Uber die Anfinge einer Fields-Medaillistin

Maryam Mirzakhani (Foto: Privat/Stanford University)

Im vergangenen Jahr erhielt Maryam Mirzakhani auf dem
ICM in Seoul eine Fields-Madaille, als erste Frau iiberhaupt.
Ausgezeichnet wurde sie fiir ihre Arbeiten zu Modulrdumen
Riemannscher Flédchen. Dieser Text richtet den Blick aber auf
den Beginn von Mirzakhanis wissenschaftlicher Karriere. Da-
mals interessierte sich die junge Forscherin fiir Graphentheo-
rie.

Geboren wurde Maryam Mirzakhani 1977 in Teheran.
In den Jahren 1994 und 1995 nahm sie mit dem irani-
schen Team erfolgreich an Internationalen Mathematik-
Olympiaden teil. Ihren Bachelor erlangte sie 1999 im Iran,
an der Scharif-Universitdt fiir Technologie. Anschlieend
ging Mirzakhani nach Harvard, um bei Curtis McMullen,
einem der Fields-Medaillisten von 1998, zu promovieren.
Nach Stationen am Clay Mathematical Institute und in
Princeton ist sie seit 2008 Professorin an der Stanford
University.

Mirzakhanis mathematisches Wirken beginnt in der Kom-
binatorik, und zwar mit der folgenden Fragestellung: Sei
G ein endlicher Graph mit ungerichteten Kanten. Mehr-
fachkanten und Schleifen kommen nicht vor, das heif3t
G ist ein einfacher Graph. Eine k-Fdrbung von G ord-
net jedem Knoten eine von k Farben zu, sodass die bei-
den Knoten jeder Kante unterschiedlich gefirbt sind. Die
Frage nach der Existenz und der Konstruktion von Far-
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bungen von Graphen ist iliberaus reichhaltig. Graphen-
farbung beriihrt zahlreiche innermathematische Aspek-
te und weist dariiber hinaus. Anwendungen betreffen
beispielsweise die Registerallozierung beim Compilerbau
oder die Frequenzzuweisung in Mobilfunknetzen. Einen
von vielen zentralen Sitzen in diesem Gebiet bewiesen
1976/77 Kenneth Appel und Wolfgang Haken (mit John
B. Koch). Dieser Vierfarbensatz besagt, dass jeder planare
Graph 4-fiarbbar ist [I, 2]. Da der Beweis zu einem we-
sentlichen Teil auf Computerberechnungen beruhte, ent-
stand damals eine Diskussion dariiber, inwieweit man ei-
nem solchen Beweis trauen diirfe. Spatestens 2005 hatte
sich das Thema aber erledigt, als Georges Gonthier und
Benjamin Werner einen formalisierten Beweis des Vier-
farbensatzes in dem Beweisassistenten Coq vorlegten; sie-
he [4].

Bei einer Listenfdrbung werden jedem Knoten eines Gra-
phen endlich viele Farben als Kandidaten angeboten. Da-
mit verbunden ist die Aufgabe, aus diesen Farblisten je-
weils eine Farbe pro Knoten so auszuwihlen, dass eine
korrekte Farbung entsteht. Hier wird explizit zugelassen,
dass verschiedene Knoten verschiedene Farblisten besit-
zen. Der Graph heiBt k-listenfdrbbar, wenn fiir jede Zu-
weisung von je k Kandidatenfarben pro Knoten die Lis-
tenfirbungsaufgabe eine Losung besitzt. Falls G nun k-
listenfarbbar ist, dann kann man insbesondere alle Farb-
listen mit denselben k Farben bestiicken. Das bedeutet,
dass G dann auch k-farbbar ist. Die Umkehrung gilt nicht:
In Abbildung | ist der vollstindig bipartite Graph K> 4
dargestellt, der nicht 2-listenfirbbar ist. Klarerweise ge-
niigen hier zwei Farben, wenn man nicht an vorgegebene
Listen gebunden ist.

In ihrer Arbeit A small non-4-choosable planar graph von
1996 gab Maryam Mirzakhani einen planaren — nach Ap-
pel und Haken also 4-firbbaren — Graphen mit 63 Knoten
an, der nicht 4-listenfarbbar ist [5]. Die Existenz solcher
Graphen hatten Paul Erdds, Arthur L. Rubin und Her-
bert Taylor 1979 vermutet [3], und dies war auch bereits
1993 durch eine Konstruktion mit 238 Knoten von Mar-
git Voigt bestidtigt worden [7]. Mirzakhanis Arbeit stellt
eine Verbesserung dar, weil sie mit deutlich weniger Kno-
ten auskommt. Viel interessanter an Mirzakhanis Graph
ist aber, dass er im Gegensatz zu Voigts Konstruktion so-
gar 3-farbbar ist. Und dies erledigte ein damals offenes
Problem. Um die historische Einordnung abzuschlieBen,
sei erwidhnt, dass Carsten Thomassen kurz darauf zeigte,
dass jeder planare Graph 5-listenfarbbar ist [6].

Im Folgenden will ich die recht einfache Konstruktion
von Mirzakhanis Graph kurz skizzieren. Es soll also ein
3-farbbarer planarer Graph ,,gebaut* werden, der nicht
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Abbildung 1. Der vollstdndig bipartite Graph K> 4. Egal wie man aus
den vorgegebenen Farblisten wadhlt, es entsteht keine giiltige Farbung.

4-listenfarbbar ist. In Abbildung 2 sieht man einen plana-
ren Graphen mit 17 Knoten. Nennen wir ihn B. Jeder
der Knoten hat jeweils drei oder vier Farben als Kan-
didaten, je nachdem, ob es sich um einen inneren oder
einen dufBeren Knoten handelt. Die inneren Knoten ha-
ben jeweils vier Nachbarn (und vier Farben), wohinge-
gen die duBeren Knoten nur drei Nachbarn und Farben
besitzen. Die inneren Knoten haben alle dieselben vier
Farben, und dies sind auch die Farben, die insgesamt nur
zur Verfiigung stehen. Man muss sich nun davon {iberzeu-
gen, dass die angegebenen Farblisten nicht ,funktionie-
ren*. Das heift, es ist nicht moglich, fiir jeden Knoten
jeweils eine Farbe aus den vorgegebenen so auszuwih-
len, dass eine korrekte Firbung entsteht. Eine detaillierte
Begriindung will ich hier nicht ausfiihren. Tatsachlich sind
gar nicht so viele Fille zu beriicksichtigen, wie auf den
ersten Blick zu erwarten wire. Es ist ndmlich moglich,
sich die Symmetrie des Graphen und der Farblisten zu-
nutze zu machen.

Ist dieser Baustein B erst einmal da, ist die Sache recht
einfach zu Ende zu filhren. Dann nimmt man namlich vier
disjunkte Kopien von B plus einen weiteren Knoten, den
man mit allen duBeren Knoten verbindet. Nun wihlt man
vier neue Farben, sodass insgesamt acht Farben auftre-
ten. Nehmen wir an, die neuen Farben seien a, b, ¢ und
d. Jede der vier neuen Farben verwendet man fiir jeweils
eine der vier Kopien von B und fiigt in dieser Kopie den
Farblisten der duBeren Knoten diese Farbe hinzu. Der
Extraknoten erhilt alle vier neuen Farben abcd. Auf die-
se Weise entsteht ein planarer Graph mit 4-17 +1 = 69
Knoten und Farblisten der Linge 4. Die zugehorige Lis-
tenfiarbungsaufgabe besitzt keine Losung. Der Grund liegt
in der Sonderrolle des Extraknotens. Kénnte man nam-
lich aus den Kandidaten eine Farbe auswihlen, sodass ei-
ne giiltige Farbung entsteht, ergibe sich folgender Wider-
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Abbildung 2. Der Graph B mit einer Listenfdrbungsaufgabe ohne
Losung

spruch: Angenommen die Farbe des Extraknotens sei a.
Dann wire a fiir alle auBeren Knoten in der a-Kopie von
B verboten. Somit entsteht in diesem Teilgraphen wie-
derum genau die Listenfirbungsaufgabe fiir B aus Abbil-
dung 2, deren Unldsbarkeit bereits nachgewiesen wurde.
Damit ist der konstruierte Graph mit 69 Knoten nicht
4-listenfarbbar. Dass er auch 3-firbbar ist, ergibt sich aus
dem klassischen Kriterium von Heawood: Jeder Knoten
hat eine gerade Anzahl an Nachbarn. Denn jeder inne-
re Knoten hatte von vornherein vier Nachbarn, wahrend
die duBeren Knoten urspriinglich zwar mit drei oder sie-
ben Nachbarn gestartet sind, aber noch mit dem einen
Extraknoten verbunden wurden. Es ist librigens nicht n6-
tig, den Grad dieses Extraknotens auszurechnen, denn
dieser muss nach dem Handshake-Lemma zwangslaufig
gerade sein.

Damit ist die Sache eigentlich schon erledigt. Mit ein biss-
chen Feintuning lassen sich dann noch die vier Kopien des
Grundbausteins B aus Abbildung 2 so miteinander ver-
schmelzen, dass insgesamt sechs Knoten eingespart wer-
den. Allerdings ist der Preis hierfiir, dass man die Farblis-
ten in den vier Kopien geschickt variieren muss. Am Ende
kommt man mit insgesamt fiinf Farben aus. Das Resultat
ist der Graph M mit 63 = 69 — 6 Knoten in Abbildung 3.
Zur Verdeutlichung der Konstruktion sind in den Farblis-
ten der duBeren Knoten in den (verschmolzenen) Kopien
von B diejenigen Farben groBer gezeichnet, die festlegen,
zu welcher Kopie von B der jeweilige Knoten gehort.

Was bleibt noch zu sagen?! Mirzakhanis Arbeit stellt in
ihrer kompakten und luziden Darstellung ein mathema-
tisches Kleinod dar. Das Ergebnis ist meines Wissens
bis heute nicht verbessert worden. Ich kenne jeden-
falls keinen kleineren 3-firbbaren Graphen, der nicht
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4-listenfarbbar ist. Maryam Mirzakhanis besonderes Ta-
lent ist hier bereits zu erkennen, gerade weil die Kon-
struktion so schwerelos leicht ist. Sich frith mit offenen
Problemen aus der Kombinatorik zu beschiftigen, scheint
also nicht hinderlich zu sein auf dem Weg zu einer Fields-
Medaille.

Ich danke Benjamin Lorenz fiir seine Unterstiitzung bei der II-
lustration der Graphen mit TikZ.
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Abbildung 3. Der Mirzakhani-Graph M ist 3-fdrbbar, aber nicht 4-
listenfdrbbar.
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