nannte - "Trilogie" zum Thema Group-like structures in general categories [52], [56],
[57], wo dieser Gesichtspunkt voll zum Tragen kommt. Der Anfangspunkt war das
wohlbekannte Resultat der algebraischen Topologie, dass die Homotopieklassen von
Abbildungen 1r(X, Y) eine Gruppe bilden, wenn Y eine "Gruppe bis auf Homotopie"
ist." Um eine "Gruppe" C in einer allgemeinen Kategorie C zu definieren, verlangen
Eckmann und Hilton in analoger Weise einen Morphismus m : ex C -+ C, welcher
fur jedes X in C die Menge der Morphismen C(X, C) zu einer Gruppe macht, und zwar
(im kategorietheoretischen Sinn) natiirlich in X. Das Dualitatsprinzip lasst sich dann
voll ausschopfen, Es suggeriert als Erstes die Definition einer Cogruppe in einer all­
gemeinen Kategorie; ferner wurde die Aufmerksamkeit nun besonders auf diejenigen
Funktoren gerichtet, welche die Gruppen- bzw. Cogruppenstruktur respektierten. Ins­
besondere von einem heuristischen Standunkt aus erwies sich dies im Allgemeinen wie
auch bei speziellen Anwendungen als sehr fruchtbar: In vielen Gebieten wurden auf die­
se Weise neue Resultate suggeriert, die anschlieJ3end bewiesen werden konnten.

Als ein einfaches Resultat, das sich aus den ganz grundlegenden Uberlegungen in
diesen drei Arbeiten ergibt, mag hier das folgende angefuhrt werden. Wenn X in der
Kategorie C eine Cogruppe ist und Yin C eine Gruppe, so besitzt die Morphismenmen­
ge C(X, Y) zwei Gruppenstrukturen, die eine kommt von X, die andere von Y. Gemaf
[52], Theorem 4.17 stimmen diese zwei Gruppenstrukturen aus ganz allgemeinen Grun­
den iiberein. Daraus ergibt sich sofort, dass verschiedene Cogruppenstrukturen in X
bzw. verschiedene Gruppenstrukturen in Y zu ein und derselben Gruppenstruktur in
C(X, Y) fuhren und dass ferner diese Gruppenstruktur abelsch ist. Als eine konkrete
Anwendung dieses allgemeinen und ganz formalen Resultates ergibt sich, dass die Fun­
damentalgruppe einer topologischen Gruppe bzw. eines H-Raumes immer abelsch ist.
In den drei Arbeiten haben die Autoren in einer systematischen Weise sowohl einen
Uberblick iiber viele Begriffe der Kategorientheorie gegeben, wie auch auf viele konkre­
te Anwendungen dieser allgemeinen Theorie hingewiesen. Ganz offensichtlich haben
Eckmann und Hilton bereits zu diesem fruhen Zeitpunkt klar die Moglichkeiten er­
kannt, welche die konsequente Verwendung der Kategorientheorie zur Vereinheitli­
chung der Mathematik leisten kann. Dieser Standpunkt ist heute allgemein geworden,
so dass heutige Mathematiker Miihe haben, sich anderes vorzustellen.

Die kategorietheoretischen Uberlegungen waren inspiriert durch die oben erwahnte
topologische Dualitat, wie sie in [53] und [59] beschrieben worden sind: Der Schleifen­
raum nx eines punktierten topologischen Raumes X ist offensichtlich ein H-Raum, die
Suspension ~X ebenso offensichtlich ein coH-Raum. Die resultierenden Gruppen

9 Der letztere Begriff war von Hopf in seiner Arbeit [H041b] gepragt worden. Der Vorschlag, sol­
che Raume H-Raume zu nennen, geht offenbar auf J. P. Serre zuruck,
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[~X, Y] und [X,nY] sind natiirlich isomorph und mittels Iteration fiihrt dies zu Grup­
pen

IIn(X, Y) = [~nX, Y] = [~n-t X, nY] = ... = [X,nn Y] ,

die nach obigem fur n ;::: 2 abelsch sind. Da die Sphare S" als n-te Suspension der Null­
sphare SO angesehen werden kann, erhalt man

IIn[SO, Y] = [sn, Y] = Jrn(Y) ,

also die n-te Homotopiegruppe von Y. Indem man "dual" vorgeht und den Eilenberg­
MacLane-Raum K(7L, m) als Schleifenraum ansieht, erhalt man eine Cohomologietheo­
fie

H rn(X ,7L ) = [X,K(7L,m)] .

Diese stimmt fur CW-Komplexe mit der zellularen (bzw. singularen) Cohomologie
iiberein. Die Raume K(7L,m), bilden das sogenannte Eilenberg-Macl.ane-Spektrum.
Neben diesem gibt es andere Spektren, die beim analogen Vorgehen zu allgemeineren
Cohomologietheorien fiihren, die das .Dimensionsaxiom" nicht erfullen. So erhalt man
zum Beispiel die K-Theorie, indem man das Bott-Spektrum verwendet; es besteht aus
der unendlichen unitaren Gruppe U fiir m ungerade und aus nU fur m gerade.

2.4 Harmonische Ketten, irCohomologie

1m Jahre 1949 publizierte Beno Eckmann den Artikel Coverings and Betti numbers [19].
Wie sich etwa 30 Jahre sparer zeigte, war diese Arbeit der Anfang einer intensiven Ent­
wicklung, die auf einer systematischen Nutzung von Hilbertraum-Strukturen in Ketten­
gruppen und Cohomologiegruppen beruht und im Rahmen der frCohomologie auf­
gegriffen wurde (siehe [115]). Eckmann betrachtet ein endliches, simpliziales und zu­
sammenhangendes Polyeder P, welches ein Uberlagerungsraum des Polyeders 15, mit
simplizial operierender Decktransformationengruppe G, ist. Er beweist, dass sich die
Betti-Zahlen bn(P) von 15 aus der Darstellung von Gin der Homologie des Uberlage­
rungskomplexes P berechnen lassen und gibt eine explizite Formel fiir diese Betti­
Zahlen.

Sein Beweis ist kurz und elegant und verwendet den Begriff von simplizialen harmo­
nischen Ketten, ein heute gelaufiger Begriff im Rahmen der fz-Cohomologie. Fur ein
endliches simpliziales Polyeder haben die reellen Kettengruppen eine natiirliche eukli­
dische Struktur, und es ist deshalb sinnvoll, vom zur Randabbildung fJ adjungierten
Operator S zu sprechen sowie vom sogenannten simplizialen Laplace-Operator
~ = fJ(j + (jfJ, einem Endomorphismus der Kettengruppen. Die Elemente im Kern von
~ heiBenharmonische Ketten. Eckmann beweist, dass die harmonischen Ketten Zykeln
sind und dass jede Homologieklasse genau einen harmonischen Reprasentanten besitzt.
Der Raum der harmonischen n-Ketten ist somit natiirlich isomorph zur n-ten Homolo­
giegruppe. Dies gilt sowohl fur P wie auch fur den Bahnenraum 15, mit dem Unter­
schied, dass im Falle von P zusatzlich die Decktransformationengruppe G auf den Ket-
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tengruppen operiert. Eckmann beweist, dass der Raum der G-invarianten harmo­
nischen n-Ketten von P isomorph ist zur n-ten Homologiegruppe von P. Indem er den
G-invarianten Teil als Bild eines Projektionsoperators, namlich der Mittelbildung be­
zuglich der Gruppenoperation auffasst, erhalt er hieraus eine explizite Formel fur die
Dimension des Raumes der G-invarianten harmonischen n-Ketten, und diese Dimen­
sion ist genau die gesuchte note Betti-Zahl bn(P) von P.

In der allgemeineren Situation der f2-(Co)homolgie sind die Definitionen wie folgt
(siehe [115]). Der Einfachheit halber skizzieren wir den Fall, wo P ~ P die universelle
Uberlagerung eines endlichen, zusammenhangenden simplizialen Polyeders P mit
G = 7f1(P) bezeichnet. Die Decktransformationengruppe G operiert dann simplizial, ist
nun aber nicht mehr unbedingt endlich, aber abzahlbar, da der Bahnenraum P/ G end­
lich ist. Der G-Vektorraum der reellen simplizialen n-Ketten von P besitzt auch in die­
sem allgemeineren Fall eine natiirliche euklidische Struktur. Eine orthonormale Basis
ist durch die Vektoren gegeben, welche den n-Simplexen entsprechen. Es folgt daraus,
dass die G-Operation auf dem Raum der n-Ketten isometrisch ist. Vervollstandigt man
diese Kettenraume bezuglich der f2-Norm, so erhalt man einen Kettenkomplex von Hil­
bert-G-Riiumen. Der adjungierte Operator 8 zum beschrankten Randoperator 8 ent­
spricht dem Corandoperator, und ~ = 88 +88 ist der Laplace-Operator, dessen Kern
per definitionem aus den harmonischen f2-Ketten besteht. Die (reduzierte) f2-Homolo­
giegruppe 'H; von P ist definiert als Raum der harmonischen f2-Ketten von Pin der Di­
mension n. Diese f2-Homologiegruppe 'Hn ist ein Hilbert-G-Modul und besitzt als sol­
cher eine von Neumann-Dimension f3n(P), die eine Homotopieinvariante von P ist. Die
f3n(P) heiBen f2-Betti-Zahlen von P und sind nicht-negative, reelle Zahlen. Sie sind hau­
fig gleich 0, aber im Unterschied zu den gewohnlichen Betti-Zahlen im Allgemeinen
nicht ganzzahlig. Eine fundamentale Eigenschaft der f2-Betti-Zahlen von P ist die Tat­
sache, dass, analog wie im Faile der gewohnlichen Betti-Zahlen, die Eulercharakteristik
X(P) durch die alternierende Summe L(-I r f3nCP) = x(P) gegeben ist. Beno Eckmann
verwendet dies in [103] urn Folgendes zu beweisen:

Ist G amenabel und unendlich und sind die simplizialen Homologiegruppen Hi(P,7/.,)

fiir 0 < i < N = dim(P) aile gleich 0, so besteht die Ungleichung (_I)diIll(PlXCp) 2: O.
Ferner ist xCP) genau dann gleich 0, wenn zusatzlich die simpliziale Homologiegruppe
HN (P, 7/.,) verschwindet.

Mit einer Zusatzuberlegung ergibt sich daraus fur ein Polyeder P der Form K( G, I)
mit G unendlich und amenabel, dass X(P) = 0 ist. In [107] untersucht Beno Eckmann
die Umkehrung dieses Satzes im FaIle, wo P = Meine 4-dimensionale, geschlossene
Mannigfaltigkeit mit unendlicher, amenabler Fundamentalgruppe Gist. Er zeigt, dass
die Bedingung x(M) = 0 zusammen mit dem Verschwinden der Endengruppen
H i ( G, 7/.,G) fur i = 1,2 impliziert, dass M ein K( G, I)-Raum und mithin G eine 4-dimen­
sionale Poincare-Dualitatsgruppe ist.

Falls P = Meine geschlossene, nieht unbedingt orientierbare N-dimensionale Man­
nigfaltigkeit ist, so erfiillen die f2-Homologiegruppen von Pals Hilbert-G-Moduln ganz
allgemein die Poincare-Dualitat H; 9'! 'HN-n. Somit ist f3n(M) = f3N-n(M). 1st G un­
endlich, so gilt immer f3o(P) = 0, so dass fur eine geschlossene Mannigfaltigkeit M der
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Dimension N mit unendlicher Fundamentalgruppe stets folgt (3N(M) = O. Zum Beispiel
ergibt sich fur P=F eine geschlossene, nicht unbedingt orientierbare, Flache mit unend­
licher Fundamentalgruppe:

(3o(F) = 0, (31 (F) = -X(F), (32(F) = 0 .

Weitere Anwendungen betreffen den Defekt def( G) einer endlich prasentierbaren Grup­
pe G. 1st Peine endliche Prasentierung von G mit e Erzeugenden und r Relatoren, so ist
def(P) = e - r, und def(G) ist definiert als Maximalwert von def(P), wobei P die end­
lichen Prasentierungen von G durchlauft, Es ist eine elementare Tatsache, dass die Un­
gleichung def( G) :::; b,(G) - b2( G) gilt, wobei MG) fiir die i-te Betti-Zahl des Eilen­
berg-Macl.ane-Raumes K( G, 1) steht. Bezeichnen wir die e2-Bett i-Zahlen von K( G, 1)
mit (3i(G), so gilt nach Theorem 4.1.2 von [115]

def(G) :::; 1 - (3o(G) + (31 (G) - (32(G) .

Die folgenden Beispiele illustrieren den Nutzen dieser zweiten Ungleichung. 1st G eine
endlich prasentierbare amenable Gruppe G, so folgt def( G) :::; 1, denn in diesem Fall ist
(31 (G) = O. Andere Beispiele von Gruppen mit (31 = 0 sind die Gruppen mit der
Kazhdan-Eigenschaft T, die Gruppen der Form H x K mit beiden Faktoren unendlich
und die Knotengruppen; alle diese Gruppen haben somit einen Defekt :::; 1. Eine
PD 2-Gruppe a ist nach einem im Abschnitt 2.2 erwahnten Satz von Eckmann-Linnell
[92], [98] isomorph zu einer Flachengruppe, Ein wesentlicher Schritt im Beweis dieses
Satzes besteht darin zu zeigen, dass es eine surjektive Abbildung a ---+ 7/., gibt, also
b, (c) > 0 ist. Dies kann man, wie Beno Eckmann bemerkt hat, mittels der e2-Bett i-Zah­
len wie folgt sehen. Aus bekannten allgemeinen Satzen schlieBt man, dass eine
PD 2-Gruppe a ein endliches CW-Modell K((]', I) besitzt. Schreiben wir x((]') fur die Eu­
lercharakteristik von K(a, 1), so folgt:

x((]') = 1 - b, ((]') + b2((]') = (3o((]') - (31 ((]') + (32({]') = -(3[ (o)

und somit

bl((]')~I.

Fur die Fundamentalgruppe 7T einer Flache vom Geschlechte g > 0 liefert die Standard­
prasentierung fiir den Defekt im orientierbaren Fall 2g - 1 = 1 - X(7T) als untere
Schranke und im nicht-orientierbaren Fall g - 1 = 1 - X(7T). Zusammen mit der oberen
Schranke 1 + (31(7T) = 1 - X(7T) ergibt sich daraus auf Grund des Satzes von Eckmann­
Linnell, dass der Defekt einer beliebigen PD 2-Gruppe a gleich 1 - X((]') ist.

Beno Eckmann hat die e2-Cohomologie in [111] auch auf weitere Situationen in ei­
nem erstaunlich umfangreichen Gebiet der algebraischen Topologie und Algebra ange­
wendet, so auf die Hausmann-Weinberger-Invariante (siehe [HW85]) von endlich pra­
sentierbaren Gruppen, auf die holomorphe Eulercharakteristik einer Kahler-Mannig­
faltigkeit der komplexen Dimension 2 und (in [118]) auf Gitter in zusammenhangenden
halbeinfachen Liegruppen.
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2.5 Aigebraische K-Theorie

Die Hattori-Stallings-Spur <Pp eines endlich erzeugten projektiven ZG-Moduls P ist
eine Z-wertige Funktion, die auf den Konjugationsklassen der Gruppe G definiert ist.
Eine Vermutung von Hyman Bass besagt, dass, wie im FaIle eines freien Moduls, hochs­
tens der Wert <pp(e) verschieden von 0 sein kann; <Pp(e) = Ii(P) nennt man die Kaplan­
sky-Spur. Nach einem Satz von Kaplansky ist Ii(P) ~ 0, und Ii(P) = 0 gilt genau dann,
wenn P = 0 ist. Damit verwandt ist die Augmentierungsspur E(P) = dimcc(P r'i9G ([),

wobei ([ als trivialer G-Modul aufzufassen ist. Sie entspricht der Summation der Werte
von <Pp uber aIle Konjugationsklassen. 1st die Bass-Vermutung erfullt, so gilt offenbar
Ii(P) = E(P). Erfiillt eine Gruppe G fur aIle endlich erzeugten projektiven ZG-Moduln
die letztere Gleichung, so sagt man G erfiille die schwache Bass-Vermutung. Die Bass­
Vermutung ist zum Beispiel fur endliche Gruppen erfiillt, denn in diesem Fall zeigt sich,
dass ein endlich erzeugter projektiver ZG-Modul Punter der Skalarerweiterung Z ----> (Q
zu einem freien (QG-Modul (Q r'i971 P wird. Allgemeiner ist die Bass-Vermutung fur
amenable Gruppen erfiillt, aber auch fur freie Gruppen und allgemeiner, nach einem
Resultat von Peter Linnell, fur aile residuell endlichen Gruppen. Eckmann hat in [99]
bewiesen, dass eine torsionfreie Gruppe G die Bass-Vermutung erfullt, falls fur aile Ele­
mente x E G, die rationale Cohomologiedimension von Ct / (x) endlich ist, wobei Ct

den Zentralisator von x in G bezeichnet. Eckmanns Beweis verwendet eine bekannte Be­
rechnung der zyklischen Homologie des Gruppenrings (QG. Die oben definierte Klas­
senfunktion <P p kann als Element ~p in der zyklischen Homologie von (QG in der Di­
mension 0 aufgefasst werden. Wie Beno Eckmann zeigt, impliziert die Voraussetzung
iiber die cohomologische Dimension der Zentralisatorquotienten, dass ~p in dem der
Konjugationsklasse von e E G entsprechenden Summanden der zyklischen Homologie
liegt und dies entspricht genau der Aussage der Bass-Vermutung.

Unter Verwendung von Resultaten von Robert Bieri und Ralph Strebel (siehe
[Bi76], [StR76]) gelingt es Beno Eckmann, die Bedingung betreffend der cohomologi­
schen Dimension der Zentralisatorquotienten im Faile der Gruppen mit Cohomologie­
dimension 2 nachzuweisen (siehe [99]) und somit die Bass-Vermutung fiir diese Klasse
von Gruppen zu beweisen.

In den Arbeiten [110], [116] untersucht Eckmann endlich erzeugte projektive Mo­
duln M uber N(G), der komplexen von Neumann-Algebra von G, eine Banach-Algeb­
ra, welche die komplexe Gruppenalgebra ([G umfasst. Ein endlich erzeugter projektiver
N(G)-Modul M besitzt eine von Neumann-Dimension dirn(M) E JR. Dabei gilt
dirn(M) = 0 genau fiir M = O. Die von Neumann-Dimension ist wie folgt mit der Ka­
plansky-Spur eines endlich erzeugten projektiven ZG-Moduls P verknupft: Es gilt Ii(P)
= dirn(N( G) r'i971G P). Eckmann zeigt, dass fur einen endlich erzeugten projektiven
ZG-Modul P, der projektive N(G)-Modul N(G) r'i971G P frei und damit isomorph zu
N(G)"(P) ist. Erfullt G die schwache Bass-Vermutung, so ist ferner Ii(P) = E(P), und
mithin N( G) r'i971G P ~ N(Gr(P). Dies verwendet Eckmann, urn zu zeigen, dass fur
einen endlich dominierten zusammenhangenden CW-Komplex X die £2-Eulercharakte­
ristik von X mit der iiblichen Eulercharakteristik iibereinstimmt, falls die Fundamental­
gruppe von X die schwache Bass-Vermutung erfullt.
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2.6 Charakteristische Klassen von Darstellungen von Gruppen

In den Arbeiten [84], [86], [89], [96] studiert Beno Eckmann (in Zusammenarbeit mit G.
Mislin) charakteristische Klassen von Gruppen-Darstellungen. 1m Falle einer reellen
n-dimensionalen Darstellung p mit darstellenden Matrizen von positiver Determinante,
ist die Eulerklasse en(p) E H n(G,71..) definiert als Eulerklasse des durch p induzierten fla­
chen, orientierten IRn-Bundels iiber dem klassifizierendenRaum von G.

Die Arbeit [84] bezieht sich auf die Situation einer (Q-Darstellung einer endlichen
Gruppe G. Fur die Eulerklasse en(p) einer solchen Darstellung wird bewiesen, dass ihre
Ordnung durch eine von der endlichen Gruppe G und der spezifischen n-dimensionalen
Darstellung unabhangigen, optimalen Schranke En beschrankt ist, die in iiberraschen­
der Weisemit den Bernoulli-Zahlen zusammenhangt (siehe [84], Theorem 3.2).

Analog sind die Chernklassen c;(p) E H 2;(G, 71..) einer komplexen n-dimensionalen
Darstellung pals Chernklassen des durch p induzierten flachen ern-Biindels iiber BG de­
finiert. Es zeigt sich, dass die gleiche optimale Schranke E; fiir die Ordnung von c;(p)
auftritt, falls die Darstellung p reell ist und rationale Charakterwerte besitzt (siehe [84],
Theorem 4.2). Beispiele zeigen, dass dies fur nichtreelle Darstellungen im Allgemeinen
nicht richtig bleibt, und zwar auch dann nicht, wenn die Darstellung rationale Charak­
terwerte besitzt.

In der Arbeit [86] werden Darstellungen iiber beliebigen Zahlkorpern betrachtet. Es
werden universelle Schranken fur die Eulerklasse von reellen Darstellungen endlicher
Gruppen in Abhangigkeit vom reellen Zahlkorper, iiber dem sie definiert sind, angege­
ben; entsprechende Schranken gelten fur die Chernklassen (siehe[89]).

Es ist leicht zu sehen, dass es keine universelle Schranke fiir die Ordnung der Chern­
klassen c;(p) fur komplexe Darstellungen von beliebigen, nicht unbedingt endlichen
Gruppen geben kann; insbesondere sind fur N» j die universellen Chernklassen
Cj(<r) E H2j(GL~(er),7I..) = H2j(GL~(er),7I..) der identischen Darstellung der diskreten
Gruppe GL~(er) von unendlicher Ordung. In [93] wird das Verhalten dieser Chernklas­
sen Cj(er) unter Korperautomorphismen von er studiert. In diesem Zusammenhang ist
es zweckmaliig,die sogenannten profiniten Chernklassen zu betrachten. 1stK ein Zahl­
korper, so lasst sich die Wirkung der Galois-Automorphismen der Korpererweiterung
K c er auf diesen Chernklassen explizit bestimmen. Daraus lassen sich universelle
Schranken fur die Chernklassen von Darstellungen uber dem Zahlkorper K fur beliebi­
ge, auch unendliche Gruppen herleiten.

Dank.Die Autoren danken Frau Doris Eckmann herzlich fur vielemundliche Informa­
tionen sowie fur die freundliche Erlaubnis, Einsicht in personliche Unterlagen zu neh­
men, die Beno Eckmann betreffen. ~ Ein weiterer Dank geht an den Springer-Verlag fur
die freundliche Erlaubnis, den Namenszug von Beno Eckmann, die Liste der betreuten
Dissertationen und die Liste der Publikationen aus den Selecta [E87] verwenden zu diir­
fen sowie fur die Unterstutzung hinsichtlich der Rechte am Bild von Beno Eckmann,
das in den "Mathematical Survey Lectures" [E07] abgedruckt wurde.
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1 EinfUhrung: Was ist ein Transregio?

Die Deutsche Forschungsgemeinschaft (DFG) gibt es in ihrer heutigen Form seit der
Fusion des .Deutschen Forschungsrats" mit der "Notgemeinschaft der deutschen Wis­
senschaft" im August 1951. Die DFG hat neben der Einzelforderung bereits eine lange
Tradition im Bereich der koordinierten Forschungsforderung. Zum Beispiel feierte das
Forderinstrument "Sonderforschungsbereiche" im Jahr 2008 sein 40-jiihriges Bestehen
[2]. Sonderforschungsbereiche waren zunachst ausschlieBlich an einem Standort ange­
siedelt. In der Mathematik war die dazu erforderliche Konstellation von miteinander
kooperierenden Wissenschaftlem nur an wenigen Instituten gegeben. Meines Wissens
gab es in dieser Zeit etwa 14 Sonderforschungsbereiche, in denen die Mathematik eine
tragende Rolle hatte. Davon hatte die Halfte einen Schwerpunkt in der theoretischen
Mathematik. Die ersten beiden mathematischen Sonderforschungsbereiche wurden in
Bonn gegriindet: Der SFB 40 (1969-1985) "Theoretische Mathematik", aus dem in ge­
wisser Weise das Max-P1anck-Institut hervorgegangen ist, und der SFB 72(1971-1986)
in der angewandten Mathematik. Innerhalb des Programms Sonderforschungsbereiche
wurde in den 90er Jahren deutlich, dass auch standortiibergreifende Zusammenarbeit
innerha1b von Deutschland immer mehr nachgefragt wurde. Man entschloss sich 1999
dazu, das Programm SFB/Transregio fur zehn Jahre befristet parallel anzubieten. In
der Mathematik gibt es inzwischen auch mehrere Transregios. 1m Jahr 2008 erfolgte ei­
ne exteme Evaluation dieser Pilotphase, die seit einigen Monaten vorliegt [1]. Aus dieser
Quelle mochte ich einige Satze zitieren, die die Intention des Programms Transregio aus
erster Hand wiedergeben:

"Die Deutsche Forschungsgemeinschaft fordert seit dem Jahr 1999 unter der Bezeich­
nung SFBITransregio Sonderforschungsbereiche, an denen sich mehrere Hochschulen als
Standorte beteiligen konnen. Dafiir miissen die wissenschaftlichen und strukturellen Vo­
raussetzungen, die jUr die Einrichtung eines Sonderforschungsbereichs gefordert werden,
an allen antragstellenden Hochschulen gegeben sein. Zusiuzlich miissen die Beitriige der
beteiligten Partner[iir das Forschungsziel essenziell, komplementiir und synergetisch sein.
Es gilt das Prinzip der freien Partnerwahl, das heifJt, es wird erwartet, dass in einem SFBI
Transregio jeweils die besten Gruppen in Deutschland zusammenarbeiten. "

1m Oktober 2009 wurde beschlossen, das Forderprogramm SFB/Transregio dauer­
haft zu etablieren. Die maximale Anzahl der betei1igten Standorte (Stadte) in einem
Transregio ist prinzipiell auf drei begrenzt. Seit einigen Jahren hat die DFG auch ange­
regt, in die Sonderforschungsbereiche und Transregios Doktorandenschulen zu inte­
grieren [3].

2 Kurzvorstellung des Transregio 45

Der SFBlTransregio 45 wurde im Ju1i 2007 von der DFG eingerichtet. 1m Januar 2008
fand eine feierliche Eroffnungsveranstaltung statt, bei der Friedrich Hirzebruch und
Shing-Tung Yau Vortrage hielten zu den Themen "Examples of Hilbert polynomials in
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simulta n erfiillen, Ein bekanntes Beispiel dafiir sind die Fermathyperfliichen, die durch
eine homogene Gleichung

x~+ .¥(+ · · · +x';' = O

als Teilmenge des projektiven Raumes IP" gegeben sind . Fur d = 3 und n = 2 ergibt sich
dabei eine ebene elliptische Kurve. Die Koeffizienten der Fermathyperflache sind aile I ,
daher ist diese Varietat tiber jedem Kerper oder Ring definierbar. Dies gilt auch fur die
Clebsch-Kubik (siehe Abbildung I)

x~ +xi + x~ + x~ + x~ = Xo +x, + X 2 +X3+ X4 = 0,

die das offizielle Logo des Tran sregio 45 darstellt.

Abbildung I. Clebsch-Diagonalkubik (Bild: Oliver Labs)

Auf dieser Figur kann man eine Konfiguration von 27 (farbigen) Geraden und ihre dop­
pelten und dreifachen Schnittpunkte sehen. Wahlt man als Koeffizientenring die ganzen
Zahlen 71" so wird soleh ein polynomiales Gleichungssystem diophantisch genannt. Der
Name geht auf Diophant zuruck, der bere its in der Antike ganzzahlige Losungen poly­
nomialer Gleichungen untersucht hat. Die beriihmte Fermat sche Vermutung, die von
Andrew Wiles gelost wurde, lasst sich - wie viele andere Probleme der Zahlentheorie ­
als diophantische Gleichung

ad + hd = cd

in drei Variablen a, b,c interpretieren. Eine Umformulierung durch Gerhard Frey fuhr­
te zu ebenen elliptischen (Frey-)Kurven

i = x(x - ad)(x +bd).

Die Losung des Problems durch Wiles bestand darin, die Modularitat jeder (semi-stabi­
len) elliptischen Kurve tiber <Q zu zeigen, was der Existenz einer nicht -trivialen Losung
wegen eines Resultats von Ribet widersprach.

Aufgrund soleher Zusammenhange wird klar, dass Geometrie und Arithmetik eng
verwoben sind. Neuere innermathematische Entwicklungen in den letzten Jahren und
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auch externe Anwendungen in der Kryptographie oder in der mathematischen Physik
haben beide Gebiete noch weiter zusammenwachsen lassen. Ein wichtiges Ziel des
Transregios ist es, Nachwuchswissenschaftlern von Anfang an arithmetische und geo­
metrische Sichtweisen und deren Zusammenspiel zu vermitteln.

In der algebraischen Geometrie sind nicht nur Varietaten der Hauptgegenstand des
Interesses. Auch Objekte wie Vektorbiindel oder allgemeiner kohiirente Garben auf X
werden ausgiebig untersucht. Ein wichtiges Beispiel dafiir ist das Tangentialbiindel Tx
zu einer glatten algebraischen Varietat X, welches die Menge aller Tangentialvektoren
an aIle Punkte von X zusammenfasst. Die abelsche Kategorie Coh(X) der koharenten
Garben und ihre derivierte Kategorie Db(X) sind primate Studienobjekte im Trans­
regio.

Die Gleichungen interessanter Varietaten enthalten typischerweise noch weitere Pa­
rameter in den Koeffizienten. Ein beruhmtes Beispiel ist die Legendrefamilie ebener el­
liptischer Kurven, die durch die Familie von Gleichungen

Ft(xo, Xl, X2) = X~XO - Xl (Xl - XO)(XI - txo) = °
gegeben ist. Der Parameter t ist dabei frei wahlbar als Element der projektiven Geraden
IPI (<C) = <C U 00. Bei den Werten t = 0, 1,00 passiert der Kurve Et = {Ft(xo, Xl, X2)

= O] jedoch etwas "Schlimmes", d. h. sie bekommt eine Singularitiit. Ein solcher Para­
meterraum wird auch Modulraum genannt, wenn er, wie hier der IPI

, aile durch das ge­
stellte Modulproblem definierten Objekte bis auf Isomorphie gleichzeitig parametri­
siert. Der Parameter tin einem solchen Modulraum hangt eng mit den Perioden zusam­
men: Betrachten wir wieder die Legendrefamilie. Die Differentialform

dx

y

ist holomorph auf den glatten elliptischen Kurven E, der Familie und die Perioden

<I>(t) =1dX,
"I Y

wobei "y ein geschlossener Weg ist, hangen von tab. Man kann zeigen, dass <I>(t) eine hy­
pergeometrische Differentialgleichung

d2<I> d<I> 1
t(I-t) dt2 +(1-2t)d"t- 4<I>=0

erfiillt und somit eine hypergeometrische Funktion darstellt. Solche Periodenfunktio­
nen existieren in viel allgemeineren Situationen und sind im allgemeinen kein treues Ab­
bild der Modulparameter, d. h. t Iasst sich nicht zuriickgewinnen. In vielen Fallen ge­
lingt dies aber doch und es lasst sich manchmal aus den Perioden sogar eine Uniformi­
sierungdes Modulraums konstruieren. So ist zum Beispiel im Fall der Legendrefamilie
der Parameterraum X = IPI

\ {O, l,oo} vermoge der Perioden ein Quotient X =
r(2)\H der oberen Halbebene H = SL2(IR)jSO(2) nach einer expliziten Kongruenz­
untergruppe r(2) der SL2(71). Man nennt X auch Modulkurveoder Shimurakurve. Hau­
fig, aber nicht immer, gelingt die Uniformisierung bei Modulraumen von kompakten
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algebraic geometry and combinatorics" sowie "Nonlinear methods in complex and al­
gebraic geometry".

Die Standorte des Transregios sind Bonn (ink!. MPI), Duisburg-Essen (Campus Es­
sen) sowie Mainz als Sprecherhochschule. Mit Bedacht wurde der detaillierte Titel .Pe­
rioden, Modulraume und Arithmetik algebraischer Varietaten" gewahlt. Die wesentli­
chen Forschungsgebiete im Grenzbereich zwischen Algebraischer Geometrie und Arith­
metik sind dadurch klar umrissen. Durch die explizite Definition des gemeinsamen
Arbeitsgebietes und die bereits vorhandenen Kooperationen von Wissenschaftlern zwi­
schen den beteiligten Standorten konnte eine dichte Vernetzung sichergestellt werden,
so dass die Voraussetzungen fur einen SFB/Transregio im Sinne der oben gegebenen
Definition geschaffen waren. Einige andere Themen, die nicht direkt im Titel zum Aus­
druck kommen, wie zum Beispiel Calabi-Yau-Raume, Galoisdarstellungen, Picard­
Fuchs-Gleichungen, Shimuravarietaten, Kohomologietheorien und Motive bilden
Querverbindungen, die weit tiber die einzelnen Teilprojekte hinausgehen und damit
auch zum Zusammenhalt beitragen.

Genauere Informationen, insbesondere tiber die beteiligten Wissenschaftler, die
Teilprojekte, die Preprints und tiber aktuelle Veranstaltungen finden sich auf den Web­
seiten unter http://www.sib45.de. Als vielleicht interessanteste Information mochte
ich hier aber auf der folgenden Seite die Liste der 32 geforderten Teilprojekte angeben.

3 Elne Reise durch die Mathematik des Transreglo

In diesem Abschnitt mochte ich die Mathematik, die im Transregio untersucht wird,
vorstellen. Dazu gebe ich zunachst eine elementare Einfiihrung in die Grundbegriffe des
Forschungsgebiets. Darauf aufbauend werde ich anschlieBend einige exemplarische
Forschungsprojekte und neuere Ergebnisse erklaren.

Valentina Damerowa von der DFG, den Herausgebern sowie den Kolleg(inn)en
Blickle, Bockle, Esnault, Gortz, Gonska, Huybrechts, Labs, Lehn, Moller, Rapoport,
Schroer, van Straten, Viehweg und Zuo danke ich fur ihre Unterstutzung.

3.1 Elne elementare EinfOhrung In das Forschungsgeblet

Eine algebraische Varietiit X ist ein Gebilde, das zumindest lokal durch Nullsetzen poly­
nomialer Gleichungen

F1(xo, ... ,xn ) = 0

Fm(xo, ... .x,) = 0

entsteht, wobei die Koeffizienten der Polynome aus einem Korper K oder allgemeiner
einem Ring R stammen. Punkte auf X, in einem naiven Sinne, sind Tupel P =
(Po, ... ,Pn) im affinen Raum A n+1 oder im projektiven Raum lPn, die die Gleichungen
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Liste der 32gefOrderten Teilprojekte
Periods of the nilpotent completion of the fundamental group

Tannaka group schemes of certain categories of bundles

Higgs bundles and Higgs cohomology on quasi-projective manifolds

Feynman integrals and motives

Some aspects of limiting mixed Hodge structures

Motivic cycles and regulators

Modular Galois representations and Galois theoretic lifts

Universal deformations, the rigidity method and Galois representations

Arithmetic of Katz modular forms

The cohomology of A-crystals, moduli spaces in positive characteristic and p-adic
etale cohomology on schemes over lip

p-adic cohomology

Congruences for the number of rational points over finite fields

p-adic point counting on Calabi-Yau threefolds

Non-archimedean period domains

Period domains of hyperkahler manifolds

Picard-Fuchs equations, monodromy, and the Mumford-Tate group of special fami-
lies of Calabi-Yau manifolds

Picard-Fuchs equations of Calabi-Yau type

Periods and period domains for abelian varieties

Local models of Shimura varieties

Affine Deligne-Lusztig varieties

SL2(IR)-action on translation surfaces and Teichmiiller curves

Arithmetic cycles on Shimura varieties

Special subvarieties of Shimura varieties

Algebraic Calabi-Yau categories

Derived categories of Calabi-Yau manifolds

Non-liftable Calabi-Yau manifolds in positive characteristics

Lagrangian fibrations on symplectic manifolds

Rozansky-Witten invariants

Symplectic singularities

Vector bundles

Moduli with GIT

Construction of moduli spaces: compactifications and ample sheaves
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Mannigfaltigkeiten, bei denen das kanonische Biindel, d. h., die Determinante des Tan­
gentialbiindels trivial ist. Beispiele dafiir sind elliptische Kurven oder allgemeiner abel­
sche Varietiiten, sowie die Calabi- Yau- und Hyperkiihler-Mannigfaltigkeiten. Beispiele
fur die beiden zuletzt genannten Arten von Mannigfaltigkeiten sind die K3-Fliichen,
zum Beispiel die Fermatquartik

{X6 +xi+ x~ +xj = O} ~ JP3(CC).

Sehr schone Parameterraume mit uniformisierenden Perioden und arithmetischer Rele­
vanz sind die Shimuravarietiiten, die Modulkurven verallgemeinern und eine zentrale
Rolle im Transregio spielen. Deren Komponenten sind lokal-symmetrische Riiume
X = f\D, wobei D = G(IR)K ein Hermitesch symmetrischer Bereich ist und I' ~ G(<Q)
eine arithmetische Untergruppe, die auf D operiert. Ein prominentes Beispiel ist die
Clebsch-Kubik, die ein birationales Modell einer Hilbertschen Modulfliiche f\ill x ill
ist. Modulraume von g-dimensionalen abelschen Varietiiten sind Shimuravarietaten fiir
die symplektische Gruppe G(IR) = Sp(2g, IR). Dagegen sind Modulraume von Calabi­
Yau- Varietaten selten Shimuravarietaten.

In dieser Einfiihrung habe ich oft an die geometrische Anschauung appelliert. 1m
Transregio werden auch analoge Situationen betrachtet, die in der Welt der endlichen
Kbrper IFpn oder der p-adischen Zahlen <Qp vorkommen. So verwenden wir zum Beispiel
auch rigid-analytische Riiume und p-adische Periodengebiete. Dazu ist es notig, viele Be­
griffe der komplexen algebraischen Geometrie einschlieBlich der Hodgetheorie auf diese
Felder hin zu erweitern.

3.2 Das mathematische Spektrum

1m folgenden Abschnitt wird genauer auf einige exemplarische Teilprojekte und neuere
Ergebnisse eingegangen, die von am Transregio beteiligten Wissenschaftlern bearbeitet
wurden. Die Auswahl ist sicherlich nicht vollstandig reprasentativ, Ab jetzt werde ich
etwas mehr mathematisches Vorwissen beim Leser voraussetzen. Weiterfiihrende Lite­
ratur ist in den angegebenen Referenzen zu finden.

Llisung der Gleseker-Vermutung

In diesem Abschnitt geht es urn algebraische Vektorbiindel und Zusammenhiinge. Unter
einem (algebraischen) Zusammenhang auf einem Vektorbiindel V auf einer komplexen
algebraischen Mannigfaltigkeit X verstehen wir eine CC-lineare Abbildung

V' : V -dllW),

die die Leibnizregel V'ifs) = fV'(s) + df 0 s erfiillt, wobei n~ die algebraischen l-For­
men sind. Wenn die Kriimmung des Zusammenhangs - eine 2-Form mit Werten in den
Endomorphismen des Biindels - verschwindet, so nennt man (V, V')flach. Flache Vek­
torbiindel auf X, bei denen wir regulare Singularitaten im Unendlichen voraussetzen,
falls X nicht eigentlich ist, lassen sich mit Hilfe der Riemann-Hilbert-Korrespondenz mit
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komplexen linearen Darstellungen der topologischen Fundamentalgruppe 7r~op (X, *)
von X identifizieren. 1st insbesondere 7r~op(X, *) trivial, so sind flache Biindel trivial.
Aber es gilt viel mehr: Nach einem Satz von Malcev und Grothendieck sind komplexe
lineare D~tellungen von 7r~op (X, *) trivial, wenn bereits die pro-endliche Komplettie­
rung 7rtop (X,*) trivial ist. Andererseits, als Konsequenz des Riemannschen Existenzsat-I _

zes, konnen wir 7r~op (X,*) mit Grothendiecks etaler Fundamentalgruppe 7r'r (X, *) iden­

tifizieren. Also gilt: Ist 7r'r(X, *) trivial, so sind flache Biindel trivial. Obwohl beide Sei­
ten des Satzes algebraischer Natur sind, verwendet der Beweisdie komplexe Topologie.

Wie sieht nun die Situation aus, wenn wir uns nicht auf einer komplexen Mannigfal­
tigkeit, sondern auf einer glatten, algebraischen Varietat iiber einem perfekten Korper
der Charakteristik p befinden? Indiesem Fall benutzt man stattdessen den Pullback F*
unter der Frobeniusabbildung, die Funktionen zur p-ten Potenz erhebt. Die zugrundelie­
genden Objekte sind dann stratifizierte Biindel E = (En, O"n)nEN' Dabei ist En ein Vektor­
biindel auf X und

ein Ox-linearer Isomorphismus. Diese Objekte bilden eine volle Unterkategorie
Strat(X) der koharenten Dx-Moduln auf X und stimmen nach einem Theorem von
Katz mit der Unterkategorie der Ox-koharenten Objekte iiberein. 1m Fall der komple­
xen Biindel gilt ein analoges Resultat, d. h. die flachen Biindel sind genau diejenigen ko­
harenten Dx-Moduln, die auch Ox-koharent sind. Wenn man dies fur den Moment
mal glaubt, so stellt sich sofort die Frage: Was passiert, wenn die Fundamentalgruppe
von X trivial ist? Hier haben wir nur 7ret (X, *) zur Verfugung. David Gieseker hat 1975
vermutet, dass auch in diesem Fall, d. h. bei trivialer etaler Fundamentalgruppe, alle
stratifizierten Biindel trivial sind. In2009 wurde die Vermutung von Esnault und Mehta
gezeigt:

Theorem 3.1 ([8]) Sei X eine glatte, geometrisch zusammenhiingende projektive Va­
rietiit, die iiber einem perfekten Kiirper k der Charakteristik p > 0 definiert ist. Wenn
7r'f1 (X ®k k: x) = 1gilt, dann existieren keine nicht-trivialen stratifizierten Bundel.

Feynmangraphen und Motive

Sei ein einfacher, zusammenhangender Graph r gegeben, ohne Orientierung der Kan­
ten oder andere Dekoration. Wir nennen die Kantenmenge E und betrachten fur jede
Kante e eine Variable X e. Damit konnen wir ein Graphpolynom (Kirchhoff-Polynom)

Wr = LITX e
T e~T

im Polynomring Z[XI, X2, ...] definieren. In der Definition durchlauft T aile aufspan­
nenden Baume von r. Dieses Polynom ist homogen und linear in jeder Variablen. Zum
Beispiel hat der Graph r, der zum einem regelmalligen n-Eck gehort, das lineare Graph­
polynom

wr = XI + X2 + ... + Xn ,
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da aIle Spannbaume dadurch entstehen, dass man genau eine Kante entfernt. Der Grad
von \}ir wird durch die erste Bettizahl b, (f) gegeben.

Die Feynmanregeln aus der physikalischen Storungstheorie liefern eine komplexe
Periode P(f) im Sinne von Kontsevich und Zagier zujedem Graphen I', die sich durch
ein Integral aus dem Graphpolynom berechnen lasst,

Die Graphhyperjliichen Xr werden als Nullstellengebilde von \}ir im projektiven
Raum IPUE-I definiert. Sie sind meist hochgradig singular, aber sie bilden andererseits
interessante Motive. Nach einem Resultat von Belkale und Brosnan sind sie sogar all­
gemein innerhalb der Motive im Sinne ihrer Zahlfunktionen q I--' IXr(IFq)l. Es ist noch
nicht ganz geklart, wann die Periode P(r) ein multipier Zetawert ist, dies ist jedoch bei
allen "kleinen" Graphen der Fall.

In [6]haben Bloch, Esnault und Kreimer die Periode des .Rades mit n Speichen" un­
tersucht (siehe Abbildung 2). Es war bekannt, dass dabei bis auf einen universellen Fak­
tor ein ungerader Zetawert herauskommt, aber die Ubersetzung in die Sprache der Mo­
tive und der algebraischen Geometrie gelang erst in [6]. Andere Graphen wurden von
Dzmitry Doryn in seiner Dissertation untersucht. In jungster Zeit haben Bloch und
Kreimer diesen Ansatz weiter verfolgt und die Renormierung in der Storungstheorie der
Physik in Verbindung mit gemischten Hodgestrukturen im Limes in Verbindung ge­
bracht. Mir scheint die Verbindung zwischen Physik und der Theorie der Motive beson­
ders spannend zu sein, zumal die Periodenintegrale bei zusatzlich variierenden Impulsen
und Massen interessante transzendente Funktionen darstellen. Eine enge Zusammen­
arbeit mit einigen Physikern beginnt sich zu entwickeln.

\

"'--'"
Abbildung 2. Rad mit n Speichen

Endllche KDrper, Cartler-Moduln und SlngularlUlten

Der Frobeniushomomorphismus spielt eine fundamentale Rolle beim Studium von Va­
rietaten tiber endlichen Korpern. Einige Projekte beschaftigen sich damit, Analoga zu
topologischen und hodgetheoretischen Methoden auch in diesem Gebiet mit Hilfe der
zusatzlichen Struktur, die der Frobenius liefert, zu etablieren (siehe auch den Abschnitt
tiber die Gieseker-Vermutung). Eine solche Analogie ist beispielsweise der Begriff des
Kristalls, der im vorliegenden Funktionenk6rperfall die lokalen Systeme, oder etwas all­
gemeiner die perversen Garben nachbildet.
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In einer neueren Arbeit [4] betrachten Blickle und Bockle sogenannte Cartier-Mo­
duln. Dazu sei X eine JFq-VarieHit und M ein kohiirenter Ox-Modul. Mist ein Cartier­
Modul, falls es eine Operation von Frobenius von rechts auf M gibt. Beachte, dass die
.normale" Operation, zum Beispiel auf Ox, von links erfolgt, denn es gilt offen bar
F(rs) = rtF(s). Allerdings erfolgt die von Cartier eingefiihrte wichtige Operation auf
der dualisierenden Garbe Wx von rechts, auch Cartier-Operator genannt. Links- und
Rechtsoperation werden durch die Serre-Dualitiit ineinander iibergefiihrt. Die Autoren
zeigen eine Endlichkeitsaussage iiber solche Cartier-Operatoren:

Theorem 3.2([4]) Sei X ein lokal Noethersches Schema uberJFq, so dass F eine end­
liche Abbi/dung ist. Dann hat jeder Cartier-Modul M bis aufNilpotenz endlicheLange.

Dieses Resultat impliziert und erweitert eine Reihe von Endlichkeitsaussagen ande­
rer Autoren, welche einem Einblicke in die Struktur der lokalen Kohomologie singuliirer
Varietiiten und den daraus erwachsenden Invarianten liefem.

HlggsbOndel und Eigenschaften von Shimuravariet~ten

Higgsbiindelwerden in vielen Projekten des Transregio untersucht, sowohl im komple­
xen wie im p-adischen Fall. Ein holomorphes Higgsbiindel (E, 'l?) auf einer komplexen,
algebraischen Mannigfaltigkeit X ist ein Paar (E, 'l?) bestehend aus einem Vektorbiindel
E zusammen mit einem Homomorphismus

'l? : E --0, E 0 nj,

der die Regel 'l? 1\ 'l? = 0 erfiillt.
Higgsbiindel entstehen auf natiirliche Weise auf Modulraumen X: Gegeben eine

glatte, eigentliche Familie f : A --0, X von projektiven Mannigfaltigkeiten iiber X, so
tragen die lokal-konstanten Bildgarben Rkf.([ oder allgemeiner direkte Summanden
\V <:: Rkf.([ eine zusiitzliche Struktur, die man als Variation von Hodge-Strukturen
(VHS) bezeichnet. Insbesondere gibt es auf dem Vektorbiindel V = \V 0«[ Ox eine Fil­
trierung V = £0 :J F 1 :J ... durch Vektorbiindel, so dass der kanonische flache GaufJ­
Manin-Zusammenhang V'auf dem graduierten Objekt

k

E = EBEP,k-P, EP,k-p = FP /FP+l

p=o

die Ox-linearen Endomorphismen

'l?P,k-p : EP,k-p --0, EP-I,k-p+l 0 nj,

induziert und damit ein Higgsbiindel (E, 'l?) mit 'l? als Summe dieser Abbildungen. Unter
gewissen Regularitiitsvoraussetzungen vom Fuchsschen Typ, die bei geometrischen Fa­
milien immer erfiillt sind, liisst sich dieser Endomorphismus nach Deligne sogar zu ei­
nem logarithmischen Higgsbiindel

'l? : E --0, E 0 n~(logD)

im Wesentlichen kanonisch fortsetzen. Hierbei ist X = XU D eine algebraische Kom-
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paktifizierung von X, D ein Divisor mit normalen Uberkreuzungen und O}(logD) das
Vektorbiindel der meromorphen Differentialformen mit hochstens logarithmischen Po­
len entlang D. Innerhalb des Transregio werden die (logarithmischen) Higgsbiindel
mehrfach eingesetzt:

(i) Ahnlich wie bei der DeRham-Kohomologie existiert auch eine Higgs-Version der
L2-Kohomologie, die von lost, Yang und Zuo entwiekelt wurde. Eine relativ elementare
Definition im Fall einer Kurve X findet man in [5]. Diese Methode wird dart benutzt,
urn interessante Hodgezykel auf Familien von Calabi-Yau-Varietaten zu finden. Mit
der gleichen Technik kann man die Kohomologie von automorphen Vektorbisndeln auf
nieht-kompakten Shimuravarietaten effektiv berechnen.

(ii) Higgsbiindel kann man auch in der p-adischen Theorie definieren und man hat
dort eine Simpson-Korrespondenz zwischen ihnen und verallgemeinerten Galoisdarstel­
lungen [9]. Man erhofft sich eine Verfeinerung zu einer Korrespondenz zwischen einer
expliziten Unterkategorie p-adischer Higgsbiindel zu den echten Galoisdarstellungen.

(iii) Fiir Variationen von Hodgestrukturen Iiefert die Simpson-Korrespondenz nu­
merische Ungleiehungen fiir den Slope der Hodgebiindel. So kann man zeigen, dass auf
einer Kurve immer eine Arakelov-Ungleichung gilt:

deg(Ek,O) deg(£O,k) 1

J.L(W):= rk(Ek,O) - rk(EO,k) :S k· deg(Ox(logD)).

Fiir Familien abelscher Varietaten wahlt man k = 1, und die Gleichheit J.L(W) =
deg(O}(logD)) fiir aIle nicht-unitaren W impliziert, dass Xc Ag eine Shimurakurve ist,
oder zumindest in eine solche deformiert werden kann.

Ahnliches bleibt richtig fur Familien von Calabi-Yau-Mannigfaltigkeiten iiber Kur­
ven, und fur Familien von abelschen Varietaten iiber hoherdimensionalen Mannigfal­
tigkeiten. 1m zweiten Fall braucht man jedoch neben Gleichheit in der Arakelov-Un­
gleichung weitere numerische Bedingungen (siehe [18]), urn Shimuravarietaten X c Ag

zu charakterisieren oder, etwas allgemeiner, geodatische Untervarietaten fiir die Hodge­
Metrik auf Ag .

Auch eindimensionale Geodiiten fur die Kobayashi-Metrikauf Ag kann man nume­
risch charakterisieren:

Theorem 3.3 ([19]) Eine Kurve Yo C Ag ist eine Kobayashi-Geodiite genau dann,
wenndie kanonische VHS W auf Yo ein irreduzibles, nicht-unitdres UntersystemW ent­
halt, das Arakelov-Gleichheit erfiillt.

Insbesondere sind solche Kobayashi-Geodaten iiber «Q definiert, eine Aussage, die
von Martin Moller schon im Spezialfall der Teichmiillerkurven bewiesen wurde.

(iv) Die numerischen Charakterisierungen von Shimurakurven in iii) legen es nahe,
eine geometrische Form der Andre-Oort-Vermutung zu betrachten. Sie wiirde implizie­
ren, dass eine Untervarietat Z c Ag , die selbst eine unendliche, Zariski-dichte Menge
von Shimurakurven enthalt, eine Shimuravarietat sein muss. Dies ist fiir g = 2 einfach
nachzuweisen, fur g 2:: 3 offen. In [18] wird diese Frage unter einigen technischen Vo­
raussetzungen, die ich verschweige, fiir eine andere Klasse von Shimuravarietaten be­
handelt. Es zeigt sieh, dass "geniigend viele" Divisoren ausreichend sind:
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Theorem 3.4 ([18]) Sei Meine orthogonale Shimuravarietiit zur Gruppe
G = SO(2,n) und Z eM eine beliebige irreduzible Untervarietiit der Dimension
2 ::; d ::; n. Angenommen Z enthiilt geniigendvielepaarweise verschiedene Shimuradivi­
soren Wi C Z, die jeweils eine numerische Arakelovgleichung erfidlen. Dann ist Z selbst
eine Shimuravarietiit vom orthogonalen Typ oder ein Ballquotient.

Dieser Satz verallgemeinert Proportionalitiits(un) gleichungen von Hirzebruch. Fiir
die Anzahl der benotigten Wi existiert eine effektive Schranke, abhangig von der Pi­
cardzahlvon Z [18].

Lokale Madelle von Shlmuravarietliten

Wir haben bisher einige Beispiele von Shimuravarietaten gesehen, allerdings im Kon­
text von (zusammenhangenden) lokal-symmetrischen Raumen. Bei arithmetischen Un­
tersuchungen werden in der Regel endliche Vereinigungen von solchen Komponenten
betrachtet. Shimuravarietaten sind tiber Zahlkorpern definiert und man kann die Wir­
kung der absoluten Galoisgruppe studieren. Ein iibergeordnetes Ziel ist das Studium ih­
rer L-Funktionen und deren Zusammenhang mit speziellen (d. h. modularen) algebrai­
schen Zykeln, die CM-Punkte und Hirzebruch-Zagier Zykeln verallgemeinern. Dazu ist
es notig, erst ein Modell tiber einem Zahlring, z.B. 'IL, zu konstruieren und dann die Re­
duktion modulo p zu betrachten. Durch Komplettierung bei Primstellen kommt man zu
Modellen tiber Wittringen W, wie zum Beispiel den p-adischen ganzen Zahlen 'lLp oder
deren Erweiterungen. Die spezielle Faser (die Reduktion) ist dann tiber einem endlichen
Korper definiert und die allgemeine Faser tiber einem p-adischen lokalen Korper. Wir
verweisen auf einen Ubersichtsartikel von Rapoport [17]fiir eine wesentlich detaillierte­
re Darstellung dieser lokalen Modelle.

In einer neueren Arbeit [15]betrachten Kudla und Rapoport lokale Modelle zu Shi­
muravarietaten der unitiiren Liegruppe GU(I,n - 1) mit Signatur (l,n - 1). Ziel des
Projekts ist der Zusammenhang zwischen erzeugenden Funktionen, die aus speziellen
arithmetischen Zykeln konstruiert werden und der speziellen Werte einer Ableitung ei­
ner gewissen Eisensteinreihe zur Liegruppe U(n, n). Bei solchen lokalen Modellen kann
man mit Modulraumen p-divisiblerGruppen arbeiten und die Methoden von Zink tiber
Displays und deren Windowserfolgreich benutzen. In [15]konstruieren die Autoren zu­
erst einen formalen Modulraum N von p-divisiblen Gruppen X der Dimension n und
Hohe 2n, die Signaturstruktur (1, n - 1) im Endomorphismenring besitzen, polarisiert
und zu einer festen supersingularen Struktur quasi-isogen sind. Dieser Modulraum N
ist formal glatt von der relativen Dimension n - 1 tiber dem Wittring W und wurde von
Wedhorn und Vollaard studiert. Insbesondere hat die reduzierte (singulare) Faser Nred

eine Zerlegung in Zusammenhangskomponenten Ni, und diese wiederum besitzen eine
Stratifizierung in lokal-abgeschlossene, irreduzible Teilmengen VO(A), wobei A gewisse
Gitter durchlauft. Analog zur Drinfeldschen oberenHalbebeneergibt sich hier eine kom­
binatorische Beschreibung durch ein Gebiiude von Gittern zur unitaren Gruppe. Da­
raufhin konstruieren die Autoren spezielle Zykel, die mit Zi,j(Xl, ... , xm ) bezeichnet wer­
den und zeigen:
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Theorem 3.5 ([15]) Die Zykel Zi,J(Xl, ..., xm) sind rein-dimensional und Vereinigung
endlich vieler Strata VO(A). 1st der Zykel Zi,j(XI, ..., xm)red O-dimensional, so besteht er
aus einem Punkt und die Lange des lokalen Rings kann durch die explizite Formel
L,~=ol(a + b + 1 - 2£) berechnet werden, deren Parameter a, b sich aus der Definition
des Zykel ergeben.

In der Arbeit wird auch eine Vermutung iiber die Schnittzahlen der speziellen Zykel
angegeben.

Ebenfalls im Zusammenhang mit der Reduktion von Shimuravarietaten stehen die
affinen Deligne-Lusztig-Varietiuen XAb). Durch sie kann die Beziehung des lokalen
Modells, insbesondere der Singularitaten der Reduktion, mit der Newton-Stratij'izierung
untersucht werden. Deren Definition ist sehr einfach als Teilmenge der affinen Flaggen­
varietiit G(L)/I:

XAb) = {g E G(L)/I: g-Iba(g) E Ix!} c I\G(L)I.

Hierbei ist k = IFq ein endlicher Korper, L = k((E)) der Laurentreihenkorper tiber dem
Abschluss von k, G eine zusammenhangende, reduktive, algebraische Gruppe tiber k, 1
eine Iwahori-Untergruppe und a der Frobeniusautomorphismus auf k/k bzw. G(L).
Ferner ist s« G(L), und x ist ein Element der erweiterten affinen Weyl-Gruppe, die die
I-Doppelnebenklassen in G(L) parametrisiert.

Man mochte charakterisieren, wann Xx(b) nichtleer ist, und wissen, welche Dimen­
sion es besitzt. In der Arbeit [11] von Gertz et al. wird eine prazise Vermutung in algeb­
raischen Termen dariiber gegeben, wann die Xx(b) leer sind. In der Abbildung 3 wird
dies anschaulich illustriert, siehe [II] fiir eine Erklarung solcher Bilder. Die Autoren zei­
gen auch, dass Xx(b) leer ist, falls es die Vermutung vorhersagt. Das Hauptresultat die­
ser Arbeit ist eine Aussage uber Hodge-Newton Zerlegungen, auf die ich aber nieht ein­
gehe. Schliel3liehwird in [11] ein algorithmiseher Ansatz zur Bereehnung der Dimension
von XAb) gegeben. Damit ergibt sieh unterstiitzendes Datenmaterial fiir die Unter­
suchungen der Autoren. Gertz hat einen einfiihrenden Artikel [12] zu diesem For­
sehungsgebiet gesehrieben.

Derlvlerte Kategorlen und Ihre Invarlanten

Sei X eine beliebige k-Varietat. Natiirliche Invarianten von X sind die Kategorie
Coh(X) der koharenten Garben auf X sowie ihre derivierte Kategorie Db(X). Man kann
sieh fragen, ob sich X oder seine Invarianten aus Coh(X) bzw. Db(X) rekonstruieren
lassen. Naeh einem Satz von Gabriel lasst sieh X bis auf Isomorphie aus Coh(X) als
k-lineare Kategorie wiedergewinnen. Fur Db(X) gilt ein solcher Satz nieht, wie man aus
der Aquivalenz von Db(A) und Db(AV ) zwischen einer abelsehen Varietat A und ihrer
dualen AV sieht, Diese Aquivalenz wird tiber die Fourier-Mukai Transformation [14] ge­
leistet, die man wie folgt verallgemeinern kann. Seien X, Y k-Varietaten und
P E nb(X x Y). Dann definiert man

FTp : nb(X) --> n b(Y), E f-+ p~(p'XE0 P).
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Abbildung 3.WannsindDeligne-Lusztig-Varietaten leer? (Bild: UlrichGertz)

Bondal und Orlov haben gezeigt, dass allerdings im Fall glatter, projektiver Varietaten
X mit amplem oder anti-amplem kanonischen Divisor Wx die Varietat X wieder aus
Db(X) bis auf Isomorphie erhalten werden kann. Beriicksichtigt man zusatzlich die
Tensor-(triangulierte)-Struktur auf Dh(X), so zeigt ein Satz von Balmer sogar, dass sich
X immer wiedergewinnen lasst. Es wird vermutet, dass birationale Korrespondenzen
wiejlops, die Wx erhalten, die derivierte Kategorie ebenfalls nicht andern.

Derivierte Kategorien von Calabi-Yau-Mannigfaltigkeiten besitzen als zusatzliche
Struktur einen Serre-Funktor, der einer Dimensionsverschiebung entspricht. Katego­
rien mit solchen Eigenschaften werden Calabi- Yau-Kategorien genannt. Sie spielen auch
eine groBe Rolle in anderen Gebieten. Insbesondere in der Darstellungstheorie sind sie
enorm wichtig, denn es gibt eine starke Verbindung mit Clusteralgebren. Zwei Teilpro­
jekte des Transregio beschaftigen sich mit Calabi-Yau-Kategorien, eines davon mit so­
genannter Tilting- Theorie auf diesen Kategorien [10],das andere mit dem Problem, wel­
che Eigenschaften von Db(X) Varietaten untereinander unterscheiden konnen.

Man kann sich aber auch fragen, ob andere Invarianten wie zum Beispiel die
K-Gruppen oder Chowgruppen Invarianten der derivierten Kategorie Db(X) sind. Dies
ist etwas schwacher, als nach X selbst bis auf Isomorphie zu fragen. In einem Teilpro­
jekt werden solche Fragen im Kontext von K3-Flachen gestellt. Hintergrund dieser Un­
tersuchungen ist ein Ergebnis von Beauville und Voisin tiber den Chowring
CH*(X) = CHO(X) EB CHI (X) EB CH2(X) einer komplexen, projektiven K3-Flache X.
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Sie bewiesen, dass die Teilmenge

R(X) = CHo(X) EB CHI (X) EB C2(X) ·71c CH*(X)

ein Unterring ist und C2(X) = 24[P] ist, wobei P ein abgeschlossener Punkt auf einer
(moglicherweise singularen) rationalen Kurve in X ist. Es stellt sich die Frage, ob R(X)
stabil unter derivierter Aquivalenz, d. h. Fourier-Mukai Transformation ist. Zunachst
gilt:

Theorem 3.6 ([13]) Seien X, X' komplexe, projektive K3-Flachen und FTp,
FTQ : Db(X)!!..Y(X') zwei Fourier-Mukai Aquivalenzen derjeweiligen derivierten Ka­
tegorien. Sind die induzierten Operationen FTp,FTQ : H*(X,71)~H*(X',71) identisch
als Abbildungen zwischen den Mukai-Gittern, so auch die Wirkung auf den Chowgrup­
pen: FTp = FTQ : CH*(X)!!..CH*(X').

Dieses Resultat von Huybrechts ist motiviert durch eine Vermutung von Bloch, wie
in [13]ausgefiihrt wird. Als Anwendung bekommt man, dass der Ring R(X) stabil unter
derivierter Aquivalenz zwischen K3-Flachen mit Picardzahl p 2: 2 ist. In [13] wird auch
noch diskutiert, wie sich die Situation andert, wenn man K3-Flachen X tiber Zahlkor­
pern betrachtet. Es zeigt sich, dass dann gewisse (sphiirische) Objekte in Db(X) auch
tiber einem Zahlkorper definiert sind.

Symplektlsche Singularltliten

Die spannende Suche nach einer noch unbekannten Klassifikation symplektischer Sin­
gularitiiten [16] und der Theorie universeller Poisson-Deformationen wird zur Zeit in ei­
nem Teilprojekt des Transregio von Lehn und van Straten in Kooperation mit Namika­
wa und Sorger verfolgt. Die klassischen ADE-Graphen schlagen eine Brucke zwischen
den endlichen Untergruppen G c SU(2) und den einfachen Liealgebren: 1m ersten FaI­
le beschreibt der Graph die Konfiguration der exzeptionellen Kurven in der Auflosung
der Singularitat des Quotienten cr2

/ G, im zweiten Falle das Wurzel system der zugehori­
gen Liealgebra. Ein direkter geometrischer Zusammenhang zwischen diesen Objekten
wird durch Satze von Grothendieck, Brieskorn und Slodowy hergestellt. 1m Falle eines
Dynkin-Graphen vom Typ An- I stellt er sich wie folgt dar: Es sei x: sIn -+ crn- 1 die
durch die Koeffizienten des charakteristischen Polynoms gegebene Abbildung. Die
Nullfaser N = X-I (0) ist der Kegel der nilpotenten Elemente, auf dem die Gruppe Sln_1
operiert. Eine transversale Scheibe S an ein subregulares Element von N schneidet aus
dem Kegel eine Flachensingularitat genau vom Typ An- I heraus. AuBerdem ist die Pro­
jektion X : S -+ crn

-
I die universelle Deformation dieser Singularitat.

Erstaunlicherweise kann man diesen Satz auf Strata hoherer Kodimension auswei­
ten: Eine transversale Scheibe S an eine beliebige Bahn in N liefert eine symplektische
Singularitat und die Projektion xis ist eine universelle Poisson-Deformation dieser Sin­
gularitat, Bei diesen Untersuchungen sind die Kollegen 2009 auf die ersten symplekti­
schen Hyperflachensingularitaten jenseits der ADE-Singularitiiten gestoBen: Eine sol­
che vierdimensionale Serie ist etwa durch das schone Polynom

a2x + 2aby+ b2z+ (xz -lr
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gegeben. Man erwartet, dass es iiberhaupt nur sehr wenige symplektische Hyperflachen­
singularitaten gibt, fiir den Augenblick sind die Argumente dafiir aber noch nicht zwin­
gend.

L1ftungen von Calabl-Yau-VarletlUen Uber endllchen Klirpern

Calabi-Yau-3-Faltigkeiten und allgemeiner Varietaten mit Kodairadimension 0 spielen
eine wichtige Rolle in Teilprojekten des Transregio, bei denen es urn Perioden oder Mo­
dulraume geht. Jedoch gibt es auch spannende Fragestellungen arithmetischer Natur,
bei denen sie ebenfalls interessante Eigenschaften besitzen. Seit etwa 10 Jahren ist durch
Arbeiten von Hirokado und Schroer bekannt, dass es Calabi-Yau-3-Faltigkeiten iiber
lF2 und lF3 gibt, deren Gleichungen sich nicht zu Charakteristik 0 hochliften lassen. Ein
Teilprojekt beschaftigt sich mit diesem Phanomen. Es war nicht klar, ob solche Beispie­
Ie auch in hoherer Charakteristik existieren konnen, zum Beispiel tiber lFs. In [7]zeigen
Cynk und van Straten, dass es nicht-liftbare rigide Beispiele iiber lF3, sowie ein Beispiel
tiber lFs mit einer obstruierten Deformation gibt. Wenn man die Kategorie der algeb­
raischen Varietaten verlasst und (nicht-projektive) algebraische Riiume zulasst, so gibt
es sogar noch viel mehr Beispiele. Eine Konstruktion iiber lFs in loc. cit. entsteht durch
eine Auflosung von Singularitaten einer zweifachen Uberlagerung von ]p3 mit Verzwei­
gungsdivisor D, der aus der Vereinigung der Clebsch-Kubik (siehe oben) und 5 zusatzli­
chen Ebenen besteht, die die Kubik an den Schnittpunkten dreier Geraden, den soge­
nannten Eckardtpunkten, beriihren. Mit ahnlichen Methoden konnen die Autoren fol­
genden Satz zeigen:

Theorem 3.7 ([7]) Fur jede Primzahl p = 3,5,7,11,17,29,41,73,251,919,9001 gibt
es einen nicht-liftbaren 3-dimensionalen Calabi- Yau-Raum iiber lFp .

Kompaktlflzlerungen von Modulrliumen

Schon vor langerer Zeit konstruierte Viehweg quasi-projektive Modulraume Mh fur po­
larisierte, projektive Mannigfaltigkeiten mit festem Hilbertpolynom h. Kollar verein­
fachte diesen Ansatz im Falle von vollstandigen Modulproblemen, also in den Fallen,
in denen Mh eine Kompaktifizierung besitzt, die selbst ein Moduliproblem lost. Selbst
im kanonisch polarisierten Fall, und selbst nach den jiingsten Fortschritten im "Mini­
malen Modell Programm" gibt es zur Zeit solche Kompaktifizierungen nur fiir Kurven
und Flachen.

Fur viele Anwendungen reicht es jedoch, eine Kompaktifizierung zu haben, auf der
ample Garben sich in natiirlicher Weise auf den Rand fortsetzen. Unter Ausnutzung
technisch anspruchsvoller Konstruktionen von Abramovich-Karu und Gabber ist dies
in [20] im kanonisch polarisierten Fall und fur polarisierte minimale Modelle der Ko­
dairadimension 0 gelungen. In diesen beiden Fallen gibt es eine ample "Garbe"
Lm E Pic(Mh)CQ' die fiir eine "universelle" Familief : X -+ Mh mit det(f.wr/M ) iiber-

. . h
emstnnmt.
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Theorem 3.8 Sei Mh der Modulraum kanonischpolarisierter, projektiver Mannigfal­
tigkeiten oder der polarisierten minimalen Modelle der Kodairadimension 0, in beiden
Fallen mit festem Hilbertpolynom h. Es sei m > 0 so gewiihlt, dass /'wX/M

h
=I- 0 ist.

Danngibt es eineprojektive KompaktifizierungM~ von Mh' so dasssich Lm in natiirlicher
Weise zu einernumerisch effektiven invertierbaren Garbe L~ fortsetzt, die ample beziig­
lich Mh ist.

Diese Aussage wird erst sinnvoll, wenn man den Begriff "natiirlich" erlautert. Hier
wollen wir noch bemerken, dass eine Folgerung des Satzes ist, dass fur eine semistabile
~amilie g: X ---7 C der Grad von g.wX/c eine Art Hohenfunktion auf Mh definiert.
Ahnlich wie im Abschnitt iii) von 3.2gibt es obere Abschatzungen fiir diese Hohe,

4 Wie stellt man einen Antrag und was kommt auf einen zu ?

Einige Leser finden es vielleicht interessant, wenn ich aus meiner personlichen Sicht auf
die Vorgeschichte eines Transregioantrags und die erforderlichen Schritte bei der An­
tragstellung eingehe. Zu Anfang ist es notig, sich klarzumachen, ob man iiberhaupt in
Erwagung zieht, einen solchen Antrag fur einen SFB oder Transregio zu stellen, oder
doch lieber auf andere Forderinstrumente zuriickgreift. Dies hangt vom angestrebten
Personenkreis ab, der diesen Antrag stellen will und auch durchaus von Antragsfristen,
die einzuhalten sind. Neben dem individuellen Normalverfahren und diversen Stipen­
dienprogrammen gibt es bei der DFG weitere Verbundforderung, an der mehrere
Standorte partizipieren konnen, Dazu gehoren Forschergruppen, Schwerpunkte, Gra­
duiertenkollegs, Exzellenzcluster und Forschungszentren. Hat man die kritische Masse
von etablierten und jungen Wissenschaftlern zusammen und sich zur Beantragung eines
SFB oder Transregio entschieden, so ist von seiten der DFG jede Menge Information in
Form von Merkblattem erhaltlich, siehe [3]. Nachdem man Kontakt mit der DFG auf­
genommen hat, ist ein Konzeptpapier zu erstellen, in dem die Grundstruktur festgelegt
und vorgestellt wird. In diesem Dokument ist, als die conditio sine qua non, der Mehr­
wert herauszuarbeiten, den die ganze Gruppe in ihrer Zusammenarbeit iiber die indivi­
duelle Starke der einzelnen Wissenschaftler hinaus erbringen kann. Bei einem Trans­
regio wie unserem bedeutet dies eine enge und standortiibergreifende wissenschaftliche
Kooperation zwischen den jeweils beteiligten Arbeitsgruppen in den zentralen Teil­
gebieten des Gesamtvorhabens. Dabei ist die Grundvoraussetzung, dass die beteiligten
Arbeitsgruppen bis dato schon eine hohe internationale Reputation auf dem jeweiligen
Gebiet erworben haben. Die Verzahnung kann zumindest teilweise auf gemeinsamen
Vorarbeiten aufbauen, soil aber ein noch deutlich starkeres Zusammenwachsen in der
Zukunft vorhersehen lassen. Ein gewisser Anteil an innovativen, d. h. riskanten Projekt­
feldern wird, so scheint mir, ebenfalls erwartet. Es ist auch darzustellen, wie die geplan­
ten Kooperationsstrukturen beziiglich der Ausbildung und Forschungsleistung von
Nachwuchswissenschaftlern Friichte tragen sollen. Dieses Konzeptpapier wird dann
von einer Expertengruppe und der DFG selbst begutachtet und von den Beteiligten in
Bonn vorgestellt. Dabei ist bereits mit konkurrierenden Antragen zu rechnen, obwohl
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sich das aufgrund des Gesamtaufwands und der Voraussetzungen in der Mathematik in
Grenzen halt. 1st das Konzeptpapier erfolgreich durch die Gremien der DFG gelaufen,
so wird binnen einer Frist von mehreren Monaten ein Vollantrag gefordert. In diesem
wird das wissenschaftliche Gesamtvorhaben, eine Beschreibung jedes Teilprojekts, der
geplante Finanzhaushalt, alle StrukturmaJ3nahmen, wie Gleichstellung, Doktoranden­
ausbildung und Nachwuchsforderung, das interne Kooperations- und Kursprogramm,
Ideen fiir geplante Tagungen und Workshops, sowie die Lebenslaufe und Publikationen
der Teilprojektleiter gesammelt. Insgesamt ergibt dies in der Regel ein stattliches Biich­
lein von mehreren hundert Seiten. Durch etwa 10 Gutachter wird der Antrag an zwei
Tagen unter Teilnahme der Teilprojektleiter, wichtiger Mitarbeiter und Vertretern der
Hochschulen ausfiihrlich unter die Lupe genommen. Der Aufwand fiir eine solche Be­
gutachtung ist betrachtlich und ahnelt einer kleinen Konferenz. Am ersten Tag ist dabei
die wissenschaftliche Begutachtung in Form von Kurzvortragen, Einzelbefragungen
und ggfs. Postervorstellungen vorgesehen, am zweiten Tag sind offene Fragen und
Strukturplanungen in Zusammenarbeit mit den Hochschulen vorgesehen. An diesem
Tag wird dazu eine imposante Runde einberufen, an der Wissenschaftler und Hoch­
schulvertreter teilnehmen, und offene Fragen im Plenum angesprochen werden. Am
Nachmittag kommen die Gutachter mit der DFG im Beisein der Hochschulvertreter zu
einer Empfehlung an den Hauptausschuss der DFG, die sehr differenziert iiber die ein­
zelnen Teilprojekte und den Gesamtantrag urteilt. Das Ergebnis wird in Teilen dem de­
signierten Sprecher mitgeteilt und bei positivem Ausgang kann man dann gespannt der
Entscheidung der DFG entgegensehen, die einige Wochen danach im Hauptausschuss
der DFG getroffen wird.

DIe Selbstorganlsatlon elnes SFBfTransreglo

Die Verwaltung eines SFB ist durchaus sehr aufwandig und wird von der jeweiligen
Sprecherhochschule aus gesteuert. Man hat ein Budget von bis zu 2 Mio. Euro jahrlich
zur Verfiigung, das sinnvoll ausgegeben und korrekt verwaltet werden muss. Bei mehre­
ren Standorten sind dazu Vereinbarungen zwischen den Hochschulen zu etablieren. Die
meisten Mittel entfallen auf Personalstellen, die in der Regel von den Teilprojektleitern
besetzt werden. Die restlichen Mittel wie Pauschalmittel oder von der Universitat zu­
riickfliebende Overheadmittel sind vorn Sprecher in Abstimmung mit den Kollegen zu
verwalten, und er ist berichtspflichtig. Fiir die gesamte Mittelbewirtschaftung sollte
man eine Verwaltungskraft beschaftigen, entweder ein sehr gutes Sekretariat oder einen
hauptamtlichen Administrator. Nicht zu vernachlassigen ist auch der Aufwand fur den
Webauftritt und eine Datenbank, d. h. fur eine langfristige Speicherung von Informa­
tionen iiber Publikationen, Veranstaltungen und Personal wie Mitarbeiter und Gaste.
Nicht zuletzt zum Verfassen der Berichte ist dies nutzlich. Der Sonderforschungsbereich
hat sich auch eine Ordnung zu geben, in der die Organisationsstruktur des Transregio
und der integrierten Doktorandenschule geregelt werden. Insgesamt ist ein SFB also ein
groBes Unterfangen, besonders nach der Genehmigung und erfordert effektive Organi­
sation und Kommunikation.
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Schlussbemerkung

Ich mochte der Deutschen Forschungsgemeinschaft, insbesondere Herrn Frank Kiefer,
ganz herzlich fur die Realisierung dieses Transregios und den damit verbundenen Mog­
lichkeiten fur aIle beteiligten Wissenschaftler danken.
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Chris A M.Peters
Joseph H.M. Steenbrink
Mixed
Hodge Structures

Springer, Berlin, 2008, 470 Seiten , € 139,05

This book has been awaited for many
years. As the authors explain in the intro­
duction, the first attempt at the beginning
of the 80s by the second named author to
write down the foundations of mixed
Hodge theory came to a standstill when
Morihiko Saito developed his own theory
of mixed Hodge modules. Fortunately, the
authors did not give up , and the book
which is now available will certainly ra­
pidly become one of the standard refer­
ences on the topic.

Hodge theory assigns to a complex vari­
ety data which come from linear algebra.
The linear algebra is a bit subtle, but this is
linear algebra and surely much easier than
the analytic and algebraic geometry con­
tained in a complex variety. Pure Hodge
theory is what comes out of smooth pro­
jective varieties, while one needs the no­
tion of extensions of such pure structures
when the variety is singular, or not projec­
tive, or arises as a limit of such (in a way I
do not describe). The package is coded in
the notion of mixed Hodge theory. Here
"mixed" refers to the extensions with
graded pieces being pure. Mixed Hodge
theory is an absolutely central tool in com­
plex algebraic geometry. Deligne devel­
oped it. as well as an analogous theory of
weights for varieties defined over finite

JB 11 2. Band (2010), Heft 1

fields. Later on p-adic Hodge theory has
been developed , notably and amo ng
others by Fontaine. Those parallel the­
ories in different world s show how deep
the notions are developed in Hodge theory.

Let us describe the different parts of the
volume. In the first part. the authors recall
the basic abstract definitions of Hodge
structures. It includes Deligne 's viewpoint
on a Hodge structure as an algebraic re­
presentation, and the definition of the
Mumford-Tate group of a Hodge struc­
ture. In the second part, the authors link
the theory to geometry. Aside from appli­
cations to singularities, it includes De­
ligne's fixed part theorem. The third part
summarizes the construction of Hodge
theory on the pronilpotent completion of
the topological fund amental group. (The
reader can consult the third section of De­
ligne, P., Goncharov, A ..- Groupes fo nda­
mentaux motiviques de Tale mixte, An­
nales de ['ENS (4) 38 (2005) , nol , I- 56,
in which it is shown that the pronilpotent
completion is the cohomology of a cosim­
plicial scheme, and thu s knowledge from
the second part yields a mixed Hodge
structure on it.) This part includes the con­
struction of the minimal model. The
fourth part is tied to the second author's
own work , in which he defined the mixed
Hodge structure on the limit in a one para­
meter family . The first half of the part cul­
minates at 11.2.7 in which the authors fol­
low Guillen/Navarro Aznar's presenta­
tion. (The reader can consult Illusie, L. .­
Autour du theoreme de monodromie locale,
in Periodes p-adiques, Asterisque 223
(1994), 9- 57 for a viewpoint closer to Ra­
poport-Zink and M. Saito). In the second
half of this part, the authors Jay the foun­
dations ofM. Saito's mixed Hodge theory.
This will surely be a very useful source for
this poorly documented theory which
nonetheless plays an important role . Fi-
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American Mathematical Society, Pro­
vidence, Rhode Island, 2008, xxiv+404 S.
ISBN 978-0-8218-4700-8, € 66,99

nally, the authors gathered in various ap­
pendices the tools of homological algebra,
topology and differential geometry needed
in the course of the volume.

I heartily recommend the book.

Diskrete Differentialgeometrie hat ihren
Ursprung in dem Bediirfnis nach intelli­
genten Diskretisierungen differentialgeo­
metrischer Begriffe fur die Zwecke der
Numerik und der geometrischen Daten­
verarbeitung [4,3] und enthalt heute ein
ausgereiftes Theoriegebaude, das als Spe­
zialfall die klassische Differentialgeome­
trie der Koordinatensysteme in Flachen
umfasst und das eng mit der Theorie dis­
kreter integrabler Systeme verkniipft ist.
An dieser Entwicklung sind beide Auto­
ren wesentlich beteiligt. Das Phanomen
der ErschlieBung einer glatten Theorie
durch eine diskrete tritt auch anderswo
auf, zum Beispiel bei der durch W. Thurs­
ton initiierten Approximation von kon­
formen Abbildungen durch Kreispackun­
gen. Es ist vielleicht kein Zufall, dass einer
der gr6Bten Erfolge des diskreten Zu­
gangs zu glatten Flachen - die effektive

Bestimmung der Formen von Minimalfla­
chen aus der Kombinatorik ihrer Krtim­
mungslinien [I] - sowohl Thurstons Idee
als auch dem integrablen Zugang ver­
pflichtet ist.

Das vorliegende Werk deklariert in sei­
nem Vorwort die Leitideen .Diskretisiere
dieganzeTheorie, nichtnurdieGleichungen"
und .Diskretisiere Gleichungen durch Dis­
kretisieren derGeometrie", Ich mochte diese
anhand von zweiBeispielen illustrieren.

Das erste betrifft Punktgitter x : lLm
->

mn mit der Eigenschaft, dass die vier
Knoten jeder 2-Facette kozirkular liegen,
also einen Umkreis besitzen. Ihre Existenz
und gleichzeitig die Anzahl der Freiheits­
grade ist durch die Konsistenz der definie­
renden Eigenschaft sichergestellt, die fiir
m = 3 wie folgt lautet: Sind in dem kom­
binatorischen Wiirfel x: {O, I}3

-> JRn
die vier nicht an XI,I,. grenzenden Facet­
ten zirkular, so gibt es genau eine Wahl
von XI,I,l, sodass aIle 6 Facetten zirkular
werden (Satz von Miquel). Man sagt, Zir­
kularitat definiert ein 4D-konsistentes,
3-dimensionales System. Durch einen
partiellen Limes kann x in ein (m - 2)­
dimensionales Gitter f: JR2 X lLm

-
2 ->

JR3 von Kriimmungslinienparametrisie­
rungen glatter Flachen iibergehen; jedes
fl 1R2 x i ist dabei die Ribaucour-Transfor­
mierte seiner Nachbam.

Das zweite Beispiel sind diskrete K-Net­
ze x: lL2

-> JR3, die durch zwei Eigen­
schaften definiert sind: (i) Koplanaritat
jedes Punktes x;,} mit seinen vier direkten
Nachbam und (ii) die Forderung, class
Ilx;,} - Xi+I,jll bzw. IIX;,j - X;,j+lll nur von
i bzw. j abhangen. Eine als Limes von
K-Netzen entstehende glatte Parametri­
sierung einer Flache ist eine asymptoti­
sche Parametrisierung einer Flache kon­
stanter GauB-Kriimmung. Die Existenz
von K-Netzen hoherer Dimension zeigt
Existenz und Eigenschaften von Back-
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lund-Transformationen fiir soIche FHi­
chen. Dieser Zusammenhang war im We­
sentlichen schon in den I 950er Jahren be­
kannt. Eine bemerkenswerte jiingere Ein­
sieht, die eine Verbindung zu diskreten in­
tegrablen Systemen ergibt, ist die Giiltig­
keit der Hirota-Gleichung

. cPi+l,j+1 - cPi+l,j - cPi,j+l + cPi,j
SIn =

4

C C' . cPi+l,j+l + cPi+l,j + cPi,j+l + cPi,j
i jsm 4

fur bestimmte Winkel cPi,j, die in dem
Netz auftreten und aus denen eine Spek­
tralschar Xi,j(A) von K-Netzen rekonstru­
ierbar ist [2]. Diese Gleichung steIIt ein
diskretes Analogon der von den glatten
K-Flachen bekannten Sinus-Gordon­
Gleichung 8uv'I/J - sin 1/) = 0 dar. Dass
man aus jeder ihrer Losungen cP eine neue
gewinnen kann (Backlund-Transformati­
on ¢+ von ¢) und dass dafiir ein Permuta­
bilitatssatz gilt, wurde auf diese Weise als
Folge der 3- und 4-dimensionalen Konsis­
tenz der geometrischen Eigenschaften der
K-Netze erkannt. Eine weitere Analogie
zum glatten Fall ist die Aquivalenz der
Hirota-Gleichung zur Integrabilitats­
bedingung fur die Differenzengleichung
eines begleitenden Dreibeins ZZ --t SUz[A]
der Schar X(A) (zero curvature representa­
tion der Hirota-Gleichung),

Das vorliegende Werk besteht aus einer
systematischen Darstellung dieser Zusam­
menhange, Kapite1 I wiederholt die klas­
sischen Ergebnisse betreffend Koordina­
tensysteme auf Flachen und ihrer Trans­
formationen. Der Abschnitt Discretiza­
tion Principles fiihrt die umfangreiche dis­
krete Theorie anhand von 3-dimensiona­
len integrablen Systemen mit 4D-Konsis­
tenz ein. Das erste der beiden obigen Bei­
spiele gehort hierher. Zweidimensionale
integrable Systeme und deren 3D-Konsis­
tenz sind die Grundlage des 4. Kapitels,
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Special Classes of Discrete Surfaces, wo
die geometriseh sehr interessanten K-Net­
ze, isothermen Netze, und Netze konstan­
ter mittlerer Kriimmung besproehen wer­
den. Auch die s-isothermen Netze von [1]
gehoren hierher. SchlieJ3lieh wird die In­
terpretation der glatten Theorie als
Grenzfall der diskreten im Kapitel Appro­
ximation streng begnindet, indem die
Konvergenz der Losungen von gut ge­
stellten diskreten Goursat-Problemen ge­
gen die Losungen entsprechender partiel­
ler Differentialgleichungen gezeigt wird.

Der begriffliche Kern des Werkes ist
Kapitel 6, Consistency as integrability.
Wesentlich ist die Erkenntnis, dass die
3D-Konsistenz von Gleichungen auf
zweidimensionalen Gittern fur die iibli­
eherweise verlangten Attribute integrab­
ler Systeme verantwortlich ist (Backlund­
Transformationen und zero curvature re­
presentations). Es werden aueh Gleichun­
gen auf irregularen Strukturen (Quad­
Graphen, rhombische Einbettungen) un­
tersucht und die relevanten Typen von
zweidimensionalen integrablen System en
vollstandig klassifiziert. Das Kapitel ent­
halt weiteres Material uber integrable
Systeme mit Daten auf den Kanten eines
Gitters (Yang-Baxter-Abbildungen) und
die weniger zahlreichen dreidimensiona­
len 4D-konsistenten integrablen Systeme.

Kapitel 7 und 8, Discrete Complex Ana­
lysis. Linear Theory / Integrable Circle
Patterns studieren integrable Versionen
von diskreten Cauchy-Riemann-Glei­
chungen auf Graphen, und geometrische
Eigenschaften von Kreispackungen (= dis­
krete holomorphe Funktionen). Es stellt
sich hemus, dass das Finden von Kreis­
mustern mit vorgeschriebener Kombina­
torik und konformem Typ (Schnittwin­
keln von Kreisen) auf das Losen von Glei­
chungen auf Quad-Graphen hinauslauft,
die zu friiher behandelten Doppelverhalt-
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nis-Systemen und Hirota-Systemen aqui­
valent sind. Das Kapitel schlieBt mit Bei­
spielen fur Kreismuster, Monodromie­
eigenschaften und der Differentiation von
diskreten holomorphen Funktionen. Ein
Hauptresultat ist das Erkennen von Kapi­
tel 7 als Linearisierung von Kapitel 8. Das
letzte KapiteI, Foundations, stellt Grund­
lagen aus der projektiven Geometrie be­
reit.

Dieses Werk richtet sich nieht nur an
Mathematiker, sondem an aIle, die im
Zusammenhang mit numerischer Simula­
tion, Datenverarbeitung oder sogar Frei­
formarchitektur mit 3D-Geometriedaten
zu tun haben. Differentialgeometer wer­
den mit groBem Interesse die Verbindun­
gen zu integrablen Systemen zur Kenntnis
nehmen, wahrend Leser, die aus der ma­
thematischen Physik kommen und mit
letzteren vertraut sind, die geometrische
Konsistenz als den eigentIiehen Hinter­
grund des schwer exaktifizierbaren Be­
griffs der Integrabilitat erkennen konnen,
Der projektiven Geometrie Kundige wer­
den erstaunt sein, an welchen Stellen Inzi­
denz-Satze und Konfigurationen eine
Rolle spielen. Es ist den Autoren in beein­
druckender Weise gelungen, ein bisher
nur aus Einzelpublikationen zugangliches
Teilgebiet der Mathematik in geschlosse­
ner Form darzustellen; gleichzeitig ent­
halt dieses Werk neue, bisher noch nieht
erschienene Resultate. Durch die vielen
Ubungsaufgaben ist es sehr gut als
Grundlage fur VorIesungen verwendbar;
die Lektiire kann uneingeschrankt emp­
fohlen werden.
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