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Im vergangenen Jahr erhielt Maryam Mirzakhani auf dem
ICM in Seoul eine Fields-Madaille, als erste Frau überhaupt.
Ausgezeichnet wurde sie für ihre Arbeiten zu Modulräumen
Riemannscher Flächen. Dieser Text richtet den Blick aber auf
den Beginn von Mirzakhanis wissenschaftlicher Karriere. Da-
mals interessierte sich die junge Forscherin für Graphentheo-
rie.

Geboren wurde Maryam Mirzakhani 1977 in Teheran.
In den Jahren 1994 und 1995 nahm sie mit dem irani-
schen Team erfolgreich an Internationalen Mathematik-
Olympiaden teil. Ihren Bachelor erlangte sie 1999 im Iran,
an der Scharif-Universität für Technologie. Anschließend
ging Mirzakhani nach Harvard, um bei Curtis McMullen,
einem der Fields-Medaillisten von 1998, zu promovieren.
Nach Stationen am Clay Mathematical Institute und in
Princeton ist sie seit 2008 Professorin an der Stanford
University.

Mirzakhanis mathematisches Wirken beginnt in der Kom-
binatorik, und zwar mit der folgenden Fragestellung: Sei
G ein endlicher Graph mit ungerichteten Kanten. Mehr-
fachkanten und Schleifen kommen nicht vor, das heißt
G ist ein einfacher Graph. Eine k -Färbung von G ord-
net jedem Knoten eine von k Farben zu, sodass die bei-
den Knoten jeder Kante unterschiedlich gefärbt sind. Die
Frage nach der Existenz und der Konstruktion von Fär-

bungen von Graphen ist überaus reichhaltig. Graphen-
färbung berührt zahlreiche innermathematische Aspek-
te und weist darüber hinaus. Anwendungen betreffen
beispielsweise die Registerallozierung beim Compilerbau
oder die Frequenzzuweisung in Mobilfunknetzen. Einen
von vielen zentralen Sätzen in diesem Gebiet bewiesen
1976/77 Kenneth Appel und Wolfgang Haken (mit John
B. Koch). Dieser Vierfarbensatz besagt, dass jeder planare
Graph 4-färbbar ist [1, 2]. Da der Beweis zu einem we-
sentlichen Teil auf Computerberechnungen beruhte, ent-
stand damals eine Diskussion darüber, inwieweit man ei-
nem solchen Beweis trauen dürfe. Spätestens 2005 hatte
sich das Thema aber erledigt, als Georges Gonthier und
Benjamin Werner einen formalisierten Beweis des Vier-
farbensatzes in dem Beweisassistenten Coq vorlegten; sie-
he [4].

Bei einer Listenfärbung werden jedem Knoten eines Gra-
phen endlich viele Farben als Kandidaten angeboten. Da-
mit verbunden ist die Aufgabe, aus diesen Farblisten je-
weils eine Farbe pro Knoten so auszuwählen, dass eine
korrekte Färbung entsteht. Hier wird explizit zugelassen,
dass verschiedene Knoten verschiedene Farblisten besit-
zen. Der Graph heißt k -listenfärbbar, wenn für jede Zu-
weisung von je k Kandidatenfarben pro Knoten die Lis-
tenfärbungsaufgabe eine Lösung besitzt. Falls G nun k-
listenfärbbar ist, dann kann man insbesondere alle Farb-
listen mit denselben k Farben bestücken. Das bedeutet,
dass G dann auch k-färbbar ist. Die Umkehrung gilt nicht:
In Abbildung 1 ist der vollständig bipartite Graph K2,4

dargestellt, der nicht 2-listenfärbbar ist. Klarerweise ge-
nügen hier zwei Farben, wenn man nicht an vorgegebene
Listen gebunden ist.

In ihrer Arbeit A small non-4-choosable planar graph von
1996 gab Maryam Mirzakhani einen planaren – nach Ap-
pel und Haken also 4-färbbaren – Graphen mit 63 Knoten
an, der nicht 4-listenfärbbar ist [5]. Die Existenz solcher
Graphen hatten Paul Erdős, Arthur L. Rubin und Her-
bert Taylor 1979 vermutet [3], und dies war auch bereits
1993 durch eine Konstruktion mit 238 Knoten von Mar-
git Voigt bestätigt worden [7]. Mirzakhanis Arbeit stellt
eine Verbesserung dar, weil sie mit deutlich weniger Kno-
ten auskommt. Viel interessanter an Mirzakhanis Graph
ist aber, dass er im Gegensatz zu Voigts Konstruktion so-
gar 3-färbbar ist. Und dies erledigte ein damals offenes
Problem. Um die historische Einordnung abzuschließen,
sei erwähnt, dass Carsten Thomassen kurz darauf zeigte,
dass jeder planare Graph 5-listenfärbbar ist [6].

Im Folgenden will ich die recht einfache Konstruktion
von Mirzakhanis Graph kurz skizzieren. Es soll also ein
3-färbbarer planarer Graph „gebaut“ werden, der nicht
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Abbildung 1. Der vollständig bipartite Graph K2,4 . Egal wie man aus
den vorgegebenen Farblisten wählt, es entsteht keine gültige Färbung.

Abbildung 2. Der Graph B mit einer Listenfärbungsaufgabe ohne
Lösung

4-listenfärbbar ist. In Abbildung 2 sieht man einen plana-
ren Graphen mit 17 Knoten. Nennen wir ihn B . Jeder
der Knoten hat jeweils drei oder vier Farben als Kan-
didaten, je nachdem, ob es sich um einen inneren oder
einen äußeren Knoten handelt. Die inneren Knoten ha-
ben jeweils vier Nachbarn (und vier Farben), wohinge-
gen die äußeren Knoten nur drei Nachbarn und Farben
besitzen. Die inneren Knoten haben alle dieselben vier
Farben, und dies sind auch die Farben, die insgesamt nur
zur Verfügung stehen. Man muss sich nun davon überzeu-
gen, dass die angegebenen Farblisten nicht „funktionie-
ren“. Das heißt, es ist nicht möglich, für jeden Knoten
jeweils eine Farbe aus den vorgegebenen so auszuwäh-
len, dass eine korrekte Färbung entsteht. Eine detaillierte
Begründung will ich hier nicht ausführen. Tatsächlich sind
gar nicht so viele Fälle zu berücksichtigen, wie auf den
ersten Blick zu erwarten wäre. Es ist nämlich möglich,
sich die Symmetrie des Graphen und der Farblisten zu-
nutze zu machen.

Ist dieser Baustein B erst einmal da, ist die Sache recht
einfach zu Ende zu führen. Dann nimmt man nämlich vier
disjunkte Kopien von B plus einen weiteren Knoten, den
man mit allen äußeren Knoten verbindet. Nun wählt man
vier neue Farben, sodass insgesamt acht Farben auftre-
ten. Nehmen wir an, die neuen Farben seien a, b, c und
d . Jede der vier neuen Farben verwendet man für jeweils
eine der vier Kopien von B und fügt in dieser Kopie den
Farblisten der äußeren Knoten diese Farbe hinzu. Der
Extraknoten erhält alle vier neuen Farben abcd . Auf die-
se Weise entsteht ein planarer Graph mit 4 · 17+ 1 = 69

Knoten und Farblisten der Länge 4. Die zugehörige Lis-
tenfärbungsaufgabe besitzt keine Lösung. Der Grund liegt
in der Sonderrolle des Extraknotens. Könnte man näm-
lich aus den Kandidaten eine Farbe auswählen, sodass ei-
ne gültige Färbung entsteht, ergäbe sich folgender Wider-

spruch: Angenommen die Farbe des Extraknotens sei a.
Dann wäre a für alle äußeren Knoten in der a-Kopie von
B verboten. Somit entsteht in diesem Teilgraphen wie-
derum genau die Listenfärbungsaufgabe für B aus Abbil-
dung 2, deren Unlösbarkeit bereits nachgewiesen wurde.
Damit ist der konstruierte Graph mit 69 Knoten nicht
4-listenfärbbar. Dass er auch 3-färbbar ist, ergibt sich aus
dem klassischen Kriterium von Heawood: Jeder Knoten
hat eine gerade Anzahl an Nachbarn. Denn jeder inne-
re Knoten hatte von vornherein vier Nachbarn, während
die äußeren Knoten ursprünglich zwar mit drei oder sie-
ben Nachbarn gestartet sind, aber noch mit dem einen
Extraknoten verbunden wurden. Es ist übrigens nicht nö-
tig, den Grad dieses Extraknotens auszurechnen, denn
dieser muss nach dem Handshake-Lemma zwangsläufig
gerade sein.

Damit ist die Sache eigentlich schon erledigt. Mit ein biss-
chen Feintuning lassen sich dann noch die vier Kopien des
Grundbausteins B aus Abbildung 2 so miteinander ver-
schmelzen, dass insgesamt sechs Knoten eingespart wer-
den. Allerdings ist der Preis hierfür, dass man die Farblis-
ten in den vier Kopien geschickt variieren muss. Am Ende
kommt man mit insgesamt fünf Farben aus. Das Resultat
ist der Graph M mit 63 = 69− 6 Knoten in Abbildung 3.
Zur Verdeutlichung der Konstruktion sind in den Farblis-
ten der äußeren Knoten in den (verschmolzenen) Kopien
von B diejenigen Farben größer gezeichnet, die festlegen,
zu welcher Kopie von B der jeweilige Knoten gehört.

—

Was bleibt noch zu sagen? Mirzakhanis Arbeit stellt in
ihrer kompakten und luziden Darstellung ein mathema-
tisches Kleinod dar. Das Ergebnis ist meines Wissens
bis heute nicht verbessert worden. Ich kenne jeden-
falls keinen kleineren 3-färbbaren Graphen, der nicht
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Abbildung 3. Der Mirzakhani-Graph M ist 3-färbbar, aber nicht 4-
listenfärbbar.

4-listenfärbbar ist. Maryam Mirzakhanis besonderes Ta-
lent ist hier bereits zu erkennen, gerade weil die Kon-
struktion so schwerelos leicht ist. Sich früh mit offenen
Problemen aus der Kombinatorik zu beschäftigen, scheint
also nicht hinderlich zu sein auf dem Weg zu einer Fields-
Medaille.

Ich danke Benjamin Lorenz für seine Unterstützung bei der Il-
lustration der Graphen mit TikZ.
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